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The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport 
coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine 
the perturbative renormalization factor for a particular lattice discretization of this correlator within 
Wilson’s SU(3) gauge theory, finding a ∼12% NLO correction for values of the bare coupling used in 
the current generation of simulations. The impact of this result on existing lattice determinations is 
commented upon, and a possibility for non-perturbative renormalization through the gradient flow is 
pointed out.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

If a system in thermodynamic equilibrium is displaced slightly by means of some external perturbation, it tends to relax back to equi-
librium. The rate at which this happens depends on the nature of the perturbation. Among the simplest perturbations is that the current 
Jμ associated with some conserved particle species is not aligned with the flow velocity uμ of the heat bath: 〈(ημν − uμuν) Jν〉 �= 0. 
Then the relaxation rate is called the kinetic equilibration rate; more generally it can be a function of the wave vector associated with the 
perturbation of Jμ , with the rate-proper defined through the long-wavelength limit.

In a hot QCD plasma produced in heavy ion collision experiments, with a lifetime of ∼10 fm/c and a temperature of ∼300 MeV, heavy 
(charm and bottom) quarks provide examples of conserved particle species. Indeed their weak decays are too slow by many orders of 
magnitude to play a role. Moreover the particle and antiparticle number densities are to a good approximation conserved separately, given 
that pair creations and annihilations are also too slow to take place in a typical event, unless T � 600 MeV [1].

Heavy quarks are naturally displaced from kinetic equilibrium, given that they are generated in an initial hard process which has no 
knowledge of the thermal state and the flow that it develops during ∼1 fm/c. It is empirically observed, however, that the process of 
kinetic equilibration takes place during the fireball expansion: heavy quark jets get quenched, and eventually heavy quarks participate in 
hydrodynamic flow almost as efficiently as light quarks do (cf., e.g., Refs. [2–4]). This calls for a theoretical computation of their kinetic 
equilibration rate [5], which can subsequently be inserted into phenomenological models permitting for comparisons with data (cf. Ref. [6]
for a review).

A large body of theoretical and model-based work has already been carried out on heavy quark kinetic equilibration. Focusing here on 
the deconfined phase, it has been observed that next-to-leading order (NLO) corrections are large and positive [7,8], and that the AdS/CFT 
setup suggests rapid equilibration [9–11]. However ultimately the problem should be studied with methods of lattice QCD. It turns out that 
in the heavy-quark limit, applicable at least for the bottom quarks, the lattice challenge appears to be relatively manageable, because the 
observable in question reduces to a purely gluonic “electric field correlator” (cf. eq. (2.2)) whose associated spectral function is expected 
to be smoother than for almost any other transport observable [12,13]. Indeed first lattice measurements making use of this observation 
have been carried out within quenched QCD [14–17].

There are several important issues which the existing simulations have not solved conclusively. One is taking the continuum limit: 
for a systematic extrapolation the electric field correlator requires a finite renormalization factor, which should ultimately be determined 
non-perturbatively. Another is analytic continuation: after the continuum limit has been taken, a short-distance singularity can in principle 
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be subtracted [18] and the result subsequently subjected to a well-defined analytic continuation algorithm [19], however implementing 
this in practice requires exquisite statistical precision [20], so that in the existing studies theoretically motivated ansätze have been 
employed for extracting the transport coefficient [15–17].

The issue addressed in the present paper is that of renormalization. Specifically we compute the renormalization factor for the elec-
tric field correlator at 1-loop order in lattice perturbation theory [21,22], and briefly comment on the possibilities for non-perturbative 
renormalization. With such ingredients and improved statistical precision, the current order-of-magnitude estimate [17] can hopefully be 
promoted towards a quantitative level.

The plan of this paper is the following. After defining the basic observable in sec. 2, the technical implementation of the computation 
is outlined in sec. 3. Results for individual Feynman diagrams are documented in sec. 4. The results are put together in sec. 5 for our final 
expression for the perturbative renormalization factor. We offer an outlook and comments on non-perturbative renormalization in sec. 6.

