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We show that three-dimensional General Relativity, augmented with two vector fields, allows for
a non-relativistic limit, different from the standard limit leading to Newtonian gravity, that results
into a well-defined action which is of the Chern-Simons type. We show that this three-dimensional
‘Extended Bargmann Gravity’, after coupling to matter, leads to equations of motion allowing a
wider class of background geometries than the ones that one encounters in Newtonian gravity. We
give the supersymmetric generalization of these results and point out an important application
in the context of calculating partition functions of non-relativistic field theories using localization
techniques.
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INTRODUCTION

Even though supergravity is by now four decades old
[1], non-relativistic versions of it have only been con-
structed recently, in three space-time dimensions only
[2, 3]. This is surprising in view of the fact that non-
relativistic supergravity is a natural starting point to
extend to the non-relativistic realm the numerous ap-
plications of supergravity in relativistic field theory and
holography. Constructing non-relativistic supergravity
theories is non-trivial, due to the requirement that they
obey mass (or particle number) conservation. This can
be achieved by introducing a gauge field that couples to
the mass or particle number current. The difficulty in
constructing non-relativistic supergravity lies in the fact
that mass conservation corresponds to a space-time sym-
metry, that does not have a relativistic analogue. As a
consequence, the gauge field coupling to the mass cur-
rents is a part of the non-relativistic supergravity mul-
tiplet that does not have an obvious counterpart in the
relativistic multiplet [52].

The constructions of [2, 3] incorporate mass conserva-
tion by using a differential geometric framework for non-
relativistic space-times, that is called Newton-Cartan
(NC) geometry [4–14]. In one formulation of NC geome-
try, one not only provides a space-time with a time-like
and spatial metric, but also with a gauge field that cou-
ples to the mass current. Recently, NC geometry has
found unexpected applications in holographic approaches
to describe strongly coupled condensed matter systems
[15–23] as well as in the construction of non-relativistic
effective field theories describing condensed matter mod-
els such as the Fractional Quantum Hall Effect, chiral
superfluids and simple fluids [24–29]. NC geometry has
recently also led to new insights into the structure of
Hořava-Lifshitz gravity [30]. Many of these applications
involve matter coupled to arbitrary NC backgrounds.

The theories of [2, 3] are supersymmetric extensions
of Newton-Cartan gravity [4, 5], i.e. Cartan’s reformula-
tion of Newtonian gravity in arbitrary coordinate frames,
akin to General Relativity. These NC supergravity the-
ories are, however, restrictive, in that they do not ad-
mit space-times with non-trivial spatial curvature as so-
lutions. Indeed, the field equations of NC gravity state
that the purely time-like component of the Ricci tensor is
proportional to the mass density, while all other compo-
nents are zero [53]. Backgrounds with non-trivial spatial
curvature are thus not allowed and this is equally well
true in NC supergravity, where this holds for supersym-
metric backgrounds in particular [31]. A further compli-
cation is that at present no satisfactory action principle
for NC supergravity exists.

In this letter, we will show that, at least in three di-
mensions, there exists an alternative non-relativistic su-
pergravity theory, that takes away the above mentioned
restrictions. This supergravity is the supersymmetric ex-
tension of a theory that we will call ‘Extended Bargmann
Gravity’ (EBG) and that was first considered in [32].
EBG is a Chern-Simons theory for a central extension
of the so-called Bargmann algebra that consists of the
isometries of non-relativistic flat space-times. This is
similar to how three-dimensional General Relativity can
be viewed as a Chern-Simons theory for the Poincaré al-
gebra [33, 34]. Here, we will first revisit EBG and show
how it can be obtained as a non-relativistic limit of a suit-
able generalization of the Einstein-Hilbert action. This
derivation, along with the existence of an action, makes
it easy to include matter, by building on previous re-
sults obtained in [35]. By studying matter couplings we
will show that in EBG it is possible to have non-trivial
spatial curvature when matter is present, analogously to
what happens in three-dimensional General Relativity
[36]. Next, we will show that EBG has a supersymmetric
extension, by giving a particular example of a superal-
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gebra with invariant supertrace that contains the gauge
algebra of EBG and by constructing the associated super-
Chern-Simons action.

Super-EBG is particularly relevant in view of recent
applications of relativistic matter actions coupled to off-
shell supergravity as a tool to construct supersymmet-
ric field theories on curved backgrounds [37], whose non-
perturbative behaviour can be studied using localization
techniques [38, 39]. Since super-EBG allows for super-
symmetric curved backgrounds, it can be used as a start-
ing point to extend these applications to non-relativistic
field theories.

