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Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the
jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet
processes in effective field theory, we find that in addition to soft and collinear fields their description
requires degrees of freedom which are simultaneously soft and collinear to the jets. These collinear-
soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line
structure of the associated operators at higher orders. Our effective field theory provides, for the
first time, a factorization formula for a cone-jet process, which fully separates the physics at different
energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order
terms, in particular also the non-global logarithms.

I. LARGE LOGARITHMS IN JET CROSS

SECTIONS

Jet cross sections are the most important class of ob-
servables used to study high-energy processes, because
they closely mirror the underlying hard-scattering reac-
tion. They are thus well suited to study short-distance
physics and play an important role in the search for
physics beyond the standard model. Such cross sec-
tions were introduced in a seminal paper by Sterman and
Weinberg [1], who defined a dijet cross section in e+e−

collisions by requiring that for jet events all energy must
be inside oppositely directed narrow cones of half-angle δ,
except for a small fraction β/2 of the center-of-mass en-
ergy Q. They computed the corresponding cross section
as

σ(β, δ)

σ0
= 1 +

αsCF

4π
(−16 ln δ lnβ − 12 ln δ + c0) , (1)

where σ0 is the Born-level cross section, αs ≡ αs(µ) is the
strong coupling constant, and c0 is a constant. Jet cross
sections must include soft and collinear radiation to be
infrared finite, but (1) shows that there are two related
problems affecting them: (i) higher-order corrections are
enhanced by logarithms of δ and β, (ii) the appropri-
ate value for the renormalization scale is unclear: should
one choose µ = Q, Qδ, Qβ or Qβδ ? These difficulties
are present in any perturbative computation of a multi-
scale problem and the standard solution is to factorize the
physics associated with the disparate scales. Once this
has been achieved, one can compute each contribution at
the appropriate scale and then use evolution equations to
resum the large logarithms to all orders. Such resumma-
tions have been performed for many collider observables
(see [2] for a recent review), but factorization and resum-
mation for jet observables has remained an important
open problem. In this letter, we will, for the first time,
obtain a factorization theorem which achieves full scale
separation for a jet cross section.
A convenient method to separate the physics asoc-

ciated with different scales is to use low-energy effective
field theories. Soft-Collinear Effective Theory (SCET)

[3–5] has been successfully applied to perform resumma-
tions of collider obervables [6], but it has proven diffi-
cult to apply this framework to jet processes. An im-
portant stumbling block is that for such processes the
usual factorization of cross sections into jet and soft func-
tions is insufficient to achieve a complete scale separa-
tion, since the relevant soft functions suffer from large
logarithms themselves. These so-called non-global log-
arithms (NGLs) [7] arise when the soft radiation is not
distributed evenly. This is the case for all observables
involving hard phase-space cuts and also for all jet cross
sections, because they are insensitive to soft radiation in
the jet direction. For the jets defined in [1], NGLs arise
because only a small amount of radiation is allowed out-
side the jets, but no restriction is imposed on the radia-
tion inside. NGLs have been computed at two [7–11] and
more loops [4, 13], and methods for their resummation at
the leading-logarithmic level exist [7, 14–17]. However,
a fully factorized form of jet cross sections has not been
available, despite recent progress towards this goal [18].
Recently, an approximate method for computing non-
global observables based on an expansion in the num-
ber of sub-jets was proposed [19], but it remains unclear
whether there is a parametric suppression of higher-order
terms in this expansion. Apart from this, the resumma-
tion of NGLs has not been addressed within SCET. In
this letter we construct an effective field theory which
factorizes such cross sections and allows for the resum-
mation of NGLs with renormalization-group (RG) meth-
ods. This result opens the door for higher-logarithmic
resummations for a wide class of observables. Given the
prevalence of jet observables at the LHC there are many
potential applications for our approach.