2. Basic definitions

The physical observable underlying our considerations is the 2-point correlator of the time derivatives of the spatial components of the 
conserved vector current, evaluated in an ensemble at a finite temperature T . After taking the heavy quark-mass limit [12], the correlator 
reduces to the 2-point function of coloured Lorentz forces [11].

We first define the correlator in continuum notation. Letting U (τb, τa) be a temporal Wilson line at the spatial position r ≡ 0 and 
defining colour-electric fields through

gB Ei ≡ i[D0, Di], (2.1)

where Dμ = ∂μ + igB Aμ is a covariant derivative and gB is the bare gauge coupling of a dimensionally regularized SU(Nc) gauge theory, 
the electric field correlator reads [12]

GE,cont(τ ) ≡ −1

3

3−2ε∑
i=1

〈
Re Tr

[
U (β, τ ) gB Ei(τ ,0) U (τ ,0) gB Ei(0,0)

]〉
〈
Re Tr [U (β,0)]

〉 . (2.2)

Here β ≡ 1/T denotes the inverse temperature. The global Z(Nc) symmetry of the SU(Nc) gauge theory is assumed to be spontaneously 
or explicitly broken, so that the denominator of eq. (2.2) is non-zero.

The lattice discretization of GE is not unique; we have in mind the proposal from Ref. [12] which was argued to have small discretiza-
tion effects, viz.

, (2.3)

where lines indicate parallel transporters, and a is the lattice spacing. We focus on pure SU(Nc) gauge theory in the following, setting 
Nf = 0. In this case the Z(Nc) symmetry is spontaneously broken in the high-temperature phase.

Even though the correlator is finite after coupling constant renormalization [12,23], the continuum and lattice-regularized expressions 
do differ by a finite factor in every order of perturbation theory. In the following we determine this factor at NLO, i.e. at O(αs). Nu-
merical measurement should be multiplied by this factor (cf. eq. (5.4)) in order to obtain the continuum result. If the spectral function 
(ρE,cont) corresponding to the continuum result can subsequently be extracted, then the corresponding transport coefficient is known as 
the “momentum diffusion coefficient”:

κ = lim
ω→0

2TρE,cont(ω)

ω
. (2.4)

The kinetic equilibration rate (also known as the drag coefficient ηD ) is given by

�kin = κ

2MkinT
, (2.5)

where Mkin is a so-called kinetic mass of the heavy quarks. The single factor κ yields two different kinetic equilibration rates of phe-
nomenological interest, one for the charm and another for bottom quarks. In the charm case 1/�kin could conceivably be as small as a 
few fm/c [17], which could then offer for a partial qualitative explanation for the experimentally observed hydrodynamic flow observed in 
D meson spectra after hadronization.

3. Technical outline

Denoting by Uμ(X) a link matrix which changes in gauge transformations as

Uμ(X) → G(X) Uμ(X) G−1(X + aμ̂), (3.1)

where μ̂ is a unit vector in the μ-direction, the observable of eq. (2.3) can be expressed as1

1 For convenience the imaginary time direction has been reversed with respect to eq. (2.2).
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GE,latt(τ ) = − 1

3a4

∑
i Re Tr 〈A B C D〉

Re Tr 〈P 〉 , (3.2)

where

A = U0(0)Ui(0 + a0̂) − Ui(0)U0(0 + aî), (3.3)

B = U0(0 + a0̂ + aî) · · · U0(0 + (τ − a)0̂ + aî), (3.4)

C = U0(0 + τ 0̂ + aî)U †
i (0 + (τ + a)0̂) − U †

i (0 + τ 0̂)U0(0 + τ 0̂), (3.5)

D = U0(0 + (τ + a)0̂) · · · U0(0 + (β − a)0̂), (3.6)

P = U0(0) · · · U0(0 + (β − a)0̂). (3.7)

For a perturbative analysis, the link matrices are expressed in terms of gauge potentials as

Uμ(X) = eiag0 T a Aa
μ(X), (3.8)

where g0 is the bare lattice gauge coupling and T a are Hermitean generators of SU(Nc), normalized as Tr (T a T b) = δab/2. The gauge 
potentials can be Fourier-represented as

Aa
μ(X) =

∑∫
K

Aa
μ(K )eiK ·(X+ aμ̂

2 ), (3.9)

where the sum-integration measure is as defined in eq. (A.2). We use the standard Wilson action, with well-known momentum-space 
Feynman rules (cf. Refs. [21,22]).

