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1. Why study supersymmetric theories using lattice gauge theory?

There are several reasons why supersymmetry has played such an important and

prominent role in modern developments of quantum field theory. One is its versa-

tility in constructing extensions of the Standard Model of particle physics. Super-

symmetry provides a solution to the hierarchy problem by providing a mechanism

for the cancellation of bosonic and fermionic contributions to quantities such as the

Higgs mass and as a bonus it includes natural candidates for dark matter. Further-

more, supersymmetric extensions of the standard model have implications at scales

that are testable by current collider experiments. At the more fundamental level

supersymmetry provides a bridge between the standard model and descriptions of

quantum gravity based on supergravity and string theory.

Supersymmetric extensions of the standard model like the minimal supersym-

metric Standard Model (MSSM) are based on softly broken supersymmetric theories

and the relations to the experimental data are usually established by perturbative

calculations. In general there are very many of these soft breaking terms (approxi-

mately one hundred in the MSSM) and this yields to a lack of predictability in such

theories. It is generally believed that such softly broken theories should be thought
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of as effective field theories describing the low energy behavior of a theory in which

dynamical supersymmetry breaking has taken place at some high scale and in some

hidden sector. Presumably this breaking arises as a consequence of some presently

poorly understood strong dynamics. In principle lattice simulations of such strongly

coupled supersymmetric theories can allow one to measure such soft parameters in

terms of a handful of non-perturbative quantities in a manner similar to the way

lattice QCD allows for the prediction of the low energy constants of chiral effective

theory. En route to this ambitious goal one must first understand the supersym-

metric analog of the pure glue sector of QCD – N = 1 super Yang-Mills theory

(SYM). Numerical studies of this theory form a major focus of this review. The

extension of this theory to include fermions in the fundamental representation of

the gauge group - super QCD - is currently too difficult for direct simulation in

four dimensions. However we do discuss numerical work that has been done in two

dimensional super QCD.

A second motivation for the study of supersymmetric theories is that they arise

rather naturally in systems including gravity in particular string theory. Of spe-

cific interest in this regard are the holographic dualities which link the solution

of classical gravitational systems with the strongly coupled behavior of planar su-

persymmetric gauge theories. N = 4 super Yang-Mills theory furnishes the first

and best understood example of such a correspondence and numerical studies of

this theory using novel lattice actions which preserve an element of supersymmetry

form a second major strand of this review.

Supersymmetry allows a better analytic understanding of quantum effects and

offers, therefore, an interesting new perspective for the investigations of strongly

coupled theories. An example are the exact predictions,1,2 extensive semiclassical

analysis,3 and conjectured relations to QCD4 for N = 1 SYM. The verification and

extension of the theoretical considerations is a further motivation for the numerical

studies of supersymmetric theories. We elaborate a little bit more on this in the

section about the results in N = 1 SYM.

In the following we provide a short summary of four dimensional supersymmetric

theories in the continuum to clarify the discussion. The on-shell action of N = 1

SYM has the following form

SSYM =

∫
d4x Tr

[
1

4
F 2
µν +

1

2
ψ̄ /Dψ

]
, (1)

where the field ψ are Majorana fermions that transform in the adjoint representation

of the gauge group (Dµψ = ∂µψ − ig[Aµ, ψ]).

The on-shell action of the N = 1 Wess-Zumino model contains a Majorana

fermion ψ and a complex bosonic field φ,

SWZ =

∫
d4x

[
∂µφ

†∂µφ+ |(mφ+ gφ2)|2 +
1

2
ψ̄(/∂ +m+ gφP+ + gφ†P−)ψ

]
, (2)

where W ′(φ) = mφ + gφ2 is the first derivative of the superpotential W with

respect to φ and P± = 1
2 (1± γ5). Supersymmetric QCD is a combination of N = 1
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SYM, the pure gluonic sector, coupled to a matter sector represented by an N = 1

Wess-Zumino model with fields in the fundamental representation. N = 2 SYM

corresponds to a variant of supersymmetric QCD without a superpotential and the

matter fields in the adjoint representation.

N = 4 SYM in four dimensions is derived from a dimensional reduction of N = 1

SYM in ten dimensions. The ten dimensional theory contains one Majorana-Weyl

fermion that is reduced to four Majorana fermions and the six additional gauge field

components become scalar fields in the adjoint representation. The action consists

of SSYM with four fermion flavors, Yukawa interactions with the six scalar fields Xi

that couple the different fermion flavors, and a bosonic action

SB =

∫
d4x

[
1

2
DµX

iDµXi +
1

4
[Xi, Xj ]2

]
. (3)

2. Challenges with supersymmetric theories on the lattice

The simulation of supersymmetric theories presents difficulties above and beyond

those commonly encountered in for example lattice QCD. These additional prob-

lems derive from the nature of supersymmetry itself as the only non-trivial extension

of the usual symmetries of spacetime. A consequence of this fact is that the sym-

metry connects each fermion in the theory with a corresponding boson possessing

the same quantum numbers. This presents a problem since fermions and bosons

are usually handled differently in lattice simulations. Further considerations are re-

lated to common features of many supersymmetric theories: the bosonic potential

in theories with extended supersymmetry naturally includes flat directions which

must be regulated if they are to yield stable simulations. Additionally the fermion

representations that commonly arise in these theories can lead to technical or even

severe sign problems.

2.1. Supersymmetry breaking by the lattice discretization

Supersymmetry is connected with the symmetries of space time, which is commonly

expressed in the terms of the simplified part of the supersymmetry algebra

{Q,Q} ∝ Pµ , (4)

where Q are the generators of supersymmetry and Pµ the generators of translation.

