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1. Introduction 

1.1 The immune system 

The immune system is a complex of mechanisms and structures which protects an 

organism from infectious agents and pathologic processes. The disease can be 

caused by pathogens, like viruses, bacteria, fungi, but may be also caused by 

internal mechanisms, like autoimmunity or cancer. Protection in invertebrates is 

provided by an innate immune system, whereas vertebrates have developed an 

additional, adaptive immune system, which can provide a specific immune response 

against a pathogen. 

 

1.1.1 The innate immune system 

The innate immune system represents first line of immune response and becomes 

immediately activated after an organism is invaded with a pathogen. The 

mechanisms of innate immune system are not specific to a certain pathogen. They 

can be recognized by molecular structures, called pathogen associated molecular 

patterns (PAMPs). The parts of the innate immune system include: molecular 

(antimicrobial compounds), cellular (macrophages and neutrophils) and more 

complex (skin). The innate immune system can be further subdivided into four types 

of defense: anatomical barriers, physiological barriers, phagocytosis and 

inflammation. (99) 

 

1.1.1.1. Cellular components and function of the innate immune response 
 

The development of immune response occurs in bone marrow and leads to formation 

of different immune cells. PAMPs are recognized by pattern recognition receptors 

(PRRs) and these molecules can either be soluble or cell-associated. Examples of 

PRRs are the macrophage mannose receptor, complement, toll-like-receptors (TLRs) 

nucleotide-binding oligomerization domain receptors, cytoplasmic RNA sensors like 

RIG-I and MDA-5 (recognizes dsRNA) and cytosolic DNA sensors like cGAS 

(recognizes dsDNA) (2, 99). These receptors trigger various responses, like 
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phagocytosis, chemotaxis, and upregulation of co-stimulatory molecules or secretion 

of cytokines (2, 99).  

Natural killer (NK) cells are a part of the innate immune response. They are able to 

respond to pathogens immediately in a non-specific manner. When activated, NK 

release of cytotoxic granules, containing granzymes (Gzm) and perforin. This leads 

to the induction of apoptosis in the target cells. NK cells express ligands for death 

receptors like TRAIL (tumor-necrosis factor-related-apoptosis-inducing ligand) or 

FasL, which kill cells through binding to their receptors on the target cells. (99) 

Phagocytosis is another feature of the immune system, which is performed by 

specialized immune cells, such as dendritic cells (DCs) macrophages/monocytes,  

and granulocytes (especially neutrophils). These cells can destroy pathogens in 

phagosomes. Monocytes (in the blood) or macrophages (in tissues) are long-lived 

phagocytic cells which secrete signaling proteins like cytokines and chemokines to 

attract other immune cells. Activated macrophages initiate the process of 

inflammation.  Additionally, DCs can take up large amounts of extracellular fluid and 

its content (macropinocytosis). Their main function is the recognition and degradation 

of invading pathogens. DCs present antigens within the major histocompatibility 

complex (MHC) molecules on their surface to naïve T lymphocytes. The first 

encounter happens in peripheral lymphoid organs to initiate the adaptive immune 

response. DCs are also able to produce cytokines that influence the innate and 

adaptive immunity. The mechanism of antigen presentation provides the crucial 

connection between innate and adaptive immunity and is essential to initiate an 

effective immune response against a pathogen (2, 99). The innate immune response 

provides the first and quick defense against foreign structures. Components of innate 

immunity may be divided in natural and mechanical barriers (e.g., skin, surface 

epithelia, cilia), chemical protection (e.g., proteases, lysozyme), the complement 

system, which are both humoral and cellular units (99).  

 

1.1.1.2 Humoral components of the immune system 

The humoral immune response consists of different soluble factors, such as 

complement and cytokines. Complement system is an  enzymatic cascade of 

different proteolytic enzymes. This system consists of opsonization, local 



Introduction 

 
 

3 
 

inflammation, chemoattractant or by binding the pores on the cell membrane in order 

to destroy the cell (99). 

Cytokines are various soluble, immunoregulatory factors, such as interleukins (IL), 

interferons, colony stimulating factors, chemokines, and tumor necrosis factors. 

Cytokines are the key factors in the cell-cell communication and affect cell growth, 

migration, development, differentiation and apoptosis of cells. They have an 

important function as signaling molecules during the tumor development and are 

important for the tissue damage repair (2, 99). They also modulate the immune 

response, control the virus replication and thus contribute to an effective immune 

response (99). One of these groups is interferons, (IFN), which can be induced as a 

result of PRR stimulation by its ligand resulting from different infections. Type I 

interferons (IFNα and IFNβ) are important players in the immediate anti-viral 

response. Almost all cells express the interferon receptor. Upon binding of its ligand 

an anti-viral state is induced, which is characterized by the expression of hundreds of 

interferon stimulated genes that are able to reduce viral replication and modulate 

immune cell responses (2, 99). 

 

1.1.1.3 Myeloid-derived suppressor cells 

Myeloid-derived suppressor cells (MDSCs) is a heterogeneous population of 

activated, immature myeloid cells, which show robust suppressive function. First, 

these cells was described around 30 years ago (150), but only lately got deserved 

attention due to evidence about suppressive function in distinct models, such as 

cancer (59), infectious diseases (HBV, HCV, HIV), autoimmunity etc.. 

Myeloid-derived suppressor cells are characterized in different models, both in vitro 

and in vivo. In murine model they are defined by co-expression of Gr1 (which 

consists of 2 epitopes Ly6G and Ly6C) and CD11b (αM-integrin). In healthy, murine 

bone marrow, cells with this phenotype take 20%-30% of cell suspension. Spleen 

contains only small amount of MDSCs, around 1-3%, of Gr1+ CD11b+ cells. MDSCs 

are absent in lymph nodes. MDSCs are, in mice, divided in two distinct populations: 

granulocytic or polymorphonuclear (gMDSCs) and monocytic (mMDSCs). gMDSCs 

are characterized with expression of CD11b+ and high expression of Gr1, or as 
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CD11b+ Ly6G- Ly6C+ cells. This population shows morphological and phenotypical 

similarities to neutrophils. Monocytic MDSCs morphologically and phenotypically 

resemble monocytes. mMDSCs are defined by expression of CD11b+ and dim 

expression of Gr1 or as CD11b+ Ly6G- Ly6C+ cells. 

 

 

 

Figure 1.1 Murine granulocytic and monocytic MDSCs 

Murine MDSCs consist of two main subsets with distinct functions: granulocytic and 

monocytic. gMDSC suppress the T cell response mainly via ROS and arginase activity, and 

mMDSCs the T cell response via NO and arginase.      
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In human system, MDSCs are mainly characterized by expression of the common 

myeloid marker CD33, CD11b, and lack of CD14 expression. They also not express 

maturation markers for myeloid and lymphoid cells, as well as MHC-class-II molecule 

HLA-DR. CD15+ is also used for characterization of MDSCs in peripheral blood. 

PBMCs of healthy individuals contain mostly ~0.5% of cells with this phenotype. (59) 

MDSCs are generated from common myeloid progenitor cells in bone marrow (BM). 

This process is regulated by series of signals, which may be divided into two 

categories: promotion of accumulation of immature myeloid cells, and provision for 

the pathological activation of these cells.  

 

1.1.1.4 Mechanisms of MDSCs suppressive activity 

MDSC action is conducted either though cell-cell contact or is mediated though 

soluble factors.  

MDSC suppressive activity is historically associated with ι-arginine metabolism. In 

this processes ι-arginine may by converted by two enzymes: arginase-1 (ARG1) and 

inducible nitric oxide synthase-2 (iNOS or NOS2). In first process ι-arginine is 

metabolized by ARG1 into urea and ι-ornithine, while NOS2 converts it into nitric 

oxide (NO) and ι-citrulline. MDSCs are expressing high levels of these enzymes, due 

to exposure to specific cytokines, where Th2 cytokines TGF-β and IL-10 and 

associated with ARG1, and Th1 cytokines IFNγ, IL-1, IFNα and TNFα with NOS2. 

High activity of these enzymes was shown to inhibit T cell function through distinct 

mechanism. (21, 141)  

High MDSCs related arginase activity leads to arginine depletion from 

microenvironment, which absence leads to decreased expression of T cell-CD3ζ, and 

through this unable transmission of signal for T cell activation. It may also suppress 

the cell cycle regulatory protein cyclin D3 and cyclin-dependent kinase 4, which is 

shown to block proliferation of T cells (111).  On the other hand NOS2 mediated 

production of NO by MDSCs may interfere with JAK/STAT signaling proteins, 
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required for distinct T cell functions, suppress MHC II expression and induce T cell 

apoptosis. (21, 59, 84, 149)  

Described above mechanism are ι-arginine dependent. The other mechanisms 

involved in MDSCs mediated suppression, such as reactive oxygen species (ROS) 

production, TGF-β production, cysteine depletion, CD62L downregulation, are ι-

arginine independent (141).  

Another important function of MDSCs mediated immune suppression is reactive 

oxygen species (ROS) production. Increased production of ROS is one of the 

characteristics of MDSCs. The increased ROS production by MDSC is mediated by 

up-regulated activity of NADPH oxidase (NOX2). Inhibition of ROS production by 

MDSCs in murine and human model efficiently abrogated suppressive effect of 

MDSC in vitro. Interestingly, the interaction of T cells with MDSCs was shown to 

increase ROS levels due to ligation of integrins expressed on the surface of MDSCs. 

