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Characterization and Control of Conservative

and Non-conservative Network Dynamics

Matthias Wildemeersch, Member, IEEE, Wai Hong Ronald Chan,

Elena Rovenskaya, Tony Q. S. Quek, Senior Member, IEEE

Abstract

Diffusion processes are instrumental to describe the movement of a continuous quantity in a generic

network of interacting agents. Here, we present a probabilistic framework for diffusion in networks and

study in particular two classes of agent interactions depending on whether the total network quantity

follows a conservation law. Focusing on asymmetric interactions between agents, we define how the

dynamics of conservative and non-conservative networks relate to the weighted in-degree and out-degree

Laplacians. For uncontrolled networks, we define the convergence behavior of our framework, including

the case of variable network topologies, as a function of the eigenvalues and eigenvectors of the weighted

graph Laplacian. In addition, we study the control of the network dynamics by means of external controls

and alterations in the network topology. For networks with exogenous controls, we analyze convergence

and provide a method to measure the difference between conservative and non-conservative network

dynamics based on the comparison of their respective attainability domains. In order to construct a

network topology tailored for a desired behavior, we propose a Markov decision process (MDP) that

learns specific network adjustments through a reinforcement learning algorithm. The presented network

control and design schemes enable the alteration of the dynamic and stationary network behavior in

conservative and non-conservative networks.
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I. INTRODUCTION

Large-scale network dynamics received ample research interest over the last decade in the

context of group coordination [2], distributed algorithms [3], network control [4], [5], distributed

optimization [6], consensus problems [7], [8], and herding and flocking behavior [9]. Network

dynamics involve interactions between agents and relate to the diffusion of a continuous quantity

within a generic network [10]–[14]. In this work, we establish a probabilistic diffusion framework

that describes in continuous time the movement of such a continuous quantity within a multi-

agent network. The main contributions of our framework are (i) to present two classes of

linear update rules according to the conservation of the network property and characterize the

corresponding dynamical network behavior, (ii) to include network control into the framework

resulting in the study of the network stability and convergence under different conditions, and

(iii) to impose flow modifications by means of network design.

This framework builds on consensus models involving Markovian state transitions [2], [15]–

[18], as well as multi-agent gossiping models describing interactions between pairs of agents [14].

We generalize these models and introduce two classes of linear inter-agent update rules depending

on whether the total quantity initially present in the network is conserved. This enables our

framework to account for a wider range of network phenomena: financial and trade assets, as

well as human migration, can be modeled using conservative flows, while opinions follow non-

conservative network dynamics. Going beyond symmetric, unweighted graphs [19], we focus on

weighted graphs with asymmetric update rules and derive the corresponding differential equation

that describes the diffusion of the considered quantity over the network averaged over all sample

paths. We highlight the differences in transient and stationary behavior for both update rules, the

effects of network asymmetry, and the conditions for convergence in networks with switching

topologies.

Building on existing leader-follower models [20], [21], we extend the homogeneous differential

equation that describes the diffusion process to its inhomogeneous form. By doing so, we can

model the addition and subtraction of the considered quantity to and from the multi-agent

network. We show that diffusion processes in the presence of stubborn agents [14], the process

of dynamic learning [18], or the PageRank algorithm with damping [22], can be expressed in
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terms of the inhomogeneous equation. Moreover, these examples illustrate how control actions

can result in changes of the rate transition matrix that governs the network dynamics. In addition,

we define the constraints on the input vector and network topology under which networks with

exogenous excitation remain stable and converge to a steady state. Aside from individual network

trajectories, we also provide a method based on the support function of non-empty closed convex

sets to define the entire set of attainable network states. Moreover, this method provides insight

in the difference between attainability sets of conservative and non-conservative networks based

on the Hausdorff distance between these sets.

Our framework enables network control through the introduction of controls at individual

nodes or the adjustment of the network structure. Besides imposing external control variables,

we address the modification of inter-agent interactions to achieve network control. By modi-

fying the transition rate matrix governing the network dynamics, we shift the eigenvalues of

the characteristic modes of the system and modify the dynamics. Furthermore, we present an

adaptive heuristic that models the modification of the network structure as a Markov decision

process (MDP). Perturbations to the transition rate matrix can be searched efficiently using a

reinforcement learning algorithm [23], achieving suboptimal control with quick convergence. In

conclusion, the proposed network control and network design processes form a toolbox for the

micromanagement of diffusion in networks.

The remainder of the paper is structured as follows. Section II introduces two essential classes

of stochastic update rules to model diffusion in networks. Section III discusses the stability and

convergence characteristics of conservative and non-conservative networks, while Section IV

extends the homogeneous equations to their inhomogeneous forms. Section V discusses network

structure modifications for network control and Section VI provides some concluding remarks.

II. STOCHASTIC UPDATE RULES

We consider a population V of interacting agents Vi, where i ∈ I = {1, 2, . . . , n : n ∈ Z
+}.

These agents have the capacity to handle a continuous quantity or node property Si(t) ∈ R, t ≥ t0.

All node properties are gathered in the state vector S(t) = [S1(t) . . . Sn(t)]
T, S(t) ∈ R

n. Given

the initial conditions Si(0) = Si,0, the node properties evolve over time according to a stochastic

update process that follows a clock ticking at times determined by a Poisson process. The

probabilistic interactions between the agents can be described by a weighted digraph G =

(V , ~E , w), where V is the set of agents, ~E is the set of directed links (i, j) between pairs of

agents from V , and the weight function w : ~E 7→ R
+ captures the update rates and liabilities in
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the network. The weighted adjacency matrix can be represented as

AG(i, j) =







w(i, j) if (i, j) ∈ ~E ,
0 otherwise .

(1)

The weighted in-degree and out-degree matrices are diagonal matrices with diagonal elements

given by

D
(in)
G (j, j) =

∑

i

AG(i, j) , (2)

D
(out)
G (i, i) =

∑

j

AG(i, j) . (3)

The exact meaning of the edge weight and the direction of the links will be made explicit

when we analyze the update rules, referred to as protocols, in the following Section. Since the

interactions between agents can be asymmetric, we will introduce two different Laplacians that

refer to the in-degree and the out-degree of each node. We define the weighted in-degree and

out-degree Laplacians as

L
(in)
G = D

(in)
G − AG , (4)

L
(out)
G = D

(out)
G − AG . (5)

Depending on the choice of the stochastic update rule used in the inter-agent probabilistic

interactions, we will characterize the flow dynamics of networks operating under different

protocols. Here, we describe two main classes of linear update rules that result in linear,

time-invariant differential equations in the node property and corresponding matrix differential

equations in the diffusion probabilities.1 These update rules are distinguished by the conservation

or the non-conservation of the total property initially present in the network. The networks

applying the conservative and non-conservative protocols will be referred to as conservative and

non-conservative networks, respectively.

A. Conservative networks

We first consider a protocol where the total property in the network is conserved at every instant

in time. Conservative updating is relevant for the description of conservative flow dynamics in a

network, including the flow of material and physical assets. In this respect, conservative networks

1For non-linear update rules, we refer to [24].
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are able to represent stylized instances of hydraulic, financial, or trade networks. Here, agents

obey the conservative update rule

Si(t+∆t) = Si(t) + CijSj(t)

Sj(t+∆t) = (1− Cij)Sj(t) , (P1)

where i, j ∈ I, (i, j) ∈ ~E . The parameter Cij ∈ (0, 1] is a measure of liability or responsibility

of agent j towards agent i, and ∆t is an infinitesimal time interval. For every edge (i, j) ∈ ~E ,

there exists a clock obeying an independent Poisson process with rate rij > 0. The protocol (P1)

is executed for nodes i and j when the independent Poisson clock of (i, j) ticks at time t. The

following Lemma characterizes the property dynamics of the instance-averaged value of S in

conservative networks.

