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Optimality Conditions for Discrete-Time
Optimal Control on Infinite Horizon∗

S. M. Aseev† M. I. Krastanov‡ V. M. Veliov§

Abstract

The paper presents first order necessary optimality conditions of Pontrygin’s type
for a general class of discrete-time optimal control problems on infinite horizon. The
main novelty is that the adjoint function, for which the (local) maximum condition in
the Pontryagin principle holds, is explicitly defined for any given optimal state-control
process. This is done based on ideas from previous papers of the first and the last
authors concerning continuous-time problems. In addition, the obtained (local) max-
imum principle is in a normal form, and the optimality has the general meaning of
weakly overtaking optimality (hence unbounded processes are allowed), which is im-
portant for many economic applications. Two examples are given, which demonstrate
the applicability of the obtained results in cases where the known necessary optimality
conditions fail to identify the optimal solutions.

Keywords: discrete-time control systems, optimality conditions, Pontryagin maximum
principle, transversality conditions.

AMS Subject Classification: 49K21, 93C55

1 Introduction

Optimal control theory provides a relevant and widely used instrument for economic analysis.
Many aspects in the development of control theory were motivated by economic applications,
in particular such on infinite horizon. A large number of investigations have been devoted to
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that kind of problems, most of them for continuous-time (ODE) models. However, discrete-
time economic models are often even more relevant due to the truly discrete nature of the
economic decisions. Even more, the applications of such models are not limited to economics.
For example, Model Predictive Control, which is a main mathematical tool for engineering
process control, has intrinsic relations to optimal control of discrete-time infinite-horizon
systems (see e.g. the book [9] by L. Gruene and J. Pannek). On the other hand, the optimal
control theory for discrete-time problems on infinite horizon is far from being complete.
A comprehensive account of the state of the art in the area, what concerns optimality
conditions, is given in the recent book [6] by J. Blot and N. Hayek. For other aspects of this
theory we refer to A. Zaslavski [13] and the bibliography therein.

In the present paper we consider a general discrete time optimal problem of the form

∞∑
k=0

g(k, xk, uk)→ max,

subject to the dynamics
xk+1 = f(k, xk, uk), k = 0, 1, . . . ,

with a given initial state x0 and control constraints uk ∈ Uk. The states xk and the control
vectors uk belong to finite-dimensional spaces (an exact formulation is given in the next
section).

One specific feature of discrete-time optimal control problems (in contrast to continuous-
time ones) is that the Pontryagin-type maximum principles on a finite horizon (developed
first in the book [7] by V.G. Boltyanskij) are known to have a local form. That is, if no
additional concavity-type conditions are posed, the maximum condition for the associated
Hamiltonian represents, in fact, only a necessary condition for a local maximum. This also
applies to problems on infinite horizons, in particular to the results in the present paper.

The (local) maximum condition for the Hamiltonian, which for the problem indicated
above has the form1 H(k, x, u, ψ, λ0) := λ0g(k, x, u) + ψf(k, x, u), holds along a specific
solution {ψk}∞k=1 of the so-called adjoint equation. In order to identify the “right” solution
of the adjoint equation one needs additional conditions, usually in the form of transversality
conditions for ψk when k →∞. In contrast to the continuous-time case, such conditions are
present only in a few contributions that we discuss in the next lines.

In the very enlightening and general paper [12], P. Michel, introduced several types of
transversality conditions (some of them known from earlier publications, see the account in
[12]), among which we mention the following ones:

(1) (i) lim
k→∞

ψk = 0; (ii) lim
k→∞

ψk x
∗
k = 0; (iii) lim

k→∞
ψk (xk − x∗k) ≤ 0,

where {x∗k}∞k=1 is an optimal state sequence, and in (iii) {xk}∞k=1 is an arbitrary state sequence.
This is done under concavity-type conditions on the problem.

In J. Blot and N. Hayek [6, Theorem 3.2, Section 3.2.3] it was proved that a local
maximum principle holds with a solution {ψk}∞k=1 of the adjoint equation, which satisfies the

1 In order to avoid multiple use of the transposition sign, everywhere in the paper we consider the adjont
vectors ψ as row-vectors, while x, u and f are column-vectors.
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transversality condition (1)-(i), provided that (among several additional assumptions which,
however, do not concavity) there are no control constraints and the optimal solution (control
and trajectory) of the problem is bounded. It is remarkable that the maximum principle
holds in a normal form, that is, with λ0 = 1. We mention that for problems on infinite
horizon the maximal principle does not necessarily hold in the normal form, even if no state
constraints are involved (in contrast to the finite-horizon case).

