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Abstract

We compute the 2- and 3-point functions of currents and primary fields of λ-deformed integrable 
σ -models characterized also by an integer k. Our results apply for any semisimple group G, for all values of 
the deformation parameter λ and up to order 1/k. We deduce the OPEs and equal-time commutators of all 
currents and primaries. We derive the currents’ Poisson brackets which assume Rajeev’s deformation of the 
canonical structure of the isotropic PCM, the underlying structure of the integrable λ-deformed σ -models. 
We also present analogous results in two limiting cases of special interest, namely for the non-Abelian 
T-dual of the PCM and for the pseudodual model.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and motivation

One of the most intriguing conjectures in modern theoretical physics is the AdS/CFT cor-
respondence [1] which, in its initial form, states the equivalence between type-IIB superstring 
theory on the AdS5 × S5 background and the maximally supersymmetric field theory in four 
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dimensions, i.e. N = 4 SYM. In recent years, a huge progress has been made in calculating 
physical observables employing both sides of the duality. These calculations managed to probe 
the strongly coupled regime of the gauge theory which is practically unaccessible by other means. 
The key feature that allowed this progress is integrability. N = 4 SYM from one side and the 
two-dimensional σ -model from the other, are believed to be integrable order by order in per-
turbation theory. It is clear that one way to construct generalizations of the original AdS/CFT 
scenario is to try to maintain the key property of integrability.

The aim of this work is to study the structure of a class of two-dimensional σ -models, the 
so-called λ-deformed models constructed in [2]. For isotropic couplings the deformation is in-
tegrable in the group case and in the symmetric and semi-symmetric coset cases [2–5] (for the 
su(2) group case integrability is preserved for anisotropic, albeit diagonal couplings [6]). They 
are also closely related [7–12] to the so-called η-deformed models for group and coset spaces 
introduced in [7,8] and in [13–15], respectively. This relation is via Poisson–Lie T-duality and an 
analytic continuation of coordinates and of the parameters of the σ -models [10–12]. There are 
also embeddings of the λ-deformed models as solutions of supergravity [16–18].

In particular, we shed light into the structure of the λ-deformed models by computing the 
two- and three-point functions of all currents and operators exactly in the deformation parameter 
and up to order 1/k. This work is based and further extends symmetry ideas and techniques 
originated in our previous work in [19]. The results of this work are summarized in section 7.

Our starting point is the WZW action

SWZW,k(g) = − k

4π

∫
d2σ Tr(g−1∂+gg−1∂−g) + k

24π

∫
B

Tr(g−1dg)3 , (1.1)

for a generic semisimple group G, with g ∈ G parametrized by Xμ, μ = 1, 2, . . . , dimG. We 
will use the representation matrices ta which obey the commutation relations [ta, tb] = fabctc
and are normalized as Tr(tatb) = δab . These matrices are taken to be Hermitian and therefore the 
Lie-algebra structure constants fabc are purely imaginary. The chiral and anti-chiral currents are 
defined as

J a+ = −i Tr(ta∂+gg−1) = Ra
μ∂+Xμ , J a− = −i Tr(tag

−1∂−g) = La
μ∂−Xμ . (1.2)

The left and right invariant forms La = La
μdXμ and Ra = Ra

μdXμ are related as

Ra = DabL
b , Dab = Tr(tagtbg

−1) . (1.3)

We are interested in the non-Abelian Thirring model action (for a general discussion, see 
[20,21]), namely the WZW two-dimensional conformal field theory (CFT) perturbed by a set of 
classically marginal operators which are bilinear in the currents

S = SWZW,k(g) + k

2π

dim G∑
a,b=1

λab

∫
d2σ J a+J b− , (1.4)

where the couplings are denoted by the constants λab. An action having the same global symme-
tries as (1.4), and to which reduces for small values of λab has been derived in [2] (see also [22]
for the SU(2) case), by gauging a common symmetry subgroup of an action involving the PCM 
model and the WZW actions. It reads [2]

Sk,λ(g) = SWZW,k(g) + k
∫

d2σ J a+(λ−1 − DT )−1
ab J b− , (1.5)
2π
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where we have assembled in a general real matrix λ the coupling constants λab. In addition, this 
action, as well as (1.4), is invariant under the generalized parity transformation

σ± �→ σ∓ , g �→ g−1 , λ �→ λT . (1.6)

The β-functions for the running of couplings under the Renormanization Group (RG) flow using 
(1.5) were computed in [23,24] and completely agree with the computation of the same RG-flow 
equations using CFT techniques based on (1.4) in [25] for a single (isotropic) coupling, i.e. when 
λab = λδab and in [26] for symmetric λab. Based on that it was conjectured in [23,24] that (1.5)
is the effective action for (1.4) valid to all orders in λ and up to order 1/k. In the same works it 
was realized that (1.5) has the remarkable symmetry

S−k,λ−1(g
−1) = Sk,λ(g) . (1.7)

This has been instrumental in computing the anomalous dimensions of currents for the isotropic 
case exactly in λ and up to order in 1/k [19] and will be central in the present work as well. 
We should stress that this is not a symmetry of the non-Abelian Thirring model action (1.4). 
However, using path integral techniques and special properties of the WZW model action, it was 
argued in [27] that the effective action of the non-Abelian Thirring model (not known at the time) 
should be invariant under the above duality-type symmetry (λ, k) �→ (λ−1, −k) (for k � 1).

2. The set up

2.1. OPE’s at the conformal point

In what follows, we shall need the operator product expansion (OPE) of the currents in the 
Euclidean regime with complex coordinates z = 1

2 (τ + iσ ) and z̄. For the holomorphic ones the 
singular part of their OPE reads [28,29]

J a(z)J b(w) = fabc√
k

J c(w)

z − w
+ δab

(z − w)2
(2.1)

and similarly for the OPE between the anti-holomorphic currents J̄ a(z̄). Of course the OPE 
J a(z)J̄ b(w) is regular. The difference from the more conventional form of these OPE’s arises 
because we have rescaled the currents as J a �→ J a/

√
k which suits our purposes since in that 

way, as will shall see, we keep easily track of the contributions of various terms to the correlators 
of the perturbed theory.

The CFT contains affine primary fields 
i,i′(z, ̄z) transforming in the irreducible represen-
tations R and R′, with matrices ta and t̃a , under the action of the currents J a and J̄ a , so that 
i = 1, 2, . . . , dimR and i′ = 1, 2, . . . , dimR′. Specifically,

Ja(z)
i,i′(w, w̄) = − 1√
k

(ta)i
j
j,i′(w, w̄)

z − w
,

J̄a(z)
i,i′(w, w̄) = 1√
k

(t̃a)
j ′

i′
i,j ′(w, w̄)

z̄ − w̄
.

(2.2)

These fields are also Virasoro primaries with holomorphic and anti-holomorphic dimensions [29]

�R = cR
, �̄R′ = cR′

, (2.3)

2k + cG 2k + cG
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where cR , cR′ and cG are the quadratic Casimir operators, all non-negative, in the representations 
R, R′ and the adjoint representation for which (ta)bc = fabc . They are defined as

(tata)i
j = cRδi

j , (t̃a t̃a)i′
j ′ = cR′δi′

j ′
, facdfbcd = −cGδab . (2.4)

In our calculations we will need the basic two- and three-point functions for these fields. For the 
currents they are given by

〈Ja(z1)Jb(z2)〉 = δab

z2
12

, 〈Ja(z1)Jb(z2)Jc(z3)〉 = 1√
k

fabc

z12z13z23
, (2.5)

where we employ the general notation zij = zi − zj . We will also use the four-point function

〈J a(x1)J
a1(z1)J

a2(z2)J
a3(z3)〉 = 1

k

fa1acfca2a3

(z1 − x1)(x1 − z2)(x1 − z3)(z1 − z3)

+ δaa1δa2a3

(x1 − z1)2(z2 − z3)2
+ cyclic in 1,2,3 .

(2.6)

Similar expressions hold for the anti-holomorphic currents as well. Correlators involving both 
holomorphic and anti-holomorphic currents vanish at the conformal point. However, as we shall 
see, this will not be the case in the deformed theory.

The corresponding correlators for the affine primaries are

〈
(1)

i,i′(z1, z̄1)

(2)

j,j ′(z2, z̄2)〉 = δij δi′j ′

z
2�R

12 z̄
2�̄R′
12

, (2.7)

where the superscripts signify the fact that the representations for the different primaries in 
correlation functions could be, in general, different. However, for the two-point functions the 
two representations should in fact be conjugate to each other for the holomorphic and anti-
holomorphic sectors separately. As such, they have the same conformal dimensions. Recalling 
that the matrices ta and t̃a are Hermitian and after removing the superscripts by relabeling the 
representation matrices we have that

Reps (1) and (2) conjugate: t (1)
a = ta , t̃ (1)

a = t̃a , t (2)
a = −t∗a , t̃ (2)

a = −t̃∗a . (2.8)

The minus sign in the definition of the conjugate representation is very important for the ma-
trices to obey the same Lie-algebra. It will turn out that, in the deformed theory, for correlation 
functions involving two primaries to be non-vanishing, their corresponding representations must 
be conjugate to each other, as well.

Next, consider three affine primaries transforming in the representations (Ri, R′
i ), i = 1, 2, 3. 

Then the three-point function for them is given by

〈
(1)

i,i′(z1, z̄1)

(2)

j,j ′(z2, z̄2)

(3)

k,k′(z3, z̄3)〉 = Cii′,jj ′,kk′

z
�12;3
12 z

�13;2
13 z

�23;1
23 z̄

�̄12;3
12 z̄

�̄13;2
13 z̄

�̄23;1
23

, (2.9)

where

�12;3 = �R1 + �R2 − �R3 , �̄12;3 = �̄R′
1
+ �̄R′

2
− �̄R′

3
, (2.10)

and cyclic permutations of 1, 2 and 3 for the rest. The structure constants Cii′,jj ′,kk′ depend on 
the representations and implicitly also on k. They obey various properties arising mainly from 
the global group invariance of the correlation functions, which will be mentioned below in the 
computation of the three-point functions involving only affine primaries.
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Finally, we have the three-point functions with one current and two primaries. They are given 
by

〈Ja(z)

(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉 = − 1√
k

(ta ⊗ IR′)ij,i′j ′

x
2�R

12 x̄
2�̄R′
12

(
1

z − x1
− 1

z − x2

)
(2.11)

and

〈J̄a(z̄)

(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉 = 1√
k

(IR ⊗ t̃∗a )ij,i′j ′

x
2�R

12 x̄
2�̄R′
12

(
1

z̄ − x̄1
− 1

z̄ − x̄2

)
, (2.12)

where we have used the fact that, for a non-vanishing result, the representations in which 
the primaries transform have to be conjugate to each other for the holomorphic and the anti-
holomorphic sectors, separately. Also IR and IR′ are the identity elements for the corresponding 
representations.

Correlators with two currents and one affine primary field are zero at the conformal point and 
will remain zero in the deformed theory as well.

2.2. Symmetry and correlation functions

In order to compute the correlation functions of currents and of primary fields we will heavily 
use the symmetry of the effective action for the non-Abelian Thirring model (1.7). First let’s 
consider correlation functions for currents only. At the conformal point when λ = 0 the currents 
are given in terms of the group element by (1.2) and are, of course, chirally and anti-chirally 
conserved on shell. Obviously, in the deformed theory these currents will be dressed and will 
receive λ-corrections. One expects that since their definition contains derivatives there will be 
operator ambiguities at the quantum level. We propose that these dressed currents are given by

J a+(g)k,λ = − i

1 + λ
(I− λD)−1

ab Tr(tb∂+gg−1) ,

J a−(g)k,λ = i

1 + λ
(I− λDT )−1

ab Tr(tbg−1∂−g) .