Lemma 1. Let S̄(t) denote the expected value of S(t) averaged over all sample paths. The

dynamics of the expected property for a network applying (P1) are defined by the governing

equation

˙̄S(t) = QS̄(t) , (A)

where Q = −L(in)
G , the weight function is defined as w(i, j) = Cijrij , and

Qij =







Cijrij if i 6= j ,

−∑k 6=iCkirki if i = j .
(6)

Proof: We first note that the total update rate for a node i ∈ V is given by ri =
∑

j rij , and

that the total update rate of the network is given by r =
∑

i ri. Assume that a global network

clock is ticking at rate r. Then, the probability that the clock will activate edge (i, j) is given

by rij/r, where in the limit of large-scale networks r ≈ 1/∆t. Consequently, when updating

follows (P1), the probabilistic update of the property of the nodes corresponding to the edge

(i, j) is given by

S̄i(t+∆t)− S̄i(t) =
∑

j 6=i

rij ∆t Cij S̄j(t) (7)

S̄j(t+∆t)− S̄j(t) = −
∑

i 6=j

rij ∆t Cij S̄j(t) , (8)

which can be succinctly written as

S̄i(t+∆t)− S̄i(t) =
∑

j 6=i

∆t(rijCijS̄j(t)− rjiCjiS̄i(t)) . (9)
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Dividing by ∆t and taking the limit for ∆t→ 0, we get a system of differential equations

˙̄S(t) = −L(in)
G S̄(t) , (10)

which concludes the proof.

Considering (A), we notice that S̄(t) belongs to the class of continuously differentiable

functions C1[t0,∞)n.

Corollary 1. The matrix Q = −L(in)
G of a conservative network represents the transition rate

matrix of a continuous-time Markov chain (CTMC). The transition probabilities Pij(t) of the

CTMC are solutions of the differential equation

Ṗ (t) = QP (t) , P (t) = [Pij(t)] . (11)

Proof: From (6), we notice that

Qjj
.
= −

∑

i 6=j

Qij ∀ j ∈ I, (12)

such that the columns of Q sum to zero. It follows that Q represents the transition rate matrix

of a positive recurrent CTMC. Accordingly, the property diffusion can be described by a CTMC

whose state space is equivalent to the agent set V and whose instantaneous state is denoted by

X(t). Given that the diffusion dynamics can be described by a CTMC, we can write [25]

Pr[X(t+ u) = i] =
∑

j

Pij(u) Pr[X(t) = j] , ∀ u ∈ (0,∞) (13)

for some state i ∈ I, where

Pij(u) = Pr[X(t+ u) = i|X(t) = j] (14)

describes the probability that an infinitesimal piece of property is in state i (i.e. agent i) at time

t+u, given that it was in state j (i.e. agent j) at time t. From (13), it follows that the transition

probability matrix P = [Pij] satisfies

P (t+ u) = P (t)P (u) ∀ t, u ∈ (0,∞) , (15)

or the Chapman-Kolmogorov equation. Assuming that the limits limh→0 P (h) = P (0) and

limh→0 Ṗ (h) = Ṗ (0) exist, we can then adopt the relation P (0) = In where In is the identity

matrix of dimension n. By taking the limit u ≡ ∆t→ 0 in (15) and using the appropriate Taylor

series expansion about P (0), we then obtain the following deterministic differential equation

Ṗ (t) = QP (t) (16)
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where Q = Ṗ (0) = [Qij].

We can interpret (11) as an equation describing the diffusion of transition probabilities between

the various agents over time.

Note that Lemma 1 can also be demonstrated via a probabilistic interpretation of the CTMC.

It can be shown that P (t) is continuous in t, ∀t ≥ 0 [25]. From (12), it follows that the columns

of Ṗ (t) always sum to zero. This shows that for each origin agent j, the sum over all the agents

i of the time-cumulative transition probabilities Pij is conserved over time at a value of 1, as

expected from conventional laws of probability. We now consider the expected value of Si(t)

averaged over all sample paths, which is given by the column vector

S̄(t) = P (t)S̄(0) . (17)

This illustrates that the sum of S̄ over all agents remains a conserved quantity when (P1) is

applied. If the system starts from a known, deterministic state, then the bar in S̄(0) can be

omitted. We will further indicate S̄(0) by S0. Combining (11) and (17), we find again (A).

B. Non-conservative networks

We now consider a protocol where property diffuses between agents by means of a convex

updating protocol. This protocol is of interest for opinion dynamics [3], [14], or preference

dynamics in cultural theory [26]. Here, agents obey the following convex update rule [14]

Si(t+∆t) = CijSj(t) + (1− Cij)Si(t) , (P2)

whenever the Poisson clock ticks for a pair of agents i, j ∈ I, (i, j) ∈ ~E . In other words, when

the (i, j)-th Poisson clock activates the link between agents i and j, agent i is triggered to poll the

property value of agent j with a measure of confidence Cij and update its own value accordingly.

The following Lemma characterizes the property dynamics in non-conservative networks.

Lemma 2. The dynamics of the expected property for a network applying (P2) are defined by

the governing equation

˙̄S(t) = QS̄(t) , (A)

where Q = −L(out)
G , w(i, j) = Cijrij , and

Qij =







Cijrij if i 6= j ,

−∑k 6=iCikrik if i = j .
(18)
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Proof: When property updating follows (P2), the probabilistic update of the property of

node Vi ∈ V is given by

S̄i(t+∆t)− S̄i(t) =
∑

j 6=i

(rij∆t)Cij(S̄j(t)− S̄i(t)) . (19)

Dividing by ∆t and taking the limit for ∆t → 0, we obtain the instance-averaged linear

differential equations represented by (A) with Q = −L(out)
G .

Note that Lemma 2 extends the basic consensus algorithm where ˙̄Si(t) =
∑

j∈Ni

(

S̄j(t)− S̄i(t)
)

,

with Ni the neighborhood of i, to asymmetrically weighted updating. The relevance of the

asymmetry will be further discussed in Section III.

Corollary 2. The matrix Q = −L(out)
G of a non-conservative network represents the transition

rate matrix of a CTMC, and the transition probabilities of the CTMC are solutions of the

following differential equation

Ṗ (t) = QP (t) , (20)

Proof: The proof is similar to the proof of Corollary 1, and follows from the fact that

Qii
.
= −

∑

j 6=i

Qij ∀ i ∈ I , (21)

meaning that the rows of Q all sum to zero.

The CTMC corresponding to Q represents a random walk on G. In comparison with the

transfer of an infinitesimal piece of property in a conservative network, Pij in non-conservative

networks represents the probability that node i polls node j to update its own value using the

weight Cij . Here, the rows of Ṗ (t) always sum to zero, and consequently the rows of P (t)

always sum to one. This shows that every polling tag originating from an agent i must either

still be under the possession of agent i or of some other agent j in the network.

