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Abstract 

During the last 25 years day-ahead electricity markets are continuously expanding and the 

amount of energy being traded through them is increasing. Moreover, there is a possibility for 

production facilities to act directly on a day-ahead market as independent market players. The 

aim of this paper is to analyse the potential for reduction of variable costs of an arbitrary 

production facility consisting of high-efficient combined heat and power (CHP), grid 

connection and production unit, thermal and products storage and photovoltaic (PV) panels. 

Costs are reduced by offsetting the expensive electricity with the use of thermal and products 

storage and optimization of power flows. Variable costs are, together with the costs of a raw 

material, directly related to input costs of energy in the form of a fossil fuel derivatives and/or 

electricity. Two hypothetical cases will be analysed: (1) production facility with installed PV 

acting as a prosumer and (2) production facility without the installed PV acting only as a 

consumer from the market point of view. Mathematical model consists of two sub-models 
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which are solved in a coupled manner: the optimization of cost-reduction by retaining the 

output product distribution and model for obtaining the day-ahead market clearing price of 

electricity. The results show that coupling of market modelling with optimization of running 

costs for an arbitrary production facility can be used for estimation of market clearing price 

and optimization of power flows within the production facility. 

Keywords: Day-ahead electricity market; Integer programming; Market clearing price; 

Renewable energy sources; Thermal storage 

Nomenclature 

A area [m2] 

e  energy [kWh] 

E  energy content in thermal storage [kWh] 

E  maximum energy content in thermal storage [kWh] 

I  integer programming variable [-] 

n  number of products [-] 

n  maximum productivity in one hour [-] 

p  price per unit energy [eur/kWh] 

P  maximum power capacity [kW] 

P  minimum power capacity [kW] 

q  energy from market players [kWh] 

X  productivity per unit of energy [n/kWh] 

  efficiency [-] 

List of subscripts 

id unit "i" of demand side 

is unit "i" of supply side 

t hour "t" 

List of superscripts 

fuel  relates to the fuel 

el,imp/exp relates to the import/export at the electricity hub 

th,CHP thermal output from CHP unit 

el,CHP electric output from CHP unit 

el  relates to electric energy flow 

el,prod  relates to electric energy demand for productivity 

th,prod  relates to thermal energy demand for productivity 

prod  relates to productivity 

prod,dem relates to products demand rate 

imp/exp relates to import/export from the market 

iter  iteration 

iter-1  previous iteration 

List of abbreviations 

CHP Combined Heat and Power 
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MCP Market Clearing Price 

MM Market Model 

PF Production Facility 

PFM Production Facility Model 

PTH Power to heat 

PV Photovoltaic 

URF Under-relaxation factor 

1. Introduction 

Due to the increase in greenhouse gas concentrations in the atmosphere, reduction of greenhouse 

gas emissions has become major technological, societal, and political imperative worldwide 

(Klemeš et al., 2010). The reduction of greenhouse gas emissions can be achieved by 

transforming fossil-oriented energy systems into more sustainable ones. The integration of 

renewable energy sources in existing energy systems has been recognised as a first step for this 

(Kostevšek et al., 2014). The penetration of various renewable energy sources in the overall 

power generation reduces the environmental impact caused by fossil fuel generation systems 

(Zare Oskouei and Sadeghi Yazdankhah, 2015). In this context, ensuring cleaner energy is also a 

milestone for cleaner production, especially for reducing the greenhouse gases emissions and 

emissions of other pollutants, which are directly related to the types and loads of the energy 

sources used (Yong et al., 2015). 

Due to increased environmental awareness, cleaner and more efficient production is gaining 

on importance in all industrial sectors (Klemeš et al., 2012). In order to achieve this aim, the 

industry players need to change the traditional ways of their production (Chofreh et al., 2014). 