II. MOMENTUM REGIONS IN CONE-JET

PROCESSES

For concreteness and simplicity, we follow [1] and con-
sider the process e+e− → 2 jets. We use the thrust axis ~n
as the jet axis and define two light-like vectors nµ = (1, ~n)
and n̄µ = (1,−~n) along the jets. Using these vectors, we
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can rewrite any four-momentum in terms of its light-cone
and perpendicular components. We use the thrust axis
to split the event in two hemispheres and call particles
with n · p < n̄ · p right-moving. They are considered part
of the right jet if n ·p < δ2 n̄ ·p. For small values of δ this
is equivalent to θ < 2δ, where θ is the angle of a given
particle with respect to the thrust axis. To define the
jet cross section, we impose that the total energy outside
the left and right jets fulfils the condition 2Eout < Qβ
with β ≪ 1. Except for the choice of the jet axis, our
definitions are identical to the ones used in [1]. Taking
the thrust vector as the jet axis leads to a simpler form of
the phase-space constraints and enables us to use existing
two-loop results for the cone-jet soft function obtained in
[10, 11].
As a starting point for the analysis of a multi-scale

problem one needs to identify the configurations in mo-
mentum space (called “regions”) which give non-zero
contributions to the observable under consideration [20].
For a systematic effective field-theory treatment one then
associates separate degrees of freedom (called “momen-
tum modes”) with these regions. Given the phase-space
constraints in place, it is evident that momentum modes
with scalings (n · p, n̄ · p, p⊥)

collinear: pc ∼ Q (δ2, 1, δ) , pc̄ ∼ Q (1, δ2, δ)

soft: ps ∼ Q (β, β, β)

are needed to describe the dynamics at small values of
β and δ. We restrict ourselves to the case β ≪ δ to
avoid that collinear particles recoil against soft ones. To
achieve this one can choose β ∼ δ2, in which case the soft
modes become the standard ultra-soft modes of SCETI .
In principle, these soft and collinear modes are suffi-

cient to describe the jet cross section, as was shown for
Sterman-Weinberg jets at one-loop order in [21]. How-
ever, the soft function contains large logarithms of δ and
β, which cannot be avoided by any choice of µ. Such a
treatment can therefore not achieve the goal of resum-
ming the large logarithms in the cross section. We find
that this problem arises because the soft function receives
contributions from two different, hierarchical scales Qβ
and Qδβ, while a proper effective field theory should sep-
arate the physics at these two scales. A related problem
is that the jet functions need non-trivial (“zero-bin”) sub-
tractions to avoid double counting. We argue that this
soft-collinear overlap region contains nontrivial physics,
which should be factorized.
To avoid the presence of multiple scales in individual

functions it is necessary to perform a strict multipole
expansion in the effective theory: all power-suppressed
contributions must be expanded away, including those in

the phase-space constraints. After this expansion, the
collinear particles are always inside the jet, since they
have parametrically large energy n̄ · pc ∼ Q ≫ Qβ. Like-
wise, the soft particles are always outside the cone, since
they generically have large angle n ·ps/n̄ ·ps ∼ 1 ≫ δ2. It
is physically clear that there also must be contributions
which involve both small energy and small angle. Indeed,

we find that particles which are simultaneously collinear
and soft (in short “coft”, subscript “t”)

coft: pt ∼ Qβ (δ2, 1, δ) , pt̄ ∼ Qβ (1, δ2, δ)

do give leading contributions to the cross section. Soft-
collinear modes have arisen in other contexts in SCET,
see e.g. [19, 22, 23]. However, the fact that all compo-
nents of the coft mode are smaller than the corresponding
collinear ones is new and gives rise to fundamentally dif-
ferent interactions. Coft modes can be emitted inside or
outside a jet and their natural scale is

√
p2t ∼ Qδβ, which

is much lower than both the collinear scale Qδ and the
soft scale Qβ. The physical relevance of this scale is an
important new result of our analysis.