Remark 1. Lemmas 1 and 2 explicitly link the protocols (P1) and (P2) to the transition rate

matrices. Consequently, the transition rate matrix captures all relevant properties of diffusion

over networks, i.e., the update protocol, the network topology, the inter-agent measures of

liability/confidence, and the update rates. In the case of a symmetric Q matrix, the in-degree

and out-degree Laplacians are identical. Hence, the two protocols are equivalent for symmetric

matrices. For asymmetric matrices, (4) and (5) show that the conservative Q and the transpose

of the non-conservative Q are identical if the two corresponding digraphs have the same network

topology with equal weights, but with all link directions reversed.
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III. UNCONTROLLED NETWORK DYNAMICS

In this section, we analyze the transient and steady-state characteristics of (A) based on the

eigendecomposition of Q. Formulas (11) and (20) can be solved as P (t) = exp(Qt). Due to

the construction of Q as a Laplacian matrix, Q always has the eigenvalue qs = 0. Moreover,

since all non-diagonal elements are non-negative, Q is a Metzler matrix for which exp(Qt) is

non-negative for t ≥ 0. If Q is diagonalizable, then the solution to (A) can be written as

S̄(t) = exp
(

AΛA−1t
)

S0

= A diag (exp(qkt))A
−1S0 , (22)

where A contains the unit right eigenvectors of Q as columns, A−1 contains the corresponding

left eigenvectors of Q as rows, qk represents the eigenvalues of Q, and Λ = diag(qk). Also,

S̄(t) =
∑

k

exp(qkt)vR,kv
T
L∗,kS0

=
∑

k

ck exp(qkt)vR,k , (23)

where vR,k and vL∗,k are the unit right and corresponding left eigenvectors2 of Q in column

form, and ck = vTL∗,kS0 are scalars. We notice from (23) that the eigenvalues and eigenvectors

reflect the characteristic growth and decay rates of the system, as well as the dominant and weak

nodes in the network. Concerning the eigenvalues of Q, Geršgorin’s circle theorem states that

all eigenvalues of Q reside in the complex plane within the union of the disks Di = {z ∈ C :

|z−Qii| ≤
∑

j 6=i |Qij|} , i ∈ I. According to this theorem, Q matrices constructed in compliance

with (P1) or (P2) have nonpositive eigenvalues including zero, such that the node quantities are

stable and converge to a steady state in finite time. The stationary network state is given by

lim
t→∞

S̄(t) = csvR,s , (24)

where cs and vR,s are the scalar and unit right eigenvector corresponding to qs = 0. We

now illustrate the dynamics for different strongly connected network classes using the network

presented in Fig. 1.

A. Conservative asymmetric networks

For conservative networks, we formulate the following Lemma for the stationary behavior.

2The left eigenvectors vL∗,k are only unit in the case where Q is symmetric.
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1 2 3 4 5

1 1 1 1

αααα

Fig. 1: Path graph P5 with asymmetric link weights used to illustrate the transient and steady-state behaviors of the various

update rules.

Lemma 3. The stationary value of a strongly connected asymmetric network applying (P1) is

given by vR,s scaled by cs =
∑

i S0,i/Ψ where Ψ is the sum of the entries of vR,s.

Proof: Here, the column-sum of Q = −L(in)
G is zero, so Q has a unit steady-state left

eigenvector vL,s with equal components. In an asymmetric network, the stationary node values

are imbalanced due to the unequal components in vR,s. Considering (23), the proof is concluded.

When asymmetric liabilities between nodes occur, the stationary distribution will favor at-

tractive over repulsive nodes, and uniform spreading does not occur as a consequence of the

conservation of total property. We illustrate this finding for the network depicted in Fig. 1 with

α = 0.2, and we present in Fig. 2 the evolution of S̄i(t) over time. In the latter plot, we generate

S̄i(t) by empirically generating sample paths based on the update rule (P1), and analytically

determining the expected property from (23).

B. Non-conservative asymmetric networks

For networks that apply the convex update rule (P2), we formulate the following Lemma for

the stationary behavior.

Lemma 4. A strongly connected asymmetric network following the convex update rule (P2)

always achieves consensus. The consensus value cv = cs/
√
n in the infinite time horizon is the

following weighted average of S0

cv =
1

Ω
vTL,sS0 , (25)

where Ω is the sum of the entries in vL,s.

Proof: Since the row-sum of Q = −L(out)
G is zero, vR,s has equal components. Hence,

strongly connected networks with asymmetric updating always achieve agreement. Determining

the consensus value requires finding the row of A−1 corresponding to qs = 0. For an asymmetric

matrix, this corresponds to vL,s scaled by the factor
√
n/Ω, since the dot product of this scaled
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Fig. 2: Comparison of instance-averaged node property obtained through Monte Carlo simulations (dotted lines) and expected

property obtained by eigendecomposition of the matrix Q (solid lines) for the asymmetric network in Fig. 1 with α = 0.2 under

(P1). For the simulations, 5000 trials were performed, and each timestep was discretized into 1000 sub-units. In both cases, the

initial conditions were adopted with S0 = [0 0 0 0 1].

vector and vR,s must equal 1 based on the initial conditions P (0) = In = A−1A. The result is

then scaled by the magnitude of the entries of vR,s to obtain cv.

We illustrate in Fig. 3 the consensus behavior for the network depicted in Fig. 1 with α = 0.2.

Here, cv is heavily weighted towards node 5, whose inward link weight exceeds its outward link

weight. This means that node 5 is heavily polled by its neighbors. Such a trend is reminiscent

of the availability heuristic, where subjects that are encountered or recalled more often are given

more thought and emphasis [27].

C. Symmetric networks

In a strongly connected symmetric network, the steady-state right eigenvector has components

of equal magnitude in all dimensions regardless of the update rule. We can interpret this as an

equal sharing of resources in conservative networks, and as consensus among all agents at a

value corresponding to the average of the initial conditions at all the nodes in non-conservative

networks [14], [16]–[18]. We illustrate this conclusion by observing S̄i(t) over time in Fig. 4

for the network depicted in Fig. 1 with α = 1. In Fig. 4, we generate S̄i(t) by both empirically

generating sample paths based on the update rules (P1) and (P2), which are equivalent in this
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Fig. 3: Comparison of instance-averaged property obtained numerically (dotted lines) and analytically (solid lines) for the

asymmetric network in Fig. 1 with α = 0.2 under (P2). The simulation parameters are identical to those in Fig. 2. In this

case, the unit steady-state left eigenvector is [0.0016 0.0078 0.0392 0.1960 0.9798] and the unit steady-state right eigenvector is

1√
5
[1 1 1 1 1], which gives us Ω = 1.2244 and the corresponding consensus value cv = 0.8003.
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Fig. 4: Comparison of instance-averaged property obtained numerically (dotted lines) and analytically (solid lines) for the

symmetric network in Fig. 1 with α = 1. The simulation parameters are identical to those in Fig. 2.

case, and analytically determining the expected property from (23).
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D. Switching topologies

There are many important scenarios where the network topology can change over time. As an

example, connections in wireless sensor networks can be established and broken due to mobility.

In this Section, we study the steady-state behavior of networks with switching topologies and

provide a condition that leads to convergence under dynamic topologies. Networks with switching

topologies converge if they exhibit the same invariant stationary value as defined in Lemma 3

and Lemma 4, which depend on vR,s and vL,s for (P1) and (P2) respectively.

