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  Izvorni znanstveni rad
In this work are compared performances of five different robot control 
algorithms. The following controllers under consideration are: PD controller, 
PID controller, analytical fuzzy controller, classical adaptive controller and 
adaptive controller based on neural network. The mentioned controllers are 
used to control two different robot configurations with two rotational degrees of 
freedom (in horizontal and vertical plane). The basic performances for control 
algorithms comparisons are: tracking error, rate of convergence, robustness 
on structural changes of control object, complexity of stability criterion and 
complexity of implementation.

Usporedba performansi različitih algoritama upravljanja 
robotskim manipulatorom

Original Scientific Pape
U ovom radu uspoređuju se performanse pet različitih algoritama upravljanja 
robotom. Razmatraju se sljedeći regulatori: PD regulator, PID regulator, 
analitički neizraziti regulator, klasični adaptivni regulator i adaptivni regulator 
temeljen na neuronskoj mreži. Navedeni regulatori primijenjeni su na 
upravljanje dvjema različitim konfiguracijama robota s dva rotacijska stupnja 
slobode gibanja (u horizontalnoj i vertikalnoj ravnini). Osnovne performanse 
prema kojima se upravljački algoritmi uspoređuju su: pogreška vođenja, brzina 
konvergencije, robusnost na promjene strukture objekta upravljanja, složenost 
kriterija stabilnosti, te složenost implementacije. 
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1. Introduction

A lot of sophisticated control algorithms for robot 
manipulators such as adaptive control, fuzzy control and 
neural network control have been developed last twenty 
years. Despite of that fact, most industrial robots today still 
use conventional controllers like PD and PID controllers. 
Basic reason for PD/PID wide applications lies in their 
simplicity and relatively satisfactory performances in 
control actions.

From the point of implementation and stability analysis 
PD controller is the simplest one [1]. It enables asymptotic 
stabilization for robots with moving in horizontal plane 
(SCARA robots), but for robots with rotational degrees of 
freedom moving in vertical plane has permanent tracking 
error. To remove permanent tracking error is necessary 
to add integral action to PD controller. PID controller is 
also simple for implementation, but stability analysis is 
much complicated than for PD controller due to integral 
action [2].

Better performances of linear PID controller can be 
achieved using fuzzy PID controller. Adequate choice of 
controller parameters results much better characteristics 
of transient process, faster response and smaller tracking 
error. However, implementation and stability analysis 
of fuzzy controller is much more complicated then for 
linear PID controller [3].

Linear and fuzzy PID controllers enable removing 
permanent tracking error just in case of tracking 
constant reference trajectory. In the case of tracking 
time variable reference trajectory, with the assumption 
of unknown robot model parameters, it is necessary to 
apply some form of adaptive control. Classical adaptive 
robot control [4] enables asymptotic tracking of arbitrary 
continuous time variable trajectory, but with high cost of 
knowing regressive matrix of robot dynamical model. 
Using regressive matrix in control algorithm means 
knowledge of dynamical model, at indefiniteness of 
their parameters. Otherwise that means regressive matrix 
depends on specific robot configuration and it can not 
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 - vektor nepoznatih parametara dinamičkog modela  
   robota

 - estimation of the vector of model parameters 
 - procjena vektora parametara modela

W - weight matrix of neural network (one layer) 
 - težinska matrica neuronske mreže (s jednim  
   slojem)

 - estimation of weight matrix of neural network 
 - procjena težinske matrice neuronske mreže

 - vector of activation function  
 - vektor aktivacijskih funkcija

sji - membership functions of input fuzzy sets 
 - funkcije pripadnosti ulaznih neizrazitih skupova

KCj - gain of output fuzzy sets centers 
 - pojačanje centara izlaznih neizrazitih skupova

Nj - number of fuzzy sets that belong to j -th input  
   variable 
 - broj neizrazitih skupova koji pripadaju j-toj  
   ulaznoj varijabli