After expanding the phase-space constraint in the dif-
ferent momentum regions (see supplemental material), it
is a simple exercise to verify that one reproduces the one-
loop cone-jet rate by expanding the dijet cross section
in the above momentum regions, performing the phase-
space integrals in each region, and adding up the result-
ing contributions. Integrating over the gluon phase space
we find for the one-loop corrections from the different sec-
tors:

∆σh =
αsCF

4π
σ0

(
µ

Q

)2ǫ (
−

4

ǫ2
−

6

ǫ
− 16 +

7π2

3

)

∆σc+c̄ =
αsCF

4π
σ0

(
µ

Qδ

)2ǫ (
4

ǫ2
+

6

ǫ
+ 16−

5π2

3
+ c0

)

∆σs =
αsCF

4π
σ0

(
µ

Qβ

)2ǫ(
4

ǫ2
− π2

)

∆σt+t̄ =
αsCF

4π
σ0

(
µ

Qδβ

)2ǫ(
−

4

ǫ2
+

π2

3

)
(2)

where d = 4− 2ǫ. In the sum of the above contributions
the divergences cancel and we reproduce the full QCD
result given in (1), with c0 = −2 + 12 ln 2 for thrust-
axis cone jets (the original Sterman-Weinberg jets have
c0 = 10 − 4π2/3). Our collinear result is the same as
the zero-bin subtracted collinear contribution obtained
in [21], and the sum of our soft and coft contributions
is equal to the soft result in this reference. Importantly,
however, our result systematically disentangles the differ-
ent scales, and our computations are much simpler be-
cause the multi-pole expansion simplifies the phase-space
constraints and makes subtractions of overlap contribu-
tions unnecessary.

Given the above result, one expects that the cross sec-
tion can be factorized into a product of a hard function,
jet functions, and a convolution of soft and coft functions.
On a basic level this is true, but the interplay between
coft and collinear partons leads to a highly non-trivial
structure of the corresponding factorization formula.
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III. FACTORIZATION OF THE CROSS

SECTION

At first sight, the factorization of collinear and coft
contributions seems to be a trivial matter. Since every
single momentum component of a coft field is smaller
than the corresponding component of a collinear field,
we can treat coft modes as submodes of collinear fields.
In other words, we can construct the relevant effec-
tive Lagrangian and operators starting from the purely
collinear case and splitting the fields as φc → φc + φt.
However, because all components of the coft fields are
power suppressed compared to their collinear counter-
parts, there are no coft-collinear interactions in the La-
grangian: Lc+t = Lc + Lt. The only place where the
coft field appears is in the collinear Wilson line, which
factorizes into a product of a collinear and a coft Wilson
line, Wc → Wc U(n̄). The quantity U(n̄) is defined ex-
actly as Wc but with the coft gluon field instead of the
collinear one. Since we will encounter coft Wilson lines
along different directions, we have explicitly included the
vector n̄ as an argument.
An important second source of coft-collinear interac-

tions arises from on-shell collinear particles in the fi-
nal state. For a coft particle with momentum k, emit-
ted from a generic collinear particle with momentum
p1, we would approximate the propagator denominator
before the emission as (p1 + k)2 → p21. As discussed
above, coft emissions from generic collinear particles are
a power-suppressed effect. However, if the virtuality of
the collinear quark is zero, the leading contribution is ob-
tained from (p1 + k)2 → 2p1 · k. Computing the relevant
amplitude, one finds that it is equal to the gluon emis-
sion from a coft Wilson line U(n1) along the direction
nµ
1 = 2pµ1/n̄ · p1 of the collinear final-state particle. Re-

peating the computation with two gluons, we find that
the corresponding matrix element is indeed the two-gluon
matrix element of the same operator.
For a single collinear quark in the final state nµ

1 = nµ,
and the coft function is given by two Wilson lines, as
would be the case for soft emissions. To see the physics
difference between soft and coft modes one needs to con-
sider the case with several collinear particles inside the
jet. Doing so, one finds that every collinear final-state
particle gets dressed by a coft Wilson line. In color-space
notation [5], the coft emissions in the presence of a final
state with m collinear particles can be obtained by taking
the matrix element of the operator

U0(n̄)U1(n1) . . .Um(nm)|Mm(p0; {p})〉 , (3)

where |Mm〉 is the amplitude for the collinear quark field
with momentum p0 ≈ Qn/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-