As mentioned before, eq. (2.3) is unambiguous only when the Z(Nc) centre symmetry is explicitly or spontaneously broken. We have 
carried out the renormalization computation at a high temperature, when the latter is the case. Even though formally justifying the use 
of the weak-coupling expansion, the finite temperature has the side effect that Matsubara zero modes play a prominent role; indeed, they 
lead to effects of O(1/a) or O(a) in many individual terms. We have verified the cancellation of these structures, which then also serves 
as a partial crosscheck of our computation.

4. Results for individual diagrams

As an illustration of the computational procedure, we give in this section results for the individual Feynman diagrams, both in di-
mensional regularization and in lattice regularization. In each case only those terms which differ in the two schemes are shown; the full 
results for dimensional regularization, including the scheme-independent parts, can be found in Ref. [23]. For simplicity the calculations 
were carried out in Feynman gauge; their sum is gauge-independent.

In the expressions below, the common sum-integration “measure”∫
�

≡ − g2CF

3

D−1∑
i=1

∑∫
K

eiknτ

K 2
(4.1)

is suppressed. Here i enumerates the spatial directions, D is the space-time dimension, and K = (kn, k) is an imaginary-time four-
momentum, with kn denoting a Matsubara frequency. The momentum variables have been so chosen that the components of K can 
be assumed small compared with the ultraviolet cutoff, i.e. |K | � 1

a , where a denotes the lattice spacing. The renormalized gauge coupling 
of the MS scheme is denoted by g2, and CF ≡ (N2

c − 1)/(2Nc).
The contributions of the different Feynman diagrams read as follows. A renormalization contribution is obtained by expressing the 

bare continuum and lattice couplings in terms of the renormalized MS coupling.2 For the lattice coupling this relation was determined in 
Ref. [24] and has been extended up to 2-loop level in Ref. [25]. For our purposes, eq. (1.1) of Ref. [25] is best re-expressed as

g2
0 = g2 + g4Nc

(4π)2

[
−4πd1(aμ̄)

Nc

]
+O(g6), (4.2)

where

−4πd1(aμ̄)

Nc
= 11

3
ln(a2μ̄2) + 1

3
− π2

(
1 + 20P1

9
+ 176P2

3
− 2

N2
c

)
, (4.3)

and μ̄ is the scale parameter of the MS scheme. The coefficients P1, P2 read

P1 ≡
∫

Q

a2

Q̃ 2
= 0.15493339023106021(1), (4.4)

P2 ≡ lim
m→0

[
ln(a2m2)

(4π)2
+

∫
Q

1

(Q̃ 2 + m2)2

]
= 0.02401318111946489(1), (4.5)

2 We find it convenient to first present the results in terms of the renormalized MS coupling g2, even though at the end of the computation g2 will be re-expressed 
through the bare lattice coupling g2

0 .
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where unspecified notation is explained in appendix A.1. In practice P2 emerges when considering the continuum limit, aK � 1, of the 
following expression [25]:∫

Q

1

Q̃ 2( ˜K − Q )2

aK�1= 1

(4π)2

(
ln

1

a2 K 2
+ 2

)
+ P2. (4.6)

We obtain (in the graphical notation used below, the circular solid line denotes the Polyakov loop to which gauge fields can attach; blobs 
are the colour-electric field operators; and wiggly lines represent gauge field propagators):

cont: (k2
n + k2

i )