The lattice has no infinitesimal translation and, like the symmetries of space-time,

supersymmetry is broken by the lattice discretization. Typically, the remnant lattice

symmetry ensures the restoration of the full space-time symmetry, but supersym-

metry remains broken.

In a more detailed investigation one finds that the symmetry breaking is related

to the violation of the Leibniz rule by any discrete derivative operator.5–7 The su-

persymmetry transformation of the action with the fermionic parameter ε generates

terms of the form

εγµ
∫
d4x [(∂µφ1)φ2ψ + φ1(∂µφ2)ψ + φ1φ2(∂µψ)] =

∫
d4x ∂µV

µ , (5)
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where the Leibniz (or chain) rule is applied to identify it with a total derivative.

The only way to maintain the Leibniz rule on the lattice and implement supersym-

metry fully is by non-local derivative and product operators. Hence either locality

or supersymmetry are violated on the lattice. In our review we apply the usual

definition of locality in terms of an exponential decay of the operators with the

distance on the lattice. This resembles the Nielsen-Ninomiya theorem8 concerning

the problem of constructing chiral lattice gauge theories. For chiral symmetry the

Ginsparg-Wilson relation, a modified symmetry relation on the lattice, provides a

practicable and general solution. In its general form it reads

M ijφj
δS

δφi
= (Mα−1)ij

(
δS

δφj

δS

δφi
− δ2S

δφjδφi

)
, (6)

where the left hand side is the variation of the lattice action S under the general

transformation φi → φi+M ijφj and the right hand side corresponds to a controlled

local breaking by a blocking kernel α. It reduces to a simple expression for chiral

symmetry, but in the case of supersymmetry, no practicable solutions have yet been

found.9 Note, furthermore, that the class of modified symmetries in (6) is quite

restricted due to the locality of the breaking term.

Since there is no generic solution, the representation of supersymmetry on the

lattice is a model dependent issue. In general fine-tuning ensures the restoration of

the symmetry in the continuum limit. In models with extended supersymmetry, the

implementation of a part of the symmetry algebra ensures a significant reduction

of this fine-tuning.

2.2. Fermion doubling and fermion mass

The fermion doubling problem is a well-known difficulty for the correct represen-

tation of fermionic fields on the lattice. The background of this problem is the

Nielsen-Ninomiya theorem, which states that locality and chiral symmetry can not

be maintained without the introduction of additional fermionic degrees of freedom

- the doublers. Furthermore the final lattice theory is then necessarily vectorlike.

Basically there are three options: one can employ non-trivial lattice fermion ac-

tions such as the lattice Kähler-Dirac action or (reduced) staggered fermion action.

This option is only open for certain theories which possess extended supersymmetry

where the additional fermions that arise in these formulations can be interpreted as

the correct number of continuum physical flavors.

Alternatively one can consider additional momentum dependent mass terms,

like the Wilson mass term, that remove the doubling modes in the continuum limit.

These terms violate the equality between bosonic and fermionic masses unless they

are introduced also in the bosonic sector.10,11 Bosons and fermions are then treated

on the same footing with the same derivative operators and mass terms. The dou-

bling problem is also introduced for the bosonic fields and, like for the fermions, the

unphysical degrees of freedom are removed by additional mass terms. These mass
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terms can be consistently introduced in the superpotential corresponding to a mod-

ification of m in (2). Hence not only the mass, but also higher vertices (proportional

to mg in (2)) are modified in the on-shell formulation. The mass term breaks not

only chiral symmetry but also corresponding bosonic symmetries. The application

of this method for gauge fields, especially in a compact formulation, is not possible.

A third option is to allow for nonlocal lattice actions. This might be a solution

in lower dimensional theories without gauge fields. In the general case there is no

proof of a well behaved continuum limit for a theory that violates locality.

2.3. Flat directions

In theories with extended supersymmetry there are generically flat directions of the

bosonic potential introduced by commutator terms of fields in the adjoint repre-

sentation, see (3). Such kinds of terms arise naturally in a dimensional reduction

of pure Yang-Mills theories. In these pure bosonic cases the classical flat directions

get usually lifted by quantum effects. Supersymmetry leads, however, to cancella-

tions between the bosonic and fermionic contributions and the flat directions can

survive in the quantum theory.12 These effects are generically difficult to handle in

numerical simulations - for example they can become unstable due to finite tem-

perature or lattice artifacts or the simulations may not be efficient at exploring the

flat directions.13 One approach that has proven effective in theories with some exact

supersymmetry (see later) is to modify the lattice action to include additional scalar

mass terms that lift the flat directions and to subsequently investigate the behavior

of the observables when these regulator terms are removed.14

2.4. Sign problem in supersymmetric theories

The Witten index measures the difference between bosonic and fermionic ground

states in a supersymmetric theory. If it is zero the theory can exhibit spontaneous

supersymmetry breaking. It is defined as

Z̃ = Tr
[
(−1)F e−βH

]
, (7)

where, in contrast to the thermal partition function, (−1)F includes a minus sign

for fermionic states of the Hamiltonian H. It corresponds to a twisted partition

function that is the sum of all differences between fermionic and bosonic energy

states. The usual thermal partition function employs periodic boundary conditions

for the bosons and antiperiodic boundary conditions for the fermions in one com-

pact direction that corresponds to the temperature. The twisted partition function

has, instead, periodic boundary conditions for all fields. If the Witten index is zero,

there must necessarily be the same number of negative and positive contributions

from the configurations in the path integral with periodic boundary conditions.

