Existence and boundedness of optimal controls in infinite-horizon problems

Sergey Aseev Steklov Mathematical Institute, Moscow, Russia; International Institute for Applied Systems Analysis, Laxenburg, Austria

International conference in memory of academician Arkady Kryazhimskiy "Systems Analysis: Modeling and Control" Ekaterinburg, Russia, 3–8 October, 2016

Optimal control problem with infinite time horizon

Consider the following problem (P):

$$J(x(\cdot), u(\cdot)) = \int_0^\infty f^0(t, x(t), u(t)) dt \to \max$$
$$\dot{x}(t) = f(t, x(t), u(t)), \qquad x(0) = x_0,$$
$$u(t) \in U.$$

,

Here $x(t) \in \mathbb{R}^n$ and $u(t) \in \mathbb{R}^m$, $t \ge 0$, $x_0 \in G$ where G is an open convex set in \mathbb{R}^n , U is a nonempty closed (**not necessary bounded**) set in \mathbb{R}^m . The class of *admissible controls* consists of all $u(\cdot) \in L^{\infty}_{loc}([0,\infty), \mathbb{R}^m)$ such that $u(t) \in U$ for all $t \ge 0$. It is assumed that for any $u(\cdot)$ the corresponding *admissible trajectory* $x(\cdot)$ exists on $[0,\infty)$ in G and the function $t \mapsto f^0(t, x(t), u(t))$ is locally integrable on $[0,\infty)$. An admissible pair $(x_*(\cdot), u_*(\cdot))$ is (strongly) *optimal* in problem (P) if the integral functional $J(x(\cdot), u(\cdot))$ converges and for any other admissible pair $(x_*(\cdot), u(\cdot))$ the following inequality holds:

$$J(x_*(\cdot), u_*(\cdot)) \geq \limsup_{T \to \infty} \int_0^T f^0(t, x(t), u(t)) dt.$$

Example 1

Consider the following problem (P1):

$$J(x(\cdot), u(\cdot)) = \int_0^\infty e^{-\rho t} x(t) u(t) dt \to \max,$$

$$\dot{x}(t) = -u(t) x(t), \qquad x(0) = x_0 > 0, \quad \rho > 0,$$

$$u(t) \in [0, \infty).$$

There is no any optimal control in (P1) in the class $L^{\infty}_{loc}[0,\infty)$.

1) For any admissible pair $(x(\cdot), u(\cdot))$ we have

$$J(x(\cdot), u(\cdot)) = -\int_0^\infty e^{-\rho t} \dot{x}(t) \, dt = x_0 - \rho \int_0^\infty e^{-\rho t} x(t) \, dt < x_0.$$

2) The sequence $\{u_k(\cdot)\}_{k=1}^{\infty}$ where $u_k(t) \equiv k^2$ if $t \in [0, 1/k]$ and $u_k(t) = 0$ if t > 1/k, k = 1, 2, ..., is the maximizing sequence.

3) We have

$$J(x_k(\cdot), u_k(\cdot)) = \frac{k^2 x_0}{\rho + k^2} \left(1 - e^{-\frac{k^2 + \rho}{k}} \right) \to x_0 \quad \text{as} \quad k \to \infty.$$

(A1) Regularity assumption: For a.e. $t \in [0, \infty)$ partial derivatives $f_x(t, x, u) \ \mu \ f_x^0(t, x, u)$ do exist for any $(x, u) \in G \times U$. Functions $f(\cdot, \cdot, \cdot), \ f^0(\cdot, \cdot, \cdot), \ f_x(\cdot, \cdot, \cdot)$ and $f_x^0(\cdot, \cdot, \cdot)$ are Lebesgue measurable in t for all $(x, u) \in G \times U$, continuous in (x, u) for a.e. $t \in [0, \infty)$ and locally bounded.

