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Chapter 1

Motivation and Contribution

1.1 Background

Individual health directly reflects fundamental physical or psychological needs and

is very important from an economic perspective. For example, health is positively

correlated with important areas of life such as social participation (e.g. Snelgrove

et al., 2009) or membership of the workforce (e.g. Garćıa-Gómez et al., 2010). The

importance of health has been recognised by the WHO, which defines it as ‘a state

of complete physical, mental and social well-being and not merely the absence of

disease or infirmity’1. The relevance of disease is also recognised at the population

level, particularly within the public health sphere, but also because of the impact

on public spending (e.g. Getzen, 2000a) and economic growth (e.g. Karlsson et al.,

2014).

The financial importance of health can be seen at the aggregated level by con-

sidering the amount of money spent on health and health-related initiatives. Figure

1.1 highlights the increasing economic importance of the healthcare sector from an

international perspective. Although there is heterogeneity within the WHO health

regions2, healthcare expenditure as a share of GDP increased for all regions during

the observed period.

1Preamble to the Constitution of the World Health Organization as adopted by the International
Health Conference, New York, 19-22 June, 1946; signed on 22 July 1946 by the representatives of
61 States (Official Records of the World Health Organization, no. 2, p. 100) and entered into force
on 7 April 1948.

2Australia and China, for example, are included in the Western Pacific region.
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Figure 1.1 Total health expenditure as a percentage of GDP (Data
source: WHO)

However, Southeast Asia has seen only a very modest increase, and the Eastern

Mediterranean region displayed a small decrease from 2009 onwards. The strongest

increase is seen in Africa, which may be explained to a certain extent by very low

baseline healthcare expenditures, the adoption of professional medical procedures

during the observed period, and increased financing from international development

programs that emphasise health as a major driver of economic development (Rav-

ishankar et al., 2009). Overall, there is a pattern of increased relative healthcare

expenditure over the observed period, although different mechanisms explain varia-

tions within and between regions. Comparing regions highlights the long-recognised

pattern that the relative quantity of healthcare expenditure is greatest in the most

economically developed countries (e.g. Farag et al., 2012), with America at the top

and Southeast Asia at the bottom (from 1998 onwards). High base levels and a

subsequent increase in healthcare expenditure in America are mainly explained by

a mixture of technological progress and a market-oriented approach to the structure

of their healthcare sector (Chandra and Skinner, 2012).
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Figure 1.2 Expenditures on health as a percentage of gross domestic
product (Year: 2013, Data source: WHO)

Turning to the sources used to finance healthcare expenditures in our six geograph-

ical regions, Figure 1.2 distinguishes between government expenditures and private

expenditures in 2013. Private expenditures are represented by out-of-pocket (OOP)

payments and other private sources such as private insurance. Overall, we find that

the role of government is emphasised in Europe, where private sources play only a

minor role. America has a relatively large share of private healthcare expenditures

based on private insurance markets, while in less-developed regions (Africa, Eastern

Mediterranean, Southeast Asia) OOP payments play a large role. OOP payments

also include financing via private transfer and family networks. As recognised by

Esping-Andersen (1990) in his classification of welfare systems, families generally

play a very important role in providing healthcare and financing social security3.

OOP payments are less important in Europe and America relative to the other re-

gions.

Overall, European healthcare expenditures are much more reliant on government

(including social insurance) than in America and other areas (the latter also have

much lower levels of health expenditures overall). Although the sources of health-

care expenditures are quite different across the six regions, on average the relative

3Esping-Andersen (1990) classifies the welfare state based on whether social security is pro-
vided mainly by the market, the government or reciprocity (including social insurance and family
networks).
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importance of healthcare expenditures, given financial ability, has increased across

every region over the last 20 years. Increasing demand for healthcare, the arrival

of new technologies and an increase in unhealthy lifestyles are a burden for fiscal

budgets, as healthcare expenditures have grown strongly in recent decades in both

developed and less-developed regions. If this trend continues, it may cause problems

for future decision making because individuals, companies, and politicians have to

allocate resources under financial restrictions.

1.2 Contribution and Agenda

Knowledge of how to control and properly predict healthcare expenditures is essen-

tial for good policy advice. This dissertation employs empirical analysis using data

from different countries to provide multiple contributions to the contemporary litera-

ture on managing and projecting healthcare expenditures, which are very important

for both developed and developing countries. The dissertation is organised into five

chapters. Chapter 1 contains this introduction. Chapter 2 empirically emphasises

the importance of ageing and morbidity for future long-term care (LTC) expendi-

tures. Chapter 3 discusses the role of individual characteristics that may serve as

barriers to participating in public health programmes which may be used to reduce

healthcare expenditures. Chapter 4 contributes to the empirical detection of asym-

metric information (IA) in private insurance markets, which are widely acknowledged

to induce inefficient resource allocation. Finally, Chapter 5 examines from a develop-

ment perspective whether introducing a formal, nationwide health insurance scheme

affects participation in informal transfer mechanisms. The following provides a more

detailed description of our research agenda in the context of contemporary literature.

Chapter 2: Ageing, Time-To-Death and Care Costs for Older People in

Sweden

Chapter 2 addresses the ongoing scientific discussion surrounding evidence-based

planning of future healthcare expenditures and the impact of ageing on healthcare

expenditures. This is a particular issue in relatively developed countries, which are

generally seeing a decline in fertility combined with increasing life expectancies (e.g.

Herzer et al., 2012). We add to the health economics literature since Zweifel et al.

(1999), investigating whether age itself is still an important predictor of healthcare

expenditures, once time-to-death (TTD) is accounted via empirical analysis. There

4



are various methodological problems with estimating the impact of an ageing popu-

lation on future budgets, and few studies are based on aggregated data. This field

of research is also important in the context of LTC expenditures (e.g. Larsson et al.,

2008). To shed new light on this issue, we use aggregated data from official statis-

tics in Sweden, a country where social care is largely financed by taxes, to estimate

the impact of age on LTC expenditures. Our empirical analysis applies panel data

methods and accounts for end-of-life morbidity, which allows us to separate age and

TTD effects to derive projections of expected future LTC expenditures. We also al-

low for differences between domiciliary and institutional LTC in our analysis, which

may prove important if different treatment paths have a heterogeneous impact on re-

source allocation or healthcare provision. A proper understanding of the association

between age and (non curative) healthcare expenditures is key to adequately pro-

jecting the financial consequences of population ageing on future healthcare budgets.

The main contribution of this chapter is that we provide a theoretically more con-

vincing measure for end-of-life morbidity based on population level mortality than

contemporary literature does.

Chapter 3: The Ability to Memorise and Participation in the English

Bowel Cancer Screening Programme

The third chapter emphasises how policies designed to reduce healthcare expen-

ditures need to incorporate the characteristics of their specific target group to be

successful. It is widely acknowledged that societies where individuals do not have to

(fully) pay a fair premium must finance health expenditures at a societal level (Mul-

lainathan et al., 2012). Healthcare programmes may be able to positively influence

healthcare decisions (from a policy perspective). However, in libertarian societies

the success of such programmes depends on each individual’s decision to partici-

pate or not. Hence, the individual characteristics of a specific target group which

affect participation in such programmes must be carefully identified and accounted

for when designing policies. For example, in programmes designed for the elderly, a

decline in physical and cognitive abilities may be a barrier to participation. In this

context, we use individual-level data and apply regression and matching methods to

empirically assess whether an individual’s declining ability to memorise information

decreases their likelihood of participating in a nationwide healthcare programme

for bowel cancer screening in England. The main contribution of this chapter is

further emphasis that public health programmes need to be designed with careful

regard to the specifics of their target group. We also contribute to the psychological

5



and behavioural economics literature that assesses unexpected health-related deci-

sion making processes (e.g. Mullainathan et al., 2012; Chetty, 2015). Our findings

may help further develop and enhance models to better explain real-world health

economic decision making.

Chapter 4: Heterogeneous Parameters and Detecting Selection Based on

‘Unused Characteristics’ in Private Health Insurance Markets

The fourth chapter investigates the empirical detection of selection in private in-

surance markets4. Detecting selection within insurance markets is an important

regulatory issue, because it is often driven by asymmetric information, and limited

resources make it economically essential to find ways to efficiently provide and fi-

nance healthcare. From a health economics perspective, it is widely acknowledged

that health policies must be both efficient and equitable (Culyer and Wagstaff, 1993).

This can be seen, for example, in the UK, where healthcare financing and provision

is built to a large extent on the National Health Service (NHS), with optional addi-

tional private health insurance to incorporate the advantages of private markets into

the system. Additional private health insurance can be helpful if it allows for specific

services or treatments which are not necessary from a health policy perspective but

which match an individual’s specific needs and may help satisfy patients and enhance

technological progress, even if public or social insurance guarantees a relatively high

standard of healthcare provision (Colombo and Tapay, 2004).

For private insurance markets, the literature on selection and inefficiencies has

gained a lot of attention in the economics literature, following Akerlof (1970) and

Rothschild and Stiglitz (1976). Further issues surrounding information asymme-

tries and selection in insurance markets, such as moral hazard, cream skimming or

propitious selection have also been considered (e.g. Leidl, 2008; Einav and Finkel-

stein, 2011). Despite numerous theoretical discussions about selection mechanisms

in private insurance markets that can imply inefficiencies, the empirical detection of

selection based on expected risk is not yet conclusive. The main contribution of this

chapter is a discussion of the empirical detection of information asymmetries (IAs)

based on approaches proposed in Finkelstein and McGarry (2006). We formally and

empirically show that indirect assessment of IAs using ‘unobserved’ (Finkelstein and

4There is also a wide-ranging debate about the role of risk selection in public health insurance
systems (e.g. Nuscheler and Knaus, 2005; van de Ven et al., 2007; Bauhoff, 2012), which is crucial for
designing effective risk adjustment schemes. Although we regard the technical issues surrounding
selection to be potentially relevant to such frameworks as well, we only discuss our ideas in the
context of private health insurance, following the literature we respond to.
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McGarry, 2006) or ‘unused’ variables (Finkelstein and Poterba, 2014) can lead to

faulty conclusions about the direction of selection being drawn. We criticise stan-

dard approaches used to detect IAs based on ‘unused characteristics’ and suggest a

remedy for their shortcomings. Specifically, we show that the approach suggested

by Finkelstein and McGarry (2006) is problematic if the parameters of interest are

driven by heterogeneous sub-populations with different outcomes for an ‘unobserved

characteristic’. We empirically showcase our idea by using simulated data and pro-

vide an empirical application about selection in a private health insurance market

with survey data from England. Our findings are of major importance for designing

and evaluating regulatory frameworks in private (health) insurance markets where

selection is supposed to be based on specific characteristics.

Chapter 5: The Relationship Between Public Health Insurance and Infor-

mal Transfer Networks in Ghana

Chapter five discusses the relationship between formal insurance and informal trans-

fer networks. Private healthcare expenditures based on out-of-pocket (OOP) pay-

ments are a common practice across the world. In private insurance markets, the

contract design usually implements partial financing via OOP payments to reduce

the well-known problem of moral hazard (Cutler and Zeckhauser, 2000). However,

in the absence of public or private health insurance, OOP payments play the most

important role in healthcare expenditures. In this context, leaving aside any con-

cerns about equity, healthcare financing with a small risk pool may be inefficient

due to high uncertainty and risk costs (e.g. Martinez-Giralt and Barros, 2013). Re-

cently, several developing countries have introduced public health insurance to reduce

shortcomings in such informal insurance networks and improve healthcare provision

(Wagstaff, 2010). Although public and social health insurance are playing an in-

creasing role in developing countries, private health expenditures based on OOP

payments are still the dominant way to pay for healthcare (Dye et al., 2013). In

the absence of formal institutions that provide risk sharing, informal networks can

naturally evolve and provide remedy. In such a setting, the role of informal help

from the community, especially family, is very important. However, this kind of risk

sharing is also criticised in the development economics literature as it can constrain

economic growth (e.g. Grimm et al., 2013).

We contribute to the health insurance literature in a development context (e.g.

De Weerdt and Fafchamps, 2011; Powell-Jackson et al., 2014), with a focus on the

relationship between formal and informal health insurance markets (e.g. Landmann

7



et al., 2012; Lin et al., 2014). We empirically assess whether implementing the

national health insurance scheme in Ghana in 2005 crowded out informal trans-

fer networks in the short run. In addition, we assess whether the new insurance

scheme contributes to health outcomes and individual healthcare expenditures. The

main contribution of this chapter is our identification strategy, which uses the quasi-

exogenous variation in implementing the programme at the regional level. The rela-

tionship between different institutions/markets is also important for designing suc-

cessful policies in more developed countries. Hence, our research question is also of

interest for health economic policies beyond the developing world.

The next section outlines the methods and findings for each of the main chapters.

1.3 Methods and Findings

Chapter 2: Ageing, Time-to-Death and Care Costs for Older People in

Sweden

We test the ‘red herring’ hypothesis in the context of Swedish LTC expenditures by

using municipality-level panel data based on administrative records for 1998 to 2008.

We restrict our sample to all municipalities that exclusively provided LTC services

to allow us to focus solely on non-curative healthcare expenditures. Our sample cov-

ers half of the Swedish population. We investigate whether end-of-life morbidity (or

TTD) is a better predictor of LTC expenditures than age by controlling for contem-

porary and future mortality rates. We derive a retrospective construct of TTD that

captures mortality within two years on the aggregated level and allows us to account

for individual end-of-life morbidity by using future mortality rates with respect to the

population of interest in a given year. We apply a fixed effects estimator to control

for potential endogeneity due to unobserved heterogeneity between municipalities.

Overall, we find ageing to be the most important driver of LTC expenditures in

our empirical specifications. In sub-sample estimates, we further distinguish between

institutional and domiciliary LTC provision and also provide sex- and age-specific

estimates. The resulting findings suggest that individuals switch between domiciliary

and institutional care at the end of their lives. Sex-specific specifications also show

a negative relationship between end-of-life morbidity and domiciliary LTC expendi-

tures, mostly driven by women. The latter finding may indicate that informal care

also plays an important role in the provision and financing of LTC expenditures in

Sweden. Age-specific TTD effects show that the impact of TTD on LTC expenditures
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can mostly be explained by a relatively young cohort, the 70- to 74-year-olds. Over-

all, Swedish age structure remains a very important driver of total LTC payments.

In the context of Sweden, the high relevance of ageing for financial budgets is also

emphasised by our projections for LTC expenditures, which we calculate based on

our estimates and by ‘increasing’ life expectancy by one year. Based on our findings

and predictions of Swedish age structure from Statistics Sweden, we also calculated

cost projections for a period of 100 years. From an economic perspective, these costs

are considerable.

Chapter 3: The Ability to Memorise and Participation in the English

Bowel Cancer Screening Programme

To analyse the causal impact of the ability to memorise information on participation

in the national bowel cancer screening programme in England, we use panel data

from the ELSA survey, which is representative of the elderly population. We use an

objective measure for an individual’s decline in memory and apply linear regression

and propensity score matching in our identification strategy to estimate the impact

of a decline in memorisation ability on participating in bowel cancer screening dur-

ing the years following the artificial treatment. We apply covariate adjustment by

controlling for important confounders and account for the timings of when the data

was generated to mitigate problems such as omitted variable bias and reverse causal-

ity. We also apply a doubly robust regression approach, which is widely used in

the epidemiological literature and has recently been adopted in the empirical health

economics literature (e.g. Schmitz and Westphal, 2015). This provides unbiased es-

timates when either the treatment or outcome equation of our empirical model is

correctly specified. Dealing with endogeneity is important in our context, since our

treatment – reduced ability to memorise – is probably not randomised during the

survey period. We provide evidence of a negative relationship between our treatment

and participation in bowel cancer screening. Our analysis also distinguishes between

different domains of memorisation and finds that the main effect can be largely ex-

plained by the ability to remember information with some delay. Our findings are

primarily of interest for health policy design and in the context of medical decision

making. If a public health programme is designed to increase health or reduce expen-

ditures, the particulars of its target group should be considered to efficiently achieve

the programme goals.
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Chapter 4: Heterogeneous Parameters and Detecting Selection Based on

‘Unused Characteristics’ in Private Health Insurance Markets

The literature following Finkelstein and McGarry’s (2006) ‘unused characteristics’

approach is based on the idea that there are variables which insurance companies do

not use to calculate risk premiums, but which can be used in an empirical research

analysis. It argues that if these variables hold explanatory power for both an indi-

vidual’s risk and insurance status, the signs of the estimated coefficients can be used

to indirectly detect information asymmetries (IAs). These approaches are important

when testing whether a specific variable introduces selection into insurance markets.

We formally and empirically show that these standard unused characteristics ap-

proaches (e.g. Finkelstein and McGarry, 2006) can be problematic if the resulting

evidence is wrongly based on mean coefficients. We highlight this issue by allowing

for heterogeneity in individual parameters. In doing so, we show that a negative

correlation between the coefficients of interest may lead to faulty conclusions if ad-

verse selection was detected in the first place, while a positive correlation may lead

to a faulty conclusion about advantageous selection into an insurance company’s

risk pool. Obviously, the unused characteristics approach can also lead to faulty

conclusions if no selection is detected. We bolster the relevance of this finding by

simulating different correlation structures between a hypothetical unused character-

istic and both insurance and risk status, allowing for individual heterogeneity in the

data generating process. Using a multilevel model for our estimates, we find that

standard unused characteristics approaches do not reveal this kind of heterogeneity

under the circumstances discussed. We also provide an empirical implementation for

the (voluntary) private health insurance market in England. We use panel data from

between 2002 and 2013 from the ELSA survey and choose an individual’s available

time as an unused characteristic, as this variable is clearly not available to insurance

companies for pricing purposes. Our findings show that individual parameter het-

erogeneity is relevant to real markets as well. Although adverse selection into the

insurance market is empirically detected, this adverse selection should be interpreted

with caution, since the estimated parameters are negatively correlated. Our findings

show that although contemporary literature (Einav et al., 2009) focuses on calculat-

ing welfare effects in insurance markets due to IAs, the empirical identification of IAs

is still an important research area. We conclude that knowledge about the empirical

detection of selection in insurance markets is inconclusive, and that future empirical

analysis should account for the correlation structures of coefficients when applying

an unused characteristics approach.
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Chapter 5: The Relationship Between Public Health Insurance and Infor-

mal Transfer Networks in Ghana

To assess the influence of the new Ghanaian health insurance scheme (NHIS), we

analyse cross-sectional data from the fifth Ghanaian Living Standard Survey, which

is representative for the 2005 Ghanaian population. As the NHIS was implemented

at the district level, we can use the variation in when individuals were interviewed at

the various sub-districts. Since most districts introduced the NHIS during the survey

period in 2005, we compare individuals who were interviewed before and after the

introduction of the insurance scheme, conditional on fixed effects of district and

interview month. Using the quasi-exogenous variation in the availability of formal

health insurance, we apply ordinary least squares estimates to estimate the impact

of the new insurance scheme on making and receiving transfers at the extensive

and intensive margin. We also test whether the treatment effect depends on the

relationship between the recipient and donor of a transfer. Our empirical findings

indicate that introducing a formal health insurance scheme reduces the probability

of making transfers. In addition, the number of remittances decreases significantly.

We also find that a relatively close relationship between the recipient and donor of a

transfer, holding everything else constant, reduces the crowding out. One potential

explanation for this heterogeneity is sharing obligations, which are known to be

strong in developing countries and are recognised by the contemporary literature

as being a barrier to economic growth (e.g. Grimm et al., 2013). The decrease in

informal transfer networks due to formal insurance is found to be lowest in kinship

networks; therefore, our findings raise the question of whether formal insurance can

overcome this issue, at least in the short run. Our analysis of health-related outcomes

suggests that the NHIS reduces respondents’ OOP expenditures, which is in line with

our expectations. Overall, our findings indicate that public health insurance schemes

strongly affect how healthcare services are paid for and may also support economic

development in the long run. However, the results also emphasise the effects of new

policies on existing institutions, which can be an important issue in many health

policy contexts.
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Chapter 2

Ageing, Time-To-Death and Care

Costs for Older People in Sweden1

2.1 Introduction

Most developed countries have ageing populations, which has implications for public

spending on long-term care (LTC) and healthcare. Recent population projections for

Sweden suggest an increase in the old-age dependency ratio (population aged 65+

per 100 persons aged 15-64) from 32 in 2015 to 39 in 2050 (United Nations, 2013),

placing an enormous burden on public spending.

An ageing society is expected to lead to an increased demand for care services,

raising concerns about the sustainability of financing these services. Indeed, there

may be no magic wand that guarantees both the availability and quality of LTC

provision without continuous cost increases (Meier and Werding, 2010). Precise

measurement of the influence of ageing on care costs is essential to make reliable

projections of demand for care services. An oft-discussed issue when quantifying the

impact of ageing on public funding is the possibility of omitted variables. If the

period of increased care needs is simply postponed as life expectancy increases, age

itself has limited explanatory power in projecting care expenditures. To circumvent

this problem empirically, older people’s time-to-death (TTD) can be considered. This

study contributes to the literature in four different ways: First, we provide a new

TTD measure to estimate its impact on total, institutional and domiciliary LTC

costs, using high-quality administrative data aggregated at the municipality level.

Unlike existing studies, which are implemented at the macro level and only use raw

1This study is a joint work with Martin Karlsson. See Karlsson and Klohn (2014) for the
corresponding published paper.
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mortality rates to measure TTD, our approach accounts for the probability of dying

within a specific timeframe. Using macro-level data means the findings are repre-

sentative for the population as a whole. Second, we test the extent to which costs

due to TTD vary between different age groups and identify heterogeneity between

men and women. Third, we combine our estimates with freely available population

projections from Statistics Sweden to calculate the future financial consequences of

the expected demographic change. Sweden provides us with an ideal institutional

background for our analysis: As Sweden balances funding on a national level based

on needs, we can expect regional funding to solely reflect local needs. Hence, and

fourth, our explanatory variables do not reflect differences in budget restrictions, a

common problem with macro-level analysis.

This chapter is organised as follows: In the next section, we review the economic

literature on the relationship between ageing, morbidity and care expenditure, fol-

lowed by a discussion of Swedish LTC provision. In the third section, we present the

dataset and discuss our empirical strategy. Our results are then presented along with

an estimate of the budget effects if life expectancy were to hypothetically increase by

one year. In addition, we provide long-term projections based on demographic pro-

jections from the Swedish statistical office. The final section summarises our findings

and the subsequent policy implications.

2.2 Healthcare Expenditures and Ageing Popula-

tions

Over the last decade, much attention has been devoted to the so-called ‘red herring’

hypothesis, according to which care costs are unrelated to age once remaining lifetime

or proximity to death is controlled for. The literature on this topic can be divided

into studies investigating curative care and those investigating LTC provision. Most

studies use individual-level data, although there are contributions using aggregated

data.

In their widely acknowledged study, Zweifel et al. (1999) investigate the red her-

ring hypothesis using Swiss data. They show that the impact of age on healthcare

costs decreases once TTD is taken into account. During the last two years of life,

an individual’s actual age seems to be completely irrelevant. This leads to their

conclusion that age is not necessarily an important determinant of healthcare ex-

penditures. Subsequent studies address methodological issues and provide further

empirical evidence. In an excellent literature review, Payne et al. (2007) provide a
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picture of healthcare expenditures and their interplay with ageing, morbidity and

death. They conclude that, although the impact on cost predictions may be small,

using both age and TTD in expenditure models provides a clear advantage over sim-

ple age-based models by helping to evaluate which services can be provided most

efficiently. A prominent contribution by Felder et al. (2010) suggests that future in-

creases in healthcare expenditures are more likely to be caused by changes in medical

technology than further ageing of the population. Wong et al. (2011) analyse disease-

specific hospital expenditures and find that, while age is a relevant determinant of

healthcare expenditures, its effect is modest compared to that of TTD. In general,

recent evidence based on individual-level data suggests that end of life morbidity

(captured by TTD) is the main predictor of healthcare expenditures, while ageing

itself is of minor relevance.

There are also studies into the red herring hypothesis as it relates to LTC ex-

penditures. Werblow et al. (2007) used panel data from Switzerland on healthcare

and LTC provision and found that most components of care expenditure are driven

by TTD rather than age. Forma et al. (2007) find that, in Finland, hospital stays

increase in the last months of life and demand for public LTC increases strongly in

the 2 years prior to death. In a study using a Swedish sample, Larsson et al. (2008)

find that home help provision is influenced by age and not TTD, while institutional

and hospital care are much more influenced by end of life morbidity than age. Their

results also suggest an increased transition from home- and community-based care

to institutional care during the last year of life. Using a Dutch dataset on the use of

institutional LTC and home care, de Meijer et al. (2011) differentiate between causes

of death and analyse the impact of morbidity. Once morbidity and disability are con-

trolled for, age remains relevant, while TTD becomes insignificant. They conclude

that TTD cannot causally affect care expenditures and might itself be interpreted

as a red herring: as a simple proxy for morbidity and disability. Hence, evidence on

LTC provision based on individual-level data also suggests that end-of-life morbidity

is an important driver of LTC provision, but findings for ageing are mixed. There

also seem to be marked differences between the provision of institutional and home

LTC, as institutional care is in most cases only provided at the very end of life.

Although individual-level data is usually preferred in such analyses, there are

also some issues that are better addressed at an aggregated level. Besides the fact

that aggregated data is often more readily available, evidence based on it is usually

more representative, particularly if it is based on census data containing information

about all individuals living within a certain unit of observation.
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Few studies into the red herring hypothesis use aggregated data. Palangkaraya

and Yong (2009) try to tackle this issue using panel data from 22 OECD countries.

They find the proportion of people aged 65 and older (reflecting age) does not ex-

plain healthcare expenditures once mortality and other factors are controlled for. In

a study on the EU-15 countries, Bech et al. (2011) focus on the relationship between

population demographics, mortality, life expectancy and health expenditures, finding

only short-term effects of ageing on healthcare expenditures. Their findings also sug-

gest that past rather than present mortality rates determine healthcare expenditures,

which they explain as political lag. This is a conceptually important distinction from

the interpretation of mortality in studies using individual-level data, where TTD

(capturing individual mortality) is assumed to be directly associated with higher

healthcare expenditures. Breyer et al. (2015) analyse panel data including German

sickness fund members at the cohort level. They distinguish between the effects of

ageing, contemporary mortality and 5-year survival rates. They interpret the sur-

vival rates as capturing changes in longevity. As in Bech et al. (2011), these survival

rates are prospective measures, whereas yearly mortality rates are retrospective. The

authors find both mortality rates and ageing are positively correlated with healthcare

costs. Karlsson and Klohn (2011) use simple mortality rates to capture the impact of

TTD on expenditures for overall social care for the entire Swedish population. Their

findings suggest that age is a much more relevant determinant of Swedish social care

expenditures than mortality. In a recent study, van Baal and Wong (2012) evaluate

the extent to which including TTD influences forecasts of macro-level healthcare ex-

penditures. They compare different scenarios based on their estimates and find that

including mortality does not decrease predicted expenditures.

Results for the impact of ageing and TTD on care expenditures are strongly

heterogeneous in studies using aggregated data. This might be explained by not

just the data but also diverging empirical approaches. Furthermore, unlike studies

analysing healthcare expenditures, studies focusing on LTC at the individual level

show that TTD is a more robust determinant of care costs.

There is a dearth of research on the red herring analysis using aggregated data.