(2.13)

These become the correct chiral and anti-chiral currents when λ = 0 (up to a minus sign for J−). 
Also, they are components of an on shell conserved current. The attentive reader will notice that 
the dressed current components in (2.13) are nothing, but, up to a factor of λ, the gauge fields 
evaluated on-shell in the original construction of (1.5) in [2] by a gauging procedure. Hence, it is 
natural to consider correlation functions of the J a±’s as defined above. In addition, we have that

J a±(g−1)−k,λ−1 = λ2J a±(g)k,λ . (2.14)

Passing to the Euclidean regime we have for the two-point function of the holomorphic compo-
nent of the currents that

〈J a(x1)J
b(x2)〉k,λ = 1

Zk,λ

∫
D[g]J a(g(x1))k,λJ

b(g(x2))k,λe
−Sk,λ(g) , (2.15)

with the partition function being

Zk,λ =
∫

D[g]e−Sk,λ(g) =
∫

D[g−1]e−Sk,λ(g−1) =
∫

D[g]e−S−k,λ−1 (g) = Z−k,λ−1 , (2.16)
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where we have used the symmetry of the action (1.7) and the fact that the measure of integration 
is invariant under g �→ g−1, i.e. D[g−1] = D[g].1 Hence, the partition function of the deformed 
theory is invariant under the duality-type symmetry. In addition∫

D[g]J a(g(x1))k,λJ
b(g(x2))k,λe

−Sk,λ(g)

=
∫

D[g−1]J a(g−1(x1))k,λJ
b(g−1(x2))k,λe

−Sk,λ(g−1)

= 1

λ4

∫
D[g]J a(g(x1))−k,λ−1J

b(g(x2))−k,λ−1e
−S−k,λ−1 (g)

,

(2.17)

where we have also employed (2.14). Hence, we obtain that the correlation function should obey 
the non-trivial identity

λ2〈J a(x1)J
b(x2)〉k,λ = λ−2〈J a(x1)J

b(x2)〉−k,λ−1 . (2.18)

This identity between current correlators is straightforwardly extendable to higher order correla-
tors involving currents with any type of currents, J a’s or J̄ a’s,

λn+m〈J a1 . . . J an J̄ b1 . . . J̄ bm〉k,λ = λ−n−m〈J a1 . . . J an J̄ b1 . . . J̄ bm〉−k,λ−1 . (2.19)

The overall factors of λ can be absorbed by redefining the currents in (2.13) by a factor of λ. In 
the following we assume that this is the case which implies also the absence of the factor of λ2

in the r.h.s. of (2.14).
The above conclusion for the current correlators is in full agreement with [27] who reached 

the same conclusion using the non-Abelian Thirring model action and certain special properties 
of the WZW action path integral. The advantage of employing the effective action is that one 
can employ the duality-type symmetry on correlation functions involving primary fields in the 
deformed theory which has not been considered before. For these fields we have that, under the 
inversion of the group element the primary field 
(1) transforms to its conjugate 
(2). Explicitly, 
we have that



(1)

i,i′(g
−1) = 


(2)

i′,i (g) , (2.20)

which means that for the representation matrices we have

t (1) ↔ t̃ (2) , t (2) ↔ t̃ (1) . (2.21)

Note that if the inversion of g is followed by the σ �→ −σ , i.e. the parity transformation (1.6), 
then

t (1) ↔ −t̃ (2) , t (2) ↔ −t̃ (1) , (2.22)

and in addition the Ja’s and J̄a’s are interchanged.

1 The measure of integration contains the Haar measure for the semisimple group G which is certainly invariant under 
g �→ g−1, but also the factor det(λ−1 −DT ) arising from integrating out the gauge fields in the path integral [2]. This can 
be easily seen to transform under g �→ g−1 and λ �→ λ−1 as (for a general matrix λ): det(λ−1 − DT ) �→ (−1)n detλ ×
det(λ−1 − DT ), with n = dimG and where we have used the property D(g−1) = DT (g). This extra constant overall 
factor cancels out by the same factor arising from the partition function in the denominator in all correlation functions.



366 G. Georgiou et al. / Nuclear Physics B 909 (2016) 360–393
2.3. The non-Abelian and pseudodual chiral limits

Besides the small λab limit, leading to (1.4), there are two other interesting limits of the 
action (1.5). They will be instrumental in our computation of correlation functions.

In the first limit [2] one expands the matrix and group elements near the identity as

λab = δab − Eab

k
+O

(
1

k2

)
, g = I+ i

vat
a

k
+O

(
1

k2

)
, (2.23)

where E is a general dimG square matrix. This leads to

J a± = ∂±va

k
+O

(
1

k2

)
, Dab = δab + fab

k
+O

(
1

k2

)
, fab = −ifabcv

c . (2.24)

Note that our structure constants are purely imaginary so that fab are indeed real. In this limit 
the action (1.5) becomes

Snon-Abel(v) = 1

2π

∫
d2σ ∂+va(E + f )−1

ab ∂−vb , (2.25)

which is the non-Abelian T-dual with respect to the GL action of the σ -model given by the PCM 
action with general coupling matrix Eab. We note that in this limit the WZW term in (1.5) does 
not contribute at all.

To discuss the second new limit, we first recall that the original derivation of the action (1.5)
leads for compact groups to the restriction 0 < λ < 1. However, once we have the action we may 
allow λ to take values beyond this range. For instance, the symmetry (1.7) clearly requires that. 
Here in order to take a new limit we will extend the range of λ to negative values. We will also 
need the following equivalent form of the action (1.5) given, after some manipulations needed to 
combine the quadratic part of the WZW action and the deformation term in (1.5), by

Sk,λ(g) = k

4π

∫
d2σ J a+

[
(λ−1 − DT )−1(λ−1 + DT )D

]
ab

J b−

− ik

48π

∫
B

fabc La ∧ Lb ∧ Lc ,
(2.26)

where we remind the reader that our structure constants are purely imaginary.
Then we take the limit

λab = −δab + Eab

k1/3
, g = I+ i

vata

k1/3
+ . . . , k → ∞ , (2.27)

where again E is a general dimG square matrix. The various quantities expand as in (2.24) with 
k replaced by k1/3. Then the action (2.26) becomes

Spseudodual = 1

8π

∫
d2σ ∂+va∂−vb

(
Eab + 1

3
fab

)
. (2.28)

We see that E can be taken to be symmetric since any antisymmetric piece leads to a total 
derivative. This action for Eab = δab/b

2/3 is nothing by the pseudodual model action [30]. Note 
that the quadratic part of the WZW action and the deformation term in (1.5) are equally important 
for the limit (2.27) to exist since each term separately diverges when this limit is taken.

Since the above non-Abelian and pseudodual limits exist at the action level, we expect that 
physical quantities such as the β-function and the anomalous dimensions of various operators 
should have a well defined limit as well. This will be an important ingredient in our method of 
computation.
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2.4. The regularization method and useful integrals

In the Euclidean path integral the action appears as e−S . The action we will be using is that of 
the non-Abelian Thrirring model action and will be expanding around the WZW CFT part of it. 
This is not in contrast with the approach of the last subsection where (1.5) was used, the reason 
being that the latter is the effective action of the non-Abelian Thrirring model. Hence, it contains 
all λ-corrections and can be considered as a starting point to find at the quantum level corrections 
in 1/k. Schematically, to O(λn), the correlation function for a number of some generic fields Fi , 
i = 1, 2, . . . , involves the sum of expressions of the type

〈F1(x1, x̄1)F2(x2, x̄2) . . . 〉(n)
λ = 1

n!
(

− λ

π

)n ∫
d2z1...n〈J a1(z1) . . . J an(zn)

J̄ a1(z̄1) . . . J̄ an(z̄n)F1(x1, x̄1)F2(x2, x̄2) . . . 〉 ,

(2.29)

where d2z1...n := d2z1 . . .d2zn and for convenience we have dropped k from our notation in the 
correlation functions 〈· · · 〉k,λ of the deformed theory.

That way one encounters multiple integrals which need to be regularized. Our prescription to 
do so consists of two steps:

• We choose the order of integration from left to right d2z1...n and never permute this order. 
This is due to the fact that due to the divergences appearing, the various integrations are not 
necessarily commuting.

• Internal points cannot coincide with external ones. This means that the domain of integration 
is

Dn = {(z1, z2, . . . , zn) ∈ Cn : |zi − xj | > ε,ε > 0} , ∀ i, j . (2.30)

However, internal points can coincide. Also contact terms, arising from coincident external points 
will be allowed. The latter is a choice we make and not a part of the regularization scheme.2 We 
shall need the very basic integral given by∫

d2z

(x1 − z)(z̄ − x̄2)
= π ln |x12|2 . (2.31)

Clearly, if the domain of integration allows, the integral diverges for large distances. The above 
result is valid provided that the integration is performed in a domain of characteristic size R, 
e.g. a disc of radius R, with the external points x1 and x2 excluded and in addition obeying 
R � |x1|, |x2|. The latter conditions are responsible for the translational invariance and the reality 
of the result. Even then we have to make the replacement |x12|2 → |x12|2/R2 on the right hand 

2 All these imply that we will have for the δ-functions arising in performing the various integrations that

δ(2)(zi − xj ) → 0 , δ(2)(zi − zj ) (kept) , δ(2)(xi − xj ) (kept) , ∀i, j .

Note also that in the regularization of [31] no two points, internal or external, can coincide and therefore all δ-functions 
arising in integrations are set to zero. In contrast in [32] all such δ-functions are kept. The advantage of our regularization 
is that the symmetry of the correlation functions under k → −k and λ → λ−1 is manifest whereas for the others it is 
hidden.
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side of (2.31). However, in our computations there will be integrals of the same kind but with 
opposite sign and x1 equal to x2 and which will have a small distance regulator ε. Hence the 

factor R will drop out at the end, leaving the ratio ln
ε2

|x12|2 . This means that in practice the 

domain of integration is R2 except for the points x1,2 which are excluded. By appropriately 
taking derivatives we also have the useful integrals∫

d2z

(x1 − z)2(z̄ − x̄2)
= − π

x12
,

∫
d2z

(x1 − z)(z̄ − x̄2)2
= − π

x̄12
(2.32)

and ∫
d2z

(x1 − z)2(z̄ − x̄2)2
= π2δ(2)(x12) . (2.33)

In Appendix A we have collected results for some useful to this work integrals. We single out∫
d2z

(z − x1)(z − x2)(z̄ − x̄1)
= − π

x12
ln

ε2

|x12|2 ,∫
d2z

(z − x1)(z̄ − x̄1)(z̄ − x̄2)
= − π

x̄12
ln

ε2

|x12|2
(2.34)

and ∫
d2z

(z − x1)(z̄ − x̄2)
ln |z − x1|2 = −π

2
ln2 |x1 − x2|2 , (2.35)

which are valid under the assumptions spelled out below (2.31).

3. Current correlators

In this section, we will focus on the two- and three-point functions involving purely currents. 
These will be computed up to order 1/k and exactly in the deformation parameter λ. To establish 
our method, employed already in [19], as clearly as possible we first start with the computation of 
the two-point functions which enables to compute the β-function and the anomalous dimensions 
for the currents known already from using CFT methods in [19,25,26] and from gravitational 
computations [23,24]. Then we proceed to correlators involving three currents.

