# Intelligent Energy in agricultural Farms

Shifting loads of a dairy farm by using photovoltaic power plants in combination with an ice-storage-system

Felix Künkel B.Eng., Tobias Rehm B.Eng., Patrick Beuel M.Sc., Dipl.-Ing. Thomas Mockenhaupt and Prof. Dr. Christiane Rieker Technische Hochschule Köln

## **About the project - Introduction**

Analyse the consumption of agricultural farms with smart meter measuring systems to define potentials for load shifting and energy savings.

Project partners are:

- TH-Köln
- NaRoTec e.V. [1]
- Maschinenring Höxter-Warburg [2]
- Landwirtschaftskammer NRW (department of agriculture State of NRW) [3]

The project is funded by department of environment protection of the state NRW in Germany [4].

> Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen

Funding code: 17-02.04.01-18/13



# Our approach

- Choose an agriculture farm with the most reliable data of the energy consumption from the smart meter measuring data
- Analyse the smart metering data
- Create a load profile



#### Daily load profile

Identify daily load profiles peaks

Locate shiftable loads -> highest shifting potential is the cooling component

Combine ice-storage-systems with photovoltaic power plants to implement the load shift

**Potential Ice-Storage** 







#### **Photovoltaic-Simulation and parameters**

Boundary conditions for simulation with "PV-SOL" (PV planning program):

- Different sizes of simulated power plants according to cover different energy consumers (Cooling system coverage always 100%)
- Total load profile of the farm is a combination of measured load profile and standard load profiles for missing components

Priority order to optimize degree of self-sufficiency:



#### **Conclusion and remaining work**

### **Results so far:**

| PV-System | Direct cooling -      | Direct cooling -            | lce-water cooling -   | lce-water cooling -         |
|-----------|-----------------------|-----------------------------|-----------------------|-----------------------------|
|           | Consumption share [%] | Degree of self- sufficiency | Consumption share [%] | degree of self- sufficiency |
| 25 kWp    | 52,07                 | 18,15                       | 66,43                 | 22,08                       |
| 50 kWp    | 35,96                 | 25,07                       | 45,9                  | 30,50                       |
| 250 kWp   | 11,27                 | 39,29                       | 13,87                 | 46,09                       |

Ice-water-cooling in combination with the photovoltaic-system can increase the self-sufficiency by up to 7 %

#### Remaining workload:

- Optimize size of photovoltaic power plant
- Verify results
- Profitability analysis



CIRE - Cologne Institute for Renewable Energy Technische Hochschule Köln Betzdorfer Straße 2, 50679 Köln – Germany Tel.: +49 221 8275 2415 Mail: patrick.beuel@th-koeln.de Patrick Beuel, M.Sc.