Freely available datasets of official statistics are attractive and potentially helpful

to policy-makers. However, in order to provide more conclusive evidence on the red

herring hypothesis using aggregated data, several gaps need to be addressed. For

example, the use of raw mortality rates is conceptually unconvincing, since they

do not represent the aggregated equivalent of individual proximity to death. By

focusing on income elasticities of healthcare expenditures, Getzen (2000b) highlights

15



another difference between studies implemented on the micro and macro levels. He

argues that the unit of an analysis is very important, because healthcare tends to

be a necessity at the individual level and a luxury at the macro level. He says a

risk pooling group largely eliminates issues such as ability to pay, while differences

between groups are largely determined by differences in funding structure. As the

aim of risk pooling is to diversify risk within a group, the link between risk and

expenditures may no longer be observable at the aggregated level. In addition,

most studies focus exclusively on aggregate healthcare expenditures, making LTC

provision increasingly relevant.

We fill this gap by providing the first study to evaluate the red herring hypoth-

esis in the market for LTC provision at an aggregate level. First, we combine the

contemporary and future mortality rates of our population of interest to use the

probability of dying as a retrospective measure to control for TTD at an aggregate

level. Accounting for future mortality is crucial when decomposing LTC expendi-

tures into age and TTD effects at the aggregated level, since death-related morbidity

is not exclusively restricted to the last year of life. Since the overall aim of redis-

tributing resources between Swedish municipalities is to compensate for differences

in tax bases and cost structures without altering service quality (Karlsson et al.,

2010), we consider the problems raised by Getzen (2000b) when working with aggre-

gated macro data to only be a minor issue for our analysis. Differences in patient

characteristics that are beyond the control of local government are not expected to

be associated with a region’s ability to pay if variations in costs are eliminated by

national government. Hence, Sweden provides a favourable institutional background

for our empirical analysis (Getzen, 2006).

2.3 LTC Provision in Sweden

The main goal of the Swedish LTC system is to provide high quality services to

every resident according to their needs. While county councils are responsible for

healthcare provision (e.g., hospitals and health centres), municipalities are respon-

sible for all other aspects of care, including social care, institutional care and home

nursing. Although services can be supplied directly by a municipality or by a private

health and social care provider, local authorities remain responsible for funding them

(Fukushima et al., 2010). Directly elected politicians decide on the supply of LTC,

as well as raising the revenues necessary to cover expenditures. The main source of

funding is local income taxes, and out-of-pocket payments are of minor importance
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(4 % of total costs,(Colombo et al., 2011)). The national government lays down

general principles and responsibilities for social care in law and monitors care home

quality. It also redistributes funds to create equal conditions for the provision of LTC

in all parts of the country, despite immense differences in both need and local tax

bases. This equalisation is based on local income, expected costs and other structural

disadvantages. In 2008, the national government transferred 58 billion SEK (e 5.9

bn.) to local authorities, 17.6 % of total revenue (Karlsson et al., 2010). In order

to receive LTC services, an application must be made to the local authority. An

evaluator then interviews the potential recipient and family members to determine

the extent of required support, and whether the services can be provided as domi-

ciliary care. This evaluation is based on restrictions to daily living activities (ADL).

Institutional care is viewed as a last resort (Fukushima et al., 2010).

Although the market share of private providers has increased over the last two

decades in Sweden (e.g., from 5.4 to 13.7 % of nursing home slots (Socialstyrelsen,

2008)), nearly all formal LTC services are still funded and monitored by local au-

thorities.

2.4 Data and Empirical Strategy

To evaluate the red herring hypothesis in the context of expenditures on LTC services,

we use administrative data collected by the Swedish National Board for Health and

Welfare. This data is provided at the municipality level, which allows us to exploit

the panel structure of our data. Since we can analyse high-quality data aggregated

at the regional level2 within an institutional framework that redistributes wealth

to meet local needs, there are very good opportunities to evaluate the relationship

between ageing and LTC without some of the typical confounders.

In some counties, municipalities have also taken over responsibility for healthcare

provision; unfortunately, data from these counties is ambiguous in that it does not

specifically identify LTC and healthcare expenditures. As the focus of our analysis

is on LTC expenditures, we exclude such observations. The remaining municipalities

cover more than half of the Swedish population, including the counties of Blekinge

län, Gävleborgs län, Kalmar län, Norrbottens län, Stockholms län, Värmlands län,

Västerbottens län, Västernorrlands län and Östergötlands län. In addition, in parts

of Dalarna län, Jönköpings län and Västmanlands län, around 10 % of the municipal-

2Data on LTC expenditures is available at http://www.scb.se.
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ities provide healthcare services. Although comparing variables for the two groups3

shows they are very similar, we do not use such observations in our analysis. As

the quantity of healthcare services offered over time cannot be distinguished from

LTC provision for these regions, this would clearly be a potential confounder in our

analysis, because our fixed effects estimator uses deviations from the municipalities’

means over time for identification. Hence, we exclusively use the data on LTC provi-

sion, representing more than half of the population (capturing 4.9 out of 9.2 million

individuals).

Our main units of observation are 152 out of a total of 290 Swedish municipalities4.

Our analysis focuses on the sub-population of inhabitants aged 65+, since only this

group is eligible for LTC. Therefore, our main dependent variable captures publicly

financed, overall LTC expenditures5 divided by the average population aged 65 or

older, but we also provide separate regression estimates for institutional and domi-

ciliary LTC costs. Since all variables are expressed in terms of averages per 65+

inhabitant, all estimated parameters correspond to their individual-level equivalents.

As can be seen in Table 2.16, the average costs for overall LTC expenditures are

around SEK 57,400 (e 6,400) per capita. Institutional and domiciliary expenditures

do not completely account for total LTC, as the figure includes additional services

which cannot directly be attributed to one of the two categories, such as preventive

care.

To account for TTD in our model, we consider contemporary and future mortality

rates among the 65+ population. Thus, we assume a high mortality rate among the

65+ population is related to a high level of care and is therefore also positively

correlated with LTC expenditures. According to the red herring hypothesis, the

mortality rate for the following period should also be correlated with higher LTC

use, since individuals dying in the next year also have a higher probability of using

LTC services today. Hence, we define the TTD variables as

TTDa
it = (1− (1−mrtait)× (1−mrta+1

i,t+1))×
Na
it

N65+
it

(2.1)

which can be interpreted as the probability of dying within two years for people

3See Appendix 2.A1
4Data provided by Statistics Sweden can be downloaded at http://www.ssd.scb.se.
5As already mentioned, some 4 % of total costs are covered by user charges. These are included

in our cost variables to reflect the actual total costs of LTC for each individual in the publicly
funded system.

6For a detailed variable description, see Appendix 2.A2
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Table 2.1 Summary statistics

Variable Mean Std. Dev. Min. Max. N

Total 57.4 9.418 30.995 94.41 1,589
Inst 37.532 8.609 14.771 70.396 1,589
Dom 17.536 5.659 4.258 39.3 1,589
age6569 0.267 0.034 0.203 0.457 1,589
age7074 0.236 0.016 0.19 0.281 1,589
age7579 0.21 0.017 0.142 0.264 1,589
age8084 0.158 0.019 0.084 0.21 1,589
age8589 0.089 0.014 0.045 0.132 1,589
age9094 0.033 0.007 0.012 0.06 1,589
age95100 0.007 0.002 0 0.017 1,589
mrt 0.052 0.007 0.031 0.089 1,589
mrtL1 0.054 0.007 0.03 0.082 1,589
TTD65 0.102 0.012 0.065 0.147 1,589
TTD6569 0.008 0.002 0.001 0.017 1,589
TTD7074 0.011 0.003 0.003 0.023 1,589
TTD7579 0.017 0.004 0.005 0.034 1,589
TTD8084 0.024 0.004 0.007 0.041 1,589
TTD8589 0.023 0.005 0.006 0.041 1,589
TTD9094 0.014 0.003 0.005 0.029 1,589
TTD95100 0.005 0.002 0 0.011 1,589
medinc65 08 156.551 20.648 100.984 240.874 1,589
privcare 0.061 0.133 0 0.946 1,435
wom65 0.557 0.018 0.498 0.633 1,589
density 157.767 537.992 0.2 4307.8 1,589
rightwing 0.337 0.106 0.105 0.764 1,589
taxrate 0.214 0.013 0.149 0.231 1,589
mrtl1 0.052 0.007 0.032 0.089 1,589
lifexp 18.424 1.035 14.015 22.52 1,589

Summary statistics for the dependent and explanatory variables of our
baseline specification (not sex specific).
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in a specific age group (cf. Wilmoth et al. (2007)). More specifically, our overall

TTD variable, TTD65+
it , is defined as the probability of dying within two years for

an individual aged 65+, whereas the age-specific TTD is the probability of dying

within two years multiplied by the proportion of the 65+ population within that

specific age range, a. Hence, it gives the weighted probability of dying within two

years for a given age group. The mortality rates mrt are calculated as the number of

older people in a specific age group, a, who died within a year, divided by the number

of people, Na
it, in the age group alive at the beginning of the same year. Using the

population at the beginning of each period is important, since the number of deaths

in a given period negatively affects the number of inhabitants within a municipality.

The next year’s mortality rate is calculated with respect to the initial age group,

a, which we now (with some abuse of notation) call a + 1, as we need to account

for the fact that individuals from age group a are one year older in period t+1.

The final term in equation (2.1) is used for rescaling the age- and sex-specific TTD

variables to the 65+ level, as the pure survival rates resulting from the first two terms

were calculated for the group-specific population numbers, not reflecting their actual

relevance, given the number of older (65+) people in each municipality. In this way,

we can provide a reliable retrospective measure for TTD to control for an individual’s

proximity to death (here: probability of dying within two years) at an aggregated

level. Exploring age-specific mortality in future periods is an important distinction

from existing macro studies using aggregated data (e.g., Bech et al. (2011), Breyer

et al. (2015)), and important if end-of-life morbidity is not restricted to the last year

of life. In our baseline model, a simply represents the total 65+ population, but

group-specific TTD variables created with respect to age group a are also used later

in our analysis (e.g., TTD6569
it and sex-specific TTD variables 7).

It could be argued that accounting for the probability of dying within the next two

years is insufficient, since dying in more distant periods might also generate extra

costs of dying. Thus, we also derived the TTD variable based on three periods. The

results suggest that using three periods does not increase LTC costs significantly. As

using more distant information decreases the number of observations available for

analysis, what follows relies on the TTD variable based on two periods. Another

important factor in the choice of number of periods is immigration: As we are not

observing individuals but municipalities, there is the potential problem that elderly

people may move from one municipality to another. Using more distant periods to

7The pattern of lower probabilities of dying for higher age groups, as seen in Table 2.1, is simply
a result of the variables being rescaled as described above.
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calculate the TTD variable would increase measurement error if some individuals

changed municipalities at the end of their life. However, we regard this issue as

being of minor empirical relevance, as we know that older individuals are less likely

to change their municipal residency8.

The other main explanatory variables are those capturing the age structure

amongst the old in each municipality. These variables are defined as the number

of older people, measured in intervals of five years, divided by the number of people

aged 65+. Again, these variables are measured at the beginning of each year. As

expected, the share of individuals decreases with the specific age group, from 27 %

to less than 1 % on average.

Other variables used for robustness checks include the median incomes (1,000

SEK) of people aged 65+, the share of private LTC provision, life expectancy for

people aged 65+, the lagged mortality rate, local tax rates, the centre-right parties’

share of all seats in the town council, population density and the share of women in

the 65+ population. To account for inflation, we standardised all monetary variables

for 1998 to 2008 according to the Swedish price index, expressing them in 2008 SEK.

Due to missing values in the data, our final sample is restricted to 1,589 observations.

We assume a flexible relationship between our explanatory variables (age groups

and TTDa
it) and the dependent variable (care costs per 65+ population), as we

allow ageing to have a heterogeneous impact on LTC costs. Endogeneity may be an

issue in this analysis, and the possibilities to adjust for it are limited. While the age

distribution at the beginning of the year is clearly predetermined, it may be correlated

with unobservable characteristics that explain LTC expenditures. The TTD variable

is also problematic in this regard. Hence, we rely on a fixed effects estimator9,

assuming that possible confounders in our baseline specification are constant over

time. The functional relation is

yit = Xβ + µi + νit (2.2)

where β is a vector of length k × 1, and X is an N × K matrix containing a con-

stant, the age variables and other controls depending on the specification. µi is a

municipality-specific error term. In addition to the baseline specification, we provide

estimates with other covariates included to evaluate the robustness of our findings.

We also estimate the impact of age and TTD on LTC costs, allowing for age-specific

8The 65+ population changes its municipality with a probability of around 0.011. This drops
to 0.007 for the 80+ population (2006; Centralbyr̊an (2009)).

9A Hausman test supports the hypothesis that the consistency of a random effects estimator
can be rejected.
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TTD effects. This specification is saturated since, apart from municipality and time

effects, it controls for all possible combinations of our age categories and TTD. Hence,

the functional form of the relationship between independent and dependent variables

is less of an issue. In another specification we calculate age and TTD with respect

to the municipality-specific distribution of sex, as done in earlier studies (e.g., Felder

et al. (2010), Breyer et al. (2015)). Since we observe expenditures at the municipal-

ity rather than individual level, we estimate specifications using the same dependent

variables as before, and ‘interact’ the explanatory variables capturing age and TTD

with indicators for the region-specific distribution of men and women. To allow for a

straightforward interpretation of this specification and avoid assumptions about sex-

specific costs in the control group, we exclude the constant from this specification.

For this reason, coefficients for the share of 65- to 69-year-old males and females

are also provided here. To account for heteroskedasticity, all estimates use weighted

least squares. The weights reflect the inverse relation between the variance of the

outcome variable and the size of the population.

2.5 Findings

2.5.1 Baseline Specification

Table 2.2 shows the results of our fixed effects specifications. The table provides a

comparison between the impact of ageing on total, institutional and domiciliary LTC

expenditures when TTD is omitted and included.

For overall LTC costs, the coefficients for the older age groups are positive and

significant. This suggests that age-related costs are not a major issue in these younger

cohorts.

When TTD is excluded (column 1), the coefficient for 85- to 89-year-old people

indicates that an individual in this age group incurs an increase in total LTC ex-

penditures of SEK 103,000 (e 10,000) per year (in addition to the average for an

individual aged 65 to 69, captured by the constant). In accordance with the red her-

ring hypothesis, the coefficients for the older age groups decrease once the probability

of dying within two years is included in the model.10 However, the effect of including

TTD is modest. Thus, our results support the existence of a red herring, but age

10We also estimate specifications which include both contemporary and next year’s mortality.
Wald tests do not reject the null hypothesis of the equality of both coefficients, suggesting they
control for the same mechanism influencing LTC costs. Therefore, we regard aggregating both
variables as an appropriate way to control for the overall effect – TTD65+.
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itself seems to have a strong impact on LTC expenditures, even after controlling for

mortality.

Table 2.2 Impact of TTD

(1) (2) (3) (4) (5) (6)
Total Total Inst Inst Dom Dom

age7074 -10.61 -13.70 13.83 9.62 -13.53 -12.66
(22.83) (22.43) (26.20) (25.92) (21.59) (21.76)

age7579 -14.22 -20.16 -25.45 -33.53 6.78 8.44
(22.81) (22.62) (31.45) (31.59) (23.88) (24.21)

age8084 27.52 19.26 23.77 12.53 10.41 12.73
(26.69) (27.00) (29.91) (29.83) (21.55) (22.12)

age8589 102.81*** 87.06*** 37.57 16.13 54.20** 58.62**
(29.33) (29.55) (27.18) (28.15) (22.08) (23.21)

age9094 214.69*** 188.17*** 105.37* 69.29 98.68** 106.11**
(40.64) (39.50) (54.30) (55.63) (42.42) (44.54)

age95100 273.74*** 248.44*** 93.33 58.89 187.11* 194.20*
(90.29) (90.19) (125.60) (125.63) (102.70) (104.10)

TTD65 60.63*** 82.50*** -17.00
(19.21) (23.08) (19.12)

Constant 37.78*** 37.73*** 23.86 23.79 9.80 9.82
(13.50) (13.29) (16.52) (16.24) (12.38) (12.37)

Observations 1,589 1,589 1,589 1,589 1,589 1,589
R2 0.557 0.561 0.234 0.244 0.452 0.453

Fixed effects estimates for our three cost categories, including and excluding TTD. Columns
1 and 2 show the coefficients for total LTC costs, 3 and 4 for institutional LTC and 5 and
6 for domiciliary LTC. Year dummies are included, and the regressions are weighted by the
square root of a municipality’s average 65+ population. The unit of observation is a Swedish
municipality for the period 1998-2008. Standard errors are clustered at the municipality level.
* p<0.10, ** p<0.05, *** p<0.01

Separate estimates for institutional and domiciliary LTC costs reveal differing

patterns for most age groups, suggesting ageing is the most relevant predictor for

domiciliary care, whereas TTD is much more relevant for institutional LTC costs.

For institutional care, we also find the effects of ageing are offset by the inclusion

of TTD. The differing signs of the coefficients for TTD might be interpreted as an

indicator of age-related switching behaviour from domiciliary into institutional care.

This finding is in line with Larsson et al. (2008), who argue there is a transition

process from home to institutional LTC at the end of life.

Overall, the estimated morbidity effects in all scenarios but the institutional care

are dwarfed by the increase in expected costs at higher ages. Thus, our conclusion
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here differs from that of Larsson et al. (2008), who find that TTD is much more

important than age in Sweden. However, their study is implemented on the individual

level and does not use monetary equivalents of LTC utilisation.

To check whether our estimates suffer from omitted variable bias, we further

consider a specification that takes into account other variables that might be potential

determinants of LTC expenditures. The sociodemographic variables are the median

income of the 65+ population, population density and the share of females in the 65+

population. To account for potential variation in the supply side of LTC services, we

add the share of private LTC providers. In addition, municipalities’ health and LTC

policy might vary over time and thus not be accurately captured by municipality

fixed effects. We add the local tax rate and the centre-right parties’ share of all

local government seats to account for this. As studies emphasise that changes in

life expectancy are an important determinant of healthcare provision (e.g., Bech

et al. (2011), Breyer et al. (2015)), we add the local life expectancy of 65-year-old

people to our model. We include the lagged mortality rate, which Bech et al. (2011)

find is relevant. Including these variables allows us to check whether the estimated

coefficients are robust or simply reflect a partial correlation with other important

variables.

We find the age coefficients (shown in Table 2.3) are slightly higher than for

our baseline model. The median income of the elderly population, local tax rate

and lagged mortality rate are significantly correlated with LTC expenditures. The

positive correlation with income is remarkable, since equalisation grants from the

national government are provided to compensate for differences in local needs. Thus

the coefficient might still capture an income effect on demand. The tax rate and

lagged mortality rate capture municipality-specific LTC provision. The relevance of

lagged mortality is in line with empirical evidence on the healthcare market (Bech

et al., 2011). Bech et al. (2011) argue that it takes time for shifts in demand for

healthcare services to be incorporated into public funding. Interestingly, increasing

life expectancy did not affect our estimates, once conditioned on TTD. However,

as we are exclusively interested in the effect of ageing on LTC expenditures, the

inclusion of potential confounders can be problematic, because we do not know the

underlying mechanism that relates these variables to LTC provision. Hence, later in

this study we use the estimates of our baseline specification to calculate economic

implications, keeping in mind that these projections are conservative.
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Table 2.3 Robustness estimates

Full sample Full sample Restricted Restricted

Total Total Total Total

age7074 -13.70 -6.39 -3.87 -0.75
(22.43) (21.20) (21.52) (20.19)

age7579 -20.16 -12.13 -13.34 -9.18
(22.62) (23.70) (21.96) (22.93)

age8084 19.26 41.38 27.05 43.65
(27.00) (26.17) (29.56) (28.05)

age8589 87.06*** 120.30*** 84.96*** 118.14***
(29.55) (27.29) (31.15) (28.96)

age9094 188.17*** 216.78*** 185.12*** 213.81***
(39.50) (39.61) (39.22) (40.92)

age95100 248.44*** 320.88*** 243.50*** 310.59***
(90.19) (92.16) (90.84) (89.95)

TTD65 60.63*** 42.35** 49.64** 34.59
(19.21) (21.15) (19.64) (21.69)

medinc65 08 0.23*** 0.23***
(0.07) (0.07)

wom65 -6.81 -0.10
(28.99) (29.15)

density -0.01 -0.01
(0.01) (0.01)

rightwing -0.95 -3.88
(6.59) (6.91)

taxrate 174.49*** 165.02***
(51.48) (52.40)

mrtl1 55.80*** 56.15***
(20.83) (20.88)

lifexp -0.23 -0.20
(0.14) (0.14)

privcare -0.93
(2.65)

Constant 37.73*** -40.27 34.37** -42.60
(13.29) (27.00) (13.53) (26.57)

Observations 1,589 1,589 1,435 1,435
R2 0.561 0.585 0.496 0.524

Fixed effects estimates with total LTC expenditures as the dependent vari-
able. We estimate our baseline specifications with and without other con-
trol variables that might determine LTC expenditures. As we do not have
information on private LTC provision for all our municipalities, we per-
formed the robustness check twice to determine whether excluding obser-
vations with missing values might change our estimates. Year dummies are
included and the regressions are weighted by the square root of each mu-
nicipality’s average 65+ population. The unit of observation is a Swedish
municipality for the period 1998-2008. Standard errors are clustered at the
municipality level. * p<0.10, ** p<0.05, *** p<0.01
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2.5.2 Age-Specific TTD Effects

In addition to the specifications above, we now analyse the red herring hypothesis

in more detail by testing whether TTD impacts LTC expenditures differently for

different age groups. This is the analogue to a fully interacted specification in an

analysis using micro data, i.e., this specification reflects the spirit of a saturated

model, as we allow for all combinations of our age variables and TTD. If TTD effects

vary with age, the age coefficients might falsely pick up TTD-related variations in

LTC costs. We therefore estimate our baseline specification for overall, domiciliary

and institutional costs with age-specific TTD variables, i.e., instead of the single

TTD measure TTD65+, we use group-specific TTDa variables.

The results in Table 2.4 suggest that LTC costs differ both between age groups as

well as between domiciliary and institutional care. Again, compared to our baseline

model, the inclusion of age-specific TTD variables increases the impact of age for

the older age groups. The comparison between domiciliary and institutional care

supports the hypothesis, mentioned in the last section, that the negative coefficient

of TTD for domiciliary LTC is driven by switching between care settings at the end of

life. This substitution between domiciliary and institutional LTC is mainly relevant

for people aged 90 to 94. However, the negative coefficient for domiciliary care is

much higher than the positive corresponding coefficient for institutional LTC, i.e.,

for the oldest individuals, the shift to institutional care yields a decrease in total cost.

When we look at the TTD coefficients in the specification including institutional care,

we find the strong positive effect of our baseline estimate to be mainly driven by the

relatively young, the 70- to 74-year-olds, for whom age is not a relevant determinant

of LTC expenditures. The estimates strongly suggest an age-specific impact of TTD

between institutional and domiciliary LTC expenditures. But once again, the age

coefficients seem to be most relevant for domiciliary care.

In summary, ageing is again the main driving force behind LTC expenditures,

even if we allow for age-specific TTD influences.

2.5.3 Sex-Specific TTD Effects

Although sex is already taken into account via our robustness checks, we also iden-

tify the parameters of interest separately for women and men. Hence, relative to

the estimated specifications above, we further relax the assumption of homogeneous

relationships between our age variables and LTC provision.

We again provide different specifications for our LTC categories. First, we run a
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Table 2.4 Age-specific TTD effect

(1) (2) (3)
Total Inst Dom

age7074 -21.66 6.20 -17.38
(22.59) (26.26) (22.30)

age7579 -21.26 -29.80 2.56
(23.68) (32.01) (24.11)

age8084 18.43 15.44 7.21
(27.99) (30.92) (22.45)

age8589 103.36*** 23.44 64.46***
(31.25) (29.96) (23.72)

age9094 232.77*** 84.17 146.91***
(45.72) (65.93) (50.53)

age95100 334.09*** 84.20 272.96**
(119.98) (165.16) (133.08)

TTD6569 64.54 114.29 -50.62
(68.92) (69.33) (60.61)

TTD7074 210.65*** 179.63*** 29.40
(59.64) (60.08) (51.67)

TTD7579 86.23 55.92 40.48
(52.49) (48.92) (35.89)

TTD8084 88.32** 87.24* 13.86
(39.99) (49.85) (40.38)

TTD8589 -9.15 59.43 -51.64
(42.31) (53.12) (36.10)

TTD9094 -45.28 48.53 -120.58**
(57.09) (64.69) (55.63)

TTD95100 -57.13 47.31 -120.84
(121.94) (133.91) (109.58)

Constant 37.38*** 22.30 11.38
(13.26) (16.19) (12.27)

Observations 1,589 1,589 1,589
R2 0.566 0.246 0.457

Fixed effects estimates for our three cost categories when
age-specific TTD is accounted for. Column 1 shows the
coefficients for total LTC costs, 2 for institutional and 3
for domiciliary LTC. Year dummies are included and the
regressions are weighted by the square root of each munici-
pality’s average 65+ population. The unit of observation is
a Swedish municipality for the period 1998-2008. Standard
errors are clustered at the municipality level. * p<0.10, **
p<0.05, *** p<0.01
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fixed effects regression using only sex-specific age variables11, we then include sex-

specific TTD variables, followed by life expectancy (which was also found to be differ-

ent for women and men in the descriptive statistics). The final regression, shown in

columns 4-5 of Table 2.5, includes TTD variables that allow for heterogeneity in both

sex and age. Unlike the specifications in the sections above, we excluded the con-

stant from these estimates, introducing the share of 65- to 69-year-old men/women

as additional covariates. This is because the dependent variable cannot be defined

separately for men and women. Hence, in order to avoid the same constant for men

and women, we account for age effects of both sexes in these estimates.

For total LTC expenditures we find a strong sex-specific pattern to the age vari-

ables, as seen in Table 2.5. Although age is again positively related to LTC expen-

ditures for all individuals aged 80+, this effect is overall much stronger for women

than for men. The overall TTD effects in our next specification (column 2), again

offsetting the effect of ageing, shows that the average TTD effect is mostly driven

by men. Introducing sex-specific life expectancy (column 3) does not change these

findings much. Looking at joint age- and sex-specific TTD effects, we again find the

highest TTD effects for people aged 70-74. Here offsetting age by including TTD is

found to be of minor relevance.