3.1. Two-point functions

On general grounds the correlator of J a and J b takes the form

〈J a(x1)J
b(x2)〉λ = δab G0(k, λ)

x2
12

(
1 + γ (J ) ln

ε2

|x12|2
)

+ · · · . (3.1)

The result to O(1/k) and O(λ3) was computed in sec. 2 of [19] and reads

〈J a(x1)J
b(x2)〉 = δab

x2
12

(
1 − 2

cG

k
λ3 + cG

k
(λ2 − 2λ3) ln

ε2

|x12|2 + 1

k
O(λ4)

)
. (3.2)

Comparing with the general form of the two-point function (3.1) we have that

G0(k, λ) = 1 − 2
cG

(
λ3 +O(λ4)

)
(3.3)
k
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and

γ (J ) = cG

k

(
λ2 − 2λ3 +O(λ4)

)
. (3.4)

Similarly the correlator of J a and J̄ b should assume the form

〈J a(x1)J̄
b(x2)〉λ = δab G̃0(k, λ)

|x12|2
(

1 + γ (J ) ln
ε2

|x12|2
)

+ δabδ
(2)(x12)

(
A(k,λ) + B(k,λ) ln

ε2

|x12|2
)

.

(3.5)

At the conformal point this correlator should vanish. We have also allowed for contact terms 
proportional to the δ-function since these are allowed by symmetry. The coupling functions A
and B have to be computed.

After a long computation, all details are given in the Appendix B, we found the result

〈J a(x1)J̄
b(x̄2)〉λ = −πλδabδ(2)(x12)

− λ2cG

k
δab

[
1

|x12|2 + πδ(2)(x12)

(
1 − 1

2
ln

ε2

|x12|2
)]

(3.6)

+ 2
λ3cG

k
δab

[
1

|x12|2 + πδ(2)(x12)

(
1 − ln

ε2

|x12|2
)]

+ 1

k
O(λ4) ,

which, keeping in mind that we are interested to terms up to O(1/k), is easily seen to be of the 
form (3.5). Note that this correlator takes the form

〈J a(x1)J̄
b(x̄2)〉 = −γ (J ) δab

|x12|2 + contact terms , (3.7)

where γ (J ) is the current anomalous dimension given perturbatively by (3.4).

3.1.1. The exact β-function and anomalous dimensions
To compute the wave function renormalization and that for the parameter λ we use the 

two-point functions 〈J aJ b〉 and 〈J aJ̄ b〉. In particular we need the most singular part of these 
correlation functions. For the purpose of this section let’s denote the bare currents by J a

0 and J̄ a
0

and similarly for the parameter λ0.
We need the most singular part of the bare two-point functions up to order 1/k. From (3.2)

we have that

〈J a
0 (x1)J

b
0 (x2)〉 = δab

x2
12

[
1 − cG

k
λ2

0

(
2λ0 + (1 − 2λ0) ln(|x12|2/ε2)

)]
+ . . . . (3.8)

Also from (3.6) we have that

〈J a
0 (x1)J̄

b
0 (x̄2)〉 = −πλ0 δabδ(2)(x12)

[
1 + λ0

cG

k

(
1 − 1

2
ln

ε2

|x12|2

− 2λ0

(
1 − ln

ε2

|x12|2
))]

+ · · · ,

(3.9)

where we have kept only the coefficient of the most singular term, i.e. of δ(2)(x12).
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The bare quantities and the renormalized ones are related as

J a
0 = Z1/2J a , J̄ a

0 = Z1/2J̄ a , λ0 = Z1λ . (3.10)

We make the following ansatz valid to order 1/k in the large k-expansion

Z−1 = 1 + 2
cG

k
λ3 − cG

k

(
c1λ

2 + c2λ
3 +O(λ4)

)
ln(ε2μ2) ,

Z1 = 1 − cG

k

(
c3λ + c4λ

2 +O(λ3)
)

ln(ε2μ2) ,
(3.11)

where the logarithm-independent term in Z−1 has been chosen so that the renormalized two-point 
function for the Ja’s is normalized to one. The pure number coefficients ci are computed so that 
the renormalized two-point functions

〈J a(x1)J
b(x2)〉 = Z−1〈J a

0 (x1)J
b
0 (x2)〉 , 〈J a(x1)J̄

b(x2)〉 = Z−1〈J a
0 (x1)J̄

b
0 (x2)〉 ,

(3.12)

are independent of the cutoff ε. We find that the unique choice is given by

c1 = 1 , c2 = −2 , c3 = −1

2
, c4 = 1 . (3.13)

The β-function is by definition

βλ = 1

2
μ

dλ

dμ
= 1

2
λZ1μ

dZ−1
1

dμ
= −cG

2k

(
λ2 − 2λ3 +O(λ4)

)
, (3.14)

where the bare coupling λ0 is kept fixed. Next we compute the anomalous dimension of the 
current

γ (J ) = μ
d lnZ1/2

dμ
= cG

k

(
λ2 − 2λ3 +O(λ4)

)
, (3.15)

in agreement of course with (3.4).
The above perturbative expressions are enough to determine the exact in λ dependence of the 

β-function and of the anomalous dimensions up to order 1/k. As explained, the exact β-function 
and anomalous dimensions should have a well defined behavior in the two limiting cases de-
scribed by the non-Abelian and pseudodual model limits (2.23) and (2.27), respectively. In the 
isotropic case, which is the case of interest in this work, it implies regularity under the following 
independent limits

λ = 1 − κ2

k
, λ = −1 + 1

b2/3k1/3
, k → ∞ . (3.16)

Regularity under (3.16) of the exact β-function and the anomalous dimensions implies an ansatz 
of the form

βλ = −cG

2k

f (λ)

(1 + λ)2
, γ (J ) = cG

k

g(λ)

(1 − λ)(1 + λ)3
, (3.17)

where f (λ) and g(λ) are two analytic functions of λ. The assumed pole structure does not ex-
clude the possibility that one of the poles reduces its degree or even ceases to exist. This can 
happen if the functions in the numerator are zero at λ = 1 or/and λ = −1. In addition, due to the 
symmetry under (k, λ) �→ (−k, λ−1) we have that

λ4f (1/λ) = f (λ) , λ4g(1/λ) = g(λ) . (3.18)
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All these imply that these functions are in fact polynomials of, at most, degree four

f (λ) = a0 + a1λ + a2λ
2 + a1λ

3 + a0λ
4 ,

g(λ) = b0 + b1λ + b2λ
2 + b1λ

3 + b0λ
4 .

(3.19)

Demanding agreement with the perturbative expressions (3.14) and (3.15) to O(λ2) we obtain 
a0 = a1 = b0 = b1 = 0 and a2 = b2 = 1 which completely determines the exact β-function and 
anomalous dimensions to be

βλ = −cG

2k

λ2

(1 + λ)2
� 0 (3.20)

and

γ (J ) = cG

k

λ2

(1 − λ)(1 + λ)3
� 0. (3.21)

It is also easily seen that the coefficient of the O(λ3) term is in agreement with the perturbative 
results as well. The above expressions are in full agreement with the results found in [23,24,33]
for the β-function and in [19] for the anomalous dimensions.

Note that the β-function and anomalous dimensions of the non-Abelian T-dual limit are

βκ2 = cG

8
, γ (J ) = cG

8κ2
, (3.22)

which are valid for large κ2. The anomalous dimensions correspond to

J a± = ±1

2
(κ2

I∓ f )−1
ab ∂±vb , (3.23)

which are obtained by taking this limit in (2.13).
The corresponding expressions for the pseudodual model are

βb = 3

4
cGb3 , γ (J ) = 1

2
cGb2 . (3.24)

These are in agreement with the expressions derived in [30] (see above Fig. 2) and are valid for 
small b. The anomalous dimensions correspond to

J a± = ±b2/3∂±va , (3.25)

which as before are obtained by taking the appropriate limit in (2.13).

3.2. Three-point functions

We consider the 〈JJJ 〉 and 〈JJ J̄ 〉 correlators. The remaining correlators 〈J̄ J̄ J̄ 〉 and 〈J̄ J̄ J 〉
can be easily obtained by applying the parity transformation to the first two. The results of this 
subsection match those obtained in [32], where current–current perturbations of the WZW model 
on supergroups were studied with a different regularization scheme. Before moving to our anal-
ysis, let us note that analogue perturbations of the WZW models on supergroups were studied 
in [34], but the perturbation consists of the term J a+DabJ

b− added to the action; effectively the 
non-critical WZW model.
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3.2.1. The 〈JJJ 〉 correlator
From Appendix C we have that the, up to O(λ3), correlator reads

〈J a(x1)J
b(x2)J

c(x3)〉λ = 1√
k

(
1 + 3

2
λ2 − λ3

)
fabc

x12x13x23
+ 1√

k
O(λ4) . (3.26)

The ansatz for the all-loop expression takes the form

〈J a(x1)J
b(x2)J

c(x3)〉 = f (λ)√
k(1 − λ)(1 + λ)3

fabc

x12x13x23
, (3.27)

where f (λ) is everywhere analytic and obviously f (0) = 1 to agree with the CFT result. As 
before this form takes into account that under the limit (3.16) the correlator is well behaved. 
Invariance of the above expression under the duality-type symmetry (k, λ) �→ (−k, λ−1) yields

λ2f (λ−1) = f (λ) =⇒ f (λ) = 1 + c λ + λ2 . (3.28)

Consistency with the perturbative expression up to O(λ) (3.27) gives c = 1. Therefore, the all-
loop correlator reads

〈J a(x1)J
b(x2)J

c(x3)〉 = 1 + λ + λ2√
k(1 − λ)(1 + λ)3

fabc

x12x13x23
. (3.29)

As a check we see that this expression reproduces the O(λ2) and O(λ3) terms in the perturbative 
expression (3.26).

3.2.2. The 〈JJ J̄ 〉 correlator
The perturbative calculation of this correlator is performed in Appendix D. The result up to 

order O(λ2) reads

〈J a(x1)J
b(x2)J̄

c(x̄3)〉 = λ(1 − λ)√
k

x̄12 fabc

x2
12x̄23x̄13

+ 1√
k
O(λ3) . (3.30)

We now make a similar to (3.27) ansatz for the all-loop expression

〈J a(x1)J
b(x2)J̄

c(x3)〉 = λf (λ)√
k(1 − λ)(1 + λ)3

x̄12 fabc

x2
12x̄23x̄13

, (3.31)

where f (λ) is everywhere analytic and f (0) = 1. Invariance of the above expression under the 
duality-type symmetry yields

f (λ−1) = f (λ) =⇒ f (λ) = 1 . (3.32)

Hence, we find the all-loop expression

〈J a(x1)J
b(x2)J̄

c(x̄3)〉 = λ√
k(1 − λ)(1 + λ)3

fabcx̄12

x2
12x̄13x̄23

, (3.33)

whose expansion around λ = 0 agrees with (3.30).
Note that implementing the non-Abelian and pseudodual limits both lead to finite (non-zero) 

expressions for all of the above three-point functions. In these limiting cases the results are valid 
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for large κ2 and small b where we refer to (3.16) for the definition of these parameters. We 
mention also that, our results for these correlators agree with those done for supergroups in [32]
after an appropriate rescaling of the currents that presumably takes into account the different 
regularization schemes used in that work.

4. Primary field correlators

The purpose of this section is to compute two- and three-point functions of arbitrary primary 
fields. This will allow us to extract their anomalous dimensions and the deformed structure con-
stants in the OPEs.

