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Abstract

Scalable Geospatial Analytics with IBM DB2 and R

Today’s highly computerized world generates a huge amount of data every moment.

A large proportion of this data has an associated geospatial component. Geospatial

analysis significantly enhances the classical data analysis and introduces unforeseen

opportunities. But scalable methods are required to deal with enormous amounts of

data. This study summarizes the theoretical foundations of geospatial analysis in a

concise form. Concepts and principals relating to the geospatial data and analysis,

and geospatial databases are furnished. A scalable solution is developed for geospatial

analysis using statistical data analysis tool R and IBM DB2® Spatial Extender. The

solution exploits the best features of both the tools. It utilizes easy to use, free, and

open source R as the interface for geospatial operations and employs DB2® Spatial

Extender with its performance enhancing features for in-database functionality. The

developed interface aims to conceal the challenging features of geospatial data structure

and analytics, and offers an intuitive and convenient platform. The acquired knowledge

and the developed scalable solution is then exercised upon several practical problems

and use-cases.

https://www.fh-koeln.de/
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Acknowledgements

I would like to express my appreciation and thanks to my thesis adviser Prof. Dr.

Heide Faeskorn - Woyke, for her sincere and valuable guidance and encouragement. I

am grateful to my second adviser Dr. Michael Wurst, for sharing his expertise and

dedicated involvement in every step throughout the process. Your advice on both the

thesis and on my career have been priceless. I would especially like to thank Mr.

Mathias Trumpp for his vital support in the process and for the diligent work review.

Words cannot express how grateful I am to my mother, father and brother for all of

the sacrifices that you’ve made on my behalf. I will always be in a debt of gratitude

for your unceasing support. I would also like to thank all of my friends and colleagues

who supported me in writing the thesis, and encouraged me to strive towards my goal.

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

Abbreviations vii

1 Introduction and Motivation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Geospatial analysis in day-to-day life . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Geospatial Analysis Concepts and Principals 6

2.1 Geospatial data and information . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Spatial analysis and its types . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Fundamental issues and common errors in spatial analysis . . . . . . . . 8

2.4 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Spatial databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 DB2 Spatial Extender . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Spatial resources supplied by DB2 Spatial Extender . . . . . . . . . . . 13

2.7.1 Geometries and data types supported by DB2 Spatial Extender . 14

2.7.2 Populating spatial columns . . . . . . . . . . . . . . . . . . . . . 17

2.7.3 Spatial grid indexes . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.4 Spatial reference systems . . . . . . . . . . . . . . . . . . . . . . 18

2.7.5 Spatial stored procedures and functions . . . . . . . . . . . . . . 19

2.7.6 Supported data formats . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Statistical data analysis tool R . . . . . . . . . . . . . . . . . . . . . . . 21

2.8.1 sp Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Shapefile format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



Contents iv

3 An R Interface for Scalable Geospatial Analytics 24

3.1 ibmdbR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Working with ida.data.frame . . . . . . . . . . . . . . . . . . . . 26

3.2 Design goals for geospatial functionality . . . . . . . . . . . . . . . . . . 27

3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Spatial operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 idaBuffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 idaIntersects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Functions for data import to R . . . . . . . . . . . . . . . . . . . 35

3.4.3.1 as.SpatialPointsDataFrame . . . . . . . . . . . . . . . . 36

3.4.3.2 as.SpatialLinesDataFrame . . . . . . . . . . . . . . . . . 36

3.4.3.3 as.SpatialPolygonsDataFrame . . . . . . . . . . . . . . 36

3.4.4 Functions for adding spatial information . . . . . . . . . . . . . . 37

4 Scalable Geospatial Analytics with R in Action 41

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Taxi dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 ZIP code boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Airport Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.4 NYC Theaters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.5 NYC Subway entrances . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Predict tip amount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Geospatial information . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Predict tip percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Predict taxi pickups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 Geospatial information . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusion 68

A R-code 74

Bibliography 83

Declaration of Authorship 83



List of Figures

1.1 Cholera outbreak map by Dr. John Snow . . . . . . . . . . . . . . . . . 4

2.1 A geographical coordinate system. . . . . . . . . . . . . . . . . . . . . . 10

2.2 Geometry hierarchy supported by DB2 Spatial Extender. . . . . . . . . 14

2.3 Hierarchy of data types supported by DB2 Spatial Extender. . . . . . . 16

3.1 Polygon boundaries of US Counties. . . . . . . . . . . . . . . . . . . . . 38

4.1 Rectangular bounding box of New York City. . . . . . . . . . . . . . . . 45

4.2 Taxis trips which are recorded to originate or end on water covered areas. 46

4.3 Convex hulls of two big land masses of NYC. . . . . . . . . . . . . . . . 46

4.4 Distribution of the mode of payment for the taxi ride. . . . . . . . . . . 48

4.5 Polygon boundaries of 200 ZIP code ares in NYC. . . . . . . . . . . . . 49

4.6 Five counties of NYC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Polygon boundaries of airports in NYC. . . . . . . . . . . . . . . . . . . 50

4.8 Location of 117 theaters in NYC. . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Locations of 1645 subway station in NYC. . . . . . . . . . . . . . . . . . 52

4.10 Envelope of Manhattan and the created zones. . . . . . . . . . . . . . . 65

v



List of Tables

4.1 TripData 2013 dataset attributes description and summary . . . . . . . 43

4.2 FareData 2013 dataset attributes description and summary . . . . . . . 43

4.3 ZIP Code Boundaries dataset attributes description and summary . . . 48

4.4 Airport Polygon dataset attributes description and summary . . . . . . 50

4.5 Theaters dataset attribute description and summary . . . . . . . . . . . 51

4.6 Subways dataset attributes description and summary . . . . . . . . . . . 52

vi



Abbreviations

DBMS Database Management System

DMS Degrees, Minutes and Seconds

GCS Geographic Coordinate System

GIS Geographic Information System

GML Geography Markup Language

GPS Global Positioning System

LAT Location Aware Technology

MBR Minimum Bounding Rectangle

OGC Open Geospatial Consortium

RFID Radio- Frequency Identification

SDBMS Spatial Database Management System

SRS Spatial Reference System

WKB Well Known Binary

WKT Well Known Text

WWW World Wide Web

vii



Chapter 1

Introduction and Motivation

1.1 Introduction

Answers to the questions: Where are we? Where is something happening? is a very

basic need of the ever increasingly urbanized world. Information pertaining to location

of objects or events is constantly present in our thinking. We contemplate these details

in most of our daily activities and act accordingly. This information (Geospatial infor-

mation) has enormous capabilities to revamp our decision making and hence paves the

way for Geospatial Analytics. Geospatial Analytics is the technique of analyzing spa-

tial data (data that have a geographical component) with the aim to extract previously

unknown and potentially useful information.

The last few years have observed tremendous growth in the field of digital computing

and computerized data acquisition. Most modern day transactions are computerized.

Advanced data collection tools like barcode scanners for commercial products, digital

cameras, scientific simulators and satellite remote sensing systems are available. In

addition, a magnification in the usage of World Wide Web (WWW) as a global infor-

mation system is observed. Consequently, we are capable of collecting vast amounts of

data on a daily basis 1. A large proportion of this data has an associated spatial com-

ponent. This data provides us with an unprecedented opportunity to achieve deeper

and faster insights, extract new, insightful information and formulate knowledge.

1Large Hadron Collider (LHC) alone produces 30 Petabytes (30 million Gigabytes) of data annually
at European Organization For Nuclear Research (CERN) on the Franco-Swiss border [1].

1
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There are various sources of spatial data like Earth observation satellites, census

databases, weather and climate databases, etc. Location-aware technologies (LATs)

like cell phones and in-vehicle navigation systems which have the capability to capture

data on individual movement patterns, are abundant. Satellite images are prominent

source of spatial data. Moreover, current tracking technologies like Global Positioning

System (GPS) and Radio-Frequency Identification (RFID) are also leading to collec-

tion of large spatio-temporal datasets. Widespread use of social networks also generate

massive amounts of data. For example, approximately 500 million2 tweets are sent per

day and approximately 20% of them divulge location information with geotagging or

metadata [2–4]. These datasets are fundamental in many application contexts and

hence recently a lot of interest has risen towards geospatial analysis [5, 6].

Discerning spatial data might be relatively more demanding than relational data. This

is because of the huge size of spatial databases and the complexity of possible patterns

that can be found [7]. Nevertheless, the need for accounting the spatial features of data

has been long recognized in various fields like ecology, geology, epidemiology, defense,

social sciences, medicine and public safety [8]. As 80% of the data is believed to have

associated spatial component, it is inevitable to consider spatial characteristics in data

mining and knowledge discovery [7].

The derived information has the capability of transforming business decisions, boosting

efficiency and improving business strategy. This knowledge is advantageous not only in

business environments but also in other fields like medicine, social sciences, government,

etc. Geospatial data gives us a chance to understand complex geographic phenomena

such as human-environment interaction, social-economic dynamics and global climate

change [9]. However, the bulk of data is so overwhelming that it is beyond human

capabilities to manually interpret it. Scalable techniques and automated tools are hence

required to extract the essence of information stored and the discovery of patterns in

raw data [10].

2 Figure as per official blog from Twitter [2] as of May 2015.
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1.2 Motivation

The task of knowledge discovery in spatial datasets is considerably challenging. Spatial

datasets are usually bigger and more complex than common affair datasets. The user

needs to take the spatial-referenced relationship among entities into account. Moreover,

the structure of the spatial data is further complex than ordinary relational database

tables. The data can take many forms as it also has to account for positional data along

with the attribute data [7]. In addition, the general statistical visualization techniques

are often not suitable for the results of spatial analysis tasks. Several Geographic

Information Systems (GIS) are available which solve some of the problems but the

user has to invest in a extra set of software products and training. Some open source

solutions are also available but they are usually not scalable. All of these challenges

might seem daunting for an individual with simple spatial analysis tasks in mind. The

motivation behind this thesis is to meet the following three objectives:

� Summarize the theoretical foundations of geospatial analysis discipline in a com-

pact and concise manner.

� Develop an easy to use R interface for scalable geospatial analysis using DB2®

Spatial Extender at the back-end. The interface aims to conceal the challenging

features of spatial data structure and analysis, and provide a scalable solution.

� Exercise the acquired knowledge and the scalable solution on practical problems

and use cases.

1.3 Geospatial analysis in day-to-day life

One of the famous documented examples of geospatial analysis is about the study of

cholera deaths in London by Dr. John Snow. The Broad Street Cholera Outbreak

was a severe outbreak of cholera that occurred in Soho district of London, England

in 1854. Dr. Snow, a physician, was unable to convince other scientists and doctors

that cholera is a water-borne disease and water contaminated by sewage is the prime

source of the disease. Later, he used some proto-GIS methods and charted the deaths
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from the outbreak to prove his point [11]. The original map drawn by him showing

the clusters of cholera cases during the cholera outbreak is presented in Figure 1.1.

Figure 1.1: Original map by Dr. John Snow showing the clusters of Cholera outbreak of
1854. Cholera cases are highlighted in black. A majority of Cholera deaths can be located in
the vicinity of the Broad Street pump. This strengthens Dr. Snow’s postulate that cholera is

a water-borne disease [12].

Dr. Snow drew Thiessen 3 polygons around the wells in the area and found out that

a majority of deaths fell in the Thiessen polygon surrounding the Broad Street pump.

An even larger proportion of the cholera deaths fell within the shortest travel distance

around the Broad Street Pump. It was discovered later that the public well was infected

from the fecal bacteria leakage from a close-by cesspit. Dr. Snow is today considered

to be the pioneer of public heath research in a field known as epidemiology[14].

In the last decades geospatial analytics has developed and evolved. It has diverse

applications and serve us in many ways. Crime mapping is a modern application

of geospatial analytics. It involves the manipulation and processing of geospatially

referenced crime data. Information regarding the crime patterns and the location of

hotspots or high volume crime can be extracted through crime mapping. The results

of the analysis can then be used to suppress and investigate criminal activities [15].

3 Thiessen polygons are used to define an area of influence around a sample point. Any location
inside the polygon is closer to that point than any of the other sample points. Thiessen polygons are
named for the American meteorologist Alfred H. Thiessen (1872-1931)[13].
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Geospatial analysis is successfully used in other fields as well, such as the analysis of

urban structure and dynamics, smart cities, urban transportation systems etc.

1.4 Thesis structure

In Section 1.2, we presented the motivation and aim of the thesis. We also talked about

the influence of geospatial analysis in our daily lives. Chapter 2, presents concepts

and principles related to geospatial analysis domain. The chapter aims to provide

the reader with a basic understanding of the spatial analysis discipline, including the

issues and complexities in geospatial analysis. An introduction to spatial databases is

presented in Section 2.5. A detailed description of the spatial database management

system offered by IBM i.e. DB2® Spatial Extender is presented in Section 2.6. The

statistical data analysis tool R is presented in Section 2.8. Section 2.9 explains the

noted shape file format. In Chapter 3, we focus on developing the scalable solution for

geospatial analysis. Section 3.1, introduces the reader to the ibmdbR package. The

design goals of the spatial solution are defined in Section 3.2. Section 3.3, elaborates

on the design of the spatial operations. The spatial operations build during the study

are then explained in Section 3.4. The acquired knowledge and the functionality of the

package is exercised over some real life use cases in Chapter 4. Chapter 5, presents the

conclusion of the study.



Chapter 2

Geospatial Analysis Concepts

and Principals

2.1 Geospatial data and information

Geospatial data, which is also known as spatial data, contains information about the

location, shape and size of an object on planet earth, on other cosmic bodies or in

virtual world environments of computer games. These objects have an associated

spatial component and occur on the continuous surface [16]. Geospatial data is usually

stored as coordinates and topology. The term spatial can also be used in the context

as the concepts can be applied to data arrayed in any space, not only the geographic

space. Hence, we use the terms ‘Geospatial’ and ‘Spatial’ interchangeably during

this study. One important feature of spatial data is that in addition to the positional

information and attributes, it also includes the spatial relationships among the entities.

Embedding the data within some formal space generates implicit relationship among

objects. Spatial data objects are often referenced as geographical features. Anything

in the real world that has an identifiable location or can be imagined to have an

identifiable location is a geographical feature [17]. Examples of graphical features:

� An object; for example, a lake, airport, island.

� A space; for example, area affected from a flood, service area of a food-chain, a

state county.

6
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� An incident at a location; for example, a taxi pickup or dropoff location.

Information derived from the data having a spatial component is referred to as spatial

information. It is often facts and figures about the location, shape, size and interaction

of geographic features. Spatial information alone or in combination with traditional

relational data can provide valuable insights. Spatial information can be:

� Location of geographic features on the map (for example a taxi pickup location).

This information is generally recorded in the form of latitudes and longitudes.