FIG. 1. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 1.
To write down a factorized form of the cross section

based on the result (3), we first perform a Laplace trans-
formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0

dβ e−β/(τeγE ) dσ

dβ
. (4)

This is convenient, since the energy emitted outside the
cones is shared among the soft and coft degrees of free-
dom. The Laplace transformation factorizes the corre-
sponding phase-space constraint. Since the cone con-
straint acts on the individual partons, it trivially factor-
izes. In Laplace space we then obtain the factorization
formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(5)
for the jet cross section, where the angle brackets de-
note the color trace 〈M〉 = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (3). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (5) takes into account the identi-
cal contributions of the left and right cone jets. Relation
(5) is our most important result, as it is the first com-
plete factorization formula for a cone-jet cross section.
Its structure implies that simpler formulas with only one
soft Wilson line per jet (see e.g. [21, 25]) do not hold
beyond one-loop order. H(Q) is the familiar hard func-
tion for two-jet processes. The soft function S(Qβ) is
the squared matrix element of two Wilson lines along
the jet directions, with a constraint on the energy but
no angle constraint, as explained earlier. The same soft
function arises in threshold resummation for Drell-Yan
production, up to the fact that the Wilson lines are now
outgoing. This does not change the perturbative result,
which at two loops was obtained in [3, 26].
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The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
〈0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt〉

× 〈Xt|U0(n̄) . . .Um(nm)|0〉 δ(Qβ − n̄ · pXout

t
) , (6)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) = 2(2π)d−1

m∏

i=1

∫
dEi E

d−3
i

2(2π)d−1
θ
(
δ2−

n · pi
n̄ · pi

)

× δ(Q − n̄ · pXc
) δd−2(p⊥Xc

)
∑

spins

|Mm〉〈Mm| . (7)

The jet functions suffer from singularities when particles
become soft and collinear and are therefore distribution-
valued in the angles formed by the vectors n, n̄ and ni.
We have derived all ingredients needed to evaluate the

factorization formula (5) at two-loop order. This provides
a highly nontrivial consistency check of our framework,
since the individual contributions diverge as strongly as
1/ǫ4 for ǫ → 0 and scale differently, cf. (2). These diver-
gences cancel in the final result, which can then be com-
pared to numerical results obtained by running a fixed-
order event generator such as Event2 [5] at small values
of β and δ, finding complete agreement [6]. For complete-
ness, we supply the explicit two-loop expressions for all
relevant functions as supplemental material.

IV. RENORMALIZATION AND

RESUMMATION

The factorization formula (5) achieves a complete scale
separation. Once the individual functions have been
renormalized one can evaluate each ingredient at its nat-
ural scale and then evolve them to a common factor-
ization scale by solving RG evolution equations, thereby
resumming all large logarithms of β and δ in the cross
section. The renormalization of the hard and soft func-
tions is multiplicative and the relevant anomalous dimen-
sions are known to three-loop accuracy. The renormal-
ization of the jet functions, on the other hand, cannot be
multiplicative, since Jm starts at O(αm

s ) and contains
divergences. These real-emission divergences arise from
degenerate parton configurations and cancel against vir-
tual corrections present in lower-point amplitudes. This
implies that the Z factor relating the bare and renormal-
ized jet functions, defined as (summed over k ≤ m)

Jm(Qδ, ǫ) = Jk(Qδ, µ)ZJ
km(Qδ, ǫ, µ) , (8)

is an upper triangular matrix with a hierarchical struc-
ture, i.e. the off-diagonal elements are suppressed by pow-
ers Z

J
km ∼ αm−k

s . The matrix elements depend on the
directions of the partons in Jm and act on their color
indices. The jet-function renormalization factor contains
logarithmic dependence on the jet scale Qδ, as is typical
for Sudakov problems.

Having renormalized all other elements of the fac-
torization formula, one must now find that the matrix

Z
U ≡ Z

1/2
H Z

1/2
S Z

J renormalizes the coft functions, i.e.

