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A fast method for solving a linear
model of one-dimensional blood flow in
a viscoelastic arterial tree
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Abstract
For the purpose of optimization of the whole arterial tree, a fast method for solving of one-dimensional model of blood
flow is required. A semi-analytic transmission line method for solving a linearized one-dimensional model of blood flow
in an arterial tree with viscoelastic walls is proposed. The transmission line method that solves the linearized model in
the frequency domain and the method of characteristics that solves either linearized or non-linear one-dimensional
models in the time domain are compared regarding accuracy and computational time. For this purpose, the benchmark
problem of a 37-artery network with available experimental data is used. In the case of the linearized model, the results
from the transmission line method and the method of characteristics are practically the same. The difference between
the transmission line method solution of the linearized model and the method of characteristics solution of the
non-linear model is much smaller than the error of either method of characteristics or transmission line method
numerical solutions with respect to the experimental data. For typical applications, the transmission line method is at
least two orders of magnitude faster than the method of characteristics.
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Introduction

Lots of research has been devoted to the description of
the human arterial network by simple models. The sim-
plest are lumped (Windkessel) models, which contain a
small number of parameters and describe the heart
afterload properly.1 One-dimensional (1D) models are
popular in simulations of the pressure and flow rate
wave traveling along the arterial tree. In general, 1D
models are non-linear and they can be solved in the
time domain by various methods: finite difference,2–4

finite volume,5,6 finite element,7–10 or the method of
characteristics (MOC).11–14 It is also convenient to line-
arize 1D models and to solve them in the frequency
domain by the transmission line method (TLM). There
are two approaches in the TLMs. In the first approach,
the inertance, resistance and the compliance of each
arterial segment are concentrated into LRC elements of
an electrical analogue scheme, which is equivalent to a
Windkessel model with a number of comparte-
ments.15,16 In the second approach, the momentum and
constitutive equations (from 1D models) are integrated

over the segment length. In some TLMs,17–19 the
Womersley solution of pulsatile flow in an elastic pipe
is used, and in some TLMs, the momentum equation is
integrated either numerically20 or analytically.21–24 In
most of these methods, an elastic arterial wall is
assumed, and in the methods based on the Womersley
solution, the wall viscosity is taken into account
through the modification of the characteristic impe-
dance and the propagation constant.17–19 In case of a
tree-like structure of the arterial network, the solution
strategy in TLMs is straightforward: in the first step,
the impedance is calculated at network nodes, and in
the second step, phasors of pressure and flow rate are
calculated. The main drawback of a TLM is in solving
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Email: ivan.korade@fsb.hr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by FAMENA Repository

https://core.ac.uk/display/79434605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/0954411916688718
journals.sagepub.com/home/pih


AQ2AQ2

a reduced mathematical model in which a non-linear
convection term is neglected, and consequently, the
solution accuracy is reduced. All time domain methods
are more computationally demanding because they
require solving a discretized system of linear algebraic
equations in each integration time step and because of
the need to integrate model equations over several
heart periods to diminish the influence of initial condi-
tions. In problems including optimization of the whole
arterial tree, a fast method for solving the 1D model of
blood flow is needed, and a TLM can be a good candi-
date. The question is how much faster is a TLM than a
time domain method, and whether the accuracy of the
linearized model is acceptable in typical problems.

The goals of this article are as follows:

1. To define a TLM for solving the linearized form of
the 1D model of blood flow in an arterial tree.
With respect to existing methods, the difference is
in the wall viscoelasticity that is modeled by the
Voigt model in the same way as in the non-linear
model. Boundary conditions can be prescribed at
any node of the arterial tree, using the inertial four-
element Windkessel model;

2. To verify the developed method by comparison of
the solutions of the linearized model from the
TLM and in-house developed MOC,14 which
solves the same model in the time domain;

3. To validate the TLM in a benchmark problem
with available experimental data.7,25,26 Results
from the linearized model (obtained by the TLM)
will be compared with the measurements and with
the numerical results from the non-linear model
(obtained by the MOC);