� Measurements related to geographic features (for example the distance covered

in a taxi trip, or the area of a country).

� Interaction between geographic features (for example which taxi trips originated

in a specific county or, which mountain ranges fall in a country).

� Relative location of geographic features (proximity of a location to flood zones).

2.2 Spatial analysis and its types

Spatial analysis is the process of examining the geographical features, their properties

and relationships. It is conducted with the aim to extract potentially utilitarian and

formerly unknown information. Spatial analysis utilizes statistical, overlay, modeling

and other analytical techniques to reveal, predict or gain this knowledge in an efficient

manner. It is an interactive and iterative process, involving several steps such as

data selection, data reduction, data mining and the evaluation of data mining results.

Classifying spatial analysis in a exclusive and exhaustive manner is difficult. This is

because a large number of fields of research are involved and the data itself can take

many forms.

Several fields of science have contributed to the spatial analysis domain and helped it

to rise to its modern form. Early attempts at cartography and surveying are among

the major contributors. In addition, botanical studies of global plant distributions,

ecological studies of spatial population dynamics, epidemiology and spatial statistics

have greatly contributed. Advancements in computational geometry and mathematics
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provide fundamental tools for analysis. Scientific modeling supplies a useful framework

for new approaches.

Large tables of spatial data obtained through census and surveys is used in urban and

regional studies. Huge amount of detailed information is often simplified to extract

main trends. Spatial autocorrelation is a common type of spatial analysis and mea-

sures the degree of dependency among observations in a geographic space. Moran’s I,

Geary’s C, Getis’s G and the standard deviational ellipse are classic spatial autocorre-

lation statistics. A more positive than expected spatial autocorrelation indicates the

clustering of similar values across geographic space. Whereas, a negative spatial auto-

correlation indicates that the neighboring values are more dissimilar than expected by

chance.

Estimating the variables at unobserved locations in a geographic space based on the

known value at observed locations is a commonly used type of spatial analysis. This

is known as spatial interpolation. Kriging and inverse distance weighting are basic

methods of spatial interpolation. Based on the origin propulsive variables, spatial

interaction is used to estimate the flow of people, material or information between

locations in geographic space. Computation method such as neural networks can also

be used for the purpose. Spatial regression methods are used to provide information

on spatial relationship among the involved variables.

2.3 Fundamental issues and common errors in spatial anal-

ysis

There are several fundamental issues in spatial analysis relating to the analytic opera-

tions to be used, definition of its objects of study, in the presentation of analytic results

etc. Moreover, mathematics of space and ways of spatial data representation give rise

to common errors. Many of these issues are active subjects of modern research.

� Spatial dependency: Spatial dependency refers to the co-variation of proper-

ties within geographic space. Spatial dependence is measured as the existence

of statistical dependence in a collection of random variables. It is observed that
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the characteristics at proximate locations are either positively or negatively cor-

related. This leads to spatial autocorrelation problem in statistics. Standard

statistical techniques assume the observations to be independent but spatial de-

pendency violates this assumption.

� Scaling: In spatial statistics there is no widely agreed upon scale independent

method of analysis and spatial measurement scale remains to be a persistent

issue. The results of statistical hypothesis tests are influenced by the choice of

areal units 1.

� Length: Length of features in ecology measurements depend directly on the

scale at which they are measured and experienced. So the measured length of

geographical features like rivers, streets, et cetera, is highly context dependent

[19].

� Locational fallacy: Locational fallacy refers to the errors generating from the

particular spatial characterization chosen for the elements of study. This may

implicitly limit the subject of study. For simplification purposes its common to

reduce the existence of features to a single point, but the assumption might lead

to wrong results [19].

2.4 Coordinate systems

The relative location of objects in a given area is defined using a framework called

coordinate system. While dealing with spatial data, it is necessary to identify the

coordinate system on which the data is based. It is a system which uses one or more

numbers to uniquely determine the location of a geometric element on a manifold

such as Euclidean space. When referring to geographic space, the coordinate system

indicates the location of spatial features relative to earth’s surface [20]. There are

two main types of coordinate systems: geographic coordinate systems and projected

coordinate systems.

1 Stan Openshaw lamented that “the areal units (zonal objects) used in many geographical studies
are arbitrary, modifiable, and subject to the whims and fancies of whoever is doing, or did, the
aggregating.” [18]
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� Geographic coordinate systems

A coordinate system which uses a three-dimensional spherical surface to identify

locations on earth is called a geographic coordinate system (GCS). A GCS uses

two angles, latitude and longitude to define a point on the globe 2. The angles

longitude and latitude are measured from the center of the earth to a point on

the earth’s surface. It includes an angular unit of measure, a prime meridian,

and a datum 3 (based on a spheroid). Figure 2.1 shows a geographic coordinate

system where a location is represented by the coordinates- longitude 60 degree

East and latitude 55 degree North.

Figure 2.1: A geographical coordinate system, indicating the location of a feature on earth’s
surface by the coordinates longitude 60 degree East and latitude 55 degree North. Longitude
and latitude values are usually measured in decimal degrees or in degrees, minutes and seconds

(DMS) [17].

The east-west or horizontal lines are lines of equal latitude and are called paral-

lels. The north-south or vertical lines are lines of equal longitude and are called

meridians. These lines encompass the globe and form a grid network called a

graticule. The line of zero latitude is called the equator and similarly the line of

2More precisely, since the earth is not a perfect sphere, these angles indicate the point on a ellipsoid
which approximately fits the globe.

3A datum provides a frame of reference for measuring locations on the surface of earth.
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zero longitude is called the prime meridian. Longitude and latitude values are

usually measured in decimal degrees or in degrees, minutes and seconds (DMS).

A spheroid or sphere defines the shape and size of a GCS whereas a datum defines

the position of the spheroid relative to the center of earth [21].

� Projected coordinate systems

A projected coordinate system is defined on a flat, two-dimensional surface. This

coordinate system is always based on a geographic coordinates system but it uses

linear units of measure for coordinates. It has the advantage that lengths, angles,

and areas are constant across the two dimensions.

The positions are identified by x, y coordinates on a grid, with the origin at

the center of the grid. The x-coordinates specify the horizontal position and the

y-coordinates specify the vertical position. The coordinates at the origin are x=0

and y=0. A map projection is the transformation of earth’s three-dimensional

surface to a flat map sheet. There are various kinds of map projections like

conformal projections, equal area projections, equidistant projections etc., each

designed for specific purposes.

2.5 Spatial databases

A spatial database management system (SDBMS) manages spatial data, defines spatial

data types and stores spatial data. They are optimized to access and process the data

that represents objects in a geometric space. Data in spatial databases are stored as

coordinates, points, lines, polygons and topology. They provide special functions and

indexes for querying and manipulating spatial data. Spatial databases use separate

spatial indexes instead of normal indexes to speed up database operations. In addition

to typical SQL queries, spatial databases support a wide variety of spatial operations.

Open Geospatial Consortium (OGC) 4 specifies many such operations. For example:

4Open Geospatial Consortium is an international voluntary consensus standards organization which
encourages development and implementation of open standards for geospatial content and services, GIS
data processing and data sharing.
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� Constructor functions: are used for creating new geometries by specifying the

vertices of the shape. They are also used for converting geometries to and from

various data exchange formats.

� Comparison functions: are used to compare geometries for intersection, bound-

aries and other information.

� Observer functions: are used to fetch specific information about a feature,

such as the centroid of the geometry.

� Spatial measurements: return information like the area of the polygon, length

of the line, distance between two geometries, etc.

Often a spatial database management system is a software module that works with

an underlying database management system (DBMS). They inherit the traditional

functionality provided by a DBMS. There is an assortment of spatial databases with

varying range of capabilities available in the market, like DB2® Spatial Extender,

Oracle Spatial, Microsoft SQL Server, PostgreSQL, CouchDB, MySQL, MongoDB,

etc. DB2® Spatial Extender for Linux, UNIX and Windows v10.5.400.197 Fix Pack

4 (in the following abbreviated to DB2 Spatial Extender) is used in this study as the

underlying spatial database management system. It provides the user with various

performance-enhancing features, such as the efficient spatial indexes and parallel pro-

cessing. A detailed description of the spatial capabilities of DB2 Spatial Extender is

provided in Section 2.6.

2.6 DB2 Spatial Extender

DB2 Spatial Extender is an integrated feature of DB2 database software. It provides

us with advanced spatial resources like spatial datatypes, reference systems, functions

and stored procedures. The spatial datatypes are used to represent geometries such

as points, lines and polygons. Spatial functions and features are available that inter-

operate with those datatypes. With this capability we can generate, analyze & exploit

spatial information about geographic features. This allows us to add another element

of intelligence to our database.



Chapter 2. Geospatial analysis concepts and principals 13

For recent DB2 versions (version > 9.7), the spatial extender comes with the standard

DB2 installation image. In order to install it as a part of DB2, a custom install must

be performed and the Spatial Extender must be added as an additional feature. It is

required to create an environment that supports spatial operations. Installing Spatial

Extender, embeds a GIS into the DB2 database. The types and functions implemented

in DB2 Spatial Extender comply with the Open Geospatial Consortium5 (OGC) and

International Organization for Standardization (ISO) SQL/MM specifications [17].

2.7 Spatial resources supplied by DB2 Spatial Extender

We require resources to create and manage spatial columns and analyze spatial data.

DB2 Spatial Extender provides the resources once the database is enabled for spatial

operations. These resources are:

� Spatial data types to define different types of spatial data.

� Stored procedures for operations like import and export of data.

� Spatial grid indexes to enhance application query performance.

� Spatial functions that operate upon spatial data to generate spatial information

or more spatial data.

� Definition of coordinate systems that determine the location of objects in a given

area.

� Default spatial reference systems to efficiently represent geographical entities in

the database.

� DB2 Spatial Extender’s catalog that controls certain operations.

� The schemas: DB2GSE and ST INFORMTN SCHEMA. DB2GSE contains the

objects like : stored procedures, spatial data types, the DB2 Spatial Extender cat-

alog, and so on. Views in the catalog are also available in ST INFORMTN SCHEMA

to conform with the SQL/MM standard.

5OGC is an international industry consortium and is leading the development of geospatial stan-
dards.
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2.7.1 Geometries and data types supported by DB2 Spatial Extender

DB2 Spatial Extender supports a hierarchy of geometries which is defined by OGC

document “OpenGIS Simple Features Specification for SQL” [22]. The spatial data

types supported by DB2 Spatial Extender are implementations of these geometries.

Figure 2.2 represents the geometries supported by DB2 Spatial Extender.

Figure 2.2: Hierarchy of geometries supported by DB2 Spatial Extender. A superclass called
geometry is the root of the hierarchy. The root type and other proper subtypes in the hierarchy

are not instantiable [17].

There are two major subtypes in the geometries, the base geometry subtypes, and

the homogeneous collection subtypes. The base geometries include Points (A single

point), Linestrings (A line between two or more points), Polygons (A polygon or sur-

face within a polygon). The homogeneous collections include: Multipoints (A multiple

point geometry collection), Multilinestrings (A multiple curve geometry collection with

multiple linestrings ), Multipolygons(A multiple surface geometry collection with mul-

tiple polygons). The homogeneous collections are collections of base geometries and

have some extra properties over base geometries.

Unless the geometries are empty, they all include at least one X coordinate and one Y

coordinate. The X coordinate denotes the location to the east or west of a reference

point and the Y coordinate denotes the location to the north or south of the reference
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point. In addition, the geometries that have an associated altitude or depth can have

an optional Z coordinate. Each point forming the geometry can have this optional

coordinate that represents an altitude or depth normal to the earth’s surface. It is also

possible to have an extra coordinate called the M coordinate (measure), that conveys

information about a geographic feature.

The position occupied by the geometries in space is defined by their interiors, bound-

aries and exteriors. The space that is occupied by the geometry composes the interior.

The boundary serves as the interface between the interior and the exterior. The exte-

rior is all the space that is not occupied by the geometry. A geometry is referred to

as a simple geometry if it obeys all the rules imposed on its subtype and non-simple

otherwise. An empty geometry is the one which does not have any points. The interior,

exterior, boundary and envelope are not defined for an empty geometry.

The minimum and maximum (X,Y) coordinates of a geometry form the Minimum

Bounding Rectangle (MBR). Generally the MBR of geometries form a boundary rect-

angle except when the geometry is a point or linestring. The MBR of a point is the

point itself and the MBR of a linestring is a linestring represented by the boundary of

the source linestring.

Once a database is enabled for spatial operations, DB2 Spatial Extender provides the

database with a hierarchy of data types based upon the supported geometries. The

data types ST Point, ST LineString, ST Polygon, ST MultiPoint, ST MultiLineString,

ST MultiPolygon and ST GeomCollection from the hierarchy are instantiable. The

hierarchy has data types for geographical features that can be considered as forming

a single unit and also for the geometries that are made up of multiple components.

Figure 2.3 represents the hierarchy of data types supplied by DB2 Spatial Extender.

� Data types for single-unit features

The data types ST Point, ST LineString and ST Polygon are used to store the

coordinates of a geographic feature that can be perceived as forming a single

unit.
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Figure 2.3: Hierarchy of data types supported by DB2 Spatial Extender.Data types named
in the shaded boxes are not instantiable [17].

– ST Point: is used to indicate a point in space which might refer to a

discrete geographic feature. The size of the object may vary from very

small like the location of a house to very big such as a country.

– ST LineString: is used to store a set of coordinates which refer to a

linear geographic feature. For example, the features like roads, rivers and

pipelines.

– ST Polygon: is used to indicate the extent of space covered by a multi-

sided feature. It might be used to refer to the features such as a city, a

country, a wildlife habitat, etc.

� Data types for multi-unit features

The data types ST MultiPoint, ST MultiLineString and ST MultiPolygon are

used to store the coordinates of the geographic features that are made up of

multiple units. Multi-unit does not mean a collection of individual entities rather,

an aggregate of the parts that make up the whole.

– ST MultiPoint: is used to represent features made up of units whose

locations are each referenced by an X and Y coordinate. For example,

consider a table whose row represents the location of cars on a racing field.

– ST MultiLineString: is used to represent features that are made up of

multiple linear units. ST MultiLineString stores the coordinates for the

location of these single linear units and the location of each feature as a
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whole. For example, consider a table whose rows represent the network of

streets.

– ST MultiPolygon: is used to represent features made up of multiple

multi-sided units. ST MultiPolygon stores the coordinates for the loca-

tion of the single multi-sided units and the location of each feature as a

whole. For example, consider a table whose rows represent the boundary of

counties in a state.

2.7.2 Populating spatial columns

Once the spatial columns are created, there are several ways to populate them with

spatial data. Data can be imported from a previously existing source (data exchange

files) or it can be derived from business data by using a geocoder. User can also create

the data by using various spatial functions in conjunction with business data or other

spatial data.