Ũk(Qδτ, µ) = Z
U
km(Qδτ, ǫ, µ) ⊗̂ Ũm(Qδτ, ǫ) . (9)

This relation has several interesting features. First, it im-
plies that the Sudakov logarithms in the various Z factors
must conspire to produce a dependence on only the coft
scale, once ZU is applied to the coft functions. A second,
interesting feature of the matrix structure is that higher-
multiplicity coft functions enter the renormalization of
the lower ones. For example, the two-loop renormaliza-
tion of the coft function with two Wilson lines has the
form

Ũ1(µ) = Z
U
11 Ũ1(ǫ) +Z

U
12 ⊗̂ Ũ2(ǫ) +Z

U
13 ⊗̂ 1+O(α3

s) ,
(10)

where we have used the fact that Ũ3 = 1+O(αs). The
off-diagonal contributions depend on the directions of
the additional partons, and the symbol ⊗̂ indicates that
one has to integrate over these since the renormalized

function Ũ1(µ) multiplies the jet function J1(µ), which
does not depend on these additional degrees of freedom.
The renormalization condition (9) is at first sight surpris-
ing, because Wilson-line matrix elements can usually be
renormalized multiplicatively. However, we have checked
explicitly that this condition renormalizes the function

Ũ1(µ) correctly to two-loop order.
The resummation of large logarithms in the factor-

ized cross section is accomplished by evolving the var-
ious functions to a common scale. If for convenience one
chooses the jet scale as a reference, µc ∼ Qδ, one needs
the well-known solutions for the hard and soft functions
along with the solution Ũk(µc) = Ukm(µc, µt) ⊗̂ Ũm(µt)
with

U(µc, µt) = P exp

[∫ αs(µc)

αs(µt)

dα
Γ
U (α)

β(α)

]
(11)

for the coft functions, where µt ∼ Qδτ . The anomalous
dimension Γ

U is defined in the usual way in terms of the
1/ǫ pole terms in Z

U . For the resummation at leading or-
der in RG-improved perturbation theory one needs tree-
level matching conditions and one-loop anomalous di-
mensions (two-loop accuracy for the cusp part, which can
be factored out). At tree level only the jet-function J1 is
nonzero, while all Wilson-line matrix elements are triv-

ially given by Ũm = 1. To this accuracy, the anomalous-
dimension matrix only has entries in the diagonal and
above the diagonal, Vm = Γ

U
mm and Rm = Γ

U
m(m+1).

Our formalism applies for an arbitrary number of col-
ors and allows one to systematically include higher log-
arithms. A resummation at next-to-leading order would
require using one-loop matching conditions for the jet
and coft functions along with two-loop anomalous dimen-
sions (three-loop for the cusp part), in which case the jet
function J2 and the off-diagonal elements ΓU

m(m+2) con-

tribute as well. The upper triangular structure of the
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infinite-dimensional anomalous-dimension matrix Γ
U is

responsible for the intrinsic complexity of NGLs, which
prevents one from obtaining a closed analytic expression
for the evolution function (11) even at leading order.
However, when the path-ordered exponential is expanded
in a power series, one finds an iterative structure of real
emissionsRm and virtual corrections Vm resembling that
of a parton shower. It is thus likely that an approximate
numerical solution can be obtained using Monte Carlo
techniques. In [6] we will analyze the case of wide-angle
jets with δ ∼ 1 in detail. Since there are no collinear
singularities in this case, one can use the soft limit to
write down explicit expressions forRm and Vm. The cor-
responding one-loop anomalous-dimension matrix has a
close connection to the anomalous dimension governing
the functional RG equation proposed in [18]. We have
verified that in the large-Nc limit the first three terms in
the power expansion of (11) agree with the corresponding
expansion of the BMS equation [14] derived in [4].
In summary, our analysis provides, for the first time,

an all-order factorization formula (5) for a process with
NGLs and demonstrates that also this class of logarithms
can be captured using RG methods. A key element of

the factorization formula is small-angle soft radiation
and its associated physical scale Qδβ, which is para-
metrically smaller than the soft and collinear scales. A
short-distance treatment of jet processes is only possible
if Qδβ ≫ ΛQCD. The multi-Wilson-line structure of this
radiation seems to be a generic feature of such observ-
ables. In the future, it will be interesting and important
to apply our approach to other non-global observables,
in particular to jet processes at hadron colliders.
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SUPPLEMENTAL MATERIAL

Below, we give the explicit form of the expanded phase-space constraints used to obtain the result in Eq. (2) of
the main text. Furthermore, we present the explicit expressions for the ingredients of the factorization formula (5) to
O(α2

s) and give the result for the cone-jet cross section at next-to-next-to-leading order (NNLO).