In the present paper we obtain that for any optimal solution (x∗,u∗) = {(x∗k, u∗k)}∞k=1, the
(local) maximum condition

(2)
∂

∂u
H(k, x∗k, u

∗
k, ψk+1, λ0) v ≤ 0 for every v ∈ TUk(u∗k), k = 0, 1, . . . ,

holds with λ0 = 1 (normal form) and with an adjoint sequence {ψk}∞k=1 which is defined
by an explicit formula (see the next section). Here TUk(u

∗
k) is the contingent cone to the

set Uk at the point u∗k ∈ Uk. The optimality is understood in the sense of weak overtaking
optimality (see e.g. [8] and the definition in the next section), so that problems with infinite
vales of the objective function are included. In fact, the explicit definition of the adjoint
sequence {ψk}∞k=1 selects the “right” solution of the usual adjoint equation, for which the
maximum condition (2) holds. The result is based on an assumption, which guarantees that
the definition of ψk produces a finite vector. Of course, this assumption rules out abnormal
optimal processes for which the maximum principle cannot have a normal form. On the other
hand, it is not restrictive for a large class of problems, including rather challenging ones,
where the known optimality conditions do not hold or are not informative. In particular,
the transversality conditions (1)-(i),(ii) are not necessarily satisfied for the explicitly defined
adjoint sequence {ψk}∞k=1, while (1)-(iii) is too weak to identify a useful adjoint sequence.
Two such examples are given in the last section: a complete solution of the discrete-time
version of the well-known Halkin example [11] is obtained, and an economic model of optimal
utilization of a non-renewable resource is solved.

The paper is structured as follows. The next section contains the exact formulation of
the problem and the main results, including discussions. Section 3 presents two examples
illustrating the advantages of the obtained results.

2 The discrete-time control problem

Denote by Rn the n-dimensional Euclidean space and by N – the set of all nonnegative
integers. Let G be an open subset of Rn, Uk, k ∈ N, be nonempty subsets of Rm, and let
for every k ∈ N, a function f(k, ·, ·) : G × Ũk → Rn, be given. Here Ũk denotes an open
set containing Uk (the case Ũk = Uk is not excluded). We consider the discrete-time control
system

(3) xk+1 = f(k, xk, uk), uk ∈ Uk, k ∈ N,

with a given initial state x0 ∈ G, where xk and uk, k = 0, 1, . . . , are regarded as state
and control variables, respectively. Any sequence u = {uk}∞k=0 with uk ∈ Uk, k ∈ N, is
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called admissible, and the set of all admissible control sequences is denoted by U . For a
given u ∈ U , equation (3) generates a trajectory x0, x1, . . . extendible either to the minimal
number k such that f(k, xk, uk) 6∈ G (if such exists) or to infinity. In the latter case we call
the pair (u,x := {xk}∞k=0) admissible process.

Given an admissible process (u,x), the trajectory {xk}∞k=0 can be represented from (3)
as

xk+1 := fkuk ◦ f
k−1
uk−1
◦ · · · ◦ f 0

u0
(x0), k ∈ N,

where fku (x) := f(k, x, u) for x ∈ G and u ∈ Ũk, and ◦ denotes the composition of the
corresponding maps.

For a sequence of functions g(k, ·, ·) : G×Ũk → R, k ∈ N, we consider the optimal control
problem

(4)
∞∑
k=0

g(k, xk, uk)→ max,

where u = {uk}∞k=0 together with x = {xk}∞k=0 is an admissible process. In order to define
the meaning of this problem, for any ω ∈ N we denote

Jω(u,x) =
ω∑
k=0

g(k, xk, uk).

Definition 2.1. An admissible process (u∗,x∗) is called weakly overtaking optimal if for
each ε > 0, for each positive number ω and for each admissible process (u,x) there exists a
positive integer ω̃ > ω such that J ω̃(u∗,x∗) ≥ J ω̃(u,x)− ε.

Let (u∗,x∗) be a weakly overtaking optimal process. For any k ∈ N and for each vector
ξ we denote by xk,ξ = (xk, xk+1, . . .) the trajectory of (3) starting from xk = ξ at the instant
k, that is,

(5) xk,ξs+1 := f su∗s ◦ · · · ◦ f
k
u∗k

(ξ), s = k, k + 1, . . . .

Clearly, xk,ξ may happen to be an infinite sequence or may terminate at the minimal s > k
such that fs(s, x

k,ξ
s , u∗s) 6∈ G.

We assume that for every k ∈ N the functions f(k, ·, ·) and g(k, ·, ·) are continuously differ-
entiable on G× Ũk.

In the next assumption and further we use the notation B(x;α) for the closed ball with
radius α centered at x.