We introduce now two classes of strongly connected, directed graphs for which the weighted

Laplacian shares the left or the right eigenvector corresponding to qs = 0. For conservative and

non-conservative networks, we have respectively

G(P1)
vs = {G(V , ~E , w) : rankL

(in)
G = n− 1, L

(in)
G × vR,s = ~0}

G(P2)
vs = {G(V , ~E , w) : rankL

(out)
G = n− 1, vL,s × L

(out)
G = ~0T} . (26)

Correspondingly, we define the following sets of matrices with equal steady-state eigenvectors

as follows

M (P1)
vs = {Q : Q = −L(in)

G , Q× vR,s = ~0}

M (P2)
vs = {Q : Q = −L(out)

G , vL,s ×Q = ~0T} . (27)

For these network classes, the system dynamics are

˙̄S(t) = QkS̄(t) , (28)

where Qk ∈ M (P1)
vs when (P1) is applied, and Qk ∈ M (P2)

vs when (P2) is applied. The index

k changes over time according to k = f(t), f : R+ → IM , where IM is the index set of the

corresponding set of matrices.

Lemma 5. Networks obeying (28) that are strongly connected and follow (P1) or (P2) are

globally asymptotically convergent if Qk belongs to M (P1)
vs or M (P2)

vs , respectively.

Proof: The proof follows from the fact that all networks that belong to M (P1)
vs or M (P2)

vs

converge to the same invariant quantity, as they share the same right and left eigenvector,

respectively. As all elements of M (P1)
vs and M (P2)

vs are globally asymptotically stable, this concludes

the proof.

We introduce now the distance vector δ = S̄(t) − csvR,s. As csvR,s is an equilibrium of the

system, we can write

δ̇(t) = Qkδ(t) . (29)
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We cannot make a general statement about the definiteness of asymmetric matrices with non-

positive eigenvalues. For the matrices in M (P1)
vs or M (P2)

vs that are negative definite, we can bound

the convergence speed of the distance vector as follows.

Corollary 3. Consider a strongly connected graph for which the weighted in-degree or out-

degree Laplacian is negative definite. For these networks, δ globally asymptotically converges

to zero and the convergence speed can be bounded as

‖δ(t)‖2 ≤ ‖δ(0)‖2 exp(qmaxt) (30)

where qmax = max q2(M
(P1)
vs ) for conservative networks and qmax = max q2(M

(P2)
vs ) for non-

conservative networks. Here, q2 is the non-zero eigenvalue with the smallest absolute value of

the corresponding transition rate matrix.

Proof: Consider the Lyapunov function V (δ) = 1/2
(

δ(t)T δ(t)
)

. The first derivative can be

written as

V̇ (δ(t)) = 1/2
(

δ(t)TQT
k δ(t) + δ(t)TQkδ(t)

)

, (31)

so V̇ (δ(t)) ≤ 0. Using the Courant-Fischer theorem, and similar to [16], the proof is concluded.

Remark 2. A relevant question is if it is possible to verify if two matrices Q1 and Q2 belong

to the same set M
(x)
vs , x ∈ {P1, P2}. The common eigenvector problem can be solved when the

eigenvalue is not known [28]. For the special case where the common eigenvalue is equal to

zero, two matrices Q1 and Q2 have the same eigenvector corresponding to qs = 0 if

null(Q1) = null(Q2) . (32)

IV. NETWORK CONTROL BY EXOGENOUS EXCITATION

To model the exogenous addition and subtraction of property to multi-agent networks, we

extend the homogeneous equation (A) to include an inhomogeneous term

˙̄S(t) = QS̄(t) + U(t) . (B)

The input vector U(t) belongs to the set of admissible controls U = {U ∈ R
n |U(t) ∈

Ĉ[t0,∞)n}, where Ĉ represents the class of piecewise continuous functions. Since (B) is linear
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in U(t), U(t) can either be the same over all sample paths or averaged over all sample paths.

For time-invariant matrix Q, the solution to (B) is the Carathéodory solution

S̄(t) = S̄h(t) +

∫ t

0

exp(Q(t− τ))U(τ)dτ , (33)

where S̄h(t) = exp(Qt)S0. This can be interpreted as the sum of the solution to the homogeneous

equation (A) and the convolution of the input U(t) with the impulse response to (B) for every

node. The state variables considered in conservative and non-conservative networks take values

over R+. In fact, we can show that independently of the initial conditions, the positivity of the

network properties is guaranteed. Positive systems are of particular importance since they often

arise in practical situations, such as in transport networks, storage systems, and stochastic models

where the state variables and probabilities take non-negative values.

Definition 1. The linear system (B) is said to be positive if and only if for every non-negative

initial state S0 and every non-negative input U(t), S̄(t) is non-negative [29].

In other words, if a linear system is positive, then R
n
+ is a positive invariant set.

Lemma 6. The linear system represented in (B) is a positive linear system.

Proof: By construction, the system matrix Q is a Metzler matrix, i.e., Qij ≥ 0, i 6= j. When

the system matrix is a Metzler matrix, the positivity of the system (sufficiency and necessity)

can be proved based on the direction of ˙̄S(t) toward the interior of R
n
+ when S̄(t) is on the

boundary of Rn
+ [29].

In the following subsections, we first present practical use cases where the network dynamics

can be expressed by the inhomogeneous equation (B) with constant and time-varying control

variable U . Interestingly, the use cases with stubborn agents [14] and dynamic learning [18]

illustrate that network control can result in modifications of the system matrix and in some

cases in a non-singular Q. This motivates the study of stability and convergence in the presence

of exogenous inputs for singular and non-singular system matrices. Finally, we present a method-

ology based on the support function to characterize the attainability sets at a given time t for

networks with exogenous control. Moreover, we compare the attainability sets of conservative

and non-conservative networks in terms of the Hausdorff distance.

A. Network dynamics with static inputs

For conservative networks, a popular example is the discrete-time damped PageRank algo-

rithm [22], [30]. PageRank is a link analysis tool for a network of hyperlinked webpages, able
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to rank their relative importance. The algorithm describes the diffusion of a conserved amount

of scores Si(t), and can be formulated equivalently as the following continuous-time model with

constant U

˙̄S(t) = αQS̄(t) +
1− α

n
1̄ , (34)

where Q is the negative of the weighted in-degree Laplacian as defined in (6), and α ∈ [0, 1]

represents a damping factor that captures typical internet user behavior. Here, 1̄ denotes the

all-one vector. In this example for controlled conservative networks, the transition rate matrix Q

is a singular matrix.

We present now an example of controlled network dynamics where the transition rate matrix

is modified and in general non-singular. Adopting the definition proposed in [14], as well as the

non-conservative update rule (P2), an agent is called stubborn if it does not adjust its own value

based on the values of neighboring nodes. This scenario is of interest to model opinion dynamics

where a set of agents has constant opinion. In these networks, the out-degree of a stubborn agent

is zero and the corresponding row of Q is a zero-row.3 For example, in the presence of two

stubborn agents a1 = 2 and a2 = n, the governing equation can be written as











˙̄S1

...

˙̄Sn











=





















Q1,1 Q1,2 · · · Q1,n

0 0 · · · 0

Q3,1 Q3,2 · · · Q3,n

...
...

. . .
...

0 0 · · · 0































S̄1

...

S̄n











, (35)

which can be reformulated as











˙̄S ′
1

...