This means a severe sign problem, or a zero by zero division in the computation of

observables.15 A simple way to reduce, but not completely resolve, this sign prob-

lem is the application of supersymmetry breaking antiperiodic boundary conditions
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for fermion fields with a subsequent extrapolation to the zero temperature contin-

uum limit.16 More elaborate solutions are based on loop representations and Worm

algorithms.17

Even in the case of a non-zero Witten index, a mild sign problem appears in

several supersymmetric theories. In this case the negative contributions might be

introduced by the discretization and disappear in the continuum limit. One exam-

ple is N = 1 supersymmetric Yang-Mills theory. Using Wilson fermions negative

contributions from the Pfaffian are possible. They are enhanced towards the chiral

limit, but suppressed in the continuum limit. In general it is relatively simple to

handle these kind of sign problems, either by reweighting or by avoiding the critical

parameter range. The only remaining challenge is the measurement of the Pfaffian

sign.

3. Solutions

3.1. Fine tuning

The fact that typical lattice actions break supersymmetry leads to a proliferation

of supersymmetry breaking counterterms in the effective action describing the ef-

fects of quantum corrections. In general there are a large number of such relevant

counterterms. To approach a supersymmetric continuum limit then requires that all

such terms be added to the bare lattice action and their coefficients carefully tuned

as the lattice spacing is reduced. This is the famous fine tuning problem of lattice

supersymmetry.

This approach is particularly simple for super-renormalizable theories, where

the coefficients can be calculated perturbatively. One of the earliest examples is the

two dimensional Wess-Zumino model.18 In supersymmetric Yang-Mills theories the

possible counterterms are restricted by the gauge symmetry and the remnant space-

time symmetry on the lattice. In N = 1 supersymmetric Yang-Mills theory there

is only one remaining counterterm: the gluino mass term.19 It is the same tuning

that is needed for the restoration of chiral symmetry in the continuum limit. The

numerical determination of the coefficient is feasible and can be done using either

the supersymmetric or the chiral Ward identities. If the fermion action fulfills the

Ginsparg-Wilson relation, both chiral symmetry and supersymmetry are ensured in

the continuum limit.

The fine tuning is considerably more difficult in theories with scalar fields. These

are part of the matter multiplet in supersymmetric QCD or appear in the vec-

tor multiplet alongside the gauge field in theories with extended supersymmetry.

If Ginsparg-Wilson fermions are employed, a combined tuning of several different

counterterms needs to be done.20 It might be guided by perturbative arguments as

shown for the Wess-Zumino model21 and for N = 2 supersymmetric Yang-Mills the-

ory.22 In theories which preserve part of the supersymmetry algebra it is sometimes

possible to reduce the number of fine tunings dramatically. A particular example of

this is N = 4 super Yang-Mills where a single tuning is all that is required to target
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the correct continuum theory.

3.2. Preserving part of the supersymmetry algebra

While discretization of supersymmetric theories generically breaks supersymmetry

completely there are situations where a subalgebra can be preserved. In many cases

the existence of this subalgebra places strong constraints on the possible counter

term structure of the theory and can reduce or even eliminate the fine tuning prob-

lem that has been described earlier.

These cases all involve theories with extended supersymmetry - in fact in the

case of pure super Yang-Mills theories the precise constraint is that the number of

real fermionic degrees of freedom must be 2D where D is the (Euclidean) spacetime

dimension.

3.2.1. Two dimensional super Yang-Mills

Let us see how this works in perhaps the simplest example: (2, 2) super Yang-Mills in

two dimensions.23–25 The field content of this theory corresponds to two degenerate

flavors of Majorana fermions λI , I = 1, 2, two scalar fields BI and a gauge field

Ai, i = 1, 2. The global symmetries of the theory include SOLorentz(2) and a flavor

symmetry SOflavor(2) and allow one to decompose the fields of the theory under a

twisted rotational symmetry corresponding to the diagonal subgroup

SO′(2) = Diag (SOLorentz(2)× SOflavor(2)) (8)

Under this twisted symmetry the fermions transform like a 2d matrix Λ

λIα → GIJλJβ
(
GT
)
βα

(9)

with G a SO(2) transformation. Given this matrix structure it is then natural to

expand Λ on products of two dimensional gamma matrices

Λ = ηI + ψiσi + χ12σ1σ2 (10)

The appearance of the scalar fermion η is crucial - it implies the existence of a

scalar supersymmetry Q and from the original supersymmetry algebra it is easy

to show that Q satisfies the subalgebra {Q,Q} = 0. The absence of a generator of

translations on the RHS of this expression means that this supercharge can coexist

with a discrete lattice. Indeed it is possible to show that the action of the theory

can be written in a Q-exact form

S = Q
∫
d2xTr

(
χ12F12 + η[Di,Di] +

1

2
ηd

)
(11)

The gauge field A entering in this expression is not the original gauge field but a

complexified field taking the form Ai = Ai+iBi containing the original scalar fields.