4. To compare computational times needed to obtain
the solution by the TLM and the MOC.

Method

1D model of blood flow

A widely used 1D model of blood flow in a large artery
element with an impermeable viscoelastic wall25 reads
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where x and t are the space and the time coordinate,
respectively, A is the cross-sectional area A=(D2p)=4,
Q is the volume flow rate, v=Q=A is the averaged axial
velocity, p is the transmural pressure, r is the blood
density and f is the friction coefficient, defined by

f=
2 z +2ð Þpm

rA
ð3Þ

where m is the blood viscosity and z is the order of the
axial velocity profile.27 The constitutive equation for a
viscoelastic wall reads
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where pe is the elastic part of the transmural pressure
p, h is the viscous resistance of the wall, A0 is the
constant cross-sectional area at constant pressure p0,
CD =3A0=(4
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Ed), E is Young’s modulus and d is
the wall thickness, h=2
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is the wall viscosity. The areal compliance C=dA=dpe
is related to CD by
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The speed of sound is by definition
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When E and u are constants, the retardation time
constant t takes the form

t =hC=
u
E

ð7Þ

Equation (2) is non-linear due to a convection term
(the third term at the left-hand side) and pressure
dependent A (see the coefficient in the second term at
the left-hand side).

Linearized mathematical model

In the linearized mathematical model, the convection
term is neglected and all coefficients are approximated
by constants (using their values at average pressure).
For each arterial segment, the average pressure is

pav =
1

T

ðT
0

pdt ð8Þ

where T is the heart period. Averaged cross-sectional
area is approximated using equation (4), and by
neglecting viscous part of pressure, in the form

Aav =
ffiffiffiffiffiffi
A0

p
+CD pav � p0ð Þ

� �2
ð9Þ

Cav is calculated from equation (5) using Aav, and
hav from equation (7) using Cav. In the linearized
model, equation (2) takes the form

∂Q
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+

Aav

r
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and equation (4) is linearized in the form

p= pav +
1

Cav
A� Aavð Þ+hav

∂A

∂t
ð11Þ

Boundary conditions

When considering an arterial tree, boundary conditions
at the network inlet and outlet nodes should be
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prescribed. Here, at the inlet node, the flow rate is pre-
scribed. At the outlet nodes, the inertial four-element
Windkessel model, as depicted in Figure 1, prescribes
the outflow boundary condition. It is assumed that the
constant outflow backpressure pout (the pressure at
which the flow to the periphery ceases) can be different
from the extramural pressure which is assumed to be
zero. At junction nodes, we assume that the static pres-
sure is preserved.

TLM for solving linearized model

We consider blood flow in an arterial network of tree-
like structure. At any cross-section of the network, we
can decompose a periodic pressure and flow rate signal
into a Fourier series

p0(t)= p(t)� pout =C
p
0 +

XN
n=1

Sp
nsin nv0tð Þ

+Cp
ncos nv0tð Þ

ð12Þ

Q(t)=C
Q
0 +

XN
n=1

SQ
n sin nv0tð Þ+CQ

n cos nv0tð Þ ð13Þ

and define the impedance Z as

Zn =Z nv0ð Þ= p̂0n nv0ð Þ
Q̂n nv0ð Þ

n=0,N ð14Þ

where n is the harmonic number, N is the total number
of harmonics, v0 is the fundamental frequency

v0 =2p=T, p̂0n =Sp
n +iCp

n and Q̂n =SQ
n +iCQ

n denote
phasors of pressure and flow rate, respectively, and
i=

ffiffiffiffiffiffiffi
�1
p

.
Figure 1 shows a part of an arterial network:

segment i branching into segments j and k. Two nodes
bound each segment and the node number at the ele-
ment outlet is equal to the element number. The impe-
dances Zin and Zout are calculated at the each
element’s inlet and outlet, respectively. Outlet bound-
ary condition can be defined at any node and it is mod-
eled by the inertial four-element Windkessel model
(containing inertance LW, resistances rW and RW

and compliance CW), that is, by the impedance ZW

defined by

ZW
n = rW +ivnLW +

RW

1+ ivnCWRW
ð15Þ

where vn = nv0. At the outlet of ith element in
Figure 1, the impedance is defined by
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equation (16) holds for all harmonics (frequencies).
It follows from equation (10) that an infinitesimal

length dx of the element is modeled by inertance
Ldx0= rdx0=Aav in series with resistance
rdx0= rfdx0=Aav =2(z +2)pmdx0=A2

av. According to
equation (11), the viscoelasticity of the arterial wall is
modeled by resistance hav=dx