They need to start acting as prosumers, meaning that they need to act as customers that can both 

produce and consume electricity (Brand et al., 2014). The prosumers additionally increases the 

complexity of the commercial relationship between utilities and entities generating energy for 

self-consumption because they can also sell their excess capacity to the utility company 

(Cardenas et al., 2014). To avoid blackouts, electricity systems require a perfect balance between 

supply and demand at all times (Ochoa and van Ackere, 2015). This has been well presented in 

the study by Ho et al. (2014). The study showed that a renewable energy based distributed 

energy generation system for a small community in Malaysia is technically feasible and 

economically viable. 

The electrical balancing in a prosumer way, that is to increase economic benefits for the 

customers, was already analysed by different authors on different type of systems. Verleden et al. 

(2011) analysed the electrical balancing for residential installations. The study showed that a self 

–efficient system can be achieved by balancing supply and demand on a local level, from which 
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benefit both the distribution grid operator and the prosumer. Alahäivälä et al. (2015) analysed the 

optimal control strategy for a residential micro-CHP system with a power sink. The study 

showed that the presence of the intermittent generation in a power system occasionally causes 

surplus in electricity production, and that in such a case, it may be profitable to use electricity for 

heat production in a micro-CHP system. Laveyne et al. (2014) analysed the load-shifting of 

electrical heat pumps, showing that the heat can be stored much more cost efficiently than 

electricity, by the load shifting ability of heat pumps. Salpakari and Lund (2016) studied the cost-

optimal and rule-based control for buildings with PV, employing a heat pump, thermal and 

electrical storage. The study showed that for a low-energy house in Southern Finland, the most 

cost-optimal measure was a PV with a thermal storage, a heat pump and a battery. Perković  et 

al. (2016) in their study showed that coupling of desalination and renewables increases the 

system stability by utilizing the brine and fresh water storage. Novosel et al. (2015a) showed that 

introduction of electric vehicles can allow larger penetration of renewables. 

Over the years, the rising cost of energy encouraged manufacturing facilities decision-makers 

to tackle the energy cost problem in different manners (Shrouf et al., 2014). The potential to 

reduce energy costs can lie in the integration of different production industries and day-ahead 

electricity markets. This energy cost reduction potential and optimal production scheduling was 

recently studied by Hadera and Harjunkoski (2013). The study showed that the steel plant 

production that is assumed to participate in a day-ahead electricity market with hourly varying 

electricity prices, may lead to significant savings in the electricity bill. Hadera et al. (2015) 

studied the process flexibility of a steel production plant.  The study show that the potential 

impact of high prices in the day-ahead markets of electricity can be mitigated by jointly 

optimizing the production schedule and the associated net electricity consumption cost. Ferruzzi 

et al. (2016) presented a decision making model for optimal bidding in the day-ahead energy 

market of a grid-connected residential microgrid, acting as an prosumer, under forecast 

uncertainty. Bidding and scheduling in electricity markets between the aggregator and the 

prosumer with the use of stochastic programming is investigated by the Ottesen et al. (2016) The 

difference between the two common control strategies, the cost-optimal and rule-based control, 

for a building-integrated PV is analysed in study of Salpakari and Lund (2016), where thermal 

storage with heat pumps and batteries performed better than the demand shift measures in cost 

reduction. This study also stressed out the importance of having grid-connected system for 

improved performance and increased flexibility of a prosumer microgrid.  
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However, when it comes to the electrical balancing of a production of any kind of a 

manufacturing facility with a day-ahead electricity market when production facility can influence 

the market clearing price, this has till now not been reported. 

 Therefore the novelty of this work is a new model that couples the calculation of 

predicted market clearing price of electricity with optimal scheduling of production with the aim 

of better resource management, cleaner production and reduction of costs. Moreover, the 

production facility can be considered as a grid-connected microgrid, having possibility of 

renewable and conventional supply, as well as thermal storage and warehouse capacity for 

offsetting the production in times of high cost of power supply and selling own surplus in the 

day-ahead market. 

