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Multi-objective nonlinear model predictive substrate 

feed control of a biogas plant 

Abstract  

In this paper a closed-loop substrate feed control 

for agricultural biogas plants is proposed. In this 

case, multi-objective nonlinear model predictive 

control is used to control composition and amount 

of substrate feed  to optimise the economic feasi-

bility of a biogas plant whilst assuring process sta-

bility. The control algorithm relies on a detailed bi-

ogas plant simulation model using the Anaerobic 

Digestion Model No. 1. The optimal control prob-

lem is solved using the state-of-the-art multi-

objective optimization method SMS-EGO. Control 

performance is evaluated by means of a set point 

tracking problem in a noisy environment.  

Results show, that the proposed control scheme is 

able to keep the produced electrical energy close 

to a set point with an RMSE of 0.9 %, thus main-

taining optimal biogas plant operation. 
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1 Introduction 

Optimising the operation of biogas plants is and 

will be one of the main challenges in the field of 

anaerobic digestion (AD) in the near future. A 

closed-loop substrate feed control, maximizing 

profit while minimizing ecological impact and 

maintaining biogas plant stability, is crucial for effi-

cient optimisation of biogas plant operation. To 

the authors’ knowledge, such a control has not yet 

been developed and implemented at a full-scale bi-

ogas plant. Main reasons are a lack of reliable 

measurement sensors on most full-scale biogas 

plants (Wiese & König 2009) and the complexity of 

the anaerobic digestion process. Nevertheless, ad-

vances in the development of reliable and robust 

measurement sensors as well as detailed AD mod-

els give hope that these limitations will be lifted in 

the coming years (Madsen et al. 2011). In this pa-

per a multi-objective nonlinear model predictive 

substrate feed control is proposed, which is de-

signed to optimally control the substrate feed of 

pilot-scale as well as full-scale agricultural biogas 

plants. This substrate feed control uses a calibrat-

ed model of the controlled biogas plant, whereas 

the AD process is modelled by the Anaerobic Di-

gestion Model No. 1 (ADM1) (Batstone et al. 2002). 

Using this model, the effect of different substrates 

and varying substrate mixtures on the AD process 

can be predicted. Furthermore, produced electrical 

and thermal energy as well as consumed electrical 

energy needed for plant operation can be calculat-

ed (Lübken et al. 2007). 
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2 Multi-objective non-linear model 

predictive feed control 

Consider an agricultural biogas plant fed with   

substrates. Its  dimensional system state is 

symbolized by      and its substrate feed 

by    and      denote the state 

and input space, respectively. In nonlinear model 

predictive control a time        dependent opti-

mization problem over a finite time horizon, called 

u 
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In case the state of the system  cannot be me-

asured at each time  , as it is the case for most bi-

ogas plants,   has to be estimated. Notice, that 

the dimension of the state vector is defined by the 

ADM1, which is   in the used implementation. 

In Gaida et al. 2012a a state estimator is proposed, 

which can be used as a state estimator for a non-

linear substrate feed control as is demonstrated in 

Gaida et al. 2012b.  

As the objective function     is a vector 

function, not only one optimal solution but many 

optimal solutions exist to problem (1). Those are 

trade-off solutions, which are all optimal with re-

spect to (1) and collected in the so-called Pareto 

optimal set  (Coello Coello 2011). The trade-off 

solution applied to the plant,   is given by a 

weighted sum,   : 
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prediction horizon          is solved at every dis-

crete time instant       with sampling time 

 and  (Findeisen et al. 2003). The 

objective is to minimize a two-dimensional objec-

tive function      which depends on the 

open loop state       and the open loop 

substrate feed      of the controlled biogas 

plant, approximately modelled by a set of nonline-

ar differential equations              called 

the biogas plant model             The op-

timization problem is solved by choosing the opti-

mal substrate feed  over a control horizon   

  The problem can be stated like this: 

For each    =0,1,2,….   set    and solve: 
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and then applied for the duration of the sampling 

time     : 

 *( ) ( ), ,k k kt t t t t  u u (3) 

Notice, that the weights  could also be state 

dependent as in (Valera García et al. 2012).  

The objective functions  and  are defined as 

follows: 

1 2 ,

1J
2J

   

 

1

2

2 2
1

1

: ( ), ( ) ( ), ( )

: ( ), ( ) ( )

0
:

0 1

1

k

k

k

k

t T

t

t T C

i i

it

i

C

i i

i

J d

J d











 

 
   

 


 

 

 







    

    

 

x u x u

x u u

P

P

cost benefit

constraint

  if inactive
constraint

if active

(4) 

C

In equation (4) the  function is defined by the sum 

of the substrate and energy costs and the benefit 

function is defined by the profit obtained selling 

the produced electrical and thermal energy, which, 

in Germany, is determined by the Renewable Ener-

gy Sources Act  EEG (BMU 2012). Examples for 

the  constraint functions constraint i i = 

1 ,…C , are upper and lower boundaries for VFA/

TA, COD degradation rate, pH value, OLR, HRT, 

NH4-N and VFA. A further constraint could be a set 

point for any process value as it is the case for the 

experiment below.  