The production of ROS by MDSCs may be further induced by several known tumor-

derived factors, such as TGFβ, IL-10, IL-6, IL-3, platelet-derived growth factor 

(PDGF) and GM-CSF.(141)  

 

1.1.1.5 Immune regulation and depletion of MDSCs 

 

Different attempts to study the function of MDSCs in vivo have been proposed. First, 

transfer experiments were performed, in which freshly isolated, lipopolisaccharid 

(LPS) or IFNγ induced MDSCs were transferred into recipient mice. This attempt was 

shown to inhibit inflammation (147) and reduce CD8+ T cell responses in a 

melanoma model (128). Another approach to study the function of MDSCs in vivo is a 

specific depletion of these cells. There are different ways to modulate MDSC by 

reduction of numbers or blockade of the function of MDSCs in vivo. The most 

commonly used way of depletion is by administrating αLy6G or αGr1 antibodies into 

mice. This procedure allows the efficient depletion of all MDSCs (αGr1 antibody) or of 

granulocytic MDSCs only (αLy6G antibody). Nevertheless, as lately shown, long term 
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administration of either αGr1 or αLy6G antibody leads to reappearance of immature 

Ly6G+ cells (45).  

The modulation of immune responses offers promising results for the therapy of 

different diseases, including cancer and viral infections (91, 144).  

Different methods were described to deactivate (influencing MDSCs accumulation by 

TLR agonists) or deplete MDSCs (depletion by 5-Fluorouracil), as well as 

differentiate them into mature cells (maturating granulocytic MDSCs by ATRA) or 

block their development (144). Many of these agents, like 5-Fluorouracil (5FU), 

ATRA, PDE-5 inhibitors, NO-aspirins, CSF-1R inhibitors, Zoledronic Acid, 

JAK/STAT3 inhibitors and Multi-Kinase inhibitors, as well as VEGF inhibitors, are 

already under clinical investigation in cancer treatment (91, 144).  

5-FU is an analog of uracil, anti-cancer drug, which operates as antimetabolite by 

inhibiting thymidylate synthase. 5FU selectively deplete MDSCs. The 5FU what leads 

to increased IFNγ production by tumor-specific CD8+ T cells.  

An overview of different strategies used for MDSC immunomodulation is presented in 

Table 1.1. 

  

Table 1.1 Strategies of MDSC inhibition under investigation (144) 
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1.1.2. The adaptive immune system 

While the innate immune response is activated within hours, it takes days to weeks 

for the adaptive immune system to develop its protective effects. Adaptive immunity 

is different to innate immunity in the way that it is pathogen specific, it takes time to 

develop and a memory response can be launched at second encounter with an 

antigen. The adaptive immune system can be divided into the cellular (T and B cells) 

and humoral (antibodies) components. Recognition of invading pathogens by DCs 

leads to their activation, causing the upregulation of MHC class I and class II, as well 

as co-stimulatory molecules to initiate an effective T cell response. After migration to 

lymphoid organs, DCs present nonself- peptides bound to MHC molecules on their 

surface to naïve CD4+ and CD8+ T cells. CD4+ T cells only interact with peptide 

bound to MHC class II and CD8+ T cell only recognize peptides bound to MHC class 

I. Whereas almost all nucleated body cells express MHC class I, MHC class II is only 

present on professional antigen presenting cells (APCs), like DCs. There are two 

different pathways that lead to the presentation of a peptide on an MHC molecule. 

Peptides presented on MHC class I molecules are of cytosolic or endoplasmic 
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reticulum (ER) origin, whereas peptides presented on MHC class II molecules are 

derived from endosomes. All peptides are usually of pathogenic origin and the result 

from different routes of infection or pathogen encounter. For MHC class I loading 

endogenous antigens are generated. These are derived from misfolded proteins of 

cellular or pathogenic origin, or proteins produced within an infected cell. These 

proteins are cleaved into smaller peptides by the proteasome. The unloaded MHC 

class I molecule is initially located in the luminal side of the ER membrane. 

Therefore, peptides must be transported into the ER lumen via the transporter 

associated with antigen processing (TAP). TAP has the highest affinity for peptides 

with a length of 8 to 10 amino acids and with hydrophobic and basic carboxy-terminal 

amino acids, which present the optimal size and anchor charge for MHC class I 

binding. The process of MHC class I:peptide-complex assembly is highly chaperone 

guided. The fully assembled complex is then transported to the surface of the cell via 

the Golgi apparatus, where it can be recognized by specific CD8+ T cells. (99) MHC 

class II loading occurs in a different process with peptides derived from exogenous 

antigens captured through phagocytosis or endocytosis. The internalized antigens 

become degraded in increasingly acidified compartments (early endosome – 

endolysosome – lysosome) containing hydrolytic enzymes. In this process 

oligopeptides with a length of 13 to 18 amino acids are produced, which are able to 

bind to the peptide binding groove of the MHC class II complex. The assembly of the 

two chains of the MHC class II complex takes place in the ER, where an invariant 

chain blocks the peptide binding groove from binding endogenous peptides and 

stabilizes the complex. After passing through the Golgi apparatus, the MHC class II: 

invariant chain-complex is included in the endosomal-lysomsomal pathway. The 

invariant chain is degraded, leaving only a small fragment blocking the peptide 

binding groove (CLIP, class II-associated invariant chain peptide). In a chaperon-

mediated pathway, the CLIP is released and replaced by a peptide produced from 

the endosomal-lysosomal pathway. The MHC class II:peptide-complex is then 

presented on the surface of APCs, where it can be recognized by specific CD4+ T 

cells. (79, 99) 

B cells are APCs and thereby able to activate naive CD4+ T cells. Their principle role 

is in the production of antibodies, as part of the humoral immune response to 

pathogens. B cells mature into antibody-producing plasma cells and memory B cells 
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in an antigen-driven way. B cells can be activated in two different ways: by thymus 

independent antigens and thymus-dependent antigens, which is mediated with the 

help of CD4+ T cells. In response to stimulation, B cells produce antibodies and this 

process can be divided into primary and secondary responses. In the primary 

response, naïve B cells become activated to produce antibodies, whereas in the 

secondary response, plasma cells are activated to produce more specific antibodies 

of different classes. These antibodies from the secondary response are more specific 

because the B cells have undergone clonal selection, expansion and differentiation in 

germinal centers. Antibody production is important for specific pathogen recognition 

and elimination (complement activation, opsonization and neutralization of pathogens 

and phagocytosis of pathogens). (99) 

 

1.1.2.1 Effector CD8+ T cells 

CD8+ T cells, also called cytotoxic T lymphocyte (CTL), are a subset of T 

lymphocytes, showing effector function. To achieve their function cytotoxic cell CD8+ 

T cell acquire activation. To achieve this naïve CD8+ T cell need to recognize antigen 

peptides presented by MHC Class I molecule on activated antigen presenting cells 

(APCs). MHC I molecules are present on all nucleated cells and present epitopes of 

viral peptides. CD43 and CD62L are the two glycoproteins used for identification of 

cytotoxic T lymphocytes. The CD62L molecule is the adhesion and homing receptor, 

it derives naive T cells through interaction with endothelial cells to secondary 

lymphoid organs. In case of an encounter of the naïve T cell with its specific antigen 

the expression of the cell surface molecule CD62L is downregulated. Lack of 

expression of CD62L classifies the CD8+ T cell as activated CD8+ effector cell [100, 

101]. After activation the CD8+ T cells play a role not only in the elimination of 

infected cells, but they also secrete different cytokines (e.g. IFN-γ, TNF-α) and 

chemokines and thus also have a regulatory character (99). Cytotoxic CD8+ T cells 

can kill infected cells by exocytosis of lytic granules, as for example, proteases 

(granzyme), lytic enzymes such as perforin or cytokines (IFN-γ, TNF-α, etc.), or 

TRAIL (CD253) / TRAIL receptor and Fas (CD95) / Fas (CD95L) mediated apoptosis. 

During a primary immune response CTLs expand over several hundred folds and 
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form a very efficient antigen-specific effector immune response and are able to kill 

several target cells (15). 

Cytotoxic CD8+ T cells maintain their function by several cellular mechanisms or 

secreted molecules. After forming immunological synapse with target cell, CTL may 

act on two distinct ways: calcium dependent or calcium independent. First and 

principal of them, is the calcium-dependent secretion of cytotoxic granules, such as 

granzymes and perforins, upon antigen recognition.  

Gzms are serine proteases that are stored in specialized lytic granules of CTLs and 

NK cells along with perforin. In mice, ten Gzms (A-G, M and gene duplications) and 

in humans five Gzms (A, B, H, K and M) have been described. When CD8+ T cells 

become activated and recognize their antigen in an MHC class I context, these 

granules can be released and the Gzms can kill the target cell. For the Gzms to enter 

the target cell, perforin pores are formed in the target cell membrane in a calcium 

dependent manner. Upon entry into the target cell, Gzms induce proteolytic cleavage 

of caspases eventually leading to DNA fragmentation and cell apoptosis. In addition 

to activating caspases, Gzms can also activate caspase-independent mitochondrial 

collapse, resulting in the release of cytochrome c, a pro-apoptotic protein (24, 99). 