(A2) Growth assumption: For any admissible pair $(x(\cdot), u(\cdot))$ there exist a number $\beta > 0$ and a nonnegative integrable function $\lambda : [0, \infty) \mapsto \mathbb{R}^1$ such that for all $\zeta \in G$, satisfying the inequality $\|\zeta - x_0\| < \beta$, the Cauchy problem

 $\dot{x}(t) = f(t, x(t), u(t)), \qquad x(0) = \zeta,$

has a solution $x(\zeta;\cdot)$ on $[0,\infty)$ in G and

$$\max_{x\in[x(\zeta;t),x(t)]} \left| \langle f_x^0(t,x,u(t)),x(\zeta;t)-x(t) \rangle \right| \stackrel{\text{a.e.}}{\leq} \|\zeta-x_0\|\lambda(t).$$

(A3) Convexity assumption: For any M > 0 there is a compact set $U_M \subset U$ such that $\{u \in U : ||u|| \le M\} \subset U_M$ and for a.e. $t \ge 0$ for all $x \in G$ the set

$$Q_M(t,x) = \left\{ (z^0,z) \in \mathbb{R}^{n+1} \colon z^0 \le f^0(t,x,u), \ z = f(t,x,u), \ u \in U_M \right\}$$

is convex.

(A4) Estimate on the "tail" of the utility functional: There is a decreasing function $\omega : [0, \infty) \mapsto \mathbb{R}^1$, $\omega(t) \to +0$ as $t \to \infty$ such that for any $0 \leq T \leq T'$ for all $(x(\cdot), u(\cdot))$ we have

$$\int_{T}^{T'} f^{0}(t, x(t), u(t)) dt \leq \omega(T).$$

Along arbitrary admissible pair $(x(\cdot), u(\cdot))$ consider the following system $\dot{z}(t) = -[f_x(t, x(t), u(t))]^* z(t).$

Due to (A1) the normalized matrix solution $Z(\cdot)$ is well defined on $[0, \infty)$. **Lemma 1.** If admissible pair $(x(\cdot), u(\cdot))$ fits condition (A2) then

$$\left\|Z^{-1}(t)f_x^0(t,x(t),u(t))\right\|\leq \sqrt{n}\lambda(t), \qquad t\geq 0.$$

This implies that for any T > 0 the function $\psi_T : [0, T] \mapsto \mathbb{R}^n$ defined as

$$\psi_T(t) = Z(t) \int_t^T Z^{-1}(s) f_x^0(s, x(s), u(s)) \, ds, \qquad t \in [0, T],$$

is absolutely continuous and the function $\psi \colon [0,\infty) \mapsto \mathbb{R}^n$ defined as

$$\psi(t)=Z(t)\int_t^\infty Z^{-1}(s)f_x^0(s,x(s),u(s))\,ds,\qquad t\ge 0,$$

is locally absolutely continuous.

Define $\mathcal{H}: [0,\infty) \times G \times U \times \mathbb{R}^n \to \mathbb{R}^1$ in a standard way:

$$\begin{aligned} \mathcal{H}(t,x,u,\psi) &= f^0(t,x,u) + \langle \psi, f(t,x,u) \rangle, \\ t \in [0,\infty), \ x \in G, \ u \in U, \ \psi \in \mathbb{R}^n. \end{aligned}$$

Main result

Theorem 1. Assume (A1)–(A4) hold and there is an admissible pair $(\bar{x}(\cdot), \bar{u}(\cdot))$ such that $J(\bar{x}(\cdot), \bar{u}(\cdot)) > -\infty$. Assume there are a continuous positive function $M: [0, \infty) \mapsto \mathbb{R}^1$, and a positive function $\delta: [0, \infty) \mapsto \mathbb{R}^1$, $\lim_{t\to\infty} \frac{\delta(t)}{t} = 0$, such that for any admissible pair $(x(\cdot), u(\cdot))$ which satisfies on some set $\mathfrak{M} \subset [0, \infty)$, meas $\mathfrak{M} > 0$, the inequality ||u(t)|| > M(t), for a.e. $t \in \mathfrak{M}$ and all $T \ge t + \delta(T)$ we have

$$\sup_{u\in U: ||u||\leq M(t)} \mathcal{H}(t,x(t),u,\psi_{\mathcal{T}}(t)) - \mathcal{H}(t,x(t),u(t),\psi_{\mathcal{T}}(t)) > 0. \tag{(*)}$$

