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IIASA’s ASA Program is seeking to better handle uncertainty in prognostic 

scenarios: 

This research aims at advanced learning from the past, namely 

I. at treating uncertainty and its change seamlessly across time, from the past to the 

immediate future (near-term goal); and 

II. at providing a measure of reference for prognostic scenarios (long-term goal). 

It builds on two—not yet interlinked—approaches to study changes in uncertainty. We prefer 

explaining the two approaches in the context of global greenhouse gas (GHG) emissions, 

concentrations and/or global mean surface temperature change, each of which representing a 

system with memory: 

1. retrospective learning (RL; also termed diagnostic learning): RL is based on the annual 

recalculation of previous estimates of GHG emissions (and removals); RL allows 

identifying our knowledge increase. 

2. learning under controlled prognostic conditions (CPL): CPL aims at quantifying the 

explainable outreach (EO) of data that contain memory. Determining a series’ EO requires 

evaluating its historical data by applying learning and testing and must not be confused with 

prediction. The EO can be visualized as a constrained uncertainty wedge of limited extent. It 

is in accordance with the system’s past and can serve as a measure of reference for 

prognostic scenarios. 

Retrospective Learning (RL): 

We distinguish between changes in uncertainty due to (i) learning (one-sided, bottom-up) and 

(ii) structural changes in emitters, and speculate that the two processes are exponential and 

can be discriminated (Fig. 1; Jarnicka & Nahorski 2015; Żerbrowski et al. 2015). 

 

Fig. 1: Illustrating RL for uncertain (inaccurate and imprecise) emissions. 
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Emissions are updated by adding another year of data to the time series, while estimates for 

earlier years are revised (Fig. 1a). Uncertainty changes due to (i) learning (one-sided, bottom-

up) and (ii) structural changes in emitters. We hypothesize that the two processes are 

exponential and can be discriminated (i as opposed to i+ii). Figure 1b reflects learning (i). It 

shows the difference [most recent – earlier estimates] for Austria’s CO2 emissions (excluding 

emissions from land use) for the year 1990. c) The figure reflects learning and structural change 

in emitters (i+ii). It shows the difference [most recent – most initial estimates] for Europe’s 

(EU-15) CO2 emissions (excluding emissions from land use) for 1990–2005 (Hamal 2010: Fig. 

12; modified). 

Learning under Controlled Prognostic Conditions (CPL): 

The EO is derived for the historical part of the data series (past) and then shifted to “today” 

(assuming no “unknown” surprises), thus providing a measure of reference for prognostic 

scenarios. For a better understanding, Figure 2 reflects testing under the condition of the future 

being known (see black dots in the future part of the data series). Prognostic scenarios falling 

outside (above or below) the EO as well as scenarios falling within, but eventually extending 

beyond the EO are no longer in accordance with the series’ past—allowing a decision-maker to 

inquire about the assumptions made in constructing a forward-looking scenario and to interpret 

these in terms of how effective planned measures (e.g., emissions reductions) need to be 

and/or how long the effectiveness of these measures remains uncertain. 

 

Fig. 2: Illustrating why knowing the EO of a data series is important. 

The key question is how does RL influence the emissions’ EO, in particular its direction; and 

thus its potential to serve as a reference for prognostic scenarios? Based on the large 

revisions of historic emissions, we suspect that this influence will not be negligible. 
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