 

The Fas (CD95) – FasL (CD95L) pathway is another pathway through which CTLs 

can induce apoptosis in target cells. Fas is a member of the TNFR family and 

contains an intracellular death domain to deliver an apoptotic signal upon FasL 

binding. Fas expression is induced by TNFα and IFNγ or the activation of 

lymphocytes and FasL is expressed after TCR engagement on CD8+ T cells. The 

activation of the Fas – FasL pathway results in the activation of caspases and leads 

to apoptosis (154).  

In addition to the above mechanisms, cytokines like IFNγ and TNFα are secreted by 

activated CD8+ T cells. It should, however, be noted that these cytokines can be 

secreted by a variety of other immune cells as well (T cells, NK cells, APCs). IFNγ is 

the only member of the type II interferons with a wide range functionality, like: 

leukocyte attraction, maturation and differentiation of many cell types, NK cell activity 

enhancing action and regulation of B cell functions and altering macrophage function 

during infections. IFNγ also up-regulates factors involved in CD4+ T cell recognition 
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and induces further MHC class II expression on APCs and other cells. IFNγ is also 

involved in the up-regulation of MHC class I and the immunoproteasome, therefore 

providing efficient recognition of virus-infected cells by CTLs. It also elicits direct 

antiviral effects by regulating antiviral proteins (induces an antiviral state) and has 

pro-apoptotic and anti-proliferative effects (45, 99). 

The surface expression of CD107a (lysosomal-associated membrane protein-1) is a 

way to determine if cells recently de-granulated. CD107a is located on the surface of 

intracellular granules designated for exocytosis. Upon degranulation of these 

intracellular bodies CD107a becomes exposed on the cell surface until it is recycled 

(99, 119). 

 

1.1.2.3 The different CD4+ T cell subsets  

After activation and several rounds of division naïve CD4+ T cells differentiate into 

various CD4+ T helper subsets. The function and effector or helper mechanism of the 

CD4+ T cell response is dependent on the cytokine milieu. The best described 

subsets are Th1 and Th2 cells, which are characterized by strong IFNγ or IL4 

production, respectively. Th1 cells activate macrophages and drive inflammation and 

Th2 cells induce an effective humoral antibody-mediated immune response. In a viral 

infection, the Th cell response consists mainly of Th1 cells, where they are important 

for enhancing the CD8+ T cell responses and memory cell development. Many 

different Th subsets have been described, like T follicular helper cells (Tfh) 
(specialized B helper cells), Th17 (pro-inflammatory), Th22 (potentially involved in 

skin homeostasis and pathology), cytotoxic CD4+ T cells (mediating direct killing) and 
induced regulatory T cells (iTreg) (immunosuppressive). Th cell subsets have a 
certain level of plasticity and can convert under special change of cytokine milieu into 

other Th subsets (99).  

1.1.2.3.1 T regulatory cells 

Tregs are specialized subpopulation of CD4+ T cells, which are naturally present in 

the immune system. Normally 10-15% of CD4+ T cells in mice are Tregs. The main 

function of Tregs, also known as suppressor T cells, is to maintain immune 

homeostasis (99). Like other T cells, one subset of Tregs matures in the thymus 
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where they are characterized by the expression of CD4, CD25 and Foxp3. These are 

the natural Tregs. Natural Tregs express IL-2Rα chain (CD25) and the transcriptional 

repressor forkhead box protein 3 (Foxp3). Natural Tregs are characterized by 

selective, surface expression of Neuropilin-1 (Nrp-1) (85). Tregs that arises in the 

periphery are called inducible Tregs. This cell population is generated from naïve 

CD25+ or CD25- T cells in the periphery upon antigen presentation by semi-mature 

DCs and under the influence of IL-10, transforming growth factor β (TGF-β) and 

possibly IFN-α (63).  Higher numbers of CD4+ Tregs in cancer patients compared to 

normal healthy controls have been reported in recent in head and neck, 

hepatocellular, gastric, breast, ovarian, lung, melanoma, renal cell, and pancreatic 

cancer (150). Increased numbers of Tregs have also been observed in numerous 

human and animal studies of chronic viral infections, in Hepatitis C virus (HCV) (91), 

HIV (17) and herpes simplex virus (HSV) (131) infections. There are four suppression 

mechanisms, which are utilized by Tregs. Tregs can secrete inhibitory cytokines, 

such as IL-10, TGF-β, and IL-35, and apply these soluble factors as a main 

mechanism of suppression. Recent studies showed that Tregs may use 

perforin/granzyme-mediated cytotoxicity. Metabolic disruption by Tregs includes high-

affinity CD25 dependent cytokine-deprivation-mediated apoptosis, cyclic adenosine 

monophosphate (cAMP)-mediated inhibition, and CD39- and/or CD73-generated, 

adenosine receptor 2A (A2AR)-mediated immunosuppression. Another mechanisms 

are targeting DCs and include the modulation of maturation and function of DCs 

through lymphocyte-activation gene 3 (LAG-3)–MHC-class-II-mediated suppression 

of DC maturation, and CTLA4–CD80/CD86-mediated induction of indoleamine 2,3-

dioxygenase (IDO) (29). 

 
1.1.2.4 Humoral immune response 
 

Antibodies in the blood and extracellular fluids provide humoral immunity of the 

adaptive immune system. They show diverse biological functions, they can bind 

extracellular pathogens or their products. They can be further neutralized, opsonized 

or the complement system can be activated. Activated B cells produce pathogen-

specific antibodies. They are required for their activation, proliferation and 

differentiation into antibody-secreting plasma cells. As a stimulus for production of 
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these pathogen specific antibodies serve a specific antigen contact and interaction 

with Th cells. (99) 

 

1.1.2.5 Costimulatory and co-inhibitory molecules 

 
Co-stimulatory and inhibitory molecules are important for the activation of T cells 

through DCs. Many of these molecules have been identified and this section focuses 

on the ones that have been well characterized. The TCR-inducible co-stimulatory 

receptor (ICOS), homologous to CD28 and cytotoxic T lymphocyte antigen-4 (CTLA- 

4), interacts with its ligand on APCs thereby enhancing effector T cell responses (65). 

ICOS becomes up-regulated within 6 to 48 hours after stimulation on T cells and 

delivers a co-stimulatory signal to T cells. This enhances T cell dependent antibody 

production and cytokine secretion by CD4+ T cells (49). The glucocorticoid induced 

tumor necrosis factor receptor (TNFR) family related gene (GITR) is a costimulatory 

molecule expressed on T cells (59). 

T cell immunoglobulin mucin 3 (TIM3) is usually expressed on Th1 and some CD8+ T 

cells and acts as a negative regulator on these cells, inducing apoptosis. TIM3 is up 

regulated during a late stage of T cell differentiation and is expressed on 

dysfunctional or exhausted CD8+ T cells (98, 136).  

Programmed cell death-1 (PD-1) is described to be a co-inhibitory receptor 

expressed on T cells and signaling through it attenuates TCR signaling and inhibits 

cytotoxic functions. Following TCR stimulation, PD-1 is expressed on T cells and 

binds members of the B7 family (PD-L1 (B7-H1) and PD-L2 (B7-DC)). Its ligand PD-

L1 is up-regulated on hematopoietic and non-hematopoietic cells and its signaling 

down-regulates TCR signaling, inhibiting proliferation and cytokine secretion which 

promotes anergy and apoptosis, leading to immune suppression (10, 105). CTLA-4 is 

an inhibitory molecule and a homolog of the co-stimulatory molecule CD28. It has 

higher affinity than CD28 to the B7 family ligands CD80 and CD86. CTLA-4 becomes 

transiently up-regulated on T cells shortly after activation and interaction with its 

ligands prevents continuous T cell co-stimulation and activation (147).  
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Figure 1.2 Coinhibitory pathways (121) 
Exhausted T cells can express multiple inhibitory receptors, which modify the outcome of a T 

cell antigen receptor signal and limit the population expansion, functional activity and survival 

of T cells.   

 

 

The lymphocyte-activation gene 3 (Lag3) is a CD4 homolog which binds MHC class II 

molecules with a higher affinity than CD4 (124). It is up-regulated on T cells after 

activation and negatively regulates T cell expansion and activation (40). 

 

1.1.2.6 Adenosine metabolism 
 

An interesting and newly described mechanism of T cell immunosuppression involves 

the two ecto-enzymes CD39 (ecto-nucleoside triphosphate diphosphohydrolase 1 or 

ATPase/ADPase) and CD73 (ecto-5’-nucleotidase), which removes the 

proinflammatory signal ATP from extracellular spaces and generates anti-

inflammatory adenosine (65). CD39 is the rate-limiting enzyme in the cascade. It 

converts immune activating extracellular ATP or ADP into AMP, which can then be 

used by CD73 to generate adenosine. Adenosine is an immune suppressive 

molecule and binds to the A2A receptor on effector T cells, which then become 
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suppressed because of elevated intracellular production of cyclic AMP (cAMP) (49, 

50).  