Then there is an optimal control $u_*(\cdot)$ in (P) and $||u_*(t)|| \leq M(t)$. If for a.e. $t \in \mathfrak{M}$ inequality (*) holds uniformly in $T : T - \delta(T) \geq t$, i.e.

$$\inf_{\mathcal{T}: |\mathcal{T}-\delta(\mathcal{T})\geq t} \left\{ \sup_{u\in U: \|u\|\leq M(t)} \mathcal{H}(t, x(t), u, \psi_{\mathcal{T}}(t)) - \mathcal{H}(t, x(t), u(t), \psi_{\mathcal{T}}(t)) \right\} > 0,$$

then any optimal control $u_*(\cdot)$ in (P) satisfies $||u_*(t)|| \stackrel{a.e.}{\leq} M(t)$.

Example 2

Consider the following problem (P2):

$$J(S(\cdot), u(\cdot)) = \int_0^\infty e^{-\rho t} \left[\ln S(t) + \ln u(t)\right] dt \to \max,$$

$$\dot{S}(t) = rS(t) \left(1 - \frac{S(t)}{K}\right) - u(t)S(t), \qquad S(0) = S_0,$$

$$u(t) \in (0, \infty).$$

Here $S_0 > 0$, K > 0, r > 0 and $\rho > 0$. We set $G = (0, \infty)$. For any admissible $S(\cdot)$ we have $S(t) \le S_{max} = \max \{S_0, K\}$, $t \ge 0$. Lemma 2. There is a decreasing function $\omega : [0, \infty) \mapsto (0, \infty)$ such that $\omega(t) \to +0$ as $t \to \infty$ and for any $0 \le T < T'$ for all admissible pairs $(S(\cdot), u(\cdot))$ the following inequality holds:

$$\int_{T}^{T'} e^{-\rho t} \left[\ln S(t) + \ln u(t) \right] \, \mathrm{d}t < \omega(T).$$

Along any admissible pair $(S(\cdot), u(\cdot))$ we have

$$\frac{d}{dt}\left[e^{-\rho t}\ln S(t)\right]\stackrel{\text{a.e.}}{=} -\rho e^{-\rho t}\ln S(t) + r e^{-\rho t} - e^{-\rho t}\left(\frac{r}{K}S(t) + u(t)\right), \quad t > 0.$$

Integrating this equality on time interval [0, T], T > 0, we obtain

$$\int_{0}^{T} e^{-\rho t} \ln S(t) dt = \frac{\ln S_{0} - e^{-\rho T} \ln S(T)}{\rho} + \frac{r}{\rho^{2}} \left(1 - e^{-\rho T}\right) \\ - \int_{0}^{T} e^{-\rho t} \left(\frac{r}{\rho K} S(t) + \frac{u(t)}{\rho}\right) dt.$$

Hence, for any $(S(\cdot), u(\cdot))$ and arbitrary T > 0 we have

$$\int_{0}^{T} e^{-\rho t} \left[\ln S(t) + \ln u(t) \right] dt = \frac{\ln S_{0} - e^{-\rho T} \ln S(T)}{\rho} + \frac{r}{\rho^{2}} \left(1 - e^{-\rho T} \right) \\ - \frac{r}{\rho K} \int_{0}^{T} e^{-\rho t} S(t) dt + \int_{0}^{T} e^{-\rho t} \left(\ln u(t) - \frac{u(t)}{\rho} \right) dt.$$

Problem ($\tilde{P}2$):

$$\begin{split} \tilde{J}(S(\cdot), u(\cdot)) &= \int_0^\infty e^{-\rho t} \left[\ln u(t) - \frac{u(t)}{\rho} - \frac{r}{\rho K} S(t) \right] \, dt \to \max, \\ \dot{S}(t) &= r S(t) \left(1 - \frac{S(t)}{K} \right) - u(t) S(t), \qquad S(0) = S_0, \\ &\quad u(t) \in (0, \infty). \end{split}$$

Problem (P3):

$$\begin{split} \tilde{J}(S(\cdot), u(\cdot)) &= \int_0^\infty e^{-\rho t} \left[\ln u(t) - \frac{u(t)}{\rho} - \frac{r}{\rho K} S(t) \right] \, dt \to \max, \\ \dot{S}(t) &= r S(t) \left(1 - \frac{S(t)}{K} \right) - u(t) S(t), \qquad S(0) = S_0, \\ &\quad u(t) \in [\rho, \infty). \end{split}$$

Lemma 3. Problems (P2), $(\tilde{P}2)$ and (P3) are equivalent.