Ij - area of the j-th output fuzzy set  
 - površina j-tog izlaznog neizrazitog skupa

yCj - position of output fuzzy sets centers 
 - pozicija centara izlaznih neizrazitih skupova

l  - length of robot link 
 - duljine članaka robota

m - mass of robot link 
 - masa članka robota

Symbols/Oznake

q - vector of generalized coordinates 
 - vektor unutrašnjih koordinata robota

M - matrix of inertia 
 - inercijska matrica

C - matrix of Coriolis and centrifugal forces 
 - matrica Coriolisovih i centrifugalnih sila

g - vector of gravity forces 
 - vektor gravitacijskih sila

u - vector of control forces  
 - vektor upravljačkih sila

Y - regresion matrix of dynamical model 
 - regresijska matrica dinamičkog modela

λa - minimal matrix eigenvalue  
 - minimalna svojstvena vrijednost matrice

λM - maximal matrix eigenvalue 
 - maksimalna svojstvena vrijednost matrice

 - tracking error 
 - pogreška pozicije

qd - desired reference position 
 - željeno referentno stanje 

KP - matrix of proportional gains 
 - matrica pojačanja proporcionalnog člana

KD - matrix of derivative gains 
 - matrica pojačanja derivacijskog člana

KI - matrix of integral gains  
 - matrica pojačanje integracijskog člana

θ - vector of unknown parameters for dynamic robot  
   model 

be used for adaptive control of robots with some other 
configuration. 

Relatively direct way to overcome mentioned 
constraints of classical adaptive controller is to apply 
neural network [5]. Adaptive control algorithm using 
one-layer neural network has vector of activation 
functions instead regressive matrix, which is independent 
on specific robot configuration. In this way it is possible 
to apply adaptive control based on neural network to 
general class of robots.

In spite of a lot of works that deal with control 
algorithms mentioned above there is relatively low 
number of works that deal with their performance 
analysis. In this work are considered performances of 
these controllers using example of control the robot with 
two rotational degrees of freedom. Under consideration 
are two configurations: a) in horizontal plane (SCARA 
robot) and b) in vertical plane (PELICAN robot) [6]. 
The reason for comparison control algorithms at two 
different robot manipulators is establishment of algorithm 
robustness at structural changes of control object.

2. Robots and controllers mathematical 
models

2.1. Robot dynamical model

Dynamics of robot with n degrees of freedom is 
described by the next expression 

 (1)

Where  is vector of inner robot coordinates, 

 is inertia matrix,  is matrix of 

Coriolis and centrifugal forces,  is gravitational 
forces vector and  is control forces vector. Matrix 

 is defined by Christoffel’s symbols.
Complexity of nonlinear dynamical robot model 

extremely grows with increasing number of degrees 
of freedom n. Despite of that, dynamical robot model 
possesses some properties that are general, independently 
of specific robot configuration [1, 6]: 
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S1) Matrix M(q) is symmetric.
S2) Matrix  is antisymmetric.

S3) , where 

 is constant parameter vector and  
is regressive matrix of dynamical model. Given property 
is the key property for classical control and is named 
as linear parameterization of dynamical robot model. 
Furthermore, robots with rotational degrees of freedom 
worth next criterions for particular elements of dynamical 
model:

S4) , for each 

, where is 
    

  vector’s Euclid norm and , 
λm{·}, λM{·} are symbols for minimal and maximal matrix 
eigenvalue, respectively.

S5) , where kC is some positive 
constant.

S6) , for each  where 
kg is some positive constant.

Properties of dynamical model mentioned above are 
crucial for stability analysis and enable to make stability 
criterion that is valid for general class of robots with 
rotational degrees of freedom.