This arises because of the twisting procedure; the scalar fields transform as a vector

under the original flavor symmetry and hence will also behave as a vector under the
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twisted rotational symmetry. Conversely, the original gauge field was a singlet under

the flavor symmetry so remains a vector under the twisted symmetry. Finally the

bosonic field d is introduced to render the Q symmetry nilpotent off-shell. Indeed

the scalar supersymmetry transformations take the simple form

QAi = ψi

Qψi = 0

QAi = 0

Qχij = −F ij
Q η = d

Q d = 0

(12)

Notice that Q2 = 0 on all fields as advertised. The complex Ai yields complexified

covariant derivatives Di = ∂i + iAi, Di = ∂i + iAi and associated field strengths

Fij = [Di,Dj ].
So far the discussion has taken place in the continuum and the entire twisting

process in flat space can be envisioned as merely an exotic change of variables. How-

ever it clearly offers some advantages when it comes to discretization; the twisted

theory no longer contains any spinors which makes it possible to avoid the usual

fermion doubling problem. Indeed after doing the Q-variation the fermionic part

of the action describes a Kähler-Dirac fermion which can be discretized without

inducing fermion doubling. In fact the resultant action can be mapped into that of

(reduced) staggered fermions. Furthermore and most importantly the scalar super-

symmetry can be restricted to a lattice without paying any penalty.

In more detail the transcription to a lattice requires first assigning continuum

fields to links in a lattice. The lattice is not arbitrary; in the example in question one

requires a lattice with both the usual unit basis vectors in the coordinate directions

x→ x+ î for Ai and its superpartner ψi but also diagonal or face links running from

x+ î+ ĵ → x to carry the χij . We also need a prescription for replacing continuum

derivatives with (gauged) difference operators. Such a prescription exists and we

illustrate it below for a generic link field fi(x)

Difj → Ui(x)fj(x+ î)− fj(x)Ui(x+ ĵ) (13)

Difi → fi(x)U(x)− U(x− î)fi(x− î)
In this expression we have replaced the continuum Ai by a complex lattice Wil-

son link field Ui. Notice that these expressions ensure that the derivatives gauge

transform like appropriate link paths and have the correct naive continuum limit if

Ui = I +Ai + . . . Furthermore, notice that this definition means that Fij = DiUj is

automatically antisymmetric in its indices and remarkably satisfies an exact Bianchi

identity εijklDiFjk = 0.

Using the exact symmetries of the lattice action allows one to strongly constrain

the possible relevant counter terms that can appear in the lattice effective action.

The Q symmetry is particularly important in this regard. Consider the one loop
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effective action gotten by expanding the gauge fields about a generic classical vac-

uum state Ui = I+ai+Ai where ai is a diagonal constant matrix corresponding to

one of the flat directions in the theory. It is not hard to show that the Pfaffian that

results from integration over the twisted fermions cancels a corresponding bosonic

determinant and so the one loop effective action Γ(ai) is zero because of supersym-

metry. However this result in fact holds to all orders; it turns out that the vacuum

expectation value of any Q-invariant operator is independent of the coupling con-

stant and hence can be evaluated exactly at one loop. The proof is straightforward.

Consider

< O >=

∫
DΦOe−βQΨ (14)

where we denote all fields generically by Φ and the action takes a Q-exact form as

we have described previously. Differentiating with respect to the coupling β yields

∂ < O >

∂β
=

∫
DΦOQΨ e−βQΨ =

∫
DΦQ(OΨ) e−βQΨ = 0 (15)

This result ensures that no scalar potential appears to any order in perturbation

theory; the scalars remain massless and the flat directions survive quantum correc-

tion. In addition fermion masses are also suppressed; gauge invariance requires any

operator to take the form of a closed loop. Relevant operators correspond to loops

of minimal length; most of these correspond to kinetic terms already appearing in

the classical action; the only exception being a term of the form QTr η
∑
i U iUi.

However this term lifts the flat directions and so is prohibited by the proceeding

argument if it is not present in the classical action26,27

Let us wrap up this section by summarizing the key differences between this

approach and more conventional lattice formulations of (supersymmetric) gauge

theories.

• Fermions live in the algebra. To maintain supersymmetry so must the gauge

fields. This implies that the one must employ a flat measure rather than

the Haar measure in the path integral. This is very different from lattice

QCD. The usual problems of maintaining gauge invariance are avoided since

the links are complexified and hence the flat measure DUDU is still gauge

invariant.

• The correct naive continuum limit requires that the Ui = I+Ai+ . . .. With

a group valued link field the unit matrix appearing here is automatic but

when the variables reside in the algebra it needs to arise by giving a vacuum

expectation value to a dynamical field in the theory. Luckily since the gauge

group is GL(N,C) this can be arranged by letting the trace mode of the

(untwisted) scalar field take on such a vev. In practice we guarantee this

by adding a soft supersymmetry breaking term to the action of the form∑
x,i

[
1
NTr (Ui(x)U i(x))− 1

]2
• Supersymmetry forces fermions to be assigned to links like their superpart-

ners the gauge fields. This is different from lattice QCD. In addition the
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fermions are treated as Kähler-Dirac fields. Fermion doubling is avoided by

a careful discretization procedure of the latter.

3.2.2. Super QCD

Remarkably the previous constructions can be generalized to include fermions and

scalars transforming in the fundamental representation of the gauge group. The

trick is to start from a lattice super Yang-Mills theory in one higher dimension

with at least one scalar supercharge. One then restricts the extra dimension so that

it contains only two timeslices and gauge those two timeslices under two indepen-

dent gauge groups U(C) and U(F ). To maintain gauge invariance the links running

between these two timeslices must now contain fields which transform in the bifun-

damental representation of the combined gauge group U(C) × U(F ). Furthermore

the extra dimensional gauge field will behave as a scalar with respect the twisted

rotational symmetry of each timeslice. Finally the gauge coupling for say the U(F )

theory is sent to zero resulting in a theory containing both (twisted) gauge fields and

fermions in the adjoint representation of U(C) (a vector multiplet) together with F

scalars and fermions in the fundamental representation of that group (F hypermul-

tiplets). All fields on the U(F ) timeslice can then be consistently truncated from

the theory. A single exact supercharge remains and constrains the renormalization

of the lattice theory.