� Importing and exporting spatial data

DB2 Spatial Extender can exchange spatial data between the database and ex-

ternal data sources. Data exchange files can be used to import spatial data to

a DB2 database. Data can be exported in the form of data exchange files from

which external sources can acquire it. There could be several reasons to import

spatial data from other sources. We can acquire a lot of spatial information that

is already available in the industry. We can supplement the data in our database

with the data supplied by external sources, for example, a map vendor. It is

possible to immigrate data between systems using the import and export pro-

cess. These data exchange files can also be used to render the data in visual form

by supplying the files to a geobrowser system. DB2 Spatial Extender supports

shape files for data exchange. A detailed description of shape files is presented

in Section 2.9. DB2 provides stored procedures namely ST IMPORT SHAPE and

ST EXPORT SHAPE for data import and export respectively.

� Geocoder
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In DB2 Spatial Extender, a geocoder is a scalar function that can be used to

translate existing relational data into spatial data. The input i.e. relational

data describes or names a location and the output is received in spatial terms.

A geocoder can also be used to translate spatial data for conformity purposes.

DB2 Spatial Extender can support user-supplied and vendor supplied geocoders.

A geocoder can operate in two modes. In batch mode, all its input from a single

table (or a subset of rows) are translated at once. In automatic mode, a geocoder

translates data as soon as it is inserted or updated in a table [17].

2.7.3 Spatial grid indexes

DB2 Spatial Extender allows the user to create spatial grid indexes on the table to

improve application query performance. This feature is specially beneficial when the

queried table or tables contain many rows. the number of rows to be processed can be

greatly reduced if appropriate indexes are created. Spatial Extender uses the minimum

bounding rectangle (MBR) of a geometry to create spatial grid index.

Up to three index levels can be defined for a spatial column. An index entry consists of

the grid cell identifier, the geometry MBR, and the internal identifier of the row that

contains the geometry. DB2 optimizer considers the spatial grid indexes for the access

plan if the spatial function are used in the WHERE clause. For the efficient use of the

optimizer an appropriate grid size must be specified. The most common query window

size must be taken into account while choosing the grid size. DB2 Spatial Extender

also provides an Index Adviser utility. This utility examines the spatial column data

and suggests appropriate grid sizes for typical query window sizes.

2.7.4 Spatial reference systems

A spatial reference system (SRS) is a group of parameters that is used to represent

geographical entities. Among other parameters, a spatial reference system defines a

specific coordinate system from which the coordinates are derived. Coordinates that

indicate the maximum extent of the referenced space are also defined.
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Traditionally coordinates in a coordinate system are decimal values that can be both

negative or positive. To enhance performance, the negative coordinates are converted

to positive values, and the decimal coordinates are converted into integer. These

conversions are made by certain parameters like the offset and scale factor. A SRS

specifies these parameters.

2.7.5 Spatial stored procedures and functions

DB2 Spatial Extender provides a variety of stored procedures. Some of those are,

ST CREATE COORDSYS, ST ENABLE DB, ST IMPORT SHAPE, etc. These stored

procedures are used to set up DB2 Spatial Extender and create projects that use spatial

data.

DB2 Spatial Extender also provides a large number of spatial functions that can be

used to program the applications. Before using the function, it is necessary to qualify

the name of the function by the name of the schema to which the spatial function

belongs i.e. DB2GSE. Several spatial functions can be invoked as methods as well.

Depending upon there use, the functions can be organized into several categories. For

example:

� Constructor functions : DB2 Spatial extender has functions that convert

geometries to and from supported data exchange formats. A detailed description

of the supported data formats is given in Section 2.7.6. The functions for creating

geometries from these formats are known as constructor functions. For example,

ST PointFromWKB, ST GeomFromWKB etc.

� Comparison functions : These functions are used to compare geometries for

boundaries, intersections, and other information. For example, ST Intersects,

ST Contains etc.

There are several other categories of spatial functions provided by DB2 Spatial Exten-

der. Detailed information about the offered stored procedures and functions is available

in the Spatial Extender User’s Guide and Reference [17].
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2.7.6 Supported data formats

DB2 Spatial Extender supports various industry standard spatial data formats.

� Well-known text (WKT) representation

Well-known text format allows to represent and exchange geometry data in Amer-

ican Standard Code for Information Interchange (ASCII) format. It is a text

markup language for representing vector geometry objects on a map. WKT

representation can also be used for transformations between spatial reference

systems. The format was originally defined by OGC and is also referenced by

the ISO “SQL/MM Part 3: Spatial” standard [23].

� Well-known binary (WKB) representation

Well-known binary format is the binary equivalent of the WKT format. It is used

to transfer and store the same information. This representation is also defined

by the OpenGIS Consortium “Simple Features for SQL” specification and ISO

“SQL/MM Part 3: Spatial” standard [23]. Byte stream for a point is the basic

building block for WKB representation. It consists of two double values. Other

geometries are built using the byte stream for geometries that are already defined.

� Shape representation

Shapefile is a popular standard for representing geospatial vector data, developed

and regulated by Environmental Systems Research Institute (ESRI). It is a widely

used standard to represent spatial data. A detailed description of the format is

presented in Section 2.9.

� Geography Markup Language (GML) representation

Geography markup language is the XML grammar defined by the OpenGIS con-

sortium to express geographical features. GML serves as a modeling language

for geographic systems. It can also be used as an open interchange format for

geographic transactions on the Internet. GML is capable of integrating all forms

of spatial information [24]. There are several functions in DB2 Spatial Extender

that generate geometries from representations in GML.
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2.8 Statistical data analysis tool R

R is a free software environment and a well-developed programming language for statis-

tical computing and graphics [25]. It is often referred to as a different implementation

of the S language and environment which was developed by John Chambers and col-

leagues at Bell laboratories. Although there are some differences in the implementation

of R and S, but most of the code written for S runs unaltered under R. It is designed as

a fully planned and coherent system hence the term “R environment” is appropriate.

It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS [21].

R provides a broad range of statistical techniques like classification, linear and non-

linear modeling, classical statistical tests, clustering, time-series analysis and much

more. Since it is build for statistical purposes, it has a suite of operators for calculation

on arrays and matrices. An assortment of intermediate tool for data analysis is also

available. It has an effective data handling and storage facility. R is used extensively

for graphical purposes as well. It enhances graphical facilities for data analysis and is

capable of generating publication-quality plots with ease.

R supports procedural programming with functions and, for some functions, object-

oriented programming with generic functions. C, C++ and Fortran code can be linked

and called at run time for computationally-intensive tasks. It is also possible to manip-

ulate R objects directly by using the code written in languages like C, C++, Python

and Java. R is currently developed by the R Development Core Team. Initially it

was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New

Zealand. The source code for the R software environment is written primarily in C,

Fortran and R. Native R has a command line interface, but there are several graphical

front-ends available.

One of the most striking feature of the R environment is that it can be extended

very easily with the help of packages. About eight packages are supplied with the R

distribution. Other packages can be installed as per need from the CRAN family of

internet sites covering a very wide range of modern statistics. Pools and studies of

scholarly literature databases show that R’s popularity has increased in recent years

[26, 27].
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2.8.1 sp Package

The sp package is a very powerful package which provides the classes and methods to

deal with the spatial data in R [28]. It defines a uniform interface for holding spatial

data and implements various data structures like points, lines, polygons and grids.

One important feature of sp package is that instead of directly manipulating the class

slots, it provides methods and functions to create the classes from elementary types.

Each class is created using elementary types like matrices, dataframes or lists.

The spatial data classes implemented are points, grids, lines, rings and polygons. sp

package provides classes both for only spatial information and spatial information

along-with attribute information. Each spatial only class e.g. SpatialPoints has an

extension of the form SpatialPointsDataFrame which can hold the attribute infor-

mation as well.

2.9 Shapefile format

Shapefile is a popular standard for representing geospatial vector data. It is developed

and regulated by Environmental Systems Research Institute (ESRI) [29]. Shapefiles

can be easily copied and supported by a number of software packages. It allows to store

nontopological geometry and attribute information for the spatial features in a dataset.

Shapefile format was introduced with ArcView GIS version 2 in the early 1990s. It has

a simple file structure which draws faster relative to other common formats. In-fact,

shapefile is a collection of files with a common filename prefix. A shapefile consists

necessarily of a main file (.shp), an index file (.shx) and a dBASE file (.dbf), and can

optionally have other associated files (.sbn, .xml, .prj etc.) [30].

� .shp: The main file is variable-record-length file which contains the feature ge-

ometry itself. It consists of a single fixed length (100 bytes) header followed by

one or more variable length records. Each record is a list of vertices describing a

shape.

� .shx: The index file contains the offset of each record corresponding to the main

file record. Similar to the .shp file it has a fixed 100-byte header, followed by any
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number of 8-byte fixed-length records. These records store the record offset and

record length. It allows seeking forwards and backwards in the shapefile quickly.

� .dbf : The dBASE file contains the attributes associated with the feature, with

one record per feature. An alternative format called xBase can also be used.

In the above mentioned files, the records in each file correspond to each other in a

sequence (i.e., the first record in the .shp file corresponds to the first record in the .shx

and .dbf files, etc.).

ESRI shapefile has become a common standard for representing geospatial data and

many leading organizations provide their geospatial datasets in the same format. There

are some limitations to the shapefile format such as it can not store topological infor-

mation and the size of both .shp and .dbf files can not exceed 2 GB (231bytes) [31].

A wide variety of software can be used to read and write geographical datasets in the

shapefile format. Majority of the datasets used in this study were obtained in the

shapefile format from various sources.



Chapter 3

An R Interface for Scalable

Geospatial Analytics

3.1 ibmdbR

The ibmdbR package provides an efficient approach for statistical analysis using R. It

automatically translates R language constructs into SQL statements. These statements

are then executed against a scalable database in the background. This allows users to

work with big data warehouses without the knowledge of SQL. However, the ibmdbR

package does not provide any support for geospatial operations. One of the main

objective of this thesis is to fill this gap. In this section, some features of the existing

ibmdbR package are explained. In the later sections, we build up a scalable solution

for geospatial analysis and processing following a design process.

R provides an effective platform for statistical analysis. But it is a prerequisite in most

native R functions that the data to be processed must be present in the main memory.

However, this might turn impractical or even impossible if you need to analyze a large

amount of data. The package ibmdbR offers methods that push down the operations of

R into the underlying database for execution and hence increasing the memory limits

of R. In addition, the user profits from the performance-enhancing features of the

underlying database management system, such as parallel processing, without having

to interact with the database explicitly.

24
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The user creates an object of the class ida.data.frame. It is a pointer to a table located

in the database. The data frame does not store any data in local memory, instead it

contains the metadata used to determine the table subset. The function set operates

on these objects to perform various operations and keeps on updating the metadata

in the data frame. Many operations can be performed without loading the content of

this table or query into memory.

The ibmdbR package can be used in conjunction with IBM DB2© for Linux and

Windows Version 10.5 (in the following abbreviated to DB2), as well as with IBM

dashDB©. The appropriate client driver packages must be installed while using DB2

and a configured ODBC source is required. In the following it is assumed that an

ODBC data source called “BLUDB” is already created.

3.1.1 Getting started

The user needs to download and install the package. A connection to the database is

necessary before using any of the push-down functions of the ibmdbR package. This is

done by executing the idaConnect function with appropriate parameters. idaConnect

function is used to open an IDA database connection. The ODBC source, the user

name and the password are supplied as the parameters as shown in the code below.

>install.packages(‘ibmdbR’)

>library(‘ibmdbR’)

>con <- idaConnect(‘BLUDB’,‘USERNAME’,‘PASSWORD’)

Next, initialize the in-database functionality by executing the idaInit function. The

idaInit function creates a singleton for the connection object such that it is not required

to pass it as a parameter later on:

>idaInit(con)

Now we can use the rest of the functions in the package. ibmdbR package provides

a set of functions to analyze the tables in the database and the data in those tables.

For example, the function idaShowTables will return a data.frame that contains a list



Chapter 3. An R interface for scalable geospatial analytics 26

of all tables in the current schema. The result to the idaShowTables function shown

below consists of the table schema, table name, owner and type respectively.

> idaShowTables()

Schema Name Owner Type

1 POOL44 IRIS POOL44 T

2 POOL44 CARS POOL44 T

3.1.2 Working with ida.data.frame

In comparison to a normal data.frame in R which holds data in memory, an object

of class ida.data.frame contains only a reference to a table or a query. An object of

class ida.data.frame can be created by pointing to an existing table in the database.

For example, for an existing table called ‘IRIS’ in the database, we can create an

ida.data.frame object by executing the following statement, where iris.ida is the

name of the new object.

>iris.ida <- ida.data.frame(’IRIS’)

The ibmdbR package overwrites many methods and functions defined for regular R

data.frame objects. It uses SQL to push the execution of these methods down into the

database. For example, the native dim method returns the dimension of a normal R

data.frame, the overwritten method does the same for an ida.data.frame object.

> dim(iris.ida)

[1] 150 5

Another example is the head method. By default the method returns the first six

rows of a data frame. It does the same for a ida.data.frame object by executing the

appropriate SQL statements in the background. The statement below uses the head

function with a ida.data.frame object. The output of various R statements have been

structurally modified in the document to fit the page width, the output on R console

might look different.
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> head(iris.ida)

SepalLength SepalWidth PetalLength PetalWidth Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

Similarly, there are several other methods (defined on the data.frame class ) which the

ibmdbR package overwrites, for example, as.data.frame, sd, max, mean, min, length,

print, names, colnames, summary, NROW, NCOL, var, cor and cov.

More often than not it is a requirement in analysis process to work with a selection of

the table instead of the full table. It is possible to do that with ida.data.frame objects

in a similar way as with a regular data.frame. For example, the following statements,

would select only the rows where iris ‘Species’ equals ‘setosa’ and only the columns

‘PetalLength’ and ‘PetalWidth’. As can be seen in later statements , all methods and

functions applied to an ida.data.frame object with selection will reflect it, which is why

the dim method now returns 50 row and 2 columns instead of 150 rows and 5 columns.

> iris.ida2 <- iris.ida[iris.ida$Species==’setosa’,c(’PetalLength’,’PetalWidth’)]

> dim(iris.ida2)

[1] 50 2

The package ibmdbR provides a variety of functions for pre-processing and analyzing

data. The reference manual for the package contains more details and examples [32].

3.2 Design goals for geospatial functionality

Section 3.1 provides an overview of the existing ibmdbR package. The package provides

an efficient approach for statistical analysis. As mentioned in the Section 1.2, we aim to

further extend the package to include the operations that support geospatial analysis

and processing at scale. In this section, we define the principal design goals for building

up the geospatial capability in the package.
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� Scalability

Rendering a solution which is scalable beyond the present capabilities of R and

the sp package is the prime goal. Geospatial datasets are usually very large in

size. The present geospatial capabilities of R are not scalable as the data have to

reside in main-memory. This limits the amount of that data that can be analyzed.