When focusing on institutional and domiciliary LTC separately (Appendix 2.A4

and 2.A5), we find the TTD effect for individuals aged 70-74 to be driven by insti-

tutional care. Once again, the positive TTD effects are not prevalent when focusing

on domiciliary care; here TTD for women is strongly negatively associated with LTC

expenditures. Both effects seem to offset themselves in the aggregated variable total

LTC. The fact that TTD is only negatively related to domiciliary LTC for older

women is an interesting finding. This indicates that switching behaviour between

domiciliary and institutional care at the end of life mostly relates to women. We sup-

pose that this can be attributed to the relevance of informal care as well. Sex-specific

differences in informal care are discussed by Paraponaris et al. (2012), who find that

being female is a strong determinant of receiving formal care. Our age-specific de-

composition shows that the effect is highest for the 65- to 69-year-old and 85- to

94-year-old women. The same age groups show a positive TTD effect when using

institutional care as the dependent variable. We find this pattern for the age-specific

TTD variable and the 65+ TTD variable. Again, the small change in age effects due

to the inclusion of TTD casts doubt on the relevance of the red herring hypothesis,

i.e., excluding the probability of dying does not change the economic relevance of

11Descriptive statistics are provided in Appendix 2.A3
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Table 2.5 Sex-specific total LTC expenditures

(1) (2) (3) (4) (5)
Total Total Total Total Total

Men Women

age6569m 42.61* 39.94* 42.38* 42.89*
(23.89) (23.90) (24.34) (24.40)

age7074m 35.79 25.67 27.93 12.80
(27.97) (28.38) (28.43) (29.71)

age7579m -3.27 -17.48 -14.30 -25.97
(32.28) (33.75) (33.83) (34.84)

age8084m 44.65 23.11 26.79 29.30
(43.34) (47.14) (46.98) (48.27)

age8589m 87.70* 54.24 59.26 96.49
(52.92) (55.09) (55.28) (62.26)

age9094m 245.58*** 193.70** 199.69** 254.97**
(86.05) (89.14) (89.86) (108.85)

age95100m 121.19 106.19 115.76 144.31
(186.79) (185.84) (188.37) (281.03)

age6569w 27.85 32.10 34.79 33.01
(25.45) (25.67) (26.04) (27.05)

age7074w 22.48 25.38 28.37 21.74
(29.46) (29.84) (30.41) (30.51)

age7579w 45.53* 45.49* 48.92* 49.86*
(24.21) (24.68) (24.92) (25.58)

age8084w 73.56** 74.04** 78.29** 73.02**
(30.09) (31.35) (31.15) (33.85)

age8589w 164.35*** 158.85*** 163.87*** 159.19***
(36.02) (37.61) (37.70) (41.38)

age9094w 249.44*** 233.13*** 238.96*** 270.40***
(50.90) (50.24) (50.86) (61.25)

age95100w 393.19*** 372.40*** 381.66*** 460.86***
(103.93) (108.18) (108.93) (146.18)

TTD65m 79.59** 73.42**
(34.23) (35.86)

TTD65w 45.77 32.01
(31.50) (34.67)

lifexpm -0.03 -0.00
(0.09) (0.10)

lifexpw -0.09 -0.05
(0.10) (0.10)

TTD6569s 45.37 56.58
(90.92) (121.90)

TTD7074s 216.87*** 209.90**
(79.23) (92.21)

TTD7579s 140.42** 27.74
(66.22) (73.38)

TTD8084s 83.30 68.55
(65.17) (59.55)

TTD8589s -41.86 26.22
(66.21) (60.56)

TTD9094s -22.30 -72.66
(118.99) (72.70)

TTD95100s 75.38 -95.09
(271.57) (156.61)

Observations 1,589 1,589 1,589 1,589

Fixed effects estimates for total LTC expenditures when age-specific
control variables are included. We included sex-specific coefficients
for the 65-69 age group as we do not rely on a constant in this spec-
ification. Column 1 accounts for age, column 2 includes TTD and
column 3 uses life expectancy. In columns 4 and 5 (coefficients taken
from a single regression), we allow for age- and sex-specific TTD ef-
fects on total LTC expenditures. Year dummies are included, and
the regressions are weighted by the square root of each municipality’s
average 65+ population. The unit of observation is a Swedish munic-
ipality for the period 1998-2008. Standard errors are clustered at the
municipality level. * p<0.10, ** p<0.05, *** p<0.01
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ageing very much.12

Overall, we find the age coefficients, especially for women, are highly significant

and economically relevant when focusing on total expenditures, whereas some become

statistically insignificant for domiciliary and institutional costs. As we again find a

sex-specific shift between the two types of services, but lack reliable information

about future changes to the distribution of men and women, we do not use these

estimates to project care expenditures in the following section.

2.5.4 Implications

To illustrate how our findings can be used to project costs, we first calculate the

expenditures arising due to a hypothetical increase in the life expectancy of the 65+

population of exactly one year. We show how costs change for different estimated

specifications. Second, we use population projections from the Swedish Statistical

Office for the next 100 years to further project the financial consequences of expected

changes in age distribution on total LTC expenditures, based on our estimates. These

projections are inversely weighted by the total population (and the 15- to 64-year-old

workforce), to reveal the importance of differences in the potential to contribute to

funding LTC services for the elderly.

The following equation shows the implied changes in expenditures driven by in-

creased life expectancy13:

4LTCi =



∞∑
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)
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))
with j = i ,for i=3 (2.3b)

αj=1 ,for i=4 (2.3c)

where we calculate the changes for total, institutional and domiciliary LTC costs

(4LTC) and distinguish between four different scenarios, i, by combining our esti-

mates with the Swedish age structure and age-specific mortality from 2008. Since

this information is provided for every age cohort, the overall cost projection can be

12To evaluate the extent to which the coefficients of sex-specific TTD are reliable and not a result
of colinearity due to including so many TTD variables, we ran single regressions including only a
single TTD variable. One explanation for the problem could be comorbidity of very old people,
which would not allow TTD effects to be identified separately for both sexes. However, these
estimates prove the findings for the entire specification are very similar, both in terms of economic
relevance and statistical significance.

13The formula for cost increase per life year is provided in Appendix A2.6.
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written as the sum of age-specific projections from ages 65 to infinity, but ends at

k=105 in our setup.

We differentiate between a naive demographic extrapolation (i.e., not taking TTD

into account), two scenarios where TTD (overall and age-specific) is accounted for,

and a pure red herring scenario (i.e., all age-related costs are costs of dying). j

indicates which parameter estimates are used for each scenario, i. If j =1, we use

coefficients from a regression where only age is controlled for (odd columns in Ta-

ble 2). If j =2, then TTD65+ is included, whereas j =3 indicates the inclusion of

the seven age-specific TTDa variables into the regression. If j =4, we again use the

parameter estimate of the specification controlling only for age. In this pure red her-

ring scenario, we assume that all relevant costs are captured by a constant, although

we accounted for age in the specification. α represents our estimated constants, β

the age coefficients (and is therefore fixed within five-year intervals). sk2008 are year-

specific survival rates based on Swedish life table estimates, which we use to model a

hypothetical increase in life expectancy of exactly one year. We assume that each in-

dividual is one year ‘younger’ (in terms of mortality) in the counterfactual situation,

i.e., the survival rate of age cohort k in period t equals sk−1 in year t + 1. TTDk
2008

are TTD variables calculated for individual ages k = {65,..,100}.
The TTD variable is only included in the formula for the specification controlling

for age-specific TTD effects, as they only occur once in an individual’s life and are

therefore only influenced by a change in life expectancy if they vary with age. To

quantify the implications of our estimates, we exclusively rely on the size of our

estimated parameters and do not use statistical significance.

Figure 2.1 shows the implied change in lifetime LTC costs (from the current level

of SEK 947,000 in scenario 1 for total costs), and Figure 2.2 shows the corresponding

increase in average costs per person per life year (assuming a stationary population).

Although our results imply lower cost increases for total and institutional LTC costs

once TTD65+ is controlled for (10 and 20 %, respectively), including the TTDa

variables increases the expected costs for all three kinds of services, a result driven

by the relatively high age coefficients for the oldest individuals14.

14The pattern is similar if we use sex-specific estimates (Appendix 2.A7/2.A8).
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Figure 2.1 Total cost increase per capita associated with an increase in
life expectancy of one year (various scenarios)

Figure 2.2 Total cost increase per capita and per life year associated with
an increase in life expectancy of one year (various scenarios)

The projections of total LTC expenditures for the next 100 years are derived using

the coefficients from three estimated specifications, s. The projections are based on

regressions when age is accounted for, when TTD65+ is included and finally when

age-specific TTD is included. Since, from a policy perspective, it is very important

to determine the extent to which such future expenditures will be sustainable, we

calculate the projected total yearly costs in relation to future fiscal potential. In
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doing so, we rescale the projected expenditures for the 65+ population, (N65), with

Np, the number of all inhabitants and the 15- to 65-year-old inhabitants. Formally,

these projections are written as:

P = x
′

tβs ×
N65

Np

. (2.4)

Figure 2.3 and 2.4 show that although the TTD variable is strongly correlated

with LTC expenditures, including this variable into the specification only modestly

affects cost projections. The shape of yearly projected values is very marginally

lower in the projection based on the specification where TTD is included, although

the difference increases to approximately 5 % over time. Including age-specific TTD

effects does not change this pattern. Assuming the validity of the projected age

structure, we find expenditures will increase from SEK 11,000 to SEK 20,000 per

capita over the next 100 years, and from SEK 17,000 to SEK 35,000 if costs are

divided by the potential workforce (15- to 64-year-olds). The shape of the projections

shows that expenditure increases will be highest in the near future (until 2040) and

then increase moderately. This suggests that future budget impacts of ageing can be

expected to be considerable in the short run. However, we must also bear in mind

that projections for more distant points in time are based on higher uncertainty, due

to underlying assumptions about demographic changes in Sweden. As we do not

have information about the degree of this uncertainty, we do not provide confidence

intervals for our estimates.

Figure 2.3 Projected LTC expenditures per capita
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Figure 2.4 Projected LTC expenditures per member of the workforce
(15- to 64-year-olds)

2.6 Conclusion

In this chapter, we analysed the effect of ageing and increases in longevity on LTC

costs in Sweden. Evaluating these relationships is crucial for policy makers as it

allows them to determine future budget expenditures for LTC services.

To increase our knowledge of the ‘red herring’ hypothesis, we used administrative

data on Swedish municipalities, investigating whether TTD is a better predictor of

LTC costs than age by controlling for local mortality. One advantage of our study is

that we use freely available administrative data that covers all Swedish municipalities

that exclusively provide LTC but not healthcare. Compared to other studies using

macro data, Sweden provides an excellent framework for our analysis, because the

financial redistribution between our units of observation renders budget restrictions

for LTC expenditures mostly irrelevant. In addition, we used the panel structure of

our data to control for unobserved heterogeneity. The main innovation of this chapter

is that our measure for TTD allows us to account for individual end-of-life morbidity

effects on the aggregated level more convincingly than existing studies using macro

data, by using a retrospective measure for TTD. Based on our empirical findings,

we calculated the financial consequences of life expectancy increasing by one year for

various scenarios. We also used our estimates to calculate cost projections for the

next 100 years based on recent predictions of the Swedish age structure provided by

official statistics. It transpires that age is the main determinant of LTC expenditures,
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although TTD remains relevant when projecting expenditures.

In addition to our baseline model, we considered several other specifications:

Separate estimates for institutional and domiciliary LTC costs revealed a morbidity-

related substitution into institutional care in line with evidence based on micro-level

analysis. However, another sex-specific specification revealed that the high negative

correlation between TTD and domiciliary care is driven mainly by women. This

might suggest that, on average, older men do not ‘need’ to switch to institutional care

like women do, because they may still have complementary informal care available

to them at the end of their lives courtesy of their spouses. This is a fruitful topic for

future research.

Age-specific TTD effects revealed the costs of end-of-life morbidity itself to be

strongly related to actual age at death. This issue is usually not accounted for in the

literature. Our study found the impact of TTD on LTC costs is mainly driven by a

relatively young cohort, the 70- to 74-year-olds. When accounting for heterogeneity

in sex as well, this phenomenon is more important for men than women. For men,

the effect of TTD lasts even longer: from age 70 to age 79. Whether this finding is

a matter of rationing or less demanding care services remains an open question. It

would be helpful to assess whether this pattern can be found at the individual level

as well.

Our findings show that considerable upward budget shifts due to LTC spending

driven by future demographic changes can be expected. Although LTC expenditures

for the older population can be explained to a certain extent by TTD (captured

by the probability of dying within two years), Sweden’s age structure remains more

important when focusing on overall LTC. Most importantly, the share of the oldest

individuals remains an important determinant of total LTC expenditures. The major

significance of ageing is also supported by our cost projections.

However, our study has also some limitations. We are not able to solve the poten-

tial endogeneity problem that arises if LTC provision itself influences TTD. However,

since – in contrast to healthcare – LTC services mainly emphasise the treatment of

chronic illnesses (Norton, 2000), this problem should be of minor relevance in our

context. Another possible issue is that we only use data on municipalities that are

exclusively responsible for providing LTC expenditures. Although a comparison of

observable characteristics suggests our observations are very similar to the situation

for the rest of the population, we cannot rule out different outcomes when healthcare

is provided at the municipality level. In addition, the time dimension of our data

means the population changed to a certain extent, with some individuals leaving the
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sample and others entering. This could be a problem if these individuals benefit

differently from medical innovations (if not captured by life expectancy, which we

account for in our analysis). However, this problem might be more relevant when

focusing on curative health care rather than LTC provision. Finally, as we do not

include the information in our analysis, our results do not allow any inferences about

a LTC receiver’s quality of life. However, they highlight that keeping high quality

LTC services available will require new ways to use resources efficiently.
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Appendix Chapter 2

2.A1 Comparison between municipalities providing and not providing
healthcare in 2008

Healthcare=0 Healthcare=1
Variable Mean Time var. Mean Time var.

Total 57.4004 4.5212 57.3170 4.5738
Inst 37.5317 3.9136 35.8417 3.8765
Dom 17.5361 3.7201 18.8287 3.7382
age6569 0.2667 0.0133 0.2622 0.0148
age7074 0.2356 0.0108 0.2311 0.0109
age7579 0.2099 0.0131 0.2085 0.0136
age8084 0.1581 0.0096 0.1605 0.0091
age8589 0.0894 0.0073 0.0932 0.006
age9094 0.0331 0.0041 0.0362 0.0038
age95100 0.0072 0.0016 0.0084 0.0018
mrt 0.0517 0.0047 0.0512 0.0046
mrtL1 0.0536 0.0049 0.0531 0.0048
TTD65 0.1025 0.0066 0.1016 0.0067
TTD6569 0.0076 0.0015 0.0072 0.0015
TTD7074 0.0112 0.0021 0.0105 0.0021
TTD7579 0.0175 0.0033 0.0164 0.003
TTD8084 0.0238 0.003 0.0232 0.003
TTD8589 0.0235 0.0028 0.0239 0.0027
TTD9094 0.0141 0.0023 0.0149 0.0022
TTD95100 0.0045 0.0012 0.0053 0.0014
medin 08 156.5511 10.63 150.368 11.1718
privcare 0.0612 0.0477 0.0412 0.0476
wom65 0.5575 0.0063 0.5518 0.006
density 157.7674 17.0796 92.0616 6.6494
rightwing 0.3369 0.0233 0.3538 0.0222
taxrate 0.2138 0.003 0.2122 0.0045
mrtl1 0.0519 0.0047 0.0516 0.0046
lifexp 18.4242 0.8155 18.7221 0.7898

N 1,589 1,419

Mean comparison of municipalities by healthcare provision. Healthcare=0 rep-
resents the sample used in our analysis, whereas Healthcare=1 represents ex-
cluded observations. Time var. represents standard deviation within time to
show that changes over time are similar for both groups.
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2.A2 Variable definitions

Variable Description

Total total LTC costs per 65+ inhabitant in 1,000 SEK
Inst institutional LTC costs per 65+ inhabitant in 1,000 SEK
Dom domiciliary LTC costs per 65+ inhabitant in 1,000 SEK
age6569 proportion of the 65+ population aged 65-69
age7074 proportion of the 65+ population aged 70-74
age7579 proportion of the 65+ population aged 75-79
age8084 proportion of the 65+ population aged 80-84
age8589 proportion of the 65+ population aged 85-89
age9094 proportion of the 65+ population aged 90-94
age95100 proportion of the 65+ population aged 95 to 100+
mrt mortality rate among the 65+ population
mrtL1 Next year’s mortality rate among the 65+ population
TTD65+ two-year mortality rate for the 65+ population
TTD6569 two-year mortality rate for the population aged 65-69
TTD7074 two-year mortality rate for the population aged 70-74
TTD7579 two-year mortality rate for the population aged 75-79
TTD8084 two-year mortality rate for the population aged 80-84
TTD8589 two-year mortality rate for the population aged 85-89
TTD9094 two-year mortality rate for the population aged 90-94
TTD95100+ two-year mortality rate for the population 95 to 100+
medinc65 08 median income of 65+ population
privcare share of people using private LTC services
wom65 share of women (65+)
density population density
rightwing share of seats occupied by right-wing parties
taxrate local tax rate
mrtl1 last period’s mortality rate among the 65+ population
lifexp life expectancy for members of the population aged 65
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2.A3 Sex-specific summary statistics

Variable Mean Std. Dev. Min. Max.
age6569m 0.131 0.02 0.089 0.236
age7074m 0.111 0.01 0.081 0.144
age7579m 0.093 0.009 0.066 0.125
age8084m 0.064 0.009 0.024 0.099
age8589m 0.032 0.006 0.008 0.053
age9094m 0.01 0.003 0.003 0.022
age95100m 0.002 0.001 0 0.008
lifexpm 16.838 1.321 13.189 22.454
TTD65m 0.048 0.007 0.028 0.073
TTD6569m 0.005 0.002 0 0.016
TTD7074m 0.007 0.002 0 0.017
TTD7579m 0.01 0.003 0.003 0.023
TTD8084m 0.012 0.003 0.003 0.025
TTD8589m 0.01 0.003 0.001 0.021
TTD9094m 0.005 0.002 0 0.014
TTD95100m 0.001 0.001 0 0.005
age6569w 0.136 0.016 0.097 0.221
age7074w 0.125 0.01 0.093 0.153
age7579w 0.117 0.012 0.071 0.165
age8084w 0.094 0.012 0.043 0.138
age8589w 0.058 0.01 0.029 0.09
age9094w 0.023 0.005 0.007 0.042
age95100w 0.006 0.002 0 0.014
lifexpw 19.994 1.229 14.057 25.222
TTD65w 0.052 0.007 0.031 0.076
TTD6569w 0.003 0.001 0 0.007
TTD7074w 0.004 0.001 0 0.011
TTD7579w 0.008 0.002 0.001 0.017
TTD8084w 0.012 0.003 0.003 0.023
TTD8589w 0.014 0.003 0.004 0.029
TTD9094w 0.009 0.002 0.002 0.018
TTD95100w 0.003 0.001 0 0.01

Summary statistics for the explanatory variables used for
sex-specific estimates. w(omen) and m(en) indicate which
sex each variable corresponds to.
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2.A4 Sex-specific institutional LTC expenditures

(1) (2) (3) (4) (5)
Inst Inst Inst Inst Inst

Men Women

age6569m -6.34 -6.38 -4.74 -4.89
(30.09) (29.69) (30.11) (29.67)

age7074m 7.52 1.40 3.13 -8.24
(35.06) (35.90) (36.03) (36.35)

age7579m -28.81 -37.39 -34.99 -43.89
(41.94) (41.36) (41.99) (43.94)

age8084m -5.81 -17.32 -14.19 -18.01
(49.19) (51.01) (51.26) (53.71)

age8589m -15.75 -34.60 -30.26 7.44
(70.40) (75.07) (75.05) (80.50)

age9094m 90.98 58.29 63.65 150.57
(110.29) (116.90) (116.56) (143.91)

age95100m -120.94 -96.52 -87.78 -150.26
(227.01) (218.12) (220.83) (358.92)

age6569w 53.12 53.60* 55.27* 50.88
(32.67) (32.07) (32.31) (32.33)

age7074w 53.46 51.89 53.62 49.76
(33.04) (33.00) (32.86) (33.80)

age7579w 11.60 2.63 4.52 14.71
(32.46) (32.84) (32.90) (34.11)

age8084w 75.96* 65.33 67.76* 74.20*
(39.92) (40.82) (40.86) (43.86)

age8589w 93.57** 70.73* 73.28* 60.14
(38.58) (39.76) (39.67) (42.22)

age9094w 131.46* 88.42 90.96 77.41
(75.65) (78.43) (78.01) (87.08)

age95100w 215.05 153.87 158.04 200.92
(153.52) (156.87) (157.61) (203.97)

TTD65m 65.46* 58.14
(38.14) (41.59)

TTD65w 109.98*** 103.99***
(34.67) (37.43)

lifexpm -0.04 -0.02
(0.12) (0.12)

lifexpw -0.04 -0.03
(0.10) (0.10)

TTD6569s 67.01 214.90*
(92.84) (127.68)

TTD7074s 148.50* 247.47**
(84.30) (100.15)

TTD7579s 102.49 1.78
(74.34) (75.00)

TTD8084s 88.86 56.68
(77.74) (71.85)

TTD8589s -52.75 141.72**
(79.28) (69.47)

TTD9094s -112.95 120.44
(122.73) (85.61)

TTD95100s 207.60 1.45
(321.43) (178.44)

Observations 1,589 1,589 1,589 1,589

Fixed effects estimates for institutional LTC expenditures
when age-specific control variables are included. We in-
cluded sex-specific coefficients for the 65-69 age group as
we do not rely on a constant in this specification. Column
1 accounts for age, column 2 includes TTD and column 3
uses life expectancy. In columns 4 and 5 (coefficients taken
from a single regression), we allow for age- and sex-specific
TTD effects on institutional LTC expenditures. Year dum-
mies are included and the regressions are weighted by the
square root of each municipality’s average 65+ population.
The unit of observation is a Swedish municipality for the
period 1998-2008. Standard errors are clustered at the mu-
nicipality level. * p<0.10, ** p<0.05, *** p<0.01
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2.A5 Sex-specific domiciliary LTC expenditures

(1) (2) (3) (4) (5)
Dom Dom Dom Dom Dom

Men Women

age6569m 33.24 30.50 31.06 30.91
(23.33) (23.43) (23.77) (23.52)

age7074m 24.22 19.63 20.06 16.17
(27.69) (27.55) (27.56) (28.18)

age7579m 18.66 12.20 12.82 10.73
(30.00) (30.25) (31.07) (32.53)

age8084m 75.85* 64.60 65.17 71.23
(39.90) (41.88) (42.73) (43.28)

age8589m 103.42* 86.87 87.62 87.00
(55.06) (60.83) (60.29) (64.36)

age9094m 152.84 130.56 131.38 125.74
(93.44) (97.12) (97.09) (121.78)

age95100m 325.83* 286.53 287.77 408.56
(175.56) (176.17) (177.09) (272.44)

age6569w -15.37 -11.42 -10.74 -7.44
(22.54) (22.05) (22.03) (22.76)

age7074w -19.76 -15.22 -14.42 -17.11
(27.25) (27.30) (27.02) (26.97)

age7579w 18.41 27.08 28.04 17.30
(26.75) (27.64) (27.61) (27.61)

age8084w -14.83 -4.02 -2.87 -17.15
(31.71) (32.64) (33.05) (35.03)

age8589w 49.84 66.27* 67.76* 73.10*
(33.01) (35.42) (35.61) (37.52)

age9094w 104.96* 129.74** 131.65** 183.78***
(58.75) (61.77) (61.46) (66.52)

age95100w 146.10 183.81 186.78 233.29
(114.14) (117.52) (118.41) (154.54)

TTD65m 19.35 19.24
(30.20) (33.30)

TTD65w -59.04** -63.55*
(28.50) (32.73)

lifexpm -0.00 0.02
(0.09) (0.09)

lifexpw -0.03 -0.01
(0.08) (0.08)

TTD6569s 1.91 -178.11*
(90.29) (106.98)

TTD7074s 78.05 -40.94
(69.33) (83.05)

TTD7579s 33.85 52.07
(56.42) (58.54)

TTD8084s 6.56 30.42
(60.78) (62.61)

TTD8589s 19.68 -96.55*
(63.75) (50.42)

TTD9094s 46.69 -208.08***
(94.60) (75.19)

TTD95100s -158.21 -98.52
(254.08) (137.84)

Observations 1,589 1,589 1,589 1,589

Fixed effects estimates for domiciliary LTC expenditures
when age-specific control variables are included. We in-
cluded sex-specific coefficients for the 65-69 age group as
we do not rely on a constant in this specification. Column
1 accounts for age, column 2 includes TTD and column 3
uses life expectancy. In columns 4 and 5 (coefficients taken
from a single regression), we allow for age- and sex-specific
TTD effects on domiciliary LTC expenditures. Year dum-
mies are included and the regressions are weighted by the
square root of each municipality’s average 65+ population.
The unit of observation is a Swedish municipality for the
period 1998-2008. Standard errors are clustered at the mu-
nicipality level. * p<0.10, ** p<0.05, *** p<0.01
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2.A6: Changes in cost increase per 65+ life year
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2.A7 Total cost increase per capita associated with an increase in life
expectancy of one year (various scenarios based on sex-specific
estimates)



2.A8 Total cost increase per capita and per life year associated with an
increase in life expectancy of one year (various scenarios based on
sex-specific estimates)
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Chapter 3

The Ability to Memorise and

Participation in the English Bowel

Cancer Screening Programme

3.1 Introduction

Classical economic theory suggests that a rational individual will maximise their ex-

pected utility and base their decisions on the expected outcomes in different scenarios.

In a situation governed by standard economic assumptions, where an individual is

fully informed and can use this information in a decision making process without

further restrictions, such an analysis is perfectly reasonable. However, individu-

als often face restrictions in the transmission of information when making decisions

(Kahneman, 2003). These restrictions may induce additional costs or prevent an

individual from making proper decisions if pertinent information cannot be fully

used. One example of such a constraint is cognitive ability, which may be a strong

barrier to making economic or health related decisions. This is especially relevant

for the elderly, as cognitive decline has been identified as part of the human life

cycle (Salthouse, 2009), potentially distorting corresponding health decisions in the

elderly.

Many European countries have begun to involve patients in the medical decision

making process by implementing preventive cancer screening programmes – mostly

focused on breast cancer – which may help contain costs and reduce healthcare ex-

penditures (Maciosek et al., 2006) in times of substantial fiscal burden. The UK

programme for breast cancer screening is very successful and has been thoroughly

evaluated (e.g. Marmot et al., 2013). However, there is little evidence about partic-
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ipation in the bowel cancer screening programme launched 2006 in England. The

gerontological literature suggests that a decline in cognitive abilities is a general phe-

nomenon throughout the life cycle, especially in the elderly population (Salthouse,

2009). As the target population of the bowel cancer programme is individuals aged

60+, we investigate whether memorisation ability is a determinant of an individual’s

bowel cancer screening decision. The main contribution of this chapter is our as-

sessment of the link between memorisation ability and bowel cancer screening from

a causal perspective by mitigating common identification problems such as reverse

causality and omitted variable bias. We use longitudinal data from the ELSA project,

a national representative survey from England, which has the advantage that we can

use objective information about cognitive skills based on respondents’ performance

on specific tasks. We use individual changes in the ability to memorise informa-

tion over time as our treatment to estimate the impact of declining memory on the

likelihood of participating in a public bowel cancer screening programme. Our iden-

tification strategy is based on covariate adjustment by applying linear probability

models, propensity score matching and a double robust estimator. We find that a

decline in memorisation ability is negatively related to an individual’s participation

in bowel cancer screening.

The chapter is structured as follows: The next section provides a litera-

ture overview that discusses existing evidence from an economic and psychologi-

cal/medical perspective. We then provide an overview of the NHS bowel cancer

programme, followed by a description of our identification strategy and the data.

After presenting descriptive statistics and our empirical findings, we discuss our re-

sults, followed by a conclusion that emphasises policy implications and potential

future research.

3.2 Literature

The economics literature is home to a huge debate about factors that explain so-called

‘healthy behaviours’. Cutler and Glaeser (2005) highlight the huge uncertainty sur-

rounding possible mechanisms, as both levels and differences in health behaviours

such as smoking or preventive activity are not very strongly correlated. There is some

economic evidence for cognition and health behaviour which emphasises the impor-

tance of education and complex health decisions due to quicker adoption of new

technologies (Glied and Lleras-Muney, 2008) or higher intellectual curiosity (Cutler

and Lleras-Muney, 2010). However, despite a consensus about the empirical asso-
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ciation between education and health, the causal pathways are difficult to discern,

due to the problem of reverse causality. Many empirical studies focus on the impact

of schooling on health outcomes (Eide and Showalter, 2011) and many distinguish

between direct and indirect effects of education. Lange (2011), for example, analyses

the role of information in the impact of education on breast cancer screening using

data from the US. Mocan and Altindag (2014) also use US data to identify the role

of education in health production. However, as the empirical evidence from these

studies is inconclusive, it is natural to directly assess the impact of cognitive abilities

on health behaviours such as preventive healthcare activities.