Assumption A. For each k ∈ N there exists αk > 0 and a sequence {βks }∞s=k with
∑∞

s=k β
k
s <

∞ such that B(x∗k;αk) ⊂ G, for every ξ ∈ B(x∗k;αk) the sequence xk,ξ is infinite, and

sup
ξ∈B(x∗k;αk)

∥∥∥∥ ∂∂ξ g(s, xk,ξs , u∗s)

∥∥∥∥ ≤ βks .
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Assumption A implies that for every k ∈ N the series

∞∑
s=k

∂

∂ξ
g(s, xk,ξs , u∗s)

is absolutely convergent, uniformly with respect to ξ ∈ B(x∗k;αk). Due to the identity

g(s, xk,ξs , u∗s) = g
(
s, f s−1u∗s−1

◦ · · · ◦ fku∗k(ξ), u
∗
s

)
,

we have by the chain rule that

(6)
∂

∂ξ
g(s, xk,ξs , u∗s) = g′x(s, x

k,ξ
s , u∗s)

k∏
-

i=s−1

f ′x(i, x
k,ξ
i , u∗i )

for s ≥ k, where by definition for s > k

k∏
-

i=s−1

Ai := As−1 As−2 . . . Ak with Ai = f ′x(i, x
k,ξ
i , u∗i )

and
k∏
-

i=s−1

Ai = I (the identity map) for s ≤ k.

We use the symbol
k∏
-
i=s

instead of the usual symbol
∏k

i=s for products in order to indicate

that the “increment” of the running index i is −1 (since s ≥ k).
Next we define the adjoint sequence ψ := {ψk}∞k=1 as follows

(7) ψk =
∞∑
s=k

∂

∂ξ
g(s, xk,ξs , u∗s)|ξ = x∗k

, k = 1, 2, . . . .

According to assumption A, we have that ‖ψk‖ <∞. Also, taking into account (6) and

the equality x
k,x∗k
s = x∗s, we obtain that

(8) ψk =
∞∑
s=k

g′x(s, x
∗
s, u
∗
s)

k∏
-

i=s−1

f ′x(i, x
∗
i , u
∗
i )

and the above sum is absolutely convergent.
To formulate the main result of the paper, we denote by TUk(u) the Bouligand tangent

cone to the set Uk at the point u ∈ Uk. We remind that TUk(u) consists of all v ∈ Rm such
that there exist a sequence of positive real numbers {tµ}∞µ=1 convergent to 0 and a sequence
{vµ}∞µ=1 ⊂ Rm convergent to v such that u + tµvµ ∈ Uk for each µ = 1, 2, . . . (see, for
example [1, Chapter 4.1]).

Theorem 2.2. Let Assumption A be fulfilled and let (u∗,x∗) = ({u∗k}∞k=0, {x∗k}∞k=0) be a
weakly overtaking optimal solution. Let the adjoint sequence ψ = {ψi}∞i=1 be defined by (7)
(or equivalently by (8)). Then for every k ∈ N the following local maximum condition holds:

(9) (g′u(k, x
∗
k, u

∗
k) + ψk+1f

′
u(k, x

∗
k, u

∗
k)) v ≤ 0 for every v ∈ TUk(u∗k).
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Proof. Let us fix arbitrarily k ∈ N and v ∈ TUk(u∗k). Without any restriction we may assume
that ‖v‖ = 1. Then there exist an α̃k > 0, a sequence of positive reals {tµ}∞µ=1 → 0 and a

sequence of elements {vµ}∞µ=1 → v as µ→∞ such that B(u∗k; α̃k) ⊂ Ũk and u∗k + tµvµ ∈ Uk
for each µ = 1, 2, . . . . Without a restriction we may assume that ‖vµ‖ = 1 and tµ ≤ α̃k.
Define the number

c := max
u∈B(u∗k;α̃k)

‖f ′u(k, x∗k, u)‖.

Let µ0 > 0 be such that ctµ < αk+1 for every µ ≥ µ0, where αk+1 is introduced in assump-
tion A.

For a parameter µ ≥ µ0 we define the control sequence uµ as follows:

uµs :=

{
u∗s for s 6= k,
u∗k + tµvµ, for s = k.

Clearly, uµ(tµ) is an admissible control. The corresponding trajectory xµ can be represented
as

xµs :=


x∗s, for s = 0, 1, . . . , k,
f(k, x∗k, u

∗
k + tµvµ), for s = k + 1,

f(s− 1, xµs−1, u
∗
s−1), for s > k + 1,

i.e. for each s ≥ k + 1 we have that

xµs := f s−1u∗s−1
◦ · · · ◦ fk+1

u∗k+1
◦ fku∗k+tµvµ(x∗k).

Notice that for µ ≥ µ0

|xµk+1 − x
∗
k+1| = |f(k, x∗k, u

∗
k + tµvk)− f(k, x∗k, u

∗
k)| ≤ ctµ ≤ αk+1,

since co {u∗k, u∗k + tµvk} ⊂ B(u∗k; α̃k). Then according to assumption A, the trajectory {xµs}s
is defined for all s ∈ N.