˙̄S ′
n−2











=











Q′
1,1 Q′

1,2 · · · Q′
1,n−2

...
...

. . .
...

Q′
n−2,1 Q

′
n−2,2 · · · Q′

n−2,n−2





















S̄ ′
1

...

S̄ ′
n−2











+











...
...

Bk,a1 Bk,a2

...
...















S̄a1

S̄a2



 , (36)

3Conversely, if the in-degree of an agent equals zero, the node acts as a sink, which can receive property from every neighbor

but does not contribute to its neighborhood. This case, where Q contains a zero column, does not lead to a convenient reduction

of the state space.
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where Bk,a1 and Bk,a2 are the a1-th and a2-th columns of Q with the a1-th and a2-th entries

omitted. This gives us

˙̄S ′(t) = Q′S̄ ′(t) + BUst , (37)

where S̄ ′ and Q′ represent the reduced state space and reduced transition rate matrix, and Ust =

[S̄a1 · · · S̄an ]T contains the static quantities of the stubborn agents. From (37), we notice that

stubborn agents allow for a reduction of the state space and a formulation equivalent to (B)

with constant but possibly different inputs for different stubborn nodes and U = BUst. The

reduced state space excludes the stubborn agents and the reduced transition rate matrix excludes

the rows and columns corresponding to these agents. The formulation with reduced state space

corresponds to an open-loop control system.

Since U is constant, it is known that bounded-input bounded-output (BIBO) stability of

(37) is guaranteed iff all eigenvalues of Q′ have negative real components. In other words,

a finite input to the system always leads to a finite output. Since Q′ is constructed differ-

ently from Q, the spectrum of homogeneous and inhomogeneous systems is not identical.

Define Ist = {i | S̄i(t) is constant} as the index set of stubborn agents. Then, we can write

Qii = −∑j 6=i,j /∈Ist
Qij −

∑

j 6=i,j∈Ist
Qij , and the row sum of Q′ satisfies

Q′
ii +

∑

j 6=i

Q′
ij ≤ 0 . (38)

Thus, Q′ does not have a zero eigenvalue in general and is non-singular in general. In the

following Lemma, we provide a condition that guarantees the non-singularity of Q′.

Lemma 7. In a network with stubborn agents, the transition rate matrix Q′ of the reduced state

space is non-singular if all nodes are connected to at least one stubborn agent.

Proof: If each agent is connected to at least one stubborn agent, Q′ is strictly diagonally

dominant and we can write

Q′
ii +

∑

j 6=i

Q′
ij < 0 . (39)

According to Geršgorin’s circle theorem, all eigenvalues of Q′ reside in the complex plane within

the union of the disks Di = {z ∈ C : |z−Q′
ii| ≤

∑

j 6=i |Q′
ij|} , 1 ≤ i ≤ n′ with n′ the dimension

of Q′. As |Q′
ii| >

∑

j 6=i |Q′
ij| for a strictly diagonally dominant matrix, Q′ cannot have a zero

eigenvalue and is invertible.

Lemma 7 shows that the eigenvalues of networks with stubborn agents are on average more

concentrated around Q′
ii, which can accelerate the network dynamics.
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B. Network dynamics with dynamic inputs

We present here an example of controlled network dynamics with dynamic inputs, where the

transition rate matrix is modified due to closed-loop control actions. In dynamic learning, each

node updates its own value based on the values of its neighboring nodes, as well as the difference

of its own value with a measurement of the system state4 [18]. This scenario is of interest to

model tracking systems that are augmented with the information present in the neighborhood of

each node. The dynamics of an individual node can be represented by the following update rule

Si(t+∆t) = Si(t) +
∑

j 6=i

Cij(Sj(t)− Si(t)) + β(Di(t)− Si(t)) , (40)

where Di(t) represents the measurement of node i at time t. If the measurements of all nodes

are made at a rate ρ, then the corresponding governing equation is

˙̄S(t) = (Q− β′In)S̄(t) + β′D(t) , (41)

where β′ = βρ, and where rij = ρ in the construction of Qij . This is again reminiscent of (B)

with time-varying input vector U = β′D(t), and corresponds to closed-loop proportional control

systems with reference input D(t) and proportional gain β′. For constant β′, iff all eigenvalues

of QD = Q− β′In have negative real components, then an input β′D(t) that is bounded for all

time t > 0 will result in BIBO stability. Note that if Q corresponds to a CTMC and β′ > 0, then

the eigenvalues of QD are exactly β′ less than the eigenvalues of Q, and the resultant system is

guaranteed to be BIBO stable, provided β′ takes the same value for all agents.

C. Convergence and stability for controlled network dynamics

In this section, we analyze the convergence behavior of the inhomogeneous equation (B)

both for singular and non-singular transition rate matrices. The solution to the inhomogeneous

equation is given in (33) for an input vector U(t) ∈ U . It is relevant to study the special case of

constant input vectors, for instance when the input vectors belong to the boundary of admissible

set ∂U . For constant input vectors, the solution to (B) is given by

S̄(t) = A exp(tΛ)A−1S0 +

∫ t

0

A exp((t− τ)Λ)A−1Udτ

=
∑

k

ck exp(qkt)vR,k +
∑

k

∫ t

0

exp(qk(t− τ))vR,kv
T
L∗,kUdτ

=
∑

k

ck exp(qkt)vR,k +
∑

k

uk

∫ 0

t

exp(qk(t− τ))d(t− τ)vR,k , (42)

4All these are performed simultaneously, in contrast to (P2).
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where uk = vTL∗,kU . This result can be further developed for non-singular and singular transition

rate matrix.

Non-singular Q: As Q has no zero eigenvalues, (42) can be written as

S̄(t) =
∑

k

ck exp(qkt)vR,k +
∑

k

ukq
−1
k (exp(qkt)− 1)vR,k , (43)

and the steady-state behavior is given by

lim
t→∞

S̄(t) = S∗ = csvR,s −
∑

k

ukq
−1
k vR,k . (44)

Alternatively, the steady state can also be found by means of the inverse of Q as follows

S∗ = −Q−1U . (45)

Both formulations allow us to define the set of attainable stationary network states S(∞) ⊂ R
n

as a function of the set of admissible controls U .

Singular Q: When Q is singular with single zero eigenvalue, we get

S̄(t) =
∑

k

ck exp(qkt)vR,k

+
∑

k 6=1

ukq
−1
k (exp(qkt)− 1)vR,k + ustvR,s , (46)

with us and vR,s the scalar and eigenvector corresponding to qs = 0. By taking the limit over

time, we get

lim
t→∞

S̄(t) = csvR,s −
∑

k 6=1

ukq
−1
k vR,k + lim

t→∞
ustvR,s . (47)

Since us only equals zero for U = 0, (47) illustrates that the stationary network state under

constant input U is unbounded both for conservative and non-conservative networks.

Remark 3. In Section III, we demonstrated that the stationary behavior of uncontrolled networks

only depends on the left and right eigenvector of Q corresponding to qs = 0. As opposed to these

results, the stationary behavior of networks under control is a function of all eigenvectors of

Q, which can be observed in (44) and (47). Therefore, while the uncontrolled non-conservative

dynamics always led to consensus, this is not the case anymore for controlled non-conservative

networks. The set of attainable network states in steady state for uncontrolled non-conservative

networks is represented by a point in R
n
+, while the set of attainable network states for controlled

non-conservative networks does not have this restriction. In fact, we observe that the presence

of stubborn agents in the network results in polarization of the opinions in steady state.
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We illustrate the former results by revisiting the use case of the stubborn agents presented in

Section IV-A. Without stubborn agents, Q has by construction eigenvalue qs = 0 and is singular,

in which case we observe from (47) that BIBO stability is no longer guaranteed and the system

is instead only marginally stable. For the convergence and stability of the system with reduced

state space, we formulate the following Lemma.