{
1 − g2Nc

(4π)2

[
11

3ε

]}
,

latt: (k2
n + k2

i )

{
1 − g2Nc

(4π)2

[
11

3
ln

1

a2μ̄2
− 1

3
+ π2

(
1 + 20P1

9
+ 176P2

3
− 2

N2
c

)]}
. (4.7)

As a second set of contributions, we collect together effects originating from expanding the Wilson lines between the electric fields, or 
in the denominator, to quadratic order. Here two new constants, denoted by P3 and p1 and defined in eqs. (A.5) and (A.11), appear:

cont: finite + (k2
n + k2

i )
g2Nc

(4π)2

{
2

[
1

ε
+ ln μ̄2τ 2

]}
,

latt: finite + (k2
n + k2

i )
g2Nc

(4π)2

{
2 ln

τ 2

a2
+ π2

[
16P3 + 8p1 + 1

N2
c

(
16P1

3
− 16p1 + 1

3

)]}
+ k2

i
g2Nc

(4π)2

{
π2

[
8P1

3
− 1

6

]}
. (4.8)

The unspecified “finite” terms correspond to structures which are integrable even in the absence of an ultraviolet regulator and therefore 
agree in the two schemes; they can be extracted from the continuum results presented in Ref. [23], but are not shown here because of 
their complicated appearance.

A simple contribution, only appearing on the lattice side, concerns a “tadpole” correction to the electric fields:

latt: (k2
n + k2

i )
g2Nc

(4π)2

{
π2

[
−40P1

3
+ 16P1

N2
c

]}
. (4.9)

There are also two graphs which are finite or vanish, and therefore yield no renormalization contribution:

(4.10)

The self-energy contribution, which is in agreement with the classic self-energy computation in Ref. [26], reads:

cont: (k2
n + k2

i )
g2Nc

(4π)2

{
5

3

[
1

ε
+ ln

μ̄2

K 2

]
+ 31

9

}
,

latt: (k2
n + k2

i )
g2Nc

(4π)2

{
5

3
ln

1

a2 K 2
+ 28

9
+ π2

[
1 + 14P1

9
+ 80P2

3
− 2

N2
c

]}
. (4.11)

The remaining graphs yield:

cont: finite,

latt: finite + (k2
n + k2

i )
g2Nc

(4π)2

{
π2

[
8P1 − 8p1 − 1

12
+ 1

2

(
−16P1 + 16p1 − 1

3

)]}
, (4.12)
Nc
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cont: (k2
n + k2

i )
g2Nc

(4π)2

{
−3

[
1

ε
+ ln

μ̄2

K 2
+ 2

]}
,

latt: (k2
n + k2

i )
g2Nc

(4π)2

{
−3

[
ln

1

a2 K 2
+ 2

]
+ π2

[
17P1

3
− 48P2

]}
, (4.13)

cont: finite + k2
n

g2Nc

(4π)2

{
3

ε
+ 13

3
ln

μ̄2

K 2
− 4

3
ln

μ̄2

4k2
n

+ 14

3

}
+ k2

i
g2Nc

(4π)2

{
3

ε
+ 3 ln

μ̄2

K 2
+ 6

}
,

latt: finite + k2
n

g2Nc

(4π)2

{
13

3
ln

1

a2 K 2
− 4

3
ln

1

4a2k2
n

+ 14

3
+ π2[−3P1 + 48P2

]}

+ k2
i

g2Nc

(4π)2

{
3 ln

1

a2 K 2
+ 6 + π2

[
−17P1

3
+ 48P2

]}
. (4.14)

The last contribution turns out to be quite tedious to extract, but given its simple final appearance we refrain from dwelling on more 
details here.