0 and capacitance Cavdx
0

(see Figure 1). The increase in the impedance
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By neglecting terms with dx02, the previous equation
can be rearranged into
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Integration of equation (18) along ith element, from
the element outlet (x0=0 and Zn =Zout

n (i)) to the ele-
ment inlet (x0=Dx and Zn =Zin

n (i)) gives

Zin
n ið Þ= Z0n

a
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� �
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Figure 1. Electrical analogue scheme of a part of an arterial
network consisting of three elements: i, j and k. The node
outflow condition is prescribed by the inertial four-element
Windkessel model. An infinitesimal part of arterial element is
modeled by inertance Ldx0 and resistance rdx0 , while the
constitutive equation of the arterial wall is modeled by
resistance hav=dx0 and capacitance Cavdx0 .
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By applying equations (16) and (21) to all elements
in the network (starting from the end elements and
going to the inlet element), the impedance at all element
inlets and outlets is calculated. The input impedance of
the whole arterial tree corresponds to Zout(1), where
index 1 denotes the inlet of the arterial tree. Using
Zout(1), it is possible to calculate the phasor of the inlet
flow rate from the prescribed inlet pressure or the pha-
sor of the inlet pressure from the prescribed inlet flow
rate.

According to Figure 1, we can state that the phasor
of pressure change along x is defined by

dp̂0n
dx

= � ivnL+ rð ÞQ̂n = zpnQ̂n n=0,N ð22Þ

and the change of the flow rate phasor along x is
defined by
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0
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0
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Equations (22) and (23) can be rearranged in the fol-
lowing forms:
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Equations (26) and (27) are applied to all elements,
starting from the arterial tree inlet and going to periph-
eral elements. Once the phasors of pressure and flow
rate are known, the solution in the time domain is cal-
culated according to equations (12) and (13).

Since the average pressure at each element is not
known in advance, the numerical procedure is an itera-
tive one. When the inlet pressure is prescribed, its aver-
age value is used as an initial value for all elements.
When the inlet flow rate is prescribed, the initial

average pressure is calculated as a product of average
input flow rate and total resistance (Rtot) calculated at
vn =0. The iterative procedure finishes when the
changes in average pressure from two successive itera-
tions at all elements fall below 1Pa, and for this, usu-
ally two or three iterations are needed.

MOC

Beside the described TLM, we also use the MOC,14

which solves either a non-linear model or a linearized
model in time domain. When using any time domain
method, there is need to prescribe the initial conditions
and the integration time should be sufficiently long to
achieve a periodic solution (to diminish the influence of
initial conditions).

Results

The two methods were applied to a 37-artery model of
an arterial tree25,26 with available experimental data.
Figure 2 shows a scheme of the considered arterial tree,
in which filled circles denote measurement sites with
available experimental data. All data relevant to this
problem are provided in the supplementary material.25

Data for all segments are given in Table 1. Some seg-
ments have a variable radius and the speed of sound,
and their values at pressure p0 at the segment inlet and
outlet are indicated in Table 1 by r0�in=r0�out and

Figure 2. Scheme of a 37-segment arterial tree. The segment
number is equal to the number of its end node. The node
number zero denotes the arterial tree inlet where a periodic
flow rate was prescribed. Basic data for all segments and outlet
boundary conditions that are modeled by a single resistor are
given in Table 1. Filled circles denote measurement sites.
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c0�in=c0�out, respectively. In the numerical procedure,
segments were divided into a number of elements (num-
ber of divisions for all segments are also provided in
Table 1) and r0 and c0 were defined at the midpoint of
each element. We assumed a linear variation in the
radius from the segment inlet to its outlet, and c0 is
interpolated on the assumption that c20r0 =K=const.
The constant K was calculated as a geometric mean
from the inlet and outlet data. The total number of ele-
ments was 860. The arterial wall is considered as vis-
coelastic, and the retardation time constant was 3ms
for all elements. Element lengths were in the range
from 3.63 to 13mm, the integration time step was
0.2ms and Courant number values were from 0.166 to
0.282.