Although there is evidence for the direct association between cognitive abilities

and health outcomes later in life (Kaestner, 2009), economic literature on the rela-

tionship between cognitive abilities and preventive medical activities remains scarce.

Avitabile et al. (2011) assess the extent to which education and cognitive abilities

such as cognitive fluency and numeracy complement or supplement health promo-

tion programmes in European countries.Wübker (2012, 2014) uses verbal fluency as a

proxy for cognition and analyses its impact on mammography take-up across Europe.

Wübker (2012) also uses the ability to memorise (among other variables) as a driver

of an individual’s decision to participate in mammography screening. Here, memory

is not found to be relevant across the estimated specifications. This is surprising,

because the psychological literature emphasises the potential role of memorisation

on medical decision making, as discussed in the following.

The role of cognitive abilities in health behaviours is discussed in more depth in

the psychological and epidemiological literature. One major branch of this literature

emphasises medication adherence. Hayes et al. (2009) find that people with a rel-

atively high cognitive function take their medication more regularly than a control

group. The authors use both a very general measure for cognition and a measure for

the ability to memorise. Insel et al. (2013) emphasise the role of working memory and

executive function to evaluate whether anchoring strategies can improve medication

adherence in the elderly. The results of their study are not yet available.

A relatively large research area in the psychological literature focuses on the im-

portance of health literacy, which also involves cognitive processing. A recent review

by Oldach and Katz (2014) reveals mixed results in the association between health

literacy and cancer screening participation. Recent medical evidence on colorectal

cancer screening in England (Kobayashi et al., 2014) suggests that health literacy

may be a driver of cancer screening participation in the elderly. One drawback of

this study is that the findings merely represent statistical associations, since their
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analysis does not use other important factors such as measures for cognitive abili-

ties. Recent evidence suggests that the ability to memorise is an important driver

of health literacy itself (Wilson et al., 2010), potentially explaining why some older

people participated in the NHS bowel cancer programme while others did not.

The lack of evidence for the relationship between memorisation ability and cancer

screening is evident in England, where the bowel cancer programme targets people

aged between 60 and 70 years (currently until age 75). It is well established that

memorisation ability declines with age, and can even accelerate in old age (Salthouse,

2009), potentially becoming an obstacle to medical decision making. Most existing

studies merely reflect descriptive patterns rather than causal relationships, since it is

not possible for researchers to randomly assign cognitive ability to participants of a

study. We contribute to the literature by applying covariate adjustment methods to

reveal a potential causal relationship between an individual’s memorisation ability

and their participation in the English colorectal cancer screening programme.

3.3 The English Bowel Cancer Programme and

Memorisation Ability

There are two steps to the screening process. First, an invitation letter is sent to

eligible candidates, men and women aged 60 to 70. It contains information about the

benefits of screening. A week later, respondents are sent a cancer screening kit, which

instructs them to collect samples and return them for laboratory testing1. There are

several reasons why cognitive distortions may affect participation in screening. First,

the costs and benefits outlined on the information leaflet must be understood and

memorised to proceed to the second step. If a respondent does not fully remember

the contents of the information leaflet, they are less likely to participate in the actual

screening. Second, a decline in cognition can make participating in cancer screening

more costly, as decisions cannot be implemented as efficiently as before, e.g., more

time and effort is required to carry out everyday decisions.

1Further details on the programme procedures can be found at:
http://www.cancerscreening.nhs.uk/bowel/index.html
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3.4 Analysis

3.4.1 Empirical Approach

We use the (negative) change in someone’s ability to memorise between two waves

as our treatment because we assume that an analysis based on levels is more likely

to be confounded by other factors (cf. Frey, 1990). More specifically, we choose the

difference T = Mit−1−Mit as our treatment, where t is a survey wave indicator and

M represents an individual’s level of memory. A similar strategy is used by Decker

and Schmitz (2015), who analyse the impact of an individual health shock on risk

preferences. We assume that, given characteristics X, a decline in memorisation

ability, T , is exogenous in the short run of the potential outcomes Y1 and Y0, which

represent participation in the bowel cancer programme when being ‘treated’ and ‘not

treated’, respectively. More formally, we assume Y1, Y0 ⊥ T |X. Although we use the

panel structure of our data to model the causal relationship between our variables

using data from several waves, our estimates rely solely on cross-sectional variation.

More detailed information about the estimated specifications can be found in the

next section.

We begin by assessing the impact of a change in memorisation ability on future

screening participation by applying a linear probability model (LPM). We provide

both a bivariate regression and a specification where other variables (from the previ-

ous period) such as lagged health information and sociodemographic characteristics

are included into the regression model, mainly to increase the precision of our esti-

mates but also to control for potential confounders. One important missing factor

may be unobserved preferences that determine an individual’s decisions, leading to

changes in both memorisation ability and screening behaviour. To mitigate the

potential problem that such preferences (if not already captured by the observable

health information) are correlated with both changes in cognition and an individual’s

decision to participate in cancer screening, we control for further observable char-

acteristics which we interpret as indicators of ‘healthy behaviour’, social activities

and other characteristics.2 The corresponding estimates are based on the following

equation:

yi = β0 + β1Ti +X
′
β + εi (3.1)

Second, we apply propensity score matching by explicitly modelling the treatment

2A more detailed discussion of the variables used is provided below.
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‘decline in memorisation ability’ and then calculating the treatment effect using an

individual’s probability of ‘being treated’. To model the treatment decision, we

estimate a logit model where 1(T > 0) (i.e., a variable that takes a value of 1 if there

is a measurable decline and zero otherwise) serves as our dependent variable.

The matching estimator has the advantage that it reduces the potential problem

of insufficient common support while introducing relatively few parametric assump-

tions (Lechner, 2009).

Third, we apply a double robust estimator (Robins et al., 1995), a weighted re-

gression approach that allows us to deconfound both the outcome and treatment

equations and provides unbiased estimates even if one of both equations is wrongly

specified. Following Morgan and Todd (2008), we assign a weight of 1 to all treated

observations and a weight of p̂i
1−p̂i to the control units to estimate the average treat-

ment effect on the treated (ATT). The estimated probabilities, p̂i, are used to turn

the control group into a sample that is representative of the treatment group.

3.4.2 Data and Specification

To capture the impact of a decline in memorisation ability on participation in colorec-

tal cancer screening in England, we use information from the 3rd, 4th, 5th and 6th

wave of the ELSA English household survey, which were conducted between 2006 and

2013. There is a gap of around two years between the interview dates. We restrict

the analysis to individuals who participated in all four ELSA waves. This data source

strongly complements our research question, as it is representative for the population

aged 50+ and contains important health-related information. One main variable of

interest captures a change in memorisation ability. ELSA respondents participated

in several tests to measure their performance in different areas of cognitive ability.

Several ELSA waves contained tests on memorising information. We aggregate infor-

mation from three tasks to derive a summary measure of respondents’ memorisation

ability. The first two tasks measure respondents’ ability to memorise a list of 10

words (directly for the first task, and after some delay for the second). The third

task measures respondents’ ability to memorise the components of the current date.

The aggregated variable used in our analysis varies between 0 and 24 points. Other

research has shown that aggregated variables representing cognitive abilities derived

from ELSA can be used very effectively in longitudinal comparisons (Steel et al.,

2004). When applying the LPM, we chose the decline in cognitive abilities between

waves three and four for our treatment variable. We chose this timeframe because

our outcome variable is only observable after this point. To create the propensity
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scores used in our matching approach and the double robust estimator, we use this

difference to create a dummy representing the binary treatment, as discussed in the

previous section.

Our dependent variable captures the decision to use a bowel screening kit. This

variable is available in and derived from ELSA waves 5 and 6. During these two

waves, individuals were asked whether they had participated in the cancer screening

programme and how recently they last participated. As we want to correctly model

the decision making process over time with our empirical specification (to rule out

reverse causality), we assigned the fourth wave as the point when our artificial treat-

ment occurs. Our dependent variable has a value of 1 if the respondent participated

in screening after the wave 4 interview and 0 otherwise3. To ensure a clean control

group, we exclude all individuals who participated in bowel cancer screening before

the interview date during wave 4. This information is retrospectively provided from

wave 5 onwards. The sample is restricted to people aged 60 to 67, because we know

this group is eligible for screening and was invited via information leaflets. As we

evaluate the probability of screening within a time range of 4 years after the year of

treatment, this age range guarantees that all individuals in our sample were actually

invited for screening during the 4 years after treatment. Hence, we rule out the

possibility that our results are affected by heterogeneity (in information) due to the

fact that older individuals were no longer invited for screening.

We include control variables in our empirical specifications to account for po-

tential confounders which may be associated with both a decline in memorisation

ability and participation in cancer screening. The time-variant control variables are

taken from wave 3 to prevent them being affected by our treatment variable, which

would bias our estimate. Figure 3.1 shows the timeframe we use for our identification

strategy.

time
wave 3 wave 4 wave 5 wave 6

X T Y

Figure 3.1 Definition of outcome, treatment and control variables within
the chosen timeframe

Table 3.1 shows all the variables used in our analysis. The most important control

3Due to a substantial number of missing values for colorectal cancer screening in wave 5, we are
unfortunately unable to distinguish between short- and long-term effects
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variables represent an individual’s health status, captured by self-assessed health

(where 1 indicates bad/very bad health and 4 very good health), six disease-specific

illness categories and problems with everyday activities. Of the six illness variables,

the most important is ‘ill5’, which captures mental disorders such as dementia or

Alzheimer’s. In addition, ex ante differences in activities of daily living (ADL) are of

special interest to our analysis, as the programme targets older people and problems

with ADL usually increase with age (Gremeaux et al., 2012).

Table 3.1 Descriptive statistics

Variables Total mean Min Max Mean (T=1) Mean (T=0)

screening 0.814 0 1 0.795 0.829
memory decl 0.137 -14 11 2.863 -2.032
memory 15.411 4 24 16.755 14.342
educ low 0.190 0 1 0.175 0.202
educ mid 0.584 0 1 0.586 0.582
educ high 0.226 0 1 0.240 0.216
wealth 382.012 -42.051 20818.01 345.154 411.337
adl 0.190 0 1 0.188 0.192
health 1 0.052 0 1 0.049 0.054
health 2 0.207 0 1 0.198 0.215
health 3 0.461 0 1 0.470 0.454
health 4 0.280 0 1 0.283 0.278
ill1 0.506 0 1 0.494 0.517
ill2 0.166 0 1 0.163 0.169
ill3 0.396 0 1 0.400 0.393
ill4 0.072 0 1 0.069 0.075
ill5 0.159 0 1 0.157 0.160
ill6 0.130 0 1 0.136 0.126
female 0.547 0 1 0.525 0.565
age 63.118 60 67 63.247 63.016
black 0.015 0 1 0.017 0.013
couple 0.789 0 1 0.792 0.786
smoker 0.143 0 1 0.147 0.139
smoke past 0.481 0 1 0.501 0.466
organisation 0.465 0 1 0.475 0.457
phys act2 0.166 0 1 0.152 0.177
phys act3 0.559 0 1 0.584 0.538
phys act4 0.254 0 1 0.242 0.263
life exp 49.256 0 100 49.208 49.295

N 1564 693 871

Our analysis also uses participants’ self-assessed probability of living to 85 to

capture heterogeneity not already captured by the other controls for health. This
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variable may also capture some heterogeneous preferences for health consumption

in the spirit of Fang et al. (2007). Another control variable is the baseline ability

to memorise, because any change in cognitive abilities may also depend on initial

levels. Inclination towards healthy behaviour and social activities are captured by

an individual’s smoking status, smoking history and whether the individual is active

in more than one organisation. In addition, we allow for differences in physical

activity levels. Other common sociodemographic characteristics such as sex, age,

education and household wealth are also accounted for.

Comparing the last two columns in Table 3.1 (representing our binary treatment)

show that most variables are very similar across the treatment and control group.

The share of women is slightly lower in the treatment than in the control group (53

compared to 57 %). The share of former smokers is also higher in the treatment

than in the control group. Substantial differences were found in baseline ability to

memorise, where the treatment group was able to answer an average of around two

additional questions correctly compared to the control group. Average (financial)

wealth was lower in the treatment group than the control group. There was also

some heterogeneity in physical activity levels between both groups.

3.4.3 Findings

The results in Table 3.2 show the estimates for the LPM. We see that a reduction in

memorisation ability is a negative predictor of future screening participation (Column

1). Reducing the test score by one point (over time) decreases participation by around

1 %. This finding is strongly statistically significant. If other covariates are included,

the effect is slightly higher (Column 2). The signs of most covariates are in line with

our expectations, although not all are significant. Being female, lagged memorisation

ability, wealth, general health status, being in a relationship and being a member

of organisations are all positively associated with screening behaviour. The dummy

for high education has a negative point estimate, which may initially seem odd, but

both its economic and statistical relevance are very low. Smoking behaviour, also

an indicator of unobserved preferences for healthy living, is negatively related to

screening participation. As expected, level of physical activity correlates positively

with bowel cancer screening.

We now use our matching estimates4 to evaluate our artificial binary treatment.

The main difference from the regression-based approach – which assumed all poten-

4We use the statistics package psmatch2 (Leuven and Sianesi, 2014).
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Table 3.2 Impact of a cognitive decline on screening (OLS)

Specification 1 Specification 2
Variables Coef. t-stat Coef. t-stat

memory decl -0.009*** (-2.82) -0.012*** (-3.41)
memory 0.007* (1.82)
educ mid 0.021 (0.78)
educ high -0.019 (-0.56)
wealth 0.0000272** (2.29)
adl 0.037 (1.28)
health 2 0.181*** (3.18)
health 3 0.181*** (3.17)
health 4 0.155** (2.57)
ill1 -0.033* (-1.72)
ill2 -0.010 (-0.35)
ill3 -0.010 (-0.49)
ill4 -0.069* (-1.84)
ill5 0.013 (0.46)
ill6 0.012 (0.42)
female 0.051** (2.50)
black 0.000 (0.00)
couple 0.053** (2.01)
smoke -0.157*** (-4.43)
smoke past -0.006 (-0.31)
phys act2 0.214** (2.47)
phys act3 0.213** (2.50)
phys act4 0.227*** (2.61)
organisation 0.058*** (2.84)
life exp 0.000 (0.41)
cons 0.815*** (79.60) 0.273** (2.34)

N 1564 1564
adj.R2 0.01 0.07

Notes: Age fixed effects included in specification 2. Standard errors
are clustered at the household level. t-statistics (in parentheses) *
p<0.10, ** p<0.05, *** p<0.01.
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tial confounders in the outcome equation were considered – is the need to include

all potential confounders related to the ‘treatment assignment’. For the matching

algorithm, we employ radius matching with a calliper of 0.01 and excluded 14 ob-

servations from the matching procedure due to insufficient overlap at the right hand

tail of the distributions of the propensity scores between the treatment and control

group. Applying the PS-matching estimator again shows a strong negative impact

of reduced memorisation ability on screening participation (Treatment effect: -0.052;

t-stat: -2.04). In a logit regression, where all variables are considered to estimate the

propensity score5, wealth and being female are negatively associated with a decline

in cognitive abilities, whereas smoking has a positive impact. We also find a positive

impact of lagged memory as expected, since very high values before our treatment

year will have a tendency to swing back towards the population mean (Yudkin and

Stratton, 1996). In addition, conditioning on the ‘lagged treatment’ captures baseline

differences in memorisation ability between the treatment and control group.

In applying the double robust estimator, a weighted regression which combines

the covariate adjustment strategies from pure linear regression and propensity score

matching, we follow Crump et al. (2009) and drop observations from our analysis

that have estimated propensity scores < 0.1 or > 0.9, to compensate for insufficient

overlap. These estimates also suggest a causal effect between decline in memorisa-

tion ability and future screening (Treatment effect: -0.045; t-stat: -2.03). Although

slightly smaller than the estimate from propensity score matching, we conclude from

this result that the estimated effect is robust to misspecification, assuming that one

model is correctly specified.

To shed some light on how reduced memorisation ability can affect screening par-

ticipation, we further utilise the fact that our measure for memorisation is based on

different tasks respondents had to perform during the interview. Hence, we sepa-

rately estimate the impact of decreased performance in each of these tasks on future

bowel cancer participation.

The resulting estimates, provided in Table 3.3, show the ability to memorise

with some delay is particularly important in the context of the decision to undergo

colorectal cancer screening, while the ability to remember components of the date is

the least important. This suggests that the main trigger is the capacity to memorise

and numerical skills, which are another important dimension of cognitive ability, are

less important. We are not able to assess this issue in more detail, as the information

on numeracy was not provided in the ELSE waves we are interested in.

5See Appendix 3.A1.
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Table 3.3 Treatment heterogeneity

Treatment Coef z-stat N

decline total -0.045 (-2.03) 1466
decline date -0.038 (-1.08) 1032
decline words -0.019 (-0.83) 1489
decline delay -0.042 (-1.96) 1498

Notes: Outcomes for the double robust estima-
tor. Observations with propensity scores below
0.1 and above 0.9 are excluded. The resulting co-
efficients show the treatment effects when using
a decline in different aspects of memorisation as
the treatment. Standard errors are clustered at
the household level. All control variables are ac-
counted for in underlying estimates.

Although our findings are closely related to the literature on medication adher-

ence, the relationship between an individual’s memory and the ability to use medi-

cation on a regular basis is quite different from participation in a cancer screening

programme. Whereas in the former case the decision about willingness to take a spe-

cific drug is already made, memory may have an additional impact on this decision in

the latter case. This may happen if an individual cannot memorise the information

about the programme between the time they receive information about it and later

receipt or use of the screening kit. Evaluating the specific mechanism which leads to

a reduction in screening participation is an important question for future research.

Our results show the negative impact of a decrease in memorisation ability on

participating in the programme for bowel cancer screening. This shows the impor-

tance of considering specific characteristics of a programme’s target population when

designing health economic policies in order to more effectively increase public health

or decrease healthcare expenditures.

3.5 Conclusion

This chapter analysed the causal impact of the ability to memorise information on

participation in a national bowel cancer screening programme in England. After

discussing existing evidence on this research question from different scientific fields,

we introduced our empirical strategy and the data. Our main contribution is that we

used four waves from the ELSA survey, a national representative data for the English

elderly population, reducing common problems such as omitted variable bias and

reverse causality. We provided robust evidence about the suggested relationship and
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implemented regression, propensity score matching and double robust techniques in

our empirical strategy. When distinguishing between different dimensions of memory,

we find evidence that the estimated effect is driven to a large extent by the ability

to memorise information with some delay.

Our findings are related to research into medication adherence, which has found

wider consideration in the medical and psychological literature (e.g. Hayes et al.,

2009; Insel et al., 2013). Studies have shown that the ability to memorise is a

fundamental issue in the successful treatment of several illnesses via medication. Our

findings contribute to this, as we show that memorisation ability can also affect health

via the channel of preventive medical behaviour. This suggests that heterogeneity in

mental ability along further dimensions of a target population must be considered

when optimising the planning and supply of healthcare provision. Another finding

is that the main driver relating an individual’s memorisation ability with preventive

activities is based on the ability to memorise with some delay (as compared to time

orientation or direct recall). One explanation for this is that the ability to memorise

over a longer period can be a fundamental layer of further dimensions of cognitive

functioning, as suggested by Serper et al. (2014).

Our findings have strong policy relevance, as the target group for the screening

programme consists of people aged 60 to 70, and it is well known that a higher de-

crease in cognitive functioning can be expected during later life (Salthouse, 2009).

Due to the demographic changes which have successively increased the share of el-

derly people in many developed countries, specific characteristics of this older popula-

tion should be considered when implementing public (health) programmes. Although

there has been an ongoing discussion about the benefits, costs and the (future) finan-

cial burden of preventive health programmes for society since Fries (1980), specific

characteristics of the target group should obviously be accounted for from a norma-

tive point of view, given the goal of a specific policy. Hence, a receiver adequate

way to provide information is needed, maybe based on the integration of different

healthcare providers.

Although we provide evidence that a decrease in mental ability is a general phe-

nomenon in the context of bowel cancer screening for the elderly and not driven by

specific diseases, we cannot fully identify the point in the data generating process

at which the decrease in memorisation ability determines screening behaviour. This

would be a fruitful topic for future research. In addition, we cannot rule out the pos-

sibility that further unobserved factors that cannot be controlled for in our analysis

are confounding our estimates. From both a theoretical and applied perspective, it
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is also important to determine how to provide sufficient information to a policy pro-

gramme’s target group to simultaneously mitigate potential (cognitive) constraints

among decision makers while still allowing individuals to make individual choices.
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Appendix Chapter 3

3.A1 Impact of characteristics on decline in memorisation ability (Logit)

Variables Effect z-stat

memory 0.085*** (15.64)
educ mid -0.057 (-1.52)
educ high -0.119** (-2.55)
wealth -0.000*** (-2.73)
adl 0.047 (1.16)
health 2 -0.038 (-0.56)
health 3 -0.038 (-0.55)
health 4 -0.061 (-0.83)
ill1 -0.022 (-0.79)
ill2 -0.040 (-1.06)
ill3 0.020 (0.68)
ill4 -0.059 (-1.13)
ill5 -0.010 (-0.27)
ill6 0.007 (0.17)
female -0.112*** (-3.77)
black 0.176 (1.51)
couple 0.010 (0.28)
smoker 0.089** (2.03)
smoke past 0.054* (1.79)
organisation -0.017 (-0.58)
phys act2 -0.075 (-0.78)
phys act3 -0.033 (-0.35)
phys act4 -0.075 (-0.77)
life exp -0.000 (-0.58)

N 1564
pseudoR2 0.152

Notes: Average marginal effects (in-
cluding age fixed effects), robust stan-
dard errors, z-statistics (in parentheses)
* p<0.10, ** p<0.05, *** p<0.01.
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Chapter 4

Heterogeneous Parameters and

Detecting Selection Based on

‘Unused Characteristics’ in Private

Health Insurance Markets1

4.1 Introduction

In addition to access to the National Health Service (NHS), around 11 % of the

UK population have either private health cover for specific conditions (such as can-

cer), or broader coverage which includes complementary therapies and diagnostic

tests (Cylus et al., 2015). There are several possible explanations for people’s dif-

ferent private insurance requirements, based on the supply and demand sides of the

insurance market. One common explanation is that risk preferences, or an individ-

ual’s degree of risk aversion, influence the probability that an individual will buy

insurance. Another explanation asserts that insurance companies do not take into

account risk heterogeneity when calculating premiums, but customers take this into

account when deciding whether to buy insurance. However, the converse may also

be true: insurance companies use some risk-related customer characteristics to lower

their exposure to high risk policyholders. During the last decade, a great deal of

literature has emerged which attempts to identify the specific origins of selection

and information asymmetries (IAs) in insurance markets (e.g., Finkelstein and Mc-

Garry, 2006; Fang et al., 2008). However, evaluating these issues is still an important

1This study is based on joint work with Martin Karlsson and Ben Rickayzen. See Karlsson et al.
(2012) for a very early draft of our research.
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topic in economic research, and little research has been done in this area before now,

particularly in relation to UK data.

And individual’s level of health directly affects their expected contribution to the

economy, their happiness and their ability to participate within society at large. Pro-

viding healthcare for an entire population is becoming increasingly expensive, in part

due to technical advances in treatments but also due to demographic change (i.e., an

ageing population). In the face of restricted public budgets, private health insurance

that partly or fully takes on coverage is a potential remedy (e.g., Arentz et al., 2012;

Leidl, 2008). Since the seminal works by Akerlof (1970) and Rothschild and Stiglitz

(1976) on market efficiency in insurance markets, there has been a preponderance

of theoretical and empirical research into selection based on IAs. However, how to

accurately and adequately measure IAs and their consequences remains unexplored.

This is a very important area of research, since it directly affects the funding of a

country’s health and welfare system. A specific branch of the literature (Finkelstein

and McGarry, 2006; Fang et al., 2008) concerns the indirect detection of IAs by har-

nessing ‘unused characteristics’, i.e., variables that insurance companies do not use

to calculate risk premiums, but which are still available as observations for empirical

analysis.

The aims of this chapter are threefold. The main contribution of this study is a

technical one, and we first formally demonstrate that standard ‘unused characteris-

tics’ approaches which allow the detection of IAs based on specific characteristics can

lead to erroneous conclusions. This is the case if the parameter of a potential source

of IA in a framework with two equations differs from an individual’s risk/insurance

status, i.e., whether the estimated coefficient of interest is driven by different parts

of the population. Second, we create artificial data to emphasise this issue under

different assumptions about the underlying data generating process that causes a se-

lection effect in the insurance market. Third, taking this phenomenon into account,

we provide empirical evidence of selection in the market for private health insurance

using data for the English population over age 50.

We begin by describing the institutional background to the current healthcare

system in England. We then provide a literature overview, with an emphasis on

several commonly used tests to identify IAs. Following this, we show formally and by

simulation that, under specific circumstances, tests based on two equations that try to

detect IAs with ‘unused characteristics’ can be misleading. The empirical section of

this chapter provides evidence by applying such tests, and also allowing for individual

parameter heterogeneity by using a multilevel model. Our empirical analysis is based
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on the English Longitudinal Survey of Ageing (ELSA), an individual-level dataset

representative of the English population over age 50. ELSA has both a cross-sectional

and longitudinal dimension. After discussing our findings, we draw conclusions and

make suggestions for future research in this field.

4.2 Theoretical Considerations

4.2.1 Institutional Background

The population of England is entitled to free healthcare, provided by the National

Health Service (NHS) through primary care (general practice) and secondary care

(hospital-based care given through both NHS and Foundation Trusts). The guiding

principle of the NHS is to make health services available to every citizen in need.2

However, in practice, there are a number of treatments which are not available within

the system. Most of these are excluded because they are viewed as being non-

essential, but some are excluded for financial reasons.3 In addition to the public

provision of healthcare via the NHS, individuals can choose to top up their provision

by purchasing private health insurance (PHI). This can be done on an individual basis

or as part of a benefits package offered by employers.(Boyle, 2011) Private insurance

covers services which duplicate those provided under the NHS (Kiil, 2012), but also

provides cover for enhanced services such as faster access and wider choice. Insurers

can freely determine the services they offer, but most packages cover surgery as

an inpatient or day case, hospital accommodation, nursing care and inpatient tests.

Since there is no regulation on products or pricing (Boyle, 2011), we can assume that

the market for (voluntary) PHI in England is competitive. Although a competitive

market should result in an actuarially fair risk premium due to the possibility of

consumers switching between different contracts, we cannot draw any conclusions

about the efficiency of this market, i.e., selection effects due to IAs which are not

accounted for in the risk premium.