5. Determination of the renormalization factor

Summing together eqs. (4.7)–(4.14) all appearances of the “three-dimensional” lattice constant p1, defined in eq. (A.11), cancel. We are 
left with

cont: k2
n

{
1 + g2Nc

(4π)2

[
finite − 4

3
ln

μ̄2

4k2
n

+ 3 ln
μ̄2

K 2
+ 2 ln(μ̄2τ 2) + 19

9

]}

+ k2
i

{
1 + g2Nc

(4π)2

[
finite + 5

3
ln

μ̄2

K 2
+ 2 ln(μ̄2τ 2) + 31

9

]}
, (5.1)

latt: k2
n

{
1 + g2Nc

(4π)2

[
finite − 4

3
ln

μ̄2

4k2
n

+ 3 ln
μ̄2

K 2
+ 2 ln(μ̄2τ 2) + 19

9

+ π2
(

− 1

12
− 10P1

3
+ 16P1

3N2
c

− 32P2 + 16P3

)]}

+ k2
i

{
1 + g2Nc

(4π)2

[
finite + 5

3
ln

μ̄2

K 2
+ 2 ln(μ̄2τ 2) + 31

9

+ π2
(

−1

4
− 10P1

3
+ 16P1

3N2
c

− 32P2 + 16P3

)]}
. (5.2)

Subtracting the two and noting that in the remaining terms the sum-integration measure in eq. (4.1) implies that we can substitute 
k2

n → D−1
D−2 (k2

n + k2
i ), k2

i → −1
D−2 (k2

n + k2
i ) with the price of inessential contact terms, we obtain (here also D → 4)

latt − cont = (k2
n + k2

i )

{
0 + g2Nc

(4π)2

[
π2

(
−10P1

3
+ 16P1

3N2
c

− 32P2 + 16P3

)]}
. (5.3)

This difference needs to be cancelled by a renormalization factor ZE in order for the lattice and continuum results to agree:

GE,cont(τ ) ≡ ZE GE,latt(τ ). (5.4)

Eq. (5.3) leads to the next-to-leading order perturbative expression for ZE:

ZE = 1 + g2Nc

16

(
10P1

3
− 16P1

3N2
c

+ 32P2 − 16P3

)
+O(g4) = 1 + 2g2CF P1

3
+O(g4). (5.5)

In the last step we made use of the non-trivial relation determined in eq. (A.10). This simple expression, obtained through a substantial 
effort, constitutes our final result.

In Ref. [15], a provisional result for ZE was given, based on a lattice HQET computation of the type in Ref. [27], concerning the 
renormalization of the spatial components of the Noether current. Our result in eq. (5.5) agrees with the part proportional to CF P1 in 
the estimate of Ref. [15], however that result has a large additional term proportional to −CF p1; this structure is the same that appears 
in connection with the mass renormalization of a static quark. We are not surprised by the difference, given that G does not directly 
E
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correlate the spatial components of the Noether current but their time derivatives. Taking time derivatives involves a specific discretization, 
which interferes with the movement of the static quark of mass correction ∼CF p1/a by a distance ∼a in the time direction. It is non-trivial 
to account for such effects, and conceivable that something got lost in the HQET estimate.

Inserting a numerical value for the coefficient P1 (cf. eq. (4.4)) and Nc = 3 for the number of colours, and using eq. (4.2) to re-express 
g2 through g2

0 , we obtain

ZE = 1 + g2
0 × 0.13771856909427574(1) +O(g4

0). (5.6)

Recalling g2
0 = 6/β0, where β0 is the bare lattice coupling, and noting that values in the range β0 ∼ 7...8 have been used in simulations 

attempting to make a continuum extrapolation [17], a rather modest ∼12% renormalization effect is found. This can be compared, for 
instance, with the renormalization factor associated with a local version of the vector current: in that case the O(g2

0) correction [28–30]
is slightly larger than ours,3 but nevertheless it dominates the full result including all O(g4

0) effects [31,32]. Therefore we may expect a 
∼5% theoretical uncertainty from effects of O(g4