2.2. PD controller

PD controller is the simplest type of controller that 
can achieve relatively satisfactory performances of robot 
control

, (2)

where  is position tracking error, qd is desired 

reference trajectory of the robot position,  
is positive diagonal matrix of proportional gain and 

 is positive diagonal matrix of derivative gain. 
Stability criterion for robot manipulator (with rotational 
degrees of freedom) in closed loop with PD controller 
[6] is 

λm{Kp}> kg, (3)

where λm{Kp} is minimal eigenvalue for matrix of 
proportional gains (which is the same as minimal value 
of gains for diagonal matrix). In the case of constant 
position reference trajectory , derivative element 
can be interpreted as artificial (virtual) friction which can 
adjust performances like rise time and overshoot. Using 
PD controller it is possible asymptotic control just for 
robots with moving in horizontal plane (SCARA). For 
general class of robots with rotational degrees of freedom 
moving in vertical plane produces permanent tracking 

error. Gravitation is cause for permanent tracking error 
in vertical plane in contrast to asymptotic tracking error 
in horizontal plane. 

2.3. PID controller

In the case of constant reference tracking it is possible 
to achieve asymptotic control by adding integral action 
to PD controller. Then, control law for PID controller is 
given by the next expressions

 (4)

, 
(5)

where  is positive diagonal matrix of integral 
gain. Local stability criterion for robot manipulator (with 
rotational degrees of freedom) in closed loop with PID 
controller [8] is

. (6)

It is possible to achieve global asymptotic stability 
using corresponding nonlinear modifications of PID 
controller [7-8]. Using PID controller is not possible 
asymptotic tracking of time variable position reference 
trajectory.

2.4. Classical adaptive controller

With assumption of unknown robot model parameters, 
classical adaptive control offers asymptotic tracking 
of time variable position reference trajectory. Adaptive 
controller control law is given by the next expression

, 
(7)

Where are

, 
(8)

, (9)

 is constant positive definite diagonal matrix, 

and  is estimation of model parameter vector, till 

 is regressive matrix defined by the 
next expression

, (10)

where  is unknown parameter vector of dynamical 
robot model.

Law of adaptive parameter adjusting is given by the 
next expression

, (11)
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where  is some constant positive definite matrix. 
Adaptive control law enables global asymptotic tracking 
of arbitrary continuous trajectory with any choice of 
positive definite matrices KD, Λ, Γ. 

At first sight the fact that adaptive controller stability 
criterion is simpler then PID controller stability criterion 
is a bit surprising. However dealing with the fact that 
adaptive control law is, in contrast to PID controller, 
derived from Lyapunov stability analysis where linear 
parameterization of dynamical robot model has main 
role (10). This includes knowing regressive matrix that 
means knowing dynamical model with indefiniteness 
of its parameters. According recursive Newton-Euler 
algorithm, symbolic deriving of dynamical robot model 
with n>2 rotational degrees of freedom needs 92n–127 
multiplying operations and 81n–117 adding operations 
which include trigonometric functions of inner 
coordinates and robot parameters. That means that for 
robot with n=6 degrees of freedom is needed about 425 
multiplying operations and 369 adding operations. In the 
other words, classical adaptive controller is without any 
doubt the most demanded controller for implementation 
in real time.

2.5. Adaptive controller based on neural network

One specific way to overcome problems of classical 
adaptive control is applying neural network which is used 
instead regressive matrix. Basic assumption for adaptive 
control with neural network is existence of neural network 
weight matrix (with one layer),  and activation 

function vector  such that

. 
(12)

Besides that assumption, adaptive control law based 
on neural network with one layer has next form

, 
(13)

where  is estimation of neural network weight 
matrix.

The adaptive adjustment of neural network weight 
matrix is given by the next expression

, 
(14)

where  is some constant positive definite matrix. 
Using assumption (12), adaptive control law with one-
layer neural network enables global asymptotic tracking 
of arbitrary continuous trajectory for any choice of 
positive definite matrices KD, Λ, Γ. In the case of multi-
layer neural networks [9], or one-layer neural network 

with activation functions adaptive adjustment, stability 
criterions are more complicated. Because vector of 
activation functions does not depend on robot dynamical 
model, in contrast to regressive matrix, adaptive control 
algorithm based on neural network can be applied to any 
robot configuration. 