Hence, scalable solutions are required for geospatial analysis and processing.

� Adherence to the sp package

To maintain the adaptability of the package we decide to keep the form of the

spatial operations as close as possible to those provided by the sp package and

other supporting packages e.g. rgeos [33]. More details about the sp package

are presented in Section 2.8.1.

� Coalescing with ibmdbr package

Spatial operations are desired to be build up upon the existing classes and sup-

porting functions provided by the ibmdbR package. Through this goal we can

exploit the wide range of statistical functions provided by the package.

� Intuitive operations

The goal is to design the operations in a manner that they are intuitive to the

individuals who are not experts in the geospatial domain. The functions must

be flexible and easy to use. Instead of writing long and complex queries, the user

must be able to perform spatial operations in a convenient manner.

� Lazy materialization

Functions are to be designed such that they support the concept of lazy materi-

alization. This can be achieved by storing the spatial operations in the form of

SQL queries and not materializing them until required.

3.3 Design

We seek to design the spatial operations such that they suffice the design goals defined

in Section 3.2. For scalability, we use the DB2 Spatial Extender as the back-end. The

spatial operations are pushed down to the database in the form of corresponding spatial
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queries. Consequently, we are not limited to the amount of data that can fit into the

main memory. We can analyze the data residing into the database without moving

it into working memory. This also has the benefit that the data being analyzed is as

current as possible.

To benefit from the concept of lazy materialization, we have designed the functions in

a way that they create a view from the existing tables. The views are created based on

the specified spatial operations. These views are not materialized until its necessary

or in some cases might not be materialized at all. We can apply analysis functions

over these views. This saves a considerable amount of time and computation. For

example in idaIntersects function (details in Section 3.4.2), instead of creating a new

table which contains the result, we create a view that represents the potential result.

Each idaIntersects function call executes an SQL query of the form shown below:

CREATE VIEW viewName AS SELECT ( columns and intersect condition..)

We have built up the spatial capability upon the classes provided by the ibmdbR pack-

age. This has the benefit that we can use the variety of statistical analysis functions

provided by the package on our spatial datasets if required. Changes have been made

where deemed useful. For example the head function in the ibmdbR package returns

the actual contents of the table subset. But this might turn impractical when using

the function with spatial tables. Because the spatial columns in the table contain the

long list of coordinates of the geometries. If we return the actual coordinates of the

geometries, the R console is rapidly cluttered. To overcome this problem, we return

the spatial data type of the column instead of the actual coordinates. This conveys the

information about the spatial columns in a compact manner without cluttering the R

console output. It was observed to be a better way of representing spatial information

specially in the case of line and polygon geometries.

We can create an ida.data.frame object for a table with spatial columns by executing

the following statement. Here, airports.ida is the name of the new object.

> airports.ida <- ida.data.frame(’AIRPORTS’)

Execute the following statements to check the class of the ida.data.frame object and

for printing it.
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> class(airports.ida)

[1] "ida.data.frame"

> airports.ida

SELECT "NAME","GEOSERVER","URL","SHAPE_AREA","SHAPE_LEN",

"AIRPORT_ID","AIRPORT_BOUNDARY" FROM AIRPORTS

The user sees the ida.data.frame object as an SQL query (see output above). The

actual structure of the ida.data.frame objects consists of four slots each containing a

part of information about the subset of the database table. Operations progressively

update the definition and structure of the ida.data.frame objects. The structure of the

airports.ida object is as shown below.

> airports.ida # Typically not visible to the user

An object of class "ida.data.frame"

Slot "table":

[1] "AIRPORTS"

Slot "where":

[1] ""

Slot "cols":

[1] "NAME" "GEOSERVER" "URL" "SHAPE_AREA" "SHAPE_LEN" "AIRPORT_ID" "AIRPORT_BOUNDARY"

Slot "colDefs":

list()

The slots ‘table’ and ‘where’ contain name of the database table to which the ob-

ject points and where conditions of the select query respectively. The slots ‘cols’ and

‘coldefs’ contain information about the relevant column subset and new column def-

initions added to the object respectively. While fetching the data from the database

table, these slots are assembled into an appropriate SQL query depending upon the

performed operation.

While importing data, conformity with the data classes defined by the sp package

(SpatialLinesDataFrame-class, SpatialPointsDataFrame-class etc.) is maintained. A

class of functions (details in Section 3.4.3) is provided that facilitates the import of

spatial data from the table in the database to R environment. The data is imported

from the database and transformed such that it follows the design rules of the classes
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in sp packages. For example, we can import the AIRPORTS dataset which contains

the polygon boundaries of two airports in R environment. The R statements are as

shown in the code block below. airports.ida is an object of the ida.data.frame class

which points to the AIRPORTS table in the database. The class of the resulting

dataset rAirports is SpatialPolygonsDataFrame which is defined in the sp package to

hold spatial polygons with attributes.

> rAirports<-as.SpatialPolygonsDataFrame(airports.ida)

> class(rAirports)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

While adding spatial attributes to the existing ida.data.frame objects such as the area,

centroid etc., the attributes are not evaluated until its required (lazy evaluation). We

expand the definition of the ida.data.frame object to include the spatial query. An

extra column definition is added to the object as shown below:

Slot "colDefs":

$AREA

[1] "db2gse.ST_AREA(’AIRPORT_BOUNDARY’)"

The data classes defined in the sp package limit the number of spatial attributes to one

per object. We extend the usability of the operations, as the ida.data.frame objects

are designed to support more than one spatial column. This feature turns out to be

very useful when we need to analyze the datasets that have more than one spatial

columns. For example the Taxi dataset (Section 4.1.1) used in the study has two

spatial columns called ‘P LOCATION’ and ‘D LOCATION’. The columns represent

the pickup and dropoff location of the taxi rides respectively.

3.4 Spatial operations

We have implemented several functions as an extension for the geospatial capability.

Depending upon the use cases listed in Chapter 4, the functions explained below were
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recognized to be of most importance. These function are used in wide range of geospa-

tial analysis problems. The functions can be applied on the database tables containing

spatial columns. In cases where the functions generate new geometries, the spatial

reference system of the given geometries is used for creating the new ones.

3.4.1 idaBuffer

The idaBuffer function can be used to expand the given geometry and include the

area within the specified width. The function takes a geometry, a distance, name

of the spatial column and optionally the name of the new table as parameters. It

returns a new ida.data.frame object with an extra column that represents the newly

created geometry. Each point on the boundary of the resulting geometry is specified

distance away from the given geometry. The spatial reference systems of the given

geometry and the resulting geometry are same and the data type of the new column

is ST GEOMETRY. Each idaBuffer function call internally executes an SQL query of

the following form and returns the view as a ida.data.frame object.

CREATE VIEW tableName

AS SELECT table_attributes,

DB2GSE.ST_BUFFER(spatial_column,width) AS ’BUFFER_spatial_column’

FROM spatial_table

The following statements give an example of idaBuffer function. Here, we expand the

airport polygon boundary (AIRPORT BOUNDARY) of the airports.ida object and

include the area within the specified width. We select the spatial column using the col

parameter and the name of the new table using the tableName parameter. We get a

new ida.data.frame object as a result. Here we name it airports area. From the output

of the head function it can be seen that a new column is introduced. The new column

is named with the concatenation of the word ‘BUFFER’ and the column name of

the specified geometry. In this case, the column ‘BUFFER AIRPORT BOUNDARY’

represents the new geometry.

> # Expand the airport boundary by specified ’width’

> airports_area <- idaBuffer(airports.ida,

col=airports.ida$AIRPORT_BOUNDARY,
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width=width,

tableName="AIRPORTS_AREA")

> head(airports_area)

NAME GEOS.. URL SHAPE_A.. SHAPE_LEN AIRPORT_ID AIRPORT_BOUNDARY BUFFER_AIRPORT_BOUNDARY

1 La.. 17.. http.. 0 0 1 ST_MULTIPOLYGON ST_GEOMETRY

2 Jo.. 97.. http.. 0 0 2 ST_MULTIPOLYGON ST_GEOMETRY

Internally the following SQL query was executed to create the new ida.data.frame

object with the required column. Here we have specified the width in degree units. We

are using the NAD83 SRS 1 spatial reference system for the AIRPORTS dataset, one

degree is approximately equal to 108.542 kilometers (0.00369 degrees ≈ 400 meters)

[17].

CREATE VIEW AIRPORTS_AREA AS

SELECT NAME,GEOSERVER,URL,SHAPE_AREA,SHAPE_LEN,

AIRPORT_ID,AIRPORT_BOUNDARY,

DB2GSE.ST_BUFFER( AIRPORT_BOUNDARY,0.00369)

AS BUFFER_AIRPORT_BOUNDARY

FROM AIRPORTS

3.4.2 idaIntersects

It is a very common requirement in spatial analysis to check whether the two geometries

intersect. The function idaIntersects is provided for this purpose. It can be easily

applied to millions of rows with one or more spatial columns in the table. It takes

two ida.data.frame class object as parameters. By default, it intersects the first spatial

column of the first ida.data.frame object with the first spatial column of the second

ida.data.frame object. In case the objects have more than one spatial columns, columns

of interest can be specified using the by.x and by.y parameters. The function returns

1 if the geometries intersect and 0 (zero) is returned if they are disjoint. Internally,

however, it executes, among other statements, a SQL query of the following form:
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CREATE VIEW tableName

AS SELECT (chosen_parameters)

FROM TABLE_1 JOIN TABLE_2

ON DB2GSE.ST_INTERSECTS(TABLE_1_SPATIAL_COLUMN, TABLE_2_SPATIAL_COLUMN)=1

The returnDense parameter of the function can be set to TRUE or FALSE depending

upon the application. When set to TRUE the function returns only those records

from the first ida.data.frame object that intersect with some geometry in the second

ida.data.frame object. In the other case, all the records are returned.

The following statements determine whether the geometries in the TripAndFare (here

a subset of 1000 records from the TripAndFare dataset (4.1.1)) and airports area

ida.data.frame objects intersect. Using the selection capability over the ida.data.frame

objects, we have chosen three representative columns from the TripAndFare and air-

ports area ida.data.frame objects each. The idaIntersects functions takes the spatial

column from the first object i.e ‘P LOCATION’ and intersects it with first spatial

column in the second object i.e. ‘BUFFER AIRPORT BOUNDARY’. The dimension

of the output is 1000 rows and 7 columns. From the output of the head function it

can be seen that the record for the ‘TRIP ID’ = 9399873 intersects with the polygon

boundary of the ‘AIRPORT ID’ = 2 (John F. Kennedy International Airport). This

taxi ride is probably destined for the airport.

> airTaxi<-idaIntersects(TripAndFare[,c("TRIP_ID","P_LOCATION","D_LOCATION")],

+ airports.ida[,c("AIRPORT_ID","NAME","AIRPORT_BOUNDARY")],

+ tableName="AIRTAXI",

+ returnDense = F)

> dim(airTaxi)

[1] 1000 7

> head(airTaxi,n=200)

TRIP_ID P_LO.. D_LO.. AIRPORT_ID NAME AIRPORT_B. INTERSECTS_TRIPANDFARE_1000_AIRPORTS

9399873 ST_POINT ST_POINT 2 John F. ST_MULTIP.. 1

3686347 ST_POINT ST_POINT NA <NA> ST_MULTIP.. 0

11890564 ST_POINT ST_POINT NA <NA> ST_MULTIP.. 0

4994452 ST_POINT ST_POINT NA <NA> ST_MULTIP.. 0



Chapter 3. An R interface for scalable geospatial analytics 35

162380 ST_POINT ST_POINT NA <NA> ST_MULTIP.. 0

12881302 ST_POINT ST_POINT NA <NA> ST_MULTIP.. 0

For the above geospatial operation the user just needs to use the idaIntersects function

with required attributes, the query actually executed in DB2 Spatial Extender is shown

below. Here it can be observed that the function is really intuitive and instead of

writing a complex SQL command, the required operations can be performed through

an easy to use function.

CREATE VIEW AIRTAXI

AS SELECT l.TRIP_ID,l.P_LOCATION,

l.D_LOCATION,temp.AIRPORT_ID,

temp.NAME,temp.AIRPORT_BOUNDARY,

NVL(temp.INTERSECTS_TRIPANDFARE_1000_AIRPORTS,0)

AS INTERSECTS_TRIPANDFARE_1000_AIRPORTS

FROM TRIPANDFARE_1000 l LEFT OUTER JOIN(SELECT x.TRIP_ID AS TRIP_ID,

x.P_LOCATION AS P_LOCATION,

x.D_LOCATION AS D_LOCATION,

y.AIRPORT_ID AS AIRPORT_ID,

y.NAME AS NAME,

y.AIRPORT_BOUNDARY AS AIRPORT_BOUNDARY,

DB2GSE.ST_INTERSECTS( x.P_LOCATION,

y.AIRPORT_BOUNDARY )

AS INTERSECTS_TRIPANDFARE_1000_AIRPORTS

FROM TRIPANDFARE_1000 x JOIN AIRPORTS y

ON DB2GSE.ST_INTERSECTS( x.P_LOCATION ,

y.AIRPORT_BOUNDARY )=1) temp

ON l.TRIP_ID = temp.TRIP_ID

3.4.3 Functions for data import to R

There could be several scenarios where the user wishes to import the spatial table or

a subset of the table into R. One example of those use cases is when the user wants to

plot the geospatial data using the plot functions of R. Therefore, functions are provided

to enable the import of data from a table in DB2 to R environment. Imported data
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conforms to the format specified by the sp package (Section 2.8.1). Plotting functions

of R can then be used to plot geospatial data.

3.4.3.1 as.SpatialPointsDataFrame

This function can be used to import database tables that hold spatial attributes with

spatial point locations. The data is imported in form of the SpatialPointsDataFrame

class defined by the sp package. The positional information is stored as an object of the

Spatialpoints class and the attribute information as an object of data.frame class of R.

The statements below import a subset the TRIPANDFARE table from the database

using the TripAndFare ida.data.frame object. The table TRIPANDFARE contains

two spatial columns of the type ST POINT. But the sp package in R supports only

one spatial attribute per object. By default the as.SpatialPointsDataFrame chooses

the first spatial column in the table. In case of more than one spatial columns, the

required column can be explicitly specified in the import statement.

> # Import data from TRIPANDFARE table

> rTripAndFare<-as.SpatialPointsDataFrame(TripAndFare)

> class(rTripAndFare)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

3.4.3.2 as.SpatialLinesDataFrame

This function can be used to import database tables that hold data consisitng of sets

of lines, where each set of lines relates to an attribute row in the table. The data is

imported in form of the SpatialLinesDataFrame class defined by the sp package.