Let us choose an arbitrary positive number ε and an arbitrary ω ≥ k such that

c
∞∑

s=ω+1

βk+1
s ≤ ε.

For any µ > µ0 we apply the definition of weak overtaking optimality for ω and for tµε
instead of ε: there exists a positive integer ωµ > ω such that

εtµ ≥ Jωµ(uµ,xµ)− Jωµ(u∗,x∗).

Using the mean value theorem we obtain that

εtµ ≥
ωµ∑
s=0

(g(s, xµs , u
µ
s )− g(s, x∗s, u

∗
s))

= g(k, x∗k, u
∗
k + tµvµ)− g(k, x∗k, u

∗
k) +

ωµ∑
s=k+1

(g(s, xµs , u
∗
s)− g(s, x∗s, u

∗
s))

= tµg
′
u(k, x

∗
k, ũ

µ
k)vµ +

ωµ∑
s=k+1

(
g(s, x

k+1, f(k,x∗k,u
∗
k+tµvµ)

s , u∗s)− g(s, x
k+1, f(k,x∗k,u

∗
k)

s , u∗s)
)

= tµg
′
u(k, x

∗
k, ũ

µ
k)vµ + tµ

ωµ∑
s=k+1

∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=ξ̃µk+1
f ′u(k, x

∗
k, u

∗
k + t̃µvµ)vµ,(10)
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where ũµk ∈ co {u∗k, u∗k + tµvµ}, t̃µ ∈ [0, tµ] and ξ̃µk+1 = f(k, x∗k, u
∗
k + t̃µvµ).

Notice that

‖ξ̃µk+1 − x
∗
k+1‖ = ‖f(k, x∗k, u

∗
k + t̃µvµ)− f(k, x∗k, u

∗
k)‖ ≤ ctµ ≤ αk+1.

Then due to assumption A we have∥∥∥∥∥
ωµ∑

s=ω+1

∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=ξ̃µk+1
f ′u(k, x

∗
k, u

∗
k + t̃µvµ)vµ

∥∥∥∥∥
≤

∞∑
s=ω+1

∥∥∥∥ ∂∂ξ g(s, xk+1,ξ
s , u∗s)|ξ=ξ̃µk+1

∥∥∥∥ ∥∥f ′u(k, x∗k, u∗k + t̃µvµ)vµ
∥∥

≤ c
∞∑

s=ω+1

βk+1
s ≤ ε.

Dividing (10) by tµ and using this inequality we obtain that

2ε ≥ g′u(k, x
∗
k, ũ

µ
k)vµ +

ω∑
s=k+1

∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=ξ̃µk+1
f ′u(k, x

∗
k, u

∗
k + t̃µvµ)vµ

= g′u(k, x
∗
k, u

∗
k)vµ +

∞∑
s=k+1

∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=x∗k+1
f ′u(k, x

∗
k, u

∗
k)vµ

−
∞∑

s=ω+1

∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=x∗k+1
f ′u(k, x

∗
k, u

∗
k)vµ +R(tµ)vµ,(11)

where
R(tµ) = (g′u(k, x

∗
k, ũ

µ
k)− g′u(k, x∗k, u∗k))vµ

+
ω∑

s=k+1

[
∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=ξ̃µk+1
f ′u(k, x

∗
k, u

∗
k + t̃µvµ)− ∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=x∗k+1
f ′u(k, x

∗
k, u

∗
k)

]
vµ.

From the continuity of f ′u and g′u with respect to u and from the continuity of
∂

∂ξ
g(s, xk,ξs , u∗s)

with respect to ξ (see e.g. (6)), we obtain that R(tµ) converges to zero with tµ. Then
‖R(tµ)‖ ≤ ε for all sufficiently large µ. Moreover, for the second last term in (11) we have
from assumption A∥∥∥∥∥

∞∑
s=ω+1

∂

∂ξ
g(s, xk+1,ξ

s , u∗s)|ξ=x∗k+1
f ′u(k, x

∗
k, u

∗
k)vµ

∥∥∥∥∥ ≤ c
∞∑

s=ω+1

βk+1
s ≤ ε.

Thus, regarding (8), we obtain from (11) the inequality

4ε ≥ g′u(k, x
∗
k, u

∗
k)vµ +

∞∑
s=k+1

∂

∂ξ
g(s, xk,ξs , u∗s)|ξ=xk+1

f ′u(k, x
∗
k, u

∗
k)vµ

= (g′u(k, x
∗
k, u

∗
k) + ψk+1 f

′
u(k, x

∗
k, u

∗
k)) vµ

for all sufficiently large µ. Since ε was arbitrarily chosen and vµ → v, we obtain the inequal-
ity (9).
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Notice that in the above theorem the “adjoint” sequence {ψk}∞k=1, for which the local
maximum condition (9) holds, is explicitly defined by (7) or equivalently by (8). The next
corollary makes a link between this result and the familiar Pontryagin-type maximum prin-
ciple. In the formulation we use the notation

(12) Zk :=
0∏
-

s=k−1

f ′x(s, x
∗
s, u
∗
s), k ≥ 1.