 

 

 
 
Figure 1.3 Metabolism of extracellular adenosine and its effect of cellular immunity 
(18) 
The activities of CD39 and CD73 lead to production of extracellular adenosine, which is 

decreased by adenosine deaminase (ADA)- dependent catabolism or by cellular uptake 

through nucleoside transporters (NT). Increased level of extracellular adenosine stimulates 

A2AR and A2BR on immune cells. Adenosine is suppressive to effector T cells, NK cells and 

NKT cells. These suppressive activities may by further enhanced by adenosine-mediated 

Treg, tolerogenic APCs or MDSC suppression.  

 

 

Adenosine has also been shown to modulate DC maturation and thereby favor a 

tolerogenic phenotype (137). Adenosine has a very short half-life, which makes close 

proximity necessary for effective suppression through this pathway. Interestingly, it 

has also been shown that the transfer of cAMP from Tregs through gap junctions into 

effector cells or DCs can directly inhibit these cells (17, 19). 
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1.1.2.7 Proliferation markers 
 
Different markers are described to indicate proliferation of T cell. The most commonly 

used marker is a Ki67. Ki67 is a nuclear protein present in the active stages of the 

cell cycle (G1, S, G2 and M phase), but absent in resting cells (G0 phase) (109). 

Therefore, it can be used to determine the proliferative potential of cell populations.  

Different techniques allow determining cell proliferation, such as the incorporation of 

BrdU, a thymidine analogue, into the chromosomal DNA. (72) 

 

 

1.2 Retroviruses 

Retroviruses are a large group of RNA viruses. Their virions are 80-100 nm diameter, 

their envelope consist of and display viral glycoproteins. Retroviruses are broadly 

divided into two groups: simple and complex. Retroviruses are composed of 3 

domains, which encode different virion proteins: gag, from which are derived internal 

viron proteins which form the matrix, the capsid, and the nucleoprotein structures, 

pol, which consist of information of reverse transcriptase and integrase enzymes and 

env, which directs the synthesis of surface and transmembrane envelope proteins. 

Additional, smaller domain, called pro, encodes virion protease. As simple viruses 

consist mainly of the above genes, complex viruses contain also of different genes 

encoding further regulatory and accessory proteins. (41) 
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Figure 1.4 Retroviral genome 

A. A genome of simple retrovirus consisting of four major domains: gag, pro, pol and 

env. 

B. A genome of complex retrovirus containing, additionally, information for other 

regulatory proteins.  

 Adapted after: © 1997 by Cold Spring Harbor Laboratory Press 

http://tolweb.org/treehouses/?treehouse_id=4426 

 

 

Retroviruses are divided in 3 different groups: oncoviruses, lentiviruses and the 

spumaviruses. Furthermore, oncoviruses are divided in 5 subgroup (α,β,γ,δ,ε – 

viruses). (41) 

 

1.2.1 Retroviral life cycle 

Retroviral replication starts by binding viral envelope proteins to entry receptor of a 

host cell. The replication of retroviruses takes place in several stages. 

http://www.cshlpress.com/
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First, retroviral replication starts by binding the viruses with their glycoproteins in the 

lipid bilayer specific surface receptors of the host cell (1). After adsorption and fusion 

of the viral membrane with the host cell membrane, the capsid reaches the cytoplasm 

of the host cell (2). In the cytosol, the viral proteins as well as the RNA strands are 

released. Using reverse transcriptase, the viral RNA in double-stranded (ds) DNA is 

rewritten (3), which is further transported into the nucleus by viral and cellular 

proteins (4). In the nucleus, the viral DNA is integrated into the host cell genome by 

the Integrase (5). The DNA of the host cell of the provirus is transcribed by the RNA 

polymerases II and other transcription factors (6). Next, the mRNA of the provirus is 

transported back to the cytosol and there translated (7). Newly formed nucleocapsids 

attach to the plasma membrane and it comes at the cell surface using the proteins for 

packaging of viral particles. The budding at the cell membrane or the release of the 

viral particles is also called budding (8). 

 

 

 

Figure 1.5 Retroviral life cycle (133) 

a. Steps of viral entry: binding to a specific receptor on the cell surface; membrane fusion 

either at the plasma membrane or from endosomes (not shown); release of the viral core and 
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partial uncoating; reverse transcription; transit through the cytoplasm and nuclear entry; and 

intergration into cellular DNA to give a provirus 

b. Steps of viral exit: transcribtion by RNA polymerase II (RNAPII); splicing and nuclear 

export of viral RNA; translation of viral proteins, Gag assembly and RNA packaging; budding 

through the cell membrane; and release from the cell surface and virus maturation.  

 

1.2.2 Human Immunodeficiency Virus-1 

HIV-1 the causative agent of AIDS (acquired immunodeficiency syndrome) was 

discovered in 1983 (19, 105). It is a complex retrovirus (lentivirus) and possesses all 

components of a simple retrovirus with the addition of regulatory (Tat and Rev) and 

accessory (Nef, Vif, Vpr and Vpu) proteins. HIV-1 infects cells by binding of gp120 to 

CD4, present on CD4+ T cells, macrophages and DCs as well as by interaction with a 

co-receptor. There are two co-receptors which can potentiate infection, CXCR4 and 

CCR5. Different strains of HIV-1 can utilize these two co-receptors to varying 

degrees which is a major determinant of viral tropism. HIV-1 infection causes a long 

lasting disease characterized by a long incubation period, which is usually 

asymptomatic, and eventual progression to AIDS, if untreated (69). The routes of 

transmission are either horizontally; by sexual contacts or contact to contaminated 

blood (blood transfusion, intravenous drug use); or vertically (mother to child) (142). 

(140).  

The first antiretroviral drugs were developed in the nineties and given in single or 

dual combination. However, this could only control viral loads temporarily due to drug 

resistance by viral escape mutants. In the following years, the highly active 

antiretroviral therapy (HAART) a combination of three different antiretroviral drugs 

was developed. There are different antiretroviral drugs available targeting different 

stages of the retroviral life cycle: reverse transcriptase inhibitors (nucleoside or 

nonnucleoside), protease inhibitors, entry blockers and integrase inhibitors. This 

combination therapy has been shown to be more efficient in suppressing viral loads 

and reducing the levels of drug resistant HIV-1 strains in infected individuals. Some 

retroviral drugs have severe side effects, but due to the development of new drugs 

and better treatment regimes, these side effects have been greatly reduced. This 

makes HIV-1 infection a chronic but treatable disease in the western world where the 

access to HAART is available. However, due to the high costs of HAART and 
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insufficient education about HIV-1 infection routes, there is still a high incidence of 

HIV-1 infection and AIDS-induced death in developing countries, with millions of new 

infections every year. (70, 140) 

 

1.2.3 Friend virus as a model of retroviral infection 

Friend virus, discovered in 1957 by Charlotte Friend, belongs to γ-retroviruses. It is a 

retroviral complex of two viruses: Friend murine leukemia virus (F-MuLV), which is 

the apathogenic, replication competent helper virus and Spleen Focus Forming Virus 

(SFFV), which is the pathogenic, but replication defective helper virus. Due to various 

deletions in env gene the SFFV is not able to build viral particles. (41) Therefore F-

MuLV is required for replication and packaging SFFV genome into the viral particlesi. 

During the course of infection erythroid precursor cells are infected, as wells as other 

cell types, as lymphocytes, monocytes, dendritic cells etc. F-MuLV infection in adult 

mice is aphatogenic. If newborns are infected with F-MuLV they suffer anemia, 

splenomegaly and erythroleukemia due to immature adaptive immune response.  

In the beginning of FV infection SFFV viral envelope protein gp55 binds to 

erythropoietin receptor (EpoR) on the cell surface of erythroid precursor cells, giving 

a false signal for proliferation of them. During next 48 hours in susceptible mice 

uncontrolled proliferation occurs and infected erythroblasts migrate from bone 

marrow to the spleen, causing enlargement of the spleen. This is followed by 

integration of SFFV into site-specific target, spi-1 gene (SFFV proviral integration 

site-1). This leads to activation and overexpression of transcription factor PU.1 

erythroid cells and inhibition of their differentiation. Tumor suppressor gene p53 loss 

take place, what effect with uncontrolled proliferation of transformed cells.  

In adult susceptible mice FV complex induces severe splenomegaly and lethal 

erythroleukemia. In resistant strains FV infection leads to strong immune response in 

acute face of infection, however mice are not able to completely eliminate the virus, 

which persists lifelong. (41, 58) 

 

1.2.4 Immunoresponce against retroviral infection 
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Mice susceptible to FV develop during FV infection malignant erythroleukemia, 

however mice resistant to FV develop merely shortly splenomegaly. There are 

different genes responsible on FV-susceptibility. The resistance to FV infection is due 

to 6 genes Fv 1-6.  Fv 1,4 prevent from cell infection, Fv 2,5 regulate proliferation and 

differentiation of erythroblast, Fv 3 modify the immune response. Four MHC genes, 

which were described in H-2 mouse mediate resistance and may influence immune 

response (Rfv 1-3). For the presentation of viral T cell epitope H-2 genes are 

essential. The protection against FV-induced erythroleukemia consists of efficient 

interplay between FV-specific CD8+ T cells, Th cells and neutralizing antibodies. Due 

to haplotype H-2b, C57BL/6 mice are resistant to FV-induced erythroleukemia, they 

contain Fv 2 gen, which restricts proliferation of erythroblasts. [139]. On the contrary 

to C57BL/6 mice, BALB/c mice contain susceptible H-2d haplotype. Through the 

cross between both of this population, the new F1 generation, CB6F1 mice (Fv 2s/r, 

haplotype H-2b/d), can be created,. The CB6F1 mice are susceptible to FV-induced 

erythroleukemia [140, 141]. Heterozygotes own H-2 gens, therefore the FV-specific 

immune response occurs slower. The infection cannot be fully eliminated from the 

virus. [142]. 
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Aim and scope of work 

Subpopulations of myeloid cells are key players in the regulation of cellular immune 

responses. During retroviral infection, cytotoxic virus-specific CD8+ T Lymphocytes 

(CTLs) efficiently control acute virus infections but become exhausted when a chronic 

infection develops. A recently discovered population of myeloid derived suppressor 

cells (MDSCs) can restrain T cell responses by showing suppressive activity. The 

inhibition of T cells by MDSCs was first observed in tumor models. Although first 

information about the role of MDSCs in infectious diseases was generated, their 

function has to be studied in much more detail.  