4.1. Two-point functions

After a long computation, all details of which are given in Appendix E, we found that a 
perturbative computation up to O(λ3) and to order 1/k, gives for the two-point function of 
primary fields the result

〈
(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉λ

= 1

x
2�R

12 x̄
2�̄R′
12

[(
1 + λ2

k
(cR + cR′) ln

ε2

|x12|2
)

(IR ⊗ IR′)ii′,jj ′

− 2λ
1 + λ2

k
ln

ε2

|x12|2 (ta ⊗ t∗a )ii′,jj ′
]

+ 1

k
O(λ3) . (4.1)

We see that due to the deformation there is an operator mixing so that one should proceed by 
choosing an appropriate basis in which the dimension matrix is diagonal. For convenience we 
will adopt the double index notation I = (ii′). Then there is a matrix U chosen such that

(ta ⊗ t∗a )IJ = UIKNKL(U−1)LJ , NIJ = NIδIJ , (4.2)

where NI are the eigenvalues of the matrix ta ⊗ t∗a . Note also that U is λ-independent as well as 
k-independent. Then in the rotated basis


̃
(1)
I = (U−1)I

J 

(1)
J , 
̃

(2)
I = UI

J 

(2)
J , (4.3)

the correlator (4.1) becomes diagonal, i.e.

〈
̃(1)
I (x1, x̄1)
̃

(2)
J (x2, x̄2)〉λ = δIJ

x
2�R

12 x̄
2�̄R′
12

(
1 + δ

(
)
I ln

ε2

|x12|2
)

, (4.4)

where perturbatively

δ
(
)
I = 1

k

(
−2λ(1 + λ2)NI + λ2(cR + cR′) +O(λ4)

)
. (4.5)

To determine the exact anomalous dimension of the general primary field we first realize that we 
should include in the above expression the k-dependent part coming from the CFT dimensions 
of �R and �̄R′ in (2.3) up to order 1/k. Hence the anomalous dimension is given by

γ
(I)

R,R′(k, λ)
∣∣
pert = cR

2k
+ δ

(
)
I

2
=

= 1 [
cR − 2NIλ(1 + λ2) + λ2(cR + cR′) +O(λ4)

]
.

(4.6)
2k
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As in the case of currents we make the following ansatz for the exact anomalous dimensions

γ
(I)

R,R′(k, λ) = − 1

2k(1 − λ)(1 + λ)3

[
f (λ)NI + f1(λ)cR + f2(λ)cR′

]
, (4.7)

where the yet unknown function should be analytic in λ. Using the symmetry (1.7) and the 
transformation of the primary fields under this symmetry (2.20), we have that

γ
(I)

R,R′(−k,λ−1) = γ
(I)

R′,R(k, λ) , (4.8)

which implies the following relations between the various unknown functions

λ4f (1/λ) = f (λ) , λ4f1(1/λ) = f2(λ) , λ4f2(1/λ) = f1(λ) . (4.9)

Hence, these functions should be fourth order polynomials in λ with related coefficients. It turns 
out that comparing with the perturbative expression (4.6) up to O(λ2) we determine all these 
functions to be

f (λ) = 2λ(1 + λ)2 , f1(λ) = −(1 + λ)2 , f2(λ) = −λ2(1 + λ)2 . (4.10)

Therefore, the exact in λ anomalous dimension is

γ
(I)

R,R′(k, λ) = − 1

2k(1 − λ2)
(2λNI − cR − λ2cR′) . (4.11)

It is easily checked that this expression is in agreement with the O(λ3/k) term in (4.6). Note 
also that in the non-Abelian limit the above anomalous dimensions have a well defined and 
different than zero limit. In contrast the limit is zero in the pseudodual limit. This expression 
also applies for current–current perturbations of the WZW model on supergroups with vanishing 
Killing form [31].

Finally, the two point functions take the form

〈
(1)
I (x1, x̄1)


(2)
J (x2, x̄2)〉 = δIJ

x
γ

(I)

R,R′ (k,λ)

12 x̄
γ

(I )

R′,R(k,λ)

12

. (4.12)

4.2. Three-point functions

To leading order in the λ-expansion after a straightforward computation this correlator is 
found to be

〈
(1)

i,i′(x1)

(2)

j,j ′(x1)

(3)

k,k′(x3)〉(1)
λ = −λ

k

1

x
�12;3
12 x

�13;2
13 x

�23;1
23 x̄

�̄12;3
12 x̄

�̄13;2
13 x̄

�̄23;1
23[

ln ε2
(
(t(1)

a )i
�(t̃ (1)

a )�
′
i′C��′,jj ′,kk′ + (t(2)

a )j
�(t̃ (2)

a )�
′
j ′Cii′,��′,kk′

+(t(3)
a )k

�(t̃ (3)
a )�

′
k′Cii′,jj ′,��′

)
+ ln |x12|2

(
(t(1)

a )i
�(t̃ (2)

a )�
′
j ′C�i′,j�′,kk′ + (t(2)

a )j
�(t̃ (1))�

′
i′Ci�′�j ′,kk′

)
(4.13)

+ ln |x13|2
(
(t(1)

a )i
�(t̃ (3)

a )�
′
k′C�i′,jj ′,k�′ + (t(3)

a )k
�(t̃ (1))�

′
i′Ci�′,jj ′,�k′

)
+ ln |x23|2

(
(t(2)

a )j
�(t̃ (3)

a )�
′
k′Cii′,�i′,k�′ + (t(3)

a )k
�(t̃ (2))�

′
j ′Cii′,j�′,�k′

)]
.
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Even for dimensional reasons we should be able to cast the above expression in a form in which 
all space dependence is in terms of ratios ε2/|xij |2. In order to do that we first recall that the 
structure constants Cii′,jj ′,kk′ are factorized according to their holomorphic and anti-holomorphic
content as

Cii′,jj ′,kk′ = Ci,j,kC̃i′,j ′,k′ . (4.14)

An important constraint, arises by making use of the global Ward identity. It reads

(t(1)
a )i

�C�jk + (t(2)
a )j

�Ci�k + (t(3)
a )k

�Cij� = 0 ,

(t̃ (1)
a )�

′
i′C̃�′j ′k′ + (t̃ (2)

a )�
′
j ′C̃i′�′k′ + (t̃ (3)

a )�
′
k′C̃i′j ′�′ = 0 .

(4.15)

From (4.15) it is straightforward to obtain the following relations

(t(3)
a )k

�(t̃ (3)
a )�

′
k′Cii′,jj ′,��′ = (t(1)

a )i
�(t̃ (1)

a )�
′
i′C��′,jj ′,kk′ + (t(2)

a )j
�(t̃ (2)

a )�
′
j ′Cii′,��′,kk′

+ (t(1)
a )i

�(t̃ (2)
a )�

′
j ′C�i′,j�′,kk′ + (t(2)

a )j
�(t̃ (1)

a )�
′
i′Ci�′,�j ′,kk′ ,

(t (2)
a )j

�(t̃ (2)
a )�

′
j ′Cii′,��′,kk′ = (t(1)

a )i
�(t̃ (1)

a )�
′
i′C��′,jj ′,kk′ + (t(3)

a )k
�(t̃ (3)

a )�
′
k′Cii′,jj ′,��′

+ (t(1)
a )i

�(t̃ (3)
a )�

′
k′C�i′,jj ′,k�′ + (t(3)

a )k
�(t̃ (1)

a )�
′
i′Ci�′,jj ′,�k′ ,

(t (1)
a )i

�(t̃ (1)
a )�

′
i′C��′,jj ′,kk′ = (t(2)

a )j
�(t̃ (2)

a )�
′
j ′Cii′,��′,kk′ + (t(3)

a )k
�(t̃ (3)

a )�
′
k′Cii′,jj ′,��′ ,

+ (t(2)
a )j

�(t̃ (3)
a )�

′
k′Cii′,�j ′,k�′ + (t(3)

a )k
�(t̃ (2)

a )�
′
j ′Cii′,j�′,�k′ .

Using the above relations we can rewrite the three-point function as

〈
(1)

i,i′(x1)

(2)

j,j ′(x1)

(3)

k,k′(x3)〉(1)
λ = −λ

k

1

x
�12;3
12 x

�13;2
13 x

�23;1
23 x̄

�̄12;3
12 x̄

�̄13;2
13 x̄

�̄23;1
23[

ln

(
ε2

|x12|2
)[

(t(1)
a )i

�(t̃ (1)
a )�

′
i′C��′,jj ′,kk′ + (t(2)

a )j
�(t̃ (2)

a )�
′
j ′Cii′,��′,kk′

− (t(3)
a )k

�(t̃ (3)
a )�

′
k′Cii′,jj ′,��′

]
ln

(
ε2

|x13|2
)[

(t(1)
a )i

�(t̃ (1)
a )�

′
i′C��′,jj ′,kk′ + (t(3)

a )k
�(t̃ (3)

a )�
′
k′Cii′,jj ′,kk′

− (t(2)
a )j

�(t̃ (2)
a )�

′
j ′Cii′,��′,kk′

]
ln

(
ε2

|x23|2
)[

(t(2)
a )j

�(t̃ (2)
a )�

′
j ′Cii′,��′,kk′ + (t(3)

a )k
�(t̃ (3)

a )�
′
k′Cii′,jj ′,kk′

− (t(1)
a )i

�(t̃ (1)
a )�

′
i′C��′,jj ′,kk′

]]
.

The next step is to pass to the rotated basis. By using the double index notation we introduced 
before we have that


̃
(q)
I = (U(q))−1

I
J 


(q)
J , (t

(q)
a ⊗ t

(q)∗
a )I

J = (U(q))I
K(N(q))K

L(U(q))−1
L

J ,

N
(q)
IJ = N

(q)
I δIJ , q = 1,2,3 ,

(4.16)

where in the new basis the structure constants read

C̃IJK = (U(1))−1M(U(2))−1N(U(3))−1LCMNL , (4.17)
I J K
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while the result for the correlator at O(λ) is given by

〈
̃(1)
I (x1)
̃

(2)
J (x1)
̃

(3)
K (x3)〉(1)

λ = −λ

k

C̃IJK

x
�12;3
12 x

�13;2
13 x

�23;1
23 x̄

�̄12;3
12 x̄

�̄13;2
13 x̄

�̄23;1
23(

(N
(1)
I + N

(2)
I − N

(3)
I ) ln

ε2

|x12|2 + cyclic in 1, 2, 3

)
. (4.18)

From this result we can write down the exact expression in λ for the three-point function. It is 
given by

〈
̃(1)
I (x1)
̃

(2)
J (x1)
̃

(3)
K (x3)〉λ = C̃IJK(k,λ)

x
γ12;3/2
12 x

γ13;2/2
13 x

γ23;1/2
23 x̄

γ̄12;3/2
12 x̄

γ̄13;2/2
13 x̄

γ̄23;1/2
23

, (4.19)

where γ12;3 is given by

γ12;3 = − 1

2k(1 − λ2)

(
2λ(N

(1)
I + N

(2)
I − N

(3)
I )

− cR1 − cR2 + cR3 − λ2(cR′
1
+ cR′

2
− cR′

3
)
)

,

(4.20)

and

γ̄12;3 = − 1

2k(1 − λ2)

(
2λ(N

(1)
I + N

(2)
I − N

(3)
I )

− cR′
1
− cR′

2
+ cR′

3
− λ2(cR1 + cR2 − cR3)

)
.

(4.21)

The other differences of dimensions γ23;1, γ̄23;1 and γ13;2, γ̄13;2 are obtained by performing 
cyclic permutations in the indices 1, 2 and 3.

