
Enhancing Coverage Adequacy of
Service Compositions after Runtime

Adaptation

DISSERTATION

Dem Wirtschaftswissenschaften der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines

Dr. rer. nat.

eingereicht von

Osama Sammoudi

aus

Abu Dhabi

Datum der Einreichung: 2016/05/27

Tag der mündlichen Prüfung: 2016/09/15

Erstgutachter: Prof. Dr. Klaus Pohl

Zweitgutachter: Prof. Dr. Wilhelm Hasselbring

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Duisburg-Essen Publications Online

https://core.ac.uk/display/79431112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Selbständigkeitserklärung

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig angefertigt
habe. Ich versichere, dass ich ausschließlich die angegebenen Quellen und Hil-
fen Anspruch genommen habe.

Essen, den 27.05.2016

(Unterschrift Osama Sammoudi)

Acknowledgements

It is time to express my deep graduate to all people who supported me in one
way or another during my PhD journey.

First, I would like to thank Prof. Dr. Klaus Pohl for giving me the great
opportunity to complete my PhD under his supervision. He gave me all sorts
of support, guidance, and feedback which helped me to finish my thesis work.

I am very much grateful to Dr. Andreas Metzger for his endless support,
stimulating discussions, and fruitful comments during my PhD journey. I have
learned much from him.

I would also like to thank all my colleagues at paluno especially at the
Software Systems Engineering group. They have made a very productive and
friendly work atmosphere which I enjoyed till the last day of my thesis journey.

Many thanks as well to Prof. Dr. Wilhelm Hasselbring for accepting to be
the second reviewer of my thesis.

I would also like to thank my parents for their continuous emotional support,
and my wife Rawan, for her patience all the time.

The research leading to these results has received funding from the Eu-
ropean Unions’s Seventh Framework Programme FP7/2007-2013 under grant
agreements 215483 (S-Cube) and 285248 (FIWARE).

Abstract

Runtime monitoring (or monitoring for short) is a key quality assurance tech-
nique for self-adaptive service compositions. Monitoring passively observes the
runtime behaviour of service compositions. Coverage criteria are extensively
used for assessing the adequacy (or thoroughness) of software testing. Cover-
age criteria specify certain requirements on software testing. The importance
of coverage criteria in software testing has motivated researchers to adapt
them to the monitoring of service composition. However, the passive nature
of monitoring and the adaptive nature of service composition could negatively
influence the adequacy of monitoring, thereby limiting the confidence in the
quality of the service composition.

To enhance coverage adequacy of self-adaptive service compositions at run-
time, this thesis investigates how to combine runtime monitoring and online
testing. Online testing means testing a service composition in parallel to its
actual usage and operation. First, we introduce an approach for determining
valid execution traces for service compositions at runtime. The approach con-
siders execution traces of both monitoring and (online) testing. It considers
modifications in both workflow and constituent services of a service composi-
tion. Second, we define coverage criteria for service compositions. The criteria
consider execution plans of a service composition for coverage assessment and
consider the coverage of an abstract service and the overall service composi-
tion. Third, we introduce online-test-case prioritization techniques to achieve
a faster coverage of a service composition. The techniques employ coverage
of a service composition from both monitoring and online testing, execution
time of test cases, and the usage model of the service composition. Fourth,
we introduce a framework for monitoring and online testing of services and
service compositions called PROSA. PROSA provides technical support for
the aforementioned contributions.

We evaluate the contributions of this thesis using service compositions fre-
quently used in service-oriented computing research.

Contents

Acknowledgement . v

Abstract . vii

Contents . ix

List of Tables . xv

List of Figures . xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Goal and Research Questions 4

1.4 Thesis Contributions . 5

1.5 Thesis Structure . 7

2 Fundamentals 9

2.1 Service-oriented Computing (SOC) 9

2.2 Adaptation . 11

2.3 Software Testing . 12

2.3.1 Regression Testing . 13

2.3.2 Online Testing . 14

2.4 Runtime Monitoring . 16

2.5 Coverage Adequacy . 17

2.5.1 Testing Adequacy . 17

2.5.2 Runtime Monitoring Adequacy 18

2.5.3 The Impact of Program Modifications on Coverage . . . 18

3 Related Work 19

3.1 Evaluation Framework . 20

ix

3.2 Test and Runtime Monitoring Coverage Assessment (TMCA) . . 22

3.2.1 Mei et al. 2008 . 22

3.2.2 Tsai et al. 2008 . 23

3.2.3 Bartolini et al. 2008, 2009, and 2011 24

3.2.4 Lubke et al. 2009 . 24

3.2.5 Bai et al. 2009 . 25

3.2.6 Hummer et al. 2011 and 2013 26

3.2.7 Bertolino et al. 2012 . 27

3.2.8 Ye and Jacobsen 2013 28

3.2.9 Evaluation of TMCA Contributions 29

3.3 Regression Test Selection (RTS) 30

3.3.1 Tarhini et al. 2006 . 30

3.3.2 Ruth et al. 2007, Ruth and Tu 2007, and Ruth 2008 . . 30

3.3.3 Liu et al. 2007 . 31

3.3.4 Wang et al. 2008 . 32

3.3.5 Li et al. 2010 and 2012 32

3.3.6 Mei et al. 2012 . 33

3.3.7 Evaluation of RTS Contributions 33

3.4 Regression Test Case Prioritization (RTP) 34

3.4.1 Hou et al. 2008 . 34

3.4.2 Mei et al. 2009 and 2011 35

3.4.3 Chen et al. 2010 . 35

3.4.4 Zhai et al. 2010 and 2014 36

3.4.5 Nguyen et al. 2011 . 37

3.4.6 Evaluation of RTP Contributions 37

3.5 Online Testing (OT) . 38

3.5.1 Deussen et al. 2003 . 38

3.5.2 Chan et al. 2007 . 38

3.5.3 Bei et al. 2007 and 2009 39

3.5.4 Hielscher et al. 2008 . 40

3.5.5 Greiler et al. 2009 and 2010 40

3.5.6 Dranidis et al. 2010 . 41

3.5.7 Angelis et al. 2011 and Bertolino et al. 2012 41

3.5.8 Lahami et al. 2013 . 42

3.5.9 Ali et al. 2014 . 43

3.5.10 Evaluation of OT Contributions 44

3.6 Joint Runtime Monitoring and Testing Efforts (JMTE) 44

3.6.1 Challagulla et al. 2007 44

3.6.2 Bai et al. 2007 . 45

3.6.3 Di Penta et al. 2007 . 46

3.6.4 Metzger et al. 2010 and Sammodi et al. 2011 47

3.6.5 Evaluation of JMTE . 47

3.7 Summary . 48

4 Main Contributions 49

4.1 Determining Valid Execution Traces (A) 49

4.2 Coverage Criteria (B) . 52

4.3 Online-Test-Case Selection and Prioritization (D) 54

4.4 Online Testing and Runtime Monitoring Framework (E) 54

4.5 Summary . 55

5 Determining Valid Execution Traces 57

5.1 Preliminaries . 57

5.1.1 Execution Traces for Service Composition 58

5.1.2 Invalid Execution Traces 60

5.2 Determining Invalid Execution Traces 62

5.2.1 Algorithm for Safe Regression Test Case Selection 63

5.2.2 The Extended Algorithm 63

5.2.3 Complexity Analysis of the Extended Algorithm 67

5.3 Summary . 68

6 Coverage Criteria 69

6.1 Intra-plan and Inter-plan Coverage Criteria 70

6.1.1 Preliminaries . 71

6.1.2 The Local Criteria . 73

6.1.3 The Global Criteria . 77

6.1.4 Subsumption Relations 82

6.2 Summary . 84

7 Online Test Case Selection and Prioritization 85

7.1 Online Test Case Selection . 85

7.2 Information Used for Test Case Prioritization 86

7.3 Online Test Case Prioritization Techniques 88

7.3.1 Coverage-based Test Case Prioritization 90

7.3.2 Time-based Test Case Prioritization 91

7.3.3 Usage-based Test Case Prioritization 91

7.3.4 Hybrid Test Case Prioritization 94

7.4 Summary . 96

8 Online Testing and Monitoring Framework 97

8.1 The PROSA Framework . 97

8.2 Runtime Monitoring Module . 98

8.2.1 Service Composition Monitor 98

8.2.2 Listener . 99

8.3 Online Testing Module . 100

8.3.1 Service Composition Tester 100

8.3.2 Service Tester . 102

8.4 Data Repository Module . 103

8.4.1 Coverage Data . 104

8.4.2 Usage Model . 104

8.4.3 Dynamic Binding Information (DBI) 105

8.5 Summary . 105

9 Evaluation 107

9.1 The Goal Question Metric Paradigm 107

9.2 Evaluation of Determining Valid Execution Traces 108

9.2.1 Goals, Questions, and Metrics 108

9.2.2 Experimental Plan . 110

9.2.3 Results . 112

9.3 Evaluation of Coverage Criteria 115

9.3.1 Goals, Questions, and Metrics 115

9.3.2 Experimental Plan . 117

9.3.3 Results . 118

9.4 Evaluation of Online Test Case Selection and Prioritization . . . 122

9.4.1 Goals, Questions, and Metrics 122
9.4.2 Experimental Plan . 126
9.4.3 Results . 128

9.5 Threats to Validity . 133
9.5.1 Construct Validity . 133
9.5.2 Internal Validity . 133
9.5.3 External Validity . 133

10 Conclusion and Future Work 135

10.1 Summary . 135
10.2 Revisiting Research Questions 137
10.3 Future Work . 139

A Detailed Results from the Evaluation 141

A.1 Results for 1000 Execution Traces 142
A.2 Results for 2000 Execution Traces 147
A.3 Results for 3000 Execution Traces 152
A.4 Results for 4000 Execution Traces 157
A.5 Results for 5000 Execution Traces 162

References 167

List of Tables

3.1 Possible answers to the questions used in the evaluation framework 20
3.2 Evaluation of TMCA Approaches 29
3.3 Evaluation of RTS Contributions 34
3.4 Evaluation of RTP Contributions 37
3.5 Evaluation of Online Testing Contributions 44
3.6 Evaluation of Online Testing Contributions 47

6.1 Notation Summary . 72

7.1 Overview of Test Case Prioritization Techniques 89
7.2 Abstract Path Probabilities in Figure 7.1 93
7.3 Concrete Path Probabilities in Figure 7.1 94

9.1 Characteristics of the service compositions used in the experiments110

xv

List of Figures

4.1 Main Contributions . 50

6.1 Our Proposed Coverage Criteria 71

6.2 Illustration of the local criteria for operation coverage 73

6.3 Illustration of the global coverage criteria using the entity type
operatation . 78

6.4 Subsumption Relation between the Coverage Criteria 83

7.1 Example Usage Model and Execution Plans of a Service Com-
position . 92

8.1 The PROSA Framework . 98

9.1 The average execution time of the algorithm vs. the number of
bindings of the service compositions (Q1.2) 113

9.2 The average execution time of the algorithm vs. the number of
traces of the service compositions (Q1.3) 114

9.3 Results measured with metric M2.3. 120

9.4 Results measured with metric M2.6. The service composition
Supply Chain has no branches. 121

9.5 Results measured with metric M3.3. 123

9.6 Results measured with metric M3.6. Supply Chain has no branches.
DSL Service has no abstract service where local branch coverage
is computed. 124

9.7 APOC results of all prioritization techniques for each service
composition, individually. 129

9.8 APOC results of all prioritization techniques for all service com-
positions, together. 130

xvii

9.9 APBC results of all prioritization techniques for Loan Approval,
DSL Service, Trip Planning, and Image Processing, individually.
The service composition Supply Chain has no branches. 131

9.10 Average Percentage Branch Coverage results of all prioritization
techniques for Loan Approval, DSL Service, Trip Planning, and
Image Processing, together. The service composition Supply
Chain has no branches. 132

Chapter 1

Introduction

1.1 Motivation

Service-oriented Computing (SOC) is a paradigm for building highly dynamic,
distributed software systems known as service compositions [89, 85]. A service
composition is realized by integrating individual software services, possibly
provided by third parties, to build new value-added services. According to the
SOC paradigm, services may separate ownership, maintenance and operation
from the use of the software. Service users thus do not need to acquire, deploy,
and run software because they can access its functionality remotely through
service interfaces. The services used in a service composition can be dynami-
cally discovered and selected even while the service composition is running.

Service compositions operate in a highly dynamic settings of changing busi-
ness requirements, context and users, and constituent services [90]. The dy-
namic nature of business produces continuous pressure to reduce expenses,
increase revenues, generate profits, and remain competitive. Changes in user
types, preferences, and constraints, require service composition customization
and personalization, as means to “adapt” the service composition to particular
users. In addition, third-party services may change unpredictably after de-
ployment which may result in fluctuations in Quality of Service (QoS) such as
performance, availability and reliability. Thus, to remain sustainable, compet-
itive, and reliable, service compositions should be equipped with mechanisms
that enable them to adapt to such changes [79]. Over the past years, many
efforts have been made towards adaptive service compositions. Adaptation

1

2

refers to the ability of a system to dynamically modify its behaviour and/or
structure in response to its perception of the environment and the system it-
self. Extensive surveys on adaptive service compositions are provided in [90]
and [71], for example.

Given the highly dynamic settings in which service compositions may oper-
ate, and the need for adapting service compositions at runtime in particular,
quality assurance techniques which can be applied at runtime are essential [85].
Generally speaking, quality assurance can contribute to building confidence in
software quality. Thus, runtime quality assurance can support (re-)assuring
the service composition’s quality during operation after adaptation. Runtime
monitoring, (online) testing, and runtime verification are key runtime quality
assurance techniques.

Runtime monitoring is the dominant runtime quality assurance technique
for service compositions [90, 45]. Generally speaking, runtime monitoring ob-
serves the behaviour of a running system in order to determine whether the
behaviour is consistent with a given specification [31]. The observed behaviour
can be expressed in the form of execution traces obtained through instrumen-
tation. In the following, we will refer to execution traces collected by runtime
monitoring as monitoring traces.

Software testing is a widely-used technique for assuring the quality of tradi-
tional software at design-time. The goal of testing is to systematically execute
the software in order to uncover failures [83, 72, 88, 46]. The software is exe-
cuted with input data, and the produced outputs are observed and examined
against a given specification. Software testing can also be performed after de-
ployment, in parallel to the normal use and operation of the software, known
as online testing (see [15, 2, 25, 6, 10, 33, 52, 80, 99, 37, 60]).

Besides runtime monitoring and online testing, runtime verification may also
be applied to verify the software properties against a given specification [41,
40]. Yet, we focus in this thesis only on runtime monitoring and online testing.

Coverage criteria are extensively used for assessing the adequacy (or thor-
oughness) of software testing [111]. Coverage criteria explicitly specify certain
requirements on testing to be satisfied. Typically, coverage criteria target
error-prone aspects or parts of the software. For example, the statements or
the branches of the software’s control flow. To this end, coverage criteria are

3

intuitively appealing, since it is clear that a test suite cannot find errors in
software code not executed (i.e., covered) by the test suite [56]. In this view,
coverage criteria and the associated coverage assessment contribute to building
confidence in the quality of a tested software.

1.2 Problem Statement

The importance and the widespread of coverage criteria and coverage assess-
ment in traditional software testing have motivated researchers to apply them
to the runtime of service composition. In particular, Bertolino et al. [16] pro-
posed assessing the adequacy of runtime monitoring of service composition.
To this end, a set of monitoring traces is used as reference for coverage as-
sessment. A set of monitoring traces is thus considered adequate, if the traces
cover all parts or aspects of the service composition which need to be covered,
according to the employed coverage criterion.

A distinguishing nature of runtime monitoring is that it does not stimulate
the application. Instead, runtime monitoring is limited to passively observing
the execution of the application. Thus, runtime monitoring is “passive” by
its very nature; it can only report what has occurred [16]. In fact, runtime
monitoring approaches are sometimes called passive testing [13].

The passive nature of runtime monitoring implies that the collected moni-
toring traces might not be adequate according to the employed coverage cri-
teria, thereby, limiting the confidence in service composition’s quality. This
is due to the fact that the collected monitoring traces can cover only those
parts of the service composition which are executed when users invoke the
service composition. Therefore, the available monitoring traces for the service
composition might be not adequate when only few users have started to use
the service composition. Additionally, there might exist no execution traces
from runtime monitoring covering the remaining parts (i.e., not-yet used) of
the service composition.

Moreover, coverage measures are sensitive to modifications in the applica-
tion’s code or model [38, 29, 92]. Thus, for adaptive service compositions,
even if an adequate set of execution traces is obtained, some of the execution
traces might be impacted by the modifications in the service composition as a

4

result of adaptation. The modifications may be performed by either the ser-
vice composition (i.e., self-adaptation) or by the providers of the constituent
third-party services. Therefore, not considering the impact of adaptation on
the achieved coverage might result in wrong insights about the service compo-
sition’s quality.

1.3 Goal and Research Questions

The problem outlined in Section 1.2 motivates the research conducted as part
of this thesis work. The overall goal of the thesis is the following:

Goal:

Combining Runtime Monitoring and Online Testing to Enhance Coverage
Adequacy of Self-adaptive Service Compositions at Runtime

Runtime coverage assessment for service composition requires considering
the impact of runtime adaptation on the service composition’s execution traces.
Online testing can be performed for obtaining additional execution traces for
the service composition to enhance the runtime coverage as necessary.

Towards achieving this goal, the following research questions are investi-
gated:

Research Question I:

How to assess coverage of self-adaptive service compositions at runtime?

Ensuring the availability of adequate execution traces for a service compo-
sition during runtime requires assessing the runtime coverage achieved from
the available execution traces for the service composition. It is necessary to
re-assess the runtime coverage after modifications in the service composition
in order not gain wrong insights about the quality of the service composition
from using the “outdated” coverage.

Additionally, due to the dynamic binding feature, self-adaptive service com-
positions can have a large number of potential realizations (i.e., instances), each
having different implementation and behaviour. Consequently, achieving ade-
quate coverage for all potential instances can require a large set of execution

5

traces. Whereas, some of the instances might never be invoked by the users
of the service composition, e.g., because the instances do not meet the user
constraints. Thus, it remains unclear how the runtime coverage assessment for
dynamic service compositions can be performed.

Research Question II:

How to combine runtime monitoring and online testing to enhance coverage
adequacy at runtime?

The result of runtime coverage assessment might indicate that inadequate
coverage is achieved by the available set of execution traces. In this case,
online testing can be started for obtaining additional execution traces, and
thus, enhancing coverage adequacy.

During the execution of online testing, some execution traces might be col-
lected while monitoring the actual usage of the service composition. These
traces might cover parts of the service composition. However, it remains un-
clear how online test cases should be selected and executed in such a way that
considers those “potential” runtime monitoring traces.

1.4 Thesis Contributions

To address the aforementioned research questions, the thesis provides the fol-
lowing five main contributions. A detailed overview of the motivation and the
novelty of the contributions is provided in Chapter 4. The technical details of
the contributions are provided in Chapters 5 - 9.

Contribution I:

Determining Valid Execution Traces

The first contribution of the thesis is an approach for determining valid ex-
ecution traces for self-adaptive service compositions at runtime. The approach
employs execution traces of both (online) testing and runtime monitoring.

6

To compute coverage of a service composition, invalid execution traces are
not considered. Invalid execution traces are execution traces which cover en-
tities which are modified or impacted by modifications in the service com-
position. If invalid execution traces were considered, wrong insights about
the service composition quality might be obtained. Therefore, the approach
considers modifications which might result in invalid execution traces at two
levels: workflow and concrete services.

For determining invalid execution traces, the approach extends an existing
graph-walk algorithm from regression testing. Where existing graph-walk algo-
rithms employed the control-flow graphs of programs, the approach extended
these algorithms to the control-flow graph of service compositions to consider
concrete service bindings.

Contribution II:

Coverage Criteria

The second contribution of the thesis is a set of specific coverage criteria for
self-adaptive service compositions. The criteria consider the actual execution
plans of a service composition as reference for coverage assessment. Execution
plans specify the binding of concrete services to abstract services of the service
composition and thus define the combination of concrete services for a service
composition [100, 108, 5]. Considering execution plans means that only the
combinations of concrete services which are actually used for realizing the
service composition are considered by the criteria.

In addition to execution plans, the criteria consider coverage at two different
scopes: abstract service and a whole service composition. Combining execution
plans and different coverage scopes, four new coverage criteria are defined.

Contribution III:

Online-Test-Case Selection and Prioritization

The third contribution of the thesis is an approach for online-test-case selec-
tion and prioritization. The goal is to achieve coverage of a service composition

7

at a faster rate.
Our test case prioritization approach considers the fact that coverage of

service compositions can also be obtained from runtime monitoring. To this
end, the approach exploits the execution time of test cases as well as the usage
profile of a service composition [99].

Contribution V:

Online Testing and Runtime Monitoring Framework

The fourth contribution of the thesis is an online testing and runtime moni-
toring framework called PROSA [99]. PROSA introduces the idea of exploiting
synergies between runtime monitoring and online testing, thereby achieving
a better coverage of service compositions. The PROSA framework collects
and classifies the service compositions’ execution traces as runtime monitoring
traces or online testing traces. The classification allows traceability between
existing test cases and their executions traces. The classification further allows
deriving the usage profile of a service composition considering only runtime
monitoring traces.

Contribution VI:

Empirical Evaluation

The last contribution of the thesis is an empirical evaluation of the thesis
contributions. The evaluation is performed through a set of controlled experi-
ments using service compositions frequently used in service-oriented computing
research.

1.5 Thesis Structure

The remainder of the thesis is organized as the following:

• Chapter 2 provides foundations and background information for the key
parts of the thesis.

8

• Chapter 3 provides an overview and discussion of research contributions
related to the different parts of the thesis work.

• Chapter 4 provides a detailed overview of the main contributions of the
thesis.

• Chapter 5 presents our proposed approach for determining valid execu-
tion traces.

• Chapter 6 presents our proposed coverage criteria.

• Chapter 7 presents our proposed online-test-case selection and prioriti-
zation techniques.

• Chapter 8 illustrates the online testing and runtime monitoring frame-
work (PROSA).

• Chapter 9 provides details about the performed evaluation.

• Chapter 10 provides a summary and conclusions.

Chapter 2

Fundamentals

2.1 Service-oriented Computing (SOC)

SOC is paradigm for developing rapid, inter-operable, revolvable and loosely
coupled distributed applications [89]. SOC is based on the concept of services,
which are autonomous and platform-independent network-available software
components that can be described, published, and dynamically discovered.
Following the SOC paradigm, a service composition (aka. service-based appli-
cation) is created by integrating different services, possibly provided by third
parties, to provide the complete functionalities of a composition.

Two types of service compositions can be distinguished: service orchestra-
tion and service choreography. Service orchestration represents a single cen-
tralized executable service composition (i.e., service orchestrator) that controls
the interactions among different participating services. The composite service
is responsible for invoking and combining the services. Service orchestration
is a centralized approach for service composition. Service choreography is a
global description of the participating services, which is defined by exchange
of messages, rules of interaction and agreements between different services.
Service choreography is a decentralized approach for service composition.

Service Oriented Architecture (SOA) is an architectural style that supports
SOC [89]. SOA defines a model for the interaction between service providers
and clients. In this model, known as SOA triangle, the provider makes a
service available to the prospective consumers (or clients) by publishing the
service description in a service registry. A service registry stores the service

9

10

descriptions and acts as intermediary between the service provider and service
consumer. To discover a service, the service consumer can send a query to the
service registry specifying the desired service characteristics such as structural,
behavioural, quality, and contextual characteristics. The service registry re-
trieves all the services that match the service consumer’s query and returns
their interface descriptions to the service consumer.

Very often, several services exist which offer the same functionality, e.g.,
currency conversion or flight booking [51, 23, 108, 5]. Thus, for a given service
specification a large number of services which match the specification might
be discovered.

A service composition consists of a set of tasks (or abstract services), each
one associated with required functionality, and their interaction, i.e., control
and data flow between those tasks. Each task in the service composition is
realized by binding it to an appropriate service which implements its function-
ality.

The fact that there exist many candidate service implementations for one
task requires to make selection between them [51, 23, 108, 5]. The selection
is typically not done arbitrarily, but to maximize and/or limit some special
properties of the service composition. One of the most important properties
is the Quality of Service (QoS). For instance, selecting the cheapest service,
the fastest, or maybe a compromise between the two. Performing the selection
for whole service composition results in the so called execution plan of service
composition.

Execution plans specify the binding of concrete services to abstract services
of a service composition [100, 108, 5]. Often, different execution plans for the
same service composition are defined in order to address different user groups
with varying end-to-end requirements, such as performance or availability.

The binding between the abstract services and the selected concrete services
can be made at design-time, but often the binding is delayed to deployment and
even runtime [91]. Additionally, re-binding of concrete services might occur at
runtime in case of adaptation [35].

11

2.2 Adaptation

Over the past years, many efforts have been made towards adaptive service
compositions. Adaptation refers to the ability of a system to dynamically
modify its behaviour and/or structure in response to its perception of the
environment and the system itself [27, 30].

Adaptation can thus happen to achieve different goals, including [90]: (1)
optimizing the service composition even if it runs correctly; (2) repairing faults;
(3) modifying the service composition in response to changes in its environ-
ment; (4) preventing future faults; (5) extending the functionality of the service
composition. Adaptation can be accomplished by different means including re-
configuration, re-binding, re-execution, or re-planning.

Moreover, adaptation can occur at different levels including the service com-
position model and service composition instance (e.g., service composition cus-
tomized to a particular user). Adapting the service composition model is called
service composition evolution and will be the primary focus of this thesis. In
the following, “adaptation” and “evolution” will be used interchangeably.

The adaptation capabilities introduced in the literature fall into the follow-
ing two major clusters: reactive adaptation and proactive adaptation [90, 79].
Reactive adaptation refers to the case in which the system is modified in re-
sponse to deviations in system quality, i.e., failures that are actually observed
by the users of the system. Repair and/or compensation activities have to be
executed as part of the adaptation in order to mitigate the effects of those
failures; e.g., the user is paid a compensation, or certain service invocations
are rolled back. Besides leading to additional costs due to such compensations,
reactive adaptation may have a severe impact on how a system can respond to
changes [78, 52]. As examples, the execution of reactive adaptation activities
on the running system can considerably increase execution time and therefore
reduce the overall performance of the running system, or an adaptation of
the system might not be possible at all, e.g., because the system has already
terminated in an inconsistent state.

Proactive adaptation refers to the case in which the need for adaptation is
anticipated and thus preventive action can be taken to avoid failures. Proactive
adaptation is thus based on “short-term” predictions, i.e., forecasting imminent

12

failures that require an adaptation of the running system. One class of proac-
tive adaptation aims to execute countermeasures to compensate the impact
of actual service failures before they negatively impact the system quality.
Another class of proactive adaptation aims to execute activities to avoid the
impact of predicted service failures. Such type of proactive adaptation, allows
modifying the system even before a faulty service is actually executed. If the
system is able to predict a service failure (which did not yet occur), and to
predict that this failure may impact the service quality, the system can be
modified before the faulty service is executed.

2.3 Software Testing

Software testing (or testing for short) is widely used in industry as a key quality
assurance activity [13].

The goal of testing is to systematically execute the software (the test object)
in order to uncover failures [83, 72, 88, 46]. During testing, the test object is
executed with input data, or a set of test cases (also called test suite), and
the produced outputs are observed and examined. The observed outputs can
deviate from the expected outputs with respect to functionality as well as
quality (e.g., performance or availability). When the observed output deviates
from the expected output, a failure is uncovered. Because testing requires
the execution of the software, it is considered to belong to dynamic analysis
techniques [50].

It is infeasible (except for trivial cases) to test all potential inputs of the
test object, therefore a sub-set of all potential inputs has to be determined
for testing. The quality of the tests strongly depends on how well this sub-set
covers the test object. Ideally this sub-set should include concrete inputs that
are representative for all potential inputs (even those which are not tested) and
it should include inputs that – with high probability – uncover failures. How-
ever, since choosing such an ideal sub-set is typically infeasible, it is important
to employ other quality assurance techniques which complement testing [46].
In this thesis, we focus only on runtime monitoring (see Section 2.4), as a
dynamic analysis technique for complementing testing.

13

2.3.1 Regression Testing

A tested object (e.g., software) can be subject to frequent modifications for nu-
merous reasons such as to add new functionalities, fix bugs, or for optimization
purposes. Regression testing is a testing activity performed when changes are
made to a tested software. It involves testing the modified software with some
test cases in order to re-establish confidence that the software will perform
according to the (possibly modified) specification [62]. During regression test-
ing a set of test cases already executed may be available for reuse. The most
straight forward regression testing technique is to repeat all the test cases.
However, this technique can be costly both in terms of time and resources.
Additionally, not all test cases can be re-executed. Therefore, researchers and
practitioners select a subset of the test cases to reduce the cost of regression
testing known as regression test case selection.

Regression Test Case Selection (RTS)

The goal of RTS is to select a subset of the original test cases to establish
confidence that the software was modified correctly and that its functionality
has been preserved [93]. A wide range of techniques have been proposed for
RTS (see [18, 107] for recent surveys). Rothermel and Harrold [93] formally
define RTS as follows:

Definition 2.1 (Regression Test Selection Problem). Given: the pro-
gram P , the modified version of P , P ′, and a test suite, T .
Problem: Find a subset of T , T ′, with which to test P ′.

One family of RTS techniques, called safe RTS, aims to select the test cases
that are modification-traversing. A test case is modification-traversing if it
will traverse a new or modified part of the modified software, or it previously
traversed a deleted part that was in the original software [93]. If a technique
selects all modification-traversing test cases, then it is considered safe [93].
Achieving safety can be at the expense of the precision of the technique, where
the technique may select test cases that may not expose faults in the modified
software. In [93], Rothermel and Harrold present a framework for analysing

14

RTS techniques according to certain criteria including safety and precision.
The framework is also used in [107] and [18].