3.4.3.3 as.SpatialPolygonsDataFrame

This function is for the database tables that hold spatial polygons with spatial at-

tributes. The data is imported in form of the SpatialPolygonsDataFrame class defined

by the sp package. The statements below import the USCOUNTIES dataset from the
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database using the usCounties.ida object of the ida.data.frame class. USCOUNTIES

tables contains information about the polygon boundaries of 3109 counties in USA

along-with some attribute information.

> # ida.data.frame object for USCOUNTIES table

> usCounties.ida<-ida.data.frame("USCOUNTIES")

> # Import USCOUNTIES dataset

> rUsCounties<-as.SpatialPolygonsDataFrame(usCounties.ida)

> class(rUsCounties)

[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

Once the data is available in the R environment, the plotting functions can be used to

visualize the dataset. The statements below use the plot function in R to visualize the

US counties polygon boundaries. The resulting figure is shown in Figure 3.1.

> plot(rUsCounties,

+ col="light yellow",

+ axes=TRUE,

+ bg="grey95",

+ cex.axis=1,

+ cex.lab=1,

+ xlab="Longitude",

+ ylab="Latitude")

> title(main="Counties in USA",cex.main=1.2)

Some functions like spatial.col, spatial.type, ida.Proj4string, etc. support other spatial

functions and are not directly available to the user.

3.4.4 Functions for adding spatial information

There are several other functions developed to support spatial data processing and

adding spatial information to existing geometries. For example, area, distance etc.

Some of these functions are briefly explained below:
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Figure 3.1: This map represents the polygon boundaries of 3109 counties in United States of
America. The x and y axis in the plot represent the longitude and latitude of the geographical
features respectively. The spatial data to plot the polygons is imported from the database to R

environment using the developed import functions.

� area: This function can be used to include additional geospatial information in

the form of the area of the geographical feature. The function takes a spatial

column as the input parameter and returns the area covered by the geometry in

the default measuring units. If the geometry is a polygon or multipolygon, then

the area covered by the geometry is returned. The area of points, linestrings,

multipoints, and multilinestrings is 0 (zero). If the geometry is null or is an

empty geometry, null is returned.

We expand the definition of the ida.data.frame object to include this spatial

query. Following the lazy evaluation principle, the query is executed only when

required by the user. An extra column definition is added to the ‘colDefs’ slot of

the object:

Slot "colDefs":

$AREA

[1] "db2gse.ST_AREA(’AIRPORT_BOUNDARY’)"

The statements below add an ‘AREA’ column to the airports.ida ida.data.frame

object. The spatial column ‘AIRPORT BOUNDARY’ is given as the parame-

ter to the function. We can see the an extra attribute with the name AREA
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which represents the area of the geometry in square degree units, is added at the

end. Here, the area of the geometry is evaluated only when the head function is

executed.

> # Area of the airports

> airports.ida$AREA<-area(airports.ida$AIRPORT_BOUNDARY)

> head(airports.ida)

NAME GEO.. URL SHA.. SHA.. AIRPORT_ID AIRPORT_BOUNDARY AREA

1 La.. 17.. http:// 0 0 1 ST_MULTIPOLYGON 0.0001771799

2 Jo.. 97.. http:// 0 0 2 ST_MULTIPOLYGON 0.0009632901

The query which was executed in DB2 Spatial Extender at the background when

using the head function in R is as given below:

SELECT NAME,GEOSERVER,URL,

SHAPE_AREA,SHAPE_LEN,AIRPORT_ID,

’ST_MULTIPOLYGON’ AS AIRPORT_BOUNDARY,

(db2gse.ST_AREA(AIRPORT_BOUNDARY)) AS AREA

FROM AIRPORTS FETCH FIRST 6 ROWS ONLY"

� centroid: The centroid function takes a spatial column as the input parameter

and returns the geometric center, which is the center of the minimum bound-

ing rectangle of the given geometry, as a point. The resulting point is repre-

sented in the spatial reference system of the given geometry. If the given ge-

ometry is null or is empty, then null is returned. In the statements below we

add a column named ‘CENTROID’ to the usCounties.ida ida.data.frame object.

Here, COUNTY BOUNDARY geography is supplied as the spatial attribute to

the centroid function. We can see that a column which represents the centroid

(‘CENTROID’) of the corresponding county is added at the end.

> usCounties.ida$CENTROID <- centroid(usCounties.ida$COUNTY_BOUNDARY)

> head(usCounties.ida)

COUNTY_ID NAME STATE_NAME FIPS COUNTY_BOUNDARY CENTROID

1 1 Lake of th.. Minnesota 27077 ST_MULTIPO.. POINT (-94.886732 48.869971)

2 2 Ferry Washington 53019 ST_MULTIPO.. POINT (-118.480562 48.417890)

3 3 Stevens Washington 53065 ST_MULTIPO.. POINT (-117.910098 48.394966)
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4 4 Okanogan Washington 53047 ST_MULTIPO.. POINT (-119.857786 48.468616)

5 5 Pend Oreille Washington 53051 ST_MULTIPO.. POINT (-117.332550 48.522023)

6 6 Boundary Idaho 16021 ST_MULTIPO.. POINT (-116.544371 48.748040)

� distance: The distance function takes two geometries as the input parameters

and returns the shortest distance between any point in the first geometry to

any point in the second geometry. The statements below calculate the distance

between the pickup (P LOCATION) and dropoff (D LOCATION) locations of

the taxi rides from the TripAndFare dataset.

> # Distance between taxi pickup and dropoff locations

> TripAndFare$DISTANCE<-distance(TripAndFare$P_LOCATION,TripAndFare$D_LOCATION)

> head(TripAndFare)

TRIP_ID MEDALLION .... P_LOCATION D_LOCATION DISTANCE

1 11911614 99F1C8.. .... ST_POINT ST_POINT 0.0000000

2 10394608 826481.. .... ST_POINT ST_POINT 5.3496043

3 2430331 DD7ADF.. .... ST_POINT ST_POINT 1.6699156

4 149805 8853EB.. .... ST_POINT ST_POINT 0.9851455

5 6170904 043766.. .... ST_POINT ST_POINT 0.6507103

6 11764402 6D5330.. .... ST_POINT ST_POINT 0.8935272



Chapter 4

Scalable Geospatial Analytics

with R in Action

In this chapter, we utilize the knowledge acquired about the geospatial domain through

Chapter 2 and the scalable solution developed in 3 on practical real-life scenarios. First

we provide a description of all the datasets used during the course of the study. We

then use the spatial operations on the defined use-cases. The use cases bear practical

applications and find relevance in our day-to-day lives. All the data analysis and

processing in this study is performed on a local machine with 8.00 GB RAM and a

64-bit Operating System. The machine has a Intel® Core�2 Duo CPU P8600 @2.40

GHz processor. R version 3.1.3 and DB2 version 10.5 were used for development.

4.1 Datasets

During the study we used several spatial datasets containing different kinds of ge-

ometries. For performing the spatial analysis on the datasets, we imported them

into individual DB2 tables. ST IMPORT SHAPE and IMPORT stored procedures

were used to import the shapefile and .csv format files respectively. Since, all the

datasets we use refer to locations in U.S., NAD83 SRS 1 spatial reference system

was chosen to represent geometries in the datasets. The chosen SRS is based on

41
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the GCS NORTH AMERICAN 1983 coordinate system. This section gives a detailed

description of the datasets as well as the sources from where the datasets are acquired.

4.1.1 Taxi dataset

The New York City’s Taxi and Limousine commission [34] captures regular data about

the taxi trips in the five boroughs of New York City (NYC). The commission used this

data for a twitter campaign called #metricmonday. It involves some visualizations

made weekly using the taxi data. Recently a civic hacker and data junkie called Mr.

Christopher M. Whong [35] used the Freedom of Information Law (FOIL) to obtain

this dataset from NYC Taxi and Limousine Commission. There are two folders of

data, Faredata 2013 and Tripdata 2013. Each folder contains 12 files in .csv format,

one for each month of the year 2013 and has about 173 million entries in total. The

datasets combined amount to 45.1 GBs of data.

The datasets contain several interesting attributes about the taxi trips in NYC. The

most interesting ones being the pickup and dropoff location for each taxi trip. Amount

of the tip paid in each taxi ride is also another interesting attribute. The amount of tip

paid for a service is an important part of a workers daily wages in several professions

and sometime there are social rules about the amount of tip to be paid for a service.

The datasets also have a temporal aspect as they contain the information about the

date and time of pickup and dropoff for each taxi ride. The datasets are described

below.

� TripData 2013

TripData 2013 dataset contains the data about the taxi trips of the yellow medal-

lion taxis in NYC. It contains information on the attributes like medallion number

of the taxi, license number of the driver, pickup and dropoff date and time of the

trip, pickup and dropoff locations of the passengers etc. The first two attributes

i.e. medallion and hack license have been anonymized by Taxi and Limousine

Commission (TLC) to protect the individual identities. Table 4.1 gives the de-

scription of attributes available in the dataset. The description in the table is
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based upon the taxi rides information for the month of January 2013, consider-

ing the repetitive behavior of the taxi rides over the year, the summary for other

months is expected to be similar.

Table 4.1: TripData 2013 dataset attributes description and summary. The table provides
an overview of the structure of the dataset. Majority of variables are either character or
numeric type. It can be seen from the range column that several attributes have values in

unrealistic ranges. Hence, the dataset needs to be cleaned before being used for analysis.

Attribute Type Range Levels Comment

medallion Character — 13426 taxicab unique identification number
hack license Character — 32224 the driver’s license number
vendor id Character CMT or VTS 2 identifier for taxi vendor
rate code Integer 0-210 14 fare code for different type of rides
store and fwd flag Character N or Y 2 purpose unidentified
pickup datetime Date Time year 2013 — date and time of passenger pickup
dropoff datetime Date Time year 2013 — date and time of passenger dropoff
passenger count Integer 0-255 10 number of passengers in the taxi
trip time in secs Integer 0-10800 — time taken for the trip
trip distance Integer 0-100 miles — total distance covered on the trip
pickup longitude Numeric -2771-112.40 degrees — longitude of passenger pickup location
pickup latitude Numeric -3548-3310 degrees — latitude of passenger pickup location
dropoff longitude Numeric -2351-2229 — longitude of passenger dropoff location
dropoff latitude Numeric -3548-3477 — latitude of passenger dropoff location

� FareData 2013

The dataset FareData 2013 contains information related to the fare for the taxi

ride. It contains information like the medallion number of the taxi, license

number of the driver, mode of payment for the fare, amount of tip paid, total

amount paid etc. The medallion number and drivers license number have been

anonymized in this dataset as well. Table 4.2 gives the description of attributes

available in the dataset.

Table 4.2: FareData 2013 dataset attributes description and summary. The table provides
an overview of the structure of the dataset. Majority of variables are either Character or
Numeric in nature. It can be seen from the range column that several attributes have values

in unrealistic ranges. Hence, the dataset needs to be cleaned before being used for analysis.

Attribute Type Range Levels Comment

medallion Character — 13426 taxicab unique identification number
hack license Character — 32224 the driver’s license number
vendor id Character CMT or VTS 2 identifier for taxi vendor
pickup datetime Date and Time year 2013 — date and time of the trip
payment type Character — 5 mode of payment
fare amount Numeric 2.5-500$ — amount of fare for the trip
surcharge Numeric 0-12.5$ — surcharge on fare amount
mta tax Numeric 0-0.5$ — amount of tax
tip amount Numeric 0-200$ — tip to the taxi driver
tolls amount Numeric 0-20$ — amount of tolls
total amount Numeric 2.5-650$ — total amount paid to the driver
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The PICKUP LATITUDE, PICKUP LONGITUDE, DROPOFF LATITUDE,

and DROPOFF LONGITUDE columns in the TripData 2013 dataset represent

the pickup and dropoff locations of the taxis in the form of coordinates. After

loading the datasets to the database, we transform these columns to ST POINT

geometries. Each record in the datasets TripData 2013 and FareData 2013 rep-

resent information about a single taxi ride. We merged the two datasets into

one, named ‘TRIPANDFARE’ and removed the duplicate columns. The avail-

able datasets are huge in size and the data is completely real. Several attributes

of the dataset might have been manually entered by the taxi cab driver. It is

a possibility that the dataset has a large amount of corrupt values. This noise

can be present in the form of outliers, unrealistic values or missing values. For

this reason the datasets need cleaning. We perform the cleansing for the month

of January 2013 which has 14,776,615 records and automate the process for the

rest of the months.

� Data cleaning

Since the datasets TripData 2013 and FareData 2013 are complementary to each

other and each record in the TripData 2013 dataset corresponds to a record in

FareData 2013 dataset, we clean the datasets in conjunction. From the data ex-

ploration process it is observed that the attributes: medallion, hack license,

vendor id, rate code and store and forward flag have fairly distributed val-

ues and do not need further processing. Similarly the attributes , pickup datetime

and dropoff datetime do not have corrupt records.

Several taxi rides record an unrealistic number of passengers (passenger count)

for the ride. The website for NYC Taxi & Limousine Commission [36], informs

that maximum number of passengers allowed in a yellow taxi cab is four in a

four passenger taxicab and five for a five passenger taxi cab. But in our dataset

the number of passengers range from 0 to 255 which indicates some error in

data entry. We need to exclude the false records. The entries with less than 1

passenger and more than 5 passengers are deleted. In the process we removed

520,235 records from 14,776,615 records.

We also remove the entries where the duration of trip (trip time in secs) is

less than 120 seconds (2 minutes) or more than 10,800 seconds (3 hours). This
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condition removes additional 271,065 rows. There are some anomalies in the

recorded distance of the trip (trip distance). The entries with a recorded trip

distance of less than half of a mile (0.5 miles) or more than 50 miles are removed.

This condition eliminates additional 448,436 records.

The location attributes in the dataset i.e. pickup longitude, pickup latitue,

dropoff longitude and dropoff latitude are most likely automatically gener-

ated at the start and the end of the trip. But the attributes unexpectedly have a

lot of corrupt values. Several records are out of the valid longitude (-180°to 180°)

and latitude range (-90°to 90°). We can simply remove these records by compar-

ing the longitude and latitude values to the envelope of NYC. An envelope is the

rectangular bounding box of a geometry. Figure 4.1 shows the envelope of New

York City.

Figure 4.1: This map represents the rectangular bounding box for New York City. It is also
called as the envelope of the geometry. We use this envelope to exclude the false values of

longitudes and latitudes.