At the inlet node (node 0 in Figure 2), the periodic
flow rate is prescribed by the Fourier series

containing 41 harmonics as given in Supplementary
Material.25 At the end nodes of the arterial tree a single
resistor models the outlet boundary conditions. The
values of resistance RW (see Figure 1) are reported in
Table 1. The used values of model parameters are speci-
fied in Table 2.

Table 1. Data of the 37-artery network test.

No. Arterial segment Length (m) r0�in=r0�out (mm) c0�in=c0�out (m/s) RW (GPa s/m3) No. of MOC
elements

1 Ascending aorta 0.036 14.4/13.0 5.21/5.49 – 8
2 Innominate 0.028 11.0/7.29 4.89/6.01 – 6
3 Right carotid 0.145 5.37/3.86 6.35/7.49 2.67 24
4 Right subclavian I 0.218 4.36/3.34 6.87/7.84 – 34
5 Right subclavian II 0.165 3.34/2.78 6.00/6.58 – 30
6 Right radial 0.235 2.07/2.07 7.43/7.43 3.92 36
7 Right ulnar 0.177 2.10/2.10 8.81/8.81 3.24 24
8 Aortic arch I 0.021 13.0/12.5 5.41/5.52 – 4
9 Left carotid 0.178 5.58/3.73 6.55/8.00 3.11 28
10 Aortic arch II 0.029 12.5/11.8 4.98/5.12 – 8
11 Left subclavian I 0.227 4.42/3.39 6.21/7.10 – 40
12 Left subclavian II 0.175 3.39/2.84 6.26/6.84 – 31
13 Left radial 0.245 2.07/2.07 8.84/8.84 3.74 32
14 Left ulnar 0.191 2.07/2.07 7.77/7.77 3.77 28
15 Thoracic aorta I 0.056 11.8/11.0 5.29/5.48 – 12
16 Intercostals 0.195 4.12/3.22 7.07/7.99 2.59 30
17 Thoracic aorta II 0.072 11.0/9.26 4.84/5.26 – 16
18 Celiac I 0.038 3.97/3.97 6.20/6.20 – 7
19 Celiac II 0.013 4.31/4.31 14.9/14.9 – 1
20 Splenic 0.191 1.83/1.83 7.24/7.24 3.54 30
21 Gastric 0.198 1.92/1.92 6.73/6.73 4.24 34
22 Hepatic 0.186 3.31/2.89 6.95/7.44 3.75 30
23 Abdominal aorta I 0.062 9.26/8.01 5.19/5.59 – 13
24 Left renal 0.120 2.59/2.59 7.39/7.39 3.46 19
25 Abdominal aorta II 0.007 7.90/7.90 5.83/5.83 – 1
26 Right renal 0.118 2.55/2.55 6.95/6.95 3.45 19
27 Abdominal aorta III 0.104 7.80/5.88 5.41/6.24 – 20
28 Right iliac-femoral I 0.205 3.90/3.38 6.47/6.94 – 35
29 Right iliac-femoral II 0.216 3.38/2.31 5.89/7.13 – 38
30 Right iliac-femoral III 0.206 2.31/2.10 8.04/8.44 – 29
31 Left iliac-femoral I 0.201 4.02/3.34 6.19/6.79 – 35
32 Left iliac-femoral II 0.195 3.34/2.26 6.11/7.44 – 33
33 Left iliac-femoral III 0.207 2.26/2.12 6.67/6.89 – 35
34 Right anterior tibial 0.163 1.55/1.55 8.47/8.47 5.16 22
35 Right posterior tibial 0.151 1.53/1.53 7.73/7.73 5.65 22
36 Left posterior tibial 0.149 1.58/1.58 7.23/7.23 4.59 24
37 Left anterior tibial 0.126 1.55/1.55 7.01/7.01 3.16 21

r0�in=r0�out: segment radius at the reference pressure at the segment inlet/outlet; c0�in=c0�out: speed of sound at the reference pressure at the

segment inlet/outlet; RW: resistance in the outlet boundary condition (see Figure 1).The last column denotes the number of divisions of each

segment used in the method of characteristics (MOC).