1.1. Problem formulation 

 The configuration under the investigation, shown in Fig.1, is consisting of the day-

ahead electricity market and the production facility. Production facility is connected to the 

market through the interconnecting power flow cable which connects production facility to 

the grid and enables the production facility to act as a market player. One of the assumptions 

of the model is that the production facility can sell or purchase electricity only with the 

electricity market. Production facility can supply electricity from the market, CHP unit at the 

cost of fuel and PV unit at zero marginal cost. Moreover, the production facility has a strict 

hourly-based delivery schedule for the number of products that have to be delivered in each 

hour of the day, and each product requires the predefined amount of thermal and electrical 

energy. The main task of this work is to provide the coupling of the day-ahead market model 

(MM) and production facility model (PFM) with the objective for minimizing the production 

cost and maximizing the production facility income from the interplay with the MM. In order 

to offset the high price of electricity, production facility can use capabilities of thermal 

storage and warehouse (storage for products) and produce its products during the periods of 

low price of electricity or high solar irradiation, i.e. from it's own production at PV unit. There 

is also a possibility to completely bypass the CHP unit with the use of production facility's 

power-to-heat capability (PTH). In that case, all electric and thermal demand can be served 

from the PV unit and the grid connection to the electricity market that are supplying the 

electricity bus. Additional income can be gained for the production facility from selling the 

excess of electricity directly on the day-ahead market. In order to explore the influence of 

solar irradiation between the winter and summer, and to investigate the impact of PV unit has 
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on the cost reduction, four different cases have been simulated: summer and winter week, 

with and without the PV unit.  

 

 

 

Fig. 1.  Problem formulation: coupling of the market and the production facility model. 

 

 In this work it is assumed that all environmental variables, such as solar irradiation 

and demand schedule are fully known in advance, making this problem mathematically 

deterministic. 
 

2. Methodology 

2.1. Market model (MM) 

 Day-ahead electricity market aims to find a market clearing price (MCP) of electricity 

that maximizes the social welfare, i.e. the profit for market bidders: the producers (supply) 

and the consumers (demand). 
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Fig. 2. Demand and supply orders for one hour in the day-ahead electricity market. 

 

In this work a very simple model is applied for modelling of the electricity market, meaning 

that only simple hourly-based orders are taken into account and there is no market coupling 

with external markets. The model consists from two separate sub-models with the following 

objectives: 

 maximization of social welfare by finding the optimal configurations 

 finding the MCP which results in maximum social welfare within the optimal 

configuration 

 

Mathematically, the first sub-model searches for optimal configuration with binary integer 

programming. The objective function represents the maximization of social welfare for each 

hour: 
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The above equation represents the basic objective of the market model as presented in Fig. 2. 

Variables Iid and Iis represent binary decision variables and can be only zero or one. They are 

including or excluding the market bids, represented by multiple of demand/supply specific 

price p and quantity q. The only constraint in the modelling is that supply has to be larger or 

equal to demand, which allows the model to result with a small amount of surplus in supply: 
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Variables 
id

I  and 
is

I are binary integers, meaning that they can include or exclude the bids, 

represented by the multiplication of the price and quantity pairs ( p , q ), which result in the 

largest social welfare, represented by the shaded surface in Fig. 2. 

 

The second sub-model searches the optimal MCP MCP

t
p  within the optimal configuration. The 

objective function can be expressed as: 
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Inputs for market model presented in this work are price-quantity pairs for the each market 

player.  

2.2. Production facility model (PFM) 

The aim of the production facility model is to minimize the running cost of the production 

facility without violating the delivery schedule and physical constraints for each modelled 

unit within the production facility, like capacities of thermal storage, products storage, cable 

capacity towards the market and nominal power of the CHP plant. Each unit can be expressed 

by a set of simple relations that take into account only the power flows q  and the associated 

cost p . Fig. 1 shows that the production facility running cost is associated to imports of fuel 

fuelq and import/export of the power flow in exchange with the market exp/,impelq . 