The main aim of this project was to characterize the expansion of different MDSC 

subpopulations during acute Friend virus (FV) infection. As the mechanisms of T cell 

suppression by MDSC during retroviral infection are still elusive, phenotypic and 

functional properties of FV-induced MDSCs were assessed. Furthermore, it was of 

interest to establish a model for assessing functionality of these cells in vitro. In order 

to characterize mechanisms involved in MDSCs mediated T cell suppression several 

pathways were investigated with the help of cells from knockout animals or chemical 

inhibitors. To confirm the suppressive function of MDSCs in the living mouse and 

establish protocols for in vivo functionality of MDSC during acute FV infection, 

specific depletion experiments were performed.  

Different inhibitory mechanisms, such as T regulatory cells (Tregs) and inhibitory 

receptors play an important role in the regulation of immune responses during 

chronic infections. In order to show the contribution of MDSCs in T cell suppression 

the interplay between MDSC, Tregs and inhibitory receptors and their ligands was 

assessed. Simultaneous depletion of different inhibitory mechanisms allowed us to 

gain deep insight into mechanisms of immunoregulation and new approaches for 

restoration of T cell responses. 

Therefore, this study contributes to existing knowledge on the biology of MDSC, 

providing new insights into the role of these cells in chronic infections and possible 

new immune therapy of retroviral infections.  
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2. Materials  

2.1 Laboratory animals 

 

All animal experiments were performed in strict accordance with the German 

regulations of the Society for Laboratory Animal Science (GV-SOLAS) and the 

European Health Law of the Federation of Laboratory Animal Science 

Associations (FELASA). Protocols were approved by the North Rhine-Westphalia 

State Agency for 

Nature, Environment and Consumer Protection (LANUV). For all the experiments 

mice were older than six weeks. The mice were kept in a pathogen-free 

environment with free access to water and standard mouse food. All mice were 

under controlled and regular examination by veterinarians of the University 

Hospital Essen. 

The mice used in this PhD thesis had the resistance genotype of H-2Db/b, Fv-1b/b, 

Fv- 2r/r, Rfv3r/r and were bred on C57BL/6 (B6) background. The exceptions are 

BALB/c mice, which are susceptible to FV-induced leukaemia and splenomegaly 

and were used to produce virus stocks in vivo, and Y10A (F1: A.BY x C57BL/10A) 

mice, which are also susceptible to FV and were used to titrate the virus stocks. 

 

2.1.1 Wild type mice 

 

BALB/c Harlan Winkelmann GmbH, 

Borchen, Germany, 

Resistance genotype: H-

2Dd/d, FV-2s/s 

 

C57BL/6 (B6) Harlan Winkelmann GmbH, Resistance genotype: H-
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Borchen, Germany 

 

2Db/b, FV-2r/r 

 

F1: A.BY x 

C57BL/10A 

Bred at the Animal Facility, 

University Hospital Essen, 

(Y10A) Germany 

 

Resistance genotype: H-

2Da/b, FV-2r/s 

 

 

2.1.2 Knock out mice 

 

TCRtg CD8 TCR 

transgenic mice  

The DbGagL TCR Tg (T cell receptor transgenic) mice 

were specific for the DbGagL FV epitope (30). Mice were 

maintained at animal facilities, University Hospital Essen, 

Germany. 

DEREG DEREG (depletion of regulatory T cell) mice were 

generated from bacterial artificial chromosome (BAC) 

technology. These mice express a diptheria toxin receptor 

(DTR) enhanced green fluorescent protein (eGFP) fusion 

protein under the control of the foxp3 locus. DEREG mice 

allows both detection and inducible depletion of Foxp3+ 

Treg cells.  

Kindly provided by Dr. Tim Sparwasser (Institut für 

Medizinische Mikrobiologie, Immunologie und Hygiene, 

Technische Universität München, Munich, Germany) and 

maintained at animal facilities of University Hospital Essen.  
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PD-L1 KO In this mice exon 1 and a large part of exon 2 in the 

endogenous B7-H1 allele is replaced with a Neo-resistance 

cassette by a gene-targeting vector, which leads to 

deleting the sequences encoding the signal peptide and 

the majority of the extracellular IgV domain of PD-L1. (32) 

Mice were originally generated by Lieping Chen ( 

Department of Immunology, Mayo Clinic College of 

Medicine, Rochester, USA) and maintained at animal 

facilities of University Hospital Essen, Germany 

CD39 KO Mice with a targeted disruption of exon 1 in the 

ectonucleotide triphosphate diphosphohydrolase (entpd1) 

gene, which leads to a shorter transcript of the gene and 

no detectable function of the enzymatic protein product 

CD39. Mice were kindly provided by Verena Jendrossek 

(Institute for Cell Biology, University Hospital 

Essen,Germany). Mice were generated by Simon C. 

Robson (Department of Medicine, Beth Israel Deaconess 

Medical Center, Harvard Medical School, Boston, MA, 

USA) (50) and inbred at the animal facilities, University 

Hospital Essen, Germany. 

 

 

2.2 Cell lines and viruses 

2.2.1 Cell lines 

Mus dunni cell line is susceptible to infection with FV was used to determine the 

productivity of virus infected cells in vitro. Mus dunni cells were maintained in 

complete RPMI medium supplemented with 10% FCS and 0.5% 

Penicillin/Streptomycin. 
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2.2.2 Friend virus 

The FV stock used for the experiments was a FV complex containing B-tropic 

Friend Murine Leukemia Helper Virus (F-MuLV) and polycythemia-inducing spleen 

focus-forming virus (SFFV) (19).Two different virus stocks were used:  the virus 

containing only FV complex (31), for acute infections, and the virus containing 

additionally lactate dehydrogenase-elevating virus (LDV), for experiments with 

combinatorial treatment. The addition of LDV enables a more stable chronic 

infection with the FV to be established (127). 

 

2.3 Chemicals and media 

 

Chemicals, buffers and media were purchased from Applichem, Invitrogen, Merck, 

Roth and Sigma-Aldrich unless otherwise stated.  

 

3-amino-9-ethylcarbazole (AEC), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES), 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal), 

adenosine 5’- (α,β-methylene)diphosphate (AMPCP), acetic acid, autoMACS run 

and wash buffer (Miltenyi Biotec), β-mercaptoethanol (β-ME), bovine serum 

albumin (BSA), brefeldin A (BFA), calcium chloride, dextran, dimethyl sulfoxid 

(DMSO), disodium hydrogen phosphate, Dulbecco´s modified Eagle medium 

(DMEM) (Gibco) and DMEM high glucose (Gibco), ethanol, 

ethylendiaminetetraacetic acid (EDTA), FACS Clean (BD Bioscience), FACS Flow 

(BD Bioscience), FACS Rinse (BD Bioscience), fetal calve serum (FCS) 

(Biochrom), Ficoll (GE Healthcare), 37 % formaldehyde, formalin, FuGENE® 

transfection reagent (Promega), glucose, hydrogen peroxide (H2O2), incidine 8%, 

isopropanol, L-Glutamine, magnesium chloride (MgCl2), N-Ndimethylformamid, 

penicillin-streptomycin (PenStrep), phosphate buffered saline (PBS) (Gibco), picric 
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acid, polybrene A, potassium ferricyanide, potassium ferrocyanide, RPMI-1640-

Media (Gibco), saponin, sodium carbonate, sodium acetate, sodium azide (NaN3), 

sodium pyruvate, trypan blue, trypsin-EDTA. 

 

2.3.1 Antibiotic 

Penicillin / Streptomycin (Gibco) 

 

2.3.2 Buffer and supplemented cell culture media 

 

If not stated otherwise all buffer and media were prepared using bi-distilled H2O. 

 

Table 2.1 Buffer and supplemented cell culture media 

Media Composition 

Culture medium 
 

500 ml RPMI 1640 (Gibco) 

10% FCS (Gibco) 

0.5% Penicillin/Streptomycin mixture 

FACS buffer 
1l Phosphate buffered saline (PBS) 

0.02% Na-azide 

0.5% BSA 

Freezing mediums 

 

40% FCS 

10% DMSO 

50% RPMI medium 

MACS buffer 

 

1 l (PBS)  

0.5 % BSA  

2 mM EDTA 

 



Materials 
 

 

29 
 

PBBS 

 

1 l (PBS) 

1.0 g glucose 

 

 

2.4 Antibodies and staining reagents 

 

2.4.1 Characteristics of fluorophores  

Antibody-coupled fluorochromes and their absorption- and emission maxima are 

described in a table. 