Table 2. Model parameters of the 37-artery network.

Property Value

Blood density, r (kg/m3) 1050
Blood viscosity, m (MPa s) 2.5
Initial pressure, p0 (KPa) 0
Retardation time constant, t (ms) 3
Outflow pressure, pout (Pa) 432.6
Velocity profile order, z 9

Korade et al. 5



For the purpose of comparison of two solutions, the
following errors are defined
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where superscript ‘‘ref’’ denotes a reference solution at
the considered spatial location, subscripts i and k
denote time points and Nt is the number of these points.
In all tests, the integration time in the MOC was suffi-
ciently long to achieve a periodic flow regime and errors
are calculated over the last period (the cardiac cycle).

In order to verify implementations of the TLM and
the MOC, the linearized model is solved by both meth-
ods, and in the next subsection, the obtained results are
mutually compared regarding errors as defined above.
In the TLM solution, N was 41 (corresponds to the

number of harmonics used in the definition of inlet flow
rate).

The influence of the convection term is estimated in
the second following subsection by comparison of the
results from the TLM (linearized model), the MOC
(non-linear model) and the experimental data.

Finally, the two methods are compared regarding
computational time needed to obtain numerical solu-
tion: for the TLM in the frequency domain and for the
MOC in the time domain.

Comparison of results from the TLM and the MOC in
the case of a 37-artery network model (linearized vs
linearized model)

For the purpose of method verification, the linearized
model is solved by the TLM and the MOC. Figure 3
shows the relative difference in two solutions regarding
errors defined by equations (28)–(35), in which the
TLM solution is the reference one.

Comparison of results from the TLM and the MOC in
the case of a 37-artery network model (linearized vs
non-linear model)

The described 37-artery model is solved by the MOC
using the non-linear mathematical model (see equations
(1)–(4)), and results are compared with the results of
the TLM, in which the linearized model was used.
Figure 4 shows the relative difference in the two solu-
tions regarding errors defined by equations (28)–(35),
in which the TLM solution is the reference one. Table 3
shows the errors of the two solutions with respect to
the experimental data at different positions indicated in
Figure 2.

Comparison of computational times of the TLM and
the MOC

The computational time of the MOC is nearly propor-
tional to the product of the number of elements (Nel)

Figure 3. Relative percentage errors from the linear model obtained by the method of characteristics (MOC) with respect to the
solution of transmission line method (TLM): (a) Errors in pressure: eRMS

p , eSYS
p , eDIAS

p and eMAX
p and (b) Errors in flow rate: eRMS

Q , eSYS
Q ,

eDIAS
Q and eMAX

Q . Errors defined by equations (28)–(35).
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and the number of integration time steps Nint =NtNper

(where Nt is the number of integration time steps
within one heart cycle, and Nper is the number of these
periods needed to diminish the influence of the initial
condition). The computational time needed to find the
solution in the frequency domain by the TLM is pro-
portional to the product NelN. The ratio Rt of two
computational times (the MOC computational time
over the TLM time) is proportional to Nint=N. Figure 8
shows the variation of Rt with Nint=N where circles
denote the data obtained from calculations and the line

denotes the linear fit through the data. The equation of
this linear fit is Rt =10+0:266Nint=N and the square
of the correlation coefficient (r2) of this fit is 0.997.