We now turn our attention to the three-point function coefficients C̃IJK(k, λ). At λ = 0 these 
coefficients are considered as known since they are in principle fully determined from the WZW 
CFT data. On general grounds the following perturbative expansion holds

C̃IJK(k,λ) = C̃
(0)
IJK + 1

k
C̃

(1)
IJK(λ) +O

(
1

k2

)
, (4.22)

where note the leading coefficient C̃(0)
IJK in 1/k expansion does not depend on λ. This is so 

because such a term being k-independent and simultaneously having possible poles only at λ =
±1 and preserving the symmetry k �→ −k, λ �→ λ−1 cannot be finite either in the non-Abelian 
T-dual or in the pseudodual limit. Using the same line of reasoning as in the rest of this paper we 
conclude that the first correction to the three-point function should be of the form3

C̃
(1)
IJK(λ) = fIJK(λ)

(1 − λ)(1 + λ)3
, (4.23)

with

λ4 fIJK(λ−1) = fIJK(λ) =⇒ fIJK(λ) = C̃
(1)
IJK(0)(1 + λ4) + a

(1)
IJK(λ + λ3) + a

(2)
IJKλ2 .

(4.24)

3 Notice that here we are using the duality (1.7) followed by parity. Under this combined symmetry 
(i)
I

(xi , ̄xi) �→



(i)
(x̄i , xi) and C̃IJK(λ−1, −k) = C̃IJK(λ, k).
I
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We saw from the O(λ) calculation that a(1)
IJK = 0. Furthermore, it is not difficult to see that 

a
(2)
IJK = 0 too. Indeed, by inspecting the O(λ2) calculation one can see that in order to remain 

to order 1/k either the two holomorphic or the two anti-holomorphic currents should be con-
tracted through the Abelian part of their OPE. Then the resulting integrals will be of the form ∫

d2z12

(z1 − x1)(z2 − x2) z̄2
12

which can only produce logarithms. But the logarithms have to be 

combined and exponentiated to give the differences of the anomalous dimensions. Thus, no fi-
nite part will be present at this order and as a result a(2)

IJK = 0, as well. Thus, we conclude that

C̃
(1)
IJK(λ) = C̃

(1)
IJK(0)(1 + λ4)

(1 − λ)(1 + λ)3
, (4.25)

where as explained, the constant C̃(1)
IJK(0) is fully determined from the WZW CFT initial data. 

As a result we have determined the exact in λ three-point function coefficient of three-primary 
fields up to order 1/k.

5. Mixed 〈J��〉 and 〈J̄��〉 correlators

In this section we focus on the mixed correlators involving two primary fields and one current. 
From Appendix F one can read off the O(λ3) result which is given by

〈J a(x3)

(1)

i,i′(x1)

(2)

j,j ′(x2)〉λ =(
1 + λ2

2

)
(ta ⊗ IR′)ii′,jj ′ − λ (IR ⊗ t̃∗a )ii′,jj ′

√
k x

2�R

12 x̄
2�̄R′
12

(
1

x13
− 1

x23

)
.

(5.1)

The similar expression for the correlator J̄ a reads

〈J̄ a(x̄3)

(1)

i,i′(x1)

(2)

j,j ′(x2)〉λ =

−
(

1 + λ2

2

)
(IR ⊗ t̃∗a )ii′,jj ′ − λ (ta ⊗ IR′)ii′,jj ′

√
k x

2�R

12 x̄
2�̄R′
12

(
1

x̄13
− 1

x̄23

)
.

(5.2)

Getting inspired by the previous computations and by the expression in (5.1) we conclude that 
the all-loop mixed correlators should assume the following form

〈Ja(x3)

(1)

i,i′(x1)

(2)

j,j ′(x2)〉λ =
f1(λ)(ta ⊗ IR′)ii′,jj ′ − λf2(λ)(IR ⊗ t̃∗a )ii′,jj ′√

k(1 − λ)(1 + λ)3 x
2�R

12 x̄
2�̄R′
12

(
1

x13
− 1

x23

)
,

(5.3)

where the functions f1(λ) and f2(λ) are everywhere analytic and f1(0) = f2(0) = 1. As usual, 
the denominator of (5.3) is written in such a way that the correlator has well-defined non-Abelian 
and pseudodual limits.

Applying the duality (1.7), as well as the corresponding transformation rules for the currents 
(2.14) and primary fields (2.20) we obtain that

〈Ja(x3)

(2)

i′,i (x1)

(1)

j ′,j (x2)〉λ =
λ2f1(λ

−1)(IR′ ⊗ ta)i′i,j ′j − λf2(λ
−1)(t̃∗a ⊗ IR)i′i,j ′j√

k(1 − λ)(1 + λ)3 x
2�R x̄

2�̄R′

(
1

x13
− 1

x23

)
,

(5.4)
12 12
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where on the right hand side of the last equation we have changed the order of the indices for con-
venience. Subsequently, the left hand side of the above can be rewritten using appropriately (5.3). 
We have that

〈Ja(x3)

(1)

i′,i (x1)

(2)

j ′,j (x2)〉λ

= f1(λ)(t̃
(2)
a ⊗ IR)i′i,j ′j − λf2(λ)(IR′ ⊗ t

(2)∗
a )i′i,j ′j√

k(1 − λ)(1 + λ)3 x
2�R

12 x̄
2�̄R′
12

(
1

x13
− 1

x23

)

= −f1(λ)(t̃∗a ⊗ IR)i′i,j ′j + λf2(λ)(IR′ ⊗ ta)i′i,j ′j√
k(1 − λ)(1 + λ)3 x

2�R

12 x̄
2�̄R′
12

(
1

x13
− 1

x23

)
. (5.5)

Hence, comparing (5.4) with (5.5) we have the two equivalent conditions

λf1(λ
−1) = f2(λ) , λf2(λ

−1) = f1(λ) =⇒ f1(λ) = f2(λ) = 1 + λ . (5.6)

Plugging the latter into (5.3) we find after some rearrangement that

〈J a(x3)

(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉λ = − (ta ⊗ IR′)ii′,jj ′ − λ(IR ⊗ t̃∗a )ii′,jj ′√
k(1 − λ2)x

2�R−1
12 x̄

2�̄R′
12 x13x23

. (5.7)

Similar reasoning leads to

〈J̄ a(x̄3)

(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉λ = (IR ⊗ t̃∗a )ii′,jj ′ − λ(ta ⊗ IR′)ii′,jj ′√
k(1 − λ2) x

2�R

12 x̄
2�̄R′−1
12 x̄13x̄23

, (5.8)

whose expansions around λ = 0 agree with (5.1) and (5.2). We stress that the one- and two-loop 
calculations in conjunction with the symmetry (1.7) are enough to fully determine the all-loop 
expressions for the correlators under consideration. Thus, the O(λ3) terms in (5.1) and (5.2) pro-
vide perturbative checks of the all-loop results. Note that the deformation mixes the left and right 
representations. It can be easily checked that the λ-deformed direct products in the numerators 
in the above correlators form representations of the algebra as well.

6. OPEs and equal-time commutators

In this section we use the two-point and three-point functions of the currents and primary 
fields to find their OPE algebra up to order 1/k reads and exact in the deformation parameter λ. 
The result is
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J a(x1)J
b(x2) = δab

x
2+γ (J )

12 x̄
γ (J )

12

+ c(λ)
fabcJ

c(x2)

x12
+ d(λ)

fabcJ̄
c(x̄2)x̄12

x2
12

+ . . . ,

J a(x1)J̄
b(x̄2) = −γ (J ) δab

|x12|2 + d(λ)
fabcJ̄

c(x̄2)

x12
+ d(λ)

fabcJ
c(x2)

x̄12
+ . . . ,

J a(x1)

(1)

i,i′(x2, x̄2) = − (ta)i
m


(1)

m,i′(x2, x̄2) − λ(t̃∗a )i′m
′



(1)

i,m′(x2, x̄2)

x12

√
k(1 − λ2)

+ . . . ,

J̄ a(x̄1)

(1)

i,i′(x2, x̄2) = (t̃∗a )i′m
′



(1)

i,m′(x2, x̄2) − λ(ta)
m
i 


(1)

m,i′(x2, x̄2)

x̄12

√
k(1 − λ2)

+ . . . ,


̃
(1)
I (x1, x̄1)
̃

(2)
J (x2, x̄2) = C̃IJK 
̃

(3)
K (x2, x̄2)

x
γ12;3
12 x̄

γ̄12;3
12

+ . . . ,

(6.1)

where C̃IJK was given in (4.22), γ (J ) is the anomalous dimension of the current given in (3.21), 
the γ12;3 and γ̄12;3 are given by (4.20) and (4.21) and

c(λ) =
√

(1 − λ3)2

k(1 − λ2)3
, d(λ) =

√
λ2(1 − λ)2

k(1 − λ2)3
. (6.2)

Having the OPEs at our disposal, we can easily compute the equal-time commutator of the 
currents and primaries through a time-ordered limiting procedure

[f (σ1, τ ), g(σ2, τ )] = lim
ε→0

(f (σ1, τ + iε)g(σ2, τ ) − g(σ2, τ + iε)f (σ1, τ )) (6.3)

and the following representations of Dirac delta-function

lim
ε→0

(
1

σ − iε
− 1

σ + iε

)
= 2πi δ(σ ) ,

lim
ε→0

(
1

(σ − iε)2
− 1

(σ + iε)2

)
= −2πi δ′(σ ) ,

lim
ε→0

(
σ + iε

(σ − iε)2
− σ − iε

(σ + iε)2

)
= 2πi δ(σ ) .

(6.4)

Employing Eqs. (6.1), (6.3) and (6.4), we find to order 1/
√

k that4

[J a(σ1), J
b(σ2)] = 2π i δabδ

′(σ12) + 2π fabc

(
c(λ)J c(σ2) − d(λ)J̄ c(σ2)

)
δ(σ12) ,

[J̄ a(σ1), J̄
b(σ2)] = −2π i δabδ

′(σ12) + 2π fabc

(
c(λ)J̄ c(σ2) − d(λ)J c(σ2)

)
δ(σ12) ,

[J a(σ1), J̄
b(σ2)] = 2π d(λ)fabc

(
J c(σ2) + J̄ c(σ2)

)
δ(σ12) ,

(6.5)

and

[
̃(1)

i,i′(σ1), 
̃
(2)

j,j ′(σ2)] = 0 , (6.6)

[J a(σ1),

(1)

i,i′(σ2)] = − 2π√
k(1 − λ2)

(
(ta)i

m

(1)

m,i′(σ2) − λ(t̃∗a )i′
m′



(1)

i,m′(σ2)
)

δ(σ12) ,

[J̄ a(σ1),

(1)

i,i′(σ2)] = 2π√
k(1 − λ2)

(
(t̃∗a )i′

m′



(1)

i,m′(σ2) − λ(ta)i
m


(1)

m,i′(σ2)
)

δ(σ12) .