The key result which makes this construction possible is a generalization of the

prescription used in the case of adjoint fields to replace covariant derivatives by

covariant finite difference operators to the case of bifundamental fields. Consider a

bifundamental fermion ψµ which one can think of as a rectangular C × F matrix

and which transforms as

ψµ(x)→ G(x)ψµH(x+ µ̂) where G ∈ U(C) and H ∈ U(F ) (16)

A lattice derivative can be defined as

Dµψν(x) = Uµ(x)ψν(x+ µ̂)− ψν(x)Vµ(x+ ν̂) (17)

where Uµ is the U(C) gauge field and Vµ the U(F ) gauge field. This forms a gauge in-

variant loop when traced with the bifundamental F×C rectangular fermion χµν(x).

Using these techniques one could study three dimensional super QCD but un-

fortunately not in four dimensions since in the latter case one would need to start

from a five dimensional theory with a single exact supercharge which does not exist.

3.3. Nonlocal lattice actions

Locality is one of the basic principles that is usually required in quantum field theo-

ries. On the other hand nonlocal lattice actions can sometimes allow us to preserve

supersymmetry and circumvent the fermion doubling problem. The perturbative

calculations in four dimensional gauge theories with nonlocal lattice actions have

shown that nonlocal counterterms are required to achieve a local continuum limit.28
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This is one of the basic arguments why nonlocal lattice actions are considered as

unusable in lattice simulations.

On the other hand in low dimensional Wess-Zumino models the correct local con-

tinuum limit of the nonlocal lattice actions can be shown in perturbation theory.29

The perturbative proof is valid up to three dimensions.30 In four dimensions nonlocal

lattice representations of the Wess-Zumino model have been proposed that include

supersymmetry transformations with non-linear and nonlocal modifications.31 The

effects of the locality violation have been investigated in numerical simulations.32

Numerical evidence shows that the breaking is not severe, but no exponential local-

ization could be observed.

The violation of locality has more severe consequences for gauge theories than

for Wess-Zumino models. The nonlocal contribution can be introduced in terms of

a sharp momentum cutoff for all fields, which leads, in case of the gauge fields,

to a violation of gauge invariance. Considering only a nonlocal fermion action to

resolve the doubling problem, gauge invariance requires gauge transports at all

distances. Hence it appears that at least for supersymmetric gauge theories and

supersymmetric QCD, especially in four dimensions, this approach is not applicable.

4. Applications and Results

4.1. Wess-Zumino models and supersymmetric Yang-Mills

theories in less than four dimensions

As explained in Section 3.1 and 3.3 the fine tuning problem is much simpler in lower

dimensional theories and even non-local lattice actions can be considered, at least

in the case of Wess-Zumino models.

These theories have been studied as toy models to investigate supersymmetry

breaking on the lattice. Wess-Zumino models in particular are interesting candidates

for these kind of investigations. A large number of theoretical approaches have

been taken to realize lattice formulations of these models. Numerical investigations

with naive and improved discretizations and also featuring partial realization of the

supersymmetry have been done.10,15,29 Particularly interesting from the conceptual

point of view are approaches based on the Nicolai map, which maps the interacting

theory to a free theory.33 The one and two dimensional Wess-Zumino models also

serve as useful arenas for investigating spontaneous supersymmetry breaking.16,17,34

In addition to serving as toy models for understanding the general problem of

lattice supersymmetry low dimensional models can also have interesting applications

in gauge-gravity duality – finite temperature super Yang-Mills models in one, two

and three dimensions and in the planar limit are conjectured to be dual to certain

supergravity theories containing black holes. Moving away from the planar limit

allows the Yang-Mills simulations to tell us something about quantum and string

corrections in these theories. These topics will be covered in more detail in this issue

by Masanori Hanada.35
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4.2. N = 1 supersymmetric Yang-Mills theory
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Fig. 1. The continuum extrapolation of the lowest multiplet in SU(2) supersymmetric Yang-Mills

theory.36 The multiplet consists of a scalar (represented as mesonic adjoint f0 or 0++ glueball),

a pseudoscalar (represented by the mesonic adjoint η′), and a fermionic particle (the gluino-glue).
The particle mass M and the lattice spacing a are given in units of the scale w0 determined by

the Wilson flow.

N = 1 supersymmetric Yang-Mills theory (SYM) is the pure gluonic sector of

the supersymmetric extension of the standard model. It is an interesting subject

for non-perturbative investigations; not only due to its relevance in extensions of

the standard model, but also because of the various theoretical considerations and

predictions for this theory.37 The theory consists of the usual gluonic Yang-Mills

theory with the fermionic counterparts, the gluinos. At a first glance, the theory

looks quite similar to the massless limit of one-flavor QCD albeit with Majorana

fermions in the adjoint representation. Besides supersymmetry, the theory has an

U(1) R-symmetry, which corresponds the chiral symmetry group of a theory with

one fermion flavor. The anomaly breaks this symmetry to a discrete Z2Nc
subgroup

in the case of an SU(Nc) gauge group. This remaining symmetry is broken by a

fermion condensate down to Z2.

At low energies the gluinos and gluons are confined in strongly bound states.