Regression Test Case Prioritization (RTP)

Although RTS can help to reduce the number of test cases to be re-run, the
number of test cases may still be high, while the allocated time for regression
testing is constrained. To this end, testing researchers and practitioners apply
another activity during regression testing process. The activity, known as
test case prioritization, tries to schedule (order) test cases such that those
which are more important, by some measure (e.g., early fault detection), are
executed earlier in the regression testing process [39]. A wide range of test case
prioritization techniques have been proposed for regression testing (see [107]
for a recent survey).

We adopt the following popular definition for the test case prioritization
problem [95]:

Definition 2.2 (Test Case Prioritization Problem). Given: T , a test
suite, PT , the set of permutations of T , and f , a function from PT to
the real numbers.
Problem: Find T ′ ∈ PT such that
(∀T ′′) (T ′′ ∈ PT ′) (T ′′ 6= T ′) [f(T ′) ≥ f(T ′′)].

In this definition, PT represents the set of all possible prioritizations (order-
ings) of T , and f is a function that, applied to any such ordering, yields an
award value for that ordering.

2.3.2 Online Testing

In [85] the general need for runtime quality assurance techniques for service
compositions is motivated, focusing on automated techniques.

The major type of runtime quality assurance techniques used today is run-
time monitoring (see Section 2.4). However, as discussed in Section 2.4, the
passive nature of runtime monitoring makes it less powerful than testing [13].
As result, research activities have appeared that suggest extending test activ-
ities to runtime.

15

Online testing means actively stimulating the application (by feeding it
with dedicated test input) after deployment, in parallel to its normal use and
operation. Online testing can be performed periodically, at scheduled intervals,
or event driven. Online testing helps in the timely detection of functional and
nonfunctional failures [15]. Nonetheless, performing online testing on services
and service compositions could produce undesired side effects. In the following,
we discuss these issues along with potential solutions.

Firstly, although several services are available free of charge (e.g., Google
Search), or have fixed (monthly or yearly) flat fees, where the cost of service
usage remains the same regardless of the number of invocations, there are also
commercial services charged per invocation (i.e., pay-per-use pricing model).
For such services, online testing can be costly as each test invocation can be
charged.

Secondly, several services when invoked produce only responses and thus
performing online testing on them does not produce side effects. Examples of
such services are those performing computations such as image processing [19].
However, online testing can be problematic for services which, when tested,
produce side effects such as shipping items or charging credit cards.

Thirdly, although services could be deployed on elastic infrastructures where
the resources can scale to accommodate increased load, online testing could
be problematic for services with limited resources. The load caused by online
testing will be added to the load of normal operations, thereby degrading its
performance or in worst case the availability of its resources.

To conclude, a fundamental premise for online testing is that service providers
offer some practical way for their services to be tested without incurring addi-
tional costs, producing side effects, or degrading the performance of a service.

There are several ways in which this can be realized from a technical point
of view [20, 21, 47, 37]. In general, it is accomplished by offering a test in-
terface or a sandbox allowing a service to be executed in a special testing
environment or configuration mode, which allows the functionality of a ser-
vice to be fully exercised in isolation from the real production environment.
This requires the special test-mode instance of the service which is actually
executed during testing to be identical to the actual production instance that
will be invoked shortly after. Furthermore, the impact of online testing on the

16

nun-functional properties could be mitigated by trading off testing accuracy
with performance [2].

Finally, we subscribe to the opinion of other researchers [15] who argue
that the increased costs and efforts associated with performing online testing
are compensated by a more reliable system, increased reputation and user
satisfaction, and less penalties due to less violations of contracts.

2.4 Runtime Monitoring

Runtime monitoring (or monitoring for short) is an essential and wide spread
dynamic quality assurance technique. Runtime monitoring observes the be-
haviour of a system and determines if it is consistent with a given specification
of software properties [31]. Functional and quality properties are targeted by
runtime monitoring [45].

One distinguishing nature of runtime monitoring is that it does not stimu-
late the application, but is limited to passively observing the application dur-
ing its execution. In contrast to testing, runtime monitoring always provides
statements about the current execution (i.e., about current execution traces).
Thus, runtime monitoring is “passive” by its very nature; it can only report
what has occurred [16]. In fact, runtime monitoring approaches are sometimes
called passive testing [13].

Runtime monitoring can uncover failures which have escaped testing, be-
cause the concrete input which lead to the current execution trace might
have never been tested. Runtime monitoring therefore provides a comple-
mentary measure to ensure the quality of a service composition. Yet, the
passive nature of runtime monitoring implies that failures are only detected as
they spontaneously appear, possibly after real clients have already experienced
them [90, 15].

Runtime monitoring has been applied since decades for different types of
systems [13, 31]. The distinguishing features of service-oriented computing
such as stringent quality requirements, loose coupling and dynamic binding of
independent services [16], has renewed the interest in runtime monitoring. As a
result, many different approaches and frameworks have recently been proposed
for runtime monitoring of service compositions with the aims of, for instance,

17

supporting service composition optimization, enabling context-driven adapta-
tion, or uncovering failures. The runtime monitoring approaches and frame-
works can be distinguished using for example the type of monitored properties
(functional vs. quality), the type of monitored entity (atomic vs. composite
service), the used methods for collecting data, the degree of invasiveness of the
monitoring technique, and the timeliness of the runtime monitoring technique
in discovering anomalies [45]. A relatively recent survey which provides a de-
tailed and comprehensive discussion of existing runtime monitoring techniques
can be found in [90].

2.5 Coverage Adequacy

2.5.1 Testing Adequacy

An adequacy criterion is an essential part of any testing method [111]. Ade-
quacy criteria specify certain requirements on test suites to be satisfied. These
requirements refer to certain aspects of the software to be covered when ex-
ecuting the test suite. A test suite is considered adequate, if it covers all the
aspects of the software which need to be covered, according to the criterion
used [111, 16]. As motivated in Section 2.3, the goal of testing is to find as
many failures as possible to increase confidence in the software quality. Thus,
adequacy criteria typically target the coverage of software aspects which might
contain undetected faults, such as the entities of the control-flow or data-flow
graphs of the software.

Adequacy criteria can serve numerous purposes for software testing [111].
For example, a test adequacy criterion can be used as a rule to indicate whether
testing can stop. When all the test requirements have been achieved no further
testing is required. Otherwise, more tests need to be executed. Adequacy
criteria can also guide the creation and the selection of test cases to satisfy the
requirements of the adequacy criteria. Adequacy criteria provide quantitative
measurements of the test quality [48, 56], i.e., its ability to detect faults. In
this respect, a percentage of achieved requirements indicates the degree of
adequacy of a test suite used during testing. Moreover, testing techniques are
often compared in terms of their underlying adequacy criteria [111].

18

The role of adequacy criteria in software testing has motivated many re-
search efforts. As a result, a large number of adequacy criteria have been
proposed and studied. Zhu et al. [111] provide an excellent and comprehensive
overview on the topic.

2.5.2 Runtime Monitoring Adequacy

The fundamental role of test coverage adequacy has inspired researchers to
use a similar notion for runtime monitoring of service composition. In [16],
Bertolinio et al. define the novel notion of runtime monitoring adequacy. Run-
time monitoring coverage is analogous to test coverage and assesses the per-
centage of service composition control-flow graph entities which were covered
during normal service composition execution. The assessment is performed
with reference to the monitored execution traces, by measuring the coverage of
the control-flow graph entities belonging to these traces. The intuition behind
runtime monitoring coverage adequacy is similar to test coverage adequacy: if
some entities are not covered, these might contain undetected faults.

Bertolinio et al. defined runtime monitoring adequacy over a sliding obser-
vation window over a time measurement unit, which could be either continuous
(e.g., considering the traces collected in the last 120 seconds) or discrete (con-
sidering the most recent 1000 traces).

2.5.3 The Impact of Program Modifications on Coverage

Testing researchers and practitioners have early realized the sensitivity of the
test coverage achieved to the modifications/changes in the program code and
structure. As a result, several efforts have been made to better understand
and to quantify the impact of the changes on test coverage. To this end,
researchers have conducted experiments and case studies (see [38, 29, 28, 92]).
Additionally, researchers have proposed models to reflect the impact of the
changes on test coverage (see [42, 43, 44]).

Chapter 3

Related Work

This chapter provides an analysis of the existing research efforts which pro-
vide contributions related to the research problem and the research questions
addressed in this thesis. Specifically, this chapter analyses and evaluates the
existing contributions in service-oriented computing research related to:

• Test and runtime monitoring coverage assessment: as in our approach,
we assess test and runtime monitoring coverage of service compositions
at runtime.

• Regression test selection: as we determine invalid execution traces. The
task of determining invalid execution traces is close to the regression test
selection task.

• Regression test case prioritization: as we propose techniques for priori-
tizing the re-execution of test cases.

• Online testing: as we apply our testing approach during the operation
of the service composition.

• Joint efforts on runtime monitoring and testing: as we use execution
traces from both runtime monitoring and (online) testing for assessing
coverage of service compositions, and we exploit the usage model of a
service composition in test case prioritization.

The related contributions are evaluated using the framework which we in-
troduce in Section 3.1.

19

20

3.1 Evaluation Framework

The analysis of the related work is based on an evaluation framework which
we have developed for this purpose. The evaluation framework consists of
concrete questions used to characterize the related research efforts based on
the proposed solutions for the research problem and the research questions
addressed in this thesis. Table 3.1 provides an illustration of the possible
answers to the questions used in the framework.

Table 3.1: Possible answers to the questions used in the evaluation framework

Question X
+ Yes ◦ Maybe − No

Research work Y Research work Y
explicitly affirms
Question X

Research work
Y partially
affirms and
partially negates
Question X

Research work
Y explicitly
negates Ques-
tion X

In the following we present the concrete questions used in the framework.
Additionally, we will illustrate for each question what are the conditions for
affirming, partially affirming and partially negating, or negating the question.

1. Service Orchestration (SO): does the contribution target service or-
chestration?
Orchestrated service composition is the main subject of the thesis. The
question is affirmed if the contribution is applied to a service orchestra-
tion. The question is partially affirmed and partially negated if the con-
tribution is applied to a service composition but not service orchestration
(e.g., choreography). Finally, the question is denied if the contribution
is not applied to service composition but to atomic services.

2. Dynamic Binding (DB): does the contribution address dynamic bind-
ing of service composition?
The thesis provides contributions for service composition which employ

21

dynamic binding. The question is affirmed if the contribution provides a
solution that is applied in the presence of dynamic binding. The question
is partially affirmed and partially negated if the contribution does not
consider dynamic binding, but the proposed solution can be applied in
the presence of dynamic binding. Finally, the question is negated if the
contribution cannot address dynamic binding.

3. Test Coverage (TC): does the contribution introduce an approach for
test coverage assessment?
The thesis introduces coverage criteria for service compositions. The
question is affirmed if the contribution does assess test coverage. The
question is partially affirmed and partially negated if the contribution
considers test coverage but it is not of it focus. The question is negated
if the contribution does not at all consider test coverage.

4. Runtime Monitoring Coverage (MC): does the contribution assess
the coverage achieved from runtime monitoring execution traces?
The thesis considers the coverage achieved from both (online) testing
traces and runtime monitoring execution traces. The question is affirmed
if the contribution does assess the coverage achieved by runtime mon-
itoring. The question is partially affirmed and partially negated if the
contribution collects runtime monitoring execution traces but does not
use it for coverage assessment. The question is negated if the contribu-
tion does not at all consider the coverage achieved by runtime monitoring
execution traces.

5. Change Impact on Coverage (CIC): does the contribution consider
the impact of modifications in the service composition on the achieved
coverage?
For coverage assessment, the thesis considers only execution traces which
are not impacted by modifications in service compositions and the con-
stituent services. The question is affirmed if the contribution does con-
sider the impact of modifications on the achieved coverage and proposes a
solution to address this issue. The question is partially affirmed and par-
tially negated if the contribution considers the impact of modifications
on the achieved coverage, but does not solve this issue. The question is

22

negated if the contribution does not at all consider the impact of modi-
fications on the achieved coverage.

6. Execution Plan (EP): does the contribution leverage service composi-
tion execution plans for testing?
The thesis exploits execution plans of service compositions for coverage
assessment and online testing. The question is affirmed if the contribu-
tion does explicitly leverage execution plans for coverage assessment or
for testing. The question is partially affirmed and partially negated if the
contribution leverages execution plans but not for coverage assessment
nor for testing. The question is negated if the contribution does not at
all leverage execution plans.

7. Runtime Solution (RT): has the contribution been explicitly applied
at runtime during the normal operation of service composition?
The testing activities of the thesis contributions are performed during
the normal operation of service composition. The question is affirmed
if the contribution is explicitly applied at runtime during the normal
operation of the service composition. The question is partially affirmed
and partially negated if the contribution is applied at runtime but not
during the normal operation of the service composition. The question is
negated in case the contribution is applied at design-time.

In the following, we use these questions to characterize the reviewed contribu-
tions.

3.2 Test and Runtime Monitoring Coverage As-

sessment (TMCA)

3.2.1 Mei et al. 2008

Mei et al. [75] address the challenge of testing Web Service Business Process
Execution Language (WS-BPEL) process with special attention to the im-
portant role of the Extensible Markup Language (XML) and the XML Path
Langauge (XPath) in integrating workflow steps. XPath expressions are used
to extract information used as input for a service. Therefore, a mismatch

23

among components (e.g., extracting the wrong contents or failing to extract
any content from a correct XML message) may cause a WS-BPEL application
to function incorrectly. To address this challenge, Mei et al. propose a family
of data-flow testing criteria to test WS-BPEL applications. To this end, Mei
et al. rewrite XPaths using graphs, named XPath Rewriting Graphs (XRG),
that make explicit different paths through an XML schema. Then, Mei et al.
represent BPEL programs by building models coined X-WSBPEL, that com-
bine the control-flow graph extracted from WS-BPEL with the XRG. For the
data-flow testing, Mei et al. target the X-WSBPEL models and define a set of
def-use criteria, based on variable definition and usages over XPaths.

Mei et al. evaluate their approach by performing experiments on eight
open-source WS-BPEL applications. The experimental results show that their
approach detects over 90% of all faults and uses much fewer test cases than
random testing to achieve the same effectiveness.

3.2.2 Tsai et al. 2008

Tsai et al. [104] address the problem of efficiently testing large number of can-
didate services implementing the same service specification. To this end, Tsai
et al. propose a testing technique for both atomic and composite services,
inspired from the group testing which is originally developed for testing blood
samples. The group testing mechanism broadcasts the test cases to all atomic
services under test. A voting service, which can automatically generate an
oracle for each test case based on the majority principle, collects the outputs.
It compares each service output with the oracle. It then dynamically logs
the number of disagreements into each service profile and uses this number
to evaluate and rank the service’s reliability and the test cases’ effectiveness
and to establish each test case’s oracle. In the next testing phase, Tsai et al.
apply the most effective test cases first, to reduce the testing time as a service
that fails can be eliminated from further consideration. They use these results
to automatically update the service and test case rankings and the oracles’
reliability. Integration testing can be conducted using the same approach but
with the best candidates from each atomic service only. This process greatly
reduces the number of combinations. If the remaining combination is large,
group testing at this level can eliminate candidate combinations. The frame-

24

work identifies and eliminates test cases with overlapping coverage. It also
ranks newly added test cases based on their potency and re-ranks existing test
cases considering updated coverage relationships and recent test results.

Experiments using independently developed Web services and developed
test cases were conducted to show that the proposed approach saves testing
efforts by eliminating test cases, while retaining its effectiveness.

3.2.3 Bartolini et al. 2008, 2009, and 2011

Bartolini et al. [12, 17, 11] introduce an approach that adapts the notion of
coverage testing to the service-oriented domain, while preserving its key prin-
ciples of loose coupling and implementation neutrality. The approach provides
testers with feedback about how much a service is exercised by their tests
without revealing the service internals (e.g., code). This is achieved through
the addition of an intermediary service that provides the coverage informa-
tion to the testers through dedicated interfaces. The approach thus requires
third-party services to be testable (i.e., instrumented to collect coverage infor-
mation) and provide this information to the intermediate services the collect
this information for the testers. The proposed approach requires intermediate
services to be published with an interface for the customary logging and re-
porting operations. Testers thus need to launch test sessions and invoke the
intermediate services through their interface to obtain the coverage reports
during testing the services.

Bartolini et al. [11] assess the feasibility of their approach and provide a
preliminary evaluation using a case study. The results show that the proposed
approach can be used to generate useful information for improving the testing
of SOA orchestration, without introducing significant overhead on the services
while operating with hundreds of requests.

3.2.4 Lubke et al. 2009

Lubke et al. [68] address the problem of assessing the quality of tests for Busi-
ness Process Execution Language (BPEL) processes. To this end, Lubke et
al. describe test coverage metrics for BPEL processes and an instrumentation
strategy as a way of measuring them. Lubke et al. deal with code coverage

25

metrics that can be used to judge the quality of white box tests.

More specifically, Lubke et al. define Activity Coverage for BPEL, which is
based on Statement Coverage known from existing approaches. Additionally,
Lubke et al. present Branch Coverage for BPEL, which is also an equivalent
for the already widely-used coverage metric with the same name. To account
for the differences between classic programming paradigms and those present
in BPEL, Lubke et al. introduce three coverage metrics specifically targeted
to BPEL. They define Link Coverage to address the traversal of link elements
in BPEL’s flow elements, and two Handler Coverage metrics to measure the
execution of fault and compensation handler elements, two important error
handling mechanisms found in BPEL.

The functionality and the value of the metrics to identify the shortcomings
of the test cases have been demonstrated using a case study.

3.2.5 Bai et al. 2009

Bai et al. [9] address the problem of maintaining sensors and enforcing poli-
cies for runtime monitoring, in reaction to the updates of runtime monitoring
strategies, software architecture, and business requirements. To this end, the
authors present model-based approach for automatic generation of sensors and
enforcement policies. Policies represent the expected software behaviour. They
are enforced at runtime to ensure that the software execution conforms to the
requirements. The Web services standards, Web Service Definition Language
(WSDL) and Web Ontology Language for Web Services (OWL-S), are taken
as the models of service interface, workflow, and semantic. In this contribu-
tion, sensors are generated based on the models from two perspectives: (1)
dependency analysis of the data, operations, and services with respect to the
ontology model of domain concepts and usage context; (2) coverage strategies
to decide the specific logic and paths to cover and the data to capture by the
runtime monitoring sensors. Bai et al. argue that as service compositions
are model-based, the coverage needs to be done at the model level based on
service interfaces and workflows. The following coverage models have been
considered: control-based, path-based (longest path, shortest-path, and all
path), data-based (data flow, in message, out message), collaboration-based
(binding, session), and random.

26

Control-based strategies require sensors for particular types of controls such
as condition, decision, iteration, and all control. Path strategies are based on
the topology of the graph. Sensors are instrumented to the selected paths such
as the longest, shortest and all paths of the control-flow graph. Data-based
strategies are used for data flow analysis. Given a data selected for runtime
monitoring, the system generates a slice of services that take the data as in-
put/output parameters of interface operations. Sensors are instrumented to
the sliced services to monitor the data transformations during the application
execution. In addition, it can also select to monitor all the received data (the
in message strategy) and sent data (the out message strategy) of each service.
Collaboration-based strategies are defined to monitor the bindings and ses-
sions at runtime. The binding sensors can trace the re-composition of services
and compare different service implementations. The session sensors can trace
the inter-operations during an established session and evaluate the availability
and stability of the service. Random strategies are used to randomly select the
monitored features such as data, path, and control construct based on certain
coverage metrics.

Experiments are conducted on an example travel system and show that the
runtime monitoring results in low overhead of the system performance, reduced
effort and enhanced flexibility of sensor instrumentation.

3.2.6 Hummer et al. 2011 and 2013

Hummer et al. [54, 55] address the problem of integration testing of data-
centric dynamic service compositions. Specifically they address the challenge
that testing all possible runtime instances of a service composition is often
infeasible, due to the fact that dynamic service binding is combinatorial in the
number of services. That is, for any non-trivial binding, the number of runtime
combinations may be prohibitively large.

They propose an approach which provides techniques for restricting the
combinations of services and for applying the generated tests to concrete Web
service composition technology. To this end, the approach considers data de-
pendencies between services as potential points of failure and introduce the
k-node data flow test coverage metric to significantly reduce the number of
test combinations. This novel coverage metric expresses to what extent the

27

data dependencies of a dynamic service compositions are tested. On the basis
of this test coverage metric, Hummer et al. formulate the problem of finding
a minimal number of test cases for a service composition as a combinatorial
optimization problem. To solve the optimization problem, they make use of
an existing tool for coverage analysis and combinatorial test design, and pro-
vide an automated transformation from the service composition model to the
tool’s data model. Past instantiations of the service compositions are specified,
which constitute existing solutions and can be ignored by the solver, thereby
further narrowing down the search space.

A prototype implementation of the proposed approach is presented along
with analysis of various performance characteristics as well as demonstration
of the end-to-end practicability of the solution.

3.2.7 Bertolino et al. 2012

Bertolino et al. [16] define a general novel notion of runtime monitoring ad-
equacy for service compositions. Runtime monitoring adequacy is analogous
to testing adequacy and assesses the percentage of application entities (e.g.,
operations and branches) that were covered during normal service composition
execution. The assessment is performed with reference to the observed exe-
cution traces by measuring coverage of the entities belonging to these traces.
Coverage measures are used to determine runtime monitoring adequacy of
those entities (i.e., if they reach a predefined goal). In testing, test adequacy is
measured over a test session and the obtained measure refers to the executed
test suite. Analogous to that, runtime monitoring adequacy is measured over
a sliding observation window over a time measurement unit, which could be
either continuous (e.g., considering the traces collected in the last 120 sec) or
discrete (considering the most recent 1000 traces). The authors defined two
specific instantiations of a monitor adequacy criterion for service choreogra-
phies: operations and branches, of an abstract behavioural model, such as a
Finite State Machine.

Bertolino et al. claim that adequate runtime monitoring of service compo-
sition enhances standard monitors with a notion of coverage, and thus makes
them capable to measure coverage of the relevant entities under a defined mon-
itor adequacy criterion. Runtime monitoring adequacy helps understand the

28

changes in users behaviours or raising alarms for “potential” problems that
should receive further investigation.

Bertolino et al. have presented a high-level architecture as well as a proof-
of-concept implementation of adequate runtime monitoring framework. Fur-
thermore, they provide a preliminary assessment of the framework using two
case studies of service choreographies: Travel Reservation System and Future
Market.

3.2.8 Ye and Jacobsen 2013

Ye and Jacobsen [106] address a challenge facing integration testing of service
compositions which is the lack of information about test coverage caused by
the use of third-party services. To this end, Ye and Jacobsen introduce an
approach to design and test service compositions by providing test coverage
information about the used third-party services, while limiting the amount of
private information that is “leaked” from the service provider to the service
consumer. The approach is based on the concept of event exposure, i.e., ex-
posing events (state changes) about the third-party services through an event
interface, which can be used to determine (real) service coverage.

By observing the events exposed by service providers in testing, service
consumers can assess the test coverage using the event-based coverage criteria
proposed by Ye and Jacobsen, reflecting the actual test coverage of an en-
tire service composition. The proposed criteria adopt data-flow coverage and
control-flow coverage from traditional software testing.

The approach is complemented by a test case generation technique and is
backed by experimental evidence which quantitatively evaluates the proposed
approach and compares it to existing work in terms of test coverage rate, effec-
tiveness in fault-detection, and test case generation. Additionally, an analysis
and evaluation of the trade off between information leakage and effectiveness
of test case generation, is provided, along with the runtime complexity of the
proposed algorithms and the overhead of event exposure.

29

3.2.9 Evaluation of TMCA Contributions

Table 3.2 provides a characterization of the reviewed TMCA contributions by
answering the questions used in the evaluation framework presented in Section
3.1. Based on this characterization, we can see the following observations.

Table 3.2: Evaluation of TMCA Approaches

Research Contribution Section
Question

1 (SO) 2 (DB) 3 (CA) 4 (MC) 5 (CIC) 6 (EP) 7 (RS)
Mei et al. 2008 3.2.1 + − + − − − −
Tsai et al. 2008 3.2.2 + + + − − − ◦
Bartolini et al. 2008, 2009, and 2011 3.2.3 + − + − − − ◦
Lubke et al. 2009 3.2.4 + − + − − − −
Bai et al. 2009 3.2.5 + − + ◦ − − ◦
Hummer et al. 2011 and 2013 3.2.6 ◦ + + − − − ◦
Bertolino et al. 2012 3.2.7 ◦ − + + − − +

Ye and Jacobsen 2013 3.2.8 ◦ − + − − − −

The large and wide adoption of coverage assessment and adequacy crite-
ria for testing traditional software have motivated researchers to apply them
to service compositions. As a natural consequence, novel ways of measur-
ing coverage and novel coverage criteria have appeared which are tailored to
the specifics of service compositions and their implementation languages (e.g.,
BPEL). Nonetheless, only few research efforts exist which apply coverage mea-
sures to execution traces obtained from runtime monitoring of service compo-
sitions [16, 9]. Moreover, only Tsai et al. [104] and Hummer et al. [54, 55]
apply coverage measures and adequacy criteria to service compositions with
dynamic binding. However, these approaches consider all possible combina-
tions of services. These approaches do not take into account information about
how the service composition is used, such as execution plans. Additionally, the
approaches which consider runtime monitoring coverage do not take into the
impact of the dynamic changes and adaptations on the achieved coverage.
However, as we discussed in Section 2.5.3, coverage measures are sensitive to
the changes in the application code and model. Therefore, not considering this
issue might lead to wrong insights about coverage.

30

3.3 Regression Test Selection (RTS)

3.3.1 Tarhini et al. 2006

Tarhini et al. [101] present a safe regression testing algorithm that selects an
adequate number of non-redundant test sequences aiming to find modification-
related errors. A two-level abstract model represented as a Timed Labeled
Transition System (TLTS) is used to specify the Web application and the
behaviour of its composed components. When modifications occur, a TLTS
for the modified version is constructed, reflecting all additions and/or deletions
of states or edges performed by the modification.

After any of the modifications, the approach identifies all modifications
done, and then selects a set of tests that may reveal modification-related er-
rors. Moreover, it creates a new test set to test required modifications in the
specification of the Web application or any of its composed components.

The approach is not backed by any experimental evaluation.

3.3.2 Ruth et al. 2007, Ruth and Tu 2007, and Ruth

2008

Ruth et al. [96, 97] address the problem of applying safe regression test selection
(RTS) technique to Web services considering the distributed and autonomous
nature of Web services. To this end, they propose a safe RTS technique for the
verification of Web service systems in an end-to-end manner. Their approach
is based on the safe RTS algorithm by Rothermel and Harrold which was
developed for monolithic applications using control-flow graphs. Rather than
requiring all the source code of the participating services and applications,
they require control-flow graphs from every party. The granularity of the
control-flow graphs can vary from very detailed to very abstract. Using hash
code, the control-flow graphs will be able to indicate changes but shield the
program source code. The following are the three main steps of the safe RTS
technique: (1) constructing global control-flow graphs of old and new program;
(2) identifying dangerous edges by comparing the corresponding control-flow
graphs; (3) selecting test cases that need to be rerun.

Ruth and Tu [97] also proposed that the test cases and a table of test

31

cases’ coverage information over the control-flow graph must also be provided
along with WSDL file via WS-Metadata Exchange Framework. The required
control-flow graph needs to be constructed at the statement level, meaning
every node in the control-flow graph will represent a statement. These nodes
will also keep a hash code of their corresponding statements. When a change
is made to the system, the hash of the modified service will be different from
the hash of the original service so that the RTS algorithm detects the modified
parts in the service without seeing the actual source code.

Ruth et al. [96] also proposed an automated extension to their RTS tech-
nique that tackles the concurrency issues that might arise. This approach
helps in solving the multiple modified service problem by using call graphs. It
is possible to determine the execution order of the modified services by using
the call graphs. A strategy called “downstream services first” is applied in
order to achieve fault localization. In this strategy, if a fault is found in a
downstream service, none of the upstream services are tested until the fault is
fixed. Ruth et al. also took the situation into consideration where a service
makes multiple calls to different services in parallel.

Ruth and Tu report in [98] an empirical study of the framework designed
to compare the cost of performing the proposed approach and running the
selected tests with the cost of running all tests without performing a selection
step. The results indicate that the framework can be effective in reducing the
costs of performing RTS.

3.3.3 Liu et al. 2007

Liu et al. [66] argue that in the presence of concurrent control flow, even a
minor change to the synchronization condition may affect many concurrent
execution paths that do not contain the changed condition. Furthermore, the
impact is not only related with the changed synchronization condition, but also
with other synchronization conditions. Based on this observation, they pro-
pose a regression test selection approach that addresses the issues that occur
because of concurrency in BPEL regression testing. The proposed approach
classifies all test paths into four categories for a regression test cases selection:
reusable, modified, obsolete, and new-structural. In order to do the test path
classification, the differences between the old and the new processes are firstly

32

identified. An impact analysis rule is proposed to analyse the affected test
paths by the changes of concurrent control structures (caused by the link ac-
tivity in BPEL). Based on the process change information and impact analysis
result, a test path selection algorithm is used to select the test paths. Liu et
al. select the impacted test paths based on the business processes comparison
instead of path comparison.

The proposed approach is not backed by any experimental evaluation.

3.3.4 Wang et al. 2008

Wang et al. [105] propose an approach for generating and selecting test cases
during the evolution of BPEL service composition. The approach uses control-
flow analysis to identify the changes and uses Extended BPEL Flow Graph
(XBFG) to compare the paths in the new service composition version and
the old one. Evolution includes: process alternation, addition or deletion of
abstract services, change of activities and execution sequence, and static and
dynamic binding. All XBFG elements are assigned hash code, id, source,
target and category fields. The change of BPEL element could be detected by
comparing the hash code of elements in two XBFGs. Therefore, only those
activities whose names, attributes, and sub-elements remain the same can be
regarded as unchanged.