2.6. Analytical fuzzy controller

Major problem using conventional fuzzy controller 
is the problem of exponential increase of behavior rules 
by increasing number of input-output system variables. 
As consequence, classical fuzzy controller application 
on multivariable systems like robot becomes very 
demanded from the standpoint of computing complexity 
as complexity of controller synthesis. Analytical fuzzy 
controller [10-11] overcomes that problem using analytical 
functions for determining centers of output fuzzy sets 
instead defining bases of behavior rules. Analytic 
function enables direct procedure of nonlinear mapping 
from input variables to centers of output fuzzy sets, which 
can be simply implemented in the control algorithm. In 
that way there is no behavior rule base, so the number of 
input and output variables as the number of fuzzy sets is 
not constrained with exponential growth of the number 
of behavior rules. Control variable of analytical fuzzy 
regulator is defined by the next expression

,

 

(15)

where x1,...., xn are input variables,

,
 

(16)

represents activation function for output fuzzy set in the 
form of sum-prod operator over membership functions of 
input fuzzy sets sji(xj), and

,
 

(17)

represents position of centers for output fuzzy sets, where 
KCj is gain of centers of output fuzzy sets, Nj is number of 
fuzzy sets that belong to j-th input variable, and Ij is area 
of j-th output fuzzy set. In the case of analitical fuzzy PID 

controller, input variables are .
From the standpoint of implementation, analytical 

fuzzy controller is more complex then linear PID 
controller, but simpler then adaptive algorithms. On 
the other hand, stability criterions of robot manipulator 
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controlled by analytical fuzzy controller are much more 
complicated than in case of other controllers mentioned 
above [12-13]. Difference from other algorithms 
mentioned above, control law of fuzzy controller has 
saturation property of control variable. 

3. Simulation results 

Dynamical robot model with two rotational degrees 
of freedom moving in vertical plane (Figure 1) is given 
by expression (1), where are: 

  
, 

 ,

.

Vector q=[q1 q2]
T represents inner rotational 

coordinates of robot, l1 and l2 are lengths of robot links, 
and m1 and m2 are masses of the first and second robot 
link, respectively.

Numerical parameter values are: l1=0.3 m, l2=0.2 m, 
m1=9.5 kg and m2=5 kg.

Regressive matrix for robot model in horizontal plane 
(g(q) =0) je

Where are: 

and λ1, λ2 ∈ diag (Λ) while vector of unknown 
parameters is θ = [θ1 θ2 θ3], with components. 

Control algorithms are tested on two different robot 
configurations with two rotational degrees of freedom 
(in horizontal and vertical plane). Dynamical model 
and robot parameters are taken form [2]. Regressive 
matrix of adaptive controller has been derived from 
dynamical model of the robot in horizontal plane. The 
only difference between dynamical model in horizontal 
and vertical plane is value of gravitational vector, which 
is equal zero for configuration in horizontal plane. 

In regard to that, such control performances depend 
on characteristics of referent signal, so the control 

Figure 1. Two 
revolute joints 
robot
Slika 1. Robot 
s dva rotacijska 
stupnja slobode 
gibanja

algorithms are tested first on the problem of 
tracking constant position reference trajectory 
(Figure 2), and than tested on time variable 
position reference trajectory (Figure 3). 

Figures show logarithm of absolute 
value tracking error, , in time t , as 

the application with different control algorithms (PD 
controller, classical adaptive controller, PID controller, 
adaptive controller based on neural network). Reason 
using logarithmic scale lies in fact that in linear scale 
can not be clearly seen asymptotic (exponential) 
convergence from convergence with permanent tracking 
error. Furthermore, logarithmic scale gives clear insight 
in speed convergence of control algorithms.

3.1. Simulation results in the case of tracking constant 
reference position trajectory

Asymptotic robot stabilization to the desired constant 
position reference state is possible for all 
controllers mentioned here but just if robot 
moves in horizontal plane (Figure 2, left). 
PID controller has the slowest convergence, 
in contrast to others.