If supersymmetry is unbroken, the bound state spectrum should be composed of

supersymmetry multiplets. These multiples consist of a bosonic scalar, a bosonic

pseudoscalar, and a fermionic particle with the same mass. Low energy effective

theories have been constructed with the first multiplet of gluonic type, where the

bosonic operators are glueballs, and a second one of mesonic type, with meson like

gluino-ball operators as bosonic constituents.38–40 Further interesting predictions

for N = 1 SYM are the exact value of the gluino condensate and the all order beta

function.1,2

As explained in Section 3.1, the restoration of supersymmetry in the contin-

uum limit can be achieved relatively easily in this theory. Using Ginsparg-Wilson

fermions, it is obtained without fine tuning. For Wilson fermions a single fine tuning

of the fermion mass is sufficient. In practice, the best signal for the fine tuning is
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the breaking of chiral symmetry in terms of the adjoint pion mass. This particle is

defined in partially quenched chiral perturbation theory.41

In addition to these theoretical considerations one has to face several technical

challenges in the simulations of N = 1 SYM. The theory contains a Majorana

fermion (in the adjoint representation) which yields a Pfaffian after integrating out

the fermions unlike the usual determinant encountered in lattice QCD. Even if the

determinant can be proven positive this is not necessarily true for the Pfaffian and

so this theory suffers from a sign problem. In practice this is not too severe and

can be handled using reweighting techniques. In addition, the bound states of the

theory are either gluonic observables or flavor singlet mesonic states, both of them

are rather hard to measure.

Compared to the determination of the bound state spectrum, the measurement

of the gluino condensate can be performed more easily. In the first investigations

using Wilson fermions the chiral phase transition was determined from the two peak

structure of the histogram of the condensate.42 However, with Wilson fermions

this quantity includes additive and multiplicative renormalization and therefore

investigations with Ginsparg-Wilson fermions are favored. Interesting results have

been obtained using simulations with domain wall fermions.43,44

The determination of the bound state spectrum is a more challenging task and it

has so far only been done with Wilson fermions. While the first preliminary investi-

gations can be found in45 some more recent results are presented in.46 These latter

results profit from improved dynamical fermion algorithms and incorporate extrap-

olations to the chiral limit, but they have found a rather large splitting between the

bosonic and fermionic components of the lowest multiplet. A careful analysis of the

lattice artifacts and the finite size effects was necessary to resolve this issue.47,48

The final results are consistent with the formation of a multiplet of bound states,36

see Figure 1.

The pure N = 1 SYM has a number of interesting applications and the lattice

simulations might confirm the theoretical conjectures about this theory. The first

lattice simulations of SU(2) N = 1 SYM at finite temperature have found a sec-

ond order deconfinement transition at around 0.8(Tc)YM compared to the critical

temperature in pure SU(2) Yang Mills theory (Tc)YM. The chiral phase transition

happens at around the same temperature.49

Recent theoretical investigations consider compactified N = 1 SYM on R3 × S1.

Instead of the thermal boundary conditions, which are antiperiodic for the fermions

and periodic for the bosons, periodic boundary conditions are applied in the com-

pactified direction. In this compactified theory no phase transition is expected even

down to a small radius, where the theory can be understood by means of a semiclas-

sical analysis.3 Lattice simulations were able to identify indications of the expected

continuity.50,51 One interesting example is shown in Figure 2. With thermal bound-

ary conditions the quantity ε corresponds to the volume averaged derivative of the

partition function with respect to the temperature and provides information about

the equation of state. With periodic boundary conditions, it is a derivative of the
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twisted partition function and corresponds to a sum of differences between bosonic

and fermionic energy levels. Hence this measurement provides an indication about

the absence of the phase transition with periodic boundary conditions and about

the smallness of the remnant supersymmetry breaking on the lattice.

-2
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4
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12

14

0.6 0.8 1 1.2 1.4 1.6 1.8 2

ε/
T
4

T/Tc

thermal boundary conditions
periodic boundary conditions

Fig. 2. This Figure shows a comparison of the derivative of the thermal partition function and
the twisted partition function for SU(2) N = 1 SYM. In contrast to the thermal case, periodic

boundary conditions are applied for the fermions in the twisted partition function.51 The temper-

ature is identified with 1/R, where R is the compactification radius of the compactified theory on
R3 × S1. The simulations have been done with a tree level clover improved fermion action and an

adjoint pion mass of around amπ ' 0.6.

4.3. N = 4 supersymmetric Yang-Mills theory

The twisting procedure described in Section 3.2 can be applied to N = 4 Yang-

Mills and results in a lattice theory which retains one exact supercharge at non zero

lattice spacing. The action for this lattice theory is very similar to that given in the

two dimensional example - see for example the review25

S = Q
∑
x

Tr

 5∑
a,b=1

χabFab + η

5∑
a=1

DaUa +
1

2
ηd

+ Sclosed (18)

Notice that the ten bosonic fields of N = 4 (4 gauge fields and six scalars) are

packed into 5 complex gauge fields Ua, a = 1 . . . 5 while the sixteen fermionic degrees

of freedom appear as (η, ψa, χab). The term Sclosed is a new term that only appears

in four dimensions. It takes the form

Sclosed =
∑
x

εabcdeχabDcχde (19)
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This term is invariant under Q by virtue of the exact lattice Bianchi identity (re-

call that Qχ = −F) In27 we showed that this lattice theory requires at most a

single tuning of a marginal coupling to target the continuum N = 4 theory in

the continuum limit in which all the supersymmetries are restored.52 One should

place a caveat on this result; the relevance of any operator depends on a power

counting argument using the engineering dimension of a field - it is possible that at

strong coupling large anomalous dimensions can be generated and modify the set

of relevant operators. As we have discussed it is necessary to add a soft Q-breaking

Fig. 3. The Ward identity in SU(2) N = 4 SYM as a function of the inverse lattice size at fixed

λ = 1 is compared for an improved and unimproved lattice formulation.

potential to pick out the vacuum state Ua = I + . . . by adding a potential of the

form

δS = µ2
∑
x,i

[
1

N
Tr (Ui(x)U i(x))− 1

]2

(20)

In practice the µ2 dependence is rather weak and yields rather robust extrapolations

µ2 → 0.