4.2.2 Detecting Information Asymmetries

Empirical evidence for the existence of IAs is mixed. Cohen and Siegelman (2010)

provide a metastudy on testing for adverse selection in a wide range of insurance

markets. They focus on the positive correlation approach and find a correlation

2http://www.nhshistory.net/a guide to the nhs.htm
3http://www.londonhealth.co.uk/nhs/index.html
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between risk and insurance in some studies but not others. For example, evidence

in health insurance markets appears strongly heterogeneous. Looking at studies

which focus on the US market, they find evidence for both the existence of IAs and

market efficiency. They also assert that it is necessary to distinguish between different

kinds of IA. They conclude that it might be useful to evaluate the circumstances

under which adverse selection does or does not arise. This perspective is particularly

relevant from a policy perspective, given that we would like to be able to predict

efficiency changes based on initial market conditions in the face of any institutional

changes. In their work, Cohen and Siegelman (2010) mainly focus on an approach

to detecting IA, developed by Chiappori and Salanié (1997), which is usually called

the ‘positive correlation test’. This test is still widely used today, despite ongoing

developments in the field. The main thrust of the test is to jointly estimate two

separate equations. The first captures the probability of buying an insurance contract

given the information about an individual which an insurance company will use to

calculate the risk premium. The second measures the correlation between these

variables and the probability of the insurer making a loss on the contract. The

error term in both equations covers all the information about both events which is

not used for pricing purposes. If risk and insurance coverage are correlated, this

is usually interpreted as indicating that a self-selection process is occurring based

on unused variables. Hence, it is useful to estimate the correlation between both

equations’ error terms. This approach is often called the ‘positive correlation test’.

Formally, this approach can be described by the following equations, where I is an

indicator of insurance status and R is an indicator of being at risk, while X is a

matrix containing the variables used by the insurance company to calculate the risk

premium:

I = Xφ+ ε (4.1)

and

R = Xψ + η (4.2)

Subsequent literature assesses the problem of multiple dimensions of private in-

formation in the context of detecting IA, which is also a focus of this chapter. As

Finkelstein and McGarry (2006) (FMG) argue, the correlation between error terms

in the ‘Chiappori approach’ is neither a necessary nor a sufficient condition for the
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existence of IAs. The authors suggest that misleading results may arise if several

characteristics have an impact on both dependent variables (some negatively, some

positively) and effects cancel out on average. For example, in addition to an in-

dividual’s class of risk, heterogeneity in consumer risk preferences might offset the

correlation between the two equations’ error terms. The authors assert that if an

econometrician can identify such relevant information, and this information is not

used by the insurer for pricing, then including this variable as an additional ex-

planatory variable into equations (4.1) and (4.2) will make it possible to detect and

separate out this kind of self-selection, despite the second relevant variable having an

offsetting effect. This approach, which we call the ‘unused characteristics’ approach,

is based on the following equations:

I = Xφ+ Zδ + ε (4.3)

and

R = Xψ + Zβ + η. (4.4)

where Z represents a matrix containing additional information about the insured

but which is not used for pricing. The condition for recognising IAs is that any

new variable included in the model affects the probability of both getting insurance

and ‘being at risk’. In their study, Finkelstein and McGarry use information that is

assumed to be unknown to the insurer in the market for long term care (LTC) in the

US.

The unused characteristics approach described above can also be useful if we are

interested in selection in terms of pricing, without using ‘unobserved’ information.

In contrast to the case mentioned above, Finkelstein and Poterba (2014) focus on

a scenario where insurance companies observe, or could observe, relevant customer

characteristics, but do not use this information when calculating their risk premium.

Analysing the UK annuity market, they show that annuity purchases and the an-

nuitant’s mortality are regionally correlated. Assuming that regional information is

not used to calculate the risk premium, this is interpreted as an indicator of ad-

verse selection. Finkelstein and Poterba’s results raise the question of why insurance

companies do not tend to use this kind of information.

Cutler et al. (2008) look for selection within several insurance markets in the

US, based on data from the Health and Retirement Study. They also use a dual-
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equation model with insurance status and risk occurrence as dependent variables.

While conditioning on variables used for insurance pricing, they also include some

behavioural variables which are used to measure heterogeneity in risk preference (e.g.,

seatbelt usage, preventative activities) and individual risk behaviour (e.g., alcohol

consumption), which are probably not available to an insurance company. Their

findings suggest advantageous selection in the market for life and LTC insurance,

but adverse selection for annuities.

Fang et al. (2008) (FKS) develop a similar approach that tries to reveal unused

characteristics that drive selection in insurance markets. Assuming unused infor-

mation is already partialled out, their approach is based on the regression model:

I = α1 + α2R + νi (4.5)

followed by a regression which includes an unobserved variable, z:

I = γ1 + γ2R + γ3z + µi. (4.6)

It can be shown that the regression based on (4.5) will result after applying the

expectation operator into E(α̂2) = γ2 + γ3θ32, where θ is based on the auxiliary

regression R = θ+ θ32z+λi. The detection of IAs is based on the difference between

the estimates for α2 and γ2. Hence, the detected IAs induced by z are defined as

E(α̂2) − E(γ̂2) = E(γ2) + E(γ3θ32) − E(γ2) = E(γ3θ32). For advantageous selection,

this difference will be negative, i.e., (γ2 > α2) if γ3 < 0 and z is partially positively

correlated with R. Unlike the approach suggested by FMG, the evidence is not

directly based on comparing two different outcomes for z, but on a single coefficient

and the partial correlation between z and R.

Both approaches are applied in the literature. For example, Cutler et al. (2008)

apply the FMG approach and look for IAs within several insurance markets in the

US, based on data from the Health and Retirement Study. Bolhaar et al. (2012) also

implement the FMG framework to assess multidimensional asymmetric information

in Ireland, whereas the approach developed by FKS is applied by Buchmueller et al.

(2013), who analyse advantageous selection using Australian data.

There is little evidence on selection in the market for PHI in England. Prop-

per et al. (2001) analyse the dynamics in the demand for PHI between 1978 and

1996 in the UK, using the Family Expenditure Survey. Controlling for consumer
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characteristics and health service quality measures, they find that the availability

of private healthcare facilities and cohort effects, which might indicate changes in

tastes/attitude to PHI, are important factors in deciding whether to purchase PHI.

Wallis (2004) also looks for the determinants of demand for PHI in the UK, based

on data from the British Household Panel Survey (BHPS). The author evaluates

individuals’ switching behaviours and focuses on characteristics which influence the

probability of purchasing insurance and those which influence the individual cost of

PHI (i.e., the risk premium). The study differentiates between consumer demand-

side characteristics and supply-side factors that can influence insurance status, e.g.,

quality of service.

Another study using BHPS data was carried out by Olivella and Vera-Hernández

(2013), who focused on adverse selection in the market for PHI, using hospitalisa-

tion as a measure for being at risk. Assuming that an individual’s health status is

independent of receiving PHI as a fringe employment benefit, their results suggest

the existence of adverse selection in the PHI market in England.

Until now, there has been no empirical investigation into whether specific sources

of selection exist in the English PHI market.

4.2.3 Using Unused Variables

Finkelstein and McGarry (2006) argue that the standard positive correlation test

suggested by Chiappori and Salanié (1997) will fail if there is more than one charac-

teristic that is not used for pricing purposes but which affects insurance status and

risk of loss to the insurance company. These characteristics can offset the correlation

between the equations’ error terms.

The advantage of an unused characteristics approach is that it allows the iden-

tification of specific characteristics which can, from a theoretical perspective, be

assumed to be a source of IAs, even if the positive correlation test does not reveal

as much. It is perfectly reasonable to interpret the coefficients in these models if

we have an underlying theory as to why these characteristics should be correlated

with both insurance and health status. Thus the suggested approach is very helpful

when we want to assess whether a specific characteristic is a source of IA in a set-

ting with multidimensional private information. However, we do not know how this

approach performs if we allow for another source of heterogeneity. More precisely, it

is not clear how evidence based on this approach changes if we allow the outcomes

of an unused characteristic to be heterogeneous across the risk pool. This is a very

important issue, and parameter heterogeneity has not been discussed so far in this
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context.

The motivation behind this question stems from the fact that conclusions about

selection effects are derived based on the relevance of the variables included in both

equations. This approach can, however, be problematic if we find an additional

variable to be relevant in our framework and we do not have a good a priori theory

about the mechanism which relates this variable to risk and insurance status. This

is the case since a variable might, on average, control for relevant factors which

explain, for example, insurance probability and risk situation, but it is possible that

these estimated coefficients are driven by different parts of the sample. We suggest

that if individuals with a shared characteristic are heterogeneous in outcomes of

this characteristic (i.e., marginal changes in risk and insurance probability due to

an unused variable being negatively or positively related) an unused characteristics

approach can lead to erroneous conclusions.

From this, it follows that an individual’s expected risk from an insurance perspec-

tive, conditioned on certain characteristics (which are not used to calculate the risk

premium), can equal the population’s expectation of risk, even though such char-

acteristics are related to both risk and insurance probability, which would usually

be interpreted as an indicator of IAs. From a policy perspective, this is a crucial

issue for both judging the efficiency of an insurance market and predicting changes

in welfare when planning to implement new policies (e.g., regulation of contracting

health services). To describe this issue formally, we simplify equations (4.3) and (4.4)

without loss of generality, assuming that there is no used ‘observable’ information,

X, included in either equation, allowing for just one ‘unused’ variable, z:

E(I|z) = E(δz + ε)

and

E(R|z) = E(βz + η)

where estimates β̂ > 0 and δ̂ > 0 would usually be interpreted as an indicator

of adverse selection. We now relax the assumption of parameter homogeneity and

assume that every parameter is defined for every individual, i, with the population

means E(βi) = µβ > 0 and E(δi) = µδ > 0. We further assume, for simplification

purposes, that Cov(zi, βi) = 0, Cov(zi, δi) = 0 and Cov(ηi, εi) = 0.

Based on this model, we now evaluate the risk position of the sub-population

being insured (δizi + εi > 0):

E(Ri|Ii > 0) = E(βizi|δizi > −εi)
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Given the population means µβ and E(zi) = µz, this equation can be rewritten as

E(βizi|δizi > −εi) =µβµz (4.7)

+ µβ × E(zi − µz|δizi > −εi)

+ µz × E(βi − µβ|δizi > −εi)

+ E((βi − µβ)(zi − µz)|δizi > −εi).

We want to find the circumstances under which E(Ri) ≥ E(Ri|Ii > 0), since this is

when the unused characteristics approach has falsely detected adverse selection. The

first and second terms in decomposition (4.7) are positive based on our assumptions.

Hence, E(βizi|δizi > −εi) ≤ E(R) can be true if E(βi − µβ|δizi > −εi) < 0 or

E((βi − µβ)(zi − µz)|δizi > −εi) < 0. Therefore, we would need Cov(βi, δi) < 0, and

thus E(βi|δizi > −εi) < µβ to offset the other terms in the decomposition.

This condition requires the expectation that, for an individual whose βi is smaller

than the population mean, µβ, the individual coefficient, δi, will be higher than the

estimated population mean, µδ, and vice versa.

Clearly our framework requires Cov(βi, δi) > 0 in the case where µβ < 0 and

µδ > 0 (or vice versa), i.e., wrongly detected advantageous selection using the unused

characteristics approach. If the correlation between βi and δi is strong enough, the

suggested direction of selection may even be the opposite of what it should be.

To solve this problem, it is possible to compare insurance and risk status at

the individual level, as done by Chiappori and Salanié (1997), by calculating the

correlation between the error terms. As Finkelstein and McGarry (2006) argue, this

approach is not helpful in all contexts, since some correlations can cancel out.

Does the problem of parameter heterogeneity also affects the approach suggested

by Fang et al. (2008)? Remember, this model emphasizes the partial regression

coefficient γIz|R 6= 0 and the difference between γIR|z and the correlation αIR when

detecting IAs. This is very similar to the FMG approach, since both approaches

assume that z is a determinant of both risk and insurance status. However, the

selection in both the FMG and FKS approaches is assumed to be based on constant

coefficients, which by definition do not reflect parameter heterogeneity. Hence, the

above discussion of parameter heterogeneity is also relevant in this context. The

following section provides an empirical comparison between both approaches in terms

of the effect of correlated coefficients.
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4.2.4 Econometric Model

The need to determine parameter heterogeneity at the individual level (δi, βi) imposes

stronger requirements on the data than analysis where both the FKS and FMG

approaches are usually applied. To be able to estimate coefficients for each individual

in the data, we need to add degrees of freedom at the unit level where heterogeneity

occurs. Therefore, we rely on a panel data setting in the following. We are aware

of one other study by (Bolhaar et al., 2012) that identifies unused characteristics in

the context of PHI using panel data. However, while they use dynamic panel data

estimators to distinguish between short- and long-term determinants of selection, we

emphasise the role of different outcomes from the unused characteristics, z.

To derive the following equations, we now assume a longitudinal data structure

with t = 1, .., T periods, where δ and β represent vectors containing our i = 1, .., N

coefficients, δi and βi.

Iit = δ
′
zit +Xφ+ εit (4.8)

and

Rit = β
′
zit +Xψ + νit (4.9)

Our analysis is based on estimating the impact of zit on Rit and Iit while jointly

controlling for other observable characteristics which are used to calculate the risk

premium, captured by the matrix X. The coefficients of zit are allowed to be

individual-specific, but we impose the assumptions of parameter constancy on all

other variables in the model, as suggested by standard unused characteristics ap-

proaches. To see whether conclusions based on these approaches can be misleading

due to parameter heterogeneity, we will calculate Corr(β̂i, δ̂i).

When assessing the role of heterogeneity in selection into the English health

insurance market we use a linear probability model, which is a simplification of the

framework provided above, since our dependent variables are no longer continuously

defined.

In our comparative analysis, we apply both unused characteristics approaches by

pooling the data to compare their results. In an additional specification, we allow

for individual parameter heterogeneity and estimate equations (4.8) and (4.9) using

multilevel models, where βi and δi are supposed to be determined at the individual

level. We provide an example with a variable that is supposed to induce selection

into the insurance market and test whether the estimates for βi and δi reveal a corre-
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lation structure that suggests a bias in the interpretation of the standard approaches,

i.e., both E(βi)× E(δi) > 0 based on pooled regressions but Corr(β̂i, δ̂i) < 0 when ac-

counting for parameter heterogeneity, or E(βi)×E(δi) < 0 but Corr(β̂i, δ̂i) > 0. Such

a finding, ignoring the correlation structure between δi and βi, is usually interpreted

as indicating a selection mechanism due to IA. When applying the FKS approach, we

derive the direction and degree of selection based on the difference between the par-

tial correlation between I and R before and after an unused characteristic is included

in the specification. We then run regressions allowing for parameter heterogeneity by

regressing I and R on z using multilevel models, fixing the parameters δ and β at the

individual level. All other variables, X, included in the specifications are assumed to

have a fixed impact on the outcome variables, as usually assumed by unused charac-

teristics approaches. We use the correlation between δ̂i and β̂i as a measure to test

whether an offset is occurring in the standard approaches, as described above.

Before analysing the phenomenon of parameter heterogeneity in the context of

selection into English PHI market, we first assess how the approaches discussed so

far perform under different assumptions via simulation.

4.3 Empirical Implementation

4.3.1 Simulations

In order to compare the outcomes for both unused characteristics approaches under

parameter heterogeneity at the individual level, we create artificial data by impos-

ing different assumptions about variables, parameter heterogeneity and the correla-

tion between variables. Panel data with 1,000 cross-sectional observations and five

time-series units is generated with assumptions about E(δi), E(βi) and Corr(β̂i, δ̂i).

Assuming that other information, X, used to calculate the risk premium is already

partialled out before estimation, the simulations are based on the following structural

equations:

Iit = δizit + εit (4.10)

and

Rit = βizit + ηit (4.11)

where zit, εit and ηit are standard normal random variables, whereas δi and βi are

random variables that vary between each of the 100 simulations. The population
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means, standard deviations and degree of correlation between the parameters δi and

βi vary between different scenarios. We use the generated data to run 6 times 100

regressions for each scenario and calculate the correlation between the estimated

random coefficients.

We divide our analysis into four separate blocks, which are further divided into

different sub-scenarios. In our simulations, we assume that IAs are solely driven by

an unused characteristic, z. We also assume that observable characteristics which

are allowed to be used to calculate the risk premium are already partialled out.

Column 1 (see tables in Appendix 4.A1 to 4.A4 of this chapter) shows the degree

of selection within the insurance market. Since, by definition, selection is solely

driven by z, we choose the regression coefficients of I on R (α̂2) as a measure to

detect IAs. Columns 2 to 4 show further results of the FKS approach, estimating

specifications based on equations (4.5) and (4.6). Columns 5 and 6 show evidence

based on regressions reflecting the results of FMG approach, while columns 7 to 9

show results for the multilevel model with random coefficients for each cross-sectional

unit. We now compare the extent to which both approaches reveal IAs associated

with z.

Scenarios 1a to 1c in Appendix 4.A1 represent the case where both the FMG

and FKS approaches suggest no selection due to z, i.e., E(δi) = E(βi) = 0, but a

positive selection due to Corr(β̂i, δ̂i) < 0 (scenario 1a) and a negative selection in

scenario 1c. Although both types of selection are well detected by a regression of I

on R (column 1), the association with z is not detected using either standard unused

characteristics approach. We see that the outcomes in columns 3 to 6 are unaffected

by the joint variation of βi and δi.

To investigate the role of the standard deviation of βi and δi (Appendix 4.A2),

we let it vary between 0.5 (row 2a) and 1.5 (row 2c). Obviously, the higher the stan-

dard deviation of the coefficients, the greater the role of Corr(β̂i, δ̂i) in the selection

mechanism. This implies that, given the levels of βi and δi for z, a higher coefficient

variation positively affects selection. Again, neither the FKS nor the FMG approach

detect this kind of selection, since columns 3, 5 and 6 remain stable.

In alternative scenarios (scenarios 3a-3c in Appendix 4.A3), we try to determine

what happens if there is a positive correlation between z and R but a negative

correlation between z and I. Do these associations necessarily induce advantageous

selection? Increasing the association Cov(β̂i, δ̂i) from 0 (row 3a) to 0.6 (row 3c) again

reveals that the point estimates of the standard unused characteristics approaches

are very similar across the scenarios, but the issue of parameter heterogeneity is
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completely ignored, i.e., both approaches suggest advantageous selection. This is

also revealed for the FKS approach in column 3, where the difference E(α̂2)− E(γ̂2)

is found to be negative across all scenarios. Columns 5 and 6 have opposite signs,

which is interpreted as an advantageous selection in the FMG approach. In contrast,

negative selection in the insurance market is revealed by the increasing positive

correlation between the estimated random coefficients (row 3b and 3c in column 9).

Scenarios 4a-4c (Appendix 4.A4) show the implications if there is a positive cor-

relation between both z and R and z and I, i.e., the unused characteristics approach

suggests adverse selection, but Corr(β̂i, δ̂i) < 0 suggests offsetting. Adverse selection

is identified under both the FKS (E(α̂2)−E(γ̂2) > 0) and FMG approaches (positive

estimates in columns 5 and 6), despite decreasing Cov(β̂i, δ̂i) from 0 (row 4a) to -0.6

(row 4c), which actually implies advantageous selection in scenarios 4b and 4c. This

advantageous selection is suggested by the negative correlation between our random

coefficients (rows 4b and 4c in column 9).

4.3.2 ELSA Data

Our empirical exploration of this idea is based on ELSA, which is a representative

individual-level dataset for England’s 50+ population. The ELSA dataset contains a

broad range of information on each individual’s health and financial circumstances,

together with overall demographics, which makes it an ideal source to model both

economic decisions and health-related characteristics.

For our analysis we use both the cross-sectional and longitudinal dimensions of

the ELSA survey to ensure the period we are using captures the time from 2002 to

2013. For our analysis, we restrict the data to individuals aged 90 or younger, since

we cannot verify the actual age of people over age 90. Due to the longitudinal nature

of our dataset, we only analyse individuals who were eligible for an interview during

all six ELSA waves. In our empirical analysis, we apply the sample weights provided

with the ELSA data that account for attrition and which make the sample we use

representative for the first wave.

We use self-assessed health as the main dependent variable as a measure for

being at risk. Although this information can be subjective, we assume it to be a

reasonable indicator, since it does not only capture observable information (which

we control for in our analysis), but all information that can affect future demand

for healthcare which cannot be accounted for by using only observable and objective

health data. Based on their findings, Idler and Benyamini (1997) argue that a global

health rating “. . . represents an irreplaceable dimension of health status and in fact
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that an individual’s health cannot be assessed without it.” Other studies into IAs,

such as those by Doiron et al. (2008) and Bolin et al. (2010), also use self-assessed

health to capture individual risk. Hence, we assume that self-assessed health is a

suitable measure for our purposes.

ELSA provides the commonly used 5-point self assessed health (SAH) measure,

which we collapse into binary variables that we call ‘high risk’ (HR) and ‘low risk’

(LR) (see descriptive statistics in table 4.14). HR captures having ‘fair’ or ‘poor’

health, while LR captures ‘excellent’, ‘very good’ and ‘good’ health. HR is used

in our analysis to capture information when an individual poses a relatively high

health risk from an insurance company’s perspective. The second main dependent

variable is a dummy variable, PHI, which equals 1 if an individual has private health

insurance and 0 otherwise. We exclude people who only have PHI cover as part of

an employee benefits package offered by their employer. This is because the way in

which such group cover is purchased by employers and the way in which it is priced,

are both very different from the approach adopted for individual policies.

Table 4.1 Summary statistics

Variable Mean Std. Dev. Min. Max. N
privins 0.126 0.332 0 1 31431
HR 0.266 0.442 0 1 31431
time avail 0.774 0.418 0 1 31431
female 0.565 0.496 0 1 31431
age 67.629 8.958 50 89 31431
nwhite 0.015 0.121 0 1 31431
couple 0.690 0.463 0 1 31431
children 0.883 0.322 0 1 31431
educ 0.688 0.463 0 1 31431
working 0.289 0.453 0 1 31431
not work 0.112 0.316 0 1 31431
retired 0.599 0.49 0 1 31431
smoke now 0.129 0.335 0 1 31431
smoke past 0.5 0.5 0 1 31431
ill1 0.431 0.495 0 1 30314
ill2 0.181 0.385 0 1 30314
ill3 0.451 0.498 0 1 30314
ill4 0.092 0.29 0 1 30314
ill5 0.116 0.32 0 1 30314
ill6 0.289 0.453 0 1 30314

4Information about variable definitions can be found in Appendix 4.A5
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As previously mentioned, it is important for our analysis to assume that the

econometric model contains all the relevant information used by an insurance com-

pany to calculate the risk premium. Since the people in our sample have PHI with

different suppliers, we cannot provide a general framework for calculating these pre-

miums. We therefore have to make reasonable assumptions and try to stay as close

to the existing literature as possible. We assume that the following variables are

used by insurance companies: age, sex, smoking (history), employment status (i.e.,

in the labour market, not in the labour market, retired), education (where ‘no qual-

ification’ is the reference group), race, family status (indicator for being married or

cohabiting) and whether an individual has children. We also use dummy variables

for the government office region the respondent is living in. Since we have detailed

information on each individual’s health, we also use indicator variables capturing a

broad range of self-reported illness categories which are available in the data and are

assumed to be used to calculate risk premiums. This is important, since insurers re-

quire applicants to provide detailed information about their past and present health

status (cf. Boyle, 2011).

For the unused characteristics, we take a variable from the literature which is

known to drive selection within the PHI market yet which cannot directly be assessed

by an insurance company and is therefore not available to calculate premiums. From

a health economics perspective, the restrictions on an individual’s time are of great

interest, since the decision to take out PHI in the UK is known to depend on waiting

times for healthcare (e.g., King and Mossialos, 2005; Johar et al., 2013). As the

waiting times in the English healthcare market are usually much shorter for those

with PHI than under the NHS, an individual’s available time and the corresponding

opportunity costs will determine whether they take out PHI or not. If a patient is

willing and able to wait longer for treatment, there is less incentive to opt into the

PHI market.

Hence, we directly utilise self-assessed information on respondents’ available time.

A respondent’s subjective level of available time may reflect low opportunity costs

when facing a relatively long waiting time for healthcare services. As shown above,

this directly decreases demand for PHI. Therefore, we would expect people with a

relatively large amount of available time to take out less insurance. We also expect

that the relationship with an individual’s health risk status will be negative if a

larger amount of available time affects health-related decisions that increase the

decision maker’s health stock, lowering their health risk. However, actual health-

related decisions depend on other factors such as an individual’s preferences or the
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urgency of a specific case. Therefore, we regard the assessment of such a relationship

as mainly an empirical question.

In order to capture a respondent’s level of available time, we use their answer to

the question ‘Do you have enough time to do everything?’ to see whether this factor

drives selection in the PHI market and whether there is individual heterogeneity

in its outcomes. The ELSA survey offers six different responses to this question,

ranging from ‘strongly agree’ and ‘strongly disagree’. To give our resulting estimates

a proper meaning, we collapse ‘agree’ and ‘do not agree’ into one binary variable

that takes a value of 1 if the respondent’s answer to the question reflects agreement

and 0 otherwise. We provide results for three different specifications. In the baseline

specification, we condition on variables that are assumed to be used to calculate the

risk premiums for PHI contracts. We then further use time dummies to rule out

changes over time that may affect our estimates. Finally, we also include variables

capturing diseases from certain health domains.

4.3.3 Results and Discussion

The coefficients from the linear probability model5 based on the FMG approach (see

specification 1 from Table 4.2) show that an individual’s available time is negatively

correlated with that individual’s health risk status (-0.014) and their ownership of

PHI (-0.076)6. Taken together, this would usually be interpreted as adverse selec-

tion (due to z) under FMG. However, as can be seen in column 3 under the FKS

approach, there is a negative correlation between health risk and insurance overall.

This empirical finding is also predicted by Olivella and Vera-Hernández (2013), who

discuss the issue of IAs in the UK’s PHI market. However, we are not interested in

the overall degree of IAs, instead focusing on a specific characteristic, z, that may

imply selection.

The FKS approach also indicates Cov(R, z) < 0 and Cov(I, z) < 0, although the

impact of health risk on I is very similar once our unused variable z is conditioned on

(column 4), and the difference is not statistically significant. However, the literature

does not usually test whether the differences are statistically significant (e.g., Buch-

mueller et al., 2013; Finkelstein and Poterba, 2014). When focusing on the estimates

5Despite theoretical concerns over the interpretation of the coefficients in an LPM (e.g.,
Wooldridge, 2003), we find that the LPM fits our data well. Its coefficients are very similar to
the marginal effects derived from a probit model, both in terms of economic relevance and statisti-
cal significance.