Corollary 2.3. Under the conditions of Theorem 2.2, there exists a sequence {ψk}∞k=1 sat-
isfying the adjoint equation

ψk = ψk+1f
′
x(k, x

∗
k, u

∗
k) + g′x(k, x

∗
k, u

∗
k), k = 1, 2, . . . ,

and the transversality condition

(13) lim
k→+∞

ψkZk = 0,

such that the local maximum condition (9) is fulfilled for every k ∈ N.

As seen in the proof, the above corollary holds with the same adjoint sequence as defined
explicitly in Theorem 2.2.

Proof. The first claim is fulfilled with {ψk}∞k=1 defined by (8). To obtain the second claim
we multiply (8) by Zk. The right-hand side becomes

(14) ψkZk =
∞∑
s=k

g′x(s, x
∗
s, u
∗
s)

0∏
-

i=s−1

f ′x(i, x
∗
i , u
∗
i ).

The sum
∑∞

s=1 g
′
x(s, x

∗
s, u
∗
s)

0∏
-

i=s−1
f ′x(i, x

∗
i , u
∗
i ) is absolutely convergent since it is the same sum

that appears in the definition of ψ1. Hence, lim
k→0

ψkZk = 0.

In the next paragraphs we give some explanations about assumption A. Clearly, its meaning
is that the marginal effect of a disturbance of the optimal trajectory at time k on the
future running objective values g(s, ·, u∗s) is summable. This assumption takes a simpler
form (similar to that in assumption A2 in [4] in the continuous-time case) if the equation
(3) is invertible. The latter means that for every k ≥ 0, x ∈ G and u ∈ Uk the matrix
f ′x(k, x, u) is invertible (see [5], where this property is introduced). A somewhat weaker form
of this condition (formulated along the reference process ({u∗k}, {x∗k}) is that for every k
there is some α > 0 such that B(x∗k;α) ⊂ Ũ and the mapping fku∗k : B(x∗k;α) → Rn is a

diffeomorphism (see [10]). In the lemma below the latter definition of invertibility suffices.
The invertibility condition is satisfied, for example, if the discrete-time equation (3)

results from the Euler (or another Runge-Kutta discretization) of a controlled differential
equation, provided that the discretization step is sufficiently small.
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Lemma 2.4. If equation (3) is invertible then assumption A is implied by the following one:
there exist positive numbers α0 and βs, s ∈ N, such that

∑∞
s=0 βs <∞ and

max
ξ∈B(x0;α0)

∥∥∥∥ ∂∂ξ g(s, x0,ξs , u∗s)

∥∥∥∥ ≤ βs.

Proof. Let us fix an arbitrary positive integer k. The invertibility assumption implies that
there exists α0 > 0 such that the map

Fk := fk−1u∗k−1
◦ fk−2u∗k−2

◦ · · · ◦ f 0
u∗0

: B(x0;α0)→ Rn

is a diffeomorphism. Because of x∗k = Fk(x0), the set Ωk := {y = Fk(ξ) : ξ ∈ B(x0;α0)}
contains an open neighborhood of the point x∗k, and hence there exists αk > 0 such that
B(x∗k;αk) ⊂ Ωk∩G. Let ξ be an arbitrary point of B(x∗k;αk). Then there exists ξ0 ∈ B(x0;α0)
such that ξ = Fk(ξ0), and hence for each integer s ≥ k we have that

g(s, xk,ξs , u∗s) = g(s, x0,ξ0s , u∗s) = g
(
s, x

0,F−1
k (ξ)

s , u∗s

)
,

and hence
∂

∂ξ
g(s, xk,ξs , u∗s) =

∂

∂ξ
g
(
s, x

0,F−1
k (ξ)

s , u∗s

)
◦ ∂

∂ξ
F−1k (ξ).

Therefore, for s ≥ k we have∥∥∥∥ ∂∂ξ g(s, xk,ξs , u∗s)

∥∥∥∥ ≤ ∥∥∥∥ ∂∂ξ g (s, x0,F−1
k (ξ)

s , u∗s

)∥∥∥∥∥∥∥∥ ∂∂ξF−1k (ξ)

∥∥∥∥
≤ βs

∥∥∥∥ ∂∂ξF−1k (ξ)

∥∥∥∥ ≤ sup
ξ∈B(x∗k;αk)

∥∥∥∥ ∂∂ξF−1k (ξ)

∥∥∥∥ βs =: βks .

This completes the proof, since
∑∞

s=k β
k
s is convergent.