A: Multipole expansion of the phase-space constraint

As stressed in the main text, to achieve scale separation it is crucial to systematically expand away power-suppressed
terms in effective-theory computations. This multipole expansion must also be applied to the phase-space measure.
In the following, we expand the phase-space measure relevant for the cone-jet cross section. Since collinear particles
have parametrically large energies, n̄ · pc ∼ Q ≫ Qβ, they can never be outside the jet. The soft particles, on the
other hand, generically have large angle n · ps/n̄ · ps ∼ 1 ≫ δ2, so that the out-of-jet constraint is always fulfilled after
the expansion. Since the method-of-regions expansion is performed on the level of the integrand, this implies that the
soft particles are regarded as outside the jet, irrespective of the angle of the actual emission. Given these scalings, we
can now write down the explicit form of the expanded phase-space constraint for the jet cross section, including the
momentum conservation δ-function. It reads

δ(Q− n̄ · pXc
) δd−2(p⊥Xc

) δ(Q − n · pXc̄
) δd−2(p⊥Xc̄

) θ(Qβ − 2EXs
− n̄ · pXout

t
− n · pXout

t̄
)

×
∏

i θ(δ
2n̄ · pic − n · pic)

∏
j θ(δ

2n · pjc̄ − n̄ · pjc̄) , (A1)

where pXc̄
is the total momentum of the collinear particles, etc. The separate constraints on the transverse momentum

in each hemisphere ensure that ~n is indeed the thrust axis, see e.g. [1]. The soft and coft momenta are not constrained
by momentum conservation, since they are parametrically smaller than the collinear momenta. The angle constraints
in the last line enforce that all collinear particles are inside the jets. As stated above, there are no angle constraints
on the soft particles. The right-moving coft particles can be inside or outside the right jet, and the energy constraint
in (A1) acts on them if they are outside the right jet. These right-moving coft particles do not see the left jet, because
after the multipole expansion they are always outside this jet.

B: Two-loop results for the bare functions

We first present the bare ingredients for the factorized NNLO cross section. We write our results in terms of the
bare coupling constant α0 = Zααs, with

Zα = 1−
αs

4π

β0

ǫ
+ . . . , and β0 =

11

3
CA −

4

3
TFnf . (B1)

Writing the hard function as a function of the logarithm L = ln Q
µ , we find [2]

Hbare(L, ǫ) = 1 +
α0CF

4π
e−2ǫL

[
−

4

ǫ2
−

6

ǫ
− 16 +

7π2

3
+ ǫ

(
−32 +

7π2

2
+

28ζ3
3

)
+ ǫ2

(
−64 +

28π2

3
+ 14ζ3 −

73π4

360

)]

+
(α0

4π

)2

e−4ǫL
(
C2

FhF + CFCAhA + CFTFnfhf

)
, (B2)

with

hF =
8

ǫ4
+

24

ǫ3
+

1

ǫ2

(
82−

28π2

3

)
+

1

ǫ

(
445

2
− 26π2 −

184ζ3
3

)
+

2303

4
− 86π2 − 172ζ3 +

137π4

45
,

hA = −
11

3ǫ3
+

1

ǫ2

(
−
166

9
+

π2

3

)
+

1

ǫ

(
−
4129

54
+

121π2

18
+ 26ζ3

)
−

89173

324
+

877π2

27
+

934ζ3
9

−
8π4

45
,

hf =
4

3ǫ3
+

56

9ǫ2
+

1

ǫ

(
706

27
−

22π2

9

)
+

7541

81
−

308π2

27
−

104ζ3
9

. (B3)
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For the Laplace transformed soft function the relevant logarithm is L = ln Qτ
µ . We have [3]