The approach is not backed by an experimental evaluation.

3.3.5 Li et al. 2010 and 2012

Li et al. [63, 64] address the problem of regression testing (i.e., test case selec-
tion and the generation of new test cases) of BPEL service composition associ-
ated with evolution and maintenance. Li et al. conclude that, changes of BPEL
service composition can be classified into three kinds, (1) process change, which
means the BPEL modification, (2) binding change, which means the service
integrator replaces a service with another service having the same functional-
ity and interface, (3) interface change, which means the WSDL modification.
Based on this classification, Li et al. propose a solution for regression test case
selection of BPEL service composition using an extensible BPEL flow graph,
which can express the behaviour of the service composition. Binding informa-

33

tion and predicate constraints are added in graph elements for path selection
and test case generation. Comparisons are made on path elements, interfaces
and path conditions so that the affected paths could be selected. Some paths
can be validated by selecting test cases of baseline version but others may need
new test cases. The decision of whether to select or to generate is made based
on the results of comparison.

The approach is backed by experimental evaluation.

3.3.6 Mei et al. 2012

Mei et al. [76] address the problem of testing adaptive systems, such as workflow-
based service compositions, to allow them to dynamically switch some external
services and successfully continue with execution. Specifically, the contribution
considers the ultra-late binding of external Web services in a workflow-based
service composition at runtime, and propose a preemptive regression testing
(PRT) to address this adaptive issue. During regression testing, whenever a
late-change on the service under test is detected, the approach preempts the
currently executed test suite, searches for additional test cases as fixes that
collectively covers the missed workflow coverage, and runs these fixes. The
execution of the test suite is then continued from the preemption point, un-
til all the test cases in the regression test suite are executed and no further
late-change is detected. Mei et al. present three strategies to realize the PRT
which use the difference in the workflow coverage as an indicator of whether a
late-change may have occurred.

Mei et al. evaluate their approach by performing experiments on open-
source WS-BPEL applications.

3.3.7 Evaluation of RTS Contributions

Table 3.3 provides a characterization of the reviewed RTS contributions by
answering the questions used in the evaluation framework presented in Section
3.1.

As can be seen from the table, a handful of RTS approaches for service com-
positions exist. However, existing approaches for RTS of service compositions
do not consider execution plans. These approaches assume only one service

34

Table 3.3: Evaluation of RTS Contributions

Research Contribution Section
Question

1 (SO) 2 (DB) 3 (CA) 4 (MC) 5 (CIC) 6 (EP) 7 (RS)
Tarhini et al. 2006 3.3.1 ◦ − − − − − ◦
Ruth et al. 2007, Ruth and Tu 2007, and Ruth 2011 3.3.2 + − − − − − ◦
Liu et al. 2007 3.3.3 + − − − − − −
Wang et al. 2008 3.3.4 + − − − − − −
Li et al. 2010 and 2012 3.3.5 + − ◦ − ◦ − −
Mei et al. 2012 3.3.6 + − + − + − ◦

binding for each abstract service during the selection process. Therefore, mod-
ifications in all service bindings of each abstract service are not considered
during the selection.

3.4 Regression Test Case Prioritization (RTP)

3.4.1 Hou et al. 2008

Hou et al. [53] argued that quota constraint (e.g., the upper limit of the number
of requests that a user can send to a Web service during a certain time range),
may delay fault exposure and the subsequent debugging. Hence, they proposed
a quota-constrained test-case prioritization techniques for service compositions
to maximize requirement coverage testing.

The general idea behind the proposed prioritization techniques is to divide
the regression testing (and thus test cases) into several time slots according to
the request quotas. Thus, for each time slot, test cases are selected and then
prioritized with the aim of maximizing the testing coverage per slot. After
selecting test cases for each time slot, test cases are sorted using traditional
test case prioritization techniques. After each test selection and prioritization
per time slot, updated information regarding remaining selectable test cases,
requirement coverage, and request quota are considered for scheduling test
cases for the next time slot.

Hou et al. performed an experimental study (using a Travel Agent System)
on their proposed techniques and compared them with the random technique,
the traditional total technique, and the traditional additional technique. The
results showed their prioritized test cases using their techniques are more ef-

35

fective for achieving total or additional branch coverage and exposing faults
with the constraint of request quotas.

3.4.2 Mei et al. 2009 and 2011

Mei et al. [73, 74] presented black-box test case prioritization approach for
single Web services in a service composition using WSDL-tag coverage. The
approach reorders test cases based their coverage of WSDL-Tags (both ascend-
ing and descending).

Focusing on business process service compositions, in [77] Mei et al. argue
that industrial service compositions are typically written in languages such
as WS-BPEL, and are integrated with workflow steps and Web services via
XPath and WSDL. Faults in these artefacts may cause the service composition
to extract wrong data from messages, thereby leading to failures in service
compositions. To this end, Mei et al. propose a family of test case prioritization
techniques based on multilevel coverage model. The multilevel coverage model
captures the business process, XPath, and WSDL.

Thus, Mei et al. first order test cases according to the business process
coverage. To resolve ties in case of similar process coverage, the coverage of
the XPath expressions are considered. To resolve ties in case of similar XPath
coverage, the coverage of the WSDL schema elements are considered.

Mei et al. present extensive evaluation of their contributions by performing
experiments on a set of WS-BPEL applications.

3.4.3 Chen et al. 2010

Chen et al. [26] argue that when a service evolves, service interactions and
change impacts are two key points in service composition’s regression testing.
To this end, Chen et al. proposed a test case prioritization approach based on
impact analysis of BPEL processes. In their approach, change impact analysis
is performed on a weighted dependence propagation graph constructed from
BPEL processes. Both data and control dependencies are considered in their
analysis. The authors give weights to different impacted parts. The weight
is defined as difference to the changed part. The executions of test cases are
scheduled according to the impact weight.

36

Chen et al. demonstrate the applicability of their proposed approach by
applying it on Automated Teller Machine (ATM) example.

3.4.4 Zhai et al. 2010 and 2014

Focusing on location-aware service compositions, Zhai et al. [110] suggest to
incorporate service selection in test case prioritization in order to reduce the
number of service invocations. Additionally, Zhai et al. propose a suite of
metrics and test case prioritization techniques tailored to testing location-
aware services.

The idea behind incorporating service selection in testing is to maintain –
during testing process – a blacklist which contains faulty services. These faulty
services are detected in previous test case executions and therefore should
not be used by the service selection process. That is, if a service is found
to be faulty, it should not be considered by the service selection approach.
Discarding faulty services from the set of candidate service considered by the
selection process reduces the number of services that need to be tested.

The test case prioritization idea is based on modelling test cases as a se-
quence of Global Positioning System (GPS) locations. Consequently, several
location-based metrics can be applied to the test cases and the results are
used for scheduling the test cases. The proposed metrics are classified into
two groups: (1) input-guided and (2) Point-of-Interest (POI) aware. The
input-guided techniques are based on the observation that the more diverse a
sequence is, the more effective they will be in fault detection. The input-guided
techniques thus prioritize a test suite in descending order of the diversity of
locations in test cases. The POI-aware techniques are based on the observation
that test cases that are closer to POIs or cover more POIs are more effective
in fault detection and thus should be assigned highest priorities.

In [109], Zhai et al. present an extended evaluation using a controlled
experiment, measuring the cost-effectiveness, and also comparing the proposed
techniques in terms of several criteria.

37

3.4.5 Nguyen et al. 2011

Nguyen et al. [84] present an approach for prioritizing test cases for audit
testing of service compositions using information retrieval (IR) techniques. In
their approach, test cases are prioritized based on their relevance to the service
change, based on matching service change description with the code portions
exercised by the relevant test cases. The matching is performed using IR
techniques.

The proposed approach assumes the availability of service change descrip-
tions. Service change descriptions are used to define queries which are then
matched – using IR techniques – with identifier documents. Identifier docu-
ments, each associated with a test case, are extracted by analysing past exe-
cution traces of test cases. The result of the match is used to search for the
most relevant test cases for each change. Search results form a ranked list are
used to prioritize the test cases.

Nguyen et al. perform a case study using the internally developed eBayfinder
service composition, to evaluate the effectiveness of their IR-based prioritiza-
tion, and compared it with coverage-based prioritization.

3.4.6 Evaluation of RTP Contributions

Table 3.4 provides a characterization of the reviewed RTP contributions by
answering the questions used in the evaluation framework presented in Section
3.1.

Table 3.4: Evaluation of RTP Contributions

Research Contribution Section
Question

1 (SO) 2 (DB) 3 (CA) 4 (MC) 5 (CIC) 6 (EP) 7 (RS)
Hou et al. 2008 3.4.1 + − ◦ − − − −
Mei et al. 2009 and 2011 (black box) 3.4.2 − − ◦ − − − ◦
Mei et al. 2009 (white box) 3.4.2 + − ◦ − − − −
Chen et al. 2010 3.4.3 + − − − − − −
Zhai et al. 2010 and 2014 3.4.4 + + − − − − +

Nguyen et al. 2011 3.4.5 + − − − − − ◦

The results show that there are efforts for RTP for services and service
compositions. However, existing approaches for service compositions are not

38

applied at runtime during the operation of the service composition. There-
fore, these approaches do not consider the potential coverage obtained from
runtime monitoring of service compositions. Additionally, the coverage-based
approaches do not use execution plans of service composition.

3.5 Online Testing (OT)

3.5.1 Deussen et al. 2003

Deussen et al. [32] address the challenge of testing a system in the production
phase with the aim to monitor the system in case of dynamic changes. To this
end, an architecture and a conceptual framework of an online testing concept
have been presented, including the following major components.

Probes to collect events and information from the system under test (SUT)
about the functional aspects of the components within the execution environ-
ment. Injectors to stimulate the SUT so that different aspects of its function-
ality can be tested. Online test cases (OTS) to validate and control predefined
and expected sequence of events and notify errors in the case of not correspond-
ing behaviour. The configuration controller to perform coordination inside the
OTS as well as controlling the creation and removal of the other components
created on the fly during execution (e.g., probes and OTS). The communica-
tion bus to realize all the distributed communication functions. The system
model to store some knowledge about the SUT and to configure the OTS. For
instance, the changes in the structure of the SUT and the dynamic behaviour
of the SUT. Finally, the gauges to hook into the communication bus and listen
to the circulated events to keep up an up-to-date abstract view of the SUT.

Deussen et al. describe an implementation using the Test and Testing Con-
trol Notation, 3rd edition (TTCN3) testing language, and demonstrate experi-
mentally the applicability of the proposed concepts using a case study in which
an active network is tested.

3.5.2 Chan et al. 2007

Chan et al. [25] address the problem of generating test oracles to define func-
tional correctness of the service, varying according to its environment. To this

39

end, Chan et al. propose a metamorphic online testing, which uses oracles
created during offline testing for online testing. Offline testing determines a
set of successful test cases to construct their corresponding follow-up test cases
for the online testing. These test cases will be executed by metamorphic ser-
vices that encapsulate the services under test as well as the implementations of
metamorphic relations. Thus, any failure revealed by the metamorphic testing
approach will be due to the failures in the online testing mode.

Chan et al. have also experimentally evaluated the feasibility of their ap-
proach.

3.5.3 Bei et al. 2007 and 2009

Bai et al. [6, 10] address the feature of dynamic reconfiguration in service com-
position, which requires testing to be adaptive to the changes of the service
compositions at runtime. To this end, Bai et al. propose adaptive testing
approach, where tests are executed during the operation of the service compo-
sition and can be adapted to changes of the service composition’s environment
or of the service composition itself.

The approach, coined ConfigTest based on their previous research on the
MAST (Multi-Agents-based Service Testing) framework [7], enables the online
change of test organization, test scheduling, test deployment, test case binding,
and service binding. ConfigTest extends MAST with a new test broker archi-
tecture, configuration management, and event-based subscription/notification
mechanism. The test broker decouples test case definition from its implemen-
tation and usage, and the testing system from the services under test. The
configuration management allows the test agents to bind dynamically to each
other and build up their collaborations at runtime. The event mechanism en-
ables that a change in one test artefact can be notified to all the others which
subscribe their interests to the change event.

Bai et al. analyse collaboration diagrams of various testing reconfiguration
scenarios and illustrate the ConfigTest approach with an example of a service
composition for book ordering.

40

3.5.4 Hielscher et al. 2008

Hielscher et al. [52] present the PROSA (Proactive Self-adaptation of Service-
Based Applications) framework, which aims to enable proactive self-adaptation.
To this end, PROSA exploits online testing techniques to detect changes and
deviations before they can lead to undesired consequences. Hielscher et al.
illustrate the key online testing activities needed to trigger proactive adap-
tation, and discuss how those activities can be implemented by utilizing and
extending existing testing and adaptation techniques.

Hielscher et al. illustrate how PROSA enables the proactive adaptation
of a service composition using an example for travel planning. The proposed
framework is not backed by experimental evaluation.

3.5.5 Greiler et al. 2009 and 2010

Greiler et al. discuss in [47] the industry challenges and open issues of in-
tegrating and testing SOA infrastructures during runtime. Those challenges
and issues come from SOA literature and from the authors experience in help-
ing a number of enterprises migrate their existing infrastructures to SOA,
and extending them. The challenges include stakeholder separation, service
integration, service versioning and migration, service binding and reconfigura-
tion. The authors also provide directions for addressing the challenges. Those
include extended life cycle support, central auditing, and additional informa-
tion to improve test quality, automated test generation, test isolation and test
awareness.

In [49], Greiler et al. present a case study demonstrating the capabilities of
online testing in detecting faults/failures during system reconfiguration that
could not be found offline in a test environment. The case study focuses on
integration testing of service compositions. They evaluate online testing in
terms of effectiveness to identify typical SOA faults: publishing, discovery,
composition, and execution faults. The outcome of the case study suggests
that typical reconfiguration faults can be found through online testing, and
that online testing has additional value over offline testing.

41

3.5.6 Dranidis et al. 2010

Dranidis et al. [37] introduce an automated technique to determine when to
proactively trigger adaptations in the presence of conversational services, thus
avoiding costly compensation actions. A conversational service is one that only
accepts specific sequences of operation invocations. Dranidis et al. advocate
performing just-in-time testing; “shortly” before a conversational service is
invoked for the first time within the service composition, the service is tested
to detect potential deviations from the specified protocol. Stream X-machines
(SXMs) have been utilized for the automated generation of test cases, which,
under well-defined conditions, guarantee to reveal all inconsistencies among
the implementation of a service and its expected behaviour. To ensure that
just-in-time testing can be done with feasible cost and effort, as well as in
reasonable time, Dranidis et al. propose a new way of reducing the number
of test cases, such that they can still guarantee that the conversational service
behaves as expected in the context of the concrete service composition.

The approach is backed by experimental results.

3.5.7 Angelis et al. 2011 and Bertolino et al. 2012

Angelis et al. [14] and Bertolino et al. [15] address the problem of how to verify
that collaborating providers in a service federation abide legal bindings and
business rules the govern the service federation. They argue that online testing
of federated services can contribute to enhancing the federation’s trustworthi-
ness and quality assurance, by verifying whether the behaviour of a service
actually manifests while interacting with other services, abides by policies and
complies with functional and non-functional specifications. When a service
under test fails compliance validation, a federation’s trust and reputation in-
frastructure can use such feedback as a source for trust models. For example, a
successful online test session might enhance the reputation of both the service
and its provider.

To realize this vision, the authors present the Role Compliance Service
On-Line Testing ((role)CAST) component, providing a testing framework for
SOA infrastructures based on the Apache Axis2 (an engine for Web services).
The high-level architecture of the (role)CAST component has two layers: the

42

framework core, which implements an Axis2 client, and a collection of Axis2
modules that implement the interface with security protocols. The layer that
implements the framework core has the following main components: a test
driver implementing the test planner scheduling logic and activating online
testing sessions either periodically or event-driven basis, and a test robot re-
sponsible for loading the test cases from a repository as well as executing them
on a specified service under test. For each online testing session, the test driver
configures and runs instances of the test robot. The test robot compares the
response from the interaction with the service under test to the expected result
that the oracle computed for each test case. Finally, the test results repository
stores the test execution logs. (role)CAST assumes the test robot collaborates
via the test credential interface with an entity which authenticates it as a user
of the federation.

The proposed framework is not backed by experimental evaluation.

3.5.8 Lahami et al. 2013

Lahami et al. [60] address the problem of checking behaviours and detecting
faults introduced after dynamic changes in service composition’s at runtime.
To this end, Lahami et al. present the Runtime Testing Framework for Adapt-
able and Distributed Systems (RTF4ADS), which realizes a runtime testing
approach.

The framework offers a generic and platform independent test execution
infrastructure based on the Test and Testing Control Notation, 3rd edition
(TTCN3). The framework is resource aware; the assignment of test compo-
nents to execution nodes is done while considering some resource and connec-
tivity constraints. The framework exploits dependence analysis by parsing a
Component Dependency Graph to ensure that only the test cases (written in
TTCN-3 language) covering affected software components or compositions by
the dynamic change, selected from a repository of test cases, are executed.
The execution of selected test cases is performed by a TTCN-3 test system for
Runtime Testing (TT4RT). It supports four test isolation techniques: cloning
the system under test (SUT), blocking the SUT, tagging test data, and built-in
test.

Lahami et al. illustrated the usefulness of the proposed runtime testing

43

approach by applying it to a case study in the telemedicine field, called Tele-
services and Remote Medical Care System.

3.5.9 Ali et al. 2014

Ali et al. [2] address the problem of achieving controllability and observability
aspects when testing choreographed services. They observe that combining
continuous online testing mechanisms with an appropriate governance frame-
work could help ensure that unspecified events do not lead to undesirable inter-
actions among services, thereby enhancing the reliability of enacted choreogra-
phies. To this end, Ali et al. have developed a framework that supports the
continuous online testing of such services, supporting model-based automated
test generation, storage and execution of derived test cases, and trustworthi-
ness rating of service choreographies and subscribing services.

In the online testing process, end users trigger a choreography enactment at
runtime according to the specification published by the Choreography Board,
which includes the establishment of runtime binding among all services (all
registered services to participate in the choreography). Testing engineers select
suitable test strategies and derive concrete test cases for candidate services, and
make them available in a dedicated repository so that all service providers can
test the interaction of their services with those of other providers. Engineers
can continuously test registered services online to periodically verify they are
playing their roles as intended within the execution environment.

Ali et al. further present an online testing architecture supporting the pro-
posed online testing process, in which all components are implemented as Web
services. In this architecture, ServicePot constitutes the central publishing
infrastructure component. It extends a service registry supporting activities,
such as publishing and discovery, and augments them with governance and
testing functionality. ServicePot includes the following three plug-in exten-
sions. ParTes derives test cases for the services in a choreography, considering
the structural dependencies embedded the Business Process Model and No-
tation (BPMN 2) control flow and between input and output messages. The
Test Driver retrieves test suites related to a specified service in a given chore-
ography from a repository, executes them, and generates reports. CRank rates
both services and choreographies based on the results of online testing sessions

44

launched by the Test Driver.

Ali et al. have validated the online testing framework using the Passenger-
friendly Airport use case scenario.

3.5.10 Evaluation of OT Contributions

Table 3.5 provides a characterization of the reviewed OT contributions by
answering the questions used in the evaluation framework presented in Section
3.1.

Table 3.5: Evaluation of Online Testing Contributions

Research Contribution Section
Question

1 (SO) 2 (DB) 3 (CA) 4 (MC) 5 (CIC) 6 (EP) 7 (RS)
Deussen et al. 2003 3.5.1 ◦ − − − − − +

Chan et al. 2007 3.5.2 − − − − − − +

Bei et al. 2007 and 2009 3.5.3 ◦ − − − − − +

Hielscher et al. 2008 3.5.4 ◦ − − − − − +

Greiler et al. 2009 and 2010 3.5.5 ◦ − − − − − +

Dranidis et al. 2010 3.5.6 ◦ − − − − − +

Angelis et al. 2011 and Bertolino et al. 2012 3.5.7 − − − − − − +

Lahami et al. 2013 3.5.8 ◦ − − − − − +

Ali et al. 2014 3.5.9 − − − − − − +

The table clearly shows that there are contributions which apply online test-
ing for services and service compositions. However, the existing approaches do
not target service compositions with execution plans. Additionally, existing
approaches do not apply coverage measures for assessing the adequacy of test-
ing and runtime monitoring. Since these contributions do not employ coverage
assessment, the impact of changes on the achieved coverage is not considered.

3.6 Joint Runtime Monitoring and Testing Ef-

forts (JMTE)

3.6.1 Challagulla et al. 2007

Challagulla et al. [24] present a machine learning-based reliability assessment
and prediction approach for mission-critical SOA-based systems. The approach

45

is based on combining data from operational profile testing with runtime moni-
toring data during runtime. Operational profile testing was used at design-time
and not at runtime.

In this approach, operational profile based testing is applied to the system
and then dynamic runtime monitoring is used to enable the reliability of the
system to be accurately determined as it executes. The testing and monitored
data from the software system are fed to a common repository and dynamic
reliability assessment is performed. Machine learning techniques are used to
combine the test data and monitored data for dynamically predicting the reli-
ability of service. The failure rate and the operational profile of the service are
used to calculate the reliability for the service. An offline process periodically
publishes the reliability information of the service to the service registry for
supporting service discovery.

Challagulla et al. illustrate the framework using a provider’s SOA-based
system.

3.6.2 Bai et al. 2007

Bai et al. [8] propose an ontology-based approach for automatic testing of
services. In this approach, test artefacts are specified by a Test Ontology
Model (TOM) based on the Web Ontology Language (OWL). TOM serves as
the contract among test components, including: test generator, test master,
and test agent. The test generator parses the Web service specifications and
generates test cases encoded in TOM. The test master coordinates the test
plan, tasks, and execution. The test agents execute the test cases on the
services.

Bai et al. propose capturing service usage profile by intercepting the mes-
sages of the Simple Object Access Protocol (SOAP), and then log the in-
put/output data to be used in test cases. The idea was proposed for filling
values for parameters into test cases generated based on the service input on-
tology (i.e., test case definition).

Experiments are exercised on a Travel Search service composition using
a prototype tool implementation. The results show the effectiveness of the
approach compared to random testing in terms of the needed number of test
cases.

46

3.6.3 Di Penta et al. 2007

Di Penta et al. [33] present a regression testing strategy to test whether or not,
during its lifetime, a (possibly new version of the) service is compliant to the
behaviour specified by test and Quality of Service (QoS) assertions the inte-
grator downloaded during the service discovery and Service Level Agreement
(SLA) negotiation (along additional ones generated by the integrator from run-
time monitoring data). These test cases and QoS assertions form a sort of an
executable contract. They proposed to use runtime monitoring data to reduce
number of invocations when executing a test suite (e.g., by mimicking service
behaviour) and thus, reducing the cost of regression testing.

Di Penta et al. [34] address the problem that violation of SLAs – negotiated
between service provider and service consumer – would lead to consumer dis-
satisfaction and loss of money for the provider. Therefore, they suggest that
SLAs should be stress-tested before offering them.

To this end, Di Penta et al. propose a search-based technique for test data
generation to produce test cases that are likely to violate the SLAs.

The presented solution is to use Genetic Algorithms (GAs) for the gener-
ation of test data. During test case execution, QoS parameters are observed
through runtime monitoring mechanisms, and those QoS parameters are used
in turn to guide the search for better test cases.

The approach for testing SLAs is presented from two perspectives: a white
box approach which can be used by integrators for which the service compo-
sition’s source code is available and a black box approach for all other groups
which do not have access to the source code. The white box approach starts
with the identification of potentially QoS-risky paths (which “are likely to ex-
hibit high values for upper-bounded QoS attributes and low values for lower-
bounded QoS attributes”). After this identification, a GA is used to generate
test cases that cover the path and violate the SLA. The GA considers com-
binations of inputs and bindings (between abstract and concrete services).
Mutation, crossover and selection operators are adapted to services. The pre-
sented fitness function considers the distance of an individual to QoS constraint
violation and the coverage of the QoS-risky paths. In the black box approach
QoS-risky paths cannot be computed so the fitness function only considers the
QoS constraint distance.

47

Di Penta et al. introduced two case studies for the evaluation of the effec-
tiveness of the presented testing approach. The results provide evidence that
the approach is able to generate test cases for the violation of SLAs.

3.6.4 Metzger et al. 2010 and Sammodi et al. 2011

Focusing on Quality of Service (QoS) properties of atomic services, we [80]
present an approach that augments runtime monitoring with online testing
for producing failure predictions with confidence. The goal of the work is to
avoid unnecessary adaptations as they can lead to severe shortcomings, such
as increased costs or follow-up failures.

In [99], we introduce a framework and prototypical implementation that
exploits synergies between runtime monitoring, online testing and quality pre-
diction. The framework’s core element is a test selection activity that utilizes
information about the usage of the service compositions’ services in order to
select test cases that lead to better coverage of service executions, while utiliz-
ing a limited number of online test executions. The framework has preliminary
experimental results.

3.6.5 Evaluation of JMTE

Table 3.6 provides a characterization of the reviewed JMTEs by answering the
questions used in the evaluation framework presented in Section 3.1.

Table 3.6: Evaluation of Online Testing Contributions

Research Contribution Section
Question

1 (SO) 2 (DB) 3 (CA) 4 (MC) 5 (CIC) 6 (EP) 7 (RS)
Challagulla et al. 2007 3.6.1 ◦ − − − − − ◦
Bai et al. 2007 3.6.2 − − − − − − ◦
Di Penta et al. 2007 (regression testing) 3.6.3 − − − − − − ◦
Di Penta et al. 2007 (SLA testing) 3.6.3 + + − − − − ◦
Metzger et al. 2010 and Sammodi et al. 2011 3.6.4 − − − − − − +

As can be seen from the table, some efforts have envisaged the combined
usage of runtime monitoring and testing for service compositions. However,
using the coverage information obtained from runtime monitoring as indicator
for the need for additional tests (and thus generating execution data) has not

48

been considered by the existing approaches. This idea has been advocated by
Bertolino et al. [16], but no concrete implementation of this idea is available.
Moreover, the review of the literature has showed the lack of approaches that
aim at combining execution traces resulting form both testing and runtime
monitoring, and using them in coverage assessment.

3.7 Summary

To conclude, the literature review has revealed relevant contributions to partial
parts of the work conducted within this thesis. However, no end-end approach
exists which combines online testing with runtime monitoring for enhancing
coverage adequacy of self-adaptive service compositions; taking into account
the impact of adaptations on the coverage of the service composition.

Chapter 4

Main Contributions

As motivated in Section 1.3, the thesis addresses two main research questions:

• RQ 1 is concerned with how to assess coverage of service compositions
at runtime (“online coverage assessment”).

• RQ 2 is concerned with which test cases to be re-executed at runtime in
case coverage is not sufficient (“online testing”).

The thesis provides four main contributions that address the aforementioned
research questions. These contributions are visualized in Figure 4.1 (grey
shapes labelled A-D), structured along the research questions.

In the following, we describe the contributions of the thesis as depicted in
Figure 4.1. The technical details of each contribution are presented in the next
chapters.

4.1 Determining Valid Execution Traces (A)

The first contribution of the thesis is an approach for determining valid exe-
cution traces for self-adaptive service compositions at runtime.
Considering runtime monitoring traces and online testing traces

As presented in Section 2.5, execution traces provide the basis for each
kind of coverage assessment. As a key difference from existing approaches
for coverage assessment (see Section 3.2), we employ execution traces of both
(online) testing and runtime monitoring. In the case of (online) testing, ex-
ecution traces are obtained by executing test cases on a service composition.

49

50

Figure 4.1: Main Contributions

51

In the case of runtime monitoring, execution traces are obtained when users
invoke a service composition to use the functionalities offered by the service
composition.

Both the workflow and concrete services of the self-adaptive service com-
position may evolve during runtime. Therefore, our approach considers mod-
ifications that might result in invalid execution traces at two levels: workflow
and concrete services.

Considering concrete service bindings

To compute runtime coverage of a service composition achieved from run-
time monitoring and online testing, valid execution traces are used. Valid
execution traces are the execution traces which remain after leaving out in-
valid execution traces. Invalid execution traces are execution traces covering
entities modified or impacted by modifications in the service composition. In-
valid execution traces cannot be considered for coverage assessment. If the
executions of these traces were repeated on a modified version of the service
composition, they might produce different results from the results of their
previous executions (i.e., on the original version of the service composition).

For determining such invalid execution traces, our approach extends an ex-
isting graph-walk algorithm developed by Rothermel and Harrold [94]. Where
existing graph-walk algorithms employed the control-flow graphs of programs,
we extended these algorithms to the control-flow graph of service compositions.
In particular, we extended Rothermel and Harrold’s algorithm to consider con-
crete service bindings. A service composition is specified as a workflow of ab-
stract services [51, 23, 108, 5]. Each abstract service specified in the workflow
of a service composition may be realized by binding concrete services. Thus,
in order for a service composition to become executable, for each abstract
service a concrete service has to be bound. This implies that each node in
a control-flow graph can have multiple implementations. Both the workflow
and concrete services of a service composition may be modified during run-
time, leading to invalid execution traces. If the graph-walk algorithm did not
consider those concrete service bindings, the invalid the algorithm would not
determine the execution traces resulting from modifications in those bindings,
leading to wrong conclusions about the coverage of service composition.

More technically, our extended algorithm performs a synchronous traversal

52

on the control-flow graphs of the original and the modified versions of a service
composition. To identify potential modifications, the algorithm syntactically
compares each reached pair of nodes. In case no modifications were identified,
the algorithm additionally checks whether any of corresponding concrete ser-
vices is modified. The algorithm returns all execution traces that traverse the
identified modifications.