If the robot moves in vertical plane, asymptotic 
robot stabilization to the desired constant position 
reference state is possible for PID controller and adaptive 
controller based on neural network (Figure 2, right). 
Also, convergence of all mentioned algorithms depends a 
little on structural changes of control object. As expected, 
PD controller and classical adaptive controller have 
permanent tracking error.

If robustness of control algorithm is defined as 
insensibility of control performances to control object 
structural changes, than PID controller and adaptive 
controller based on neural network are robust at tracking 
constant position reference trajectory (Table 1).

One layer neural network has 13 radial base activation 
functions. Initial weight matrix is equal zero. Change of 
parameters does not influence essentially on tracking 
error.
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Figure 2. A comparison of tracking error for the PD controller, adaptive controller, PID controller and adaptive controller based 
on neural network in the case of time constant referent signal.
Slika 2. Usporedbe pogreške vođenja kod primjene PD regulatora, klasičnog adaptivnog regulatora, PID regulatora i adaptivnog 
regulatora zasnovanog na neuronskoj mreži u slučaju vremenski konstantnog referentnog signala

3.2. Simulation results in the case of tracking variable 
reference position trajectory

Time variable reference trajectory is represented 
by superposition of two sinus signals with different 
amplitudes and frequencies. For such reference trajectory 
adaptive controller based on neural network with radial 
base function does not have better performances than PD 
or PID controller, so in this work is used neural network 
with activation functions in form of combinations of 
functions , because such elements 
are also elements of regressive matrix, [15]. Modificated 
law for adjusting weight matrix is applied due to need 
for additional improvement of algorithm convergence [5, 
15],

 
(18)

where  is positive constant. 
Classical adaptive controller for robot control in 

horizontal plane can achieve relatively fast asymptotic 
convergence of tracking error. Adaptive controller based 

on neural network has also asymptotic convergence, but 
much slower than classical adaptive controller. PD and 
PID controllers have permanent tracking error (Figure 
3)

All controllers have permanent tracking error in the 
case of robot control in vertical plane.

3.3. Simulation results for analytical fuzzy PID 
controller

Linear PID controller and adaptive controller based 
on neural network are compared with analytical fuzzy 
PID controller (Figures 4 and 5).

Asymptotic robot stabilization at desired position 
of reference trajectory can be achieved with faster 
convergence using PID fuzzy controller instead linear 
PID controller (Figure 4). Also, after specific time 
interval, convergence of analytical fuzzy PID controller 
becomes slower than for adaptive controller based on 
neural network. 
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Figure 3. A comparison of tracking error for the PD controller, adaptive controller, PID controller and adaptive controller based 
on neural network in the case of time variable referent signal.
Slika 3. Usporedbe pogreške vođenja kod primjene PD regulatora, klasičnog adaptivnog regulatora, PID regulatora i adaptivnog 
regulatora zasnovanog na neuronskoj mreži u slučaju vremenski promjenjivog referentnog signala

Figure 4. A comparison of tracking error for the fuzzy PID controller, linear PID controller and adaptive controller based on 
neural network in the case of time constant referent signal.
Slika 4. Usporedba pogreške vođenja neizrazitog PID regulatora, linearnog PID i adaptivnog regulatora primjenom neuronske 
mreže kod praćenja konstantnog referentnog signala
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Tracking errors of adaptive controller based on neural 
network are for time variable reference trajectory (Figure 
5) almost the same as for fuzzy PID, when linear PID 
tracking errors are some larger than other two compared. 
Because performances do not essentially depend on robot 
configuration, it can be told that they are robust on control 
object structural changes (Table 1).