EXTENDED BARGMANN GRAVITY

The space-time symmetry algebra of EBG consists of
the generators of time translationsH , spatial translations
Pa (with a = 1, 2), spatial rotations J , Galilean boosts
Ga, a central charge M , corresponding to particle mass
as well as a second central charge S [40–43]. The gener-
ators H , Pa, J , Ga and M form the so-called Bargmann
algebra and the inclusion of S leads to what we will refer
to as the ‘extended Bargmann algebra’ whose non-zero
commutation relations are given by

[H,Ga] = −ǫabPb , [J,Ga] = −ǫabGb ,

[J, Pa] = −ǫabPb , [Ga, Gb] = ǫabS ,

[Ga, Pb] = ǫabM . (1)

Unlike the Bargmann algebra, the extended Bargmann
algebra can be equipped with a non-degenerate, invariant
bilinear form or ‘trace’, given by [32]

< Ga, Pb >= δab , < H, S >=< M,J >= −1 . (2)

The action of EBG is given by the Chern-Simons action
for the gauge algebra (1)

S =
k

4π

∫

< A ∧ dA+
2

3
A ∧ A ∧ A > , (3)

where k is the Chern-Simons coupling constant and the
gauge field A = Aµdx

µ is given by

Aµ = τµH+eµ
a Pa+ωµ J+ωµ

aGa+mµM+sµ S . (4)

Explicitly, one finds the following action for EBG [32][54]

S =
k

4π

∫

d3x
(

ǫµνρeµ
aRνρ(Ga)− ǫµνρmµRνρ(J)

− ǫµνρτµRνρ(S)
)

, (5)

where here and in the following we have used the curva-
tures

Rµν(H) = 2∂[µτν] ,

Rµν(P
a) = 2∂[µeν]

a + 2ǫabω[µeν]b − 2ǫabω[µbτν] ,

Rµν(J) = 2∂[µων] ,

Rµν(G
a) = 2∂[µων]

a + 2ǫabω[µων]b ,

Rµν(M) = 2∂[µmν] + 2ǫabω[µaeν]b ,

Rµν(S) = 2∂[µsν] + ǫabω[µaων]b . (6)

These curvatures are covariant with respect to the local
H , Pa, J , Ga, M and S transformations of τµ, eµ

a, mµ,
ωµ, ωµ

a and sµ, that are found from the gauge algebra (1)
following the usual rules of gauge theory. Note that the
fields τµ, eµ

a, ωµ, ωµ
a and mµ also appear in the formu-

lation of NC gravity obtained by gauging the Bargmann
algebra. As in that case, τµ and eµ

a can be interpreted
as Vielbeine [55] for two degenerate time-like and spatial
metrics, respectively. The field sµ is not present in NC
gravity and is specific to EBG. We note that the equa-
tions of motion for sµ, ωµ and ωµ

a lead to the curvature
constraints

Rµν(H) = 0 , Rµν(P
a) = 0 , Rµν(M) = 0 , (7)

that are usually imposed by hand in NC gravity. As in
NC gravity, these equations imply that EBG is defined
on non-relativistic space-times with torsionless NC ge-
ometry. The first equation implies that the space-time
can be foliated in an absolute time direction, while the
last two equations can be used to express ωµ and ωµ

a in
terms of τµ, eµ

a and mµ. Following NC gravity, ωµ and
ωµ

a can be seen as appropriate non-relativistic versions
of the relativistic spin connection.

The EBG action (5) can be obtained as the non-
relativistic limit of a suitable extension of the three-
dimensional Einstein-Hilbert action. In order to show
this, we extend the procedure developed in [44], that al-
lows one to obtain the equations of motion of NC gravity
from Einstein’s equations. As a starting point, we take
the following Einstein-Hilbert action for the relativistic
Vielbein Eµ

A and spin connection Ωµ
AB, written as a

Chern-Simons action, plus a Chern-Simons action for two
abelian gauge fields Z1µ and Z2µ:

S =
kω

4π

∫

d3x
(

ǫµνρ Eµ
ARνρ(JA) + 2 ǫµνρ Z1µ ∂νZ2ρ

)

,

(8)
where the Riemann tensor Rµν(J

A) reads

Rµν(J
A) = 2∂[µΩν]

A − ǫABCΩ[µBΩν]C . (9)

Extending the particle-limit procedure of [44], mimicking
the Inönü-Wigner contraction of the underlying Poincaré
⊗ U(1)2 gauge algebra, we express the relativistic gauge
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fields Eµ
A, Ωµ

A, Z1µ, Z2µ in terms of the non-relativistic
fields τµ, eµ

a, ωµ
a, ωµ,mµ, sµ as follows:

Eµ
0 = ω τµ +

1

2ω
mµ , Z1µ = ω τµ −

1

2ω
mµ ,

Ωµ
0 = ωµ +

1

2ω2
sµ , Z2µ = ωµ −

1

2ω2
sµ ,

Eµ
a = eµ

a , Ωµ
a =

1

ω
ωµ

a . (10)

Using these expressions in the action (8) and taking the
limit ω → ∞ [56] it is straightforward to show that the
EBG action (5) is obtained.
In the next section we will show that EBG and NC

gravity are different theories by comparing the coupling
to matter.