However in four dimensions we observe a second problem; at strong coupling we

observe a condensation of lattice monopoles associated with the U(1) gauge field. To

remove this lattice artifact we have modified the action by the addition of another

Q-exact term with coupling G

GQ
∑
x,a,b

Tr [η (detPab − 1)] (21)

where Pab is the (complexified) Wilson plaquette operator. This changes the mod-

uli space of the theory to include only SL(N,C) configurations and yields a new



August 23, 2016 0:45 WSPC/INSTRUCTION FILE 16susyreview

16 G. Bergner and S. Catterall

potential term of the form [(detPab − 1)]
2

which penalizes fluctuations of the de-

terminant of the plaquette away from unity. Since this modification of the action

is supersymmetric the violations of Q Ward identities are small as can be seen in

Figure 3 which compares the improved action over an earlier iteration where the

monopoles are suppressed in a way which breaks supersymmetry.

Using a parallelized code based on the MILC libraries53 we are currently using

lattice simulation to probe the structure of N = 4 Yang-Mills at strong coupling and

for small numbers of colors. This is a regime inaccessible to analytic computations

which typically require taking the planar limit. It allows us to search for signs of

S-duality54,55 and to test the bounds on anomalous dimensions provided by the

conformal bootstrap program.56 One of the central features of N = 4 Yang-Mills

Fig. 4. The string tension as a function of the ’t Hooft coupling in SU(2) N = 4 SYM.

that we would like to reproduce is the fact that it is conformal for any value of

the gauge coupling. To this end we have computed the static potential V (r) from

the correlators of Wilson lines (after gauge fixing). We find that fits to the form

V (r) = σr+C
r always yield a string tension σ ∼ 0 within errors - see Figure 4. This is

consistent with the system being in a conformal phase for all couplings. Furthermore,

the Coulomb coefficient C is found to agree with perturbative estimates at weak

coupling. Further evidence in favor of conformality can be found by examining the

behavior of two point functions of would be conformal operators in the theory. The

simplest of these is the Konishi operator - the flavor singlet quadratic scalar operator
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given by

OK =
∑
I

Tr
(
φIφI

)
=
∑
a

1

N
Tr
(
UaUa

)
− 1 (22)

This is shown in Figure 5 in a log-log plot. The increasing linearity of the plot as

the lattice size increases is very consistent with a power law behavior in the infinite

volume limit. In principle the slope of this line yields (twice) the scaling dimension

Fig. 5. The two point function of the Konishi operator at λ = 1 in SU(2) N = 4 SYM.

of the Konishi operator and we are currently working hard to extract this scaling

dimension as a function of the ’t Hooft coupling to compare with results in the planar

limit57 and bounds from the conformal bootstrap approach.56 Preliminary results

obtained from a Monte Carlo renormalization group analysis are in agreement with

perturbative calculations at weak coupling.

4.4. Towards supersymmetric QCD

N = 1 supersymmetric QCD is obtained when the supersymmetric pure gauge the-

ory presented in Section 4.2 is coupled to a Wess-Zumino model with fields in the

fundamental representation. The complete solution for the correct representation

of the four dimensional Wess-Zumino model on the lattice without fine tuning are

so far unknown, but first results indicate, that constructions guided by perturba-

tive arguments might offer a reasonable solution.32 Supersymmetric QCD in four

dimension requires a large number of terms to be fine tuned in the continuum limit

and the practical applicability of the fine tuning program is so far unknown. Similar

considerations also hold for N = 2 SYM in four dimensions.
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16 × 6 lattice ; λ = 1.0

Soft SUSY breaking mass, µ

Fig. 6. The Bosonic action as a function of the soft supersymmetry breaking mass parameter µ

in two dimensional supersymmetric QCD.

It is therefore instructive to study first an example in two dimensions, where as

discussed in Section 3.2.2 a lattice discretization with the correct continuum limit

can be found. This model was studied with the addition of a Q-invariant Fayet-

Iliopoulos term rQ∑x Tr η(x).58 The addition of this term allows for dynamical

supersymmetry breaking – after integrating out the auxiliary d-field on the U(C)

lattice one finds a potential term of the form

δV =
∑
x

Tr

 F∑
f=1

φfφ
f − rIC

2

(23)

where φ is the bifundamental scalar resulting from dimensional reduction in the

extra dimension and the trace runs over C colors. Whether one can set this potential

to zero (and hence find a supersymmetric vacuum) depends on the rank of the C×C
matrix φφ. One expects for F ≥ C that a supersymmetric vacuum is possible while

for F < C dynamical supersymmetry breaking should occur. The numerical results

in58 bear this out and also find evidence for a Goldstino in the latter case. Figure 6

plots the bosonic action which can be obtained via a QWard identity in both cases.