Table 2.2 Characteristics of fluorophores 

Fluorochrom  Absorption Emission 

Fluorescein-
isothiocyanat 

FITC 488 525 

R-Phyccoerythrin PE 488 575 

Peridinin-
Chlorophyll-

Protein Komplex 

PerCP 488 670 

Phycoerythrin-Cy7 PE-Cy7 488 785 

Allophycocyanin APC 633 660 

Allophysocyanin-
Cy7 

APC Cy7 635 785 

Alexa Fluor 700 AF 700 635 723 
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eFluor 450 eF 450 405 455 

eFluor 605 eF 605 590 605 

eFluor 650 eF 650 635 650 

 

 

2.4.2 Antibodies 

Anti-mouse antibodies were purchased from eBioscience (Affymetrix), BD 

Bioscience or BioLegend unless otherwise stated. 

Table 2.3 Antibodies 

  Fluorochrom Clone Manufacturer 

AB720 (α-MuLV 
Env, Isotype 

IgG2b) 

    

AB720 (α-MuLV 
Env, Isotype 

IgG2b)* 

 AF647   

Arg1 

anti-
human/mouse 

 FITC   R&D Systems 

CD3 anti-mouse  Alexa Fluor 700 17A2 eBioscience 

CD11b anti-
mouse 

 BV 650 M1/70 BioLegend 
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CD11b 

Rat anti-mouse 

 PE CF594 M1/70 BD Horizon 

CD11c anti-
mouse 

 BV510 N418 BioLegend 

CD16/32 Fc-Block - Clone 93 eBioscience 

CD19 anti-mouse  eFluor 605 NC eBio1D3 eBioscience 

CD19 anti-mouse  PE eBio1D3 eBioscience 

CD39 anti-mouse  PerCP eFluor 

780 

24DMS1 eBioscience 

CD43 anti-mouse  PerCP 1B11 BioLegend 

CD49b anti-
mouse 

 PE Dx5 eBioscience 

CD73 anti-mouse  PE Cy7 TY/11.8 eBioscience 

CD80 anti-mouse  APC 16-10A1 eBioscience 

CD274 anti-
mouse 

(PD-L1) 

 

PE MIH5 eBioscience 

FVD  APC-Cy7  eBioscience 

Gr1 
(Ly6G/Ly6CLy6G) 

anti-mouse 

 eFluor 450 RB6-8C5 eBioscience 

Gr1 
(Ly6G/Ly6CLy6G) 

 FITC RB6-8C5 BioLegend 
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anti-mouse 

Gr1 
(Ly6G/Ly6CLy6G) 

anti-mouse 

 APC RB6-8C5 BioLegend 

GzmB anti-
human/mouse 

 APC GB12 invitrogen 

IL-2 anti-mouse     

IFNγ 

anti-mouse 

 APC XMG1.2 eBioscience 

KI67 

anti-mouse/rat 

 PE Cy7 SolA15 eBioscience 

Ly6C 

anti mouse 

 PerCP Cy5.5 HK1.4 eBioscience 

Ly6G  AF700 1A8 BioLegend 

NK1.1 

anti-mouse 

 BV421 PK136 BioLegend 

NK1.1 

anti-mouse 

 eFluor 605 PK136 BioLegend 

NOS2 

anti-mouse 

 PE-eFluor 610 CXNFT eBioscience 

Streptavidin  eF610 - eBioscience 
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TER119  PE-Cy7 TER-119 eBioscience 

TNFα 

anti-mouse 

 PE-Cy7 MP6-XT22 BioLegend 

 

2.5 MHC tetramers and F-MuLV specific peptide 

 

2.5.1 MHC I tetramer 

PE labelled MHC class-I H-2Db tetramer loaded with the peptide 

AbuAbuLAbuLTVFL (DbGagL tetramer, FV gag CD8+ epitope gPr80gag85-93) 

recognised by DbGagLspecific CD8+ T cells (2, 124, 134). The MHC class-I 

tetramer was purchased from Beckman and Coulter (Krefeld, Germany) or MBL 

International Corporation (Woburn, MA, USA). 

 

2.5.2 CD8 peptide 

The F-MuLV CD8+ T cell peptide was synthesised by PAN Tecs (Tübingen, 

Germany) and reconstituted in 100 % sterile DMSO. Peptide name: FMR-H-2Db 

GagL CD8 epitope. Sequence: AbuAbuLAbuLTVFL (30). 

 

2.6 Discrimination of dead cells 

To discriminate dead from live cells, either propidium iodide (PI) or fixable viability 

dye (FVD) eF780 were used. 

 

2.7 Staining reagents 
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Table 2.4 Staining reagents 

Staining reagent Manufacturer  

 

FVD eF780 eBioscience 

CFSE Invitrogen 

Violet tracer Invitrogen 

 

2.8 Standard kits 

Table 2.5 Standard kits 

Kit  Manufacturer 

Cytofix/ Cytoperm Intracellular staining 

kit 

BD Pharmingen, Heidelberg 

Foxp3 staining set  eBioscience, San Diego, USA 

Cytofix/cytoperm intracellular staining kit  BD Pharmingen, Heidelberg, Germany 

Mouse CD8α (Ly-2) isolation kit 

 

Miltenyi Biotec, Bergisch Gladbach, Germany 

 

Myeloid-Derived Suppressor Cell 

Isolation Kit (mouse) 

Miltenyi Biotec, Bergisch Gladbach, Germany 

 

 

2.9 Depletion antibody and treatment reagents 
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Table 2.6 Depletion antibody and treatment reagents 

InVivoMAb anti m Ly6G 

 

Ly6G antibody, Clone 18A,  

purchased from BioXcell  

 

InVivoMAb anti m Tim3 

 

Tim3 antibody, Clone RMT3-23 

purchased from BioXcell  

 

InVivoMAb anti m PD-L1 

 

PD-L1 antibody, Clone 10F.9G2 

purchased from BioXcell  

 

5-Fluorouracyl (5FU) 

 

2,4-Dihydroxy-5-fluoropyrimidine, 
purchased from Sigma-Aldrich 

Diphteria toxin (DT) Diphtheria toxin, Corynebacterium 

diphtheria – Calbiochem, purchased 

from Merck.  
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3. Methods 

3.1 Animal trials 

The animal experiments were conducted according to the guidelines of the 

Federation of European Laboratory Animal Science Association. 

 

3.2 Infection  

The infection of mice with Friend Virus was conducted by intravenously (i.v) 

injection in the lateral tale vein using 25G-hollow needle. Virus stock used for 

infection was thawed, centrifuged and the supernatant diluted in sterile PBS. For 

acute FV infection of mice 20 000 SFFU (Spleen Focus Forming Units) were used. 

For experiment with combinatory treatment with DT, αPD-L1 and αTim3, FV + LDV 

was used in concentration 20 000 SFFU of FV. 

 

3.3 Intraperitoneal injection (i.p.) 

The in vivo depletion antibodies as well as 5FU and Diphtheria toxin were 

administered via intraperitoneal (i.p) injection. Mice were hold by the skin at the 

back of the neck and the tail was held back. Mice were hold with the ventral side 

exposed and tense, therefore internal organs are not harmed by the injection. The 

injection was done in a 45° angle into the lower abdomen and slowly administered.  

 

3.4 Dissection of mice 

Mice were sacrificed using cervical dislocation after anesthesia with isofloran. 

Then, the mice were then fixed with needles and carefully cut open in order not to 

destroy internal organs. First the cervical, axillary and inguinal lymph node were 

removed. Next the peritoneal cavity was opened. The spleen was removed by 

excising both blood vessels. To dissect the bone marrow, hind legs were cut loose 
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and the flesh was removed. All organs and tissues were kept in PBBS on ice until 

further preparation. 

 

3.5 Preparation of single cell suspension 

Spleen and lymph nodes were homogenized through a 70 μm cell strainer with 

help plunger of a syringe. The strainer was washed from the strainer using PBBS. 

An aliquot of cell suspensions was removed to count the cells. Cells were then 

centrifuged at 300 xg for 10 min and the supernatant was discarded. Based on the 

cell count, cells were re-suspended in an appropriate volume of PBBS. 

A bone marrow cell suspension was delivered by flushing the femur and tibia of 

hind leg with a 23G-hollow needle with PBBS. An aliquot of cell suspension for 

counting the cells was removed. The cells were subsequently centrifuged at 520 

xg for 10 min and the supernatant discarded. Based on the cell number the cells 

were re-suspended in an appropriate volume of PBBS. 