Lemma 8. If each agent is connected to at least one stubborn agent, then the network state

converges to S̄ ′∗ = −Q′−1BUst, with B and Ust defined in (35). Moreover, the equilibrium is

globally asymptotically stable.

Proof: Building on Lemma 7, the poles of Q′ lie in the open left half-plane and Q′ is non-

singular. Therefore, the first assertion follows from the steady state behavior expressed in (44)

and (45). We express the system dynamics of the inhomogeneous equation as a homogeneous

equation in the deviation of the network state from steady state S̄ ′
∆(t) = S̄ ′ − S̄ ′∗. To prove the

global asymptotic stability, we distinguish between symmetric and asymmetric matrices Q′. For

the symmetric case, the Lyapunov function V = S̄
′T
∆ S̄

′
∆ can be used and we obtain

V̇ = S̄ ′T
∆Q

′TS̄ ′
∆ + S̄ ′T

∆Q
′S̄ ′

∆ < 0 , ∀ S̄ ′
∆ 6= 0̄ (48)

since Q′ and thus its transpose are negative definite, due to Lemma 7. This demonstrates that the

equilibrium point of the network is globally asymptotically stable, and the location of the point

can be obtained by setting ˙̄S ′
∆ = 0̄. The Lyapunov function above does not hold for nonsymmetric

Q′. However, because Q′ is strictly diagonally dominant, the existence of a Lyapunov function

for Q′ can be demonstrated [31]. One such Lyapunov function is V = maxi |S̄ ′
∆,i|, which proves

the global asymptotic stability of S̄ ′ for asymmetric Q′.

D. Set of attainability: analysis and comparison

It is very instructive to study the set of attainability, which is the set of states that can

be reached by using all possible controls. The set of attainability for conservative and non-

conservative networks can be expressed as

S(t) ≡S(t0, t,M0) = {S(t) ∈ R
n |S(t) = e(t−t0)QS0

+

∫ t

t0

e(t−τ)QU(τ)dτ, S0 ∈ M0, U(τ) ∈ U} , (49)
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where M0 is the set of possible initial values S0 and U is the compact set of admissible controls

in R
n.5 In view of conservative and non-conservative networks, we aim to describe the differences

between the corresponding attainability sets at a given time t when the dynamics take place over

the same network. To avoid confusion, we will indicate the system matrices for the conservative

and non-conservative network dynamics by Qc and Qnc respectively. When the network structure

is the same, Qc differs from Qnc only on the diagonal. Different methods exist to describe the

attainability set, for instance by using the maximal principle [32] or by means of ellipsoidal

methods that allow to numerically calculate approximations of the attainability set in terms of

inner and outer bounds [33]. Here, for the characterization of attainability sets we propose to

make use of the support function, which is widely applied in the analysis of convex sets [34].

The set of attainability can be written also by means of the Minkowski sum

S(t) = e(t−t0)QM0 +

∫ t

t0

e(t−τ)QUdτ . (50)

The Minkowski sum and the linear transformations in (50) preserve compactness and convexity

[34]. Therefore, if the initial set M0 and set of admissible controls U are compact and convex,

then the set of attainability S(t) is also compact and convex. Every non-empty compact convex

set F is uniquely determined by its support function c(F , ψ), which is defined as

c(F , ψ) = sup
f∈F

〈f, ψ〉 , (51)

where 〈., .〉 represents the inner product on R
n. For ψ ∈ Sn(0, 1) = {x | ‖x‖ = 1} and ‖ · ‖

the ℓ2-norm, the support function represents the signed distance between the origin and the

hyperplane Γψ = {x | 〈x, ψ〉 = c(F , ψ)}. If c(F1, ψ) = c(F2, ψ) , ∀ψ ∈ R
n, then F1 = F2. Since

c(F , kψ) = k · c(F , ψ) , ∀k ≥ 0, the support function can be used with a restriction of ψ to the

unit sphere Sn(0, 1). We propose to use the Hausdorff metric to measure the distance between

the attainability sets of the conservative and non-conservative networks at a given time t. The

Hausdorff distance is a metric that describes the distance between subsets in a metric space and

is defined as

h(F1,F2) = min
r≥0

{r | F1 ⊂ F2 + Bn(0, r),F2 ⊂ F1 + Bn(0, r)} , (52)

where the n-dimensional ball around the origin with radius r is represented by Bn(0, r) =

{x | ‖x‖ ≤ r}. In the following lemma, we present an upper bound for the Hausdorff distance

between the attainability sets of conservative and non-conservative networks.

5Note that for linear systems the attainability sets for open and closed-loop control are the same.
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Lemma 9. The Hausdorff distance between the attainability sets of conservative and non-

conservative networks, indicated by Sc and Snc respectively, can be upper bounded as

h(Sc(t),Snc(t))

≤ sup
m∈M0

‖m‖‖A− B‖F + sup
u∈U

‖u‖‖C −D‖F , (53)

with ‖ · ‖F the Frobenius norm, and where AT = etQc , BT = etQnc ,

CT =







Q−1
c (etQc − In) for Qc nonsingular ,

t
∑∞

k=0
1

k+1
tkQk

c

k!
for Qc singular

(54)

and

DT =







Q−1
nc (e

tQnc − In) for Qnc nonsingular ,

t
∑∞

k=0
1

k+1
tkQk

nc

k!
for Qnc singular .

(55)

Proof: The support functions for conservative and non-conservative attainability sets are

defined as

c(Sc(t), ψ) = c
(

e(t−t0)QcM0, ψ
)

+

∫ t

t0

c
(

e(t−τ)QcU , ψ
)

dτ

c(Snc(t), ψ) = c
(

e(t−t0)QncM0, ψ
)

+

∫ t

t0

c
(

e(t−τ)QncU , ψ
)

dτ , (56)

where the property has been used that c(
∫ t

t0
e(t−τ)QUdτ, ψ) =

∫ t

t0
c
(

e(t−τ)QU , ψ
)

dτ . We bear

on the following property of the Hausdorff metric to characterize the difference between the

respective attainability sets

h(Sc(t),Snc(t)) = max
ψ∈Bn(0,1)

|c(Sc(t), ψ)− c(Snc(t), ψ)| . (57)

Assuming that t0 = 0, we can write

c(Sc(t), ψ)− c(Snc(t), ψ) = c
(

etQcM0, ψ
)

− c
(

etQncM0, ψ
)

+

∫ t

0

[

c
(

e(t−τ)QcU , ψ
)

− c
(

e(t−τ)QncU , ψ
)]

dτ . (58)

For the integral term in (58) we find

∫ t

0

[

c

(

∞
∑

k=0

(t− τ)k
Qk

c

k!
U , ψ

)

− c

(

∞
∑

k−0

(t− τ)k
Qk

nc

k!
U , ψ

)]

dτ

=
∞
∑

k=0

∫ t

0

(t− τ)kdτ

[

c

(

Qk
c

k!
U , ψ

)