Slika 5. Usporedba pogreške vođenja neizrazitog PID regulatora, linearnog PID i adaptivnog regulatora primjenom neuronske 
mreže kod praćenja vremenski varijabilnog referentnog signala
Figure 5. A comparison of tracking error for the fuzzy PID controller, linear PID controller and adaptive controller based on 
neural network in the case of time variable referent signal

3.4. Discussion of simulation results

Although performances of the most mentioned 
algorithms are as expected, it is a little bit surprising 
slow convergence and relatively bigger tracking error for 
adaptive controller based on neural network. Additional 
simulation tests made by classical adaptive controller 
give explanations of that problem. It is shown that very 

Tracking error 
/ Regulacijsko 

odstupanje

Algorithm 
convergence / 
Konvergencija 

algoritma

Algorithm 
robustness 
/ Robusnost 
algoritma

Algorithm 
complexity 
/ Složenost 
algoritma

Stability 
criterions 
/ Kriteriji 
stabilnosti

Linear PD controller / 
Linearni PD regulator

exists in VP 
(exists) / postoji u 

VR (postoji)

fast (fast) / brza 
(brza)

weak (very good) / 
slaba (vrlo dobra)

complex simple / 
vrlo jednostavan

simple / 
jednostavni

Linear PID controller 
/ Linearni PID 

regulator

removed (exists) 
/ otklonjeno 

(postoji)

slow (slow) / spora 
(spora)

very good (very 
good) / vrlo dobra 

(vrlo dobra)

simple / 
jednostavan

complicated / 
složeni

Classical adaptive 
controller / Adaptivni 
regulator-– klasični

exists in VP (exists 
in VP) / postoji u 

VR (postoji u VR)

fast (fast) / brza 
(brza)

very weak (very 
weak) / vrlo slaba 

(vrlo slaba)

very complex / vrlo 
složen

very simple / 
vrlo jednostavni

Adaptive controller 
– neural netw. / 

Adaptivni regulator – 
neuronska m.

removed (exists) 
/ otklonjeno 

(postoji)

very fast (slow) / 
vrlo brza (spora)

good (weak) / 
dobra (slaba) complex / složen very simple / 

vrlo jednostavni

Analytical fuzzy PID 
controller / Analitički 

neizraziti PID 
regulator

removed (exists) 
/ otklonjeno 

(postoji)

relatively fast 
(relatively fast) 
/ relativno brza 
(relativno brza)

very good (very 
good) / vrlo dobra 

(vrlo dobra)

less complex / 
manje složen

very 
complicated / 
vrlo složeni

Table 1. Qualitative comparison of controller performance (ratings in brackets are used for case of time variable referent signal; 
VP means vertical plane)
Tablica 1. Kvalitativne usporedbe performansi regulatora (ocjene u zagradama vrijede u slučaju vremenski promjenjivog 
referentnog signala; VR znači vertikalna ravnina). 
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small deviations of regressive matrix elements from their 
exact value make worse the performances of classical 
adaptive controller. In regard to that neural network with 
finite dimension represents approximation of regressive 
matrix, this can be sufficient reason for essentially worse 
performances. Besides, slow convergence is partly 
consequence of neural network weight matrix Ŵ that has 
much more elements than parameter vector .

It is interesting to mention that application of controller 
based on neural network does not provide essentially 
better performances using additional adjusting of width 
and position of radial basis functions [14].

Table 1 shows performance indexes of controllers, 
qualitatively. Different performances depend on tracking 
constant or time variable reference trajectory.

4. Conclusion

This work analyzes performances of different 
algorithms for robot manipulator control. Linear PID 
enables asymptotic robot stabilization at constant 
reference state, but with relatively slow convergence. 
Convergence properties can be improved using analytical 
fuzzy PID controller, but with cost of implementation 
complexity and stability criterions complexity. In the 
case of time variable reference trajectory only classical 
adaptive controller enables asymptotic tracking, but for 
specific robot configuration and cost of knowing very 
complex regressive matrix. Adaptive controller based on 
neural network does not depend on robot configuration, 
but has relatively slow convergence and relatively 
large tracking error. In the other words, every analyzed 
algorithm has specific advantages in regard to other 
controllers, but the same goes for disadvantages. Choice 
of appropriate controller in practice will prior depend on 
demands of positioning accuracy and robustness, and on 
the implementation cost of control algorithm. 

Future work will be oriented as the comparison of 
mentioned controllers to performances of actuation 
variables, and sensitivity to measurement noise as output 
disturbances.
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