 

3.6 Preparation of bone marrow derived dendritic cells 

To generate mouse DCs, the bone marrow from a naïve B6 mouse was prepared 

as described above and re-suspended in 50 mL mouse DC media supplemented 

with 1 ng/mL mrIL4 and 5 ng/mL mrGM-CSF. 10 mL were then seeded into a 10 

cm cell culture dish and incubated at 37 °C and 5 % CO2 for seven days. After 24 

hours an additional 10 mL of supplemented mouse DC media was added to the 

culture. Five days after seeding, the cells were washed once by centrifuging the 

cell culture media at 400 xg for 6 min (these cells are non-adherent). The cells 

were then re-suspended in 20 mL supplemented mouse DC media and cultured 

for another two days. Seven days after initially seeding the bone marrow cells, the 

differentiated DCs could be used for other applications. 
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3.7 Peptide stimulation of mouse CD8+ T cells with peptide-loaded mouse 
DCs  

Bead-isolated CD8+ T cells from naïve TCRtg mice (55) were incubated for 

different lengths of time with F-MuLV CD8+ T cell peptide loaded onto mouse DCs 

in complete RPMI. DCs were loaded with 5 μg peptide (AbuAbuLAbuLTVFL) for 1 

hour at 37 °C. After loading, the DCs were washed, counted and seeded at a ratio 

of 1 DC to 5 CD8+ T cells.  

 

3.8 In vivo production of a FV stock 

To obtain a FV stock, susceptible BALB/c mice were infected intra venously (i.v.) 

with 3000 spleen focus forming units (SFFU) of FV. Nine days post infection the 

mice were sacrificed and the spleens removed. A 15 % spleen homogenate was 

prepared in PBBS with 1 mM EDTA. The homogenate was then aliquoted and 

stored at -80°C until use. 

 

3.9 Titer determination of a FV stock 

Titration of a FV stock was done by infecting Y10A mice i.v. with different amounts 

of virus stock. The spleens were removed 14 days post infection. During the 

course of FV infection, malignant cell populations develop on the surface of the 

spleen. These foci can be visualized by incubation of the whole spleens in Boulin´s 

solution which enhances the visual contrast of foci on the spleen surface. SFFUs 

can be determined by counting these foci. 

 

3.10 In vivo depletion of cell populations 

To deplete MDSCs two depletion methods were used. First, 5-Fluorouracil was 

diluted to concentration 10mg/kg per mouse in 500µl PBS and injected i.p. once, 
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four days prior sacrifice. With this method depletion of all MDSCs was performed 

(Figure 4.6).  

To deplete only gMDSCs αLy6G (Clone 1A8) was in vivo antibody was diluted 

100µg per mouse in PBS and administrated i.p. four times every third day (Figure 

4.6). 

T regulatory cells were depleted using a diphtheria toxin, mice were injected with 

DT diluted in PBS i.p. three times every third day (Figure 4.6). 

For immune checkpoint blockade in vivo antibody for αPD-L1 (10F.9G2) and Tim3 

(RMT3-23) were used. Mice were injected with 250µg αPD-L1 three times every 

third day, and with 100µg Tim3 three times every second day.  μg per i.p. injection 

was used (Figure 5.5).  

The depletion efficiency was assessed via cell specific markers using flow 

cytometry. 

 

3.11 In vivo cytotoxicity assay 

In vivo cytotoxicity assay allows determining cytotoxic function of T cells after 

MDSCs depletion during FV infection. (182) Lymphocytes were isolated from 

lymph nodes and spleens from naive mice (donor mice). Single cell suspensions 

were prepared and the cells were washed with 40 ml of PBS. Mononuclear cells 

from the spleens were separated additionally by erythrocytes lysis. Consequently, 

cells were washed twice in 50 ml of PBS. Cell suspensions from lymph nodes and 

erythrocyte lysed spleen cells were mixed and divided into equal volumes of 15 ml 

of RPMI medium into two tubes. The cells from one tube were loaded with the 

class I-restricted peptide recognized by CD8+ T cells for 1,5 h at 37°C and 

afterwards were stained with 40nM CFSE (carboxyfluorescein succinimidyl ester) 

dye for 10 min at 37°C and then for 5 min on ice (target cells, experimental). The 

second tube was incubated for 1,5 h at 37°C and stained with 7,5µM Violet Tracer  

The phenotype of these cells would be CFSE- high . The unloaded cells remained 

intact and would be separated from the target cells as CFSE-low (control cells). 
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Peptide loaded and unloaded cells were counted using Trypan blue exclusion 

microscopy and suspended in sterile PBS in the ratio 1:1. 1.0×107 cells of each 

population (per mouse) were injected intravenously (i.v.) into FV infected and 5FU 

treated mice. One hour after i.v. injection of the donor cells, recipient mice were 

sacrificed. Subsequently, in vivo killing activity was quantified in single-cell 

suspensions from the spleen, lymph nodes and bone morrow of each FV infected 

mouse. The percentage of killing was calculated as follows: 100 − {[(% of peptide 

loaded in infected cells / % of peptide unloaded in infected cells) / (% peptide 

loaded in uninfected cells / % peptide loaded in uninfected cells)] × 100}. 

 

3.12 Infectious center assay (IC assay) 

To detect the number of infectious centers of FV-infected cells, 2x104 Mus dunni 

cells in 3 ml complete RPMI were seeded into each well of a 6-well plate. The cells 

were then incubated over night at 37 °C with 5 % CO2. The following day mouse 

cell suspensions (derived from spleen of FV-infected mice) were prepared, a 10-

fold dilution series formed (starting with 1x107 cells) and 1 ml of each dilution was 

added to a single well of the 6-well plate. The plate was then incubated for three 

days under the same conditions. During this incubation period, infected cells 

spread the infection to the Mus dunni cells via cell-cell contacts. Cell division of the 

Mus dunni transfers the provirus to their daughter cells what form an infected cell 

colony. To visualize the infected cell clones, the media on the Mus dunni cells was 

discarded and the cells were fixed by incubating them with 95 % ethanol for 10 

min. The ethanol was discarded and the plates washed twice with PBS plus 0.1 % 

BSA. The cells were then incubated for 2 hours at room temperature with 600 μl of 

culture supernatant of an AB720 producing hybridoma cell line. This hybridoma 

cell line produces an antibody (AB720) which specifically binds to the env-protein 

of F-MuLV recognizing FV-infected cells. After two hours the plates were washed 

twice with PBS plus 0.1 % BSA. 600 μl of a 1:400 dilution (into PBS) of secondary 

antibody conjugated to HRP (goat-α-mouse- IgG2b-HRP (0.05 mol/l)) was added 

to the cells for 90 min. After the incubation, the antibody was discarded and the 

plates were washed twice with PBS. The cells were then incubated for 20 min in 
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the dark with 2 ml of fresh AEC substrate solution. A red precipitate is formed by 

conversion of the soluble substrate AEC in the substrate solution into an in-soluble 

precipitate catalyzed by the HRP coupled to the secondary antibody. The 

substrate solution was discarded and the plates were washed twice with H2O. 

After the plates had dried over night the red spots in each well were counted and 

calculated for 1x106 added cells. To determine the IC count per 1x106 spleen cells 

the mean off all dilutions was formed. As a control an additional plate of Mus dunni 

cells was prepared a day before the experiment. Three wells of this plate were left 

uninfected and the other three wells were infected with free F-MuLV (with 8 μg/ml 

polybrene A to facilitate virus uptake). The appearance of red dots after 

developing the assay indicated functionality.  

 

3.13 Stimulation of freshly isolated mouse cells for cytokine production 

For the intracellular staining of cytokines (like TNFα, IFNγ and IL-2), freshly 

isolated mouse cells were stimulated in vitro. The wells of a Nunc MaxiSorp 96-

well plate were coated with 50 μL purified αCD3 antibody (10 μg/ml) in sodium 

carbonate coating buffer. The coating of the plate was done for overnight at 4°C. 

After αCD3 coating, the plate was washed three times with PBS. For stimulation of 

freshly isolated mouse cells, 1x107 cells were added to each well in duplicates. 

The cells were re-suspended in complete RPMI medium supplemented with 50 μM 

β-ME, 2 μg/ml purified αCD28 and 2 μg/ml BFA and incubated for 5 hours at 37°C. 

After stimulation, the cells were transferred into new wells and stained for surface 

molecules and intracellular cytokines. For controls, a sample was left unstimulated 

but stained with intracellular antibodies and a stimulated sample did not get 

stained with the intracellular antibodies. (183) 

 

3.14 Flow cytometry 

3.14.1 Principle of flow cytometry 
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Flow cytometry is a method used for the characterization and quantification of 

heterogeneous cell populations in solution. Using fluorescence labelled antibodies 

or fluorescently tagged proteins it allows to detect surface and intracellular 

molecules. Labelled and prepared cells are then measured on a fluorescence-

activated cell sorting (FACS) machine. The main components of a FACS analyzer 

can be divided in the fluidic system, the optical system and the detection system.  

In a cell solution the cells are randomly distributed in a three dimensional space. 

To detect the fluorescence signal of labelled molecules they need to be focused in 

a stream of single cells. The fluidic system is responsible for this process, whereby 

the cell suspension is taken up by the sample injection port and then usually 

hydrodynamically focused. (184-188) 

After focusing, the cells pass through the optical system and can be analyzed. 