− c

(

Qk
nc

k!
U , ψ

)]

, (59)
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which can be solved as

c
(

Q−1
c

(

etQc − In
)

U , ψ
)

− c
(

Q−1
nc

(

etQnc − In
)

U , ψ
)

(60)

when Qc and Qnc are non-singular, and

c

(

t
∞
∑

k=0

1

k + 1

tkQk
c

k!
U , ψ

)

− c

(

t

∞
∑

k=0

1

k + 1

tkQk
nc

k!
U , ψ

)

(61)

when Qc and Qnc are singular. Defining A, B, C and D as in Lemma 9, (54), and (55), the

Hausdorff metric can now be bounded as follows

h(Sc(t),Snc(t)) = max
ψ∈Bn(0,1)

|c(Sc(t), ψ)− c(Snc(t), ψ)|

= max
ψ∈Bn(0,1)

∣

∣c(ATM0, ψ)− c(BTM0, ψ)

+ c(CTU , ψ)− c(DTU , ψ)
∣

∣

= max
ψ∈Bn(0,1)

∣

∣c(M0, Aψ)− c(M0, Bψ)

+ c(U , Cψ)− c(U , Dψ)
∣

∣

≤ max
ψ∈Bn(0,1)

|c(M0, Aψ)− c(M0, Bψ)|

+ |c(U , Cψ)− c(U , Dψ)|
(a)

≤ max
ψ∈Bn(0,1)

sup
m∈M0

‖m‖‖(A− B)ψ‖+ sup
u∈U

‖u‖‖(C −D)ψ‖

(b)

≤ max
ψ∈Bn(0,1)

‖ψ‖
(

sup
m∈M0

‖m‖
√

∑

i,j

(A− B)2ij

+ sup
u∈U

‖u‖
√

∑

i,j

(C −D)2ij

)

= sup
m∈M0

‖m‖
√

∑

(A− B)2ij + sup
u∈U

‖u‖
√

∑

(C −D)2ij , (62)

where (a) follows from the property of support functions that |c(F , ψ1)−c(F , ψ2)| ≤ supf∈F ‖f‖‖ψ1−
ψ2‖, and where (b) follows from 〈x, ψ〉 ≤ ‖x‖‖ψ‖. This concludes the proof.

The presented upper bound for the Hausdorff distance between the attainability sets of con-

servative and non-conservative networks provides us with a metric to compare the variation of

network dynamics following from different update rules. Some special cases are listed here

(i) In the case of symmetric networks, we have Qc = Qnc. We find that h(Sc(t),Snc(t)) = 0,

such that Sc(t) = Snc(t), or the attainability set is the same for conservative and non-

conservative network dynamics when the system matrix is symmetric.
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(ii) In the case of networks with link directions inversed, we have Qc = QT
nc. In this case, it

can be demonstrated easily that B = AT and D = CT. The Hausdorff distance can in this

case be upper bounded as

h(Sc(t),Snc(t)) ≤ sup
m∈M0

‖m‖
√

∑

(A− AT)2ij

+ sup
u∈U

‖u‖
√

∑

(C − CT)2ij . (63)

This formula reveals how the Hausdorff distance increases with the asymmetry of the

network.

Apart from characterizing the Hausdorff distance between attainability sets, the support func-

tion is also very powerful for other purposes. We note here that the support function allows us

to verify if sets intersect by applying

Sc(t) ∩ Snc(t) 6= ∅ ⇔ c(Sc(t), ψ) + c(Snc(t),−ψ) ≥ 0, ∀ψ ∈ R
n . (64)

Furthermore, we can verify if Sc(t) ⊂ Snc(t), by applying

Sc(t) ⊂ Snc(t) ⇔ c(Sc(t), ψ) ≤ c(Snc(t), ψ), ∀ψ ∈ R
n . (65)

Note that the verification of intersection and inclusion usually requires numerical analysis.

V. NETWORK CONTROL BY STRUCTURE MODIFICATION

Instead of controlling the network dynamics through exogenous excitation, which may not

always be feasible, we can also steer the dynamics by modifying the network structure.

A. Network structure modification through design

Instead of controlling the system with an exogenous input term, we can also modify the net-

work structure directly to achieve control. Modifying the network structure may be preferable to

introducing external excitations in systems where it is more convenient to modify the interactions

between agents than to introduce or remove property from agents. Through this modification,

we can shift both the eigenvalues and the eigenvector components, thereby changing the system

dynamics, characteristic timescales, as well as the stationary behavior. By modifying the links

carefully, we can achieve modification of the characteristic timescales without reshaping the basis

of system modes, which is composed by the eigenvectors. This is formulated in the following

Lemma.
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Lemma 10. If the diagonal elements of Λ in the decomposition of a diagonalizable matrix

Q = AΛA−1 are altered, then the resulting matrix Q̃ = AΛ̃A−1 has the same system modes and

represents a CTMC, given that the eigenvalue qs = 0 is preserved and qi < 0, ∀ i 6= 1.

Proof: Apart from decomposing Q into the matrices A, Λ and A−1, we can also reconstruct

Q by multiplying A, Λ and A−1 together in the appropriate order. By holding A constant and

modifying the diagonal elements of Λ, we can achieve a modification in Q, represented by Q̃,

without affecting the composition of the system modes. The stability of the new eigenvalues of

the modified Q determines if Q̃ still represents a CTMC described by (A). With qs = 0 and

qs ∈ σ(Q̃) where σ(.) represents the spectrum of a matrix, the columns and rows of Q̃ will still

sum to zero for conservative and non-conservative networks, respectively. Hence, Q̃ represents

the transition rate matrix of a CTMC.

To illustrate how we can modify the eigenvalues of a network to achieve a shift in the system

response, we consider a symmetric star network depicted in Fig. 5. The transition rate matrix Q

corresponding to this network is

Q =





















−4 1 1 1 1

1 −1 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 0 0 −1





















.

The eigenvalues of this matrix are 0 with multiplicity 1, −5 with multiplicity 1 and −1 with

multiplicity 3. The corresponding eigenvectors are the steady-state eigenvector describing equi-

libration between all the nodes ([ 1 1 1 1 1 ]), an eigenvector describing diffusion between the

peripheral nodes and the central node ([ −4 1 1 1 1 ]), and eigenvectors describing diffusion among

the peripheral nodes ([ 0 1 1 1 −3 ], [ 0 0.36 1 −1.36 0 ] and [ 0 −1.36 1 0.36 0 ]). Suppose we want to slow

down diffusion between the peripheral nodes and the central node. We can do so by decreasing

the effective update rate of this mode, which causes the relative importance of diffusion among

1

2 3

4 5

1

1

1

1

1

1

1

1

Fig. 5: Star graph S5 with symmetric links of unit weights.
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the peripheral nodes to increase and results in extra links facilitating this diffusion. For instance,

by changing the effective update rate of the peripheral-central mode from 5 to 4.5, we obtain

the following transition rate matrix

Q =





















−3.6 0.9 0.9 0.9 0.9

0.9 −0.975 0.025 0.025 0.025

0.9 0.025 −0.975 0.025 0.025

0.9 0.025 0.025 −0.975 0.025

0.9 0.025 0.025 0.025 −0.975





















.

In the resultant architecture, the links between the central node and the peripheral nodes have

weights of 0.9 instead of 1, and the links between the peripheral nodes have weights of 0.025

instead of 0. The corresponding network is a superposition of the two graphs depicted in Fig. 6.