S̃bare(L, ǫ) = 1 +
α0CF

4π
e−2ǫL

(
4

ǫ2
+

π2

3
+

4ζ3
3

ǫ+
π4

40
ǫ2
)

+
(α0

4π

)2

e−4ǫL
(
C2

FWF + CFCAWA + CFTFnfWf

)
, (B4)

with

WF =
8

ǫ4
+

4π2

3ǫ2
+

16ζ3
3ǫ

+
7π4

45
,

WA =
11

3ǫ3
+

1

ǫ2

(
67

9
−

π2

3

)
+

1

ǫ

(
404

27
+

11π2

18
− 14ζ3

)
+

2428

81
+

67π2

54
+

22ζ3
9

−
π4

3
,

Wf = −
4

3ǫ3
−

20

9ǫ2
+

1

ǫ

(
−
112

27
−

2π2

9

)
−

656

81
−

10π2

27
−

8ζ3
9

. (B5)

The coft function with two Wilson lines is given by
〈
Ũ1(Qδτ, ǫ)

〉
= 1 +

α0CF

4π
e−2ǫL

(
−

2

ǫ2
−

π2

2
−

14ζ3
3

ǫ−
7π4

48
ǫ2
)

+
(α0

4π

)2

e−4ǫL
(
C2

FVF + CFCAVA + CFTFnfVf

)
, (B6)

where L = ln Qδτ
µ , and

VF =
2

ǫ4
+

π2

ǫ2
+

28ζ3
3ǫ

+
5π4

12
,

VA = −
11

6ǫ3
−

1

ǫ2

(
67

18
+

π2

6

)
+

1

ǫ

(
−
211

27
−

11π2

36
+ 3ζ3

)
−

836

81
−

1139π2

108
−

341ζ3
9

+
31π4

90
,

Vf =
2

3ǫ3
+

10

9ǫ2
+

1

ǫ

(
74

27
+

π2

9

)
−

374

81
+

109π2

27
+

124ζ3
9

. (B7)

To get this function, we have boosted to the frame where the cone covers the full right hemisphere. In this frame the
coft function is the same as the hemisphere soft function S(ωL, ωR) in the limit ωR → ∞, where the energy in the
right hemisphere can be arbitrarily large. Taking this limit generates additional singularities, so it needs to be taken
before renormalization, using the bare expressions provided in [4].

We also need the coft-collinear mixing contribution, which involves L = ln Qδ
µ + ln Qδτ

µ and reads

〈
J2(Qδ, ǫ)⊗

[
Ũ2(Qδτ, ǫ)− 1

]〉
=

(α0

4π

)2

e−2ǫL
(
C2

FMF + CFCAMA

)
, (B8)

with

MF = −
4

ǫ4
−

6

ǫ3
+

1

ǫ2

(
−14 +

2π2

3
− 12 ln2

)
+

1

ǫ

(
−26− π2 + 10ζ3 − 32 ln 2

)
+ cM,F

2 ,

MA =
2π2

3ǫ2
+

1

ǫ

(
−2 +

π2

2
+ 12ζ3 + 6 ln2 2 + 4 ln 2

)
+ cM,A

2 . (B9)

We have obtained this result from a computation of the relevant diagrams and we computed the constant terms

numerically as cM,F
2 = −128.8 and cM,A

2 = 90.53. Finally, we need the purely collinear contribution, which is obtained
as

J full
bare(L, ǫ) = 〈J1 ⊗ 1+J2 ⊗ 1+J3 ⊗ 1〉 , (B10)

with 〈J1 ⊗ 1〉 = 1, and has the form

J full
bare(L, ǫ) = 1 +

α0CF

4π
e−2ǫL

[
2

ǫ2
+

3

ǫ
+ 7−

5π2

6
+ 6 ln 2 + ǫ

(
14−

π2

4
−

44ζ3
3

+ 6 ln2 2 + 14 ln 2

)