  

The CHP unit gives the thermal and electrical power on the output that is directly related to 

the input fuel and the respective efficiencies: 

 

fuel

t

CHPthCHPth

t
qq ,.,            (4) 

 

fuel

t

CHPelCHPel

t
qq ,.,            (5) 

 

The electricity bus balances the electrical power flows within the production facility and 

allows no direct storage of electric energy.  
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0.exp/.,  PV

t

PTH

t

el

t

CHPel

t

impel

t
eqqqq        (6) 

 

The supply/demand from the input/output of electric energy, supply from the CHP unit and 

the PV plant is balanced with electrical demands from the production unit and power-to-heat. 

Electrical energy can be converted to heat and stored in thermal storage. This power-to-heat is 

governed by the separate power flow PTH

t
q  which also needs to be optimized, but without the 

associated cost, except the one related to the loss of energy due to efficiency related to 

converting power into heat. 

 

Thermal storage can (TS) be modelled by the inputs and outputs of power flows that have to 

satisfy the available capacity of the TS. The inputs from CHP unit and power-to-heat are 

balanced with the state from previous hour and production unit demand 
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The electric energy and the quantity of products being produced inside the production plant is 

related through the productivity per unit of energy prodelX ., : 
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t
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t
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Electric and thermal demand for production unit are directly related and thermal demand can 

be expressed as a function of electric demand: 
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Moreover, the number of units being produced cannot exceed the production unit capacity: 

 

nn prod

t
            (10) 

 

Products storage balances the inputs of newly produced products from the production facility 

and outputs of products given by the hourly schedule (demand for products). Number of 

products cannot exceed the warehouse capacity. 
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From the equations above the objective function for minimizing the PFM running cost and 

associated constraints can be derived: 
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Decision variables are hourly values of: input/output of the power flow exchanged with the 

market exp/,impel

tq , amount of power-to-heat PTH

tq  and power flow from the CHP unit fuel

tq . 

The optimization is constrained with the following constraints: 
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Equations (13) and (14) are limiting the input and output of energy in or out of the thermal 

storage. Equations (15) and (16) are limiting the input and output of products into or out of 

the warehouse. Equations (18) and (19) are balancing the electric energy on the electricity 

bus. Equation (20) and (21) are limiting the energy rate of CHP unit and PTH link to be less 

or equal to their installed capacity. The minimization problem presented in Equations (12 - 

21) can be minimized with non-linear programming. 

2.3. Coupling the MM and PFM 

Two models are coupled sequentially, meaning that they are executed independently from 

each other, but are coupled with the decision variables MCP

t
p  and exp/.,impel

t
q  in consecutive 

iterations. The MCP MCP

t
p  is output from MM and input to PFM, while exp/.,impel

t
q  is output 

from PFM and input to MM. Price at which exp/.,impel

t
q  is offered in MM also has to be 

provided. The decision variable exp/.,impel

t
q  has to be divided into two variables that serve as 

demand or supply from the MM point of view: 

 

 0,max exp/,impel

t

PF

id
qq            (22) 

 

)0,min( exp/.,impel

t

PF

is
qq            (23) 

 

Above equations state that input of electricity into the factory is seen as additional demand in 

the MM, while export of electricity in the PFM is seen as additional supply bid in the MM. 

The scheme of the coupling is given in Fig. 3. 
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Fig. 3. Coupling scheme between MM and PFM. 

 

In first iteration PF

id
q  and PF

is
q  are assumed to be equal to zero, meaning that there is no 

interaction between the PFM and the MM. Then the MM provides the MCP without the 

influence of PFM. In all consecutive iterations the MM takes into account bids and offers 

from the PFM, represented by the ( PF

id
q , PF

id
p ) and ( PF

is
q , PF

is
p ) pairs. The overall coupling 

algorithm is terminated when iteration count reaches the iteration limit number, which has to 

be set in advance. There is a possibility that convergence of results, which can be monitored 

for MCP, solution variables, or values of objective function, will not be stable, but oscillating. 