6The results for other control variables can be found in the Appendix 4.A6, but are not of interest
for our analysis, since we assume they are used when calculating the individual’s risk premium.
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Table 4.2 Estimates ELSA data

Spec. N FMG FKS RC-Model
(1) (2) (3) (4) (5) (6) (7) (8)

β̂ δ̂ α̂2 E(α̂2 − γ̂2) γ̂3 E(β̂i) E(δ̂i) Corr(β̂i, δ̂i)

1 31431 -0.014** -0.076*** -0.034*** 0.001 -0.017*** -0.011* -0.067*** -0.061***
(0.026) (0.000) (0.000) 0.829 (0.008) (0.053) (0.000) (0.000)

2 31431 -0.014** -0.075*** -0.033*** 0.001 -0.017*** -0.013** -0.063*** -0.060***
(0.024) (0.000) (0.000) 0.830 (0.008) (0.017) (0.000) (0.000)

3 30314 -0.014** -0.046*** -0.037*** 0.001 -0.016** -0.014** -0.040*** -0.058***
(0.027) (0.000) (0.000) 0.893 (0.013) (0.017) (0.000) (0.000)

Notes: The columns for each specification show results of unused characteristics approaches. Estimates in columns (1) to (5) are based
on LPMs. Columns (1) and (2) are estimates from the FMG approach represented by the structural equations (4.3) and (4.4), whereas
columns (3) to (5) reflect the estimates based on the structural equations, (4.5) and (4.6), suggested by FKS. Coefficients of other used
characteristics are not shown above, but detailed regression results can be found in Appendix 4.A6. An F-test is used to test whether
the coefficient of R (based on the specification in column 3) equals the coefficient of R after including z into the model. Columns
(6) and (7) show the coefficients from a multilevel model where the explanatory variable ‘available time’ takes a random coefficient

and the effect of all other variables is fixed. Finally, column (8) shows the correlation between the individual parameters Corr(β̂i, δ̂i).
Standard errors clustered at the individual level; t-statistics in parentheses. * p <0.10, ** p <0.05, *** p <0.01

in our multilevel model, we also find that the estimates for the fixed part of our model

(columns 6 and 7) are very similar to the FMG approach. However, calculating the

correlation between the estimates for our individual coefficients, δ̂i and β̂i, reveals

that they are negatively correlated (-0.061). This means that although the impact of

z on I (domain 1) and HR (domain 2) is negative, suggesting adverse selection, the

impact on domain 1 is actually highest for the coefficients for which it is lowest in

domain 2, and vice versa. As we use variation over time in our estimation strategy,

we would like to see whether changes over time that are identical for the population

as a whole are affecting our estimates. As can be seen in table 4.2, the estimates for

specification 2 are nearly identical to those for specification 1. The same is true for

specification 3 if the illness variables are included7. However, we see that the impact

of z on PHI greatly decreases, which suggests that an individual’s health is a strong

predictor for uptake of PHI. This is consistent with the existing literature, since it

is known that, in the context of the English NHS, healthier individuals tend to have

a higher demand for PHI (Olivella and Vera-Hernández, 2013). Nevertheless, the

main relationships revealed in specification 1 do not change. Although the unused

characteristics approaches suggest adverse selection, this interpretation is clearly off-

set by a negative correlation with the coefficients of interest. Hence, we find robust

evidence for the role of an individual’s available time on health risk and demand for

PHI in England. What is the explanation for our findings? As mentioned above,

economic theory suggests a negative relationship between someone’s available time

and their desire to purchase PHI. However, there is a relatively small, but statisti-

cally significant, impact on health risk. Our findings can be explained as follows.

Some individuals who, in relative terms, have a substantial amount of time are rel-

atively healthy (property (a)) and take out more insurance (property (b)), while

7Note that the number of observations is slightly lower in this specification, since some survey
respondents did not answer this question.
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other individuals with the same characteristic are relatively unhealthy (property (c))

but take out less health insurance (property (d)). The negative correlation between

available time, z, and both insurance and health status is found in the data, because

the effects of properties (a) and (d) dominate the overall correlation between z and

the outcomes. This heterogeneity at the individual level is captured with individ-

ual coefficients, and cannot be detected using the cross-sectional data normally used

when applying unused characteristics approaches. Although this chapter assumes a

specific correlation structure, Cov(δi, βi) 6= 0, for the outcomes of z for both R and

I, one may also consider a correlation Cov(δa, βa) 6= 0 on an arbitrary level, a, that

can confound the interpretation of a standard unused characteristics approach.

Our empirical findings from the ELSA data show that our idea is not simply a

theoretical artefact, but can be found in the real world and should be carefully ac-

counted for when detecting the data generating process of selection within insurance

markets. Hence we conclude that, although a variable can be correlated with insur-

ance and health status, the relationship does not necessarily tell us anything about

the importance of selection in insurance markets or IAs. This is because the esti-

mated coefficients of such a variable (indicating IA) can be the result of contributions

from different parts of the population. In addition, even if no correlation is found

between z and both I and R, there might still be a selection mechanism driven by z

which can incorrectly be hidden when the standard unused characteristics approaches

are applied. We believe our approach will be of great importance when empirically

determining whether a specific characteristic is the source of adverse/advantageous

selection within an insurance market without a clear theory about the underlying

selection mechanism. In such cases it may well be that pure randomness in the out-

comes of such a variable is falsely interpreted as selection in the market of interest,

as demonstrated above.

Our findings show that, as two different sources of private information can off-

set the correlation between the errors in the approach by Chiappori and Salanié

(Finkelstein and McGarry, 2006), including private information within an unused

characteristics framework can lead to erroneous conclusions about the interpretation

of the selection mechanism if said mechanism is heterogeneously associated with both

risk and insurance status.
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4.4 Conclusion

This chapter provided an overview of commonly used testing procedures for detecting

selection in insurance markets, focusing on their strengths and weaknesses. We

argued that, although the classical positive correlation test might lead to erroneous

conclusions about selection, it still has the advantage that it uses cross-equation

correlations of the residuals acquired at the individual level. We also showed that

standard unused characteristics approaches (e.g., Finkelstein and McGarry, 2006;

Fang et al., 2008), which are often used to identify specific sources of IAs, can be

problematic if evidence is wrongly based on mean coefficients. We also provided

empirical findings based on simulations and for the English PHI market.

To emphasise this potential problem, we formally discussed the circumstances

that can lead to erroneous conclusions by allowing for individual heterogeneity in

parameters. We demonstrated the relevance of this finding through simulations im-

posing different correlation structures between an unused characteristic, z, insurance

status and risk, while also allowing for individual parameter heterogeneity in the

data generating process. The results show that standard unused characteristics ap-

proaches do not identify this kind of heterogeneity, and thus a detected source of

adverse selection may indeed be a source of advantageous selection if the individual

coefficients are negatively correlated. The same phenomenon can obviously be found

under certain correlation structures between the parameters if adverse selection or

even no selection is detected.

Our empirical implementation used the English PHI market as an example, in

combination with the unused characteristic ‘available time’, which is not directly

assessable by insurance companies. This variable may reflect opportunity costs of

waiting times in the healthcare sector, resulting in demand for PHI. Our findings

show that individual parameter heterogeneity is also relevant to real markets. Al-

though adverse selection within the insurance market can be empirically detected,

this adverse selection should be interpreted carefully, since the estimated parameters

may be strongly negatively correlated due to the heterogeneous outcomes for the

variable of interest. Again, the estimated ‘mean’ coefficient of such variables can

be driven by different parts of the population and do not allow a meaningful inter-

pretation of the underlying selection mechanism. When interpreting the empirical

findings, it must be remembered that our aim is to focus on one specific source of

selection. The total degree of selection within the insurance market is beyond the

scope of this study.

Since the relevance of parameter heterogeneity is an empirical question, and a
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general conclusion for other markets and characteristics cannot be provided, anyone

wanting to identify a specific source of selection within insurance markets should test

this possibility. Our findings are important for analysing the efficiency of insurance

markets. They will be of interest to both the insurance industry and policy mak-

ers, and should be accounted for when predicting outcomes of structural changes to

insurance policies or the overall design of the insurance market. For example, the

expected impact of new regulations on calculating risk premiums based on charac-

teristics such as ethnicity or gender might be of interest in this context. If one wishes

to assess counterfactual situations about policies to regulate insurance markets, and

parameter heterogeneity of the variable of interest is an issue, then its impact on

selection within the insurance market should obviously be accounted for to achieve

a market that works as expected.

Our findings are particularly relevant in the case of unused variables for which,

a priori, we cannot assume any specific relationship with either insurance or health

status. In this case, it is essential to be very careful about potential parameter

heterogeneity, because even random outcomes of such unused characteristics may

be falsely interpreted as being sources of selection in insurance markets and market

inefficiencies.

We do not make any claim about the implications for welfare in private insurance

markets based on our findings. Nevertheless, the economic implications of our ideas

should be taken into account in welfare analysis if parameter heterogeneity is an

issue, since they directly affect the interpretation of which kind of selection is being

identified in the observed market. We also leave the implications of our findings for

optimal policy design open for further consideration.

In terms of empirical applications, we assume that a subjective health risk variable

is a good indicator of individual health status, but we do not know whether it is also a

good measure for future healthcare uptake. Hence, we make the implicit assumption

in our analysis that people with a relatively low (or relatively high) self-assessed

health status are correlated with a higher (or lower) probability of making a health

insurance claim. Future research should evaluate whether the robustness of this

assumption can be supported when using objective data about healthcare utilisation

(e.g., number of doctor visits) or, even better, treatment costs.

Finally, note that we do not explain why an unused characteristic, z, is (or should

be) expected to have a heterogeneous impact on both health risk and the decision

to take out insurance. We simply make the claim that, if this is the case, then the

commonly applied unused characteristics approaches can be as misleading as the
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Chiappori approach (no correlation of the error terms) when two different charac-

teristics offset each other (Finkelstein and McGarry, 2006). One interesting area for

future research would be to allow for heterogeneity at another level, a, in the asso-

ciation between an unused characteristic, z, and both R and I. A general condition

such as Cov(δa, βa) 6= 0 may also lead to erroneous conclusions based on unused

characteristics approaches and would be assessable even using cross-sectional data.
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Appendix Chapter 4

4.A1 Simulation 1

Scenario Parameter Selection FKS FMG RC-Model
(1) (2) (3) (4) (5) (6) (7) (8) (9)

α̂2 γ̂2 E(α̂2 − γ̂2) γ̂3 β̂ δ̂ E(β̂i) E(δ̂i) Corr(β̂i, δ̂i)

1a E(δi)=0, E(βi)=0, -0.150 [0] -0.150 [0] 0.000 [46] 0.000 [48] 0.003 [48] -0.001 [49] 0.001 [51] -0.001 [48] -0.245 [0]
Cov(βi, δi)=-0.3 [100] [0] [88] [0] [0] [0] [2] [4] [2] [4] [2] [4] [3] [1] [1] [3] [100] [0]

[46]n− [54]n+ [0]− [0]+ [0]− [1]+; [43]n− [57]n+

1b E(δi)=0, E(βi)=0, 0.000 [48] 0.000 [47] 0.000 [48] 0.000 [48] 0.003 [48] 0.000 [48] 0.001 [51] -0.001 [47] -0.001 [47]
Cov(βi, δi)=0 [1] [3] [0] [0] [0] [0] [4] [3] [2] [4] [4] [3] [3] [1] [4] [3] [2] [2]

[48]n− [52]n+ [0]− [0]+ [0]− [1]+; [48]n− [52]n+

1c E(δi)=0, E(βi)=0, 0.200 [100] 0.199 [100] 0.000 [54] 0.000 [50] 0.003 [48] 0.000 [51] 0.001 [51] -0.001 [45] 0.324 [100]
Cov(βi, δi)=0.4 [0] [100] [0] [88] [0] [0] [3] [3] [2] [4] [4] [5] [3] [1] [4] [4] [0] [100]

[54]n− [46]n+ [0]− [0]+ [2]− [0]+; [61]n− [39]n+

Simulations 100 100 100 100 100 100 100 100 100
N×T 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5

Notes: Each scenario reflects the combination of E(δi) and E(βi) with the correlation structure Cov(βi, δi), σβ and σδ set to 1. Column (1) indicates whether there is a significant
correlation between insurance (I) and risk (R), indicating IA. Columns (2) to (4) show estimates of the structural equations, (4.5) and (4.6), of the FKS approach. Column (3) can be
interpreted as the degree of IA associated with z (the ‘omitted variable bias’) suggested by the FKS model: An F-test is used to test whether the coefficient of R (based on the specification
in column (2)) equals the coefficient of R in column (1). Columns (5) and (6) are based on estimates of the equations (4.3) and (4.4) from the FMG approach. Column (5) provides the
estimate of the effect of z on R in the FMG approach, and column (6) shows its effect on I. These estimates are based on least squares estimates. Columns (7) and (8) show coefficients

from a multilevel model where parameters δ and β are estimated for each individual. Standard errors are clustered at the individual level. Column (9) shows the correlation between β̂i
and δ̂i. [] indicate counts from 1 to 100. [] on the right side of coefficients counts the number of positive values. [] on the left hand side under a coefficient counts the number of cases

a coefficient is both negative and significantly different from zero (5 % level); [] on the right side under a coefficient suggests the number of positive coefficients (null rejected). []− ([]+)
indicate the number of cases that adverse (advantageous) selection will not be rejected based on the joint interpretation of the estimates in the corresponding approach when we rely on

statistical significance. []n− ([]n+) indicate the number of cases of adverse (advantageous) selection if we rely solely on the signs of the coefficients.
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4.A2 Simulation 2

Scenario Parameter Selection FKS FMG RC-Model
(1) (2) (3) (4) (5) (6) (7) (8) (9)

α̂2 γ̂2 E(α̂2 − γ̂2) γ̂3 β̂ δ̂ E(β̂i) E(δ̂i) Corr(β̂i, δ̂i)

2a E(δi)=0, E(βi)=0, 0.080 [100] 0.080 [100] 0.000 [56] 0.000 [53] 0.002 [49] 0.000 [54] 0.002 [49] 0.000 [47] 0.229 [100]
Cov(βi, δi)=0.4 [0] [100] [0] [88] [0] [0] [3] [3] [0] [5] [3] [3] [3] [3] [3] [4] [0] [100]

σβ = 0.5, σδ = 0.5 [56]n− [44]n+ [0]− [0]+ [0]− [0]+; [57]n− [43]n+

2b E(δi)=0, E(βi)=0, 0.200 [100] 0.199 [100] 0.000 [54] 0.000 [50] 0.003 [48] 0.000 [51] 0.001 [51] -0.001 [45] 0.324 [100]
Cov(βi, δi)=0.4 [0] [100] [0] [88] [0] [0] [3] [3] [2] [4] [4] [5] [3] [1] [4] [4] [0] [100]

σβ = 1, σδ = 1 [54]n− [46]n+ [0]− [0]+ [2]− [0]+; [61]n− [39]n+

2c E(δi)=0, E(βi)=0, 0.276 [100] 0.276 [100] 0.000 [56] 0.000 [50] 0.004 [50] 0.000 [48] 0.001 [52] -0.003 [45] 0.356 [100]
Cov(βi, δi)=0.4 [0] [100] [0] [88] [0] [0] [3] [2] [2] [3] [3] [6] [3] [1] [4] [3] [0] [100]

σβ = 1.5, σδ = 1.5 [56]n− [44]n+ [0]− [0]+ [2]− [0]+; [62]n− [38]n+

Simulations 100 100 100 100 100 100 100 100 100
N×T 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5

Notes: Each scenario reflects the combination of E(δi) and E(βi) with a correlation structure Cov(βi, δi), σβ and σδ . Column (1) indicates whether there is a significant correlation between
insurance (I) and risk (R), indicating IA. Columns (2) to (4) show the estimates of the structural equations, (4.5) and (4.6), of the FKS approach. Column (3) can be interpreted as the
degree of IA associated with z (the ‘omitted variable bias’) suggested by the FKS model: An F-test is used to test whether the coefficient of R (based on the specification in column (2))
equals the coefficient of R in column (1). Columns (5) and (6) are based on estimates of the equations (4.3) and (4.4) from the FMG approach. Column (5) provides the estimate of the
effect of z on R in the FMG approach, and column (6) shows its effect on I. These estimates are based on least squares estimates. Columns (7) and (8) show coefficients from a multilevel

model where parameters δ and β are estimated for each individual. Standard errors are clustered at the individual level. Column (9) shows the correlation between β̂i and δ̂i. [] indicate
counts from 1 to 100. [] on the right side of coefficients counts the number of positive values. [] on the left hand side under a coefficient counts the number of cases a coefficient is both

negative and significantly different from zero (5 % level); [] on the right side under a coefficient suggests the number of positive coefficients (null rejected). []− ([]+) indicate the number
of cases that adverse (advantageous) selection will not be rejected based on the joint interpretation of the estimates in the corresponding approach when we rely on statistical significance.

[]n− ([]n+) indicate the number of cases of adverse (advantageous) selection if we rely solely on the signs of the coefficients.81



4.A3 Simulation 3

Scenario Parameter Selection FKS FMG RC-Model
(1) (2) (3) (4) (5) (6) (7) (8) (9)

α̂2 γ̂2 E(α̂2 − γ̂2) γ̂3 β̂ δ̂ E(β̂i) E(δ̂i) Corr(β̂i, δ̂i)

3a E(δi)=-0.5, E(βi)=0.3, -0.073 [0] 0.000 [47] -0.072 [0] -0.500 [0] 0.303 [100] -0.500 [0] 0.301 [100] -0.501 [0] -0.001 [47]
Cov(βi, δi)=0 [84] [0] [0] [0] [98] [0] [100] [0] [0] [100] [100] [0] [0] [100] [100] [0] [2] [2]

[0]n− [100]n+ [0]− [98]+ [0]− [100]+; [0]n− [100]n+

3b E(δi)=-0.5, E(βi)=0.3, 0.071 [100] 0.149 [100] -0.079 [0] -0.545 [0] 0.303 [100] -0.500 [0] 0.301 [100] -0.501 [0] 0.242 [100]
Cov(βi, δi)=0.3 [0] [84] [0] [88] [93] [0] [100] [0] [0] [100] [100] [0] [0] [100] [100] [0] [0] [100]

[0]n− [100]n+ [0]− [93]+ [0]− [100]+; [0]n− [100]n+

3c E(δi)=-0.5, E(βi)=0.3, 0.214 [100] 0.299 [100] -0.085 [0] -0.590 [0] 0.303 [100] -0.499 [0] 0.301 [100] -0.501 [0] 0.487 [100]
Cov(βi, δi)=0.6 [0] [100] [0] [88] [68] [0] [100] [0] [0] [100] [100] [0] [0] [100] [100] [0] [0] [100]

[0]n− [100]n+ [0]− [68]+ [0]− [100]+; [0]n− [100]n+

Simulations 100 100 100 100 100 100 100 100 100
N×T 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5

Notes: Each scenario reflects the combination of E(δi) and E(βi) with the correlation structure Cov(βi, δi), σβ and σδ set to 1. Column (1) indicates whether there is a significant
correlation between insurance (I) and risk (R), indicating IA. Columns (2) to (4) show estimates of the structural equations, (4.5) and (4.6), of the FKS approach. Column (3) can be
interpreted as the degree of IA associated with z (the ‘omitted variable bias’) suggested by the FKS model: An F-test is used to test whether the coefficient of R (based on the specification
in column (2)) equals the coefficient of R in column (1). Columns (5) and (6) are based on estimates of the equations (4.3) and (4.4) from the FMG approach. Column (5) provides the
estimate of the effect of z on R in the FMG approach, and column (6) shows its effect on I. These estimates are based on least squares estimates. Columns (7) and (8) show coefficients

from a multilevel model where parameters δ and β are estimated for each individual. Standard errors are clustered at the individual level. Column (9) shows the correlation between β̂i
and δ̂i. [] indicate counts from 1 to 100. [] on the right side of coefficients counts the number of positive values. [] on the left hand side under a coefficient counts the number of cases

a coefficient is both negative and significantly different from zero (5 % level); [] on the right side under a coefficient suggests the number of positive coefficients (null rejected). []− ([]+)
indicate the number of cases that adverse (advantageous) selection will not be rejected based on the joint interpretation of the estimates in the corresponding approach when we rely on

statistical significance. []n− ([]n+) indicate the number of cases of adverse (advantageous) selection if we rely solely on the signs of the coefficients.82



4.A4 Simulation 4

Scenario Parameter Selection FKS FMG RC-Model
(1) (2) (3) (4) (5) (6) (7) (8) (9)

α̂2 γ̂2 E(α̂2 − γ̂2) γ̂3 β̂ δ̂ E(β̂i) E(δ̂i) Corr(β̂i, δ̂i)

4a E(δi)=0.3, E(βi)=0.4, 0.056 [100] 0.000 [47] 0.056 [100] 0.300 [100] 0.403 [100] 0.300 [100] 0.401 [100] 0.299 [100] -0.001 [47]
Cov(βi, δi)=0 [0] [70] [0] [0] [0] [91] [0] [100] [0] [100] [0] [100] [0] [100] [0] [100] [2] [2]

[100]n− [0]n+ [91]− [0]+ [100]− [0]+; [100]n− [0]n+

4b E(δi)=0.3, E(βi)=0.4, -0.083 [0] -0.150 [0] 0.067 [100] 0.360 [100] 0.403 [100] 0.299 [100] 0.401 [100] 0.299 [100] -0.245 [0]
Cov(βi, δi)=-0.3 [96] [0] [88] [0] [0] [100] [0] [100] [0] [100] [0] [100] [0] [100] [0] [100] [100] [0]

[100]n− [0]n+ [100]− [0]+ [100]− [0]+; [100]n− [0]n+

4c E(δi)=0.3, E(βi)=0.4, -0.222 [0] -0.300 [0] 0.078 [100] 0.420 [100] 0.403 [100] 0.299 [100] 0.401 [100] 0.299 [100] -0.487 [0]
Cov(βi, δi)=-0.6 [100] [0] [88] [0] [0] [92] [0] [100] [0] [100] [0] [100] [0] [100] [0] [100] [100] [0]

[100]n− [0]n+ [92]− [0]+ [100]− [0]+; [100]n− [0]n+

Simulations 100 100 100 100 100 100 100 100 100
N×T 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5 1000 × 5

Notes: Each scenario reflects the combination of E(δi) and E(βi) with the correlation structure Cov(βi, δi), σβ and σδ set to 1. Column (1) indicates whether there is a significant
correlation between insurance (I) and risk (R), indicating IA. Columns (2) to (4) show estimates of the structural equations, (4.5) and (4.6), of the FKS approach. Column (3) can be
interpreted as the degree of IA associated with z (the ‘omitted variable bias’) suggested by the FKS model: An F-test is used to test whether the coefficient of R (based on the specification
in column (2)) equals the coefficient of R in column (1). Columns (5) and (6) are based on estimates of the equations (4.3) and (4.4) from the FMG approach. Column (5) provides the
estimate of the effect of z on R in the FMG approach, and column (6) shows its effect on I. These estimates are based on least squares estimates. Columns (7) and (8) show coefficients

from a multilevel model where parameters δ and β are estimated for each individual. Standard errors are clustered at the individual level. Column (9) shows the correlation between β̂i
and δ̂i. [] indicate counts from 1 to 100. [] on the right side of coefficients counts the number of positive values. [] on the left hand side under a coefficient counts the number of cases

a coefficient is both negative and significantly different from zero (5 % level); [] on the right side under a coefficient suggests the number of positive coefficients (null rejected). []− ([]+)
indicate the number of cases that adverse (advantageous) selection will not be rejected based on the joint interpretation of the estimates in the corresponding approach when we rely on

statistical significance. []n− ([]n+) indicate the number of cases of adverse (advantageous) selection if we rely solely on the signs of the coefficients.83



4.A5 Data description

Variable Description

PHI owner of private health insurance
HR 2 lowest health categories based on self assessed health
smoke now current smoker
smoke past past smoker
female women
age actual age of respondent
working respondent is employed or self employed
not work is not at the job market
retired respondent is retired
educ more than no qualification
couple married or cohabit
nwhite ethnicity recoded to non white
children respondent has children
ill1 diagnosed cardiovascular diseases
ill2 pneumological disease, asthma
ill3 arthritis, osteoporosis
ill4 cancer
ill5 psychiatric disorder, Alzheimer’s
ill6 specific eye problems
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4.A6 Estimates standard approaches

(1) (2) (3) (4)
Approach FMG FKS
Dep. var. privins HR privins privins
HR -0.034*** -0.035***

(0.000) (0.000)
time avail -0.014** -0.076*** -0.017***

(0.026) (0.000) (0.008)
female 0.020*** -0.043*** 0.018** 0.018**

(0.006) (0.000) (0.011) (0.011)
age -0.001** 0.002*** -0.001** -0.001**

(0.015) (0.000) (0.017) (0.022)
black -0.031 0.187*** -0.024 -0.024

(0.266) (0.000) (0.392) (0.381)
couple 0.037*** -0.064*** 0.035*** 0.035***

(0.000) (0.000) (0.000) (0.000)
children -0.033*** 0.030** -0.033*** -0.032***

(0.003) (0.018) (0.004) (0.005)
educ 0.072*** -0.107*** 0.069*** 0.068***

(0.000) (0.000) (0.000) (0.000)
working 0.011 -0.132*** 0.009 0.007

(0.185) (0.000) (0.271) (0.441)
not work 0.006 0.152*** 0.012 0.011

(0.446) (0.000) (0.123) (0.148)
smoke now -0.053*** 0.162*** -0.048*** -0.048***

(0.000) (0.000) (0.000) (0.000)
smoke past -0.012 0.053*** -0.010 -0.010

(0.120) (0.000) (0.192) (0.188)
cons 0.087** 0.362*** 0.087** 0.100***

(0.014) (0.000) (0.013) (0.005)
N 31431 31431 31431 31431

Notes: All columns show coefficients from a linear probability model. Columns 1 and 2 are
estimates from the FMG approach, whereas columns 3 and 4 reflect the coefficients based on
FKS. Regional dummies are included and standard errors are clustered at individual level;
p-values in parentheses. * p <0.10, ** p <0.05, *** p <0.01
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Chapter 5

The Relationship Between Public

Health Insurance and Informal

Transfer Networks in Ghana1

5.1 Introduction

In the developing world, individual access to health services is largely determined by

income. The ‘cash and carry’ system that is prevalent in most developing countries

restricts medical access to the amount of money directly paid to healthcare providers.

In order to be able to afford treatment costs, many poor households rely on infor-

mal transfers within networks of relatives or neighbours. These support schemes

are important and beneficial, since the risk of becoming sick can be shared with

other members of the network (Fafchamps, 2008). An individual’s engagement in

an informal transfer network is usually governed by two main motives: altruism and

reciprocity (Leider et al., 2009). Altruism is a preference for contributing without

expectations of being rewarded, while reciprocity is based on an exchange motive

with the prospect of future benefits (e.g., Cox, 1987; Ligon and Schechter, 2012).

Support schemes can be a crucial insurance mechanism in times of severe hardship

in Ghana (Tsai and Dzorgbo, 2012) and frequently support individuals during the

more vulnerable stages of their lives, e.g., when they are young or very old (Kabki,

2007).

However, these networks can provide inadequate protection if many members are

suffering from economic hardship or refuse to contribute due to personal conflicts

1This study is joint work with Christoph Strupat. See Klohn and Strupat (2013) for an older
working paper.
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(Townsend, 1994; Morduch, 1999). Kinship networks in particular are often char-

acterized by strong sharing obligations, meaning productive network members face

demands for transfers from less productive relatives (Platteau, 2000; Hoff and Sen,

2005; Di Falco and Bulte, 2011). This redistributive pressure can adversely affect the

incentives for enterprise-owning network members to invest in their own businesses

(Grimm et al., 2013) or save above a certain amount (Duflo et al., 2009; Wahhaj,

2010; Brune et al., 2015). Thus, adverse incentives prevent members from improving

their economic situations and may be an important barrier to economic transition.

To overcome the imperfections of informal transfer networks and help relatively

productive individuals such as enterprise owners develop their full economic poten-

tial, formal health insurance schemes or micro-insurance are seen as an important

remedy (Landmann et al., 2012). In recent years, some developing countries (India,

Ghana and Nigeria) have introduced country-wide health insurance schemes, while in

other countries many micro-insurance initiatives have been launched to complement

informal insurance mechanisms. While there is already some empirical evidence for

the crowding out of informal mechanisms after receiving public transfers (Dercon

and Krishnan, 2003; Pavan and Colussi, 2008; Oruč et al., 2011), there have been

few studies into the relationship between formal insurance and informal transfer

networks. None of these studies have investigated the effect of a formal, nationwide

health insurance scheme. Attanasio and Rıos-Rull (2000) provide theoretical and em-

pirical evidence that formal insurance crowds out informal insurance and potentially

increases welfare in Mexico. Dubois et al. (2008) analyse the interaction between

formal and informal agreements using data from Pakistan. They assert that pol-

icy interventions can complement or weaken informal cooperation. Landmann et al.