+ ǫ2
(
28−

7π2

12
− ζ3 +

41π4

720
−

4 ln4 2

3
+ 4 ln3 2 + 14 ln2 2 +

4π2 ln2 2

3
+ 28 ln 2−

π2 ln 2

2

− 28ζ3 ln 2− 32 Li4

(1
2

))]
+
(α0

4π

)2

e−4ǫL
(
C2

F JF + CFCAJA + CFTFnfJf
)
, (B11)
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with L = ln Qδ
µ and

JF =
2

ǫ4
+

6

ǫ3
+

1

ǫ2

(
37

2
−

5π2

3
+ 12 ln 2

)
+

1

ǫ

(
191

4
− 4π2 −

22ζ3
3

+ 50 ln 2

)
+ cJ,F2 ,

JA =
11

6ǫ3
+

1

ǫ2

(
83

9
−

π2

2

)
+

1

ǫ

(
3985

108
−

139π2

36
− 21ζ3 − 6 ln2 2 + 18 ln 2

)
+ cJ,A2 ,

Jf = −
2

3ǫ3
−

28

9ǫ2
+

1

ǫ

(
−
335

27
+

11π2

9
− 8 ln 2

)
+ cJ,f2 . (B12)

Note that we did not compute the two-loop coefficients Ji directly but have inferred their divergent parts from the
requirement that the cross section is finite. We have obtained numerical values for the finite parts by comparing the
result for the cross section to numerical results obtained with the fixed-order event generator Event2 [5]. The details
of this extraction will be discussed in [6].

C: NNLO result for the cone-jet cross section

To obtain the NNLO expression for the cone-jet cross section, we now combine the bare ingredients given in the
previous section in the form

σ̃(τ) = σ0 Hbare S̃bare

〈
Ũ1 +J2 ⊗ Ũ2 +J3 ⊗ 1

〉2

. (C1)

After coupling renormalization, we obtain a finite result for the Laplace-transformed cross section σ̃(τ). The inverse
Laplace transformation is then obtained using the simple substitution rules

ln τ → lnβ , ln2 τ → ln2 β −
π2

6
. (C2)

It is conventional to choose µ = Q and write the expansion of the cross section in the form

σ(β)

σ0
= 1 +

αs

2π
A(β, δ) +

(αs

2π

)2

B(β, δ) + . . . . (C3)

The coefficient A(β, δ) was given in the main text. The two-loop coefficient B(β, δ) has the form

B(β, δ) = C2
F

[(
32 ln2 β + 48 lnβ + 18−

16π2

3

)
ln2 δ +

(
−2 + 10ζ3 − 12 ln2 2 + 4 ln 2

)
lnβ

+

(
(8− 48 ln2) lnβ +

9

2
+ 2π2 − 24ζ3 − 36 ln 2

)
ln δ + cF2

]

+ CFCA

[(
44 lnβ

3
+ 11

)
ln2 δ −

2π2

3
ln2 β +

(
8

3
−

31π2

18
− 4ζ3 − 6 ln2 2− 4 ln 2

)
lnβ

+

(
44 ln2 β

3
+

(
−
268

9
+

4π2

3

)
lnβ −

57

2
+ 12ζ3 − 22 ln 2

)
ln δ + cA2

]

+ CFTFnf

[(
−
16 lnβ

3
− 4

)
ln2 δ +

(
−
16

3
ln2 β +

80 lnβ

9
+ 10 + 8 ln 2

)
ln δ +

(
−
4

3
+

4π2

9

)
lnβ + cf2

]
.

(C4)

The quantities cF2 , c
A
2 and cf2 are directly related to the unknown constants cJ,F2 , cJ,F2 and cJ,f2 in (B12). We have

determined them numerically by running the Event2 generator at low values of δ and β. Subtracting the known
logarithmic structure exhibited in (C4), we can then fit for the numerical values of the constants and obtain

cF2 = 17.1+3.0
−4.7 , cA2 = −28.7+0.7

−1.0 , cf2 = 17.3+0.3
−9.0 . (C5)

The uncertainty on the last constant is fairly large due to numerical instabilities [6].
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