In order to reduce these oscillations, the under-relaxation of results has been introduced 

between the iterations for damping the abrupt changes in MCP: 

  1,, 1  iterMCP

t

iterMCP

t

MCP

t
pURFURFpp  

The value of under-relaxation factor in this work is set to 0.5 and the number of iterations is 

set to 20.  

2.4. Hypothetical case study setup 

A hypothetical case study is used in this work to demonstrate the applicability of the 

presented methodology. Four cases will be analysed, as presented in Table 1. 
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Table 1 Description of cases within the hypothetical case study. 

Case Week no. Installed PV unit capacity as a 

percentage of total annual 

electricity demand 

Allowed export to market 

WiPV00 1st 0% no 

WiPV50 1st 50% yes 

SuPV00 25th 0% no 

SuPV50 25th 50% yes 

 

Cases WiPV00 and SuPV00 have with zero percent of installed capacity as a percentage of 

the total electricity demand and production facility is not allowed to offer the excess of 

electricity to the market. Therefore, from the market point of view, in these cases production 

facility is only a consumer. It can still have an influence on the price of electricity via the 

demand bids. On the other hand, in the cases WiPV50 and SuPV50, production facility acts 

like a prosumer (producer and consumer) from the market point of view. In these cases the 

installed capacity of the PV unit is chosen in such way that it produces 50% of the total 

annual electricity demand of the production facility.  

 

Daily schedule for the production facility delivery is given in the following pattern: 

 

   3, 10666666333333333333666666 demprodn

 (24) 

 

The amount of power from the PV unit is directly linked to solar insolation for a given 

location and can be expressed as 

 

2,minsol

t

PVPVPV

t
eAe            (25) 

 

The insolation per square meter is obtained from the Meteonorm Software (2015), and 

corresponds to average of four Croatian major cities: Zagreb, Split, Rijeka and Osijek. The 

case study assumption is that the CHP unit runs on gas and that the price of gas is constant for 

a simulated period. The price of gas is given on the basis of energy content. All model 

parameters for the PFM are given in Table 2. 
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Table 2 Inputs for the PFM. 

Parameter Unit Value Parameter Unit Value 
fuel

t
p  [eur/kWh] 0.05 prodelX .,  [1/kWh] 0.01 

CHPth,  [-] 0.50 prodthX .,  [1/kWh] 0.02 

CHPel,  [-] 0.35 PTHp  [eur/kWh] 0.0 

PTH  [-] 0.95 exp/impP  [kW] 3 e5 

E  [kWh] hP CHPthCHP 3,  exp/impP  [kW] 5 e5 

n  [1/h] 8.0e3 CHPP  [kW] 1.00e6 

N  [-] 12.0e3 PTHP  [kW] CHPthCHPP ,  
PV  [-] 0.15 MCP

t
p  [eur/kWh] from the MM 

PVA  [m2] calculated inTS , , CHPel,  [-] 0.95 

 

From the objective function, Eq. (12), it can be seen that the cost of PTH over the direct offer 

of electricity to the market has to be defined. In this work it is defined as a cost resulting from 

the price difference between the MCP and the price of fuel needed for the same thermal input 

to thermal storage. 

fuel

tthCHP

MCP

t

PTH

t
ppp

,

1




         (26) 

 

Aggregated supply and demand by type, which serve as an inputs for the MM, are obtained 

from the simulation of Croatia's energy sector obtained in EnergyPLAN (Conolly et al., 2012) 

and downscaled to 25%, in order to enable the production facility to have comparable energy 

volumes as the rest of the energy system and to make the influence of production facility 

interplay with the market more visible. EnergyPLAN provides demand and supply by type in 

hourly resolution (Novosel et al., 2015b). The inputs are summarized in Table 3. 

 

Table 3 Inputs by type for the MM, as obtained from the EnergyPLAN. 