The above condition eliminates another 244,676 records in which the pickup or

the dropoff location is falsely entered. Moreover, a number of taxi trips are

recorded to originate or to end in the water body surrounding the NYC as in-

dicated in the Figure 4.2. This behavior seems impractical, hence we need to

exclude these entries as well. But comparing each taxi pickup and dropoff loca-

tion to each ZIP code boundary is a very computation intensive task. Instead
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we compare the locations with the convex hulls1 of the two big land masses of

NYC. The two convex hulls are shown in Figure 4.3. We eliminate the records

in which either the pickup location or the dropoff location does not fall in either

of the convex hulls. In the process we eliminate further 36290 records.

Figure 4.2: The taxi trip pickup or dropoff locations which fall outside the land boundary
need to be eliminated. These trips are falsely recorded to originate or end on the water covered

area.

Figure 4.3: The figure shows the convex hulls of two big land masses in NYC. We use these
convex hulls to eliminate the taxi ride records which were registered to start or end on water

covered areas.

1A convex hull is the smallest convex polygon that contains all subgeometries.
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There are a number of outliers in attributes of the FareData 2013 dataset. Some

records have a very high value of the fare amount. These records might be true

in real life but we remove because these outliers can disturb the averages of the

various amounts. We remove the rows where:

– fare amount is less than 0$ or greater than 300 $.

– tip amount is less than 0$ or greater than 100 $.

– total amount less than 0$ or is greater than 400 $.

The above three conditions remove another 33 records altogether. There are five

levels of the attribute PAYMENT TYPE, but the distribution is highly skewed for two

levels namely ‘CRD ’ and ‘CSH’. Rest three levels have less than 0.22% records

altogether and hence are statistically insignificant. We keep only the two most

common payment modes and can safely discard the other three. In the process

we remove 29,786 records.

One important discovery in the data analysis process is regrading the attribute

TIP AMOUNT. Figure 4.4 shows the distribution of payment mode. It can be seen

that the mode of payment has a distribution of approximately 55% and 45%

between payment by card (CRD) and cash payment (CSH). A tip amount is

indicated in approximately 55% of the taxi rides. But almost all the notified

tips are for the taxi rides in which the payment was made by card. This fact

seems very unrealistic that the passengers pay tip only when they pay by card.

A possible explanation to this behavior could be that in the cases where payment

is made by card the paid tip is automatically registered but the taxi cab driver

does not acknowledge the tips paid in cash, probably to save on the tax amount.

In the scenarios where TIP AMOUNT is being analyzed, it is a better choice to

consider only the trips where the payment mode was by card, so that a more

realistic distribution of the amounts is observed.

4.1.2 ZIP code boundaries

New York city ZIP Code Tabulation areas (ZCTA5) is a polygon theme representing

zip code areas in New York City. The dataset is provided by U.S. Department of
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Figure 4.4: The barplot represents the distribution of records in which the tip was paid. It
can be clearly observed that no tip is acknowledged in most records where cash payment was
made. At the same time almost all records in which the payment was made through card

register a tip.

Commerce, U.S. Census Bureau, and Geography Division. It contains the shape files

for the boundaries of NYC zip codes and some additional attributes. This data allows

us to analyze the statistics refined to the ZIP code area level. The file contains the

details about 200 different ZIP code areas in NYC. Table 4.3 provides a summary of

the dataset. The ZIP Code boundaries are plotted in Figure 4.5.

Table 4.3: ZIP Code Boundaries dataset attributes description and summary. The dataset
contains the boundary and other attribute information about 200 ZIP Codes in NYC. The
table provides an overview of the structure of the dataset. All the variables are Character

type in nature.

Attribute Type Range Levels Comment

ZCTA5CE00 Character — 200 geographic mail delivery area identification code
CLASSFP00 Character B5 1 Federal Information Processing Standards (FIPS) 55 class code
MTFCC00 Character G6350 1 MAF/TIGER feature class code
FUNSTAT00 Character S 1 Census 2000 functional status

New york City is the most densely populated major city in the United states and

it consists of five boroughs, each of which is a county of New York State. The five

boroughs are as follows: Brooklyn, Queens, Manhattan, the Bronx, and Staten Island.

The map in Figure 4.6 represents the five different boroughs of New York City.
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Figure 4.5: This map represents 200 ZIP code areas in NYC. ZIP codes are a system of
postal codes used by the United States Postal Service (USPS) since 1963. They help in a quick

and efficient mail delivery.

Figure 4.6: This map represents the ZIP code areas in NYC. NYC is divided in five counties
namely: Manhattan, Bronx, Queens, Brooklyn and Staten Islands. The map indicates each

county in a different color.
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4.1.3 Airport Polygon

Airport polygon dataset contains information about two main airports in NYC i.e La

Guardia Airport and John F. Kennedy International Airport. The dataset is public and

is provided by Department of Information Technology & Telecommunications (DoITT).

It is available in shapefile format for download from the NYC Open Data website [37].

The dataset contains the polygon boundaries of the airports in addition with other

attributes like Name, Website, Geoserver, etc. A description and summary of the

attributes is presented in Table 4.4. The plot in Figure 4.7 shows the location of

airports in NYC.

Table 4.4: Airport Polygon dataset attributes description and summary. The dataset con-
tains only records, each corresponding to one airport in NYC. In the dataset, the location and

the shape of the airport is represented through a polygon.

Attribute Type Range Levels Comment

NAME Character — 2 name of the airport
GEOSERVER Numeric 17879877-97393969 geoserver of the airport
URL Character — 2 URL of the airport
SHAPE AREA Numeric 0 1 variable unused
SHAPE LEN Numeric 0 1 variable unused

Figure 4.7: This map represents the two airports in NYC i.e. La Guardia Airport and John
F. Kennedy international Airport. The airport boundaries are shown in red.
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4.1.4 NYC Theaters

Theaters dataset is a listing of the theaters in NYC and has been publicly provided

by Broadway Theater. It is available for download in shapefile format from the NYC

Open Data website [38]. The dataset contains the information about the location of

the 117 theaters in NYC. It has the attributes like the name, URL and address of the

theater associated with the positional information. A description and summary of the

attributes is presented in table 4.5. The map in figure 4.8 indicates the location of

the theaters in NYC. It can be seen from the plot that most theaters are located in

Manhattan.

Table 4.5: Theaters dataset attribute description and summary. The dataset contains the
information about the location of the 117 theaters in NYC. The table provides an overview
of the structure of the dataset. All the variables except the ZIP code are Character type in

nature.

Attribute Type Range Levels Comment

NAME Character — 117 name of the theater
TEL Character — 87 telephone contact of the theater
URL Character — 117 link to the theater website
ADDRESS1 Character — 114 part of the theater address
ADDRESS2 Character — 6 part of the theater address
CITY Character — 3 city where the theater is situated
ZIP Integer — 22 corresponding ZIP code

Figure 4.8: This map represents the location of 117 theaters in NYC. It is evident from the
plot that most of them are located in Manhattan.
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4.1.5 NYC Subway entrances

The Subway dataset is provided by Metropolitan Transportation Authority (MTA).

It contains the location of 1645 subway entrances in NYC. It also contain the details

about the name of the station and the lines for which the subway can be taken from

that station.

Table 4.6: Subways dataset attributes description and summary. The dataset contains infor-
mation about 1645 subway entrances in NYC. The table provides an overview of the structure

of the dataset. All the variables are Character type in nature.

Attribute Type Range Levels Comment

NAME Character — 1645 name of the subway station
URL Character http://www.mta.info/nyct/service/ 1 link to MTA website
LINE Character — 93 lines for which you can take the subway

Figure 4.9: This map indicates the location of subway stations in NYC.

4.2 Predict tip amount

This use case aims to predict the amount of tip that a taxi driver is expected to receive

at the end of the trip. We wish to showcase the influence of geospatial information

over the prediction and the scalabilty of the used spatial operations. The TIP AMOUNT

column of the TaxiAndFare table is categorized into two classes. The first class “> 5D”
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represents the taxi trips in which the driver got a tip of more than 5$. The second

class “< 5D” represents the taxi trips in which the driver got a tip of less than 5$.

Depending upon the normal row attributes and added geospatial information we try

to predict the tip amount (“> 5D” or “< 5D”).

4.2.1 Data preparation

Data preparation is a fundamental stage of data analytics process and is often the

longest and most difficult part. It is generally defined as the process of cleaning and

transforming the selected data and is likely to be performed multiple times and not in

any prescribed order. The data is formatted, for example, by joining or by aggregation

so that it is suitable for data analysis. Data preparation involves a number of tasks

including attribute selection, data transformation and determining the area to examine.

In general, we need to transform our data from which we build our models. The

knowledge about the data gained through exploratory data analysis is very helpful in

taking the decisions while cleaning and preparing the data [39]. Parts of R code are

provided in the document as and when deemed required, the complete code for the

process can be viewed in Appendix A.

� TaxiAndFare dataset

We take all the records from the TaxiAndFare dataset for the month of January

2013, which has ∼ 15 million rows.

– Condition

We consider only those entries in which the payment was made using a card

for the reason mentioned in Section 4.1.1. Using the selection capability over

ida.data.frame objects, this can be easily done as shown in the statement

below:

# Consider only the trips where payment mode is card.

TripAndFare<-TripAndFare[TripAndFare$PAYMENT TYPE=="CRD",]

– Categorize Tip Amount
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TIP AMOUNT column of the TaxiAndFare table is categorized into two classes.

The labels, either “> 5D” or “< 5D” depending upon the amount of tip

received are added to a new column called ‘TIP RANGE’.

TripAndFare$TIP_RANGE<-ifelse(TripAndFare$TIP_AMOUNT<5,"<5D",">5D")

– Remove columns

1. TRIP ID: Identifier for the TaxiAndFare table. This column does not

contribute useful information so it can be removed from further pro-

cessing.

2. MEDALLION: This attribute is the unique identifier for the taxicab. This

column can be removed.

3. HACK LICENSE,VENDOR ID: Identifier for the driver’s license number and

the taxi vendor respectively.

4. RATE CODE: This attribute has a value of 1 for 98% cases, hence can be

safely removed from further analysis.

5. STORE AND FWD FLAG: This attribute has an unidentifiable purpose.

6. TRIP TIME IN SECS: The value of this attribute is usually not known

before the end of the trip, hence this column is not useful for this

predictive problem.

7. PICKUP LONGITUDE, PICKUP LATITUDE : The information related to the

pickup location is already available from the P LOCATION column. Hence,

these two columns can be deleted.

8. DROPOFF LONGITUDE, DROPOFF LATITUDE: The information about the

dropoff location is already available from the D LOCATION column.

9. FARE AMOUNT, TOTAL AMOUNT: Since the TIP AMOUNT is usually a per-

centage amount of the fare amount. If the predicted variable is in

direct relation with an input variable, we might get unrealistic results

for a prediction problem. Hence, these two columns should not be kept

for this predictive use case.

10. TIP AMOUNT: We already added a column called ‘TIP RANGE ’ which

contains information about the tip for the trip.

11. TRIP DISTANCE: The amount of the tip paid is directly related to the

distance traveled in the taxi. Hence we will remove this attribute.
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12. PICKUP DATETIME: Since the tip is paid at dropoff from the taxi. We

consider the dropoff date and time and ignore this attribute.

13. MAT TAX and TOLLS AMOUNT: These attributes have no apparent influ-

ence in this use-case.

– Add columns

These attributes are derived from the DROPOFF DATETIME column. In the

present form the DROPOFF DATETIME column is not useful, as it indicates a

complete time stamp. We divide the time stamp into several potentially

useful parts.

1. WEEKDAY: The day of the trip might have an impact on the amount of

tip payed by the customer. In a separate analysis it was observed that

the customers pay more tip on weekdays in comparison to weekends.

To derive this information we use the weekdays function provided by

the ibmdbR package. This function returns the name of the day for a

given time stamp.

2. DATE: People might pay more tip at the start of the month or vice-versa,

depending upon the when they get their salaries. This information is

derived using this substr function.

3. HOUR: It is likely that the taxi trips at the odd hours in a day might

receive extra tip. This information is also derived using this substr

function.

Since we have extracted the required information from the DROPOFF DATETIME

column, we can safely remove it from the further analysis. We add two more

columns namely PICKUP and DROPOFF as the place holders for the derived

spatial information. The purpose of these two columns is explained in the

Section 4.2.2.

� THEATERS dataset

We assume that the taxi trips having dropoff location within 100 meters radius

of a theater location are destined for the corresponding theater. To identify these

taxi rides we need to include the area with the specified width around each theater

location. We accomplish this with the help of the idaBuffer function as shown
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below. In the process we also remove the undesired columns from the object and

keep only two columns namely ‘THEATER ID ’and ‘THEATER LOCATION ’

(by explicitly specifying the subset in the idaBuffer function ).

theaters_area<-idaBuffer(theaters[,c("THEATER_ID","THEATER_LOCATION")],

col=theaters$THEATER_LOCATION,

width=width,

tableName="THEATERS_AREA")

We provide the theaters ida.data.frame object as input to the idaBuffer function.

If there are more than one spatial columns in the data.frame we need to specify

the column around which we wish to draw our geometry (col parameter). With

the help of the width parameter we specify the distance to be used for the buffer

around the geometry. Last parameter is the name of the resulting view. If

the tableName parameter is not specified, a randomly generated table name is

assigned to the resulting view.

The above statement results into a new ida.data.frame object (theaters area)

with an additional column named ‘BUFFER THEATER LOCATION’, as shown

in the statement below. This column contains information about the polygon of

the specified width created around the theater location.

> head(theaters_area)

THEATER_ID THEATER_LOCATION BUFFER_THEATER_LOCATION

1 1 ST_POINT ST_GEOMETRY

2 2 ST_POINT ST_GEOMETRY

3 3 ST_POINT ST_GEOMETRY

4 4 ST_POINT ST_GEOMETRY

5 5 ST_POINT ST_GEOMETRY

6 6 ST_POINT ST_GEOMETRY

� AIRPORTS dataset

In the airports dataset we have the location of the two airports in the form of

polygon geometry. But it might be possible that the taxis drop the passengers in

the vicinity of the airports and not directly inside the airport building, depending

upon the design of the airport. To account for those cases, we create an area
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with a 400 meters distance around each point on the airport geometries. We

accomplish this with the help of the idaBuffer function as shown below:

airports_area<-idaBuffer(airports.ida[,c(’AIRPORT_ID’,’NAME’,’AIRPORT_BOUNDARY’)],

col=airports.ida$AIRPORT_BOUNDARY,

width=width,

tableName="AIRPORTS_AREA")

We provide the airports.ida ida.data.frame object as input to the idaBuffer func-

tion. We keep only three columns namely ‘AIPORT ID’, ‘NAME’ and ‘AIR-

PORT BOUNDARY’ from the AIRPORTS dataset. The above statement re-

sults into a new ida.data.frame object with an additional column. The column is

named ‘BUFFER AIRPORT BOUNDARY’ by default. The output of the above

statement can be seen below.