4 The OPEs and the equal-time commutators for the currents are in agreement with those obtained in [32], for current–
current perturbations of the WZW model on supergroups.
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These equal-time commutators turn out to be isomorphic to two commuting copies of current 
algebras with opposite levels

[Sa(σ1), S
b(σ2)] = i k

2π
δabδ

′(σ12) + fabc Sc(σ2) δ(σ12) ,

[S̄a(σ1), S̄
b(σ2)] = − i k

2π
δabδ

′(σ12) + fabc S̄c(σ2) δ(σ12) ,

[Sa(σ1), S̄
b(σ2)] = 0 ,

[Sa(σ1),

(1)

i,i′(σ2)] = −(ta)i
m


(1)

m,i′(σ2) δ(σ12) ,

[S̄a(σ1),

(1)

i,i′(σ2)] = (t̃∗a )i′
m′



(1)

i,m′(σ2) δ(σ12) ,

(6.7)

where

Sa = 1

2π

√
k

1 − λ2

(
J a − λJ̄ a

)
, S̄a = 1

2π

√
k

1 − λ2

(
J̄ a − λJ a

)
. (6.8)

The parameter λ does not appear in this algebra but it does in the time evolution of the system due 
to the fact that, as it turns out, the Hamiltonian in terms of Sa and S̄a is λ-dependent (cf. eq. (2.11) 
of [2]). Also, the λ-dependence still appears in the OPEs of the Sa and S̄a among them. The 
reasons is that the OPEs, unlike the commutators (6.7), are not computed at equal times.

Finally we take the classical limit of (6.5) and appropriately rescaling the currents, we find 
Rajeev’s deformation of the canonical structure of the isotropic PCM [35] (recall that, in our 
conventions the group structure constants fabc are taken to be imaginary)

{I a±, I b±}P.B. = −i e2fabc

(
I c∓(σ2) − (1 + 2x)I c±(σ2)

)
δ(σ12) ± 2e2δab δ′(σ12) ,

{I a±, I b∓}P.B. = i e2fabc

(
I c+(σ2) + I c−(σ2)

)
δ(σ12) ,

(6.9)

realized through the action (1.5) of [2]

e = 2d(λ) = 1√
k(1 − λ2)

2λ

1 + λ
,

c(λ)

d(λ)
= 1 + 2x , x = 1 + λ2

2λ
. (6.10)

That the deformed brackets (6.9) follow as the classical limit of the OPEs provides actually, for 
the isotropic case, the mathematical proof that the action (1.5) is in fact the effective action of the 
non-Abelian Thirring model action (1.4). The reason is that (1.5) provides, as was shown in [2], 
a realization of (6.9) which in turn was derived by using (1.4) as the starting point.

7. Conclusions

In this work we have computed all possible two- and three-point functions of current and pri-
mary field operators for the λ-deformed integrable σ -models. These models are characterized by 
the deformation parameter λ, as well as by the integer level k of the WZW model. Our results 
are valid for any semisimple group G, for all values of the deformation parameter λ and up to 
order 1/k in the large k expansion. We achieved this goal by combining the first few orders in 
perturbation theory with analyticity arguments as well as with a non-trivial duality-type symme-
try shared by these models. The two- and three-point correlators allowed us to deduce the exact 
in λ OPEs of all currents and primary operators. Furthermore, based on our results we derived 
the anomalous dimensions and correlation functions for the operators in two important limits of 
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the aforementioned λ-deformed σ -models, namely the non-Abelian T-dual of the PCM and the 
pseudodual model.

Our results are summarized as follows:

1. In section 3.1 we presented the results for the two-point correlator of two currents. From 
these correlators and in conjunction with the aforementioned symmetry we derived the all-
loop β-function of the theory as well as their anomalous dimension.

2. In section 3.2 we derived the all-loop expressions for the three current correlators.
3. In section 4.1 we provide the reader with the exact two-point functions of all primary oper-

ators of the theory, as well as with their exact in λ anomalous dimensions. In this case, the 
role of the symmetry is instrumental since it is realized in a non-trivial way.

4. In section 4.2 we provide the reader with the exact three-point functions of all primary oper-
ators of the theory.

5. In section 5 we calculated the exact, in λ, three-point correlators 〈J

〉 and 〈J̄

〉.
6. In section 6 we deduced all relevant OPEs between currents and/or primary fields that are 

consistent with the exact results for the two- and three-point functions given in previous 
sections. We also derive the currents’ Poisson brackets which assume Rajeev’s deformation 
of the canonical structure of the isotropic PCM, the underlying structure of the integrable 
λ-deformed σ -models. This essentially proves in a mathematical sense that the action (1.5)
for an isotropic deformation is indeed the effective action of the non-Abelian Thirring model 
action.

One direction for extending our work would be to consider cases beyond isotropy, i.e. when 
the matrix λ is not proportional to the identity. In particular, we believe that the equal-time 
commutators of the currents and primaries will take the form of (6.7), under an analogue to (6.8)
relation. Another direction would be to calculate the subleading, in the 1/k expansion, terms of 
all physical quantities such as the β-function, the anomalous dimension matrix and the fusion 
coefficients. These line of research would, hopefully, be culminated by finding the exact in both 
λ and k expressions for these physical quantities as well as the underlying effective action.
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Appendix A. Various integrals

In this appendix we assemble all the integrals that will be needed in our perturbative calcu-
lations. In all integrals considered below the integration domain is a disc of radius R in which 
the various external points labeled by x’s are excluded. This can be done by encircling them 
with circles having arbitrarily vanishing radius. One way to prove the expressions below is to use 
Stokes’ theorem in two-dimensions for appropriately chosen vectors and contours.
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The first set of integrals is the exact version of the integrals in (2.31) and (2.33)∫
d2z

(z − x1)(z̄ − x̄2)
= −π ln

|x1 − x2|2
R2 − x1x̄2

,∫
d2z

(z − x1)2(z̄ − x̄2)2
= π2δ(2)(x1 − x2) − πR2

(R2 − x1x̄2)2
,

(A.1)

where the R > |x1,2|. By taking derivatives we may compute the exact analog of the integrals 
in (2.32).

A generalization of the first of the above integrals is given by∫
d2z

M∏
i=1

(z − xi)
N∏

i=1
(z̄ − ȳj )

= −π

M∑
i=1

N∑
j=1

1

AiBj

ln
|xi − yj |2
R2 − xi ȳj

, (A.2)

with R > {|xi |, |yj |} and Ai =
M∏

j=1
j �=i

(xi − xj ) , Bi =
N∏

j=1
j �=i

(ȳi − ȳj ). This relation can be proved 

by first performing a partial fraction decomposition and then use (A.1). A special case of this is 
when the denominators are cubic polynomials. Namely,∫

d2z

(z − x1)(z − x2)(z̄ − x̄1)
= − π

x12

(
ln

ε2

|x12|2 + ln
R2 − x2x̄1

R2 − |x1|2
)

,∫
d2z

(z − x1)(z̄ − x1)(z̄ − x̄2)
= − π

x̄12

(
ln

ε2

|x12|2 + ln
R2 − x1x̄2

R2 − |x1|2
)

,

(A.3)

which is the exact analogs of the integrals in (2.34).
Another important integral is given by∫

d2z

(z − x1)(z̄ − x̄2)
ln

|z − x1|2
R2 − x1z̄

= −π

2
ln2 |x1 − x2|2

R2 − x1x̄2
. (A.4)

The large R limit of this is given in (2.35) and is necessary for the derivation of the two-loop 
contribution in (3.6).

Appendix B. Perturbative computation of the 〈J J̄ 〉 correlator

In this appendix we present the perturbative calculation of the 〈J J̄ 〉 two-point function. At 
the conformal point it vanishes.

Order O(λ). To that order we have that

〈J a(x1)J
b(x2)〉(1)

λ = − λ

π

∫
d2z〈J a(x1)J

c(z)〉〈J̄ c(z̄)J̄ b(x̄2)〉 = −πλδabδ(2)(x12) . (B.1)

Order O(λ2). To that order we have that

〈J a(x1)J
b(x2)〉(2)

λ = λ2

2π2

∫
d2z12〈J a(x1)J

a1(z1)J
a2(z2)〉〈J̄ a1(z̄1)J̄

a2(z̄2)J̄
b(x̄2)〉

= − λ2

δab cG
J (x1, x2) , (B.2)
2π2 k
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where

J (x1, x2) =
∫

d2z12

(x1 − z1)(x1 − z2)(z1 − z2)(x̄2 − z̄1)(x̄2 − z̄2)(z̄1 − z̄2)

=
∫

d2z12

(x1 − z1)2(x̄2 − z̄2)2

(
1

z1 − z2
− 1

x1 − z2

)(
1

z̄1 − z̄2
+ 1

x̄2 − z̄1

)
(B.3)

= J11 + J12 + J21 + J22 ,

where we have broken the integral J into the four integrals Jij , resulting from multiplying out 
the terms in the parenthesis, in a rather self-explanatory notation. We have that

J11 = ∂x1∂x̄2

∫
d2z12

(x1 − z1)(x̄2 − z̄2)(z1 − z2)(z̄1 − z̄2)

= −π∂x1∂x̄2

∫
d2z2

(x1 − z2)(x̄2 − z̄2)
ln

ε2

|z2 − x1|2

= π2∂x1∂x̄2

(
ln ε2 ln |x12|2 − 1

2
ln2 |x12|2

)
(B.4)

= −π3δ(2)(x12) ln
ε2

|x12|2 + π2

|x12|2 ,

where we have used (2.35). Also

J12 = π

∫
d2z1

(x1 − z1)2(x̄2 − z̄1)2
= π3δ(2)(x12) ,

J21 = π

∫
d2z2

(x̄2 − z̄2)2(x1 − z2)2
= π3δ(2)(x12) .

(B.5)

Note that for J12 we have first performed the z2-integration which is not in accordance with our 
regularization prescription. However, we now show that the same result follows if we do first the 
z1 according to our regularization. We easily find that

J12 = ∂x1

∫
d2z12

(x1 − z2)(x̄2 − z̄2)2

(
1

(z1 − x1)(x̄2 − z̄1)
− 1

(z1 − z2)(x̄2 − z̄2)

)
= π∂x1

(
ln |x12|2

∫
d2z2

(x̄2 − z̄2)2(x1 − z2)

)
+ π

∫
d2z2 ln |z2 − x2|2

(z2 − x1)2(z̄2 − x̄2)2
(B.6)

= −π2∂x1

(
ln |x12|2

x̄12

)
+ π3(1 + ln |x12|2) δ(2)(x12) + π2

|x12|2 ,

where we have used the fact that the second integral in the second line above can be obtained 
from (B.4) (with ε = 1). A simple algebra gives the same expression as in (B.5). Finally

J22 = − π

x12

∫
d2z2

(x̄2 − z̄2)2(x1 − z2)
= π2

|x12|2 . (B.7)

Therefore collecting all contributions we find that

J (x1, x2) = 2π4
(

1 − 1
ln

ε2

2

)
δ(2)(x12) + π3

2
. (B.8)
2 |x12| |x12|
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Order O(λ3). To that order we have that

〈J a(x1)J
b(x2)〉(3)

λ = − λ3

6π3

∫
d2z123〈J a(x1)J

a1(z1)J
a2(z2)J

a3(z3)〉×
〈J̄ a1(z̄1)J̄

a2(z̄2)J̄
a3(z̄3)J̄

b(x̄2)〉
(B.9)

The four-point function is given by (2.6) and is multiplied by the analogous four-point function 
for anti-holomorphic currents. Keeping terms up to O(1/k), disregarding terms giving rise to 
bubbles and taking into account the above permutation symmetry we arrive at

〈J a(x1)J
b(x2)〉(3)

λ = 2δab cG

k

λ3

π3
K(x1, x2) , (B.10)

where

K(x1, x2) =
∫

d2z123

(z1 − x2)(x1 − z2)(x1 − z3)(z2 − z3)(z̄1 − z̄2)2(z̄3 − x̄2)2
. (B.11)

Performing the integrations first over z1 and then over z2 we obtain that

K(x1, x2) = −π2
∫

d2z3

(z3 − x1)2(z̄3 − x̄2)2
ln

ε2

|z3 − x1|2 = −π4 ln ε2δ(2)(x12)

+π2

(
∂x1∂x̄2

∫
d2z3

(z3 − x1)(z̄3 − x̄2)
ln |z3 − x1|2 +

∫
d2z3

(z3 − x1)2(z̄3 − x̄2)2

)

= −π4 ln ε2δ(2)(x12) + π4δ(2)(x12) − π3

2
∂x1∂x̄2 ln2 |x12|2 (B.12)

= π4
(

1 − ln
ε2

|x12|2
)

δ(2)(x12) + π3

|x12|2 .