0) in the present case.
Finally we note that in Ref. [17] a provisional version of eq. (5.6) was used in connection with a lattice analysis. Unfortunately that 

version contained an algebraic error, whereby the numerical value was estimated as ZE 	 1 + g2
0 ×0.079. For β0 ∼ 7...8 the difference with 

respect to eq. (5.6) is of a similar magnitude as our estimate for O(g4
0) corrections. However, given that systematic errors were estimated 

generously in Ref. [17] and that they are predominantly associated with analytic continuation from the imaginary-time correlator to a 
spectral function, the final results should not be significantly affected within their 50% uncertainties. (Note in particular that one of the 
ansätze considered in Ref. [17], denoted by 3a, left the overall normalization of the ultraviolet part of the spectral function open, which 
roughly corresponds to leaving ZE open.)

6. Conclusions and outlook

The purpose of this technical contribution has been to report on the result of a 1-loop computation in lattice perturbation theory 
for the renormalization factor defined in eq. (5.4). The result for the case that the action is discretized according to Wilson’s classic 
prescription and the observable is discretized as specified in eq. (2.3) is given in eq. (5.6). The numerical magnitude of this correction is 
rather modest, and suggests that future updates of simulations such as those in Ref. [17] can attempt approaching the continuum limit, 
once the results are multiplied by the perturbative renormalization factor that we have determined.

For a definitive lattice result, renormalization should be promoted to a non-perturbative level. One possibility for this is to make use of 
Yang–Mills gradient flow [35]: following Ref. [36], we expect that if the electric fields and Wilson lines between them are computed from 
gauge fields at a positive flow time t > 0, then the continuum limit can be taken at each t and leads to a finite regularization-independent 
result. Subsequently the limit t → 0+ needs to be taken, but this should not lead to any divergences since GE,cont is finite [12,23]. 
A program of a similar type has been suggested for the energy–momentum tensor some time ago [37,38], and numerical tests have 
been carried out in the meanwhile [39]. Recently gradient flow has also been used for defining renormalized Polyakov loop expectation 
values [40,41].

Ultimately, for physical QCD, dynamical quarks need to be included in the analysis. The discretization choices made in this context 
are of a great variety, so computations within lattice perturbation theory become cumbersome and non-universal. Therefore we have not 
embarked on the inclusion of dynamical quarks; this is probably sensible anyways only in combination with non-perturbative renormal-
ization.
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Appendix A. Technical ingredients

A.1. Basic notation

Lattice momenta are denoted by

q̃μ ≡ 2

a
sin

aqμ

2
, qμ˜ ≡ cos

aqμ

2
, (A.1)

where Q = (qn, q) and a is the lattice spacing. The sum-integration measure stands for

∑∫
Q

≡ T
∑
qn

∫ π
a

− π
a

d3q

(2π)3
, (A.2)

where the Matsubara frequencies read

qn = 2πnT = 2πn

aNτ
, n = 1, . . . , Nτ , (A.3)

3 Note however that ZV is associated with a single operator, so that in the 2-point function Z 2
V appears; the correction in this quantity is then twice as large as in our ZE, 

which concerns the full correlator.



322 C. Christensen, M. Laine / Physics Letters B 755 (2016) 316–323
with Nτ denoting the temporal extent in lattice units. In the zero-temperature limit we denote qn → q0, and the measure becomes

∫
Q

≡
∫ π

a

− π
a

dq0

2π

∫ π
a

− π
a

d3q

(2π)3
. (A.4)

In the renormalization factors we can always use zero-temperature measures, given that thermal effects are finite and independent of the 
regularization scheme.