> head(airports_area)

AIRPORT_ID NAME AIRPORT_BOUNDARY BUFFER_AIRPORT_BOUNDARY

1 1 La Guardia Air... ST_MULTIPOLYGON ST_GEOMETRY

2 2 John F. Kenned... ST_MULTIPOLYGON ST_GEOMETRY

� MAINAREAS dataset

This is a manually created dataset. The dataset consists of four records, each

representing an area around a location in NYC. These are the locations from

where people hail most number of taxis. The contents of the MAINAREAS

dataset are as shown below:

> head(main_areas)

NAME MAIN LOCATION ID LOCATION BUFFER LOCATION

1 Penn Station 1 ST_POINT ST_GEOMETRY

2 Grand Central 2 ST_POINT ST_GEOMETRY

3 Columbus Circle 3 ST_POINT ST_GEOMETRY

4 Lexington Avanue 4 ST_POINT ST_GEOMETRY

4.2.2 Geospatial information

In this section we add geospatial information to our dataset using the developed geospa-

tial operations.
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� Airports: Intersect pickup and dropoff location of each taxi trip with the area

defined for the airports. If the idaIntersects function returns 1, mark the corre-

sponding column (PICKUP or DROPOFF) for that row as “AIRPORT”. In this pro-

cess we identify the taxi trips which are potentially destined or originated from

the area around airports. The statements below show the process for dropoff

locations, the same process is followed for pickup locations as well:

> GEOINFO_AIRPORT<-idaIntersects(TripAndFare,

+ airports_area[,c("BUFFER_AIRPORT_BOUNDARY")],

+ by.x=TripAndFare$D_LOCATION,

+ by.y=airports_area$BUFFER_AIRPORT_BOUNDARY,

+ tableName="GEOINFO_AIRPORT",

+ returnDense=F)

> GEOINFO_AIRPORT$DROPOFF<-ifelse(GEOINFO_AIRPORT$INTERSECTS_TRIPANDFARE

_JAN_AIRPORTAREA==1,"Airport","NA")

> head(GEOINFO_AIRPORT,n=20)

TRIP_ID PAS.. PAY.. SUR.. P_LOC.. D_LOC.. WEEKDA DATE HOUR TIP_RANGE DROPOFF

1 103.. 1 CRD 0.0 ST_PT ST_PT Wed 30 12 <5D <NA>

. . . . . . . . . . . .

10 140.. 2 CRD 0.0 ST_PT ST_PT Sun 27 18 <5D <NA>

11 971.. 2 CRD 0.0 ST_PT ST_PT Wed 23 17 >5D Airport

. . . . . . . . . . . .

20 103.. 1 CRD 0.0 ST_PT ST_PT Wed 30 10 <5D <NA>

� Theaters: Same process for Theaters as for the Airports dataset is used. If

the idaIntersects function returns 1, mark the corresponding column (PICKUP or

DROPOFF) for that row as “THEATER”.

� Main Areas: Same process for Main Areas as for the Airports dataset is used. If

the idaIntersects function returns 1, mark the corresponding column (PICKUP or

DROPOFF) for that row as “MAINAREA”.

We are done with our data preparation process and we have successfully incorporated

the available geospatial information into our dataset with ∼ 15 million rows. Here we
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saw that the spatial operations can be successfully applied over large spatial datasets

of various kinds. This indicates the scalability of the solution for geospatial analysis

and processing.

4.2.3 Modeling

With the help of the as.data.frame method we fetch our resultant dataset into the

R environment. The relevant statements are given in the code block below. We can

see at the incorporated geospatial information using the head funtion. the columns

‘DROPOFF’ and ‘PICKUP’ hold the calculated geospatial information. This dataset

now is like any other R data.frame object and we can use models of our choice like,

random forests, support vector machine, boosted decision trees, neural networks, etc.

on the dataset. The Rattle GUI is used in this study for the modeling purpose [39].

It is built in the statistical language R. It allows us to rapidly work through the data

processing, modeling and evaluation phases of a data mining project.

> R_Geo_Taxi <- as.data.frame(GEO_TAXI)

> head(R_Geo_Taxi)

TRIP_ID PASSENGER_COUNT PAY.. SURCHARGE WEEKDAY DATE HOUR TIP_RANGE DROPOFF PICKUP

1 11005745 1 CRD 0.5 Tuesday 29 20 <5D <NA> MAINAREA

2 10512045 4 CRD 0.5 Thursday 31 00 <5D THEATER MAINAREA

3 10512045 4 CRD 0.5 Thursday 31 00 <5D THEATER MAINAREA

4 10512045 4 CRD 0.5 Thursday 31 00 <5D THEATER MAINAREA

5 10512045 4 CRD 0.5 Thursday 31 00 <5D THEATER MAINAREA

6 14115377 1 CRD 0.0 Sunday 27 10 <5D <NA> MAINAREA

In this use case we chose to model using a conditional tree. We have divided our

dataset into a proportion of 70/15/15 i.e. 70% of the records are used as the training

dataset and 15% each for validation and testing. TIP RANGE is set as the target

variable and rest others as input variables. We accept the default tuning parameters in

the Rattle interface as our aim is to not obtain a perfect model but to see the influence

of geospatial information on the model. We build the conditional tree using 100,000

rows from the resulting dataset and evaluate the generated tree on the test set. The

following results were obtained:
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Fehlermatrix für das Modell Entscheidungsstruktur bei R_Geo_taxi_1L [Test] (Zähungen):

Vorausgesagt

Ist <5D >5D

<5D 13534 188

>5D 354 924

Error matrix for the Entscheidungsstruktur model on R_Geo_taxi_1L [Test] (proportions):

Predicted

Actual <5D >5D Error

<5D 0.90 0.01 0.01

>5D 0.02 0.06 0.28

Globaler Fehler: 0.03613333, Averaged class error: 0.09727719

The model has a very low error rate and performs very well. It has a very low number of

false positives and false negatives. To test the influence of geospatial information we re-

move the columns representing geospatial information i.e. ‘PICKUP’ and ‘DROPOFF’

and train the model again with the same parameters. The obtained results are as shown

below.

Error matrix for the Decision Tree model on R_Geo_taxi_1L [test] (counts):

Predicted

Actual <5D >5D

<5D 13709 13

>5D 1157 121

Error matrix for the Decision Tree model on R_Geo_taxi_1L [test] (proportions):

Predicted

Actual <5D >5D Error

<5D 0.91 0.00 0.00

>5D 0.08 0.01 0.91

Overall error: 0.078, Averaged class error: 0.08742176

Here we can see that the model with geospatial information is considerably better

than the model built without the geospatial information. This indicates the positive

influence of including geospatial information in our analysis process.
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4.3 Predict tip percentage

Another interesting usecase is to predict the percentage of the tip that a taxi driver

is expected to receive at the end of the ride. Amount of tip is usually a percentage

of the basic amount to be paid by the customer. Therefore, we add a new column

(‘TIP PERCENTAGE’) to the dataset which represents the percentage of tip for that

record.

4.3.1 Data preparation

The data preparation for the use case is very much similar to the previous one. Since,

the use case is related to TIP AMOUNT, we consider only the records where the

payment was made by card. In this use case, instead of categorizing the absolute

amount of tip, we categorize the percentage of tip. The tip amount is a percentage of

the sum of three amounts i.e. FARE AMOUNT, SURCHARGE and MAT TAX. The

statements shown below calculate the tip percentage. It is then categorized it into two

classes with labels ‘< 20%’ and ‘> 20%’. They represent whether tip was less than

20% or more, respectively.

# Calculate Tip Percentage

> TripAndFare$TIP_PERC<-(TripAndFare$TIP_AMOUNT*100)/(TripAndFare$FARE_AMOUNT

+TripAndFare$SURCHARGE

+TripAndFare$MAT_TAX)

> # Categorize Tip Amount

> TripAndFare$TIP_PERCENTAGE<-ifelse(TripAndFare$TIP_PERC<20,"<20%",">20%")

We added the geospatial information to the dataset in the same way as the previous

usecase. The sample of the final dataset used for modeling is as shown below:

> head(Geo_Predict_Tip)

PASSENGER_COUNT PAYMENT_TYPE SURCHARGE TIP_PERCENTAGE WEEKDAY DATE HOUR DROPOFF PICKUP

1 1 CRD 0.5 <20% Sunday 13 04 <NA> <NA>

2 2 CRD 0.5 <20% Sunday 13 04 <NA> <NA>

3 2 CRD 0.5 <20% Sunday 13 04 <NA> <NA>
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4 1 CRD 0.5 <20% Sunday 13 04 <NA> THEATER

5 5 CRD 0.5 >20% Sunday 13 04 <NA> <NA>

6 3 CRD 0.0 >20% Sunday 13 11 <NA> <NA>

4.3.2 Modeling

For this use case we chose to build a random forest model using 200,000 records of

the final dataset. We selected 200 trees in the forest and number of variables to be

considered at each split to be 3. The results of the modeling process are as shown

below. The model performs quite well. It can be noted here that the columns bearing

the geospatial information are of significant importance in the model.

Type of random forest: classification

Number of trees: 200

No. of variables tried at each split: 3

OOB estimate of error rate: 18.44%

Confusion matrix:

<20% >20% class.error

<20% 91333 7672 0.07749104

>20% 18139 22856 0.44246859

Variable Importance

===================

<20% >20% MeanDecreaseAccuracy MeanDecreaseGini

PICKUP 60.13 141.91 145.55 808.57

PASSENGER_COUNT 18.88 126.07 97.60 1372.50

HOUR 31.85 57.20 81.34 5269.09

DROPOFF 25.40 97.23 77.07 505.81

DATE 25.81 31.32 59.93 5200.11

SURCHARGE 32.64 27.17 47.18 444.88

WEEKDAY 14.67 23.63 18.63 1538.79
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4.4 Predict taxi pickups

This use case allows us to predict the number of taxi pickups in user defined regions (in

the following referred to as zones) at a given day and hour in future. Geospatial analysis

allows us to formulate such use cases which would not be possible otherwise. We

use the existing pickup time information available through the ‘PICKUP DATEIME’

attribute. We add the geospatial information by identifying the zone from which the

taxi trip started. We collect this information by intersecting the polygon boundaries

of the zones with the pickup locations of the taxis.

We can use regression to predict the number of taxi pickups from a particular zone

at a day and hour in future. The outcome might be useful for the taxi dispatchers

and possibly the taxi drivers so that they can efficiently position the taxis in the zones

where they are required the most. It might save on the waiting time and fuel costs.

The target variable for the model is the number of taxi pickups per zone aggregated

by the day and time.

4.4.1 Data preparation

� TaxiAndFare dataset

We take 10 Million records from the TaxiAndFare dataset for the month of Jan-

uary 2013.

– Remove columns

For this use case we don’t require attributes other than the following three.

Hence we remove all other attributes from the dataset.

1. TRIP ID: Identifier for the TaxiAndFare table. This attribute represents

each individual taxi trips and is later used to aggregate the number of

trips.

2. PICKUP DATEIME: Indicates the date and time of the taxi pickup.

3. P LOCATION: Represents the location of taxi pickup.

– Add columns

These attributes are derived from the PICKUP DATETIME column. In the

present form the PICKUP DATETIME column is not useful as it indicates a
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complete time stamp. We divide the time stamp into several potentially

useful parts.

1. WEEKDAY: This attribute is derived using the weekdays function of the

ibmdbR package. This function returns the name of the day for a given

time stamp.

2. DATE: This attribute is derived using the substr function. It returns the

date from for a given time stamp. We do not require the complete date

with month and year as we are considering only the rides for the month

of January.

3. HOUR: This information is derived using this substr function. By select-

ing just the hour from the complete pickup time, we aggregate all the

taxi rides in that hour together.

Since we have extracted the required information from the PICKUP DATETIME

column we can remove it from the further analysis. The processed form of the

TaxiAndFare dataset is as shown below:

> head(TripAndFare)

TRIP_ID P_LOCATION WEEKDAY DATE HOUR

1 7514559 ST_POINT Saturday 26 03

2 8210002 ST_POINT Thursday 24 17

3 7394753 ST_POINT Friday 18 01

4 8507736 ST_POINT Monday 21 14

5 5570776 ST_POINT Sunday 20 09

6 5923051 ST_POINT Tuesday 22 12

� ZONES dataset

ZONES dataset is manually created by dividing the area of the Manhattan bor-

ough into zones. We have considered only Manhattan because more than 95%

of all the taxi trips fall into that region of NYC and hence it is viable choice

for this use case. The selected area is then divided into arbitrary zones of ap-

proximately 0.5 km x 0.5 km width. Here a random zone size has been selected

for the purpose of the use case. The user might vary the zone size or specify

customized zones of interest depending upon the application. The selected area
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(a) Envelope of Manhattan (b) Zones created in the Manhattan area

Figure 4.10: In this use case we consider only the taxis which originated from Manhattan.
(a) shows the envelope of Manhattan area in NYC. (b) represents the randomly created zones

in Manhattan.

of NYC (Manhattan) and the created zones are shown in Figure 4.10. The area

of Manhattan is divided into 328 zones of equal size. The dimension and first six

records of the zones dataset are shown below:

> zones<-ida.data.frame("ZONES")

> dim(zones)

[1] 328 2

> head(zones)

ZONE_ID ZONE_BOUNDARY

1 1 ST_MULTIPOLYGON

2 2 ST_MULTIPOLYGON

3 3 ST_MULTIPOLYGON

4 4 ST_MULTIPOLYGON

5 5 ST_MULTIPOLYGON

6 6 ST_MULTIPOLYGON

4.4.2 Geospatial information

We add geospatial information to our dataset by comparing the taxi pickup locations

with the zone boundaries. A new ida.data.frame object called ‘taxi zones’ is created

which contains with other attributes the id of the zone (ZONE ID) from which the
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taxi ride started. The statements below show the process. The inessential columns are

removed from the dataset definition.

> taxi_zones <- idaIntersects(TripAndFare,

zones[,c("ZONE_ID","ZONE_BOUNDARY")],

by.x=TripAndFare$P_LOCATION,

tableName="TAXI_ZONES",

returnDense=T)

> taxi_zones <- taxi_zones[,!names(taxi_zones) %in% c("ZONE_BOUNDARY"

,"INTERSECTS_TRIPANDFARE_1M_ZONES","P_LOCATION")]

> head(taxi_zones)

TRIP_ID WEEKDAY DATE HOUR ZONE_ID

1 13822757 Friday 25 12 3

2 8314669 Monday 21 13 5

3 476589 Tuesday 15 13 5

4 14713538 Tuesday 01 13 5

5 10724540 Thursday 31 20 5

6 4046670 Tuesday 15 18 5

From the output of the head function, we can see that we have successfully added the

information regarding the taxi zones using the spatial operations. We then fetch the

resultant dataset into the R environment for modeling purpose. The dataset is then

grouped with the elements DATE, ZONE ID, WEEKDAY and HOUR. A sample of

the dataset is shown below. The ‘Pickup Count’ column indicates the the total number

of taxi pickups in a zone on a specific day and hour.