In conclusion (B.1), (B.2) and (B.10) combine to (3.6) in the main text.

Appendix C. Perturbative computation of the 〈JJJ 〉 correlator

In this appendix we present the perturbative calculation of the 〈JJJ 〉 three-point correlator. 
The O(λ) contribution to this correlators vanishes since 〈J̄ 〉 = 0. Proceeding to higher orders in 
the λ-expansion we have:

Order O(λ2). This contribution is immediately seen to be equal to

〈J a(x1)J
b(x2)J

c(x3)〉(2)
λ = λ2

2!π2

∫
d2z12

z̄2
12

〈J a(x1)J
b(x2)J

c(x3)J
a1(z1)J

a1(z2)〉 . (C.1)

To proceed with the contractions we single out J a1 to perform them. Disregarding the discon-
nected and bubble pieces and also noting that the Abelian contractions, i.e. contractions leading 
to second poles, of J a1 with the external currents vanish in our regularization scheme, we have 
that

〈J a(x1)J
b(x2)J

c(x3)〉(2)
λ = λ2

2!π2

1√
k

∫
d2z12

z̄2
12

(
fa1ad

z1 − x1
〈Jd(x1)Jb(x2)Jc(x3)Ja1(z2)〉

+ fa1bd 〈Ja(x1)Jd(x2)Jc(x3)Ja1(z2)〉 + fa1cd 〈Ja(x1)Jb(x2)Jd(x3)Ja1(z2)〉
)

z1 − x2 z1 − x3
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= λ2

2π2

1√
k

∫
d2z2

(
fa1ad

x̄1 − z̄2
〈Jd(x1)Jb(x2)Jc(x3)Ja1(z2)〉 (C.2)

+ fa1bd

x̄2 − z̄2
〈Ja(x1)Jd(x2)Jc(x3)Ja1(z2)〉 + fa1cd

x̄3 − z̄2
〈Ja(x1)Jb(x2)Jd(x3)Ja1(z2)〉

)
.

Computing this to O
(

1/
√

k
)

gives

〈J a(x1)J
b(x2)J

c(x3)〉(2) = 3λ2

2
√

k

fabc

x12x13x23
. (C.3)

Order O(λ3). The contribution is immediately seen to be

〈J a(x1)J
b(x2)J

c(x3)〉(3) = − λ3

3!π3

fa1a2a3√
k

∫
d2z123

z̄12z̄13z̄23
×

〈Ja(x1)Jb(x2)Jc(x3)Ja1(z1)Ja2(z2)Ja3(z3)〉 . (C.4)

As we have already saturated the O(1/
√

k), we perform only Abelian contractions in this six-
point function, yielding to

〈J a(x1)J
b(x2)J

c(x3)〉(3)
λ = −λ3fabc

π3
√

k

∫
d2z123

z̄12z̄13z̄23(z1 − x1)2(z2 − x2)2(z3 − x3)2
. (C.5)

Using the identity

1

z̄12z̄13
= 1

z̄23

(
1

z̄12
− 1

z̄13

)
, (C.6)

integrating over z1

〈J a(x1)J
b(x2)J

c(x3)〉(3)
λ

= −λ3fabc

π2
√

k
∂x2∂x3

∫
d2z23

z̄2
23(z2 − x2)(z3 − x3)

(
1

z2 − x1
− 1

z3 − x1

)
(C.7)

and employing an analogue of the identity (C.6) we get that

〈J a(x1)J
b(x2)J

c(x3)〉(3)
λ = −λ3fabc√

k
∂x2∂x3

(
1

x12
ln

|x13|2
|x23|2 − 1

x13
ln

|x12|2
|x23|2

)
= − λ3

√
k

fabc

x12x13x23
.

(C.8)

Appendix D. Perturbative computation of the 〈JJ J̄ 〉 correlator

In this appendix we present the perturbative calculation of the 〈JJ J̄ 〉 three-point correlator. 
Of course at the conformal point this correlation function vanishes. Proceeding to higher orders 
in the λ-expansions we have that:
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Order O(λ). The contribution to the one-loop equals

〈J a(x1)J
b(x2)J̄

c(x̄3)〉(1)
λ = − λ

π

∫
d2z〈J a(x1)J

b(x2)J
a1(z)〉〈J̄ a1(z̄)J̄ c(x̄3)〉 ,

= − λfabc√
k x12

∫
d2z

(x1 − z)(x2 − z)(x̄3 − z̄)2
.

(D.1)

Employing an analogue of the identity (C.6) we get that

〈J a(x1)J
b(x2)J̄

c(x̄3)〉(1)
λ = λ√

k

fabcx̄12

x2
12x̄23x̄13

. (D.2)

Order O(λ2). The contribution to the two-loop is equal to

〈J a(x1)J
b(x2)J̄

c(x̄3)〉(2)
abc = λ2fa1a2c

2!π2
√

k

∫
d2z12

〈Ja(x1)Jb(x2)Ja1(z1)Ja2(z2)〉
z̄12(z̄1 − x̄3)(z̄2 − x̄3)

= λ2fabc

π2
√

k

∫
d2z12

z̄12(z̄1 − x̄3)(z̄2 − x̄3)(x1 − z1)2(x2 − z2)2
.

(D.3)

Employing again an analogue of the identity (C.6) we get that

〈J a(x1)J
b(x2)J̄

c(x̄3)〉(2)
abc

= λ2fabc

π2
√

k

∫
d2z12

(z̄2 − x̄3)2(x1 − z1)2(x2 − z2)2

(
1

z̄1 − z̄2
− 1

z̄1 − x̄3

)

= −λ2fabc

π
√

k

∫
d2z2

(z̄2 − x̄3)2(x2 − z2)2

(
1

x1 − z2
− 1

x13

)

= λ2fabc

π
√

k
∂x2∂x̄3

∫
d2z2

(x1 − z2)(z̄2 − x̄3)(x2 − z2)
(D.4)

= λ2fabc

π
√

k
∂x2∂x̄3

1

x12

∫
d2z2

z̄2 − x̄3

(
1

x2 − z2
− 1

x1 − z2

)

= λ2fabc√
k

∂x2∂x̄3

1

x12
ln

|x23|2
|x13|2 (D.5)

= − λ2

√
k
fabc

(
x̄12

x2
12x̄23x̄13

+ π
δ(2)(x23)

x12

)
,

where we have included the contact term involving external points. This will be neglected in the 
main text.

Appendix E. Perturbative computation of the 〈��〉 correlator

In this appendix we present the perturbative calculation of the 〈

〉 correlator.
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Order O(λ). To that order we have that

〈
(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉(1)
λ = − λ

π

∫
d2z〈
(1)

i,i′(x1, x̄1)J
c(z)J̄ c(z̄)


(2)

j,j ′(x2, x̄2)〉 =

= λ

π
√

k

∫
d2z

[ (t
(1)
a )i

�

z − x1
〈
(1)

�,i′(x1, x̄1)J̄
c(z̄)


(2)

j,j ′(x2, x̄2)〉

+ (t
(2)
a )j

�

z − x2
〈
(1)

i,i′(x1, x̄1)J̄
c(z̄)


(2)

�,j ′(x2, x̄2)〉
]

(E.1)

= − λ/k

x
2�R

12 x̄
2�̄R′
12

[
ln ε2

(
t (1)
a ⊗ t̃ (1)T

a + t (2)T
a ⊗ t̃ (2)

a

)
+ ln |x12|2

(
t (1)
a ⊗ t̃ (2)

a + t (1)T
a ⊗ t̃ (2)T

a

)]
ii′,jj ′ ,

where we have used (2.11) and (2.12) and wrote the result as a direct product of matrices. The 
representations involved are in fact conjugate to each other. Therefore, using (2.8) we find that

〈
(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉(1)
λ = −2

λ

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 . (E.2)

Order O(λ2). To that order we find that

〈
(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉(2)
λ = λ2

2π2

[
1√
k

(
I

(1)

ii′,jj ′ + I
(2)

ii′,jj ′ + I
(3)

ii′,jj ′
)

+ I
(4)

ii′,jj ′

]
, (E.3)

where the four different terms are computed below and arise by using the current Ward identity 
with respect to the current Ja(z1):

• The first term is

I
(1)

ii′,jj ′ = −
∫

d2z12
(t

(1)
a )i

�

z1 − x1
〈
(1)

�,i′(x1.x̄1)J̄a(z̄1)Jb(z2)J̄b(z̄2)

(2)

j,j ′(x2.x̄2)〉

= −
∫

d2z12
(t

(1)
a )i

�

(z1 − x1)z̄
2
12

〈
(1)

�,i′(x1, x̄1)Ja(z2)

(2)

j,j ′(x2, x̄2)〉 (E.4)

= π2 CR√
k

(IR ⊗ IR′)ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 ,

where we have kept only contributions which will give terms of O(1/k) to the final result. 
In addition we used the integral∫

d2z12

(z1 − x1)(z2 − x2)z̄
2
12

= π

∫
d2z2

(x̄1 − z̄2)(z2 − x2)
= π2 ln |x12|2 , (E.5)

as well as the same with x2 → x1 in which case |x12|2 → ε2 in the result above.
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• The second term is

I
(2)

ii′,jj ′ = −
∫

d2z12
(t

(2)
a )j

�

z1 − x2
〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)Jb(z2)J̄b(z̄2)

(2)

�,j ′(x2, x̄2)〉

= −
∫

d2z12
(t

(2)
a )j

�

(z1 − x2)z̄
2
12

〈
(1)

i,i′(x1, x̄1)Ja(z2)

(2)

�,j ′(x2, x̄2)〉 (E.6)

= π2 CR√
k

(IR ⊗ IR′)ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 ,

where as before we have kept only contributions providing at most O(1/k) terms in the final 
result.

• The third term is

I
(3)

ii′,jj ′ = fabc

∫
d2z12

z12
〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)Jc(z2)J̄b(z̄2)

(2)

�,j ′(x2, x̄2)〉 = 0 , (E.7)

since to O(1/
√

k) we get a result proportional to fabc δab = 0.
• The fourth term is more involved to compute. The result is

I
(4)

ii′,jj ′ =
∫

d2z12

z2
12

〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)J̄a(z̄2)

(2)

�,j ′(x2, x̄2)〉

= 2π2 CR′

k

(IR ⊗ IR′)ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 . (E.8)

Note that this is expected since it is just the sum of the other two non-vanishing terms with 
the representations R and R′ exchanged.