3 Examples

We give two examples that illustrate the applicability of Theorem 2.2 in cases where the
known to the authors previous results do not give comprehensive solutions.

Example 3.1.

Let us consider the following discrete version of the well known Halkins’s example (see [11],
also [12, Remark 4] for the discrete-time case):

J(u,x) =
∞∑
k=0

(1− xk)uk → max,

xk+1 = xk + (1− xk)uk, x0 = 0,(15)

uk ∈ [0, 1], k ∈ N.
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It is straightforward that for any admissible control u = {uk}∞k=0 the corresponding trajectory
x = {xk}∞k=0 satisfies the inclusions xk ∈ [0, 1] for each k ∈ N.

For each positive integer ω and admissible process (u,x) the truncated objective func-
tional takes the form

(16)
Jω(u,x) =

∑ω
k=0 (1− xk)uk =

∑ω
k=0 (xk+1 − xk) = xω.

On the other hand, we can prove by induction (see the next paragraph for a similar proof)
that the solution x of (15) for an admissible control u can be represented for k > 0 as

(17) xk = 1−
k−1∏
s=0

(1− us) ≤ 1.

(In this example we use the standard notation
∏q

i=p instead of
p∏
-
i=q

since in the scalar case

the order of multipliers does not matter; again
∏q

i=p is defined as 1 if p > q.) Since for the
admissible control ūk ≡ 1 we have x̄k = 1 for all k ≥ 1, we obtain that J(ū, x̄) = 1, thus
(ū, x̄) is optimal (in any reasonable sense). Taking into account also the monotonicity of the
sequence {xk}∞k=1, we see from (17) that an admissible process (u∗,x∗) is weakly overtaking
optimal if and only if

(18)
∞∏
s=0

(1− u∗s) = 0.

Now, we analyze what Theorem 2.2 provides for this example. Let (u∗,x∗) = {(u∗k, x∗k)}∞k=1

be an weakly overtaking optimal process. Again by induction we verify that

xk,ξs = 1− (1− ξ)(1− u∗s−1) . . . (1− u∗k), s = k + 1, . . . .

Indeed, having in mind the particular form of f , we have for s = k + 1 that

xk,ξk+1 = ξ + (1− ξ)u∗k = 1− (1− ξ)(1− u∗k)

and inductively,

xk,ξs+1 = xk,ξs + (1− xk,ξs )u∗s = 1− (1− xk,ξs )(1− u∗s) = 1− (1− ξ)(1− u∗s) . . . (1− u∗k).

We have g′x(x, u) = −u (in this example the functions f and g do not depend on k), thus

(19)
∂

∂ξ
g(xk,ξs , u∗s) = g′x(x

k,ξ
s , u∗s)

∂xk,ξs
∂ξ

= −u∗s
s−1∏
i=k

(1− u∗i ).

In order to prove that assumption A is satisfied for the considered optimal process (u∗,x∗)
we define

β̄ks :=

∥∥∥∥ ∂∂ξ g(xk,ξs , u∗s)

∥∥∥∥ = u∗s

s−1∏
i=k

(1− u∗i ).

10



Let us prove that the series
∑∞

s=k β̄
k
s is convergent. In fact we will prove by induction that

for every positive integer µ ≥ k

(20)

µ∑
s=k

β̄ks = 1−
µ∏
i=k

(1− u∗i ).

For µ = k we have that
β̄kk = u∗k = 1− (1− u∗k),

Let us assume that (20) holds true for some positive integer µ ≥ k. Then

µ+1∑
s=k

β̄ks = β̄µ+1
k +

µ∑
s=k

β̄ks = u∗µ+1

µ∏
i=k

(1− u∗i ) +

(
1−

µ∏
i=k

(1− u∗i )

)
= 1−

µ+1∏
i=k

(1− u∗i ),

which proves (20).
Since the process (u∗,x∗) is optimal, condition (18) holds. Then (20) implies that∑∞
s=k β̄

k
s ≤ 1 Thus assumption A is fulfilled. Then Theorem 2.2 claims that the process

(u∗,x∗) satisfies the maximum condition (9) with {ψk}∞k=1 defined by (7) (or equivalently by
(8)). That is, the claim of Theorem 2.2 holds for every weakly overtaking optimal process
in the considered example.

We note that the adjoint sequence {ψk}∞k=1 defined by (7) has the explicit form (see (19),
the definition of the numbers β̄ks and (20))

(21) ψk = −
∞∑
s=k

u∗s

s−1∏
i=k

(1− u∗i ) = −
∞∑
s=k

β̄ks = −1 +
∞∏
i=k

(1− u∗i ).

Conversely, let the admissible control process (u∗,x∗) satisfy assumption A and the maximum
condition (9) in Theorem 2.2 with the adjoint sequence {ψk}∞k=1 defined by (7), that is by
(21). Observe that, as argued after (7), ψk are all finite due to assumption A.