Discussion

Comparison of results from the TLM and the MOC
(linearized vs linearized model)

In the case when the linear model is used in both meth-
ods, the same results for pressure and flow rate are

Figure 4. Relative percentage errors of the numerical solution from the non-linear mathematical model obtained by the method of
characteristics (MOC) with respect to the solution from the linear model obtained by the transmission line method (TLM):
(a) Errors in pressure: eRMS

p , eSYS
p , eDIAS

p and eMAX
p and (b) Errors in flow rate: eRMS

Q , eSYS
Q , eDIAS

Q and eMAX
Q . Dashed arrows in the left

panel indicate positions (node numbers) of measurement sites.

Table 3. Relative percentage errors of the two numerical solutions with respect to the experimental data and relative percentage
difference in the two numerical solutions.

Arterial segment Numerical scheme eRMS
p eMAX

p eSYS
p eDIAS

p eRMS
Q eMAX

Q eSYS
Q eDIAS

Q

Aortic arch II TLM/Exp. 1.96 4.32 20.43 0.89 11.73 27.65 6.73 210.15
MOC/Exp. 1.92 4.21 20.90 0.76 11.81 28.10 7.40 29.43
MOC/TLM 0.23 0.54 20.47 20.13 0.39 1.03 0.63 0.67

Thoracic aorta II TLM/Exp. 2.93 6.17 0.27 3.30 23.66 59.88 45.80 225.88
MOC/Exp. 2.86 6.03 20.30 3.20 24.05 61.88 48.48 223.48
MOC/TLM 0.23 0.57 20.56 20.10 0.81 1.89 1.84 1.63

Left subclavian I TLM/Exp. 2.23 4.68 23.02 22.34 13.00 29.99 211.31 211.51
MOC/Exp. 2.37 4.60 23.52 22.49 13.34 31.57 29.80 29.11
MOC/TLM 0.22 0.51 20.51 20.15 1.34 3.15 1.70 2.70

Right iliac-femoral II TLM/Exp. 2.74 5.33 21.88 21.63 19.45 40.88 33.12 224.77
MOC/Exp. 3.04 6.28 22.30 21.70 21.27 50.93 40.90 217.78
MOC/TLM 0.72 1.77 20.44 20.07 3.23 7.82 5.85 5.25

Left ulnar TLM/Exp. 2.37 4.72 21.98 0.32 11.04 18.66 22.49 210.66
MOC/Exp. 2.26 4.38 22.13 0.05 11.26 18.81 21.55 210.62
MOC/TLM 0.54 1.09 20.14 20.23 0.95 2.44 0.96 0.04

Right anterior tibial TLM/Exp. 3.45 9.34 23.51 2.37 8.08 12.79 27.99 22.39
MOC/Exp. 3.21 11.28 21.35 1.94 8.32 13.49 23.30 22.63
MOC/TLM 1.56 4.43 2.24 20.42 1.96 7.02 5.10 20.26

Right ulnar TLM/Exp. 2.11 4.61 21.63 21.22 10.23 23.15 13.33 1.44
MOC/Exp. 2.32 5.05 21.85 21.53 10.42 24.42 13.82 1.15
MOC/TLM 0.39 0.73 20.22 20.32 0.56 1.23 0.43 20.26

Splenic TLM/Exp. 1.84 4.67 21.53 20.14 7.47 19.57 28.27 22.36
MOC/Exp. 1.89 4.91 21.72 20.47 7.63 19.39 27.32 22.70
MOC/TLM 0.30 0.81 20.19 0.26 0.65 2.25 1.03 20.34

TLM/Exp.: relative percentage error of the numerical solution from the linear model obtained by the transmission line method (TLM) with respect to

the experimental data (Exp.); MOC/Exp.: relative percentage error of the numerical solution from the non-linear model obtained by the method of

characteristics (MOC) with respect to the Exp.; MOC/TLM: relative percentage difference of the MOC with respect to the TLM solution.

Korade et al. 7



AQ4AQ4

expected. It is visible from Figure 3 that the relative dif-
ferences in the solutions are below 0.002% for pressure
and below 0.024% for flow rate. The fact that the
obtained solutions from two quite different methods
are nearly the same is a good indicator that both meth-
ods are properly implemented.