> head(PICKUP_ZONE_AGGREGATE)

Date Weekday Hour Zone Pickup_Count

10 1 Tuesday 00 1 2

18 1 Tuesday 01 1 5

29 1 Tuesday 02 1 3

37 1 Tuesday 03 1 9

43 1 Tuesday 04 1 4

54 1 Tuesday 05 1 1



Chapter 4. Scalable Geospatial Analytics with R in Action 67

The user can now use the modeling techniques of choice to predict the number of taxi

pickups. Further information like the weather data, frequency of subways in the zones,

etc. can be added to improve the prediction model. Our aim here is to showcase

the scalabilty of the solution and the possibilities of different kinds of analysis that

geospatial analysis offers.



Chapter 5

Conclusion

In Chapter 1, we stated the growing importance of geospatial analysis and how it opens

up unforeseen opportunities. Geospatial analysis can significantly benefit the busi-

nesses, governments, environmental institutions, individuals and other organizations.

We setup the objectives for the study as, to familiarize the reader with the geospatial

discipline, develope a scalable solution for geospatial analysis, and implementation of

the solution on practical problems. In Chapter 2, we imparted understanding about

the main principals and concepts of the geospatial domain in a succinct form without

overwhelming the reader with information. Spatial database systems and spatial re-

sources were described. The concepts mentioned are basic building blocks for advanced

manoeuvres in geospatial domain.

The prime goal of the thesis was to develop a scalable solution for geospatial analysis

and processing. Several design goals were defined for an effective and efficient solution.

We successfully developed a scalable solution which can be constructively used with

large spatial datasets. Developed spatial functions maintain adherence with the sp

package for the purpose of adaptability. If required, the spatial data can be imported

from the database tables into R environment. The imported data conform to spatial

data classes defined in the sp package. Moreover, we developed the spatial functions

by coalescing with ibmdbR package and utilizing the defined classes. This allows us to

use the wide range of statistical analysis functions provided by the ibmdbR package.

The operations are intuitive in nature and can also be conveniently used by the non

experts in the geospatial domain. Developed spatial operations use lazy loading to load

68
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only those parts of data that are actually required. This supports a faster approach of

data analysis and processing.

In Chapter 4, we successfully employed the solution on several use cases. The use

cases chosen for the study have applied applications. We were able to use the spatial

operations on a wide range of datasets of different types and sizes. During the course,

we observed notable enhancement in analysis capabilities and possibilities by utilizing

geospatial information. We developed the spatial operations which were perceived to be

most commonly used for geospatial analysis. For specific use cases that require certain

spatial operations, they can be adequately added using the provided framework.
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Appendix A

R-code

Usecase- Predict Tip Amount

1

2 #####################################################

3 # Connect to the database

4 # DSN, Userid and Password as parameters

5 #####################################################

6

7 con <− idaConnect("spatial dsn",’USERID’,’PASSWORD’)

8

9 #####################################################

10 # Initialize the in−database functionality

11 #####################################################

12

13 idaInit(con)

14

15 #####################################################

16 # List of all tables in the current schema

17 #####################################################

18

19 idaShowTables()

20

21 #####################################################

22 # TRIPANDAFRE DATASET

23 #####################################################
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24

25 # TRIPANDFARE JAN− Records for the month of January the TRIPANDFARE table

26 TripAndFare<−ida.data.frame("TRIPANDFARE JAN")

27

28 # Consider only the trips payed by card.

29 TripAndFare<−TripAndFare[TripAndFare$PAYMENT TYPE=="CRD",]

30

31

32 ## Remove the attributes which are usually unknown before the end of the trip

33 # 1. TRIP TIME IN SECS

34 # 2. TOTAL AMOUNT

35 # 3. FARE AMOUNT

36

37 TripAndFare<−TripAndFare[, !(names(TripAndFare) %in% c(’TRIP TIME IN SECS’,

38 ’TOTAL AMOUNT’,

39 ’FARE AMOUNT’))]

40

41 ## Remove the useless columns like (acc. to exploration in rattle):

42 # 1. MEDALLION− identifier

43 # 2. HACK LICENSE− Identifier

44 # 3. VENDOR ID− Does not make sense to keep it for now

45 # 4. RATE CODE

46 # 5. STORE AND FWD FLAG

47 # 6. TOLLS AMOUNT

48 # 7. MAT TAX

49

50 TripAndFare<−TripAndFare[, !(names(TripAndFare) %in% c("MEDALLION",

51 "HACK LICENSE",

52 "VENDOR ID",

53 "RATE CODE"))]

54 TripAndFare<−TripAndFare[, !(names(TripAndFare) %in% c("STORE AND FWD FLAG",

55 "TOLLS AMOUNT",

56 "MAT TAX"))]

57

58 ## Remove the absolute longitudes and latitudes

59 ## As we already have the pickup and dropoff point locations

60 # 1. PICKUP LONGITUDE
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61 # 2. PICKUP LATITUDE

62 # 3. DROPOFF LONGITUDE

63 # 4. DROPOFF LATITUDE

64

65 TripAndFare<−TripAndFare[, !(names(TripAndFare) %in% c("PICKUP LONGITUDE",

66 "PICKUP LATITUDE"))]

67 TripAndFare<−TripAndFare[, !(names(TripAndFare) %in% c("DROPOFF LONGITUDE",

68 "DROPOFF LATITUDE"))]

69

70

71 # Remove the trip distance column

72 TripAndFare<−TripAndFare[, !(colnames(TripAndFare) %in% c("TRIP DISTANCE"))]

73

74 #####################################################

75 # Time factors (Derived Information)

76 #####################################################

77

78 # Add a column for day of the week in the dataset. Since tip amount might depend upon the day.

79 TripAndFare$WEEKDAY<−weekdays(TripAndFare$PICKUP DATETIME)

80

81 # Add a column for the date of trip in the dataset.

82 TripAndFare$DATE<−substr(TripAndFare$PICKUP DATETIME,9,10)

83

84 # Add a column for the Hour of trip in the dataset.

85 TripAndFare$HOUR<−substr(TripAndFare$PICKUP DATETIME,12,13)

86

87 # Drop pickup datetime and dropoff datetime column as the usefull info has been extracted.

88 TripAndFare<−TripAndFare[, !(colnames(TripAndFare) %in%

89 c("PICKUP DATETIME",

90 "DROPOFF DATETIME"))]

91

92

93 #####################################################

94 # Categorize Tip Amount

95 #####################################################

96

97 TripAndFare$TIP RANGE<−ifelse(TripAndFare$TIP AMOUNT<5,"<5D",">5D")
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98

99 # remove the numerical TIP AMOUNT column

100 TripAndFare<−TripAndFare[, !(colnames(TripAndFare) %in% c("TIP AMOUNT"))]

101

102

103 #####################################################

104 # Geospatial info

105 #####################################################

106

107

108 #++++++++++++#

109 #+ AIRPORTS +#

110 #++++++++++++#

111

112 #####################################################

113 # DATA FRAME FOR AIRPORTAREA

114 #####################################################

115

116 airports area<−ida.data.frame("AIRPORTAREA")

117

118 #####################################################

119 # INTERSECT AIRPORT AREA AND TAXIs (DROPOFF)

120 #####################################################

121

122 idaDeleteViewOrTable("GEOINFO AIRPORT D")

123 t1<−Sys.time()

124 GEOINFO AIRPORT D<−idaIntersects(TripAndFare,

125 airports area[,c("BUFFER AIRPORT BOUNDARY")],

126 by.x=TripAndFare$D LOCATION,

127 by.y=airports area$BUFFER AIRPORT BOUNDARY,

128 tableName="GEOINFO AIRPORT D",

129 returnDense=F)

130 Sys.time()−t1

131

132 GEOINFO AIRPORT D$DROPOFF<−ifelse(

133 GEOINFO AIRPORT D$INTERSECTS TRIPANDFARE JAN AIRPORTAREA==1,

134 "Airport","NA")
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135 # Remove inessential columns

136 GEOINFO AIRPORT D<−GEOINFO AIRPORT D[,!names(GEOINFO AIRPORT D) %in%

137 c("BUFFER AIRPORT BOUNDARY",

138 "INTERSECTS TRIPANDFARE JAN AIRPORTAREA")]

139

140

141 #####################################################

142 # INTERSECT AIRPORT AREA AND TAXIs (PICKUP)

143 #####################################################

144 idaDeleteViewOrTable("GEOINFO AIRPORT P")

145 t1<−Sys.time()

146 GEOINFO AIRPORT P<−idaIntersects(GEOINFO AIRPORT D,

147 airports area[,c("BUFFER AIRPORT BOUNDARY")],

148 by.x=GEOINFO AIRPORT D$P LOCATION,

149 by.y=airports area$BUFFER AIRPORT BOUNDARY,

150 tableName="GEOINFO AIRPORT P",

151 returnDense=F)

152 Sys.time()−t1

153

154 GEOINFO AIRPORT P$PICKUP<−ifelse(

155 GEOINFO AIRPORT P$INTERSECTS GEOINFO AIRPORT D AIRPORTAREA==1,

156 "Airport","NA")

157 # Remove inessential columns

158 GEOINFO AIRPORT P<−GEOINFO AIRPORT P[,!names(GEOINFO AIRPORT P) %in%

159 c("BUFFER AIRPORT BOUNDARY",

160 "INTERSECTS GEOINFO AIRPORT D AIRPORTAREA")]

161

162

163 #+++++++++++

164 #+ THEATERS

165 #+++++++++++

166

167 #####################################################

168 # DATA FRAME FOR THEATERAREA

169 #####################################################

170

171 theaters area<−ida.data.frame("THEATERAREA")
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172

173 #####################################################

174 # INTERSECT THEATER AREA AND TAXIs (DROPOFF)

175 #####################################################

176

177 idaDeleteViewOrTable("GEOINFO THEATER D")

178

179 GEOINFO THEATER D<−idaIntersects(GEOINFO AIRPORT P,

180 theaters area[,c("BUFFER THEATER LOCATION")],

181 by.y=theaters area$BUFFER THEATER LOCATION,

182 by.x=GEOINFO AIRPORT P$D LOCATION,

183 tableName="GEOINFO THEATER D",

184 returnDense=F)

185 GEOINFO THEATER D$DROPOFF<−ifelse(

186 GEOINFO THEATER D$INTERSECTS GEOINFO AIRPORT P THEATERAREA==1,

187 "THEATER",

188 GEOINFO THEATER D$DROPOFF)

189 # Remove inessential columns

190 GEOINFO THEATER D<−GEOINFO THEATER D[,!names(GEOINFO THEATER D) %in%

191 c("BUFFER THEATER LOCATION",

192 "INTERSECTS GEOINFO AIRPORT P THEATERAREA")]

193

194

195 #####################################################

196 # INTERSECT THEATER AREA AND TAXIs (PICKUP)

197 #####################################################

198

199 idaDeleteViewOrTable("GEOINFO THEATER P")

200

201 GEOINFO THEATER P<−idaIntersects(GEOINFO THEATER D,

202 theaters area[,c("BUFFER THEATER LOCATION","THEATER ID")],

203 by.y=theaters area$BUFFER THEATER LOCATION,

204 by.x=GEOINFO THEATER D$P LOCATION,

205 tableName="GEOINFO THEATER P",

206 returnDense=F)

207 GEOINFO THEATER P$PICKUP<−ifelse(

208 GEOINFO THEATER P$INTERSECTS GEOINFO THEATER D THEATERAREA==1,
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209 "THEATER",

210 GEOINFO THEATER P$PICKUP)

211 # Remove inessential columns

212 GEOINFO THEATER P<−GEOINFO THEATER P[,!names(GEOINFO THEATER P) %in%

213 c("BUFFER THEATER LOCATION","THEATER ID",

214 "INTERSECTS GEOINFO THEATER D THEATERAREA")]

215

216

217 #++++++++++++++++

218 #+ MAIN LOCATIONS

219 #++++++++++++++++

220

221 #1. Penn Station

222 #2. Grand Central

223 #3. Columbus Circle

224 #4. Lexington Avenue

225

226

227 #####################################################

228 # DATA FRAME FOR MAINAREAS

229 #####################################################

230

231 main area<−ida.data.frame("MAINAREAS")

232

233 #####################################################

234 # INTERSECT THEATER AREA AND TAXIs (DROPOFF)

235 #####################################################

236

237 idaDeleteViewOrTable("GEOINFO MAIN D")

238

239 GEOINFO MAIN D<−idaIntersects(GEOINFO THEATER P,

240 main area[,c("BUFFER LOCATION")],

241 by.x=GEOINFO THEATER P$D LOCATION,

242 tableName="GEOINFO MAIN D",

243 returnDense=F)

244 GEOINFO MAIN D$DROPOFF<−ifelse(

245 GEOINFO MAIN D$INTERSECTS GEOINFO THEATER P MAINAREAS==1,
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246 "MAINAREA",

247 GEOINFO MAIN D$DROPOFF)

248 # Remove inessential columns

249 GEOINFO MAIN D<−GEOINFO MAIN D[,!names(GEOINFO MAIN D) %in%

250 c("BUFFER LOCATION",

251 "INTERSECTS GEOINFO THEATER P MAINAREAS")]

252

253

254 #####################################################

255 # INTERSECT THEATER AREA AND TAXIs (PICKUP)

256 #####################################################

257

258 idaDeleteViewOrTable("GEOINFO MAIN P")

259

260 GEOINFO MAIN P<−idaIntersects(GEOINFO MAIN D,

261 main area[,c("BUFFER LOCATION")],

262 by.x=GEOINFO MAIN D$P LOCATION,

263 tableName="GEOINFO MAIN P",

264 returnDense=F)

265 GEOINFO MAIN P$PICKUP<−ifelse(

266 GEOINFO MAIN P$INTERSECTS GEOINFO MAIN D MAINAREAS==1,

267 "MAINAREA",

268 GEOINFO MAIN P$PICKUP)

269 # Remove inessential columns

270 GEOINFO MAIN P<−GEOINFO MAIN P[,!names(GEOINFO MAIN P) %in%

271 c("BUFFER LOCATION",

272 "INTERSECTS GEOINFO MAIN D MAINAREAS")]

273 GEOINFO MAIN P<−GEOINFO MAIN P[,!names(GEOINFO MAIN P) %in%

274 c("P LOCATION",

275 "D LOCATION",

276 "TRIP ID",

277 "PAYMENT TYPE")]

278

279

280 #####################################################

281 # Fetch the dataset with added spatial information to R

282 #####################################################
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283

284 R Geo Taxi <− as.data.frame(GEOINFO MAIN P)
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