For the particular functions f and g the maximum condition takes the form

(1− x∗k)(1 + ψk+1)v ≤ 0 for every v ∈ T[0,1](u∗k).

If for some k it happens that u∗k = 1, then
∏∞

s=0(1 − u∗s) = 0, thus the process (u∗,x∗) is
optimal. Alternatively, if for every k it holds that u∗k < 1, then [0,∞) ⊂ T[0,1](u

∗
k). The

maximum condition implies that (1 − x∗k)(1 + ψk+1) ≤ 0 for every k. Since xk ∈ [0, 1], this
means that either xk = 1 or ψk+1 ≤ −1. In the first case the process is optimal because
Jω(u∗,x∗) = x∗ω = 1 for all ω ≥ k. In the second case (21) implies that

∏∞
i=k(1 − u∗i ) ≤ 0.

Hence,
∏∞

i=0(1− u∗i ) = 0 and the considered process is again optimal.
Summarizing, we proved that Theorem 2.2 provides a complete characterization of the

optimal controls in this discrete-time version of Halkin’s example.

Notice that if an optimal control sequence u∗ = {u∗k}∞k=0 is such that u∗k 6= 1 for all k =
0, 1, 2 . . . then in view of (21), (17) and (18) both “natural” transversality conditions

lim
k→∞

ψk = 0 and lim
k→∞

ψkx
∗
k = 0

11



fail in this example. This is also noted in [12, Remark 4], where P. Michel argued that
his transversality condition (1)-(iii), which for the example reads as limk→∞ ψk ≤ 0, is
satisfied. The trouble is, that for any admissible process there exists an adjoint sequence
{ψk}∞k=1 satisfying this transversality condition so that the local maximum condition is also
satisfied. That is, the maximum principle with this transversality condition does not give any
useful information for this example. According to Corollary 2.3, the “correct” transversality
condition is the following:

lim
k→∞

ψk

k−1∏
s=0

(1− u∗s) = 0.

Indeed (18) and (21) imply the last equality immediately.

Example 3.2.

Let us consider application of Theorem 2.2 to a discrete version of the continuous-time
model of optimal exploitation of a nonrenewable resource (see [2, Section 2.2, Example 1]):

(22) J(u,x) =
∞∑
k=0

θk [ln(xk − a) + lnuk]→ max,

(23) xk+1 = xk − uk(xk − a), x0 = x0 > a,

uk ∈ Uk ≡ Ũ = (0, 1), k ∈ N.

Here 0 < θ < 1 and a ≥ 0 are given values.
In this example the state variable xk represents the stock of the nonrenewable resource

and the control variable uk represents the extracted share of the available for exploitation
stock xk−a of the resource at stage k ∈ N respectively. The discount factor θk characterizes
subjective time preference, and the value ln(xk − a) + lnuk represents the instantaneous
utility of the extracted amount uk(xk − a) of the resource at stage k ∈ N. If a = 0 then the
initial resource stock x0 > 0 can be fully exhausted. If a > 0 then the initial resource stock
x0 > a can be depleted only till the minimal possible level a.

Here we have G = (a,∞), f(x, u) = x−u(x− a) and g(k, x, u) = θk [ln(x− a) + lnu] for
x ∈ G, u ∈ Ũ and k ∈ N (in this example the function f does not depend on k).

It is easy to see that for any admissible control sequence u = {uk}∞k=0, uk ∈ (0, 1), k ∈ N,
the corresponding trajectory x = {xk}∞k=0 (see (23)) is admissible, and for any integers
0 ≤ ω1 < ω2 we have

ω2∑
k=ω1

θk [ln(xk − a) + lnuk] ≤
ω2∑

k=ω1

θk ln(x0 − a) ≤ θω1

1− θ
ln(x0 − a).

This implies that for any admissible process (u,x) the corresponding series (22) either con-
verges to a finite number or diverges to −∞. Thus, for any weakly overtaking optimal admis-
sible process (u∗,x∗) (if such exists) the corresponding value J(u,x) of the functional (22)
is finite.

12



For any admissible process (u,x) we have f ′x(xk, uk) = 1−uk, and g′x(k, xk, uk) = θk/(xk−
a), k ∈ N. Since f(x, u) = x(1 − u) + au and u ∈ (0, 1), the mapping x 7→ f(·, u) is a
diffeomorphism. Then the system (23) is invertible (which is not the case in the previous
example!). Further, it can be easily shown that the conditions of Lemma 2.4 are satisfied
for any admissible process (u,x) with α0 = (x0 − a)/2 and βs = 2θs/(x0 − a), s ∈ N. Thus,
assumption A is fulfilled for any admissible process (u,x).