Comparison of results from the TLM and the MOC
(linearized vs non-linear model)

In the case of different models used in the two methods
(linearized in the TLM and non-linear in the MOC), a
certain level of discrepancy in results is expected. The
main reason for the discrepancy is the omission of the
convection term in the linearized model. Figure 4 shows
the relative difference of the MOC solution with respect
to the TLM solution at all nodes. The difference is cal-
culated according to equations (28)–(35) in which the
TLM solution is the reference one. The maximal eRMS

p

is about 2%, and at most nodes this difference is below
0.5%. The maximal eRMS

Q is 3.25%, and at most nodes
this difference is below 1.5%. The other differences
(SYS, DIAS and MAX) are a bit larger, but below 6%
for pressure and 10% for flow rate. The greatest

differences occur at the arterial tree periphery. The
applicability of the linearized model can be judged from
the results in Table 3. It can be seen that at some mea-
surement sites, the results from the linearized model
show smaller discrepancies compared to the experimen-
tal data than the results from the non-linear model. In
addition, the discrepancy between the results from the
linearized and the non-linear model are much smaller
than the discrepancy either between the MOC numeri-
cal results and experimental data or the TLM numeri-
cal results and the experimental data. This is visible in
Figures 5–7, which show the results for three selected
measurement sites chosen by the criterion of the great-
est discrepancy between results from the linearized and
the non-linear model. We can conclude that in the con-
sidered problem, the non-linear model does not show a
significant improvement over the linearized one.

Comparison of computational times of the TLM and
the MOC

The main interest in an arterial blood flow analysis is
the steady periodic flow. In the case of time domain
methods, the model is integrated from guessed initial

Figure 5. (a) Pressure and (b) flow rate at the midpoint of the Aortic arch II segment. Circles represent in vitro experimental data
(Exp.),26 dashed lines denote results from the linearized model obtained by the transmission line method (TLM) and solid lines
denote results from the non-linear model obtained by the method of characteristics (MOC).

Figure 6. (a) Pressure and (b) flow rate at the midpoint of the Right iliac-femoral II segment. Circles represent in vitro
experimental data (Exp.),26 dashed lines denote results from the linearized model obtained by the transmission line method (TLM)
and solid lines denote results from the non-linear model obtained by the method of characteristics (MOC).
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conditions, so the integration time should be suffi-
ciently long to achieve the periodic solution. When
expressed in terms of heart periods, the integration time
is NperT, where the minimal value of Nper is needed to
diminish initial conditions.Nper ranges from 10 (in the
case of a single tube) to 30 (in the case of an arterial
network). Experience shows that the pressure and flow
rate waves in an arterial tree are properly resolved in
the frequency domain by 20 harmonics. Therefore, in
the TLM, there is no need to use N greater than 40. As
shown above, the ratio of computational times needed
to obtain the solution (in the case of the MOC in the
time domain, and in the case the TLM in the frequency
domain) by the two methods is proportional to the
ratio Nint=N=NperNt=N. If we assume that the ratio
Nper=N is nearly equal to one, then Nint=N is propor-
tional to Nt. For a typical heart period of T=1s, and
a typical integration time step from 1 to 5ms, the ratio
Nint=N ranges from 200 to 1000, and according to
Figure 8, Rt ranges from 63 to 276. Therefore, in typi-
cal applications, the TLM is about two orders of mag-
nitude faster than the MOC.

Conclusion

The proposed semi-analytic TLM for solving the line-
arized model of blood flow in a viscoelastic arterial tree
is simple and easy to implement. In the considered
problem, the accuracy of the TLM solution (obtained
from the linearized model) with respect to the experi-
mental data is comparable with the accuracy of the
MOC results (obtained from the non-linear model).
For typical applications, the TLM is at least two orders
of magnitude faster than the MOC. Because of that,
the TLM could be considered as an alternative method
in solving inverse problems or in optimizations where
the model needs to be solved repetitively, that is, many
times. When solving a linearized model for a given spa-
tial discretization of the arterial tree, the results from
the TLM are accurate up to the computer rounding

error, and they can serve for the verification of time
domain methods.
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