B. Network structure modification through adaptive control

In sufficiently large systems, it can be computationally intensive to perform the eigende-

composition of various Q matrices in order to determine the network structure that gives the

most desirable system response. Moreover, it is often not straightforward to translate network

objectives, both dynamic and in steady-state, into an appropriate eigendecomposition. There are

two possible approaches to handle this issue. Firstly, we can choose from a set of matrices

that deviate from the original Q by small perturbations δQ. The eigenvalue and eigenvector

perturbations can be derived as a function of δQ for sufficiently small δQ. However, this limits

us to small modifications in the network structure that do not span the feasible action space, and

potentially more desirable network structures may not be explored by this approach. Nevertheless,

it is possible to examine larger modifications without going through the computational complexity

by performing adaptive control driven by reinforcement learning.

In the approach based on adaptive control, we formulate the problem as an MDP. The state

space of the MDP is equivalent to the node space V of the network, while the action space W

1

2 3

4 5

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9 2 3

54

0.025

0.025

0.025

0.025
0.025 0.025

Fig. 6: The superposition of these two graphs yields the network structure corresponding to the modified transition rate matrix

given in (66).
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of the MDP is equivalent to the set of possible Q matrices that the network can adopt. More

formally, W = {Q1, . . . , Qw} for w different actions. In essence, the MDP is a direct extension

of the CTMC upon which the governing equation of the network dynamics is based. By selecting

a reward function R(X,Q) that describes the desirability of action Q given that the system is

in state X , and by scheduling decisions to be made immediately after a change of the network

state6, the MDP is completely defined. The solution to the MDP gives us the most desirable

network structure, which is obtained by picking the most highly rewarded incoming or outgoing

link weights for each node. The conditions for optimality in the MDP can be determined by

searching the policy that yields the maximum expected reward integrated over time

EX0,Q(0), sample paths

[
∫ ∞

0

γtR(X(t), Q(t))dt

]

, (66)

where γ ∈ (0, 1) denotes a discount rate. By considering (A) and (66) simultaneously, we

obtain the Hamilton-Jacobi-Bellman equation for the system. In optimal control theory, this

equation is solved to obtain the optimal policy for the system. For large state and/or action

spaces, the solution to this problem is difficult to obtain. For a more computationally manageable

approach, we turn to reinforcement learning to determine a suboptimal solution with sufficiently

fast convergence. For each state-action pair (X,Q), we store a quality value V (q)(X,Q), and

update V (q)(X,Q) based on the Q-learning method [23]

V
(q)
k+1(Xk, Qk) = (1− µ)V

(q)
k (Xk, Qk)

+ µ

[

max
Q∈W

R(Xk+1, Q) + γmax
Q∈W

V
(q)
k (Xk+1, Q)

]

, (67)

where k is the index indicating the k-th change of the system state, µ ∈ (0, 1] is the learning

rate of the algorithm, and Xk is state vector after k changes of the system. Whenever the

system transitions to a new state, a new action has to be selected. We set up the system such

that with probability ǫ, the system selects the action with the highest quality given its current

state, while with probability 1 − ǫ the system selects a random action. This is known as the

ǫ-greedy policy where ǫ is the exploitation probability of the system. By selecting appropriate

values of µ, γ and ǫ, as well as an appropriate reward function R(X,Q), we can design the

learning process to achieve predefined network objectives at a suitable convergence rate. In other

words, the reinforcement learning algorithm can offer us a well-performing network structure

within a reasonable amount of time by searching a reasonable portion of the total space of

6This means that the variation of the active action Q(t) with time is a piecewise constant function.
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Fig. 7: Time evolution of quality V (q)(X1, Q) for 5 different actions Q for a single trial.

available actions. The performance of a similar learning algorithm was recently examined in a

CTMC-based duty cycling framework [35].

To illustrate the use of an MDP to select a desirable Q in a large network, we set up a

network and corresponding state space containing 20 agents. We also set up the action space

W by generating 400 Q matrices corresponding to 400 complete graphs whose links each have

weights sampled from a uniform distribution on [0, 1], to simulate 400 different random network

configurations. These matrices obey the conservative relation (12) according to (P1). In addition,

we select 2 arbitrary nodes (12 and 14) out of the 20 to serve as target nodes for our system.

We let the state transitions of the MDP be governed by a grand system transition matrix Qg.

Whenever a state transition occurs, we assign a reward of 5 whenever the state coincides with 1 of

these 2 target nodes, and a reward of 0 otherwise, in order to encourage the system to visit these

states more often. The MDP then selects an action, following which Qg is updated based on this

selected action. For example, if the updated state of the system is node 5 and action 20 is selected,

then the 5th column of Qg is replaced by the 5th column of Q20 corresponding to the 20th action.

This means that the incoming link weights of node 5 are updated to those corresponding to the

20th Q matrix. For this work, we ran 100 independent numerical simulations describing the

time evolution of 100 MDPs with the same state and action spaces, but with different initial
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Fig. 8: Stationary probability distribution of the simulated network averaged over 100 trials. The nodes marked red are the two

randomly selected nodes (12 and 14) that were assigned a reward on every visit by each MDP.

states S0 and actions Qg(0). Using the reinforcement learning parameters µ = 0.2, ǫ = 0.4 and

γ = 0.995, we run each simulation for 5E6 time-steps, following which we find the steady-state

eigenvector (normalized to sum to 1), or stationary distribution, vR,s for each last known Qg

such that QgvR,s = 0 and
∑

i vR,s(i) = 1. In Fig. 7, we demonstrate using the time evolution of

V (q)(X1, Q) for 5 different actions Q that the learning curve has reached convergence. In Fig. 8,

we plot the last known stationary distribution vR,s(i) over all the states i averaged over the 100

trials, and demonstrate that the MDP is, on average, able to modify the stationary distribution

of the system after sufficient time has elapsed by careful design of the reward function. In this

case, we guided the system to favor nodes 12 and 14 by modifying the network structure. This

MDP methodology can either be used online to allow the network to respond to time-varying

objectives, or offline to cycle through various network possibilities with reduced computational

complexity.

VI. CONCLUSION

In this work, we proposed a probabilistic framework that represents the dynamics in multi-

agent networks subject to two protocols with constant and variable total network quantity. By

including the possibility of asymmetric updates, weighted links and switching topologies, we
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examined the general stability and temporal dynamics in conservative and non-conservative

networks. Furthermore, we demonstrated the ability to achieve network control using either

external excitation or modification of the network structure. Our framework allows to study

individual trajectories in terms of the dynamical and stationary properties. In particular, we

stated the exact role of the network structure, the update rule, and the external excitation in the

characteristics of the controlled output. In addition, we presented a method to analyze the set

of trajectories under control constraints by examining the set of attainability. We presented a

method based on the support function to measure the difference between attainability sets of

networks that operate under different protocols. As to the modification of the network structure,

we presented an algorithm involving reinforcement learning to obtain networks with a desired

behavior. Through these techniques, we enabled the micromanagement of the dynamics that take

place over multi-agent networks. Our future work will include applications to large-scale random

networks, and cover time-inhomogeneous and stochastic governing equations. Another important

extension is to develop more insight in the higher order moments of the property.
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[33] A. B. Kurzhanskiı̆ and I. Vályi, Ellipsoidal calculus for estimation and control. Birkhäuser, 1997.
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