4.2 Coverage Criteria (B)

The second contribution of the thesis is a set of specific coverage criteria for
self-adaptive service compositions.

Considering execution plans

Different from existing coverage criteria (see Section 3.2), our criteria con-
sider the actual execution plans of a service composition as reference for cov-
erage assessment. Execution plans specify the binding of concrete services to
abstract services of a service composition and thus define the combination of
concrete services for the service composition [100, 108, 5]. Often, different ex-
ecution plans for the same service composition are defined in order to cater for
different user groups that have varying end-to-end requirements, such as over-
all performance or availability. The binding between the abstract services and
the selected concrete services can occur at design-time, but often is delayed
until deployment and even runtime [91]. Additionally, re-binding of concrete
services might occur at runtime in case of adaptation [35].

Considering execution plans means that only the combinations of concrete
services which are actually used for realizing the service composition are con-
sidered by the criteria. This results in a more realistic assessment of coverage
compared with considering all potential combinations of candidate services.
Some candidate concrete services and/or combinations of candidate services
may never be used for realizing the service composition. Thus, from quality
assurance perspective, not covering them should not be of concern. If these
potential combinations would be considered, the achieved coverage might be
perceived superfluous. Moreover, redundant testing might be initiated.

Considering execution plans allows us to define the following two types of
criteria:

53

• Intra-plan criteria focus on coverage of a service composition within one
execution plan. For example, coverage of all service composition’s oper-
ations used in one execution plan.

• Inter-plan criteria consider coverage of a service composition achieved
across all execution plans. For example, coverage of service composition’s
operations used in all execution plans.

Considering different coverage scopes

Traditional coverage criteria consider only a whole service composition.
Since an abstract service of a service composition may have multiple bind-
ings when considering execution plans, it would be helpful to have coverage
criteria focusing on coverage of an abstract service. This scope of coverage is
especially helpful for critical abstract services, for which coverage may be more
important than for others. Thus, we define separate coverage criteria for an
abstract service and for a whole service composition:

• The local criteria focus on coverage of one abstract service of a service
composition.

• The global criteria focus on a whole service composition.

Combined coverage criteria

Considering execution plans and different coverage scopes allows us to de-
fine four new coverage criteria: (1) intra-plan-local, (2) inter-plan-local, (3)
intra-plan-global, and (4) inter-plan-global. The intra-plan-local criterion is
concerned with the coverage of one abstract service in one execution plan.
The inter-plan-local criterion is concerned with the coverage of one abstract
service in all execution plans. The intra-plan-global criterion is concerned
with the coverage of the all abstract services in one execution plan. Finally,
the inter-plan-global is concerned with the coverage of all abstract services in
all execution plans.

54

4.3 Online-Test-Case Selection and Prioritiza-

tion (D)

The third contribution of the thesis is an approach for online-test-case selection
and prioritization. The intention is to select and prioritize test cases for re-
execution in cases where coverage is insufficient.

Considering runtime monitoring coverage

Different from existing test case prioritization approaches for service com-
positions (see Section 3.3), our approach considers the fact that coverage of
service compositions can also be obtained from runtime monitoring (see above).
In order to consider potential runtime monitoring coverage, our test case se-
lection and prioritization approach exploits the usage profile of a service com-
position [99]. The usage profile of a service composition provides information
about how services have been used in the past (i.e., usage frequencies stored
in runtime monitoring traces). Thus, the usage profile provides information
about how these services are likely to be used in the future.

Inverse usage-based test selection and prioritization

Different from the traditional usage-based testing [82], we prioritize online
test cases using the inverse of usage frequencies [99]. The test cases that
will (1) achieve highest coverage of a service composition, and (2) cover the
paths with the lowest usage frequencies, will be assigned the highest execution
priority. The rationale behind this approach is that, a path with a higher usage
frequency than the others is likely to be invoked, and thus covered, before the
others. Thus, our approach considers this potential coverage by assigning a
lower test priority to that path than to others. In case the path is covered by
normal usage of a service composition, our approach does not re-test it.

4.4 Online Testing and Runtime Monitoring Frame-

work (E)

The fourth contribution of the thesis is an online testing and runtime moni-
toring framework called PROSA [99].

Combination of runtime monitoring and online testing

55

Different from earlier efforts for service runtime monitoring and testing (see
Chapter 3), PROSA introduced the idea of exploiting synergies between run-
time monitoring and online testing, thereby achieving a better coverage of
service compositions [99]. A similar idea for the combined usage has later
been introduced by Bertolino et al. [16].
Differentiation between runtime monitoring traces and online testing

traces

The PROSA framework collects the service compositions’ execution traces.
The traces are classified as runtime monitoring traces or online testing traces.
The differentiation between runtime monitoring traces and online testing traces
is important since: (1) it provides traceability between existing test cases and
their executions traces; (2) the usage profile of a service composition is derived
only from runtime monitoring traces which represent the actual usage of the
service composition.

4.5 Summary

This chapter presented the four main contributions of the thesis. Technical
details as well as validation of the contributions are presented in the next
chapters.

56

Chapter 5

Determining Valid Execution

Traces

As presented in Section 2.5, execution traces provide the basis for each kind
of coverage assessment. For service compositions, execution traces can be
obtained from both (online) testing and runtime monitoring.

Both the workflow and concrete services of the service composition may
adapt during runtime. These adaptations might result in invalid execution
traces. If the executions of these traces were repeated on a modified version
of the service composition, they might produce different results from the re-
sults of their previous executions (i.e., on the original version of the service
composition). Therefore, invalid execution traces are not to be considered for
coverage assessment.

In this chapter, we present an approach for determining invalid execution
traces. Our approach extends an existing graph-walk algorithm developed by
Rothermel and Harrold [94]. We extended the algorithm to the control-flow
graph of service compositions such that it considers concrete service bindings.
By doing so, we enable the algorithm to determine all invalid execution traces
including those caused by modifications in service bindings.

5.1 Preliminaries

In this section, we define execution traces and invalid execution traces. To this
end, we present how execution traces for service compositions can be collected

57

58

at runtime. Additionally, we present the types of modifications based on which
execution traces might become invalid execution traces.

5.1.1 Execution Traces for Service Composition

Execution traces are collected to provide information about certain aspects of
program execution [31]. When used as reference for coverage assessment, these
aspects include entities of program’s control-flow graph (e.g., nodes, branches
and paths) that have been traversed during program execution.

Definition 5.1 provides our definition for execution trace of a service com-
position.

Definition 5.1 (Execution Trace). Execution trace et of a service
composition SC is a 4-tuple 〈identifier, input, E, output〉, where:

• identifier identifies the execution trace,

• input is the input for that execution,

• E is the sequence of entities traversed by that execution, and

• output is the output produced by the service composition for that
execution.

In structural testing, two basic control-flow graph entities are often tar-
geted for coverage assessment: the node and the branch [111]. For a service
composition, a control-flow graph corresponds to the workflow of the service
composition. Thus, each node in the control-flow graph represents an abstract
service or a control node. The edges of the control-flow graph represent the
flow of control between the nodes.

Since for each abstract service more than one concrete service binding exist,
a node in the control-flow graph may represent multiple implementations (i.e.,
bindings) for one abstract service. These implementations are provided by the
operations of the service bindings. The functionalities of service composition
are delivered through invocations of these operations.

Therefore, when targeting the entity node of service composition’s control-
flow graph, the coverage of all implementations of the control-flow graph nodes

59

should be collected. In this case, execution traces contain the sequence of
operations and control nodes traversed during service composition executions.

Additionally, the fact that a node in the service composition’s control-flow
graph may represent multiple operations implies that, a branch between two
nodes in the service composition’s control-flow graph may represent multiple
control transfers, in case one of the nodes represent abstract service. Therefore,
similar to the node, when targeting the entity branch, the coverage of all
implementations of the control-flow graph branches of a service composition
should be collected. In this case, execution traces contain the sequence of
branches traversed during service composition executions.

Types of Execution Traces

Execution traces can be obtained from performing (online) testing and/or run-
time monitoring on a service composition. In the case of (online) testing, ex-
ecution traces are obtained by executing test cases on a service composition.
In the case of runtime monitoring, execution traces are obtained when users
invoke a service composition to use the functionalities offered by the service
composition.

Both types of execution traces can be collected using conventional run-
time monitoring facilities of service compositions. Besides the typical usage
of runtime monitoring such as to uncover failures and detect deviations from
expected quality, runtime monitoring can thus be used to collect execution
traces including coverage information [87, 16]. In this case, as motivated in
Section 4.4, it is important to distinguish the source of the execution trace
being collected (i.e., (online) testing or runtime monitoring).

Collecting Execution Traces

From a technical point of view, runtime monitoring can collect execution traces
from different sources. One source could be the probes that are instrumented
in the service composition. It should be noted that a heavy use of probes
– which might be needed for a detailed tracking of coverage – may degrade
the performance of the service composition. Another source could be the
events generated by the execution engine while executing a service composition.

60

Some service composition execution engines (e.g., ActiveBPEL1 and Apache
ODE2) emit events whenever a change in the service composition’s execution
state occurs. Execution traces can thus be obtained by analysing the events
associated to these changes.

We consider only successful execution traces for coverage assessment. These
traces represent executions which successfully terminated and produced the ex-
pected output. Failed executions do not increase our confidence in the quality
of a service composition using coverage assessment. Therefore, the correspond-
ing traces (i.e., failed execution traces) are not considered for coverage assess-
ment. In the remaining of the thesis, we simply use the term “execution traces”
to refer to the successful execution traces.

In addition, as motivated in Chapter 4, invalid execution traces are also not
considered for coverage assessment.

5.1.2 Invalid Execution Traces

After modifying a service composition, the execution traces of the service com-
position can be classified into invalid execution traces and valid execution
traces.

Definition 5.2 (Invalid Execution Trace). An execution trace et of
a service composition SC is invalid w.r.t. a modified version SC ′ of
SC, if executing SC ′ with the input of et results in entity sequence E ′

which is different from E of et.

Thus, for an existing execution trace of a service composition to be con-
sidered invalid, the definition requires a traversal of a different sequence of
entities when the modified version of the service composition is executed using
the same input of the execution trace. For instance, this can happen when the
execution on the modified service composition traverses a modified entity or
new entity, or when it does not traverse an entity which was initially traversed
in the original service composition.

Valid execution traces are the execution traces which remain after removing
the invalid execution traces.

1http://www.activebpel.org/
2http://ode.apache.org/

61

Types of Modifications Leading to Invalid Execution Traces

According to Definition 5.2, the following are types of modifications to a service
composition, based on which some execution traces of the service composition
might become invalid:

1. Workflow adaptation: changing the structure of the workflow of the ser-
vice composition, such as: (1) adding, removing, or modifying an ab-
stract service, (2) adding and removing paths in the workflow, (3) mod-
ifying predicates in the workflow.

2. Service adaptation: updating the interface, behaviour, or performance
of constituent 3rd party services used in the service composition. After
service adaptation, the service might remain the same but might behave
differently (e.g., produces different output using the same input).

Both workflow adaptation and service adaptation are typically performed to
react to changes in business policies, user requirements, execution environment,
or performance (see [90]). In contrast to workflow adaptation which is under
the control of the service composition engineer, service adaptation is performed
by the service provider without necessarily notifying the service consumers.
Therefore, service adaptation modifications need be observed from sources such
as service registries [86], service discovery frameworks [70], and service release
notes [84] (see Chapter 8 for more details). Regardless of how a modification
is observed, the modification typically diminishes our confidence in the quality
of the impacted service. Consequently, the coverage of the paths traversing
the modified service or interactions with it might become invalid, thereby
decreasing the coverage of the overall service composition.

Concerning the control-flow graph of service compositions, only workflow
adaptation modifications can be reflected in the control-flow graph. These
modifications can be represented in three forms of elementary changes in the
control-flow graph [58]:

• addition of a node to the control-flow graph, e.g., reflecting the addition
of an abstract service in the service composition’s workflow.

• deletion of a node from the control-flow graph, e.g., reflecting the removal
of an abstract service in the service composition’s workflow.

62

• modification of a node in the control-flow graph, e.g., reflecting the mod-
ification of an abstract service in the service composition’s workflow.

Other types of complex modifications in the control-flow graph can be ex-
pressed using combinations of these elementary modifications. It should be
noted that addition, deletion, or modification of directed edges of control-flow
graph are always associated with addition, deletion, or modification of nodes
in the control-flow graph, respectively.

Since each node in the control-flow graph may represent multiple concrete
services, service adaptation modifications are not represented in the control-
flow graph. However, as motivated in Section 4.1, considering these modifi-
cations is essential for determining all invalid execution traces of the service
composition.

5.2 Determining Invalid Execution Traces

For determining invalid execution traces, our approach extends an existing
graph-walk algorithm developed by Rothermel and Harrold [94] for safe regres-
sion test case selection. Where existing graph-walk algorithms employed the
control-flow graphs of programs, we extended these algorithms to the control-
flow graph of service compositions.

In particular, we extended Rothermel and Harrold’s algorithm to consider
concrete service bindings. As motivated in Section 4.1, in order for a service
composition to become executable, for each abstract service a concrete service
has to be bound. This implies that each node in a control-flow graph can have
multiple implementations. As discussed in Section 5.1.2, both the workflow
and concrete services of a service composition may be modified during run-
time, leading to invalid execution traces. If those concrete service bindings
were not considered in the graph-walk algorithm, the invalid execution traces
resulting from modifications in those bindings would not be determined, lead-
ing to wrong conclusions about the coverage of service composition.

63

5.2.1 Algorithm for Safe Regression Test Case Selection

Rothermel and Harrold’s algorithm for safe regression test case selection uses
the control-flow graph for representing the original and modified versions of a
program code. To select test cases to be rerun in regression testing, the algo-
rithm performs a synchronous depth-first traversal on the control-flow graph
of the original program and the control-flow graph of the modified version of
the program. When two nodes are found to be lexicographically different3, the
algorithm includes the incoming edge of the node from the control-flow graph
of the original program into the so called dangerous entity set, and selects the
test cases that cover such an edge for retesting. The algorithm selects those
test cases from the edge coverage matrix; which stores information about which
edges in the control-flow graph are traversed by which test cases, when the set
of test cases are executed on the program.

Rothermel and Harrold’s algorithm accounts for all structural changes we
consider in our approach; i.e., the addition, deletion and modification of nodes
in the control-flow graph. Moreover, any other nodes which have control de-
pendence4 or data dependence5 on a modified node will be in the execution
traces which traverse the modified node.

5.2.2 The Extended Algorithm

Our extended algorithm performs a synchronous traversal on the control-flow
graphs of the original and the modified versions of a service composition. To
identify potential modifications, the algorithm syntactically compares each
reached pair of nodes. In case no modifications were identified, the algo-
rithm additionally checks whether any of the corresponding concrete services
is modified. The algorithm returns all execution traces that traverse the iden-
tified modifications. Algorithm 1 provides the pseudocode of the extended

3The comparison is based on the texts representing the nodes. According to Rothermel
and Harrold [94], two text strings are lexicographically equivalent if their texts (ignoring
extra white space characters when not contained in character constants) are identical.

4Control dependence represents the case that one node may affect the execution of an-
other node.

5Data dependence represents the case that one node defines a value to a variable and
another node may use it, and no intermediate node manipulates the variable.

64

algorithm.

Algorithm 1 Pseudocode for Our Algorithm for Determining Invalid Execu-
tion Traces
Input: G, G′ . The control-flow graphs of the original and modified versions

of a service composition
Input: DBI . Information about modified concrete services
Output: ET ′ . A set of invalid execution traces
1: ET ′ ← φ

2: E ← G.entryNode . The entry node of G
3: E ′ ← G′.entryNode . The entry node of G′

4: Compare(E, E ′, DBI) . Invoke function COMPARE
5: return ET ′

Algorithm 1 takes as input: (1) the control-flow graph of the original service
composition (CFG); (2) the control-flow graph of the modified version of the
service composition (CFG′); (3) information about modifications in concrete
services bound to the abstract services (DBI). Algorithm 1 returns the set of
invalid execution traces ET ′.

DBI is a table for bookkeeping the modifications with respect to the bound
operations of each abstract service in the service composition. For each candi-
date service binding, DBI stores the operations used in the service composition
and whether the operations were modified. Any new operations used in the
service composition are added in DBI. DBI is updated to reflect the observed
modifications for any of the existing operations. The update can be performed
either automatically using the service monitoring techniques, or manually by
the service composition engineer.

When Algorithm 1 begins, it initializes ET ′ to the empty set. Next, Algo-
rithm 1 invokes the function COMPARE with the entry nodes of CFG and CFG′

(i.e., E and E ′, respectively), and DBI. Function 2 provides the pseudocode
for COMPARE.

First, COMPARE determines whether any pair of nodes (say, N and N ′),
which have been simultaneously reached, have successors whose labels differ
(i.e., lexicographically inequivalent), along pairs of identically labelled edges.
If COMPARE finds such nodes, it adds to ET ′ the execution traces that cover

65

Function 2 Pseudocode for the COMPARE Function
1: function Compare(N , N ′, DBI) . N and N ′ are nodes in G and G′

2: for each successor C of N ∈ G do

3: L← the label on edge < N,C > OR e if < N,C > is unlabelled
4: C ′ ← the node in G′ such that < N ′, C > has the label L
5: if C is not marked C-visited then

6: if NOT LEquivalent(C, C ′) then
7: ET ′ ← ET ′∪ getExecutionTracesOnEdge(N , C)
8: else

9: B ← hasChangedBindings(C ′, DBI)
10: if B 6= φ then

11: for each binding b ∈ B do

12: ET ′ ← ET ′∪ getExecutionTracesOnEdge(N , C, b)
13: end for

14: end if

15: Compare(C, C ′, DBI)
16: end if

17: end if

18: end for

19:end function

66

the dangerous edges. A dangerous edge is the edge between the source node
and its successor node (i.e., < N,C >). In case the successor nodes are lex-
icographically equivalent, COMPARE continues to check whether the operations
bound to the successor nodes are modified. To this end, COMPARE invokes it-
self on the successor nodes for further checking potential modifications in the
successor nodes of those successors.

In some cases, we can have both a modified operation of a node N and,
at the same time, modifications in the label of one of N ’s successor nodes.
Therefore, COMPARE additionally invokes itself on the successors of the reached
pair of nodes after checking the bound operations of these successor nodes.

COMPARE uses the utility function LEquivalent(Node C, Node C ′) to de-
termine whether a pair of nodes are lexicographically equivalent (i.e., their
labels are equivalent). To determine whether any operations bound to the suc-
cessor nodes are modified, COMPARE invokes the function HasChangedBindings,
with the node under check C ′ and DBI. Function 3 provides the psuedocode
for HasChangedBindings.

Function 3 Pseudocode for the HasChangedBindings Function
1: function hasChangedBindings(N , DBI)
2: B ← φ

3: for each binding b of N in DBI do
4: if b is modified then
5: B ← B ∪ b
6: end if

7: end for

8: end function

HasChangedBindings checks the status of each bound operation of N as
stored in DBI, and returns the modified ones. HasChangedBindings thus
takes as input the node for which the check is performed as well as the dynamic
binding information DBI.

COMPARE uses the utility function getExecutionTracesOnEdge(Node N,

Node N) to search for the execution traces which traverse a dangerous edge.
Additionally, COMPARE uses the utility function getExecutionTracesOnEdge(Node
N, Node N, Binding b) to search for the execution traces which traverse

67

the dangerous edge using a particular binding.

5.2.3 Complexity Analysis of the Extended Algorithm

In this section, we perform asymptotic analysis for the runtime of the extended
graph-walk algorithm. In order for our extended graph-walk algorithm to be
applicable for service compositions at runtime, the runtime of the algorithm
is a relevant aspect. To support timely adaptation activities, the algorithm
should be efficient when applied to service compositions at runtime.

Rothermel and Harrold [94] have analysed the runtime of their graph-walk
algorithm using the big-Oh notation. Therefore, to facilitate benchmarking
with the original algorithm, we adopt the same notation for our analysis.

The runtime of the extended graph-walk algorithm depends on the runtime
of the calls to COMPARE plus the runtime of the other operations for initializing
the sets. However, since the initialisations have constant time, the runtime
of the algorithm is bounded by the runtime of the calls to COMPARE. An up-
per bound on the number of calls to COMPARE is reached when assuming that
COMPARE can be called with each pair of nodes N and N ′ in the control-flow
graphs G and G′, respectively.

To estimate the runtime of COMPARE, we initially assume that COMPARE does
not include the extension to examine modifications in service bindings. Under
this assumption, the runtime of COMPARE is similar to the runtime of the orig-
inal algorithm of Rothermel and Harrold [94]. Rothermel and Harrold analyse
the runtime of COMPARE as follows. A call to COMPARE results in at most two
calls to LEquivalent, resulting in either a set union operation or examination
of at most two successors of N and N ′. The set union operation is bounded by
the number of execution traces (|ET |) in the examined set of execution traces
ET . The runtime of the function LEquivalent is bounded by the number of
characters in the compared texts; a constant k, the maximum text length, for
practical reasons [94]. Thus, the runtime of COMPARE is bounded by O(k |ET |)
for some constant k.

Therefore, given a pair of control-flow graphs G and G′ containing n and
n′ nodes, respectively, and given a set of |ET | execution traces, if COMPARE is
called for each pair of nodes (N ∈ G, N ′ ∈ G′), the runtime of the algorithm
is O(|ET |nn′). The assumption that COMPARE may be called for each pair of

68

nodes N and N ′ from G and G′ applies only to graphs G and G′ for which
the multiply-visited-node condition holds. In these cases, the runtime of the
graph-walk algorithm is O(|ET | (min{n, n′})).

To add the cost of the extension to the runtime of the algorithm, we assume
that the number of bindings in a single node is bounded by a constant c; a
maximum number of bindings for all nodes.

Each call to COMPARE results in at most b lookups on the table DBI for the
modified bindings of the examined node. This results in a runtime bounded to
c for the worst case (assuming all bindings of the node are modified). Based on
the value of c, additional set union operations are invoked leading to a runtime
of |ET | c. It follows that these additional steps are bounded by |ET | c. Thus,
the time required by the algorithm in the worst case is O(|ET |nn′ c). When
the multiply-visited-node condition does not hold, the expression |ET |nn′

becomes |ET | (min{n, n′}) leading to a worst case is of O(|ET | (min{n, n′} c)
for the extended algorithm.

To conclude, the runtime of the algorithm is linear to the number of control-
flow graph nodes when the other bounding parameters are hold constant. The
runtime of the algorithm is linear to the number of bindings when the other
bounding parameters are hold constant. The runtime of the algorithm is linear
to the number of execution traces when the other bounding parameters are hold
constant.

5.3 Summary

For computing coverage of service composition, valid execution traces are used.
In this chapter we defined invalid execution traces. Additionally, we presented
our algorithm for determining invalid execution traces. The algorithm extends
an existing graph-walk algorithm of Rothermel and Harrold for safe regression
test case selection to account for modifications in service bindings.

Chapter 6

Coverage Criteria

Traditional cover criteria are based on a static model of the program code
structure (i.e., control-flow graph), which maps to a concrete implementation
of the program. For instance, if the nodes in the control-flow graph are used to
represent the functions of a program, then each node represents one concrete
implementation of one function in the program. However, dynamic binding
implies that the control-flow graph generated from the service composition
code can have a large number of possible realizations, each having different
implementation and behaviour. For example, an abstract service can have
more than one candidate service to be bound during service execution.

The coverage criteria can be fulfilled using only one realization of the service
composition. However, the remaining potential realizations remain uncovered
and thus may contain undetected faults. Achieving adequate coverage for all
potential realizations using the traditional coverage criteria can require a large
number of test cases. Additionally, the cost of testing a service composition
can be very high, since each test case can require the invocation of the service
from the service provider [20]. Moreover, some of the candidate concrete ser-
vices and/or combinations of the candidate services may never be used when
executing the service composition. From quality assurance perspective, not
covering the unused (combination of) candidate services should not be of con-
cern. If these unused (combination of) candidate services would be considered,
the achieved coverage might be perceived superfluous. Moreover, redundant
testing might be initiated.

The above limitations of traditional coverage criteria call for the definition

69

70

of a set of coverage criteria more appropriate for service composition. The
coverage criteria proposed in this chapter consider the actual execution plans
of a service composition as reference for the coverage assessment. Execution
plans specify the binding of concrete services to the abstract services defined
in the service composition and thus define the combination of concrete services
for a service composition [100, 108, 5]. Considering execution plans guaranties
that only the combinations of concrete services actually used for realizing the
service composition are considered.

6.1 Intra-plan and Inter-plan Coverage Criteria

Often, different execution plans for the same service composition are defined
for different user groups with varying end-to-end requirements, such as overall
performance or availability. The binding between the abstract services and
the concrete services can be defined at design-time, but often the binding
is delayed until deployment or even runtime [91]. Additionally, re-binding of
concrete services might occur at runtime in case of adaptation [35]. Considering
execution plans allows us to define the following two types of coverage criteria:

• Intra-plan coverage criteria focus on the coverage within one execution
plan. For example, coverage of all service composition’s operations de-
fined in one execution plan.

• Inter-plan coverage criteria consider coverage across all execution plans.
For example, coverage of service composition’s operations defined in all
execution plans.

Traditional coverage criteria consider only a whole service composition. An
abstract service of a service composition may have multiple bindings defined
in different execution plans. It would then be helpful to have coverage criteria
focusing on coverage of one abstract service considering execution plans. This
scope of coverage is especially helpful for critical abstract services whose cover-
age might be more important than for other services. Thus, we define separate
coverage criteria for one abstract service and for a whole service composition
considering execution plans:

71

• The local coverage criteria focus on coverage of one abstract service of a
service composition.

• The global coverage criteria focus on a whole service composition.

Considering execution plans and different coverage scopes leads us to define
four new coverage criteria: (1) intra-plan-local, (2) inter-plan-local, (3) intra-
plan-global, and (4) inter-plan-global.

Figure 6.1 provides an overview of the criteria.

Figure 6.1: Our Proposed Coverage Criteria

6.1.1 Preliminaries

In the following, SC refers to an abstract service composition. Abstract ser-
vices of SC are indexed by i, and ai refers to an abstract service. Execution
plans are indexed by j and EPL = {eplj} refers to a set of execution plans of
SC. SCj refers to a concrete version of SC using execution plan eplj.

For each SCj, the term entity indicates either an operation or a branch
depending on what needs to be covered. E refers to the set of entities of SC
using all execution plans, Ej refers to the set of entities of SCj, ej refers to
one such entity, and ei,j refers to an entity of ai in a concrete version SCj. For
instance, the operation bound to ai or the branch going to ai in SCj.

Concerning execution traces, ET refers to a set of execution traces of SC,
and ETj refers to a set of execution traces of SCj, eti,j refers to execution

72

trace traversing entity of ai in SCj. Eet refers to the entities traversed by the
execution trace et.

Concerning coverage, we will use satisfies to indicate that 100% coverage
is a achieved.

Table 6.1 provides a summary of the introduced notations.

Table 6.1: Notation Summary

Group Symbol Description

Service Composition
SC Service Composition
i Abstract service index
ai i-th abstract service

Execution Plan

EPL Set of execution plans
j Execution plan index
eplj j-th execution plan
SCj The concrete service composition using

eplj

Entity

E Set of entities of SC using all execution
plans

Ej Set of entities of SCj

Ei Set of entities of ai using all execution
plans

ei,j An entity of ai in SCj

Execution Trace
ET Set of execution traces of SC
ETj Set of execution traces of SCj

eti,j Execution trace traversing the entity of ai
in SCj

Eet Set of entities traversed by et
Coverage satisfies 100% coverage

73

6.1.2 The Local Criteria

The local coverage criteria focus on the coverage of one particular abstract ser-
vice in a service composition. These criteria allow us to assess intra-plan cov-
erage and inter-plan coverage of the entities of an individual abstract service.
Figure 6.2 provides an illustration of the local criteria for both the intra-plan
operation coverage and the inter-plan operation coverage.

Figure 6.2: Illustration of the local criteria for operation coverage

The Intra-plan-local Coverage (Intra-LC) Criterion

The Intra-LC criterion is the simplest and least demanding criterion among
the ones we propose. The Intra-LC criterion targets the entity of a particular
abstract service in a service composition SC when SC is realized using a
particular execution plan.

The Intra-LC criterion is defined for an individual abstract service ai and
an individual execution plan eplj.

74

Definition 6.1 (Intra-plan-local Coverage Criterion). A set of execu-
tion traces ET satisfies the intra-plan-local criterion for an abstract
service ai and execution plan eplj if and only if there is at least one
execution trace et such that et traverses ei,j and et ∈ ETj.
Formally:

Intra-LC. ETsatisfies Intra-LC(ai,eplj) ⇐⇒ ∃et : ei,j ∈ Eet ∧ et ∈
ETj.

The definition of the Intra-LC criterion requires that the entity of the ab-
stract service in a service composition, realized using the execution plan, to be
traversed by at least one execution trace of the concrete service composition.

Algorithm 4 provides the pseudocode for checking whether or not a given set
of execution traces satisfies the Intra-LC criterion for a given abstract service
and a given execution plan.

Algorithm 4 Checking the Satisfaction of the Intra-LC Criterion
Input: ET . The set of target execution traces
Input: ai . The target abstract service
Input: eplj . The target execution plan
Output: satisfied . An indicator whether the criterion is satisfied
1: satisfied← FALSE

2: ETj ← getP lanTraces(ET, eplj) . Select the execution traces of SCj

3: ei,j ← getP lanEntity(ai, eplj) . The entity of ai in eplj
4: for all et ∈ ETj do
5: if ei,j ∈ Eet then

6: satisfied← TRUE

7: stop iteration
8: end if

9: end for

10: return satisfied

Algorithm 4 takes three input parameters: (1) The set of execution traces
(ET) against which coverage will be assessed; (2) The abstract service (ai) for
which coverage will be assessed; (3) The execution plan (eplj) for which the

75

coverage will be assessed. The algorithm returns satisfied; indicating whether
ET satisfies the Intra-LC criterion w.r.t. ai and eplj.