Order O(λ3). To that order we have that

〈
(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉(3)
λ

= − λ3

6π3

[
J

(1)

ii′,jj ′ + J
(2)

ii′,jj ′ + J
(3)

ii′,jj ′ + J
(4)

ii′,jj ′ + J
(5)

ii′,jj ′ + J
(6)

ii′,jj ′
]

, (E.9)

where the six different terms are obtained by applying the Ward identity for the current Ja(z1):

• The first term originates from the contraction of the current Ja(z1) with the primary field 

(1) and leads to

J
(1)

ii′,jj ′ = − 1√
k

∫
d2z123

(t
(1)
a )i

k

z1 − x1

〈
(1)

k,i′(x1, x̄1)J̄a(z̄1)Jb(z2)J̄b(z̄2)Jc(z3)J̄c(z̄3)

(2)

j,j ′(x2, x̄2)〉. (E.10)

The next step is to contract one of the remaining holomorphic currents, lets say Jb(z2). This 
current can not be contracted with any of the external primaries because in that case the last 
holomorphic current should also be contracted with an external field too and as a result this 
contribution will be of order 1/k3/2. Since in this calculation we keep terms of order O(1/k)

this contribution can be ignored. For the same reason the holomorphic currents Jb(z2) and 
Jc(z3) can not be contracted through the non-Abelian part of their OPE but only via the 
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Abelian part. Once we have contracted all the holomorphic currents we start treating the 
anti-holomorphic ones by choosing J̄a(z̄1) to use in the Ward identity. As above, this current 
cannot be contracted with any of the external primaries since in this case the remaining anti-
holomorphic currents at z̄2 and at z̄3 should be contracted through a δ-Kronecker term and 
resulting into the term 1

z2
23z̄

2
23

which indicates that it is disconnected and should be ignored. 

Thus, the current at z̄1 can be contracted only with the anti-holomorphic currents at z̄2 and at 
z̄3. Notice, however, that this contraction can not be non-Abelian because in that case the re-
sult will be proportional to fabcδbc = 0. We have thus concluded that the only non-vanishing
terms up to order O(1/k) will come from the Abelian contractions of J̄a(z̄1) with the other 
anti-holomorphic currents. The resulting integral is

J
(1)

ii′,jj ′ = −2

k

1

x
2�R

12 x̄
2�R′
12

∫
d2z123

( (
t
(1)
a ⊗ t̃

(1)T
a

)
ii′,jj ′

z2
23z̄

2
12(z1 − x1)(z̄3 − x̄1)

+
(
t
(1)
a ⊗ t̃

(2)
a

)
ii′,jj ′

z2
23z̄

2
12(z1 − x1)(z̄3 − x̄2)

+ (z2 ↔ z3)
)

, (E.11)

where the z2, z3 exchange term applies only in the integrand and not in the measure of 
integration in accordance with our regularization prescription. It turns out that this term 
doubles the result of the term explicitly written. The integrals can now be performed from 
the left to the right, the z1 integration first then z2 and the z3 last. Using (2.8) the result can 
be written as follows

J
(1)

ii′,jj ′ = 2
π3

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 . (E.12)

We should mention that the lnε2 term originates from the first triple integral of (E.11) while 
the ln |x12|2 term originates the second triple integral of (E.11).

• The second term originates from the contraction of the current Ja(z1) with Jb(z2) through 
the non-Abelian term of their OPE. It reads

J
(2)

ii′,jj ′ = fabd√
k

∫
d2z123

z12
〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)Jd(z2)J̄b(z̄2)Jc(z3)J̄c(z̄3)

(2)

j,j ′(x2, x̄2)〉 .

(E.13)

Since we want to keep terms up to O(1/k) the holomorphic currents at points z2 and z3
must be contracted only through the Abelian term of their OPE. The resulting correlators 
will involve the two primary fields and the three anti-holomorphic currents. Next we employ 
the Ward identity for the current at the point z̄1. This current can not be contracted with 
the other anti-holomorphic currents through a δ-Kronecker term because in such a case this 
term will be proportional either to fabcδab = 0 or to fabcδac = 0. Also J̄a(z̄1) can not be 
contracted with the external primary fields because in such a case the corresponding dia-
gram will disconnected, thus it will be the product of a bubble involving the points z2 and 
z3 times the rest of the diagram. Consequently, the only contribution that remains comes 
from the non-Abelian contraction of either J̄a(z̄1) with either J̄b(z̄2) or J̄c(z̄3). In both cases 
the resulting diagrams will be disconnected, i.e. they will be the product of the tree-level 
〈

〉 correlator times a bubble involving all interactions points zi , i = 1, 2, 3. Therefore, 
we conclude that

J
(2)

′ ′ = 0 . (E.14)

ii ,jj
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• The third term originates from the contraction of the current Ja(z1) with Jb(z2) through the 
Abelian term of their OPE

J
(3)

ii′,jj ′ =
∫

d2z123

z2
12

〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)J̄a(z̄2)Jc(z3)J̄c(z̄3)

(2)

j,j ′(x2, x̄2)〉 . (E.15)

The last holomorphic current, i.e. the one at point z3 should necessarily be contracted with 
each of the external primaries giving a factor of 1/

√
k and leaving us with a sum of two 

correlators involving two primaries and the three anti-holomorphic currents. Choosing the 
current at z1 to be the one for which we will apply the Ward identity we obtain the following 
terms:

i) the term when J̄a(z̄1) is contracted with J̄a(z̄2). This diagram will have a factor of 1
z2

12z̄
2
12

indicating that it is disconnected and should, thus be ignored.
ii) the term arising from the contraction of J̄a(z̄1) with J̄c(z̄3) through the non-Abelian 

term of their OPE will also be zero since we have saturated the powers of 1/k and all 
remaining contractions should be Abelian resulting to the factor of facdδad = 0.

iii) the term arising form the contraction of J̄a(z̄1) with J̄c(z̄3) through the Abelian term of 
their OPE contributes that

−1

k

1

x
2�R

12 x̄
2�̄R′
12

∫
d2z123

z2
12z̄

2
13

( (
t
(1)
a ⊗ t̃

(1)T
a

)
ii′,jj ′

(z3 − x1)(z̄2 − x̄1)
+

(
t
(1)
a ⊗ t̃

(2)
a

)
ii′,jj ′

(z3 − x1)(z̄2 − x̄2)
+

+
(
t
(2)T
a ⊗ t̃

(1)T
a

)
ii′,jj ′

(z3 − x2)(z̄2 − x̄1)
+

(
t
(2)T
a ⊗ t̃

(2)
a

)
ii′,jj ′

(z3 − x2)(z̄2 − x̄2)

)
= 2

π3

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 .

(E.16)

Notice that as always we keep the order of integrations. Furthermore, the first integral 
over z1 gives a δ(2)(z2 − z3) which make the second integration over z2 trivial. The third 
integral over z3 is one of our basic ubiquitous ones.

iv) the last contribution arises when J̄a(z̄1) is contracted with the external primaries. The 
corresponding integrals are

− 1

k

1

x
2�R

12 x̄
2�̄R′
12

∫
d2z123

z2
12z̄

2
23

( (
t
(1)
a ⊗ t̃

(1)T
a

)
ii′,jj ′

(z3 − x1)(z̄1 − x̄1)
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(
t
(1)
a ⊗ t̃

(2)
a

)
ii′,jj ′

(z3 − x1)(z̄1 − x̄2)
+

+
(
t
(2)T
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(1)T
a

)
ii′,jj ′

(z3 − x2)(z̄1 − x̄1)
+

(
t
(2)T
a ⊗ t̃

(2)
a

)
ii′,jj ′

(z3 − x2)(z̄1 − x̄2)

)
= 2

π3

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 .

(E.17)

Adding the contributions from (E.16) and (E.17) we get for J (3)

ii′,jj ′ that

J
(3)

ii′,jj ′ = 4
π3

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 . (E.18)
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• The fourth term originates from the contraction of the current Ja(z1) with Jc(z3) through the 
non-Abelian term of their OPE. It reads

J
(4)

ii′,jj ′ = facd√
k

∫
d2z123〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)Jb(z2)J̄b(z̄2)Jd(z3)J̄c(z̄3)

(2)

j,j ′(x2, x̄2)〉.
(E.19)

Following the same steps as in the second contribution above one can show that

J
(4)

ii′,jj ′ = 0 . (E.20)

• The fifth term originates from the contraction of the current Ja(z1) with Jc(z3) through the 
Abelian term of their OPE

J
(5)

ii′,jj ′ =
∫

d2z123

z2
13

〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)Jb(z2)J̄b(z̄2)J̄a(z̄3)

(2)

j,j ′(x2, x̄2)〉 . (E.21)

Working as in the case of the third contribution we get that

J
(5)

ii′,jj ′ = 4
π3

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 . (E.22)

• Finally, the last term originates from the contraction of the current Ja(z1) with the primary 
field 
(2)

J
(6)

ii′,jj ′ = − 1√
k

∫
d2z123

(t
(2)
a )j

k

z − x2

× 〈
(1)

i,i′(x1, x̄1)J̄a(z̄1)Jb(z2)J̄b(z̄2)Jc(z3)J̄c(z̄3)

(2)

k,j ′(x2, x̄2)〉 . (E.23)

Following the same steps as in the first contribution one can show that

J
(6)

ii′,jj ′ = 2
π3

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 . (E.24)

Summing up all six terms one obtains the final result at three-loops. It reads

〈
(1)

i,i′(x1, x̄1)

(2)

j,j ′(x2, x̄2)〉(3)
λ = −2

λ3

k

(ta ⊗ t∗a )ii′,jj ′

x
2�R

12 x̄
2�̄R′
12

ln
ε2

|x12|2 . (E.25)

Appendix F. Perturbative computation of the 〈J��〉 correlator

Finally, in this last appendix, we present the perturbative calculation of the 〈J

〉 three-point 
correlator.

Order O(λ). This contribution is equal to

〈
J
〉(1) = − λ

π

∫
d2z 〈
(1)

i,i′(x1)Ja(x3)Ja1(z)J̄a1(z̄)

(2)

j,j ′(x2)〉

= − λ

π

∫
d2z

〈
(1)

i,i′(x1)J̄a(z̄)

(2)

j,j ′(x2)〉
(x3 − z)2

= −λ (IR′ ⊗ t̃∗a )ii′,jj ′
√

k x
2�R

12 x̄
2�̄R′
12

(
1

x13
− 1

x23

)
,

(F.1)

where we have used (2.12).
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Order O(λ2). This contribution is equal to

〈
J
〉(2) = λ2

2!π2

∫
d2z12 〈
(1)

i,i′(x1)Ja(x3)Ja1(z1)Ja2(z2)J̄a1(z̄1)J̄a2(z̄2)
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( 〈
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12

+ 〈
(1)
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(2)
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)
= λ2(ta ⊗ IR)ii′,jj ′

2
√

k x
2�R

12 x̄
2�̄R′
12

(
1

x13
− 1

x23

)
, (F.2)

where we have used (2.11) disregarding bubble diagrams. Notice that the second term in the 
second line of (F.2) vanish, since the z1 integration will give a δ(2)(x3 − z2) which is set to zero 
in our regularization scheme. Furthermore, notice that the order of integration is important. Had 
we changed this order the result of the vanishing term would have been non-zero doubling the 
contribution of the first term in the second line of (F.2).

Order O(λ3). This contribution is equal to

〈
J
〉(3) =

− λ3

3!π3

∫
d2z123 〈
(1)

i,i′(x1)Ja(x3)Ja1(z1)Ja2(z2)Ja2(z3)J̄a1(z̄1)J̄a2(z̄2)J̄a3(z̄3)

(2)
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= − λ3

2π3

∫
d2z123

〈
(1)

i,i′(x1)J̄a(z̄3)

(2)
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12z̄
2
13
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2
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12 x̄
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(
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)
,

(F.3)

where we have used (2.12).
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