(2012) ran an experiment in the rural Philippines and showed that formal insur-

ance can lead to lower voluntary transfers among network members. In a theoretical

and experimental analysis, Lin et al. (2014) found that introducing formal insurance

significantly crowds out private transfers and reduces income inequality.

To the best of our knowledge, this chapter provides the first empirical evidence

on whether informal transfers are affected by a formal, nationwide health insurance

scheme. The launch of the Ghanaian National Health Insurance Scheme (NHIS) in

2003, coupled with differences in the date of implementation between local districts,

makes Ghana an ideal setting for examining the relationship between formal health

insurance and informal transfer networks. We also examine the impact of the NHIS

on health-related outcomes such as health status and out-of-pocket (OOP) payments,

which may help understand how the implementation of the NHIS has affected infor-
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mal transfers. Our study contributes to the literature in three ways. First, while

many studies on this topic use experimental methods that may have limited exter-

nal validity, we use survey data which is representative for the entire population.

Second, we look at the exogenous introduction of a public health insurance scheme

using a quasi-experimental setup that allows us to evaluate the causal impact of a

formal health insurance scheme on informal transfer behaviour. Third, as sharing

obligations are generally strong within kinship networks in Ghana (Udry and Con-

ley, 2004), we use detailed information on the relationship status between donors

and recipients of transfers (e.g., parents, siblings, non-relatives) to explore whether

the impact of the NHIS varies with relationship status.

As the health insurance scheme was implemented on different dates by most dis-

trict authorities between 2005 and 2006, we use the fifth wave of the Ghanaian Living

Standard Household Survey (GLSS), which was conducted over a 12-month survey

period (October 2005 to September 2006). The districts in this cross-sectional house-

hold survey contain enumeration areas (which we call sub-districts in the following)

that were interviewed in different months during the survey period. We use this vari-

ation in interview dates for our identification strategy. In particular, we are able to

identify the sub-districts that were interviewed before and after the implementation

of the NHIS, as we use the exact implementation dates of the NHIS, which vary at

the district level. In addition, we also identify those districts that implemented the

NHIS after the survey period. Thus, our identification strategy uses a difference-

in-difference framework comparing individuals at different points in time (interview

months) who live in districts where the NHIS has been implemented with individuals

where it has not.

In our empirical analysis, we first estimate a linear probability model (LPM) to

evaluate the extent to which the implementation of the NHIS influenced the prob-

ability of sending or receiving regular transfers2. In a second step, we investigate

the extent to which the NHIS affected the number of transfers sent and received.

Our econometric specifications control for district-specific unobserved characteristics

(such as supply-side healthcare provision factors) and seasonality during the course

of the year. We also examine the impact of the NHIS on health-related outcomes

such as the probability of low health status (reflecting whether a respondent had to

stop usual activities for two weeks), the number of sick days during the previous two

weeks and OOP expenditures.

2We use variables that show whether household members send and receive transfers in the form
of money or goods on a weekly, monthly or quarterly basis within Ghana.
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We find that introducing a formal health insurance scheme has no effect on health,

but substantially reduces OOP expenditures, which in turn lowers the need for reg-

ular informal transfers for health purposes. As a consequence, we find a reduction

in remittances to other households for health purposes. In particular, the amount of

remittances to non-relatives is reduced, which might be due to relatively low sharing

obligations between unrelated network members. As the NHIS covers all outpa-

tient/inpatient services and also treatment for chronic diseases, our results show

that it is not only ill individuals who benefit financially from the NHIS, but also

donors who are relieved of their financial burden.

The remainder of this chapter is organized as follows. Section 2 introduces the

theoretical framework of our study and provides information about the national

health insurance scheme in Ghana. In section 3 we describe the data and provide

details about our identification strategy. Section 4 presents the results and further

robustness checks. Finally, section 5 concludes with a summary of the main findings

and a research outlook.

5.2 Theoretical Framework and the National

Health Insurance Scheme in Ghana

5.2.1 Theoretical Framework

In Ghana, reciprocity is widespread and often necessary to reduce economic insecu-

rity, building trust and solidarity within transfer networks (Udry and Conley, 2004).

From an economic perspective, reciprocity is an exchange motive with respect to

future benefits (e.g., Cox, 1987; Ligon and Schechter, 2012) which drives the forma-

tion of transfer networks as an informal institution and provides signals for being

trustworthy which can foster an individual’s social status. In Ghana, transfer net-

works are largely made up of relatives, forming kinship networks in which reciprocal

transfers are used to generate responsibility and obligations between network mem-

bers. These networks can provide a crucial insurance mechanism in times of severe

hardship (Tsai and Dzorgbo, 2012), but also regularly support individuals during the

more vulnerable stages of their lives, e.g., when they are young or very old (Kabki,

2007). Thus, reciprocity is an important driver for participating in informal transfer

networks in Ghana, either through direct financial benefits due to risk sharing, or

through indirect benefits such as increased social status within the community.

Against this background, our theoretical framework assumes that an individual’s
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engagement in an informal transfer network is determined by the exchange motive

(reciprocity). In line with Morduch (1999), the framework is based on two individuals

who form a transfer network with repeated interactions over time. Both individuals

contribute to the network until one individual reneges on the arrangement. Hence,

there is a trade-off between leaving the network today and future benefits from

further participation. A rational individual will make a cost-benefit analysis which

consists of three components: (future) benefits of the reciprocal arrangement in

terms of received transfers, costs as determined by (current) transfer payments to

the network partner and finally exit costs for leaving the network, as determined by

the relationship between network partners and their respective sharing obligations.

This analysis also contains opportunity costs due to a possible (partial) substitute

(e.g., a formal insurance scheme). Including exit costs is in line with the social

network analysis literature, which characterises networks between immediate family

members as generally closed and associated with strong sharing obligations and high

(psychological) exit costs (Granovetter, 1973; Grimm et al., 2013). In contrast,

networks between non-relatives are often characterised by lower sharing obligations

and exit costs.

The decision to stay in the network is negatively correlated with opportunity costs

and (current) transfer payments. In contrast, it is positively correlated with expected

benefits and exit costs. If, for example, transfer payments to the network partner are

low and the expected benefits of this reciprocal arrangement are high, the individual

will stay within the network. After the introduction of a formal insurance scheme,

new opportunity costs can change this decision if overall costs (including opportunity

costs) exceed expected benefits. Thus, an individual with higher opportunity costs

may decide to leave the network or reduce transfer payments. Importantly, high

(low) exit costs will decrease (increase) the probability of reducing the contribution

to the network.

Two predictions arise from our simple theoretical framework. First, we expect

that the availability of the NHIS will decrease informal network participation at the

extensive and intensive margin, for both sending and receiving transfers. Second, we

expect that the degree of crowding out will depend strongly on the relationship status

and sharing obligations between the network partners, i.e., the closer the relationship

(strong kinship ties and high exit costs), the lower the crowding out.
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5.2.2 The National Health Insurance Scheme in Ghana

The Ghanaian Parliament passed the National Health Insurance Scheme into law

in 2003. The scheme was incrementally implemented at the district level by the

end of 2006. The aim of the scheme is to provide healthcare services to a broad

swathe of the population and to establish an alternative to the existing ‘cash and

carry’ system. The insurance covers all basic outpatient, inpatient and dental health

services such as X-rays, blood tests, malaria treatments, surgical operations and

maternal care services (e.g., antenatal care, deliveries and postnatal care). In this

latter category, the NHIS has been effective in improving health outcomes for recent

mothers, who are now more likely to receive prenatal care, deliver at a hospital, have

their deliveries attended by trained health professionals and experience fewer birth

complications (Mensah et al., 2010).

Membership in the health insurance scheme is voluntary for all adults (age 14-69)

who work in the informal sector, such as self-employed individuals, while membership

is mandatory for formal sector employees, with insurance premiums deducted from

their monthly payrolls. The income-related insurance premium varies between a min-

imum of 7.2 Ghanaian cedis (GHC) (US$3) and a maximum of 48.0 GHC (US$19),

paid on an annual basis.3 All children under 14 whose parents have enrolled in the

scheme and all people over 69 are covered by the insurance but exempted from paying

premiums.

The NHIS is monitored and regulated by the National Health Insurance Authority

(NHIA). Covered health services are mainly financed by a health insurance levy (a

2.5% addition to the value added tax), payment of insurance premiums and money

allocated by the government. The NHIA licenses district mutual health insurance

schemes (DMHISs) that are established by the district authorities to collect sufficient

insurance premiums to meet the expected healthcare claims within each district.

After a DMHIS has paid two million GHC into the NHIA, and health insurance

cards have been distributed to inhabitants who paid the insurance premium, the

DMHIS is officially launched and all basic healthcare services are covered by the

insurance (Seddoh et al., 2011). As acceptance of health insurance and the financial

ability of each district varies, the DMHISs were implemented at different dates, with

most district authorities launching the scheme in 2005 and 2006.

31GHC=0.4US$
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5.3 Data and Identification Strategy

5.3.1 Data Description

Our analysis uses the fifth wave of the Ghana Living Standards Survey (GLSS5),

which is based on interviews conducted by the Ghana Statistical Office and the

World Bank during the period between October 2005 and September 2006. This

nationwide survey contains socio-economic variables measured at the individual and

household levels, including information on informal transfer networks. It is the source

for a nationally representative sample of 8,687 households living in 110 districts and

580 sub-districts, with 37,128 household members.

Our treatment variable is a binary indicator representing the availability of the

NHIS in an individual’s district. In order to construct this variable, we collected the

exact implementation dates of the NHIS at the district level by contacting district

officials and using district-specific media reports on health insurance. Figure 5.1

shows how the NHIS implementation evolved over time and districts.4 The two

dashed lines indicate the start and end of the survey period.

Figure 5.1 NHIS availability at the district level

As measures for participating in reciprocal transfer networks, we define variables

that show whether household members sent or received transfers in the form of

money or goods on a weekly, monthly or quarterly basis within Ghana. In addi-

tion, we also use information on the number of transfers made and received. These

regular transfers include no labour compensation for extended family members or

4We use 90 out of 110 districts for our analysis, as the district authorities provided the exact
date of the NHIS implementation.
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neighbours who work in a business linked to the household. Most of these transfers

occurred within inner family networks, especially to children/parents (50 percent)

and extended family members such as grandparents, cousins and aunts and uncles

(15 percent), while transfers to non-relatives were less common (35 percent). Al-

though we analyse the short-term effects of the policy, we combine all monetary

values into an annual amount to simplify comparisons with other financial informa-

tion that is provided on an annual basis. As 42 percent of all household members did

not provide information for both transfer variables, we investigate the impact of the

NHIS implementation on sent and received transfers separately.5 Thus, our analysis

focuses on all individuals who are not exempted from premium payments. 5,956

individuals living in 2,710 households gave information on regularly sent transfers,

while information on regularly received transfers was available for 4,985 individuals

in 2,611 households.

5.3.2 Identification Strategy

To investigate the relationship between informal transfer networks and formal health

insurance, our identification strategy is based on a quasi-experimental setup. We

collected data on the precise implementation dates for the NHIS at the district level,

i.e., when health insurance coverage became available, and benefit from the fact that

the district’s sub-districts were surveyed at different points during the survey period

between October 2005 and September 2006. As most districts introduced the NHIS

during this survey period, we were able to use the variation in interview dates to

compare individuals who were interviewed before and after the introduction of the

insurance scheme. However, some districts did not implement the NHIS during the

survey period or were entirely surveyed before it was implemented. For instance,

the Nkwanta district in the Volta region is divided into eight sub-districts, four of

which were surveyed in November 2005, with the other four interviewed in March

2006. The Nkwanta district introduced the NHIS in January 2006. In comparison,

the Nanumba district also consists of eight sub-districts and was surveyed during the

same months, but the NHIS was not implemented until July 2006.

Thus, in our identification strategy we compare individuals at different points in

time (interview months) that are living in districts where the NHIS is implemented

5We also have information on the purpose of the transfers, obtained via the question: ‘Please
rank the three main uses of sent/received transfers?’. 58 percent indicated ‘health’ as one of the
two main reasons for making transfers. However, as this question is entirely self-assessed and does
not allow us to make quantitative statements, we stick with the general indicator.
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and where it is not, once time- and district-fixed effects are partialled out. In or-

der to control for time-invariant district characteristics such as financial ability or

health infrastructure that are likely to be correlated with both the timing of NHIS

implementation and our dependent variables, we include district dummies into all

our specifications. We also include interview month dummies in order to allow for

changes in the macroeconomic situation during the course of the year, which likely

affect individuals in the treatment and control group similarly. More formally, our

estimates are based on the following equation:

yidt = β0 + β1NHISidt + µd + δt + εidt (5.1)

The dependent variable yidt indicates if respondent i that lives in district d and

was surveyed in month t, makes (receives) transfers. This variable is regressed on the

binary treatment variable NHISidt, which takes the value 1 if the respondent was

surveyed after the district implemented the NHIS and 0 otherwise. β0 is a constant,

while µd represents district fixed effects and δt interview month fixed effects. The

results we provide are based on variation which is orthogonal to the district- and

time-specific part of our specification’s error term. In accordance with the concept

of potential outcomes (Rubin, 1974, 1977), our identification strategy is based on the

assumption:

E(y0idt|d, t) = µd + δt (5.2)

i.e., if the NHIS had not been implemented, the potential outcomes, y0idt, would

solely depend on district-specific levels, µd, and common time effects, δt (cf. Angrist

and Pischke, 2009). As discussed above, in our application the length of time periods

before and after the introduction depends on the time of the interview and the date

when the insurance scheme was introduced. In order to increase the precision of

our estimates and to control for confounding factors that might be correlated with

the introduction of the NHIS and the dependent variable, we furthermore include

individual and household specific variables Xidt in our specifications. Such variables

reflect important socio-demographic differences but also indicate if the respondent is

living in an urban or rural sub-district.6 Thus, we extend equation (5.1):

yidt = β0 + β1NHISidt + β
′

2Xidt + µd + δt + εidt (5.3)

6The description of the variables is presented in the next section.
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Our coefficient of interest is β1, which represents an intention-to-treat effect (ITT)

i.e. the effect of an offer to participate in the NHIS on the individual’s transfer behav-

ior. This parameter has a causal interpretation, if no additional differences between

the treatment and control group exist that can be traced back to the introduction

of the NHIS. This assumption is not directly testable. As urban sub districts are

probably differently affected by changes in the economic situation, we supplement

our identification strategy by interacting the interview month with the urban eco-

logical area dummy allowing for an additional time trend and to evaluate whether

our findings are triggered by urban specific changes over time.

Our use of the variation in NHIS implementation dates across districts and the

variation in interview dates within districts has two potential sources of bias which

may confound our estimate of β1. First, the order of the NHIS rollout might have

been driven by time-invariant district characteristics that are also correlated with our

dependent variables. For example, wealthy districts that spend more than average

on transfers might have been able to implement the NHIS earlier than less affluent

districts. In order to check whether our outcome variables are fundamentally different

for districts with and without the NHIS, we provide a balance table of our dependent

variables using the fourth wave of the GLSS (1998/1999)7.

Second, interview dates may have been driven by heterogeneity between sub-

districts that also influence the potential outcomes of our analysis. If, for example,

the sub-districts were not randomly surveyed over time and the survey team inter-

viewed urban sub-districts first, this would bias our estimates for NHIS implementa-

tion. To investigate the extent to which observed changes in NHIS implementation

were triggered by structural heterogeneity among sub-districts, we conduct several

estimates as robustness checks in section 5.4. We conduct regressions using pre-

determined, time-invariant characteristics of the sub-districts and their inhabitants

such as education, gender and an indicator of whether the respondent was living

in an urban or rural sub-district as dependent variables. We also conduct placebo

regressions by using the fourth wave of the GLSS (1998/1999). Thus, we can gauge

whether a systematic relationship between the sub-districts interviewed at different

times and the dependent variable would bias our estimate of β1.

7This survey was conducted in the same manner over a 12-month period between 1998 and 1999
and contains the same number of districts as the GLSS from 2005/2006.
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5.3.3 Estimation Models

We begin by generating a linear probability model (LPM) to evaluate whether the

introduction of the NHIS influenced the probability that a household engaged in

transfers. Our dependent variable is a dummy variable which takes the value 1 if

the respondent transferred money or goods to non-household members and 0 if no

transfers took place. We employ the same model to investigate whether an individual

received transfers. The binary nature of the dependent variable would conventionally

suggest the estimation of a probit or logit model. Binary choice models, however,

can be problematic when applied using the least-squares dummy variable approach,

because they suffer from the incidental parameters problem and a substantial loss of

observations. In a second step, we examine the extent to which the number of sent

or received transfers was affected by the implementation of the NHIS. Therefore, we

estimate a regression model with the actual value of either sent or received transfers

as the dependent variable.

5.4 Results and Robustness Checks

Before we turn to the empirical results, Table 5.1 displays the means of our dependent

variables, distinguished by the availability of the NHIS. Less money was sent to

other households by respondents living in areas with the NHIS available. Among

the respondents able to use the NHIS, 41% sent money regularly, compared to 70%

of individuals living in areas without the NHIS. In addition, the average transfer

amount was 44 GHC less among respondents from areas without the NHIS, 38 %

less than in areas with the NHIS. To understand how the implementation of the

NHIS affected informal transfers, we also examine the impact of the NHIS on health-

related outcomes such as the probability of low health status (in which a respondent

had to stop their usual daily activities for two weeks or more), the number of sick

days taken during the previous two weeks and OOP expenditures. All indicators are

lower for sub-districts with the NHIS available.

To check whether districts with and without the NHIS were fundamentally dif-

ferent before the implementation of the NHIS, we provide a balance table that shows

the means of our dependent variables from the fourth wave of the GLSS, conducted

in 1998/1999 (see Table 5.2). As can be seen from the p-values, two-sided tests com-

paring the values for the two groups do not show statistically significant differences.

This indicates that both groups were balanced across all outcome variables before

the NHIS implementation.
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Table 5.1 Descriptive statistics

(1) (2) (3) (4) (5)
Total NHIS No NHIS Difference
mean mean mean in means p-value

Sent transfers (0/1) 0.46 0.41 0.69 -0.28 0.00
Value of sent transfers 75.77 68.49 111.95 -43.46 0.00
N 5956 4955 1001

Received transfers (0/1) 0.35 0.32 0.47 -0.15 0 .00
Value of received transfers 54.52 53.86 59.39 -5.53 0.38
N 4985 4054 931

Low health status 0.13 0.12 0.19 -0.07 0.00
Number of sick days 0.47 0.77 1.25 -0.48 0.00
Medical expenditures 33.67 31.5 45.12 -13.62 0.00
N 5009 4025 984

Notes: For our calculation we use the GLSS (2005/2006).

Table 5.2 Difference in means before the implementation of the NHIS
(GLSS 1998/1999)

(1) (2) (3) (4)
NHIS No NHIS Difference
mean mean in means p-value

Sent transfers (1/0) 0.26 0.24 0.02 0.16
Value of sent transfers 62.12 55.02 7.1 0.28
N 4807 934

Received transfers (1/0) 0.16 0.12 0.03 0.35
Value of received transfers 49.12 45.83 3.29 0.45
N 5003 926

Low health status (1/0) 0.18 0.18 0.00 0.86
Number of sick days 1.07 1.21 -0.14 0.27
Out-of-pocket expenditures 85.81 74.94 10.87 0.46
N 4807 934

Notes: Our calculations use the 1998/1999 GLSS, which was conducted over a 12-month
period between 1998 and 1999 in the same manner and for the same number of districts
as the 2005/2006 GLSS.
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Table 5.3 provides estimates of the NHIS implementation on health-related out-

comes. We find negative effects of the NHIS implementation for all outcomes. Having

the NHIS available improved health status and reduced the average number of sick

days by 0.38, but the coefficients are not statistically significant. OOP expenditures

decreased by an average of 26 GHC, a relative reduction of 58 %. Our findings are

in line with Powell-Jackson et al. (2014), who examine the impact of removing user

fees for healthcare using data from a randomized control trial in Ghana. The au-

thors also find a reduction in OOP expenditures and no statistically significant effect

on health. These results suggest that sick individuals were financially relieved by

the implementation of the NHIS. To examine whether transfer behaviour was also

affected, the first three columns in Table 5.4 present estimates from the LPM using

sent transfers as the dependent variable.

Table 5.3 Effect of NHIS implementation on health status, number of
sick days and medical expenditures

LPM OLS 1 OLS 2
Dependent Variables: Low health # of sick days OOP expend.

NHIS -0.047 -0.382 -26.320***
(0.034) (0.261) (8.578)

N 5009 5009 5009
adj. R-sq 0.030 0.041 0.027
District and interview month dummies Yes Yes Yes
Individual and HH control variables Yes Yes Yes
Urban time trend Yes Yes Yes

Notes: Standard errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05,
*** p <0.01

The first column shows the NHIS coefficient without including individual and house-

hold variables into the estimation model. We find a negative and statistically sig-

nificant effect for the NHIS dummy. The implementation of the NHIS decreased

the probability of transferring money to other households by 15 %. The size of the

coefficient remains similar if we include our control variables, which suggests that

the implementation of the NHIS is randomly assigned in terms of individual and

household specific variables. In addition, including control variables increases the

precision of our estimates, as the NHIS coefficient then becomes significant at the 5

% level.

We consider a range of variables that are typically used to control for socioe-

conomic characteristics such as education level, employment status, age and sex

(see Table in Appendix 5.A2). In addition, we include household expenditures as
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an important control variable for a household’s financial potential (Deaton, 1997).

Expenditures are corrected via a region-specific consumer price index and an equiv-

alence scale to reflect age- or sex-specific relative consumption needs (Service, 2008).

We also include a dummy that indicates whether a respondent lives in an urban sub-

district. We condition on variables that possibly determine the degree of informal

risk sharing. These are household size, marital status, owning a savings account and

migration status. We also include an urban-specific time trend (column 3) which

does not affect the size of the NHIS coefficient, indicating that our findings are not

confounded by regional changes during the survey period.

The last three columns of Table 5.4 contain the estimates for the value of sent

transfers as the dependent variable. The implementation of the NHIS led to a crowd-

ing out of 24 GHC in the specification with control variables. Interestingly, the re-

duction in OOP payments (26 GHC, see Table 5.3) is very similar to the reduction

in sent transfers (24 GHC), which suggests that sick individuals and donors were

financially relieved by the implementation of the NHIS.

Table 5.4 Effect of the NHIS implementation on sending transfers

LPM 1 LPM 2 LPM 3 OLS 1 OLS 2 OLS 3

NHIS -0.148* -0.146** -0.148** -23.803 -24.172* -23.723*
(0.079) (0.061) (0.060) (14.866) (14.130) (14.005)

N 5956 5956 5956 5956 5956 5956
adj. R-sq 0.061 0.163 0.164 0.023 0.150 0.150
District and interview month dummies Yes Yes Yes Yes Yes Yes
Individual and HH control variables No Yes Yes No Yes Yes
Urban time trend No No Yes No No Yes

Notes: Standard errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05,
*** p <0.01; See Appendix 5.A3 for detailed regression outputs.

To determine whether there is also a reduction in received transfers, we use our

estimates with received transfers as the dependent variable. The coefficients indicate

a negative but statistically insignificant relationship between the implementation of

the NHIS and receiving transfers for all models (see Table 5.5). Looking at the

estimates for the value of received transfers as our dependent variable shows the size

of the coefficients is small and statistically insignificant.

Based on our theoretical framework, we would expect received transfers to also be

affected by the NHIS implementation. One economic explanation for our empirical

findings could be asymmetric information between network partners. As the NHIS

was disseminated gradually, individuals who were already covered by the insurance

might still have received transfers from districts where the NHIS was not available.
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Table 5.5 Effect of the NHIS implementation on receiving transfers

LPM 1 LPM 2 LPM 3 OLS 1 OLS 2 OLS 3

NHIS -0.089 -0.081 -0.086 -1.926 -0.835 -0.640
(0.092) (0.106) (0.105) (14.649) (14.919) (15.247)

N 4985 4985 4985 4985 4985 4985
adj. R-sq 0.040 0.091 0.091 0.007 0.065 0.065
District and interview month dummies Yes Yes Yes Yes Yes Yes
Individual and HH control variables No Yes Yes No Yes Yes
Urban time trend No No Yes No No Yes

Notes: Standard errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05,
*** p <0.01; See Appendix 5.A4 for detailed regression outputs.

Unfortunately, we cannot test this hypothesis, as we cannot determine which districts

the donor and recipient from the same network live in; however, a growing body of

empirical literature has shown that information asymmetries play a crucial role in

remittance decisions (Ashraf, 2009; Jakiela and Ozier, 2012; Ambler, 2015).

We next assess whether the size of the crowding out depends on the relation-

ship status and sharing obligations between network partners. In order to examine

whether this factor mediates the impact of the NHIS implementation on informal

transfer behaviour, the next subsection explores the heterogeneity of the NHIS effect

using information on the relationship status between donor and recipient.

5.4.1 Treatment Heterogeneity

In order to empirically examine the role of kinship relationships in our empirical

findings, we explore the heterogeneity of the NHIS effect using information on the

relationship status between donor and recipient. We define three relationship groups:

children/parents (inner family), siblings/cousins/uncles and aunts/grandparents (ex-

tended family) and non-relatives.

First, we use the information on whether a respondent received transfers from

these three groups as dependent variables and estimate the group-specific effects

of implementing the NHIS (see Table 5.6). The probability of receiving transfers

is negative and statistically significant if the recipient receives transfers from non-

relatives. Furthermore, the estimates show that the probability of receiving less is

reduced the closer the relationship between recipient and donor, which is in line with

the second prediction of our theoretical framework: that the degree of the crowding

out depends on the relationship status and sharing obligations (exit costs) between

network participants. Thus, it seems that the closer the relationship (strong sharing
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obligations), the lower the crowding out.

Table 5.6 Effect of the NHIS implementation on received transfers from
different donors

Transfers received from: Children/ Ext. Family/ Non- Children/ Ext. Family/ Non-
Parents Siblings relatives Parents Siblings relatives
LPM 1 LPM 2 LPM 3 OLS 1 OLS 2 OLS 3

NHIS -0.071 -0.141 -0.155* 13.884 -4.847 -14.625
(0.111) (0.112) (0.088) (15.794) (16.289) (9.062)

N 4018 3590 3706 4018 3590 3706
adj. R-sq 0.158 0.071 0.078 0.041 0.044 0.037

Notes: Individual and household control variables are included. District and month dummies are
included. Standard errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05,
*** p <0.01

The results at the intensive margin for receiving transfers from different donors show

a positive but statistically insignificant effect for children/parents as donors. Con-

versely, we find a negative effect for non-relatives which is close to being statistically

significant at the 10 % level. As the share of received transfers from inner family

members (children/parents) is similar to the share of received transfers from non-

relatives (see Appendix 5.A1), the effects offset each other on average. Thus, in

combination with the asymmetric information between network partners, hetero-

geneity in the treatment effect (i.e., the availability of the NHIS) can explain why

we only found a small effect of NHIS implementation on transfers received.

Second, we use the information on whether a respondent sent transfers to chil-

dren/parents (inner family), extended family members and non-relatives as depen-

dent variables (see Table 5.7). Compared to transfers received, we find the same

kind of pattern for the NHIS effect across the three groups at the extensive and

intensive margins. Interestingly, we do not find the same offsetting effect as with

received transfers, as donors substantially reduced remittances to non-relatives after

implementation of the NHIS. Thus, the crowding out effect is mainly driven by a

short-term reduction in remittances to non-relatives. In addition, the coefficients for

sent transfers are lower than those for received transfers, which again emphasizes the

importance of asymmetric information on insurance status across districts. If this is

the case, recipients who were already covered by the NHIS would still receive trans-

fers from network partners who were not aware that the NHIS had been implemented

in their network partner’s district.