Initially, the algorithm initializes satisfied with FALSE. The algorithm
uses the function getP lanTraces(ET, eplj) to select the subset of execution
traces ETj of the execution plan eplj, and the function getP lanEntity(ai, eplj)
to get the entity ei,j matching with the abstract service ai and the execution
plan eplj (ei,j is thus the entity ai in SCj).

The algorithm then iterates over the set of execution traces ETj to check if
there exists at least one trace which traverses the entity ei,j. As soon as such
a trace is found, the algorithm updates satisfied with TRUE and stops the
iteration. Otherwise, it continues the iteration. Once the iteration is finished,
the algorithm returns satisfied. In case no execution trace traverses the entity
ei,j, the retuned value of satisfied will be FALSE.

The Inter-plan-local Coverage (Inter-LC) Criterion

The Inter-LC criterion extends the Intra-LC criterion to consider the coverage
of one abstract service of a service composition for each execution plan defined
in a set of execution plans. Thus, the Inter-LC criterion targets the entities
of the abstract service when using all execution plans of the service composi-
tion. Therefore, the Inter-LC criterion is defined with respect to an individual
abstract service ai of a service composition and a set execution plans EPL of
the service composition.

Since the Inter-LC criterion extends the Intra-LC criterion to consider more
than one execution plan, we can define the Inter-LC criterion using the defi-
nition of the Intra-LC criterion, as follows.

Definition 6.2 (Inter-plan-local Coverage Criterion). A set of execu-
tion traces ET satisfies the inter-plan-local criterion for an abstract
service ai and a set of execution plans EPL if and only if for each
execution plan eplj ∈ EPL, ET satisfies the Intra-LC criterion for the
abstract service ai.
Formally:
Inter-LC. ETsatisfies Inter-LC(ai, EPL) ⇐⇒ ∀eplj ∈ EPL,
ETsatisfies Intra-LC(ai, eplj).

76

The definition of the Inter-LC criterion requires that for each concrete ser-
vice composition of an execution plan in EPL, the corresponding entity of the
abstract service is covered by at least one execution trace.

The Inter-LC criterion targets all entities of abstract service ai. Therefore,
in addition to checking whether or not a set of execution traces satisfies the
Inter-LC, we can also assess the percentage of entities of ai covered by the
execution traces, according to this criterion. To this end, Algorithm 5 provides
a pseudocode for assessing the percentage of coverage achieved by a given set
of execution traces, according to the Inter-LC criterion.

Algorithm 5 Inter-plan-local Coverage (Inter-LC) Assessment
Input: ET . The target set of execution traces
Input: ai . The target abstract service
Input: EPL . The target set of all execution plans
Output: coverage . The percentage of covered entities
1: covered← 0

2: coverage← 0%

3: Ei ← getServiceEntities(ai, EPL) . Get the entities of ai
4: all← |Ei|
5: for all e ∈ Ei do

6: EPLe ← getP lans(e) . The execution plans that use the entity e
7: for all et ∈ ET do

8: EPLet ← getP lans(et) . The execution plans traversed by et
9: if (e ∈ Eet) & (EPLe ∩ EPLet 6= φ) then
10: covered← covered+ 1

11: stop iteration over ET
12: end if

13: end for

14: end for

15: coverage← covered/all

16: return coverage

Algorithm 5 takes three input parameters: (1) The target set of execution
traces (ET) against which coverage will be assessed; (2) The target abstract
service (ai) for which coverage will be assessed; (3) The target set of execution

77

plans EPL. The algorithm returns the percentage of the achieved coverage
(coverage) in the range [0%− 100%], where 0% indicates that no entity of the
abstract service is covered and 100% indicates that all entities are covered, and
thus, the criterion is satisfied.

Initially, the algorithm initializes covered to 0 and coverage to 0%. The
algorithm uses the function getServiceEntities(ai, EPL) to get the set of enti-
ties Ei of the abstract service ai. The algorithm defines all as the total number
of entities to be covered according to the Inter-LC criterion. The value of all
in this case is the size of the set Ei.

The algorithm then iterates over the set of target entities Ei. The algorithm
uses the function getP lans(e) to get the set of execution plans which use
the entity e. Then, the algorithm iterates over the set of execution traces
ET . The algorithm uses the function getP lans(et) to get the set of execution
plans when the service composition is traversed by the execution trace. The
algorithm then checks if the execution trace et traverses the entity e in the
same concrete service composition in which e exists. In the positive case, the
algorithm increments covered with 1 and stops the iteration over the execution
traces for the entity e. Otherwise, the algorithm continues the iteration over
the remaining execution traces of ET .

Once the iteration over Ei is finished, the algorithm computes the value of
coverage by dividing covered over all and returns the value of coverage as a
result.

6.1.3 The Global Criteria

The second set of coverage criteria is concerned with the coverage of the overall
service composition. These criteria allow to assess intra-plan coverage and
inter-plan coverage of the entities of service composition. Figure 6.3 provides
an illustration of the global criteria for both the intra-plan operation coverage
and the inter-plan operation coverage.

The Intra-plan-global Coverage (Intra-GC) Criterion

The Intra-GC criterion is concerned with the coverage of entities of a service
composition using one execution plan. Similar to the Intra-LC criterion, the

78

Figure 6.3: Illustration of the global coverage criteria using the entity type
operatation

Intra-GC criterion is defined with respect to a particular execution plan, as
follows.

Definition 6.3 (Intra-plan-global Coverage Criterion). A set of exe-
cution traces ET satisfies the intra-plan-global criterion for execution
plan eplj if and only if for each entity of SC using eplj, there exists at
least one execution trace et which traverses the entity in SCj.
Formally:

Intra-GC. ETsatisfies Intra-GC(eplj) ⇐⇒ ∀e ∈ Ej,∃et ∈ ETj : e ∈
Eet.

Definition 6.3 requires that for one execution plan each entity of a concrete
service composition is covered by at least one execution trace.

Like in the Intra-LC criterion, we can assess the percentage of entities cov-
ered by a given set of execution traces according to Intra-GC criterion, using
the pseudocode in Algorithm 6.

Algorithm 6 takes two input parameters: (1) The set of target execution
traces (ET); (2) The target execution plan (eplj), and returns the percentage

79

Algorithm 6 Intra-plan-global Coverage (Intra-GC) Assessment
Input: ET . The target set of execution traces
Input: eplj . The target execution plan
Output: coverage . The percentage of covered entities
1: covered← 0

2: coverage← 0%

3: ETj ← getP lanTraces(ET, eplj) . Select the execution traces of SCj

4: Ej ← getP lanEntities(eplj) . Get the entities of SCj

5: all← |Ej|
6: for all e ∈ Ej do

7: for all et ∈ ETj do
8: if e ∈ Eet then

9: covered← covered+ 1

10: stop iteration over ETj
11: end if

12: end for

13: end for

14: coverage← covered/all

15: return coverage

80

of the achieved coverage (coverage).

Initially, the algorithm initializes covered to 0 and coverage to 0%. The al-
gorithm uses the function getP lanTraces(ET, eplj) to select the subset of exe-
cution tracesETj of SCj. The algorithm uses the function getP lanEntities(eplj)
to get the entire set of entities Ej of SCj. The algorithm then assigns to all
the size of the set.

For each entity in Ej, the algorithm iterates over the set of execution traces
ETj and checks if there exists a trace in this set which traverses the entity. As
soon as such a trace is found, the algorithm increments covered with 1 and
stops the iteration over ETj. Otherwise, it continues the iteration over the
remaining execution traces in ETj.

Once all entities in Ej are visited, the algorithm computes the value of
coverage by dividing covered over all and returns the result.

The Inter-plan-global Coverage (Inter-GC) Criterion

The Inter-GC criterion is the most comprehensive and most demanding crite-
rion, among the ones we propose. The Inter-GC criterion is concerned with
the coverage of entities of a service composition using a set of execution plans.

Definition 6.4 defines the Inter-GC criterion. The definition of the Inter-GC
criterion is based on the definition of the Intra-GC criterion.

Definition 6.4 (Inter-plan-global Coverage Criterion). A set of exe-
cution traces ET satisfies the inter-plan-global criterion if and only if
for each execution plan eplj in the set of execution plans EPL, ET
satisfies the Intra-GC criterion.
Formally:

Inter-GC. ETsatisfies Inter-GC(EPL) ⇐⇒ ∀eplj ∈ EPL,
ETsatisfies Intra-GC (eplj).

Definition 6.4 requires using each execution plan in EPL, each entity of the
concrete service composition to be covered by at least one execution trace in
the same concrete service composition. Algorithm 7 provides the pseudocode
for assessing the coverage achieved by a given set of execution traces, according
to the Inter-GC criterion.

81

Algorithm 7 Inter-plan-global Coverage (Inter-GC) Assessment
Input: ET . The target set of execution traces
Input: EPL . The target set of execution plans
Output: coverage . The percentage of covered entities
1: covered← 0

2: coverage← 0%

3: E ← getEntities(EPL) . Get the entities of SC in EPL
4: all← |E|
5: for all e ∈ E do

6: EPLe ← getP lans(e) . The execution plans that use the entity e
7: for all et ∈ ET do

8: EPLet ← getP lans(et) . The execution plans of SC when
traversed by et

9: if (e ∈ Eet) & (EPLe ∩ EPLet 6= φ) then
10: covered← covered+ 1

11: stop iteration over ET
12: end if

13: end for

14: end for

15: coverage← covered/all

16: return coverage

82

Algorithm 7 takes two input parameters: (1) The target set of execution
traces (ET); (2) The target set of execution plans entities (EPL), and returns
the percentage of achieved coverage (coverage).

Initially, the algorithm initializes covered with 0 and coverage with 0%. The
algorithm defines all as the total number of entities to be covered according
to the Inter-GC criterion. This is equal to the size of the set E.

For each entity in E, the algorithm uses the function getP lans(e) to get
the set of execution plans that use the entity e, and iterates over the set of
execution traces ET . The algorithm uses the function getP lans(et) to get
the set of execution plans of the service composition when traversed by the
execution trace et. The algorithm checks if the execution trace et traverses the
entity e in the concrete service composition in which the entity e exists. In the
positive case, the algorithm increments covered with 1 and stops the iteration
over ET . Otherwise, the algorithm continues the iteration over the remaining
execution traces of ET .

Once all entities are visited, the algorithm computes the value of coverage
by dividing covered over all and returns the result.

6.1.4 Subsumption Relations

In software testing, coverage criterionX subsumes coverage criterion Y if every
test suite satisfying X also satisfies Y [111]. Similarly, coverage criterion X

for execution traces subsumes coverage criterion Y if every set of execution
traces satisfying X also satisfies Y . Figure 6.4 shows the subsumption relation
between our proposed coverage criteria.

The Intra-LC criterion is the weakest criterion among the others. This
is because the coverage scope of this criterion is the entity of an individual
abstract service using one execution plan. Therefore, the Intra-LC criterion
does not subsume any other criterion.

A set of execution traces satisfying the Inter-LC criterion covers all entities
of an individual abstract service when using all execution plans. Thus, the
entity required by Intra-LC criterion is part of the super set required by the
Inter-LC criterion. Therefore, the Inter-LC criterion subsumes the Intra-LC
criterion. Moreover, since the Inter-LC criterion focuses on one individual
abstract service and not the whole SC, the Inter-LC criterion does not subsume

83

Figure 6.4: Subsumption Relation between the Coverage Criteria

any of the global criteria.

The Intra-GC criterion is weaker than its peer the Inter-GC criterion. The
scope of coverage required by the Intra-GC criterion is only one execution plan.
Whereas, the Inter-GC criterion goes beyond one execution plan and scopes
out for the whole set of execution plans. A set of execution traces satisfying
the Inter-GC criterion covers all entities of a service composition when using
all execution plans. Therefore, the Inter-GG criterion subsumes the Intra-GC
criterion. However, the converse does not hold. The Intra-GC criterion does
not subsume the Inter-GC criterion.

Since the global criteria consider the whole service composition, both the
Intra-GC criterion and the Inter-GC criterion subsume the Intra-LC criterion.
Moreover, a set of execution traces satisfying the Inter-GC criterion covers
all entities of a particular abstract service, thereby subsuming the Inter-LC
criterion for all abstract services of the service composition. However, since the
Intra-GC criterion focuses only on a single execution plan, it neither subsumes
the Inter-LC criterion, nor subsumes the Inter-GC criterion.

84

6.2 Summary

This chapter presented our coverage criteria for self-adaptive service composi-
tions. The proposed criteria exploit execution plans of a service composition
and thus include criteria for one execution plan (i.e., intra-plan) and criteria
for all execution plans (i.e., inter-plan). The proposed criteria scopes out for
one abstract service and for the whole service composition. Additionally, we
presented algorithms for measuring percentage of achieved coverage according
to each of the criteria. Finally, we discussed the subsumption relation between
the criteria.

Chapter 7

Online Test Case Selection and

Prioritization

This chapter presents our approach for online test case selection and prior-
itization techniques. The intention is to select and prioritize test cases for
re-execution in cases where coverage of a service composition is insufficient.

Our test case prioritization goal is to achieve coverage rate of the coverage
criteria presented in Chapter 6 faster by combining runtime monitoring and
online testing. In order to consider potential runtime monitoring coverage, our
approach exploits information about the time it takes to execute test cases and
the usage model of service composition.

7.1 Online Test Case Selection

In cases where the achieved coverage of the selected coverage criteria is insuf-
ficient, test cases are selected from a repository of test cases (see Chapter 4),
and are prioritized for re-execution.

Test case prioritization is concerned with finding an order for the execution
of test cases to achieve a certain goal. According to Rothermel et al. [95], there
are many possible goals of prioritization including fast achievement of coverage
which we target in our approach, Rothermel et al. state:

“Testers may wish to increase the coverage of coverable code in the system
under test at a faster rate, thus allowing a code coverage criterion to be met

earlier in the test process”.

85

86

Following this goal, prioritization techniques aim to schedule the test cases
of a test suite such that code coverage is achieved at the fastest possible rate to
reach 100% coverage soonest [65]. Alternatively, prioritizations aim to schedule
the test cases of a test suite in a way to ensure the maximum possible coverage
is achieved by a pre-defined cut-off point.

An increased rate of coverage provides earlier feedback and evidence about
the quality of the system or the service composition (i.e., whether quality goals
have been met). An increased rate of coverage is typically correlated with an
increased rate of fault detection, which allows triggering adaptation of the
service composition earlier.

There are several criteria for measuring the coverage rate of a prioritized test
suite, the metrics used depend on the coverage criterion selected. For measur-
ing the coverage rate of a prioritized test suite, we adapt the metrics defined by
Li et al. [65] for block, decision, and statement coverage. For instance, consid-
ering statement coverage, Li et al. used APSC (Average Percentage Statement
Coverage). APSC measures the rate at which a prioritized test suite covers the
statements. Li et al. define APSC as the weighted average of the percentage
of statement coverage over the life of the suite, as follows. Let a test suite T
containing n test cases that covers a set S of m statements. Let TSi be the
first test case in the order T ′ of T that covers statement i. The APSC for order
T ′ is given by the equation:

APSC = 1− TS1 + TS2 + ...+ TSn

nm
+

1

2n
,

where APSC values range from 0 to 100 and higher values imply faster (better)
coverage rates.

7.2 Information Used for Test Case Prioritiza-

tion

Our approach prioritizes test cases executed during the normal operation of
service composition. Parallel execution of the test cases increases the load on
the service composition and its constituent services. The increased load can
lead to undesired side effects such as downtimes of the service composition
(see [20] for more details on this issue). Therefore, we consider sequential

87

execution of test cases to minimize these side effects, and propose prioritization
techniques for sequential execution of test cases.

An important factor in the effectiveness of a prioritization technique is the
information (i.e., evidences) it utilizes [81]. Test cases and their corresponding
execution traces posse the following valuable information which we utilize to
achieve our prioritization goal:

• Achievable Test Coverage. When executed on a service composition,
each test case achieves a percentage of coverage according to a certain
coverage criterion. We refer to this as achievable test coverage. Intu-
itively, the test cases with a higher test coverage can contribute more
to achieving faster coverage rate than the test cases with a lower test
coverage. We use this information for our test case prioritization. As a
basis for coverage assessment, we use the coverage criteria proposed in
Chapter 6. Details of our test case prioritization are presented in Section
7.3.1.

• Potential Monitoring Coverage. During the online execution of a
test suite for a service composition, the service composition may in addi-
tion be used by its users. By this normal usage, some parts of the service
composition may be covered. I.e., normal usage contributes to the over-
all achievement of the coverage criteria of a service composition. We will
refer to this type of coverage as potential monitoring coverage because
it is not guaranteed that the service composition will be used during a
session of online testing. The potential monitoring coverage is obtained
in parallel to the test coverage achieved through online testing. Thus,
combining both the achievable test coverage and the potential monitor-
ing coverage of service composition can help achieving faster coverage
rate, as some online test cases may not need to be executed, thereby
reducing the overall time required to achieve the desired coverage.

The following information of the test cases can help us consider the
potential monitoring coverage of a service composition:

– Execution Time: Test case execution time indicates the duration
for completing the online execution of the test case. Using execu-
tion time, we can prioritize test cases to increase the chance for

88

potential monitoring coverage. Executing the test cases with the
longest execution time first, expands the period in which potential
monitoring coverage of other test cases might be obtained. This
increases the chance for more potential monitoring coverage to be
obtained. As the potential monitoring coverage occurs in parallel
to the test coverage, faster coverage rate of the service composi-
tion might be achieved. Therefore, we use information about the
test cases execution time in our test case prioritization. Details are
presented in Section 7.3.2.

– Path Probability: The usage model (also called operational pro-
file) of a service composition encodes information about the usage
patters of the service composition or parts of it. Runtime mon-
itoring history of a service composition constitutes a rich source
for building the service composition’s usage model. Using the us-
age model, we can compute the probabilities for the paths of the
service composition potentially covered through runtime monitor-
ing [57]. We refer to this information as path probability. Using
path probability, we can prioritize test cases to consider the poten-
tial runtime monitoring coverage of those paths, thereby achieving
coverage rate faster. Details are presented in Section 7.3.3.

In the following, we use this information for our test case prioritization
techniques for service compositions.

7.3 Online Test Case Prioritization Techniques

Given any test case prioritization goal one or more prioritization techniques can
be defined [95]. In this section we present test case prioritization techniques for
our test case prioritization goal, which we classify into four groups: coverage-
based, time-based, usage-based, and hybrid (combining information used in
the other groups).

Table 7.1 provides an overview of all test case prioritization techniques pre-
sented in this chapter.

89

Table 7.1: Overview of Test Case Prioritization Techniques

Category Technique Description

Coverage-based

C1 Descending order of test cases achiev-
able test coverage according to the
Inter-plan-local coverage criterion, and
pseudorandomly to resolve the tie.

C2 Descending order of test cases achiev-
able test coverage according to the
Intra-plan-global coverage criterion,
and pseudorandomly to resolve the tie.

C3 Descending order of test cases achiev-
able test coverage according to the
Inter-plan-global criterion, and pseudo-
randomly to resolve the tie.

Time-based E Descending order of test cases execu-
tion time, and pseudorandomly to re-
solve the tie.

Usage-based U Ascending order of test cases con-
crete path probabilities, and pseudo-
randomly to resolve the tie.

Hybrid

H1 Descending order of test cases achiev-
able test coverage. In case of a tie, de-
scending order of test cases execution
time. In case of a tie, ascending order
of test cases concrete path probability.

H2 Descending order of test case potential,
and pseudorandomly to resolve the tie.

90

7.3.1 Coverage-based Test Case Prioritization

The coverage-based prioritization techniques that we propose are based on
the coverage criteria presented in Chapter 6. The Intra-plan local coverage
criterion (see Section 6.1.2) can be satisfied using only one test case. We
thus propose test case prioritization techniques only for the remaining three
coverage criteria.

C1: Descending Inter-plan-local Coverage

This technique is proposed for the inter-plan-local coverage criterion (see
Section 6.1.2). The inter-plan-local coverage criterion is concerned with the
coverage of entities of one particular abstract service using all execution plans.

The technique sorts the test cases in a descending order of their inter-
plan-local coverage, and pseudorandomly in cases of tie. Test cases which
cover the largest number of entities of a particular abstract service of a service
composition using all execution plans, are assigned the highest priorities.

C2: Descending Intra-plan-global Coverage

This technique is proposed for the intra-plan-global coverage criterion (see
Section 6.1.3). The intra-plan-global coverage criterion is concerned with the
coverage of the overall service composition within one particular execution
plan.

The technique sorts the test cases in descending order of their achievable
intra-plan-global coverage, and pseudorandomly in cases of tie. Test cases
which cover the largest number of entities of the service composition using a
particular execution plan are assigned the highest execution priorities.

C3: Descending Inter-plan-global Coverage

This technique is proposed for the inter-plan-global coverage criterion (see
Section 6.1.3). The inter-plan-global coverage criterion is concerned with the
coverage of the overall service composition using all execution plans.

The technique prioritizes test cases according to their achievable inter-plan-
global coverage, and pseudorandomly in cases of tie. Test cases that cover
largest number of entities of the service composition using all execution plans,
are assigned the highest priorities.

91

7.3.2 Time-based Test Case Prioritization

The time-based test case prioritization category is based on the execution time
of test cases. For a given test case, the execution time can be estimated by
summing up the response times of the concrete services along the path tra-
versed by the test case. As we motivated in Section 7.2, test cases execution
time takes into account potential runtime monitoring coverage when prioritiz-
ing test cases.

E: Descending Order of Test Case Execution Time

This technique sorts test cases in descending order of their execution time,
and pseudorandomly in cases of ties. That is, the test cases which have the
longest execution time will be assigned the highest execution priority.

The rationale behind this prioritization is that while executing the test cases
with the longest execution time, the time in which runtime monitoring coverage
can be considered increases. This facilitates the consideration of more runtime
monitoring coverage.

7.3.3 Usage-based Test Case Prioritization

The usage-based test case prioritization category is based on the usage model
of a service composition.

Typically, either Markov chains or flat operational profiles are used to rep-
resent usage models [57]. A Markov chain represents application states and
transitions between those states, together with probabilities for those state
transitions [102]. Flat operational profile is defined as a set of application
operations and their occurrence probabilities [82].

Since a service composition consists of a workflow of tasks (or abstract
services), a Markov chain is more appropriate for representing the usage model
of a service composition than the flat operational profile. Therefore, we use a
Markov chain to represent the usage model of a service composition. In this
usage model, states represent the tasks (or abstract services) and transitions
between the states represent the transitions between the abstract services. The
transition probability between two nodes in the workflow is computed as the
ratio of the number of times a transition is traversed to the total number
of times all possible transitions between the nodes are traversed [57]. These

92

traversal counts can directly be computed from the runtime monitoring data
of the service composition.

With respect to all execution plans defined for a service composition, we
additionally define execution plan probability for a service composition as the
probability that the execution plan is used to realize the service composition.
Execution plan probability is computed as the ratio of the number of times
the execution plan is used to the total number of times all execution plans are
used. The number of times execution plans are used can directly be computed
from the runtime monitoring data of a service composition.

Figure 7.1 provides an example for a usage model of a service composition
with three execution plans and their probabilities.

Figure 7.1: Example Usage Model and Execution Plans of a Service Compo-
sition

The example in Figure 7.1 includes 7 abstract services labelled A to G.
Each transition in Figure 7.1 is annotated with a percentage indicating the
transition probability. For example, the transition between the start node and
the abstract service A has 100% probability. Another example, the transition
probabilities for the transitions between the first decision node and the abstract
services B and C are 80% and 20%, respectively. Moreover, the example in

93

Figure 7.1 has 3 execution plans epl1, epl2, and epl3. Each execution plan has
execution plan probability denoted by eplx(%). For example, the probability
of execution plan epl1 is 60%. In execution plan epl1, the abstract services A
and B are bound to the concrete services a1 and b denoted by A : a1 and B : b,
respectively.

Using the usage model and the execution plan probability, we can derive
the following parameters which we use for test case prioritization:

• Abstract Path Probability (Pap) is defined as the probability that
a given abstract path in the service composition’s workflow is invoked.
Abstract path probability is computed as the arithmetic multiplication
of the transition probabilities along the abstract path [57]. For example,
the probability of the abstract path (A, C, F, G) in Figure 7.1 is 100%×
20%× 100%× 100% = 20%. Table 7.2 provides the probabilities for the
three abstract paths of the example workflow.

Table 7.2: Abstract Path Probabilities in Figure 7.1

Abstract Path Probability

ap1: A B D G 60%

ap2: A B E G 20%

ap3: A C F G 20%

• Concrete Path Probability (Pcp). A concrete path is a path where
each abstract service is bound to a concrete service. Concrete path prob-
ability is defined as the probability that a given concrete path in the
service composition’s workflow is invoked. Concrete path probability is
computed as follows:

Pcp = Pap × Pepl

For example, the probability of the concrete path (A:a1, C:c1, F:f, G:g)
in Figure 7.1 is 20%× 60% = 12%. Table 7.3 provides the probabilities
of all concrete paths in Figure 7.1.

The idea behind the usage-based test case prioritization technique is to
execute those test cases during online testing first which cover concrete paths

94

Table 7.3: Concrete Path Probabilities in Figure 7.1

Execution Plan Concrete Path Probability

epl1

cp1: (A:a1, B:b, D:d, G:g) 36%

cp2: (A:a1, B:b, E:e, G:g) 12%

cp3: (A:a1, C:c1, F:f, G:g) 12%

epl2

cp4: (A:a2, B:b, D:d, G:g) 18%

cp5: (A:a2, B:b, E:e, G:g) 6%

cp6: (A:a2, C:c2, F:f, G:g) 6%

epl3

cp7: (A:a3, B:b, D:d, G:g) 6%

cp8: (A:a3, B:b, E:e, G:g) 2%

cp9: (A:a3, C:c2, F:f, G:g) 2%

with least probable runtime monitoring coverage. We propose the following
test case prioritization technique to achieve this goal.

U: Ascending Order of Concrete Path Probability

This technique sorts test cases in ascending order of the probabilities of
the concrete paths they cover, and pseudorandomly in cases of ties. That
is, the test cases which cover concrete paths with the lowest probability of
their coverage during system usage (runtime monitoring) will be assigned the
highest execution priority.

7.3.4 Hybrid Test Case Prioritization

Test case prioritization techniques using more than one piece of information
may perform better than the techniques using only one piece of informa-
tion [81]. The previous sections presented isolated prioritization techniques for
each of the information presented in Section 7.2. In this section, we propose
hybrid prioritization techniques which use all pieces of information together.

H1: Descending Achievable Coverage, Descending Execution Time, Ascending
Concrete Path Probability

This technique uses achievable test coverage1, execution time, and concrete

1Achievable test coverage according to the coverage criteria presented in Chapter 6

95

path probability of test cases. The technique sorts the test cases in 3 steps or-
dered by certainty of the information available from achievable test coverage,
execution time, and concrete path probability. In particular, the technique
uses achievable test coverage first since the achievable test coverage reflects a
guaranteed coverage of a service composition, while execution time and con-
crete path probability reflect potential coverage of the service composition. The
technique uses the execution time before the concrete path probability because
the execution time is a measurement (see Section 7.3.2) and the concrete path
probability is an estimation (see Section 7.3.3).

Therefore, the technique initially sorts test cases in a descending order of
their achievable test coverage. Then, the technique uses the execution time of
test cases to break the tie when test cases have equal achievable test coverage.
The technique sorts test cases in descending order of their execution times.
Lastly, to break the tie when test cases have both equal achievable coverage
and execution time, the technique sorts the test cases in ascending order of
their path probability.
H2: Descending Test Case Potential

Another way for prioritizing test cases using all available information is to
combine the information into a single model and to use the result for prioritiza-
tion. The model we propose combines the achievable test coverage, execution
time, and the concrete path probability into a single value which we call the
test case potential.

The test case potential is computed as follows:

tcp =
C × E
P

,where

• C is the achievable test coverage of the test case,

• E is the ratio of the test case execution time to the test suite execution
time, and

• P is the path probability of the test case.

Since higher achievable test coverage and longer execution time might lead to
faster coverage rate, tcp is proportional to C and to E. Likewise, as low values
of concrete path probability of a test case might lead to a faster coverage rate,
tcp is inversely proportional to P .

96

Based on the test case potential, the test case prioritization technique sorts
test cases in descending order of their resulting tcp values.

Despite the fact that both technique H1 and technique H2 use the same
information (i.e., achievable coverage, execution time, and concrete path prob-
ability) for test case prioritization, technique H1 and technique H2 differ in
how they use the information. Rather than using the information directly for
prioritization as performed by technique H1, technique H2 turns the informa-
tion into a single value and uses the result for prioritization.

7.4 Summary

This chapter presented our techniques for online test case selection and pri-
oritization for service compositions. The goal of the test case prioritization is
to achieve coverage of service composition at a faster rate, using the coverage
criteria presented in Chapter 6. To this end, the techniques use the following
relevant pieces of information to prioritize test cases of a service composition:
(1) the achievable coverage of the test cases; (2) the execution time of the test
cases; (3) the usage model of the service composition.

Chapter 8

Online Testing and Monitoring

Framework

This chapter presents our online testing and runtime monitoring framework
called PROSA. PROSA introduced the idea of exploiting synergies between
runtime monitoring and online testing, thereby achieving better coverage of
service compositions [99]. PROSA was designed for Quality of Service mon-
itoring and testing of constituent services of service compositions. In this
Chapter, we adapt PROSA to support functional online testing and runtime
monitoring of service compositions.