A.2. Lattice constants

Apart from the “four-dimensional” constants P1 and P2 defined in eqs. (4.4) and (4.5) and from an analogous “three-dimensional” 
constant p1 defined in eq. (A.11), a “mixed” constant also makes an appearance in the analysis:

P3 ≡ lim
m→0

[
2 ln(a2m2)

(4π)2
+

∫
Q

1

(q̃2 + m2)(Q̃ 2 + m2)

]
, (A.5)

where q̃2 ≡ ∑3
i=1 q̃2

i and Q̃ 2 ≡ q̃2
0 + q̃2. This plays a role in the sum-integral

I(τ ) ≡
∑∫

Q

eiqnτ − 1

q̃2 Q̃ 2
, (A.6)

which in dimensional regularization reads

I(τ )|cont = − 2

(4π)2

(
1

ε
+ ln

μ̄2τ 2

4
+ 2 + 2γE

)
+

∫ ∞

0
dq

nB(q)
[
eqτ + e−qτ − 2

]
(2π)2q

+O(ε), (A.7)

where nB(q) ≡ 1/[exp(βq) − 1] is the Bose distribution. On the lattice it evaluates to

I(τ )|latt = − 2

(4π)2

(
ln

τ 2

4a2
+ 2 + 2γE

)
− P3 +

∫ ∞

0
dq

nB(q)
[
eqτ + e−qτ − 2

]
(2π)2q

+O
( a2

τ 2

)
. (A.8)

This sum-integral appears (only) in the 1st and 2nd diagrams of eq. (4.8).
Remarkably, P3 as defined in eq. (A.5) is related to the constants P1 and P2 as defined in eqs. (4.4) and (4.5). One way to see this 

is to represent the propagators as 1/� = ∫ ∞
0 dt e−t� and then to carry out the angular integrals as 

∫ π
−π

dθ
2π et cos θ = I0(t), where I0 is 

a modified Bessel function. For P2 and P3 two variables t1, t2 may be introduced for the two propagators, but we can subsequently 
substitute variables as x ≡ t1 + t2 and y ≡ t1. The expression for P3 contains the integral

∫ x

0
dy e−y I0(y) = xe−x [

I0(x) + I1(x)
]
. (A.9)

Inserting I1(x) = I ′0(x) yields

8(2P2 − P3) − P1 = 1

2

∫ ∞

0
dx e−4x I3

0(x)
[

4xI0(x) − 4xI ′0(x) − I0(x)
]

= −1

2

∫ ∞

0
dx

d

dx

[
xe−4x I4

0(x)
]

= 0. (A.10)

Apart from the coefficients P1, P2 and P3 defined in eqs. (4.4), (4.5) and (A.5), the three-dimensional lattice integral [33,34]

p1 ≡
∫

q

a

q̃2
= �2[ 1

24
]�2[11

24
]
√

3 − 1

192π3
,

∫
q

=
∫ π

a

− π
a

d3q

(2π)3
, (A.11)

also appears in the results for the individual graphs. It cancels in the sum, cf. eq. (5.2).

A.3. Frequently needed relations

There are many identities between various lattice integrals that are helpful for simplifying the computation; a collection sufficient for 
our purposes can be found in appendix B of Ref. [25]. Let us here just recall two examples that appear particularly often:

∫
Q

a4q̃2
μq̃2

ν

Q̃ 4
= P1

3
+ δμν

(
1

4
− 4P1

3

)
,

∫
q

a3q̃2
i q̃2

j

q̃4
= p1

3
+ δi j

(
1

3
− p1

)
. (A.12)
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A.4. Thermal sums

A basic thermal sum appearing is

T
∑
qn

eiqnτ

q̃2
n + ω2

= a
[
ekx + e(Nτ −k)x

]
2
[
eNτ x − 1

]
sinh x

, x = 2 asinh
aω

2
,

k

Nτ
= τ

β
. (A.13)

Methods for carrying out sums of this type were discussed in Ref. [42]. From this sum others can be obtained through the limits ω → 0
and/or τ → 0 and through the omission of the Matsubara zero mode, in which case we denote the variable by q′

n . In particular,

T
∑
q′

n

eiqnτ − 1

q̃2
n

= T τ (τ − β)

2
, (A.14)

T
∑
q′

n

1

q̃2
n

= T (β2 − a2)

12
, (A.15)

T
∑
q′

n

qn˜ eiqnτ

q̃n
= T (2τ − β)

2i
. (A.16)
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