Supply  Demand  

Type Marginal cost 
is

p  

[eur/kWh] 

Type Offered price 
id

p  

[eur/kWh] 

Wind 0.00 Electricity 0.10 

PV 0.00 Export (fixed) 0.02 

River Hydro 0.005 Export 0.65 

Dam Hydro 0.01 Production facility 

( FM

id
q ) 

0.15 

CHP 0.055   

Power plants 0.055   

Nuclear 0.025   

Import (fixed) 0.02   
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Import 0.07   

Production facility 

( PF

is
q ) 

0.00   

 

Production facility interacts with the MM through the PF

is
q and PF

id
q . These flows have the 

associated prices of 0.0 eur/kWh for supply and 0.15 eur/kWh for the demand bids. In that 

way it is ensured that bids and offers from the production facility will be taken into account 

for calculation of MCP. The inputs for the marginal costs on the supply and the offered price 

on the demand side are chosen arbitrary, but following the logic that inputs from renewables 

have zero marginal cost. Both the marginal costs and the offered prices are not changed 

between the hours of simulation. 

3. Result and discussion 

3.1. Coupling intensity between MM and PFM 

Convergence of MCP over the iterations for four chosen hours is presented in Fig. 4. The 

convergence is clearly visible in the case of winter, and oscillation of results occur in summer 

hours. Probable cause of oscillations is non-linear dependence of MM and PFM through the 

variable pt
MCP. Oscillations are more visible in the summer hours, where significant amount of 

cheap power from the PV unit is present, and the production facility is in the producer mode 

influencing the MCP in the next iteration. Despite the oscillations, a trend of MCP 

convergence is clearly visible, meaning that in winter hours increased demand from the 

production facility increases the MCP, while in summer week in the case of SuPV50 the MCP 

drops down by half. This is valid for the daytime at noon, since during the night there is no 

PV source of exporting energy and curves for WiPV50 and WiP00 overlap. Convergence of 

the MCP varies across the hours of simulation. 
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Fig. 4. Convergence of MCP for Monday at midnight and noon for winter and summer week; 

convergence is presented as a relative change with respect to the values at the first iteration 

 

 

Coupling of the production facility (PFM) with the market (MM) model is illustrated in Table 

4, which represents the ratio between production facility electricity supply and total market 

supply, as well as the ratio between the production facility electricity demand and the total 

market demand. The last column represents the ratio between the production facility supply to 

the market and total PV produced by the production facility. It can be seen that the demand 

share of PFM on the market, the second column, varies between one third of the total demand, 

except in the summer, where this ratio drops below one quarter. The drop of the ratio in 

second column shows the influence of the PV unit on reduction of overall demand on the 

market. Consequently, MCP is also reduced, since PV unit is offered at low p. Supply share of 

PFM on the market, the first column, is visible only for the case SuPV50, where supply holds 

a share of less than 10%., enough to reduce the MCP, Fig. 5. The small share can be 

explained by the fact that majority of the power from the PV unit is used directly for the PFM 

thermal and electric supply, while only quarter of the PV unit supply has been put to the 

market.   

  

Table 4 Aggregated coupling ratio between MM and PFM. 

Case 
%100

1

sup,

1

,




T

t

MM

t

T

t

PF

tis
qq

[%] 

%100
1

,

1

,




T

t

MMdem

t

T

t

PF

tid
qq

[%] 

%100
11

, 


T

t

PV

t

T

t

PF

tis eq  

[%] 

WiPV00 0 34.21 0 

WiPV50 0 34.21 0 

SuPV00 0 33.54 0 

SuPV50 8.14 22.09 22.54 

 

Influence of the PFM on the MCP can also be estimated, since production facility in the 

prosumer mode is offering its energy, produces in the PV unit, at the zero price, thus reducing 

the MCP of the market. The magnitudes of MCP reduction are different in winter and summer 

weeks, as it can be seen in Fig. 5. 
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Fig. 5. MCP in winter and summer week. 

 

The lowering of the MCP is more visible in the summer than in the winter week, since during 

the summer there is more solar irradiation and consequently more power production from the 

PV unit. 