8.1 The PROSA Framework

PROSA constitutes three main modules as depicted in Figure 8.11:

• The Runtime Monitoring Module passively collects execution data
of service compositions and their constituent services. The execution
data include performance, usage, and coverage data.

• The Online Testing Module actively collects execution data of service
compositions and their constituent services by initiating the execution of
online tests.

1For the notation used to model the architecture; see: http://www.fmc-
modeling.org/download/fmc-and-tam/SAP-TAM%5FStandard.pdf

97

98

Figure 8.1: The PROSA Framework

• The Data Repository Module manages the storage and the retrieval
of collected execution data.

In the following, we present each module in detail.

8.2 Runtime Monitoring Module

This module is responsible for the runtime monitoring activities of the PROSA
framework. The Runtime Monitoring Module has two components: the Service
Composition Monitor and the Listener.

8.2.1 Service Composition Monitor

This component is responsible for collecting and storing execution traces for a
service composition. As defined in Section 5.1.1, an execution trace contains
input, output, and traversed entities of the service composition.

The Service Composition Monitor can collect execution traces from different
sources. One source could be the probes instrumented in the service compo-
sition [45, 9]. The service composition is instrumented to record the relevant
entities (e.g., operations or branches) traversed by each execution. It should be

99

noted that, a heavy use of probes – as might be needed for collecting coverage
at a detailed level – may degrade the performance of the service composition.

Another source are the events generated by the execution engine while exe-
cuting a service composition [45]. Some service composition execution engines
(e.g., ActiveBPEL2 and Apache ODE3) emit events whenever a change in the
service composition’s execution state occurs. Execution traces can thus be
obtained by analysing the events generated for those changes. Collecting ex-
ecution traces using this approach is less invasive as these events are emitted
by the execution engine anyway.

Execution traces may be obtained using different execution plans for the
service composition. Hence, execution traces need to be associated with exe-
cution plans. Execution traces are therefore stored with identifiers for the used
execution plans (one or more plan) or null to indicate an arbitrary use of the
service composition.

The Service Composition Monitor stores the collected execution traces in
the Data Repository Module.

8.2.2 Listener

The Listener component of the Runtime Monitoring Module collects informa-
tion regarding modifications in the operations of the services bound in the
service compositions. Observing modifications in the operations of bound ser-
vices is required to determine valid execution traces (see Chapter 5).

The Listener can collect information about such modifications from the
following sources:

• Service Registry [86]. A service registry refers to an infrastructure that
supports service providers to publish descriptions about their offered
services and potential users to search for services. Service registries reg-
ularly monitor the registered services to detect potential changes in their
behaviour or Quality of Service. In case some of the constituent services
are published in a Service Registry, the Listener subscribes to the reg-
istry to receive notifications about relevant changes of services pushed
by the Service Registry.

2http://www.activebpel.org/
3http://ode.apache.org/

100

• Service Discovery Framework [70]. Service discovery frameworks are
used by service integrators for the identification of services that can sub-
stitute constituent services in service compositions. Service discovery
frameworks typically include listeners which query the used service reg-
istries about possible changes of registered services. Additionally, some
runtime service discovery frameworks [70] may employ runtime moni-
tors which intercept the SOAP messages exchanged between the service
composition and its constituent services for identifying changes in their
behaviour. Such runtime monitors can also be used to identify changes
in the constituent services.

In either case, the Listener updates the Dynamic Binding Information (DBI)
in the Data Repository to reflect observed modifications of services and service
bindings.

8.3 Online Testing Module

This module is responsible for testing service compositions and their con-
stituent services. Test execution is performed online i.e., in parallel to the
normal operation of the service composition. As advocated by our approach,
online testing of service compositions is used to complement runtime monitor-
ing. The data collected by the Online Testing Module is similar to the data
collected by the Runtime Monitoring Module.

For performing online testing activities, the Online Testing Module has two
components, the Service Composition Tester for testing service compositions,
and the Service Tester for testing constituent services.

8.3.1 Service Composition Tester

For coverage assessment, our approach uses (online) testing execution traces in
combination with runtime monitoring traces. In this view, online testing can
be triggered in cases when coverage of the service composition falls below a
predefined threshold. The assessment of coverage can be performed using ap-
propriate coverage criteria for service compositions. In Chapter 6, we proposed
coverage criteria for service compositions.

101

For testing a service composition, test cases need to be selected. In this
version of PROSA, we assume the test cases are available and stored in a Test
Case Repository. The selection of test cases depends on the coverage criteria
used for the service composition. The following are techniques for the coverage
criteria presented in Chapter 6:

• The Intra-plan-local Coverage Criterion (see Section 6.1.2): The test
case used for covering the target abstract service using the target execu-
tion plan will be selected in case the execution trace of the test case is
invalid.

• The Inter-plan-local Coverage (see Section 6.1.2): The test cases used
to cover the abstract service using all execution plans will be selected in
case the execution traces of these test cases are invalid.

• The Intra-plan-global Coverage Criterion (see Section 6.1.3): The test
cases used to cover the service composition using the target execution
plan will be selected in case the execution traces of these test cases are
invalid.

• The Inter-plan-global Coverage Criterion (see Section 6.1.3): The test
cases used to cover the service composition using all execution plans will
be selected in case the execution traces of the test cases are invalid.

For executing the selected test cases on the service composition, the Service
Composition Tester sends the input defined in the test cases to the service
composition execution engine, which then executes the service composition.
The results of online testing (i.e., execution traces) are collected by the Service
Composition Monitor in the same manner of collecting execution traces from
normal usage of the service composition.

Using the Service Composition Monitor to collect both types of traces (i.e.,
test and monitoring) requires distinguishing the collected traces as either com-
ing from monitoring normal system usage or from online testing. Technically,
this can be achieved by attaching a tag when sending a request for testing
purposes. The tag identifying the source of request is stored along with the
execution trace. The default value for the tag will be identifying a monitoring

102

request. In case of testing, the value will be set for identifying a testing request
as such.

For test case selection, it is necessary to know which execution trace be-
longs to which test case. As we defined execution traces, each execution trace
includes input. Using the combination of input and testing activity identifier
(i.e., the tag), we can identify test cases by looking for execution traces of
particular input and identified as testing.

8.3.2 Service Tester

In addition to collecting execution traces for the entire service composition, the
Online Testing Module is responsible for actively collecting observations about
the constituent services. This activity is performed by the Service Tester com-
ponent which complements the activities performed by the Listener. Therefore,
the Service Tester invokes the operations of the services to identify potential
modifications in the behaviour or the performance of used services. To this
end, the Service Tester invokes the services using the input defined in the test
cases stored in the Test Case Repository. The Service Tester can be configured
to invoke services at predefined rates. For example, it can be configured to
invoke a service whenever the usage rate of the service drops below a certain
threshold.

The test execution can be implemented using existing test execution envi-
ronments. In earlier versions of PROSA [99], we have used an existing services
monitoring framework, SALMon, for performing online testing of constituent
services. SALMon is designed following SOA principles, which allows easier
integration in other frameworks and allows deploying SALMon functionality
as third-party services. Moreover, SALMon combines both testing and moni-
toring in a single framework.

SALMon provides the Monitor Service (offered as a Web service) as the
central access point for: (1) configuring monitoring and online testing for the
different services in a service composition, and (2) retrieving Monitoring Data.

The Monitor Service has a testing component which invokes the services
using the provided test input and test rate. To collect Monitoring Data from
monitoring or online testing, the Monitor Service creates one or more measure
instruments which implement the logic required to compute concrete quality

103

metrics of the service.

Once the monitor is configured, it dynamically activates a concrete set of
Measure Instruments depending on the required quality metrics to measure.
Monitoring is performed through an Enterprise Service Bus (ESB). That is,
instead of directly invoking the services, all requests and responses are sent
through the ESB which in turn feeds the Measure Instruments.

The results of testing are observed and compared with expected results
as defined in the test cases. The Dynamic Binding Information in the Data
Repository is updated to reflect the observed modifications.

8.4 Data Repository Module

This module stores the execution plans of the service composition. Execution
plans can be thought of as configuration files (e.g., XML files) storing for
each abstract service in a service composition, the operation of the bound
service. These documents can be accessed when necessary, e.g., during service
composition deployment or at runtime.

Additionally, the Data Repository Module is responsible for managing the
data collected by the Online Testing and Runtime Monitoring Modules, such
as data storage and retrieval. In particular, the repository stores the collected
execution traces of service compositions. Execution traces are stored according
to the format defined in Section 5.1.1, along with identifiers for the execution
plans and the source of invocation (i.e., monitoring or testing). The Dynamic
Binding Information stores the observed modifications of the used services.

Two types of data about the service composition and its constituent ser-
vices can be derived from collected execution traces: coverage data and usage
data of the service composition. While the coverage data is concerned with
a single traversal of the entities, the usage data is concerned with their en-
tire occurrence. The Coverage Data and the Usage Model are used by our
proposed coverage criteria (see Chapter 6) and online test case selection and
prioritization (see Chapter 7).

104

8.4.1 Coverage Data

Coverage data indicates which parts of the service composition (e.g., operations
or branches) have been executed by which execution trace. Coverage data is
stored in the Coverage Data repository.

In software testing, coverage data is compiled into a coverage matrix that
associates each test execution with the parts of the software that the execution
traverses [93]. The coverage matrix has two dimensions. One dimension is for
the test cases. The other dimension is for the relevant parts of the test object.
For instance, for edge-coverage data, the coverage matrix will associate test
executions with the relevant edges in the test object.

We create the same representation for coverage data of service compositions.
That is, we create coverage matrix associating each execution trace (of both
testing and runtime monitoring) with the entities of the service composition
contained by the trace. Since a service composition can be realized using
several execution plans, we create an instance of the coverage matrix for each
used execution plan. Each instance of the coverage matrix will associate the
entities of the service composition using the respective execution plan, with
the execution traces of the execution plan. Additionally, we create an instance
of the coverage matrix for the coverage data of execution traces not based on
any execution plan.

Using this representation for coverage data and the representation of exe-
cution traces, several information required by the thesis contributions can be
derived. For example, we can determine which are the entities of the used exe-
cution plans and which are the entities traversed by existing execution traces.
We can also determine which of the execution plan entities are covered by
which execution trace.

8.4.2 Usage Model

Usage data indicates the usage patters of the parts of the service composition.
Usage data is recorded using the Usage Model. The Usage Model is used by the
thesis contribution of online test case selection and prioritization (see Chapter
7). The Data Repository is responsible for maintaining the usage models for
the deployed service compositions.

105

As discussed in Chapter 7, we use the Markovian representation for service
compositions usage model. Key to maintaining the usage model of a service
composition is computing the transition probability for all transitions in the
model. It is important to note that the Usage Model is only updated by using
execution traces obtained from actual service invocations and not by using
the invocations which are triggered by online testing. If invocations for online
testing would be considered, the data in the Usage Model would not reflect
the usage of the system.

8.4.3 Dynamic Binding Information (DBI)

The Dynamic Binding Information (or DBI for short) is also stored in the Data
Repository.

As discussed in Section 5.2, the DBI is a table for bookkeeping the mod-
ifications with respect to the bound operations of each abstract service in
the service composition. For each candidate service binding, DBI stores the
operations used in the service composition and whether the operations were
modified. Any new operations used in the service composition are added in
the DBI.

8.5 Summary

In this Chapter we presented the PROSA framework. The PROSA framework
constitutes (3) The Runtime Monitoring Module; (2) The Online Testing Mod-
ule; (3) The Data Repository Module. The Runtime Monitoring Module, and
its components, are responsible for the passive collection of execution data of
service compositions and their constituent services. The Online Testing Mod-
ule, and its components, are responsible for the active collection of execution
data of service compositions and their constituent services. The Data Reposi-
tory Module is responsible for managing the collected data, including storage
and retrieval. The modules of the PROSA framework provide the technical
support for the thesis contributions introduced earlier.

106

Chapter 9

Evaluation

In this chapter, we evaluate the first three contributions of the thesis. The
PROSA framework – the last contribution which focuses on the technical as-
pects of the contributions evaluated in this Chapter – has been evaluated in
another context, and the results are published in [99, 79].

We use the Goal Question Metric (GQM) paradigm [67] for defining
evaluation goals, refining goals into metrics, and interpreting the resulting
data. We carry out the evaluation by means of controlled experiments. A
controlled experiment provides us with a higher degree of control compared to
other types of evaluation such as case study or questionnaire.

Thus for each evaluation, in addition to the goals, questions, and metrics,
we present the experimental plan including objects, design, and execution,
followed by analysis of the experimental results.

9.1 The Goal Question Metric Paradigm

The idea behind the GQM Paradigm is that measurement should be based on
goals [67]. Goals provide rationale for the data collection and interpretation
activities carried out in the evaluation.

TheGoal states the particular aspects of a contribution that will be studied
by the evaluation. A goal can be characterized with respect to the following
aspects: object, purpose, quality, viewpoint, and context of the study [67], and
can be constructed by means of a goal template, as follows:

107

108

Analyse <Object(s) of study>
for the purpose of <Purpose>
with respect to their <Quality focus>
from the point of view of the <Perspective>
in the context of <Context>.

The object is the studied entity in the experiment, e.g., model, metric, the-
ory, etc. The purpose defines what the experiment is intended to do, e.g., to
evaluate, to characterize, etc. The quality focus is the effect under study, e.g.,
efficiency, effectiveness, cost, etc. The perspective defines from which viewpoint
the results are interpreted, e.g., developer, researcher, etc. Finally, the context
is the environment in which the experiment is conducted. Context defines the
involved personnel (subjects) and the used software artefacts (objects) in the
experiment.

TheQuestion formulates the questions required to be answered for meeting
the goal(s). Finally, the Metric defines the measures, and thus the data to be
collected, for answering the questions.

9.2 Evaluation of Determining Valid Execution

Traces

9.2.1 Goals, Questions, and Metrics

For the evaluation of determining valid execution traces we define goal 1.

Goal 1. Analyse the extended graph-walk algorithm
for the purpose of evaluation
with respect to its execution time
from the point of view of the researcher
in the context of self-adaptive service compositions.

Goal 1 is concerned with performance evaluation of our graph-walk algo-
rithm in terms of the algorithm’s execution time. The asymptotic analysis
performed in Section 5.2.3 indicated the critical parameters by which the run-
time of the algorithm can be bounded. The goal is to support the analysis with

109

empirical results for the runtime of the algorithm, while considering the im-
pact of the bounding parameters. While the result of the asymptotic analysis
allows estimating the runtime of the algorithm for any value of the parameters,
the evaluation will provide results for concrete values of the parameters, se-
lected based on values used in the service-oriented computing literature. The
bounding parameters are:

1. Number of nodes : this parameter indicates the number of nodes in the
control-flow graph of a service composition. The asymptotic analysis of
the algorithm indicated a linear relationship between the execution time
of the algorithm and the number of control-flow graph nodes.

2. Number of bindings : this parameter indicates the number of candidate
service bindings per abstract service in a service composition. The
asymptotic analysis of the algorithm indicated a linear relationship be-
tween the execution time and the number of bindings.

3. Number of traces : this parameter indicates the number of execution
traces considered by the algorithm when searching for invalid traces.
The asymptotic analysis of the algorithm indicated a linear relationship
between the execution time of the algorithm and the number of execution
traces.

Therefore, meeting goal 1 will require us to answer the following questions.

Q1.1: What effect can the number of nodes of the control-flow graph have on
the execution time of the algorithm?

Q1.2: What effect can the number of bindings in the control-flow graph have
on the execution time of the algorithm?

Q1.3: What effect can the number of execution traces of the service compo-
sition have on the execution time of the algorithm?

These questions will be answered by collecting data for the following metric:

M1.1: The amount of time the algorithm required to determine invalid traces.

110

9.2.2 Experimental Plan

Experimental Objects

As objects for our experiments, we use realistic service compositions frequently
used in the service-oriented computing research topics related to our contri-
butions such as adaptive service composition and service testing. Such exam-
ple service compositions are used in the service-oriented computing literature
[75, 76, 77, 104, 106, 52, 23, 20, 23] to compensate for the lack of open source
service compositions to be used for evaluation purposes.

Table 9.1: Characteristics of the service compositions used in the experiments

Service Composition Control-flow Graph

Application Domain #services #nodes #trans. #branches

Loan Approval Banking 2 9 13 4

DSL Service E-commerce 3 10 11 2

Supply Chain E-commerce 6 8 7 0

Trip Planning Tourism 6 10 10 2

Image Processing Computing 6 12 13 4

In particular, we use: a Loan Approval service composition [75, 76, 77, 106],
a DSL Service service composition [75, 76, 77], a Supply Chain service compo-
sition [104, 106], a Trip Planning service composition [52, 23], and an Image
Processing service composition [20, 23]. Table 9.1 summarizes the character-
istics of each service composition.

Design and Execution

To meet goal 1, we design our experiment as follows. The independent variables
are the parameters on which the execution time of the algorithm can strongly
depend. The dependent variable is the execution time of the algorithm which
we would like to measure. We vary the values for the independent variables as
follows:

111

1. Number of nodes : we consider the control-flow graphs of the service
compositions in Table 9.1, thereby covering a various number of control-
flow graph nodes and abstract services.

2. Number of bindings : We vary the number of bindings from 10 to 50 with
steps of 10, covering the values which have been considered by several
other studies [69, 23, 65, 55, 59, 108, 22].

3. Number of traces : We vary the values for this parameter from 100 to
1000 with steps of 100, and from 1000 to 5000 with steps of 500. Despite
the small size of the service compositions used in the experiments, con-
sidering a large number of service bindings allows having a large number
of unique execution traces.

In the performed experiments, we combine the independent variables as
follows. We vary the values of the independent variable of interest and hold
all the other parameters fixed at certain values. The values at which the
other independent variables are fixed do not effect the analysis of the results
as we use the same values when evaluating the parameters. In particular, we
vary the values of the number of bindings while fixing the number of traces to
1000 for each of the service compositions. We vary the values of the number
of traces while fixing the number of bindings to 50 for each of the service
compositions. We consider all the service compositions in Table 9.1, which
have various number of nodes (8,9,10,12).

Our experiments cover the whole set of combinations resulting from the
aforementioned design. Each experiment run involves the following steps. Ini-
tially, we generate a set of execution traces by simulating various executions of
the studied service composition, randomly choosing one path over the control-
flow graph of the service composition. For evaluating adequate monitoring
(see Chapter 3 for details), Bertolino et al. [16] similarly simulated execution
traces randomly choosing one path over the behavioural model of the service
compositions. Then, we generate a modified version of the service composition
simulating that a number service bindings is modified. We achieve this by set-
ting in the DBI (see Chapter 5 and Chapter 8) the status of the service binding
to modified. Finally, using the control-flow graphs of the original and modified
versions of the service composition, we run our algorithm to determine the

112

invalid execution traces from the set of execution traces which we generated
and record the execution time.

We have conducted the experiments on a machine with a 2.93 GHz Intel
Core i7 processor, 8 GB 1333 MHz DDR3 memory, the OS X Yosemite operat-
ing system, and Java JRE 1.6. For obtaining the CPU time, we have used the
package java.lang.management1. This package provides the management in-
terface for monitoring and management of the Java virtual machine as well as
the operating system on which the Java virtual machine is running. Following
other studies [48, 112, 61, 23, 106], we repeat each run 100 to avoid bias intro-
duced by randomness, e.g., from simulating execution traces and simulating
modifications in service compositions.

9.2.3 Results

The results for goal 1 are obtained from applying M1.1 and are summarized
in two main figures. Figure 9.1 shows the effect of the number of bindings on
the execution time. Figure 9.2 shows the effect of the number of traces on the
execution time. Thus, the x-axis of the figures includes the values for the inde-
pendent variable and the y-axis includes the average execution time in ms (for
100 repetitions). The results are differentiated for all the service compositions
in Table 9.1.

The Effect of Number of Bindings on Execution Time

Figure 9.1 shows that – for all the considered service compositions – the
average execution time of the algorithm is affected by the number of bindings,
when holding the number of traces fixed. The execution time increases as the
number of service bindings used by the service composition increases. The re-
lationship between the execution time and the number of bindings appears to
be linear for the design considered in our experiments. For the Image Process-
ing, Trip Planning, and Supply Chain, which have the largest number of nodes,
the execution time is the longest along all the values of the number of bindings.

The Effect of Number of Traces on Execution Time
1http://docs.oracle.com/javase/6/docs/api/java/lang/management/package-

summary.html

113

Figure 9.1: The average execution time of the algorithm vs. the number of
bindings of the service compositions (Q1.2)

Similar conclusions can be obtained from Figure 9.2 regarding the effect
of the number of traces on the execution time. For all the considered ser-
vice compositions, the average execution time of the algorithm is affected by
the number of execution traces, when holding the number of bindings fixed.
The execution time increases as the number of execution traces considered by
the algorithm increases. The relationship between the execution time and the
number of execution traces appears to be linear for the design considered in
our experiments. The execution time is longer for service compositions with
larger number of nodes.

The Effect of Number of Nodes on Execution Time

Despite the fact the number of nodes in the studied service composition has

114

Figure 9.2: The average execution time of the algorithm vs. the number of
traces of the service compositions (Q1.3)

not largely varied (from 9 − 12), both Figure 9.1 and Figure 9.2 suggest that
the execution time is affected by the number of nodes in the service compo-
sition. The higher the number of nodes (as for Supply Chain, Trip Planning,
and Image Processing), the longer is the execution time of the algorithm.

Conclusion

For the considered cases in this experiment, the results show the bounding
parameters identified by asymptotic analysis effect the execution time of the
algorithm. Additionally, the results suggest that the execution time of our
algorithm is not high (1 − 40 ms). The algorithm can be used at runtime to
support timely decision making.

115

9.3 Evaluation of Coverage Criteria

9.3.1 Goals, Questions, and Metrics

For the evaluation of coverage criteria we define goal 2 and goal 3.

Goal 2. Analyse the global coverage criteria
for the purpose of evaluation
with respect to avoiding unnecessary operation (resp. branch) coverage
from the point of view of the researcher
in the context of runtime coverage assessment, self-adaptive service
compositions.

Goal 2 is concerned with the unnecessary operation (resp. branch) coverage
assessment. In coverage assessment for a service composition, unnecessary
operation (resp. branch) coverage can be computed. Unnecessary coverage
can be computed when considering candidate service bindings not used in the
execution plans defined for the service composition. Our coverage criteria focus
rather on the coverage of operations (resp. branches) used in the execution
plans defined for the service composition.

Meeting goal 2 will require us to answer the following questions.
Q2.1: To what extent does the global operation coverage of a service compo-
sition differ when: (1) considering the execution plans defined for the service
composition and (2) not considering the execution plans defined for the service
composition?
Q2.2: To what extent does the global branch coverage of a service composi-
tion differ when: (1) considering the execution plans defined for the service
composition and (2) not considering the execution plans defined for the service
composition?

These questions will be answered by collecting data for the following metrics.
M2.1: The inter-plan-global operation coverage of a service composition con-
sidering the execution plans defined for the service composition. It is measured
using algorithm 7 where in this case entity = operation.
M2.2: The inter-plan-global operation coverage of a service composition con-
sidering all candidate service bindings of the service composition. It is mea-
sured using algorithm 7 where in this case entity = operation and the set of

116

execution plans EP is the set of all possible combinations of candidate service
bindings of the service composition.
M2.3: The arithmetic difference between M2.1 and M2.2 (i.e., the result of
the arithmetic subtraction M2.1−M2.2).
M2.4: The inter-plan-global branch coverage of a service composition consid-
ering the execution plans defined for the service composition. It is measured
using algorithm 7 where in this case entity = branch.
M2.5: The inter-plan-global branch coverage of a service composition consid-
ering all candidate service bindings of the service composition. It is measured
using algorithm 7 where in this case entity = branch and the set of execution
plans EP is the set of all possible combinations of candidate service bindings
of the service composition.
M2.6: The arithmetic difference between M2.4 and M2.5 (i.e., the result of
the arithmetic subtraction M2.4−M2.5).

Goal 3 is similar to goal 2 but concerns our local coverage criteria rather than
our global coverage criteria. Thus, we define goal 3 using the same template
of goal 2 replacing global with local.

Goal 3. Analyse the local coverage criteria
for the purpose of evaluation
with respect to avoiding unnecessary operation (resp. branch) coverage
from the point of view of the researcher
in the context of runtime coverage assessment, self-adaptive service
compositions.

Meeting goal 3 will require us to answer the following questions.
Q3.1: To what extent does the local operation coverage of a service compo-
sition differ when: (1) considering the execution plans defined for the service
composition and (2) not considering the execution plans defined for the service
composition?
Q3.2: To what extent does the local branch coverage of a service composition
differ when: (1) considering the execution plans defined for the service com-
position and (2) not considering the execution plans defined for the service
composition?

These questions will be answered by collecting data for the following metrics.

117

M3.1: The inter-plan-local operation coverage of a service composition con-
sidering the execution plans of the service composition. It is measured using
algorithm 5 where in this case entity = operation.

M3.2: The inter-plan-local operation coverage of a service composition consid-
ering all candidate service bindings of the service composition. It is measured
using algorithm 5 where in this case entity = operation and the set of exe-
cution plans EP is the set of all possible combinations of candidate service
bindings of the service composition.

M3.3: The arithmetic difference between M3.1 and M3.2 (i.e., the result of
the arithmetic subtraction M3.1−M3.2).

M3.4: The inter-plan-local branch coverage of a service composition consid-
ering the execution plans of the service composition. It is measured using
algorithm 5 where in this case entity = branch.

M3.5: The inter-plan-local branch coverage of a service composition consid-
ering all candidate service bindings of the service composition. It is measured
using algorithm 5 where in this case entity = branch and the set of execution
plans EP is the set of all possible combinations of candidate service bindings
of the service composition.

M3.6: The arithmetic difference between M3.4 and M3.5 (i.e., the result of
the arithmetic subtraction M3.4−M3.5).

9.3.2 Experimental Plan

Experimental Objects

As objects for our experiments, we use the control-flow graphs of the service
compositions in Table 9.1.

Design and Execution

Meeting goal 2 and goal 3 requires execution plans and execution traces for
the service compositions to apply the metrics M2.1 – M2.6 and M3.1 – M3.6.
The dependent variable in our experiment is the measured coverage. The
independent variables are the number of execution plans and execution traces.

To obtain execution plans for a service composition, we proceed as follows.
We assign candidate service bindings for each abstract service in the service

118

composition’s control-flow graph. Then, we generate all possible plans for the
control-flow graph by considering all possible combinations of candidate service
bindings. For each control-flow graph, we use a number of service bindings per
abstract service from the values covered in Section 9.2.22, such that we obtain
the same number of plans for all control-flow graphs. The resulting number of
plans for all control-flow graphs is 4096. From these plans, we randomly select
a set of plans to represent the execution plans of the control-flow graph. We
vary the number of selected execution plans by considering percentages in the
range 10%− 100% from all plans.

To obtain execution traces, we follow the same approach described in Sec-
tion 9.2. That is, we simulate executions of a service composition, randomly
selecting one complete path over the control-flow graph of the service composi-
tion. However, instead of randomly selecting a service binding for an abstract
service, we randomly use an execution plan, from the selected execution plans,
to define the service bindings for the abstract services in a control-flow graph.
As different numbers of execution traces could achieve different coverage re-
sults, we vary the number of execution traces from 1000 to 5000 for all runs of
the experiment.

Finally, we apply the metrics M2.1 – M2.6 and M3.1 – M3.6. In our ex-
periments, randomness is used in simulating and selecting execution traces
and execution plans. In our pre-tests, we observed that the results obtained
for multiple repetitions of the experiment did not vary much because of this
randomness. Therefore, we repeat each run of the experiment 5 times.

9.3.3 Results

Goal 2 Results

Concerning the global coverage criteria (goal 2), Figure 9.3 and Figure 9.4
show the results measured with metric M2.3 and metric M2.6. Each figure
contains 5 plots (a-e) showing the measured results for the different numbers
of execution traces considered in the experiments (i.e., 1000 − 5000). The
x-axis represents the number of execution plans used. The y-axis represents

2Loan Approval has only 2 abstract services, therefore we use a larger number of service
bindings (63)

119

the average of the measured results over 5 experiment repetitions (see Section
9.3.2). The shown results are differentiated for all the service compositions in
Table 9.1.

The results suggest that, a higher inter-plan-global coverage of service com-
positions’ operations (resp. branches) is achieved when using execution plans
compared to using all candidate service bindings. These differences are quan-
tified using the results measured with metric M2.3 and metric M2.6. The
rationale behind this is that, using execution plans, a smaller number of op-
erations (resp. branches) is subject to coverage assessment compared to using
all combinations of candidate service bindings.

As we can see from the figures, the results measured with metric M2.3 and
metric M2.6 decrease as the number of execution plans increase. This means
that, the inter-plan-global coverage of service compositions’ operations (resp.
branches) decreases as more execution plans are used. The rationale behind
this observation is that, using more execution plans, more operations (resp.
branches) become subject to coverage assessment. Therefore, the achieved
coverage decrease. Moreover, using all candidate service bindings, the exe-
cution traces could cover more operations (resp. branches). Therefore, the
achieved coverage increase. Consequently, the results measured with metric
M2.3 and metric M2.6 decrease.

Concerning the effect of the number of execution traces on the measured
coverage, the results measured with metric M2.3 and metric M2.6 increase as
the number of execution traces increase. As one would expect, more execution
traces could achieve higher inter-plan-global coverage of service composition’s
operations (resp. branches) when using execution plans and when using all
candidate service bindings. As using execution plans a fewer operations (resp.
branches) could be subject to coverage assessment compared to using candidate
service bindings, the increase in coverage using more execution traces could be
higher than using candidate service bindings. Therefore, the differences in the
achieved inter-plan-global coverage, as quantified by metric M2.3 and metric
M2.6, increase as more execution traces are used.