MATTER COUPLING

Introducing matter couplings in EBG can be done by
adding one of the matter Lagrangians on arbitrary tor-
sionless NC backgrounds constructed in [35]:

S =
k

4π

∫

d3x
(

ǫµνρeµ
aRνρ(Ga)− ǫµνρτµRνρ(S)

− ǫµνρmµRνρ(J)
)

+

∫

d3x eLm . (11)

Here e = det(τµ, eµ
a) denotes the volume element. Since

any matter couplings to the sµ gauge field change the
foliation constraint Rµν(H) = 0, we do not consider such
couplings so that we can stay within the framework of
torsionless NC geometry.
Defining the energy current tµ, the momentum current

tµa and the particle number current jµ by

tµ =
1

e

δ

δτµ
(eLm) , tµa =

1

e

δ

δeµa
(eLm) ,

jµ =
1

e

δ

δmµ

(eLm) , (12)

the equations of motion stemming from the action (11)
take the form

e−1ǫµνρRνρ(S) =
4π

k
tµ , e−1ǫµνρRνρ(J) =

4π

k
jµ ,

e−1ǫµνρRνρ(Ga) = −
4π

k
tµa . (13)

Since the curvatures in these equations obey Bianchi
identities, the currents obey various identities for con-
sistency. We distinguish between Bianchi identities ‘of
the first kind’ and ‘of the second kind’. The identities of
the first kind follow from the fact that the equations

Rµν(P
a) = 0 , Rµν(M) = 0 (14)

are identically satisfied, once one views the spin con-
nections ωµ and ωµ

a as dependent on τµ, eµ
a and mµ.

Substituting equations (14) into the Bianchi identities
D[µRνρ](P

a) = 0 and D[µRνρ](M) = 0 leads to the fol-
lowing Bianchi identities of the first kind:

R[µν(J) eρ]
a = R[µν(G

a) τρ] , ǫabR[µν(Ga) eρ]b = 0 .
(15)

The remaining Bianchi identities, called of the second
kind, are not algebraic in the curvatures and are given
by

D[µRνρ](G
a) = 0 , ∂[µRνρ](J) = 0 , D[µRνρ](S) = 0 .

(16)
Combining the equations of motion (13) with the Bianchi
identities of the first kind (15) leads to the following al-
gebraic consistency conditions

eµ
ajµ = −τµt

µ
a , eµ

[at|µ|b] = 0 . (17)

The Bianchi identities of the second kind on the other
hand lead to the following current conservation condi-
tions:

Dµt
µ = 0 , Dµt

µ
a = 0 , Dµj

µ = 0 . (18)

The EBG equations of motion (13) are strikingly dif-
ferent from the NC gravity ones. Using the identity

Rσ
ρµν = ǫabRµν(J)e

σ
aeρb − ǫabRµν(Gb)e

σ
aτρ (19)

it follows from the equations of motion (13) that the
purely time-like component of the Ricci tensor Rµν =
Rρ

µρν is given by τµτνRµν ∝ eµ
a tµa. This is unlike NC

gravity, where one rather has τµτνRµν ∝ j0 [57]. Fur-
thermore, in NC gravity only this purely time-like com-
ponent of the Ricci tensor is non-zero. This is in con-
trast with EBG where matter sources all components of
the Riemann tensor. As a result, three-dimensional EBG
admits backgrounds with non-trivial curvature whenever
matter is present.

EXTENDED BARGMANN SUPERGRAVITY

To construct a supersymmetric extension of EBG one
needs to find a superalgebra with a ‘supertrace’ that con-
tains the extended Bargmann algebra (1) as a subalgebra.
By trial and error we have found that the Bargmann al-
gebra (1) can be extended, not necessarily uniquely, with
three fermionic generators Q+, Q− and R that are all
Majorana spinors. The latter generator is reminiscent
to the fermionic generator introduced in [45, 46]. Apart
from the commutation relations given in (1), this super-
algebra has the following non-zero (anti-)commutation
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relations:

[J,Q±] = −
1

2
γ0Q

± , [J,R] = −
1

2
γ0R ,

[Ga, Q
+] = −

1

2
γaQ

− , [Ga, Q
−] = −

1

2
γaR ,

[S,Q+] = −
1

2
γ0R , {Q+

α , Q
+
β } = (γ0C

−1)αβH ,

{Q+
α , Q

−
β } = −(γaC−1)αβPa , {Q

−
α , Q

−
β } = (γ0C

−1)αβM ,

{Q+
α , Rβ} = (γ0C

−1)αβM . (20)

The invariant supertrace on this algebra is given by (2),
extended with

< Q+
α , Rβ >= 2(C−1)αβ , < Q−

α , Q
−
β >= 2(C−1)αβ .