Problem (1) can be solved using a multi-objective 

optimization algorithm. In this paper the multi-

objective metamodel-assisted efficient global opti-

mization algorithm SMS-EGO is used. Details can 

be found in (Ponweiser et al. 2008; Wagner et al. 

2011). Due to the simulation of the biogas plant 

model an objective function evaluation is quite 

time consuming, SMS-EGO performs the optimiza-

tion on a metamodel (Jones et al. 1998) to keep 

the number of simulations to a minimum (120 sim-

ulations are performed for each   ). To reformulate 

the optimal control problem into a finite dimen-

sional nonlinear programming problem, the sub-

k

strate feed trajectories are parameterized by

 dimensional vectors, resulting in a piece-

wise-constant substrate feed. 

 /
c

T  

3 Results 

In this section the proposed substrate feed control 

is applied to a model of a full-scale agricultural bio-

gas plant with an electrical power output of 

776 kW. The first of two digesters is fed with the 

u = 2 substrates u := (u1, u2)
T, being maize silage 

u1 / [t / d] and liquid cow manure u2 / [m
3 / d]. 

The substrate feed of the biogas plant is con-

trolled, such that the produced electrical energy 

follows a constant electrical power set point of 

776 kW. The set point is defined as a soft con-

straint in J2. As disturbances, the nominal values of 

some parameters of the substrates are randomly 

varied up to 20 %. For maize silage total solids (TS) 

as well as pH value are changed and for liquid ma-

nure NH4-N is varied as well. The disturbances oc-

cur over a period of 40 days (see Fig. 1c). Over this 

period the control solves problem (1), so that a 

constant electrical power is produced and optimal 

plant operation is maintained at all times. The feed 

control was started four days before the disturb-

ances were applied and ran until four days after 

the substrate parameters were set back to their 

nominal values again (see Fig. 1). 

The substrate feed control is parameterized as fol-

lows. The sampling time is set to δ = 4 days and the 

control horizon TC is set to eight days. Thus, each 

substrate is parameterized by a two-dimensional 

vector, resulting in a total of four optimization vari-

ables for both substrates together. The prediction 

horizon TP is set to 25 days and 50 days, respec-

tively, and U is set to:  
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In Figure 1a) the resulting electrical power trajec-

tories are visualized for two different feeding strat-
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gies. The first strategy ‘closed-loop’ (for TP=50 

days and TP=25 days) depicts the results obtained 

with the proposed control and the second strategy 

‘open-loop’ visualizes the results, when the feed is 

kept constant for maize at 46.9 t/d and for manure 

at 25.7 m³/d. As can be seen the closed-loop con-

trols closely track the set point with an RMSE of 

11.4 kW and 6.7 kW (TP=25 days), respectively. As 

the set point is set to the maximal possible electri-

cal power output of the plant, overshooting the set 

point directly leads to excess biogas production. 

The control significantly reduces in excess pro-

duced biogas from 8.411 m³ for the open-loop 

case down to 720 m³ (216 m³, TP=25 days) for the 

duration of the given scenario. Nevertheless, there 

are differences between the set point and the tra-

jectories, because the control does not only track 

the set point but at the same time optimizes all 

other criteria defined in the objective function J. In 

this experiment the control with the shorter pre-

diction horizon has a better performance, but for a 

more thorough analysis a parameter study for the 

control parameters TC, TP and δ will be performed 

in subsequent work.  

Figure 1: a) Electrical power output of the biogas plant. b) & d) Substrate feed of maize silage and cow manure, respectively.   
c) Random change of substrate parameters, as an example the TS of maize silage is visualized. To guarantee that we start from a 
steady state, the control is started at day 260 and the substrate parameters are changed between days 264 and 304. At day 308 
the control is stopped and the last optimal substrate feed of the control is applied until the end of the simulation at day 350. 
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4 Conclusion 

In this paper a model predictive substrate feed 

control was proposed. Its performance is demon-

strated through a set point tracking problem. The 

control is able to track an electrical power set 

point with an RMSE of 1.5 % (0.9 %, TP=25 d) and 

it reduces the in excess produced biogas signifi-

cantly by 91 % (97 %) for the given scenario. As a 

result, the lost benefit is decreased from 3.174 € 

down to 409 € (90 €).  

Parameterizing the objective function accordingly 

it would be possible to track the set point more 

closely and to avoid biogas excess, but this would 

discriminate some other criteria of the objective 

function.  

A trial of the proposed NMPC is scheduled for sum-

mer 2013 in order to optimally control a pilot-scale 

biogas plant. 

Biogas 
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