The dashed line indicates the result expected for a theory in which supersymmetry

is not broken. Clearly the numerical results are completely in agreement with the

theoretical arguments based on the rank of scalar potential.
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5. Conclusions

In this brief review we have listed some of the problems faced when studying super-

symmetric theories on lattices. In general supersymmetry will be broken completely

and one faces a fine tuning problem to regain a supersymmetric theory in the limit

in which the lattice spacing is sent to zero. In low dimensions this can sometimes

be avoided either by using non-local actions or by performing a finite order per-

turbative calculation to determine the coefficients of the counter terms. In certain

cases this fine tuning problem can be reduced or even eliminated using new lattice

actions which conserve (at least) a single supercharge. This latter situation includes

N = 4 super Yang-Mills and its dimensional reductions. These supersymmetric

actions are discussed in some detail in the review. For N = 1 super Yang-Mills

theory the fine tuning problem involves only a single coupling where it coincides

with the usual tuning needed to take the chiral limit. We present encouraging new

results from the numerical simulations of these theories, in particular concerning

the mass spectrum of N = 1 super Yang-Mills. They indicate that the theoretical

and numerical challenges are now under control and the lattice can be an interesting

tool for further non-perturbative investigations of these theories. As an example of

how theoretical conjectures can be tested, we have shown the phase transitions in

compactified N = 1 super Yang-Mills theory and the indications for a conformal

behavior in N = 4 super Yang-Mills.

While theories like super QCD remain a goal of this program, current work on

these more general theories is limited to low dimensions where encouraging results

have been obtained on models which exhibit dynamical supersymmetry breaking.
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arXiv:0903.4881, doi:10.1016/j.physrep.2009.09.001.
26. S. Catterall, E. Dzienkowski, J. Giedt, A. Joseph and R. Wells, JHEP 1104, 074

(2011), arXiv:1102.1725, doi:10.1007/JHEP04(2011)074.
27. S. Catterall and J. Giedt, JHEP 11, 050 (2014), arXiv:1408.7067 [hep-lat], doi:

10.1007/JHEP11(2014)050.
28. L. H. Karsten and J. Smit, Phys. Lett. B85, 100 (1979), doi:10.1016/0370-2693(79)

90786-X.
29. G. Bergner, T. Kaestner, S. Uhlmann and A. Wipf, Annals Phys. 323, 946 (2008),

arXiv:0705.2212 [hep-lat], doi:10.1016/j.aop.2007.06.010.
30. D. Kadoh and H. Suzuki, Phys. Lett. B684, 167 (2010), arXiv:0909.3686 [hep-th],

doi:10.1016/j.physletb.2010.01.022.
31. A. Feo, Phys. Rev. D88, 091501 (2013), arXiv:1305.6473 [hep-lat], doi:10.1103/

PhysRevD.88.091501.
32. C. Chen, E. Dzienkowski and J. Giedt, Phys. Rev. D82, 085001 (2010),

arXiv:1005.3276 [hep-lat], doi:10.1103/PhysRevD.82.085001.
33. M. Beccaria, M. Campostrini and A. Feo, Nucl. Phys. Proc. Suppl. 106, 944

(2002), arXiv:hep-lat/0110056 [hep-lat], doi:10.1016/S0920-5632(01)01893-X,
[,944(2001)].

34. I. Kanamori, H. Suzuki and F. Sugino, Phys. Rev. D77, 091502 (2008),
arXiv:0711.2099 [hep-lat], doi:10.1103/PhysRevD.77.091502.

35. M. Hanada, Int. J. Mod. Phys. A31, 1643006 (2016), arXiv:1604.05421 [hep-lat],
doi:10.1142/S0217751X16430065.

http://arxiv.org/abs/hep-lat/0410041
http://arxiv.org/abs/0909.4947
http://arxiv.org/abs/1505.03135
http://arxiv.org/abs/hep-lat/0305002
http://arxiv.org/abs/hep-lat/0305002
http://arxiv.org/abs/1107.3324
http://arxiv.org/abs/1410.6665
http://arxiv.org/abs/1410.6665
http://arxiv.org/abs/0903.2443
http://arxiv.org/abs/hep-lat/9503009
http://arxiv.org/abs/hep-th/0603046
http://arxiv.org/abs/0712.2532
http://arxiv.org/abs/0903.4881
http://arxiv.org/abs/1102.1725
http://arxiv.org/abs/1408.7067
http://arxiv.org/abs/0705.2212
http://arxiv.org/abs/0909.3686
http://arxiv.org/abs/1305.6473
http://arxiv.org/abs/1005.3276
http://arxiv.org/abs/hep-lat/0110056
http://arxiv.org/abs/0711.2099
http://arxiv.org/abs/1604.05421


August 23, 2016 0:45 WSPC/INSTRUCTION FILE 16susyreview

Supersymmetry on the lattice 21

36. G. Bergner, P. Giudice, I. Montvay, G. Münster and S. Piemonte (2015),
arXiv:1512.07014 [hep-lat].

37. D. Amati, K. Konishi, Y. Meurice, G. C. Rossi and G. Veneziano, Phys. Rept. 162,
169 (1988), doi:10.1016/0370-1573(88)90182-2.

38. G. Veneziano and S. Yankielowicz, Phys. Lett. B113, 231 (1982), doi:10.1016/
0370-2693(82)90828-0.

39. G. R. Farrar, G. Gabadadze and M. Schwetz, Phys. Rev. D58, 015009 (1998),
arXiv:hep-th/9711166 [hep-th], doi:10.1103/PhysRevD.58.015009.

40. G. R. Farrar, G. Gabadadze and M. Schwetz, Phys. Rev. D60, 035002 (1999),
arXiv:hep-th/9806204 [hep-th], doi:10.1103/PhysRevD.60.035002.
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