3.2. Influence of PV on production running costs 

Results presented in Fig. 6 show that running costs are substantially lower if PV unit is part of 

the production facility. 

 

 

Fig. 6. Relative running costs between cases 50PV and 00PV. 

 

The influence of the production from the PV unit is substantial, since in combination with 

market exchange it reduces the need for imports and enables extra income with market sales. 

The aggregated power flows for all cases is presented in Fig. 7. Comparison between the 

cases PV00 and PV50 for both the summer and winter week shows that power produced from 

the PV unit is rather used for reduction of external supply, like import from the market (qd
FM) 

and CHP unit (qel,CHP), than for direct sale to the market (qs
FM.). Aggregated demand for 

products (qel) is the same for all cases, since it does not depend on supply mix. 
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Fig. 7. Production facility electricity balance; values above the zero line are directing towards 

the bus; values below the zero line are directing away from the bus. 

 

 Fig. 8 shows running costs of the production facility, as well as sells to the market, 

expressed in monetary units. It can also be seen that net savings in production facility running 

costs is directly related to the amount of energy from the PV unit, indicating that for the 

current configuration majority of PV energy at zero marginal cost was used directly in the 

production facility, instead of being placed on the market. On the other hand, magnitude of 

savings between the cases WiPV50 and WiPV00 is lower than the ones between SuPV50 and 

SuPV00, which is directly proportional to the amount of irradiation collected by the PV unit, 

which is larger during the summer week. 

 

 

 

Fig. 8. Production facility running costs (above the zero line) and sales to the market (below 

the zero line). 



19 

 

 

The storage activity difference between the PV50 and PV00 cases is presented in Fig. 9, 

where qualitatively different behaviour between the cases can be observed. 

  

  

Fig. 9. Products and storage dynamics, PV50 vs. PV00. 

 

It can be seen that for both cases storage levels for both the thermal storage and the warehouse 

are filled from zero to 100%, emptying during the night when MCP is lower and filling in 

during the day, when MCP is higher. 

4. Conclusion 

This work presents the coupled modelling approach for optimization of production facility 

running costs and maximization of social welfare through the MCP in the market modelling. 

The hypothetical case study has been presented, in which production facility demand was a 

combination of thermal and electric with presence of PV unit and market model was based on 

electrical energy balance for Croatia obtained from EnergyPLAN. Results show that the 

methodology presented in this work can capture the interplay between the two models, 

providing an estimation on expected running costs if production facility acts on a market as 
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the prosumer or only as the consumer. It is shown that both the MCP of electricity and 

production facility running costs can be lowered if PV unit is a part of the production facility 

energy supply. Storage dynamics is also different if PV is present, meaning that both the 

thermal and products storage activity is also responsible for offsetting the higher values of 

MCP. However, convergence of the results has to be improved, since oscillations of the 

resulting MCP is present over the iterations. Oscillations are most likely a result of non-linear 

relation between the MM and the PFM and should be regulated only with under-relaxation 

factor and number of iterations. 
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Figure and Table captions 

Fig. 1. Problem formulation: coupling of the market and the production facility model. 

Fig. 2. Demand and supply orders for one hour in the day-ahead electricity market. 

Fig. 3. Coupling scheme between MM and PFM. 

Fig. 10. Convergence of MCP for Monday at midnight and noon for winter and summer 

week. 

Fig. 11. MCP in winter and summer week. 

Fig. 12. Relative running costs between cases 50PV and 00PV. 

Fig. 13. Production facility electricity balance; values above zero line are directing towards 

the bus; values below the zero line are directing away from the bus. 

Fig. 14. Production facility running costs (above the zero line) and sales to the market (below 

the zero line). 

Fig. 15. Products and storage dynamics, PV50 vs. PV00. 

 

Table 1 Description of cases within the hypothetical case study. 

Table 2 Inputs for the PFM. 

Table 3 Inputs by type for the MM, as obtained from the EnergyPLAN. 

Table 4 Aggregated coupling ratio between MM and PFM. 