120

●

●

●

●

●
●

●
● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l O

pe
ra

tio
n

C
ov

er
ag

e
(M

2.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(a) 1000 Execution Traces

●

●

●

●

●

●
●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l O

pe
ra

tio
n

C
ov

er
ag

e
(M

2.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(b) 2000 Execution Traces

●

●

●

●

●

●

●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l O

pe
ra

tio
n

C
ov

er
ag

e
(M

2.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(c) 3000 Execution Traces

●

●

●

●

●

●

●

●

●
●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l O

pe
ra

tio
n

C
ov

er
ag

e
(M

2.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(d) 4000 Execution Traces

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l O

pe
ra

tio
n

C
ov

er
ag

e
(M

2.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(e) 5000 Execution Traces

Figure 9.3: Results measured with metric M2.3.

121

●

●

●

●

●
●

●
● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l B

ra
nc

h
C

ov
er

ag
e

(M
2.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Trip Planning
Image Processing

(a) 1000 Execution Traces

●

●

●

●

●

●
●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l B

ra
nc

h
C

ov
er

ag
e

(M
2.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Trip Planning
Image Processing

(b) 2000 Execution Traces

●

●

●

●

●

●

●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l B

ra
nc

h
C

ov
er

ag
e

(M
2.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Trip Planning
Image Processing

(c) 3000 Execution Traces

●

●

●

●

●

●

●

●

●
●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l B

ra
nc

h
C

ov
er

ag
e

(M
2.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Trip Planning
Image Processing

(d) 4000 Execution Traces

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 G
lo

ba
l B

ra
nc

h
C

ov
er

ag
e

(M
2.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Trip Planning
Image Processing

(e) 5000 Execution Traces

Figure 9.4: Results measured with metric M2.6. The service composition
Supply Chain has no branches.

122

Goal 3 Results

Concerning the local coverage criteria (goal 3), Figure 9.5 and Figure 9.6 show
the results measured with metric M3.3 and metric M3.6. The results mea-
sured with metric M3.3 and metric M3.6. for all abstract services in a service
composition are very much similar. Therefore, we only show results for one
abstract service of each service composition to keep the presentation compact.
The same observations and conclusions apply for all abstract services of the
service composition. The comprehensive results for all abstract services in the
service compositions are available in Appendix A.

As we can see from Figure 9.5 and Figure 9.6, the same observations made
for goal 2 also hold for goal 3. The results measured with M3.3 and M3.6
indicate that using execution plans higher inter-plan-local coverage of service
composition’s operations (resp. branches) could be achieved compared to using
all candidate service bindings. The results measured with metric M3.3 and
metric M3.6 decrease as more execution plans are used. Using more execution
traces leads to higher results measured with metric M3.3 and metric M3.6.

9.4 Evaluation of Online Test Case Selection and

Prioritization

9.4.1 Goals, Questions, and Metrics

For evaluating the online test case selection and prioritization we define goal
4.

Goal 4. Analyse the test case prioritization techniques
for the purpose of understanding, comparison
with respect to their operation (resp. branch) coverage rate
from the point of view of the researcher
in the context of online test case prioritization, self-adaptive service
compositions.

Goal 4 is concerned with the effectiveness of the proposed prioritization
techniques in terms of operation (resp. branch) coverage rate. To this end, we

123

●

●

●

●

●
●

●
● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(a) 1000 Execution Traces

●

●

●

●

●

●
●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(b) 2000 Execution Traces

●

●

●

●

●

●

●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(c) 3000 Execution Traces

●

●

●

●

●

●

●

●

●
●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(d) 4000 Execution Traces

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

DSL Service
Supply Chain
Trip Planning
Image Processing

(e) 5000 Execution Traces

Figure 9.5: Results measured with metric M3.3.

124

●

●

●

●

●
●

●
● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

Trip Planning
Image Processing

(a) 1000 Execution Traces

●

●

●

●

●

●
●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

Trip Planning
Image Processing

(b) 2000 Execution Traces

●

●

●

●

●

●

●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

Trip Planning
Image Processing

(c) 3000 Execution Traces

●

●

●

●

●

●

●

●

●
●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

Trip Planning
Image Processing

(d) 4000 Execution Traces

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Loan Approval

Trip Planning
Image Processing

(e) 5000 Execution Traces

Figure 9.6: Results measured with metric M3.6. Supply Chain has no branches.
DSL Service has no abstract service where local branch coverage is computed.

125

compare our prioritization techniques with: (1) random prioritization, which
randomly orders a test suite; (2) no prioritization, which does not perform any
ordering of the test suite. The difference between random prioritization and
no prioritization is that the order of the test cases will remain the same in case
of no prioritization whereas it can be different as a result of random ordering
in case of random prioritization.

Furthermore, our prioritization techniques are divided into techniques that
use coverage information, execution time information, and usage information.
It is interesting to know whether one type of the information is more effective
for prioritization than the others.

To study goal 4, we answer the following questions.

Q4.1 Which technique is most effective in terms of operation coverage rate for
online test case prioritization?

Q4.2 Which technique is most effective in terms of branch coverage rate for
online test case prioritization?

To answer these questions, we collect information for the following metrics.

M4.1 The Average Percentage Operation Coverage (APOC for short) which
measures the rate at which a prioritized test suite covers operations. Let a test
suite T containing n test cases that covers a set O of m operations. Let TOi

be the first test case in the order T ′ of T that covers operation i. The APOC
for order T ′ is given by the equation

APOC = 1− TO1 + TO2 + ...+ TOn

nm
+

1

2n
,

where APOC values range from 0 to 100 and higher values imply faster (better)
coverage rates.

M4.2 The Average Percentage Branch Coverage (APBC for short) which mea-
sures the rate at which a prioritized test suite covers branches. Let a test suite
T containing n test cases that covers a set B of m branches. Let TBi be the
first test case in the order T ′ of T that covers branch i. The APBC for order
T ′ is given by the equation

APBC = 1− TB1 + TB2 + ...+ TBn

nm
+

1

2n
,

where APBC values range from 0 to 100 and higher values imply faster (better)
coverage rates.

126

The metric APOC and the metric APBC are based upon the metrics pro-
posed by Zheng et al. [65] (see Section 7.1), which are variants of the famous
metric APFD (Average of the Percentage of Faults Detected). The metric
APFD measures the weighted average of the percentage of faults detected over
the life of the test suite. Instead of using faults exposed by a test case, which
cannot be estimated before testing has taken place, the metric APOC and met-
ric APBD use coverage as a surrogate measure. The APOC and the APBD
metrics are thus suitable for evaluating our test case prioritization techniques.

9.4.2 Experimental Plan

Experimental Objects

As objects for our experiments, we use the control-flow graphs of the service
compositions in Table 9.1.

Design and Execution

Goal 4 requires test suites for the service compositions, and prioritizing test
cases in the test suites using the prioritization techniques to be evaluated.

To obtain a test suite for a control-flow graph of a service composition, we
generate test cases traversing random paths in the control-flow graph. Thus,
each test case contains coverage information about the traversed path in the
control-flow graph. In order to select the test cases of the test suite, we fol-
lowed the approach used in an infrastructure designed to support controlled
experimentation with software testing and regression testing [36]. The same
approach is also used by [65, 106]. A test case is generated at random and is
added to the suite only if the test case increases the cumulative coverage of
the entire service composition3. We use both operation coverage and branch
coverage. This is repeated until the test suite achieves full operation (resp.
branch) coverage.

Using the generated test suite, we order the test cases using the coverage-
based prioritization and random prioritization techniques. Then, we measure
the coverage rate of each technique using the metrics M4.1 and M4.2.

3Another approach for generating large test suites is to add each randomly generated
test case to the suite.

127

The time-based prioritization technique requires information about test case
execution time. For a given test suite for a service composition, we compute
the execution time for the test suite as a summation of the execution time of
each test case in the test suite. As we generate a logical test case and not actual
test case, we compute the execution time of the test case by summing up the
execution times of each operation traversed by the test case. This requires us to
have execution time information for each operation in the service composition.
To this end, we employ publicly-available QWS2 dataset [1] which is frequently
used by other researchers for the same purpose [103, 51, 4, 3].

The QWS2 dataset comprises measurements of 9 Quality of Service at-
tributes (including response time) for 2, 507 real-world Web services. These
Web services were collected from public sources on the Web, including UDDI
registries, search engines and service portals, and their Quality of Service val-
ues were measured using commercial benchmark tools. More details about
QWS2 dataset can be found in [1]. As the dataset provides response times of
Web services, it suits our experimental plan.

Thus, following [103], for each operation in the control-flow graph of a ser-
vice composition, we randomly select a candidate Web service from the 2, 507

Web services. The same service may be selected for several abstract services
in the control-flow graph. We retrieve the response time of the selected Web
service and use it as the execution time for the corresponding Web service.

The usage-based prioritization technique requires a usage model for the
service composition in order to compute the concrete path probability of each
test case in the test suite. To this end, we derive a usage model for the
control-flow graph of service composition from 10000 execution traces which
we simulate to act as runtime monitoring history. We simulate monitoring
execution traces following the same approach described in Section 9.2.2.

For measuring the coverage rate of the monitoring-based prioritization tech-
niques4 using M4.1 and M4.2, we need to consider the coverage obtained from
service composition monitoring. To this end, we simulate the execution of the
service composition over a period of time. As monitoring coverage is consid-
ered during the execution of the prioritized test cases, we set the length of

4The monitoring-based prioritization techniques are: time-based, usage-based, and hy-
brid.

128

the simulation period to the test suite’s execution time. To simulate service
composition execution, we generate 1000 execution traces following the same
approach described in Section 9.2.2. Additionally, we divide the simulation
period to a number of time points equal to the length of the simulation period.
Then, we randomly distribute the monitoring execution traces over the simu-
lation period. The frequency at which we distribute each monitoring execution
trace is based on the usage model of the service composition.

Finally, we compute the metrics M4.1 and M4.2. In our simulations, ran-
domness is used in simulating and selecting execution traces, candidate service
bindings from the dataset, and execution period. In our pre-tests, we observed
that the results obtained for multiple repetitions of the experiment did not
vary much because of this randomness. Therefore, we repeat each experiment
5 times.

9.4.3 Results

Figure 9.7 and Figure 9.8 show results for Q4.1, and Figure 9.9 and Figure
9.10 show results for Q4.2, using box plots. Figure 9.7 and Figure 9.9 show the
results for each service composition individually, while Figure 9.8 and Figure
9.10 show the results for all service compositions together.

The studied test case prioritization techniques are labelled as follows:

• Original: refers to the original test suite before prioritization (i.e., no
prioritization).

• Random: refers to random prioritization which randomly orders the test
cases in the test suite.

• Coverage: refers to the coverage-based prioritization which orders the
test cases in a test suite according to the achieved inter-plan global cov-
erage of the test cases, as described in Section 7.3.1.

• Time: refers to the time-based prioritization which orders the test cases
in a test suite according to the execution time of the test cases, as de-
scribed in Section 7.3.2.

129

Figure 9.7: APOC results of all prioritization techniques for each service com-
position, individually.

• Usage: refers to the usage-based prioritization which orders the test cases
in a test suite according to the concrete path probability of the test cases,
as described in Section 7.3.3.

• Potential: refers to the hybrid prioritization which orders the test cases
in a test suite according the test case potential of the test cases, as
described in Section 7.3.4.

• Hybrid: refers to the hybrid prioritization which orders the test cases in
a test suite according to coverage, execution time and path probability
of the test cases, as described in Section 7.3.4.

The results in Figure 9.7 – Figure 9.10 show that all our proposed prioriti-

130

Figure 9.8: APOC results of all prioritization techniques for all service com-
positions, together.

zation techniques achieve higher coverage rate when compared to no prioritiza-
tion and random prioritization. The time-based prioritization and the hybrid
prioritization achieve the highest coverage rate when compared to the usage-
based prioritization and the potential prioritization techniques, and coverage-
based achieved the lowest coverage. Usage-based prioritization achieves higher
coverage rate when compared to potential prioritization and coverage-based
prioritization.

While coverage-based prioritization in general achieves higher coverage rate
than random prioritization and no prioritization, the difference among the
three techniques is subtle. Even more, in the case of Supply Chain, Trip
Planning, and Image Processing, there are no differences at all (see Figure 9.7
and Figure 9.9). The rationale behind this is that for the considered cases in

131

Figure 9.9: APBC results of all prioritization techniques for Loan Approval,
DSL Service, Trip Planning, and Image Processing, individually. The service
composition Supply Chain has no branches.

the experiment, the number of all operations (resp. branches) which need to
be covered is large, making the contribution of each of the test cases small in
terms of coverage. The difference between the coverage achieved by the test
cases is subtle and in many cases there is no difference.

The time-based prioritization achieves the highest coverage rate as we ob-
served that many operations (resp. branches) are covered by monitoring traces
during the execution of the longest test cases. The same effect happens in the
hybrid technique. Due to the subtle differences in coverage between the test
cases, the test cases with longest execution time top the order of the test cases.

As coverage is low, the test case potential which results from the multiplica-
tion, is negatively affected, making the coverage rate of potential prioritization

132

Figure 9.10: Average Percentage Branch Coverage results of all prioritization
techniques for Loan Approval, DSL Service, Trip Planning, and Image Pro-
cessing, together. The service composition Supply Chain has no branches.

less when compared to the other prioritizations which use it individually.

To conclude, the results of the cases considered in our experiments suggest
that our proposed test case prioritization techniques can increase the operation
(resp. branch) coverage rate achieved by a test suite against a service compo-
sition. However, the due to the large number of operations (resp. branches)
which need to be covered for dynamic service compositions, coverage infor-
mation is least useful for test case prioritization. Information about test case
execution time and the usage of the service composition appear to be substan-
tial for test case prioritization.

133

9.5 Threats to Validity

Like any evaluation, the validity of our evaluation results are threatened by
several factors. In the following, we discuss the main factors which threaten
the validity of our results and conclusions.

9.5.1 Construct Validity

Construct validity concerns the variables and metrics used for measuring the
target aspects. We tried to minimize this threat by using frequently used
metrics for measuring similar aspects where appropriate.

9.5.2 Internal Validity

Internal validity concerns the way we designed our experiments and the influ-
ence of the design on the obtained results and conclusions. In our evaluation,
this includes the simulation for obtaining execution plans, execution traces,
test suite, modifications in service compositions, and the simulation period
used for evaluating the test case prioritization techniques. We tried to mini-
mize this threat by carefully designing and executing the experiments to mimic
realistic situations where possible. We also used random values and repeated
the experiments several times to avoid the effect of having the results by chance.

9.5.3 External Validity

Another concern is the generalization of the evaluation results. Our evalua-
tion is not based on real service compositions. However, we tried to minimize
this threat by using realistic service compositions frequently used in service-
oriented computing literature covering various domains. The size of the ser-
vice compositions is small when looking at the number of control-flow graph
elements (i.e., nodes, transitions, and branches). However, except for the exe-
cution time analysis in Q1.1, the size of the control-flow graphs elements does
not affect the results of the evaluation. In case of the execution time analysis,
estimating the execution time for control-flow graphs of any size complexity
can be obtained from the asymptotic analysis performed in Section 5.2.3. Fi-
nally, for obtaining response time of control-flow graph operations, we used the

134

publicly-available dataset QWS2 [1], which comprises measurements of Quality
of Service attributes for 2, 507 real-world Web services.

Chapter 10

Conclusion and Future Work

In this chapter, we summarize the research contributions and results of this
thesis. We explain how the research results of the thesis contribute to ad-
vancing the state of the art analysed in Chapter 3. Furthermore, we revisit
the research questions introduced in Section 1.3. We critically analyse how
far those questions could be answered in this thesis. Finally, we conclude the
thesis with an outlook on future research directions based on the remaining
open issues.

10.1 Summary

The overall goal of the thesis is to investigate how to combine runtime moni-
toring and online testing to enhance coverage adequacy of self-adaptive service
compositions at runtime. Towards achieving this goal, the thesis has provided
five research contributions detailed in Chapter 4 – Chapter 9.

The first contribution of the thesis (Chapter 5) is an approach for deter-
mining valid execution traces for self-adaptive service compositions at runtime.
The approach employs execution traces of both (online) testing and runtime
monitoring. To compute coverage of a service composition, invalid execution
traces are not considered. Therefore, the approach considers modifications
which might result in invalid execution traces at two levels: workflow and
concrete services. Where existing graph-walk algorithms employed the control-
flow graphs of programs, we extended an algorithm to consider concrete service
bindings of service compositions.

135

136

The second contribution of the thesis (Chapter 6) is coverage criteria for
self-adaptive service compositions. The criteria consider the definition of ex-
ecution plans of a service composition as a reference for coverage assessment.
In addition to execution plans, the criteria consider coverage at two different
scopes: abstract service and overall service composition. Combining execution
plans and different coverage scopes, we have defined four new coverage cri-
teria: (1) intra-plan-local, (2) inter-plan-local, (3) intra-plan-global, and (4)
inter-plan-global.

The third contribution of the thesis (Chapter 7) is an approach for online-
test-case prioritization. The goal is to achieve coverage of a service composition
at a faster rate. In addition to actual test coverage which might be obtained
from test suite execution against a service composition, the proposed test case
prioritization approach considers the potential coverage of the service compo-
sition which might be obtained from runtime monitoring of actual usage of the
service composition. The approach exploits the execution time of test cases as
well as the usage profile of a service composition. Considering both the actual
test coverage from test suite execution and potential coverage from runtime
monitoring, we developed test case prioritization techniques classified into four
main categories: (1) coverage-based, (2) time-based, (3) usage-based, and (4)
hybrid.

The fourth contribution of the thesis (Chapter 8) is a framework for run-
time monitoring and online testing of services and service compositions (called
PROSA). PROSA exploits synergies between runtime monitoring and online
testing in order to enhance coverage of service compositions. The modules of
the PROSA framework provide the technical support for the aforementioned
contributions of the thesis.

The last contribution of thesis (Chapter 9) is an empirical evaluation of
the contributions of the thesis. The evaluation is performed by means of con-
trolled experiments using five service compositions frequently used by other
researchers for testing and dynamic composition of services. Where the re-
sponse time of services is needed, the evaluation used the publicly-available
dataset QWS2 [1]. The QWS2 dataset comprises measurements of Quality of
Service attributes for 2,507 real-world Web services.

137

10.2 Revisiting Research Questions

In Section 1.3 we outlined the research questions addressed in this thesis. In
the following, we revisit these research questions and explain the answers of our
research contributions to these research questions. Additionally, we summarize
limitations of our contributions.

Research Question I:

How to assess coverage of self-adaptive service compositions at runtime?

In general, coverage assessment involves two key elements: (1) a set of
execution traces against which coverage is measured, (2) coverage adequacy
criteria which define requirements on the execution traces to be considered
adequate.

Regarding the first element (i.e., execution traces), the thesis proposed an
approach for determining the execution traces to be considered for coverage
assessment, taking into account the dynamic modifications at the runtime of
a self-adaptive service composition. The evaluation results suggest that the
execution time of our algorithm for determining the execution traces is not
high (1− 40 ms). Therefore, the algorithm can be used at runtime to support
timely decision making.

Regarding coverage adequacy, the thesis introduced coverage adequacy cri-
teria which indicate whether or not a set of execution traces of a service com-
position is adequate, taking into account the realizations of the service com-
position (i.e., execution plans). The coverage criteria consider relevant scopes
of coverage based on the structure of the service composition. The evaluation
results suggest that, using execution plans a faster coverage is achieved when
compared to considering all possible plans for all candidate service bindings of
the service composition.

One limitation concerning our approach for determining invalid traces is
that it does not consider the internal structure of the bound services in a
service composition. This is due to the fact that service providers tend not
to reveal the internal structure of their services and offer only the interfaces
of their services. However, considering the internal structure of the bound

138

services might allow to determine invalid traces at a more fine-grained level,
thereby potentially increasing the accuracy.

Additionally, the contributions of the thesis related to research question I are
limited to the assessment of structural coverage based on entities of the control-
flow graph of a service composition. Although structural coverage is widely
used in software testing, there exist also data-flow coverage and state coverage.
Data-flow coverage is based on the data-flow graph of a tested program and
the state coverage is based on the state model of the software. We did not
consider data-flow coverage and state coverage of service compositions.

Research Question II:

How to combine runtime monitoring and online testing to enhance coverage
adequacy at runtime?

Based on the results of coverage assessment, the achieved coverage of a
service composition might turn out to be insufficient according to pre-defined
coverage criteria and a coverage level. The idea followed in the thesis to en-
hance the coverage is to perform online testing to obtain additional execution
traces. As testing is performed in parallel to the actual usage of the service
composition, synergies with runtime monitoring are exploited to minimize the
associated costs with online testing.

This thesis introduced techniques for online test case selection and pri-
oritization with the goal to achieve coverage faster. Some of the proposed
techniques consider the potential coverage which might be obtained from the
normal usage of the service composition. The evaluation results indicate that
some of the proposed techniques achieve a faster coverage compared with ran-
dom test case selection. Additionally, the PROSA framework introduced in
the thesis provides the technical support required for the thesis contributions.

A pre-requisite for applying our prioritization techniques is determining
which test cases need to be used for testing the service composition. The thesis
assumes that a repository of test cases for the service composition already exists
from which one could select the test cases.

The thesis does not provide an approach for the cost-benefit analysis of
online testing and the achieved coverage which might further support the deci-

139

sion of whether or not to perform online testing to enhance coverage in a more
informed way.

10.3 Future Work

The discussion in Section 10.2 indicated some aspects related to the combined
usage of runtime monitoring and online testing to enhance the coverage of
service composition not addressed in the thesis. These aspects open up possi-
bilities for future research:

• Data-flow coverage and state coverage of service composition: As dis-
cussed in Section 10.2, the contributions of the thesis are limited to the
structural coverage of service composition. However, data-flow coverage
and state-based coverage are also key in software testing. In particular,
data-flow coverage is of importance for data-intensive service composition
and state coverage is key for statefull service composition. There are re-
search results for data-flow testing of service composition (see [75, 54, 55])
and for state-based testing of service composition (see [37])). It would
be interesting to study how existing approaches can be used and/or ex-
tended for online testing and runtime monitoring.

• Internal coverage of third-party services: As discussed in Section 10.2,
the contributions of thesis consider a coarse-grain coverage of third-party
services (i.e., operation coverage). There exist solutions to obtain inter-
nal coverage information of third-party services (see [106, 12, 17, 11]). It
would be interesting to study potential advantages obtained from con-
sidering a more fine-grained coverage information of third-party services.

• Synergies with runtime verification of service composition: As discussed
in Section 1.1, the thesis focuses on exploiting synergies between two
key runtime quality assurance techniques: runtime monitoring and on-
line testing. Runtime verification of service composition is another key
runtime quality assurance technique for service composition. It would
be interesting to study potential synergies obtained from combining run-
time verification of service composition with our proposed approach. For

140

example, online test cases could be generated from the results of runtime
verification of service composition.

• Cost-benefit analysis of online testing: As discussed in Section 8, online
testing can cause additional costs. Cost models which take into account
factors related to the cost of online testing might support the decision
when to execute online testing and when not. The costs of online testing
need to be compared with the benefits of using online testing.

• Evaluation: The evaluation conducted in the thesis is based on exper-
iments using example service compositions, frequently used in service-
oriented computing research to compensate for the lack of open source
real-world service compositions available for evaluation purposes. There-
fore, the evaluation of the thesis contributions should be extended to con-
sider real-world service compositions. Additionally, as discussed in Sec-
tion 9, there exist other types of evaluation in software engineering than
controlled experiments. These include for example case study and ques-
tionnaire. For instance, the evaluation of our proposed coverage criteria
using questionnaire involving testing experts and practitioners would be
valuable. Moreover, the results of the evaluation of the PROSA frame-
work using a case study from the industry would be key for the uptake
of PROSA.

Further research can be performed following these open issues.

Appendix A

Detailed Results from the

Evaluation

We present detailed evaluation results for goal 3. In particular, for all abstract
services in the service compositions we present the inter-plan local coverage
results from the evaluation performed in Section 9.3.1.

141

142

A.1 Results for 1000 Execution Traces

●

●

●

●

●
●

●
● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.1: Results measured with metric M3.3 for Loan Approval using all
amounts of selected execution plans and 1000 execution traces.

143

●

●

●

●

●
●

●
● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.2: Results measured with metric M3.6 for Loan Approval using all
amounts of selected execution plans and 1000 execution traces.

●

●

●

●

●

●

●
● ●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3

Figure A.3: Results measured with metric M3.3 for DSL Service using all
amounts of selected execution plans and 1000 execution traces.

144

●

●

●

●

●

●

●

●

●
●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.4: Results measured with metric M3.3 for Supply Chain using all
amounts of selected execution plans and 1000 execution traces.

●

●

●

●

●
● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.5: Results measured with metric M3.3 for Trip Planning using all
amounts of selected execution plans and 1000 execution traces.

145

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.6: Results measured with metric M3.6 for Trip Planning using all
amounts of selected execution plans and 1000 execution traces.

●

●

●

●
● ● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.7: Results measured with metric M3.3 for Image Processing using all
amounts of selected execution plans and 1000 execution traces.

146

●

●

●

●
● ● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.8: Results measured with metric M3.6 for Image Processing using all
amounts of selected execution plans and 1000 execution traces.

147

A.2 Results for 2000 Execution Traces

●

●

●

●

●

●
●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.9: Results measured with metric M3.3 for Loan Approval using all
amounts of selected execution plans and 2000 execution traces.

148

●

●

●

●

●

●
●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.10: Results measured with metric M3.6 for Loan Approval using all
amounts of selected execution plans and 2000 execution traces.

●

●

●

●

●

●

●

● ●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3

Figure A.11: Results measured with metric M3.3 for DSL Service using all
amounts of selected execution plans and 2000 execution traces.

149

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.12: Results measured with metric M3.3 for Supply Chain using all
amounts of selected execution plans and 2000 execution traces.

●

●

●

●

●
● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.13: Results measured with metric M3.3 for Trip Planning using all
amounts of selected execution plans and 2000 execution traces.

150

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.14: Results measured with metric M3.6 for Trip Planning using all
amounts of selected execution plans and 2000 execution traces.

●

●

●

●
●

● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.15: Results measured with metric M3.3 for Image Processing using
all amounts of selected execution plans and 2000 execution traces.

151

●

●

●

●
●

● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.16: Results measured with metric M3.6 for Image Processing using
all amounts of selected execution plans and 2000 execution traces.

152

A.3 Results for 3000 Execution Traces

●

●

●

●

●

●

●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.17: Results measured with metric M3.3 for Loan Approval using all
amounts of selected execution plans and 3000 execution traces.

153

●

●

●

●

●

●

●

●
●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.18: Results measured with metric M3.6 for Loan Approval using all
amounts of selected execution plans and 3000 execution traces.

●

●

●

●

●

●

●

● ●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3

Figure A.19: Results measured with metric M3.3 for DSL Service using all
amounts of selected execution plans and 3000 execution traces.

154

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.20: Results measured with metric M3.3 for Supply Chain using all
amounts of selected execution plans and 3000 execution traces.

●

●

●

●

●
●

● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.21: Results measured with metric M3.3 for Trip Planning using all
amounts of selected execution plans and 3000 execution traces.

155

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.22: Results measured with metric M3.6 for Trip Planning using all
amounts of selected execution plans and 3000 execution traces.

●

●

●

●

●
● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.23: Results measured with metric M3.3 for Image Processing using
all amounts of selected execution plans and 3000 execution traces.

156

●

●

●

●

●
● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.24: Results measured with metric M3.6 for Image Processing using
all amounts of selected execution plans and 3000 execution traces.

157

A.4 Results for 4000 Execution Traces

●

●

●

●

●

●

●

●

●
●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.25: Results measured with metric M3.3 for Loan Approval using all
amounts of selected execution plans and 4000 execution traces.

158

●

●

●

●

●

●

●

●

●
●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.26: Results measured with metric M3.6 for Loan Approval using all
amounts of selected execution plans and 4000 execution traces.

●

●

●

●

●

●

●

● ●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3

Figure A.27: Results measured with metric M3.3 for DSL Service using all
amounts of selected execution plans and 4000 execution traces.

159

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.28: Results measured with metric M3.3 for Supply Chain using all
amounts of selected execution plans and 4000 execution traces.

●

●

●

●

●
●

● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.29: Results measured with metric M3.3 for Trip Planning using all
amounts of selected execution plans and 4000 execution traces.

160

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.30: Results measured with metric M3.6 for Trip Planning using all
amounts of selected execution plans and 4000 execution traces.

●

●

●

●

●
● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.31: Results measured with metric M3.3 for Image Processing using
all amounts of selected execution plans and 4000 execution traces.

161

●

●

●

●

●
● ● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.32: Results measured with metric M3.6 for Image Processing using
all amounts of selected execution plans and 4000 execution traces.

162

A.5 Results for 5000 Execution Traces

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.33: Results measured with metric M3.3 for Loan Approval using all
amounts of selected execution plans and 5000 execution traces.

163

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2

Figure A.34: Results measured with metric M3.6 for Loan Approval using all
amounts of selected execution plans and 5000 execution traces.

●

●

●

●

●

●

●

● ●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3

Figure A.35: Results measured with metric M3.3 for DSL Service using all
amounts of selected execution plans and 5000 execution traces.

164

●

●

●

●

●

●

●

●

●

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.36: Results measured with metric M3.3 for Supply Chain using all
amounts of selected execution plans and 5000 execution traces.

●

●

●

●

●

●
● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.37: Results measured with metric M3.3 for Trip Planning using all
amounts of selected execution plans and 5000 execution traces.

165

●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.38: Results measured with metric M3.6 for Trip Planning using all
amounts of selected execution plans and 5000 execution traces.

●

●

●

●

●
●

● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 O

pe
ra

tio
n

C
ov

er
ag

e
(M

3.
3)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.39: Results measured with metric M3.3 for Image Processing using
all amounts of selected execution plans and 5000 execution traces.