As the NHIS covers all basic outpatient/inpatient services and also treatment for

chronic diseases, it is likely that the crowding out effects are largest for individuals
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Table 5.7 Effect of the NHIS implementation on transfers sent to
different recipients

Transfers sent to: Children/ Ext. Family/ Non- Children/ Ext. Family/ Non-
Parents Siblings relatives Parents Siblings relatives
LPM 1 LPM 2 LPM 3 OLS 1 OLS 2 OLS 3

NHIS -0.081 -0.182** -0.259*** 1.821 -6.158 -38.331*
(0.085) (0.086) (0.078) (19.562) (10.102) (22.619)

N 4136 3623 3813 4136 3623 3813
adj. R-sq 0.114 0.154 0.186 0.144 0.095 0.051

Notes: Individual and household control variables are included. District and month dummies are
included. Standard errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05,
*** p <0.01

sending/receiving regular transfers for health purposes. To investigate whether this

is indeed the case, we use information on the purposes of transfers. 58 percent of

respondents indicated ‘health’ as one of the main two reasons for sending/receiving

regular transfers. Table 5.8 contains estimated coefficients for a regression model us-

ing the values of regular transfers made for different purposes as dependent variables.

The results indicate that, after the implementation of the NHIS, donors mainly re-

duced transfers made for health reasons, which is in line with the negative impact of

the NHIS on OOP expenditures (see Table 5.3).

Table 5.8 Effect of the NHIS implementation on transfers sent for
different purposes

Dep. var.: Health Daily consumption Education Housing

NHIS -28.785** -1.048 -12.413 -4.496
(14.512) (5.317) (14.028) (5.694)

N 3849 3422 3784 3278
adj. R-sq 0.101 0.060 0.142 0.062

Notes: Individual and household control variables are included. Dis-
trict and month dummies are included. Standard errors (in paren-
theses) are clustered at the district level. * p <0.10, ** p <0.05, ***
p <0.01

5.4.2 Robustness Checks

We next examine whether the sequencing of the NHIS implementation within dis-

tricts, i.e., on the sub-district level, confounds our identification strategy. Follow-

ing our baseline specification (equation (5.1)), we conduct regressions using time-
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invariant and predetermined characteristics such as education level, gender and re-

gional characteristics as dependent variables. The results show that the implementa-

tion of the NHIS has no effect on these time-invariant and pre-determined character-

istics (see 5.A5 and 5.A6 in the Appendix). We also estimate the effect of the NHIS

on our main outcome variables by using the fourth wave of the GLSS to test whether

our findings are confounded by the timing of interviews between sub-districts. As

this wave was conducted in the same manner and contains the same districts, we

can adapt the NHIS variable for that time and provide a placebo estimate. The

results show that the implementation of the NHIS had no significant effect on the

probability of sending or receiving transfers (see Appendix 5.A7). In addition, no

significant effect was found for the monetary equivalents.

Overall, we conclude that our findings are due to the implementation of the

NHIS and are not driven by a systematic relationship between the NHIS rollout,

sub-districts, interview dates and the outcome variables.

As a certain amount of insurance premiums had to be collected before the NHIS

was officially launched in each district, most individuals had to pay premiums before

actually being able to benefit from insurance coverage. Thus, we explore whether

individuals changed their transfer behaviour in anticipation of the official launch of

the NHIS. If this was the case, our estimates could be biased. To investigate the

presence of this bias, we ‘shift’ our treatment indicator backwards by two months.

The results indicate no significant changes in transfer behaviour before the scheme

was officially launched (see 5.A8 in the Appendix of this chapter). Thus, changes in

transfer behaviour are only found once district authorities had officially launched the

NHIS and healthcare services were freely available for premium payers. This suggests

that the respondents did not substitute premium payments by reducing remittance

to other households.

5.5 Conclusion

This chapter provided empirical evidence that a formal health insurance scheme

crowds out regular informal transfers in Ghana. We analysed cross-sectional data

from the fifth Ghanaian Living Standard Survey, which benefited from the fact that

various sub-districts were surveyed at different times during the survey period. As

most districts introduced the NHIS during this period, we compared different in-

dividuals who were interviewed before and after the introduction of the insurance

scheme. We evaluated whether the availability of formal insurance resulted in re-
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duced contributions to informal transfer networks and also investigated the impact

of the NHIS on health-related outcomes. We also investigated whether our results

were due to the relationship status and level of sharing obligations between network

partners. We differentiated between three groups: Children/parents (inner family),

siblings/cousins/aunts and uncles (extended family) and non-relatives. We also ex-

plored whether the results were driven by different reasons for making transfers. Our

findings suggest that there is a crowding out effect, since the introduction of the for-

mal health insurance scheme reduced the probability of making transfers. The value

of remittances also decreased to a significant extent, due to a reduction in transfers

for health purposes. Our analysis of health-related outcomes found that the NHIS re-

duced respondents’ OOP expenditures. Interestingly, the reduction in expenditures

was very similar to the reduction in sent transfers. We also found that the closer

the relationship between recipient and donor, the lower the crowding out. Thus,

the degree of crowding out depends strongly on the relationship status and sharing

obligations between network partners. As the NHIS covers all basic outpatient and

inpatient services, such as blood tests and malaria treatments, and also maternity

care services, we interpret our results as indicating that it is not only ill individuals

who benefit financially from the NHIS: donors have also been financially relieved by

the implementation of the NHIS.

This effect seems most relevant for unrelated network partners, as they showed

the largest reduction of transfers. Lower sharing obligations and information asym-

metries make it possibly less costly for these network members to reduce transfer

payments after the implementation of the NHIS. Since the risk of default in times of

financial hardship due to health shocks is probably higher in networks characterized

by low sharing obligations, it is more beneficial for these individuals to reduce trans-

fers and rely on formal insurance mechanisms. Conversely, as we do not find large

crowding out effects for networks between immediate family members, we conclude

that it probably takes more time to convince members of networks characterized by

strong sharing obligations and high costs of leaving the network.

As we only observe changes in transfer behaviour in the short run, we believe

the effects of changes in investments or savings are likely to take more time to be-

come apparent. However, from a policy perspective it would be useful to investigate

whether the observed changes in transfer behaviour translate into higher investments

or savings in the long run. In particular, it would be interesting to investigate the

extent to which the crowding out of informal transfers is used for investments or con-

sumption purposes by also considering the direct (insurance premiums) and indirect
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costs (2.5% addition to the value added tax) of the NHIS. As the sixth round of the

GLSS is now available, a promising avenue for future research would be to examine

whether the implementation of the NHIS has on average been a net gain or loss for

covered individuals in the long run.
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Appendix Chapter 5

5.A1 Shares of sent and received transfers from/for different
donors/recipients

5.A2 Descriptive statistics

Sent transfers Received transfers
Variable Mean Mean

Household size 5.29 5.26
HH expenditures quintile 2 (0/1) 0.2 0.2
HH expenditures quintile 3 (0/1) 0.19 0.18
HH expenditures quintile 4 (0/1) 0.19 0.17
HH expenditures quintile 5 (0/1) 0.22 0.18
HH savings account (0/1) 0.29 0.23
Migrant (0/1) 0.18 0.18
Formal employment (0/1) 0.13 0.09
Informal employment (0/1) 0.06 0.06
Self employment (0/1) 0.79 0.81
Primary school (0/1) 0.16 0.16
Junior high school (0/1) 0.17 0.17
Secondary high school (0/1) 0.27 0.23
Technical school (0/1) 0.05 0.04
University (0/1) 0.02 0.01
Female (0/1) 0.54 0.55
Age 37.04 0.61
Married (0/1) 0.61 37.48
Urban (0/1) 0.32 0.28

Number of observations 5956 4985
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5.A3 Effect on sent transfers (detailed output)

LPM 1 LPM 2 LPM 3 OLS 1 OLS 2 OLS 3

NHIS -0.148* -0.146** -0.148** -23.803 -24.172* -23.723*
(0.079) (0.061) (0.060) (14.866) (14.130) (14.005)

Household size 0.018*** 0.018*** 5.395*** 5.390***
(0.004) (0.004) (1.197) (1.196)

HH expenditures Q2 0.086*** 0.085*** 26.224*** 26.318***
(0.031) (0.031) (7.742) (7.741)

HH expenditures Q3 0.117*** 0.116*** 40.484*** 40.671***
(0.037) (0.037) (10.417) (10.390)

HH expenditures Q4 0.134*** 0.133*** 52.712*** 52.933***
(0.039) (0.039) (9.503) (9.472)

HH expenditures Q5 0.263*** 0.264*** 111.333*** 111.184***
(0.041) (0.041) (11.463) (11.395)

HH savings account 0.138*** 0.139*** 41.733*** 41.469***
(0.022) (0.023) (6.962) (6.989)

Migrant -0.004 -0.002 10.388 10.040
(0.023) (0.023) (8.321) (8.288)

Formal employment 0.343*** 0.347*** 69.156*** 68.382***
(0.041) (0.041) (13.421) (13.479)

Informal employment 0.099** 0.099** 8.514 8.464
(0.044) (0.044) (7.622) (7.663)

Self employment 0.211*** 0.214*** 56.270*** 55.815***
(0.029) (0.028) (9.284) (9.252)

Primary school -0.007 -0.007 0.495 0.462
(0.023) (0.023) (5.602) (5.617)

Junior high school 0.002 0.000 5.543 5.846
(0.019) (0.019) (5.565) (5.689)

Secondary high school 0.030* 0.029 19.585*** 19.798***
(0.018) (0.018) (5.408) (5.426)

Technical school 0.046 0.046 38.429*** 38.441***
(0.032) (0.032) (11.703) (11.702)

University 0.067 0.064 95.394*** 95.807***
(0.042) (0.043) (22.007) (22.052)

Female -0.036*** -0.036*** -4.623 -4.543
(0.010) (0.010) (2.811) (2.819)

Married 0.042*** 0.041*** 2.843 3.009
(0.014) (0.014) (4.224) (4.226)

Age 0.005* 0.005* 0.998 0.992
(0.003) (0.003) (0.817) (0.816)

Age squared -0.000** -0.000** -0.013 -0.012
(0.000) (0.000) (0.009) (0.009)

Urban -0.117*** -0.165*** -14.373 -5.313
(0.032) (0.057) (10.588) (17.425)

Urban time trend 0.009 -1.700
(0.008) (2.443)

N 5956 5956 5956 5956 5956 5956
adj. R-sq 0.061 0.163 0.164 0.023 0.150 0.150

Notes: Individual and household control variables are included. District and month dummies are
included. Standard errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05,
*** p <0.01
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5.A4 Effect on received transfers (detailed output)

LPM 1 LPM 2 LPM 3 OLS 1 OLS 2 OLS 3

NHIS -0.089 -0.081 -0.086 -1.926 -0.835 -0.640
(0.092) (0.106) (0.105) (14.649) (14.919) (15.247)

Household size 0.001 0.001 1.299 1.294
(0.004) (0.004) (0.992) (0.996)

HH expenditures Q2 0.008 0.008 7.634 7.651
(0.036) (0.036) (5.772) (5.783)

HH expenditures Q3 -0.011 -0.011 12.063 12.084
(0.032) (0.032) (8.118) (8.139)

HH expenditures Q4 0.038 0.038 28.051*** 28.060***
(0.035) (0.036) (10.149) (10.139)

HH expenditures Q5 0.062 0.065 37.260*** 37.169***
(0.044) (0.044) (11.628) (11.641)

HH savings account 0.002 0.001 -1.829 -1.818
(0.025) (0.025) (5.365) (5.351)

Migrant -0.050** -0.049** -10.681* -10.705*
(0.023) (0.023) (5.398) (5.397)

Formal employment -0.355*** -0.350*** -112.921*** -113.099***
(0.052) (0.052) (22.358) (21.980)

Informal employment -0.287*** -0.286*** -98.208*** -98.264***
(0.066) (0.065) (27.237) (27.061)

Self employment -0.303*** -0.301*** -110.627*** -110.687***
(0.054) (0.053) (24.165) (24.001)

Primary school -0.001 -0.001 2.989 2.995
(0.019) (0.019) (4.014) (4.027)

Junior high school 0.033 0.031 8.671 8.738
(0.022) (0.023) (5.512) (5.576)

Secondary high school 0.010 0.007 13.813** 13.905**
(0.025) (0.025) (6.213) (6.340)

Technical school 0.043 0.042 28.391** 28.432**
(0.041) (0.041) (12.034) (12.125)

University -0.019 -0.020 11.981 12.022
(0.045) (0.046) (15.392) (15.398)

Female 0.065*** 0.065*** 22.136*** 22.137***
(0.013) (0.013) (4.115) (4.116)

Married -0.059*** -0.060*** -7.755* -7.724*
(0.017) (0.016) (4.597) (4.548)

Age -0.011*** -0.011*** -2.402*** -2.405***
(0.003) (0.003) (0.622) (0.626)

Age squared 0.000*** 0.000*** 0.032*** 0.032***
(0.000) (0.000) (0.008) (0.008)

Urban -0.020 -0.074 -7.809 -5.806
(0.033) (0.067) (6.941) (16.660)

Urban time trend 0.010 -0.360
(0.011) (2.645)

N 4985 4985 4985 4985 4985 4985
adj. R-sq 0.043 0.091 0.091 0.007 0.065 0.065

Notes: Individual and household control variables are included. District and month dummies are
included. Standard errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05,
*** p <0.01
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5.A5 Effect of the NHIS implementation on time-invariant
characteristics 1

Primary Jun. High Secondary Technical
Urban Female Married School School School School University

NHIS -0.039 0.019 -0.184 -0.027 0.037 -0.024 -0.017 -0.017
(0.122) (0.038) (0.177) (0.033) (0.029) (0.035) (0.022) (0.019)

N 5956 5956 5956 5956 5956 5956 5956 5956
adj. R-sq 0.112 0.002 0.002 0.002 0.002 0.006 0.013 0.004

Notes: Sample of made transfers is used. District and month dummies are included. Standard
errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05, *** p <0.01

5.A6 Effect of the NHIS implementation on time-invariant
characteristics 2

Primary Jun. High Secondary Technical
Urban Female Married School School School School University

NHIS -0.139 0.036 -0.027 0.006 0.025 -0.021 0.011 -0.005
(0.118) (0.035) (0.056) (0.034) (0.041) (0.051) (0.020) (0.007)

N 4985 4985 4985 4985 4985 4985 4985 4985
adj. R-sq 0.060 0.001 0.001 0.002 0.001 0.006 0.011 0.001

Notes: Sample of received transfers is used. District and month dummies are included. Standard
errors (in parentheses) are clustered at the district level. * p <0.10, ** p <0.05, *** p <0.01

5.A7 Placebo effect of the NHIS implementation

Variables Transfers Amount of Received Amount of Low health # of OOP
made (1/0) made transf. transfers (1/0) received transf. status (1/0) sick days expend.

NHIS 0.19 6.41 -0.05 -6.33 -0.04 -0.29 0.19
(0.15) (4.57) (0.04) (19.80) (0.05) (0.42) (0.26)

N 5741 5741 5929 5929 5741 5741 5741

Notes: GLSS 1998/1999 is used. Individual and household variables are included. District and
month dummies are included. Standard errors (in parenthesis) are clustered at the district level. *
p <0.10, ** p <0.05, *** p <0.01
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5.A8 NHIS shift

Sent Transfers Received Transfers
LPM (t-2) LPM (t-1) LPM (t-2) LPM (t-1)

NHIS -0.033 -0.10 0.022 -0.085
(0.095) (0.101) (0.122) (0.146)

Household size 0.082*** 0.080** -0.002 -0.005
(0.031) (0.031) (0.035) (0.036)

HH expenditures Q2 0.116*** 0.115*** -0.014 -0.016
(0.036) (0.036) (0.033) (0.034)

HH expenditures Q3 0.132*** 0.130*** 0.023 0.021
(0.038) (0.039) (0.037) (0.037)

HH expenditures Q4 0.257*** 0.256*** 0.075* 0.073
(0.040) (0.040) (0.045) (0.045)

HH expenditures Q5 0.042*** 0.043*** -0.057*** -0.057***
(0.014) (0.014) (0.016) (0.017)

HH savings account 0.135*** 0.135*** 0.021 0.021
(0.022) (0.022) (0.025) (0.026)

Migrant 0.018*** 0.018*** 0.003 0.002
(0.004) (0.004) (0.004) (0.004)

Formal employment 0.034 0.034 0.021 0.019
(0.021) (0.021) (0.021) (0.021)

Informal employment 0.003 0.001 -0.047** -0.049**
(0.022) (0.022) (0.022) (0.022)

Self employment 0.346*** 0.349*** -0.334*** -0.329***
(0.041) (0.041) (0.051) (0.051)

Primary school 0.099** 0.102** -0.299*** -0.296***
(0.043) (0.043) (0.057) (0.057)

Jun. high school 0.210*** 0.214*** -0.291*** -0.287***
(0.026) (0.027) (0.048) (0.049)

Sec. high school -0.007 -0.008 0.002 0.002
(0.023) (0.023) (0.020) (0.020)

Technical school -0.002 -0.001 0.031 0.031
(0.019) (0.019) (0.023) (0.023)

University 0.029 0.028 0.021 0.022
(0.017) (0.017) (0.026) (0.026)

Female 0.047 0.046 0.061 0.063
(0.031) (0.031) (0.044) (0.044)

Married 0.036*** 0.036*** -0.067*** -0.068***
(0.009) (0.009) (0.013) (0.013)

Age 0.004 0.004 -0.012*** -0.012***
(0.003) (0.003) (0.003) (0.003)

Age squared -0.000** -0.000** 0.000*** 0.000***
(0.000) (0.000) (0.000) (0.000)

N 5956 5956 4985 4985

Notes: District and month dummies are included. Standard errors (in paren-
theses) are clustered at the district level. * p <0.10, ** p <0.05, *** p <0.01
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Chapter 6

Closing Remarks

This dissertation assessed contemporary health economics research questions with an

emphasis on healthcare expenditures. We emphasised the importance of ageing in

properly predicting healthcare expenditures and the role of individual characteristics

that may be barriers to successful participation in public healthcare programmes.

We also critically discussed the methods used to detect selection and information

asymmetries in insurance markets and evaluated the impact of a formal insurance

scheme on health and participation in informal transfer networks.

First, the role of ageing and end-of-life morbidity for projecting healthcare expen-

ditures was evaluated using aggregated data from Sweden. We provided an indicator

capturing severe morbidity at the end of life to empirically distinguish a pure ageing

effect from morbidity in the context of (non-curative) long-term care expenditures.

This empirical application is of special interest in the context of countries where costs

of ageing are expected to be considerable due to an increasing share of the elderly in

the population.

Second, using survey data, we evaluated whether restrictions in individual health

decision-making processes can serve as barriers to participating in a national health-

care programme in England. If the success of a healthcare policy depends on the

behaviour of individual decision makers, policy designers must carefully account for

these individual characteristics to achieve the desired programme outcomes. We em-

pirically showed that a decline in an individual’s ability to memorise is negatively

related to their decision to participate in a public healthcare programme against

bowel cancer. We interpret this finding as an indication that participation with the

programme is suboptimal from a normative point of view if we assume that the people

in our analysis would have participated if their memory had not declined. From an

applied perspective, our findings are of interest because health policy makers should
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be able to estimate participation in a healthcare programme to be able to judge the

corresponding consequences for (public) healthcare expenditures.

Third, the dissertation contributed to detecting selection in health insurance mar-

kets. Efficiency is a major concern in the stability of private health insurance markets

across both developing an developed countries, since (additional) private health in-

surance is potentially an important part of the architecture of future healthcare

systems. However, if selection occurs in health insurance markets based on risk

which is not accounted for in risk premiums, this suggests inefficient resource alloca-

tion, potentially inducing market instability. We provided further knowledge about

commonly applied approaches used to detect selection in insurance markets based

on ‘unused characteristics’. We show that these approaches can easily lead to false

conclusions about the direction of selection, i.e., whether adverse or advantageous

selection is occurring. This knowledge should be used to empirically assess selection

in insurance markets and derive consequences for efficiency and market stability.

Fourth, we assessed the relationship between public health insurance and private

transfer networks from an economic development perspective. Using survey data

from Ghana, we analysed whether the introduction of a nationwide formal health

insurance scheme reduced participation in informal transfers. We found robust evi-

dence that the availability of the insurance scheme reduced transfers at the extensive

and intensive margin. This finding may be beneficial from a development perspective,

since the crowding out may reduce the high financial burden for employers. However,

our estimates suggest that this crowding out depends strongly on the relationship

status between network members. Since the crowding out of informal transfers at

the intensive margin is highest for transfers to non-relatives, a group where sharing

obligations are probably relatively low, overoptimistic expectations about positive

effects due to a reduction in social pressure within transfer networks should be mit-

igated. In addition, we found insurance reduced OOP health payments. Under the

assumption that resource allocation for health purposes is organised more efficiently

under a formal insurance scheme, our findings indicate that formal health insurance

can be beneficial from a development perspective.

One lesson that can be learned from this dissertation is that when mean outcomes

are emphasised in an empirical analysis, taking a closer look at subgroups can often

be fruitful for assessing heterogeneous individual behaviour or heterogeneous policy

effects. This knowledge can be used to provide a better understanding of human be-

haviour and successful policy design. For example, when estimating the role of ageing

and morbidity on LTC expenditures, we found heterogeneity for age/sex outcomes
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in different domains of LTC provision. We also found evidence that heterogeneous

effects play a role when analysing the relationship between formal insurance and in-

formal transfer networks. In the context of detecting selection in insurance markets,

it is clear that conclusions drawn using the discussed methods can be completely

misleading if group specific heterogeneity is not accounted for.

Our findings may be further used to test and develop hypotheses to generate

knowledge about decision making in many health economics contexts and to design

successful policies. Proper policy design and evaluation are key, because increas-

ing healthcare expenditures and financial restrictions in public budgets may induce

substantial burden for financing welfare states.

When detecting selection in insurance markets, future research may allow for

group-specific parameter heterogeneity to decrease the data dimension, which may

be advantageous from an empirical perspective and provide further insights into

selection mechanisms. We also see the relationship between formal and informal

markets in the context of healthcare provision and insurance as an important research

question in more developed countries. We hope our ideas and contributions will be

helpful for future research and promote the successful adjustment and design of

healthcare policies, allowing for both successful and affordable healthcare provision

in different regions of the world.
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Colombo, F., L. Ana, M. Jérôme, and T. Frits (2011). OECD Health Policy Stud-

ies Help Wanted?: Providing and Paying for Long-Term Care. Organisation for

Economic Co-Operation and Development.

Colombo, F. and N. Tapay (2004). Private health insurance in OECD countries.

OECD Health Working Papers, No. 15 .

Cox, D. (1987). Motives for private income transfers. The Journal of Political

Economy 95 (3), 508–546.

Crump, R. K., V. J. Hotz, G. W. Imbens, and O. A. Mitnik (2009). Dealing with

limited overlap in estimation of average treatment effects. Biometrika, 1–13.

115



Culyer, A. J. and A. Wagstaff (1993). Equity and equality in health and health care.

Journal of Health Economics 12 (4), 431–457.

Cutler, D. M., A. Finkelstein, and K. McGarry (2008). Preference heterogeneity

and insurance markets: explaining a puzzle of insurance. The American Economic

Review 98 (2), 157–62.

Cutler, D. M. and E. Glaeser (2005). What explains differences in smoking, drinking,

and other health-related behaviors? The American Economic Review 95 (2), 238–

242.

Cutler, D. M. and A. Lleras-Muney (2010). Understanding differences in health

behaviors by education. Journal of Health Economics 29 (1), 1–28.

Cutler, D. M. and R. J. Zeckhauser (2000). The anatomy of health insurance. Hand-

book of Health Economics 1, 563–643.

Cylus, J., E. Richardson, L. Findley, M. Longley, C. O’Neill, and D. Steel (2015).

United Kingdom: Health system review. Health systems in transition 17 (5), 1–126.

de Meijer, C., M. Koopmanschap, T. B. d’Uva, and E. Van Doorslaer (2011). Deter-

minants of long-term care spending: age, time to death or disability? Journal of

Health Economics 30 (2), 425–438.

De Weerdt, J. and M. Fafchamps (2011). Social identity and the formation of health

insurance networks. Journal of Development Studies 47 (8), 1152–1177.

Deaton, A. (1997). The analysis of household surveys: a microeconometric approach

to development policy. World Bank Publications.

Decker, S. and H. Schmitz (2015). Health shocks and risk aversion. Ruhr Economic

Paper (581).

Dercon, S. and P. Krishnan (2003). Risk sharing and public transfers. The Economic

Journal 113 (486), C86–C94.

Di Falco, S. and E. Bulte (2011). A dark side of social capital? Kinship, consumption,

and savings. Journal of Development Studies 47 (8), 1128–1151.

Doiron, D., G. Jones, and E. Savage (2008). Healthy, wealthy and insured? The

role of self-assessed health in the demand for private health insurance. Health

Economics 17 (3), 317–334.

Dubois, P., B. Jullien, and T. Magnac (2008). Formal and informal risk sharing in

LDCs: theory and empirical evidence. Econometrica 76 (4), 679–725.

116



Duflo, E., M. Kremer, and J. Robinson (2009). Nudging farmers to use fertilizer:

theory and experimental evidence from Kenya. Technical report, National Bureau

of Economic Research.

Dye, C., J. C. Reeder, and R. F. Terry (2013). Research for universal health coverage.

World Health Organization.

Eide, E. R. and M. H. Showalter (2011). Estimating the relation between health

and education: What do we know and what do we need to know? Economics of

Education Review 30 (5), 778–791.

Einav, L. and A. Finkelstein (2011). Selection in insurance markets: theory and

empirics in pictures. The Journal of Economic Perspectives 25 (1), 115–138.

Einav, L., A. Finkelstein, and J. Levin (2009). Beyond testing: empirical models of

insurance markets. Annual Review of Economics 2, 311–336.

Esping-Andersen, G. (1990). The Three Worlds of Welfare Capitalism. Princeton

University Press.

Fafchamps, M. (2008). Risk sharing between households. Handbook of Social Eco-

nomics 1.

Fang, H., M. Keane, A. Khwaja, M. Salm, and D. Silverman (2007). Testing the

mechanisms of structural models: the case of the Mickey Mantle effect. The

American Economic Review 97 (2), 53–59.

Fang, H., M. P. Keane, and D. Silverman (2008). Sources of advantageous selection:

evidence from the medigap insurance market. Journal of Political Economy 116 (2),

303–350.

Farag, M., A. NandaKumar, S. Wallack, D. Hodgkin, G. Gaumer, and C. Erbil

(2012). The income elasticity of health care spending in developing and developed

countries. International Journal of Health Care Finance and Economics 12 (2),

145–162.

Felder, S., A. Werblow, and P. Zweifel (2010). Do red herrings swim in circles? Con-

trolling for the endogeneity of time to death. Journal of Health Economics 29 (2),

205–212.

Finkelstein, A. and K. McGarry (2006). Multiple dimensions of private informa-

tion: evidence from the long-term care insurance market. American Economic

Review 96 (4), 938–958.

117



Finkelstein, A. and J. Poterba (2014). Testing for asymmetric information using

unused observables in insurance markets: evidence from the UK annuity market.

Journal of Risk and Insurance 81 (4), 709–734.

Forma, L., P. Rissanen, A. Noro, J. Raitanen, and M. Jylhä (2007). Health and
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Wübker, A. (2012). Who gets a mammogram amongst European women aged 50-69

years? Health Economics Review 2 (1), 1–13.
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