Let (u∗,x∗) be an optimal admissible process. Then due to Theorem 2.2 the adjoint
sequence ψ = {ψk}∞k=1, specified by (7) (or equivalently by (8)) for every k ∈ N, satisfies the
local maximum condition (9). Since the process (u∗,x∗) is interior and

g′u(k, x, u) =
θk

u
, f ′u(x, u) = −(x− a), x ∈ G, u ∈ Ũ , k ∈ N,

the local maximum condition (9) reads as

(24)
θk

u∗k
= ψk+1(x

∗
k − a), k ∈ N.

Due to (8) we have2

ψk+1 =
∞∑

s=k+1

θs

x∗s − a

s−1∏
i=k+1

(1− u∗i ), k ∈ N,

and due to (23) we have

x∗k − a =
k−1∏
i=0

(1− u∗i )(x0 − a), k ∈ N.

These equalities imply

(25) ψk+1(x
∗
k − a) =

∞∑
s=k+1

θs

x∗s − a

s−1∏
i=k+1

(1− u∗i )
k−1∏
i=0

(1− u∗i )(x0 − a)

=
∞∑

s=k+1

θs

(x∗s − a)(1− u∗k)

s−1∏
i=0

(1− u∗i )(x0 − a)

=
1

1− u∗k

∞∑
s=k+1

θs =
θk+1

(1− u∗k)(1− θ)
, k ∈ N.

Due to the maximum condition (24) this implies

1− u∗k
u∗k

=
θ

1− θ
, k ∈ N.

2Here as in the previous example we use the standard notation
∏q

i=p instead of
p∏
-

i=q

since in the scalar

case the order of multipliers does not matter; again
∏q

i=p is defined as 1 if p > q.
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Solving the last equality we finally get

(26) u∗k ≡ 1− θ, x∗k = a+ θk(x0 − a), k ∈ N.

Thus we have proved that if an optimal admissible process (u∗,x∗) exists then it is
uniquely defined by (26), and due to (25) the corresponding adjoint sequence ψ = {ψk}∞k=0

is defined as follows:

(27) ψk+1 ≡
1

(1− θ)(x0 − a)
, k ∈ N.

Now let us prove that the process (u∗,x∗) defined by (26) is optimal.
For this notice first that for any k = 0, 1, 2, . . . the unique absolute maximum of the

function h(k, ·, ψk+1) : (0,∞) 7→ R1, defined by

h(k, ζ, ψk+1) = θk ln ζ − ψk+1ζ, ζ > 0,

is reached at the point ζk = θk/ψk+1 = θk(1 − θ)(x0 − a) = u∗k(x
∗
k − a). Here the sequence

ψ = {ψk}∞k=1 is defined by (27) and the process (u∗,x∗) = {(u∗k, x∗k)}∞k=0 is defined by (26).
Now let {(vk, yk)}∞k=0 be an arbitrary admissible process. Then for any k ∈ N we have

h(k, u∗k(x
∗
k − a), ψk+1) ≥ h(k, vk(yk − a), ψk+1)

or, equivalently,

(28) θk [lnu∗k + ln(x∗k − a)]− ψk+1u
∗
k(x
∗
k − a) ≥ θk [ln vk + ln(yk − a)]− ψk+1vk(yk − a).

For an arbitrary integer ω ≥ 1 summing (28) we get

(29)
ω∑
k=0

θk [lnu∗k + ln(x∗k − a)]−
ω∑
k=0

θk [ln vk + ln(yk − a)]

≥
ω∑
k=0

ψk+1u
∗
k(x
∗
k − a)−

ω∑
k=0

ψk+1vk(yk − a)

=
1

(1− θ)(x0 − a)

ω∑
k=0

[
(x∗k − x∗k+1)− (yk − yk+1)

]
=

1

(1− θ)(x0 − a)
(yω − x∗ω).

Since
lim
ω→∞

yω ≥ a and lim
ω→∞

x∗ω = a,

taking the limit in inequality (29) as ω →∞ we get

∞∑
k=0

θk [lnu∗k + ln(x∗k − a)] ≥ lim sup
ω→∞

ω∑
k=0

θk [ln vk + ln(yk − a)] .

Thus, the process (u∗,x∗) defined by (26) is optimal. As already proved above, if an optimal
process exists then it is unique. Hence, the process (u∗,x∗) defined by (26) is a unique
optimal admissible process.
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Notice that if a > 0 then in view of (26) and (27) both “natural” transversality conditions

lim
k→∞

ψk = 0 and lim
k→∞

ψkx
∗
k = 0

fail in this example. Due to Corollary 2.3 the “correct” transversality condition is the
following:

lim
k→∞

ψk

k−1∏
s=0

(1− u∗s) = 0.

Indeed, (26) and (27) imply

lim
k→∞

ψk

k−1∏
s=0

(1− u∗s) = lim
k→∞

θk

(1− θ)(x0 − a)
= 0.
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