166

●

●

●

●

●
●

● ● ● ●

(%) of Selected Execution Plans

D
iff

er
en

ce
 in

 L
oc

al
 B

ra
nc

h
C

ov
er

ag
e

(M
3.

6)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0 ● Abstract Service 1

Abstract Service 2
Abstract Service 3
Abstract Service 4
Abstract Service 5
Abstract Service 6

Figure A.40: Results measured with metric M3.6 for Image Processing using
all amounts of selected execution plans and 5000 execution traces.

References

[1] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on
the world wide web. In Proceedings of the 17th International Conference
on World Wide Web, WWW ’08, pages 795–804, New York, NY, USA,
2008. ACM.

[2] Midhat Ali, Antonia Bertolino, Francesco De Angelis, Guglielmo De An-
gelis, Daniele Fani, and Andrea Polini. An extensible framework for
online testing of choreographed services. Computer, 47(2):23–29, Febru-
ary 2014.

[3] Mohammad Alrifai, Thomas Risse, and Wolfgang Nejdl. A hybrid ap-
proach for efficient web service composition with end-to-end qos con-
straints. ACM Transactions on the Web (TWEB), 6(2):7:1–7:31, June
2012.

[4] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting
skyline services for qos-based web service composition. In Proceedings
of the 19th International Conference on World Wide Web, WWW ’10,
pages 11–20, New York, NY, USA, 2010. ACM.

[5] Danilo Ardagna and Barbara Pernici. Adaptive service composition
in flexible processes. IEEE Transactions on Software Engineering,
33(6):369–384, June 2007.

[6] Xiaoying Bai, Yinong Chen, and Zhongkui Shao. Adaptive web services
testing. In 31st Annual International Computer Software and Applica-
tions Conference (COMPSAC), volume 2, pages 233–236, July 2007.

[7] Xiaoying Bai, Guilan Dai, Dezheng Xu, and Wei-Tek Tsai. A multi-agent
based framework for collaborative testing on web services. In Proceedings

167

168

of the The Fourth IEEE Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems, and the Second International Work-
shop on Collaborative Computing, Integration, and Assurance (SEUS-
WCCIA’06), SEUS-WCCIA ’06, pages 205–210, Washington, DC, USA,
2006. IEEE Computer Society.

[8] Xiaoying Bai, Shufang Lee, Wei-Tek Tsai, and Yinong Chen. Ontology-
based test modeling and partition testing of web services. In Proceedings
of the 2008 IEEE International Conference on Web Services, ICWS ’08,
pages 465–472, Washington, DC, USA, 2008. IEEE Computer Society.

[9] Xiaoying Bai, Yongli Liu, Lijun Wang, and Peide Zhong. Model-based
monitoring and policy enforcement of services. Simulation Modelling
Practice and Theory, 17(8):1399–1412, sep 2009.

[10] Xiaoying Bai, Dezheng Xu, and Guilan Dai. Dynamic reconfigurable
testing of service-oriented architecture. In Proceedings of the 31st Annual
International Computer Software and Applications Conference - Volume
01, COMPSAC ’07, pages 368–378, Washington, DC, USA, 2007. IEEE
Computer Society.

[11] Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda
Marchetti. Bringing white-box testing to service oriented architectures
through a service oriented approach. Journal of Systems and Software,
84(4):655–668, April 2011.

[12] Cesare Bartolini, Antonia Bertolino, and Eda Marchetti. Introducing
service-oriented coverage testing. In 23rd IEEE/ACM International Con-
ference on Automated Software Engineering - Workshops, 2008. ASE
Workshops 2008, pages 57–64, September 2008.

[13] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering, FOSE ’07, pages 85–
103, Washington, DC, USA, 2007. IEEE Computer Society.

[14] Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini.
(role)CAST: A framework for on-line service testing. In Proceedings

169

of the 7th International Conference on Web Information Systems and
Technologies (WEBIST 2011), pages 13–18. SciTePress, 2011.

[15] Antonia Bertolino, Guglielmo De Angelis, Sampo Kellomaki, and An-
drea Polini. Enhancing service federation trustworthiness through online
testing. Computer, 45(1):66–72, January 2012.

[16] Antonia Bertolino, Eda Marchetti, and Andrea Morichetta. Adequate
monitoring of service compositions. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 59–69, New York, NY, USA, 2013. ACM.

[17] Antonia Bertolino and Andrea Polini. Soa test governance: Enabling
service integration testing across organization and technology borders.
In Proceedings of the IEEE International Conference on Software Test-
ing, Verification, and Validation Workshops, ICSTW ’09, pages 277–286,
Washington, DC, USA, 2009. IEEE Computer Society.

[18] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Suku-
maran. Regression test selection techniques: A survey. Informatica,
35:289, 2011.

[19] Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta, Gianpiero
Esposito, and Valentina Mazza. Using test cases as contract to ensure
service compliance across releases. In Proceedings of the Third Inter-
national Conference on Service-Oriented Computing, ICSOC’05, pages
87–100, Berlin, Heidelberg, 2005. Springer-Verlag.

[20] Gerardo Canfora and Massimiliano Di Penta. Testing services and
service-centric systems: Challenges and opportunities. IT Professional,
8(2):10–17, March 2006.

[21] Gerardo Canfora and Massimiliano Di Penta. Software Engineering:
International Summer Schools, ISSSE 2006-2008, Salerno, Italy, Re-
vised Tutorial Lectures, chapter Service-Oriented Architectures Testing:
A Survey, pages 78–105. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

170

[22] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and
Maria Luisa Villani. An approach for qos-aware service composition
based on genetic algorithms. In Proceedings of the 7th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO ’05, pages
1069–1075, New York, NY, USA, 2005. ACM.

[23] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and
Maria Luisa Villani. A framework for qos-aware binding and re-binding of
composite web services. Journal of Systems and Software, 81(10):1754–
1769, October 2008.

[24] Venkata U. B. Challagulla, Farokh B. Bastani, Raymond A. Paul, Wei-
Tek Tsai, and Yinong Chen. A machine learning-based reliability as-
sessment model for critical software systems. In Proceedings of the 31st
Annual International Computer Software and Applications Conference -
Volume 01, COMPSAC ’07, pages 79–86, Washington, DC, USA, 2007.
IEEE Computer Society.

[25] Wing-Kwong Chan, Shing chi Cheung, and Karl Leung. A metamorphic
testing approach for online testing of service-oriented software applica-
tions. International Journal of Web Services Research, 4(2):61–81, 2007.

[26] Lin Chen, Ziyuan Wang, Lei Xu, Hongmin Lu, and Baowen Xu. Test case
prioritization for web service regression testing. In 2010 Fifth IEEE In-
ternational Symposium on Service Oriented System Engineering (SOSE),
pages 173–178, 2010.

[27] Betty Cheng and et al. Software engineering for self-adaptive systems:
A research roadmap. In Betty Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-
Adaptive Systems, volume 5525 of LNCS, pages 1–26. Springer, 2009.

[28] Pavan Kumar Chittimalli and Mary Jean Harrold. Re-computing cov-
erage information to assist regression testing. In IEEE International
Conference on Software Maintenance, 2007. ICSM 2007, pages 164–173,
October 2007.

171

[29] Pavan Kumar Chittimalli and Mary Jean Harrold. Recomputing cov-
erage information to assist regression testing. IEEE Transactions on
Software Engineering, 35(4):452–469, jul 2009.

[30] Rogerio de Lemos and et al. Software engineering for self-adpaptive
systems: A second research roadmap. In Rogerio de Lemos, Holger
Giese, Hausi Müller, and Mary Shaw, editors, Software Engineering for
Self-Adaptive Systems, number 10431 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2011. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, Germany.

[31] Nelly Delgado, Ann Quiroz Gates, and Steve Roach. A taxonomy and
catalog of runtime software-fault monitoring tools. IEEE Transactions
on Software Engineering, 30(12):859–872, December 2004.

[32] Peter H. Deussen, George Din, and Ina Schieferdecker. An on-line
test platform for component-based systems. In Proceedings of the 27th
Annual NASA Goddard Software Engineering Workshop (SEW-27’02),
SEW ’02, Washington, DC, USA, 2002. IEEE Computer Society.

[33] Massimiliano Di Penta, Marcello Bruno, Gianpiero Esposito, and et al.
Web services regression testing. In Luciano Baresi and Elisabetta Di
Nitto, editors, Test and Analysis of Web Services, pages 205 – 234.
Springer, 2007.

[34] Massimiliano Di Penta, Gerardo Canfora, Gianpiero Esposito, Valentina
Mazza, and Marcello Bruno. Search-based testing of service level agree-
ments. In Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’07, pages 1090–1097, New York,
NY, USA, 2007. ACM.

[35] Massimiliano Di Penta, Raffaele Esposito, Maria Luisa Villani, Roberto
Codato, Massimiliano Colombo, and Elisabetta Di Nitto. Ws binder:
A framework to enable dynamic binding of composite web services. In
Proceedings of the 2006 International Workshop on Service-oriented Soft-
ware Engineering, SOSE ’06, pages 74–80, New York, NY, USA, 2006.
ACM.

172

[36] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering, 10(4):405–
435, October 2005.

[37] Dimitris Dranidis, Andreas Metzger, and Dimitrios Kourtesis. Enabling
proactive adaptation through just-in-time testing of conversational ser-
vices. In Proceedings of the 3rd European Conference on Towards a
Service-Based Internet (ServiceWave 2010), volume 6481 of LNCS, pages
63–75. Springer, 2010.

[38] Sebastian Elbaum, David Gable, and Gregg Rothermel. The impact of
software evolution on code coverage information. In Proceedings of the
IEEE International Conference on Software Maintenance (ICSM’01),
ICSM ’01, pages 170–, Washington, DC, USA, 2001. IEEE Computer
Society.

[39] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test
case prioritization: A family of empirical studies. IEEE Transactions on
Software Engineering, 28(2):159–182, February 2002.

[40] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tambur-
relli. Model evolution by run-time parameter adaptation. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09,
pages 111–121, Washington, DC, USA, 2009. IEEE Computer Society.

[41] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time ef-
ficient probabilistic model checking. In Proceedings of the 33rd Inter-
national Conference on Software Engineering, ICSE ’11, pages 341–350,
New York, NY, USA, 2011. ACM.

[42] Marc Fisher, II, Jan Wloka, Frank Tip, Barbara G. Ryder, and Alexan-
der Luchansky. An evaluation of change-based coverage criteria. In
Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools, PASTE ’11, pages 21–28, New York,
NY, USA, 2011. ACM.

173

[43] Angelo Gargantini, Marco Guarnieri, and Eros Magri. Extending cov-
erage criteria by evaluating their robustness to code structure changes.
In Brian Nielsen and Carsten Weise, editors, Testing Software and Sys-
tems, number 7641 in Lecture Notes in Computer Science, pages 168–183.
Springer Berlin Heidelberg, January 2012.

[44] Angelo Gargantini, Marco Guarnieri, and Eros Magri. Aurora: Au-
tomatic robustness coverage analysis tool. In Proceedings of the 2013
IEEE Sixth International Conference on Software Testing, Verification
and Validation, ICST ’13, pages 463–470, Washington, DC, USA, 2013.
IEEE Computer Society.

[45] Carlo Ghezzi and Sam Guinea. Run-time monitoring in service-oriented
architectures. In Luciano Baresi and Elisabetta Di Nitto, editors, Test
and Analysis of Web Services, pages 237–264. Springer Berlin Heidelberg,
January 2007.

[46] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2nd edition, 2002.

[47] Alberto González, Éric Piel, and Hans-Gerhard Gross. A model for the
measurement of the runtime testability of component-based systems. In
Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation Workshops (ICSTW 2009), pages 19–28.
IEEE Computer Society, 2009.

[48] Rahul Gopinath, Carlos Jensen, and Alex Groce. Code coverage for
suite evaluation by developers. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 72–82, New York,
NY, USA, 2014. ACM.

[49] Michaela Greiler, Hans-Gerhard Gross, and Arie van Deursen. Evalua-
tion of online testing for services: A case study. In Proceedings of the 2nd
International Workshop on Principles of Engineering Service-Oriented
Systems (PESOS 2010), pages 36–42. ACM, 2010.

174

[50] Mary Jean Harrold. Testing: A roadmap. In Proceedings of the Con-
ference on The Future of Software Engineering, ICSE ’00, pages 61–72,
New York, NY, USA, 2000. ACM.

[51] Qiang He, Jun Yan, Hai Jin, and Yun Yang. Quality-aware service
selection for service-based systems based on iterative multi-attribute
combinatorial auction. IEEE Transactions on Software Engineering,
40(2):192–215, February 2014.

[52] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pi-
store. A framework for proactive self-adaptation of service-based ap-
plications based on online testing. In Proceedings of the 1st European
Conference on Towards a Service-Based Internet (ServiceWave 2008),
volume 5377 of LNCS, pages 122–133. Springer, 2008.

[53] Shan-Shan Hou, Lu Zhang, Tao Xie, and Jia-Su Sun. Quota-constrained
test-case prioritization for regression testing of service-centric systems. In
IEEE International Conference on Software Maintenance, 2008. ICSM
2008, pages 257–266, 2008.

[54] Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and
Schahram Dustdar. Test coverage of data-centric dynamic compositions
in service-based systems. In 4th International Conference on Software
Testing, Verification and Validation (ICST’11), pages 40–49, 2011.

[55] Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and
Schahram Dustdar. Testing of data-centric and event-based dynamic
service compositions. Software Testing, Verification and Reliability,
23(6):465–497, 2013.

[56] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 435–445, New
York, NY, USA, 2014. ACM.

[57] Chaitanya Kallepalli and Jeff Tian. Measuring and modeling usage and
reliability for statistical web testing. IEEE Transactions on Software
Engineering, 27(11):1023–1036, November 2001.

175

[58] James Keables, Katherine Roberson, and Anneliese von Mayrhauser.
Data flow analysis and its application to software maintenance. In Pro-
ceedings of the Conference on Software Maintenance, 1988, pages 335–
347, Oct 1988.

[59] Jong Myoung Ko, Chang Ouk Kim, and Ick-Hyun Kwon. Quality-of-
service oriented web service composition algorithm and planning archi-
tecture. Journal of Systems and Software, 81(11):2079 – 2090, 2008.

[60] Mariam Lahami, Moez Krichen, and Mohamed Jmaiel. Runtime testing
framework for improving quality in dynamic service-based systems. In
Proceedings of the 2013 International Workshop on Quality Assurance
for Service-based Applications, QASBA 2013, pages 17–24, New York,
NY, USA, 2013. ACM.

[61] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram
Dustdar. Monitoring, prediction and prevention of SLA violations in
composite services. In Proceedings of the IEEE International Conference
on Web Services (ICWS 2010), pages 369–376. IEEE Computer Society,
2010.

[62] Hareton K. N. Leung and Lee White. Insights into regression testing
[software testing]. In Proceedings of the Conference on Software Main-
tenance, 1989., pages 60–69, Oct 1989.

[63] Bixin Li, Dong Qiu, Shunhui Ji, and Di Wang. Automatic test case
selection and generation for regression testing of composite service based
on extensible bpel flow graph. In 2010 IEEE International Conference
on Software Maintenance (ICSM), pages 1 –10, sept. 2010.

[64] Bixin Li, Dong Qiu, Hareton Leung, and Di Wang. Automatic test case
selection for regression testing of composite service based on extensible
bpel flow graph. Journal of Systems and Software, 85(6):1300–1324, June
2012.

[65] Zheng Li, M. Harman, and R.M. Hierons. Search algorithms for regres-
sion test case prioritization. IEEE Transactions on Software Engineering,
33(4):225–237, April 2007.

176

[66] Hehui Liu, Zhongjie Li, Jun Zhu, and Huafang Tan. Business process
regression testing. In Proceedings of the 5th international conference on
Service-Oriented Computing, ICSOC ’07, pages 157–168, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[67] Christopher M. Lott and H. Dieter Rombach. Repeatable software engi-
neering experiments for comparing defect-detection techniques. Empiri-
cal Software Engineering, 1(3):241–277, 1996.

[68] Daniel Lübke, Leif Singer, and Alex Salnikow. Calculating bpel test cov-
erage through instrumentation. In Proceedings of the 4th International
Workshop on Automation of Software Test, AST 2009, Vancouver, BC,
Canada, May 18-19, 2009., pages 115–122, 2009.

[69] Yue Ma and Chengwen Zhang. Quick convergence of genetic algorithm
for qos-driven web service selection. Computer Networks, 52(5):1093 –
1104, 2008.

[70] Khaled Mahbub, George Spanoudakis, and Andrea Zisman. A monitor-
ing approach for runtime service discovery. Automated Software Engi-
neering, 18(2):117–161, June 2011.

[71] Michele Mancioppi. Consolidated and updated state of the art report
on service-based applications (CD-IA-1.1.7). Technical report, S-Cube
Network of Excellence, November 2011.

[72] John D. McGregor and David A. Sykes. A Practical Guide to Testing
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[73] Lijun Mei, W. K. Chan, T. H. Tse, and Robert G. Merkel. Tag-based
techniques for black-box test case prioritization for service testing. In
Proceedings of the 2009 Ninth International Conference on Quality Soft-
ware, QSIC ’09, pages 21–30, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[74] Lijun Mei, W. K. Chan, T. H. Tse, and Robert G. Merkel. Xml-
manipulating test case prioritization for xml-manipulating services.
Journal of Systems and Software, 84(4):603–619, April 2011.

177

[75] Lijun Mei, W.K. Chan, and T.H. Tse. Data flow testing of service-
oriented workflow applications. In Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, pages 371–380, New
York, NY, USA, 2008. ACM.

[76] Lijun Mei, Ke Zhai, Bo Jiang, W. K. Chan, and T. H. Tse. Preemptive
regression test scheduling strategies: A new testing approach to thriving
on the volatile service environments. In Proceedings of the 2012 IEEE
36th Annual Computer Software and Applications Conference, COMP-
SAC ’12, pages 72–81, Washington, DC, USA, 2012. IEEE Computer
Society.

[77] Lijun Mei, Zhenyu Zhang, W. K. Chan, and T. H. Tse. Test case prior-
itization for regression testing of service-oriented business applications.
In Proceedings of the 18th international conference on World wide web,
WWW ’09, pages 901–910, New York, NY, USA, 2009. ACM.

[78] Andreas Metzger and Elisabetta Di Nitto. Addressing highly dynamic
changes in service-oriented systems: Towards agile evolution and adap-
tation. In Xiaofeng Wang, Nour Ali, Isidro Ramos, and Richard Vid-
gen, editors, Agile and Lean Service-Oriented Development: Founda-
tions, Theory and Practice. IGI Global, 2012.

[79] Andreas Metzger, Osama Sammodi, and Klaus Pohl. Accurate proac-
tive adaptation of service-oriented systems. In Javier Camara, Rogerio
Lemos, Carlo Ghezzi, and Antonia Lopes, editors, Assurances for Self-
Adaptive Systems, volume 7740 of Lecture Notes in Computer Science,
pages 240–265. Springer Berlin Heidelberg, 2013.

[80] Andreas Metzger, Osama Sammodi, Klaus Pohl, and Mark Rzepka. To-
wards pro-active adaptation with confidence: Augmenting service moni-
toring with online testing. In Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS
2010), pages 20–28. ACM, 2010.

[81] Siavash Mirarab and Ladan Tahvildari. A prioritization approach for
software test cases based on bayesian networks. In Proceedings of the 10th

178

International Conference on Fundamental Approaches to Software En-
gineering, FASE’07, pages 276–290, Berlin, Heidelberg, 2007. Springer-
Verlag.

[82] John D. Musa. Operational profiles in software-reliability engineering.
IEEE Software, 10(2):14–32, March 1993.

[83] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John
Wiley & Sons, 2004.

[84] Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. Test case
prioritization for audit testing of evolving web services using information
retrieval techniques. In 2011 IEEE International Conference on Web
Services (ICWS), pages 636 –643, july 2011.

[85] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou,
and Klaus Pohl. A journey to highly dynamic, self-adaptive service-
based applications. Automated Software Engineering, 15(3-4):313–341,
December 2008.

[86] OASIS. UDDI: Universal description, dsicovery, and integration.
http://uddi.xml.org.

[87] Alessandro Orso, Donglin Liang, Mary Jean Harrold, and Richard Lip-
ton. Gamma system: Continuous evolution of software after deployment.
In Proceedings of the 2002 ACM SIGSOFT international symposium on
Software testing and analysis, ISSTA ’02, pages 65–69, New York, NY,
USA, 2002. ACM.

[88] Leon Osterweil. Strategic directions in software quality. ACM Computing
Surveys, 28(4):738–750, December 1996.

[89] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank
Leymann. Service-oriented computing: State of the art and research
challenges. Computer, 40(11):38–45, November 2007.

[90] Mike Papazoglou, Klaus Pohl, Michael Parkin, and Andreas Metzger,
editors. Service Research Challenges and Solutions for the Future Inter-

179

net: Towards Mechanisms and Methods for Engineering, Managing, and
Adapting Service-Based Systems. Springer, 2010.

[91] Cesare Pautasso and Gustavo Alonso. Flexible binding for reusable com-
position of web services. In Proceedings of the 4th International Confer-
ence on Software Composition, SC’05, pages 151–166, Berlin, Heidelberg,
2005. Springer-Verlag.

[92] Ajitha Rajan, Michael W. Whalen, and Mats P.E. Heimdahl. The effect
of program and model structure on mc/dc test adequacy coverage. In
Proceedings of the 30th International Conference on Software Engineer-
ing, ICSE ’08, pages 161–170, New York, NY, USA, 2008. ACM.

[93] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test
selection techniques. IEEE Transactions on Software Engineering,
22(8):529–551, August 1996.

[94] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software Engineering
and Methodology (TOSEM), 6(2):173–210, April 1997.

[95] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. Prioritizing test
cases for regression testing. IEEE Transactions on Software Engineering,
27(10):929–948, October 2001.

[96] Michael Ruth, Sehun Oh, Adam Loup, Brian Horton, Olin Gallet, Mar-
cel Mata, and Shengru Tu. Towards automatic regression test selection
for web services. In Proceedings of the 31st Annual International Com-
puter Software and Applications Conference (COMPSAC), pages 729–
734, 2007.

[97] Michael Ruth and Shengru Tu. A safe regression test selection technique
for web services. In Proceedings of the Second International Conference
on Internet and Web Applications and Services, Washington, DC, USA,
2007. IEEE Computer Society.

[98] Michael E. Ruth and Shengru Tu. Empirical studies of a decentralized
regression test selection framework for web services. In Proceedings of the

180

2008 Workshop on Testing, Analysis, and Verification of Web Services
and Applications, TAV-WEB ’08, pages 8–14, New York, NY, USA, 2008.
ACM.

[99] Osama Sammodi, Andreas Metzger, Xavier Franch, Marc Oriol, Jordi
Marco, and Klaus Pohl. Usage-based online testing for proactive adap-
tation of service-based applications (short). In Proceedings of the 35th
Annual IEEE International Computer Software and Applications Confer-
ence (COMPSAC 2011), pages 582–587. IEEE Computer Society, 2011.

[100] Anja Strunk. Qos-aware service composition: A survey. In Proceedings of
the 2010 Eighth IEEE European Conference on Web Services, ECOWS
’10, pages 67–74, Washington, DC, USA, 2010. IEEE Computer Society.

[101] Abbas Tarhini, Haccene Fouchal, and Nashat Mansour. Regression test-
ing web services-based applications. In Proceedings of the IEEE Interna-
tional Conference on Computer Systems and Applications, AICCSA ’06,
pages 163–170, Washington, DC, USA, 2006. IEEE Computer Society.

[102] Carmen Trammell. Quantifying the reliability of software: statistical
testing based on a usage model. In Proceedings of the Second IEEE Inter-
national Software Engineering Standards Symposium, 1995. (ISESS’95)
’Experience and Practice’, page 208, Washington, DC, 1995. IEEE Com-
puter Society.

[103] Immanuel Trummer, Boi Faltings, and Walter Binder. Multi-objective
quality-driven service selection – a fully polynomial time approximation
scheme. IEEE Transactions on Software Engineering, 40(2):167–191,
February 2014.

[104] W.T. Tsai, Xinyu Zhou, Yinong Chen, and Xiaoying Bai. On testing
and evaluating service-oriented software. Computer, 41(8):40–46, August
2008.

[105] Di Wang, Bixin Li, and Ju Cai. Regression testing of composite service:
An xbfg-based approach. In IEEE Congress on Services Part II, 2008.
SERVICES-2, pages 112–119, 2008.

181

[106] Chunyang Ye and Hans-Arno Jacobsen. Whitening soa testing via event
exposure. IEEE Transactions on Software Engineering, 39(10):1444–
1465, October 2013.

[107] Shin Yoo and Mark Harman. Regression testing minimization, selection
and prioritization: A survey. Software Testing, Verification and Relia-
bility, 22(2):67–120, March 2012.

[108] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Du-
mas, Jayant Kalagnanam, and Henry Chang. Qos-aware middleware for
web services composition. IEEE Transactions on Software Engineering,
30(5):311–327, May 2004.

[109] Ke Zhai, Bo Jiang, and W. K. Chan. Prioritizing test cases for regression
testing of location-based services: Metrics, techniques, and case study.
IEEE Transactions on Services Computing, 7(1):54–67, January 2014.

[110] Ke Zhai, Bo Jiang, W. K. Chan, and T. H. Tse. Taking advantage
of service selection: A study on the testing of location-based web ser-
vices through test case prioritization. In Proceedings of the 2010 IEEE
International Conference on Web Services, ICWS ’10, pages 211–218,
Washington, DC, USA, 2010. IEEE Computer Society.

[111] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit
test coverage and adequacy. ACM Computing Surveys, 29(4):366–427,
December 1997.

[112] Hong Zhu and Yufeng Zhang. Collaborative testing of web services. IEEE
Transactions on Services Computing, 5(1):116–130, Jan 2012.

	Acknowledgement
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Goal and Research Questions
	Thesis Contributions
	Thesis Structure

	Fundamentals
	Service-oriented Computing (SOC)
	Adaptation
	Software Testing
	Regression Testing
	Online Testing

	Runtime Monitoring
	Coverage Adequacy
	Testing Adequacy
	Runtime Monitoring Adequacy
	The Impact of Program Modifications on Coverage

	Related Work
	Evaluation Framework
	Test and Runtime Monitoring Coverage Assessment (TMCA)
	Mei et al. 2008
	Tsai et al. 2008
	Bartolini et al. 2008, 2009, and 2011
	Lubke et al. 2009
	Bai et al. 2009
	Hummer et al. 2011 and 2013
	Bertolino et al. 2012
	Ye and Jacobsen 2013
	Evaluation of TMCA Contributions

	Regression Test Selection (RTS)
	Tarhini et al. 2006
	Ruth et al. 2007, Ruth and Tu 2007, and Ruth 2008
	Liu et al. 2007
	Wang et al. 2008
	Li et al. 2010 and 2012
	Mei et al. 2012
	Evaluation of RTS Contributions

	Regression Test Case Prioritization (RTP)
	Hou et al. 2008
	Mei et al. 2009 and 2011
	Chen et al. 2010
	Zhai et al. 2010 and 2014
	Nguyen et al. 2011
	Evaluation of RTP Contributions

	Online Testing (OT)
	Deussen et al. 2003
	Chan et al. 2007
	Bei et al. 2007 and 2009
	Hielscher et al. 2008
	Greiler et al. 2009 and 2010
	Dranidis et al. 2010
	Angelis et al. 2011 and Bertolino et al. 2012
	Lahami et al. 2013
	Ali et al. 2014
	Evaluation of OT Contributions

	Joint Runtime Monitoring and Testing Efforts (JMTE)
	Challagulla et al. 2007
	Bai et al. 2007
	Di Penta et al. 2007
	Metzger et al. 2010 and Sammodi et al. 2011
	Evaluation of JMTE

	Summary

	Main Contributions
	Determining Valid Execution Traces (A)
	Coverage Criteria (B)
	Online-Test-Case Selection and Prioritization (D)
	Online Testing and Runtime Monitoring Framework (E)
	Summary

	Determining Valid Execution Traces
	Preliminaries
	Execution Traces for Service Composition
	Invalid Execution Traces

	Determining Invalid Execution Traces
	Algorithm for Safe Regression Test Case Selection
	The Extended Algorithm
	Complexity Analysis of the Extended Algorithm

	Summary

	Coverage Criteria
	Intra-plan and Inter-plan Coverage Criteria
	Preliminaries
	The Local Criteria
	The Global Criteria
	Subsumption Relations

	Summary

	Online Test Case Selection and Prioritization
	Online Test Case Selection
	Information Used for Test Case Prioritization
	Online Test Case Prioritization Techniques
	Coverage-based Test Case Prioritization
	Time-based Test Case Prioritization
	Usage-based Test Case Prioritization
	Hybrid Test Case Prioritization

	Summary

	Online Testing and Monitoring Framework
	The PROSA Framework
	Runtime Monitoring Module
	Service Composition Monitor
	Listener

	Online Testing Module
	Service Composition Tester
	Service Tester

	Data Repository Module
	Coverage Data
	Usage Model
	Dynamic Binding Information (DBI)

	Summary

	Evaluation
	The Goal Question Metric Paradigm
	Evaluation of Determining Valid Execution Traces
	Goals, Questions, and Metrics
	Experimental Plan
	Results

	Evaluation of Coverage Criteria
	Goals, Questions, and Metrics
	Experimental Plan
	Results

	Evaluation of Online Test Case Selection and Prioritization
	Goals, Questions, and Metrics
	Experimental Plan
	Results

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion and Future Work
	Summary
	Revisiting Research Questions
	Future Work

	Detailed Results from the Evaluation
	Results for 1000 Execution Traces
	Results for 2000 Execution Traces
	Results for 3000 Execution Traces
	Results for 4000 Execution Traces
	Results for 5000 Execution Traces

	References