Let us introduce the new state variable $x(\cdot)$ in problem (P3) as follows:

$$x(t)=rac{1}{S(t)},\qquad t\geq 0.$$

In terms of the state variable $x(\cdot)$ problem (P3) can be rewritten as the following (equivalent) problem (P4):

$$J(x(\cdot), u(\cdot)) = \int_0^\infty e^{-\rho t} \left[\ln u(t) - \ln x(t) \right] dt \to \max,$$

$$\dot{x}(t) = \left[u(t) - r \right] x(t) + a, \qquad x(0) = x_0 = \frac{1}{S_0},$$

$$u(t) \in [\rho, \infty).$$

Here a = r/K. The class of admissible controls $u(\cdot)$ in problem (P4) is the same as in (P3). It consists of all measurable locally bounded functions $u: [0, \infty) \mapsto [\rho, \infty)$.

Theorem 2. There is an optimal admissible control $u_*(\cdot)$ in problem (P4). Moreover, for any optimal admissible pair $(x_*(\cdot), u_*(\cdot))$ we have

$$u_*(t) \stackrel{\text{a.e.}}{\leq} \left(1 + rac{1}{Kx_*(t)}\right)(r+
ho), \qquad t \geq 0.$$

Proof. 1) Conditions (A1)–(A4) of Theorem 1 are satisfied. **2)** For any T > 0 and arbitrary $t \in [0, T]$ we get

For arbitrary $\delta > 0$ define the function $M_{\delta} : [0, \infty) \mapsto \mathbb{R}^1$ as follows:

$$M_{\delta}(t)=rac{(rx_0+a)(r+
ho)}{rx_0\left[1-e^{-(r+
ho)\delta}
ight]}e^{rt}+rac{1}{\delta},\qquad t\geq 0.$$

Then for any $T > \delta$, $t \in [0, T - \delta]$ and arbitrary admissible pair $(x(\cdot), u(\cdot))$ the function $u \mapsto \mathcal{H}(t, x(t), u, \psi_T(t))$ reaches its maximal value on $[\rho, \infty)$ at the point

$$u_{T}(t) = -\frac{e^{-\rho t}}{x(t)\psi_{T}(t)} \leq \frac{(rx_{0} + a)(r + \rho)}{rx_{0} \left[1 - e^{-(r+\rho)(T-t)}\right]} e^{rt} \leq M_{\delta}(t) - \frac{1}{\delta}.$$

For a fixed $\delta > 0$ set $\delta(t) \equiv \delta$ and $M(t) \equiv M_{\delta}(t)$, $t \ge 0$.

Let $(x(\cdot), u(\cdot))$ be an admissible pair such that inequality $u(t) > M_{\delta}(t)$ holds on a set $\mathfrak{M} \subset [0, \infty)$, meas $\mathfrak{M} > 0$. Define the function $\Phi \colon [t + \delta, \infty) \mapsto \mathbb{R}^1$ as follows

$$\begin{split} \Phi(T) &= \sup_{u \in [\rho, M(t)]} \mathcal{H}(t, x(t), u, \psi_T(t)) - \mathcal{H}(t, x(t), u(t), \psi_T(t)) \\ &= \psi_T(t) u_T(t) x(t) + e^{-\rho t} \ln u_T(t) - \left[\psi_T(t) u(t) x(t) + e^{-\rho t} \ln u(t) \right] \\ &= -e^{-\rho t} + e^{-\rho t} \left[-\rho t - \ln(-\psi_T(t)) - \ln x(t) \right] \\ &- \left[\psi_T(t) u(t) x(t) + e^{-\rho t} \ln u(t) \right]. \end{split}$$