(21)
Introducing the gauge field

Aµ = τµH + eµ
aPa + ωµJ + ωµ

aGa +mµM + sµS

+ ψ̄+
µQ

+ + ψ̄−
µQ

− + ρ̄µR , (22)

the Chern-Simons action for the superalgebra (20) is
given by

S =
k

4π

∫

d3x
(

ǫµνρeµ
aRνρ(Ga)− ǫµνρmµRνρ(J)

− ǫµνρτµRνρ(S) + ǫµνρψ̄+
µ ρ̂νρ + ǫµνρρ̄µψ̂

+
νρ

+ ǫµνρψ̄−
µ ψ̂

−
νρ

)

, (23)

where the supercovariant curvatures are given by

ψ̂+
µν = 2∂[µψ

+
ν] + ω[µγ0ψ

+
ν] ,

ψ̂−
µν = 2∂[µψ

−
ν] + ω[µγ0ψ

−
ν] + ω[µ

aγaψ
+
ν] ,

ρ̂µν = 2∂[µρν] + ω[µγ0ρν] + ω[µ
aγaψ

−
ν] + s[µγ0ψ

+
ν] . (24)

These curvatures transform covariantly with respect to
the supersymmetry transformation rules

δτµ = −ǭ+γ0ψ
+
µ ,

δeµ
a = ǭ+γaψ−

µ + ǭ−γaψ+
µ ,

δmµ = −ǭ−γ0ψ
−
µ − ǭ+γ0ρµ − η̄γ0ψ

+
µ ,

δψ+
µ = ∂µǫ

+ +
1

2
ωµγ0ǫ

+ ,

δψ−
µ = ∂µǫ

− +
1

2
ωµγ0ǫ

− +
1

2
ωµ

aγaǫ
+ ,

δρµ = ∂µη +
1

2
ωµγ0η +

1

2
ωµ

aγaǫ
− +

1

2
sµγ0ǫ

+ , (25)

where ǫ± and η are the parameters of the local Q± and
R transformations, respectively.
The action (23) shows that there exists at least one ex-

tended Bargmann supergravity theory in three spacetime
dimensions that is different from the NC supergravity
theory constructed in [2, 3].

OUTLOOK

The work presented here serves as a starting point for
various further studies. First of all, it would be inter-
esting to see whether a cosmological constant can be
included and whether extensions of the so-called super-
Newton-Hooke algebra can be found that admit an in-
variant supertrace. Secondly, it would be interesting to
see whether matter couplings exist that involve the vector
field sµ since this would automatically lead to a torsion-
full NC geometry.
Extended Bargmann Gravity will be useful to ex-

plore various aspects of holography in the non-relativistic
limit. Defining a solution space of EBG that obeys
appropriate boundary conditions could serve as a rep-
resentation space for a potentially infinite-dimensional
asymptotic symmetry algebra. Since EBG is the non-
relativistic analogue of Einstein gravity in flat space-time,
such an asymptotic symmetry algebra would be the non-
relativistic version of the BMS algebra. As such, EBG
can be used to study aspects of flat space holography in
the non-relativistic limit. Furthermore, it would be in-
teresting to see whether a higher spin version of EBG
corresponding to the non-relativistic limit of [47] can be
constructed. This could be used to explore the non-
relativistic limit of higher spin holography in flat space-
times.
The superalgebra that we presented in this letter has

not been derived as an Inönü-Wigner contraction of a rel-
ativistic superalgebra. It remains to be seen whether this
is possible and whether different superalgebra extensions
of (1) with invariant supertrace exist. In order to con-
struct matter-coupled supergravity extensions of EBG, it
would be useful to study supermultiplet representations
of the underlying superalgebra. The supersymmetric ex-
tension of matter coupled EBG will lead to new opportu-
nities for constructing non-relativistic supersymmetry in
non-trivial backgrounds and as such will have important
applications for the calculation of non-relativistic parti-
tion functions using localization techniques [38, 39].
Upon the completion of this work we were informed

by Jelle Hartong and Niels Obers that the EBG ac-
tion (5) can be identified as a particular kinetic term
of three-dimensional Hořava-Lifshitz gravity [48]. Us-
ing this interpretation our results are relevant for the
construction of the supersymmetric extension of three-
dimensional Hořava-Lifshitz gravity.
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non-relativistic limit.
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∗) while the case of
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