For a.e. $T \ge t + \delta$ we get

$$\frac{d}{dT}\Phi(T) = -\frac{e^{-\rho t}}{\psi_T(t)}\frac{d}{dT}[\psi_T(t)] - u(t)x(t)\frac{d}{dT}[\psi_T(t)]$$
$$= x(t)\frac{d}{dT}[\psi_T(t)]\left[\frac{e^{-\rho t}}{-\psi_T(t)x(t)} - u(t)\right] = x(t)\frac{d}{dT}[\psi_T(t)](u_T(t) - u(t)) > 0.$$

Hence,

$$\inf_{T>0: t \leq T-\delta} \left\{ \sup_{u \in [\rho, \mathcal{M}(t)]} \mathcal{H}(t, x(t), u, \psi_T(t)) - \mathcal{H}(t, x(t), u(t), \psi_T(t)) \right\}$$
$$= \inf_{T>0: t \leq T-\delta} \Phi(T) = \Phi(t+\delta) > 0.$$

Due to Theorem 1 there is an optimal control $u_*(\cdot)$ in (P4) and

$$u_*(t) \stackrel{\text{a.e.}}{\leq} M_{\delta}(t) = rac{(rx_0+a)(r+
ho)}{rx_0\left[1-e^{-(r+
ho)\delta}
ight]}e^{rt} + rac{1}{\delta}.$$

Passing to a limit in this inequality as $\delta \to \infty$ we get

$$u_*(t) \stackrel{\text{a.e.}}{\leq} \left(1 + \frac{1}{Kx_0}\right)(r+
ho)e^{rt}, \qquad t \geq 0.$$

3) For $\tau > 0$ the pair $(\tilde{x}_*(\cdot), \tilde{u}_*(\cdot))$: $\tilde{x}_*(t) = x_*(t + \tau)$, $\tilde{u}_*(t) = u_*(t + \tau)$, is optimal in (P4) with initial condition $x(0) = x_*(\tau)$. Hence,

$$ilde{u}_*(t) \stackrel{ ext{a.e.}}{\leq} \left(1 + rac{1}{\mathcal{K} ilde{x}_*(0)}
ight)(r+
ho)e^{rt}, \qquad t\geq 0.$$

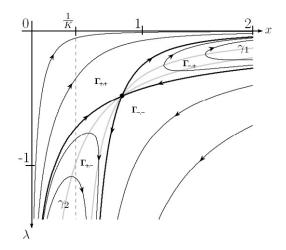
Hence, for arbitrary fixed $\tau > 0$ we have

$$u_*(t) = \tilde{u}_*(t-\tau) \stackrel{\mathsf{a.e.}}{\leq} \left(1 + \frac{1}{Kx_*(\tau)}\right) (r+
ho) e^{r(t- au)}, \qquad t \geq au.$$

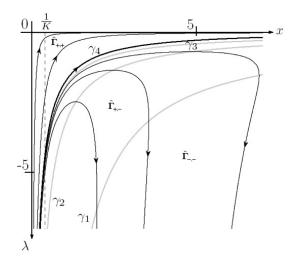
Hence.

$$u_*(t) \stackrel{ ext{a.e.}}{\leq} \left(1 + rac{1}{\mathcal{K} x_*(t)}
ight)(r+
ho), \qquad t \geq 0. \qquad \Box$$

Phase portrait of the current value Hamiltonian system: $r > \rho$



Phase portrait of the current value Hamiltonian system: $r \leq \rho$



- S.M. Aseev, On the boundedness of optimal controls in infinite-horizon problems, Proceedings of the Steklov Institute of Mathematics, 291 (2015), pp. 38–48.
- S.M. Aseev, Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints, Trudy Inst. Mat. i Mekh. UrO RAN, 22 (2016), No. 2, pp. 18–27.
- 3. S. Aseev, T. Manzoor, *Optimal growth, renewable resources and sustainability* (2016), in progress.