FACS machines are equipped with different lasers, mirrors and filters. Two initial 

parameters are acquired by all FACS analyzers: forward scatter (FSC) and side 

scatter (SSC). To measure the size of cells, light that is scattered in a forward 

direction (FSC) is used. The granularity of cells is measured by the SSC channel, 

which is the light measured at a 90° angle. Combining the information of the FSC 

and the SSC is used for a pre-selection of cell types in a heterogeneous sample 

(Figure). 
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Figure 3.1  Principle of Flow Cytometry  
Two lasers (635 and 488 nm) send light trough the sample. The light emitted by the 

sample is then isolated by different filters and sent to the different PMT detectors. The 

PMT detectors transform and enhance the optical signal into an electric signal, which can 

then be visualized in the analysis software on a computer. 

 

 

If an antibody labelled cell passes through a light beam emitted by a single laser, 

the different fluorophores sensitive to that specific wavelength of light are 

specifically excited. When the electrons in the fluorophores become excited by the 

laser light they are lifted to a higher energy level and shortly after this they fall 

back to the original energy state emitting energy in the form of photons. The 

wavelength of these released photons is longer than that of the excitation light 

source, which is part of the phenomenon known as Stoke´s shift. The emitted light 

is reflected, filtered and detected with specific sets of optical mirrors, filters and 

detectors. The mirrors reflect the light onto filters, which filter light of specific 

wavelength. Short pass or long pass filters only allow light under or above a 
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certain wavelength (respectively) to pass and band pass filters are used to filter a 

certain range of wavelengths (Figure 3.1). The emitted and filtered light is then 

detected by the detectors (usually photomultiplier tubes (PMTs)). These detectors 

measure the amount of photons and their output signal is proportional to the 

amount of antibody bound to the cell. This type of measurement allows to collect 

the necessary information about quantify and characterization of the cells within a 

sample. The optical signal is then amplified and converted into an electric signal. 

This can be visualized in the analysis software (Figure 3.1). Multicolor flow 

cytometry is made possible by using different fluorophores which emit at 

wavelengths that can be discerned from each another. In this thesis an LSR II with 

four lasers (488 nm, 633 nm, 355 nm and 405 nm) and the software FACS DiVa 

BD bioscience) and FlowJo7.6.5 (Treestar) were used for acquiring and analyzing, 

respectively. It is also possible to sort cells, for this method cells pass through the 

above described system and are immediately characterized by previously 

established parameters. For sorting, the fluidic stream is broken into droplets, 

containing a cell each. These droplets then become charged by passing through 

an electric field and may be diverted into collection tubes by plates of opposite 

polarity. 

  

 

3.14.3 Surface staining of mouse cells for flow cytometry 

For flow cytometry cell staining of mouse cells usually 3-7x106 cells per sample of 

freshly isolated mouse cells were transferred into a well of a 96-well U-bottom 

plate and washed with the addition of 100 μl FACS buffer at 300 xg for 3 min at 4 

°C. The supernatant was discarded by flicking the plate. In case of staining of 

myeloid cells FC block was added to prevent unspecific binding of antibodies. 

Prior surface staining cells were re-suspended in 50μl FC block diluted in FACS 

buffer and incubated in the dark for 15 min at room temperature. After incubation 

time an antibody mix was prepared in 50μl FACS buffer and added to the cells. 

The cells were re-suspended in the antibody mix and incubated for 15 min at room 

temperature or 20 min at 4 °C. After incubation, the cells were washed by addition 

of 100 μl FACS buffer per well and spun at 300 xg for 3 min. The cells were then 



    Methods 

 
 

45 
 

either re-suspended in FACS buffer for further processing or directly transferred 

into FACS tubes for measurement on the LSRII or fixed as described below.  

3.14.4 Fixation of mouse cells 

Depending on the performed intracellular stain, the cells were either fixed with 

Cytofix/Cytoperm from BD or with the Foxp3 staining set from eBioscience. If only 

cytoplasmic molecules were to be stained, the Cytofix/Cytoperm kit was used. For 

this the cells were re-suspended in 100 μl fixing buffer and incubated for 10 min at 

room temperature. Next the cells were washed with 100 μl of Cytofix/Cytoperm 

wash buffer, centrifuged at 540 xg for 4 min and stained for intracellular molecules. 

If nuclear molecules were to be stained, the Foxp3 staining set was used. The 

cells were re-suspended in 100 μL Foxp3 Fix/Perm fixing solution which was 

prepared according to the manufacturer’s instructions (1:4 of Foxp3 Fix/Perm 

concentrate into diluent). The cells were left to fix for 2 to 4 hours at 4 °C. To stop 

the reaction 100 μl Foxp3 Fix/Perm wash buffer was added to each well and the 

cells were centrifuged at 540 xg for 4 min at 4°C and stained for intracellular 

molecules. The cells were then subsequently washed with the addition of FACS 

buffer and centrifuged at 540 xg for 4 min. Subsequently the cells were re-

suspended in FACS buffer for this application and measured immediately on the 

LSRII. 

 

3.14.5 Intracellular stain of mouse cells 

For intracellular staining, an antibody mix was prepared in 50 μl of either 

Cytofix/Cytoperm wash buffer or Fix/Perm wash buffer (Foxp3 staining set). The 

cells were re-suspended in the antibody mix and stained for 30 min at 4 °C and, 

after addition of 100 μl of the appropriate buffer, centrifuged at 540 xg for 4 min. 

The cells were re-suspended in FACS buffer and transferred into FACS tubes for 

measurement on the LSRII.  
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3.14.6 Tetramer class I stain 

A method to detect small populations of virus-specific CD8+ T cells is by the use of 

specific tetramers. T cell receptors (TCRs) recognize and bind to complexes which 

are expressed on APCs composed by MHC molecules and peptides with specific 

sequences processed by APC (MHC/peptide complexes). Monomeric 

MHC/peptide complexes were shown low affinity to the TCR and instability. To 

overthrow these difficulties MHC/peptide monomers are biotinylated and 

tetramerized with streptavidin to maintain stable binding to multiple TCR, enabling 

MHC/peptide tetramers to be used as a detection tool. MHC class I tetramers 

consist of four peptide- MHC class I complexes, which are linked by biotin-

streptavidin. The complex may be detected via conjugated fluorophores in a flow 

cytometer. The peptide used to build the tetramer complex is only bound by the 

TCR of specific CD8+ T cells in combination with the MHC class I (2, 36). A 

schematic of the MHC class I are shown in Figure 3.2. The tetramer class I stain 

was done as described for the extracellular flow stain with a dilution of 1:200. The 

tetramer class I stain was also proof to fixation with Cytofix/Cytoperm. 
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Figure 3.2 Schematic organization of MHC class I tetramer. 
MHC class I tetramers consist of four MHC class I molecules, linked via biotin (B) 

to a streptavidin (SA) on the fluorophore (in this case PE). The MHC complexes 

are loaded with a specific peptide. (36) 

 

3.14.7 Gating strategy for murine MDSCs 

To gate murine MDSCs a special strategy was utilized. MDSCs share different 

markers with different cell populations, therefore careful gating is necessary. To 

guarantee that only MDSCs were considered the following gating strategies for 

flow cytometric analysis ware used. 
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Figure 3.3 Gating strategy for murine MDSCs. To gate murine MDSCs firstly (A) 

lymphocytes, (B) singlets. Further dead and lineage (CD19, CD3, NK1.1) cells  

were excluded (C). CD11b+ cells were identified (D). MDSCs were characterized 

with help of Ly6C and Ly6G (E). In experiments with combinational therapy 

MDSCs were characterized as Gr1high and Gr1low cells and co-expression of 

CD11b+. 

 

3.14.8 Exclusion of dead cells in flow cytometry  

The exclusion of dead cells and cellular debris in flow cytometry was performed 

using the dye propidium iodide (PI) or fixable viability dye (FVD). In healthy cells, 

the cell membrane prevents access of PI to DNA. However, in damaged, apoptotic 

or dead cells, the membrane is not intact and unable to play its preventing 

function, allowing rapid PI access into the cell nucleus and DNA with which it 

interacts. This dye is useful for the DNA analysis and the dead cell exclusion 

during flow cytometric analysis. 0,5 μl of PI was added to the stained cells in 300 

μl FACS buffer to the sample and immediately analyzed.  
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Discrimination of dead cells in intracellular staining was performed with help of 

Fixable Viability Dye (FVD). FVD is a viability dye that can be used to label dead 

cells prior to fixation and/or permeabilization procedures. FVD stain is based on 

the reaction of a fluorescent reactive dye with cellular proteins (amines). These 

dyes cannot penetrate live cell membranes, so only cell surface proteins are 

available to react with the dye, resulting in dim staining. The reactive dye can 

infuse the damaged membranes of dead cells and stain both the interior and 

exterior amines, resulting more intense staining. FVD eF780 was added in amount 

of 1 μl per 1 mL of cells together with the surface staining antibodies.  

 

3.15 Cell isolation with the MACS technology 

For the isolation of mouse CD8+ T cells mouse CD8α (Ly-2) MicroBeads were 

used. (190) Using these beads CD8+ T cells are directly labelled. In general, the 

cells were counted and re-suspended in MACS buffer (90 μL buffer per 1x107 

cells) and the CD8α MicroBeads were added (10 μl beads per 1x107 cells). The 

mix was incubated for 20 min at 4 °C in the dark and subsequently re-suspended 

in 10-20 times the labelling volume of MACS buffer and centrifuged for 10 min at 

300 xg. Finally, the supernatant was carefully discarded and the cells were re-

suspended in up to 500 μL MACS buffer per 1x107 cells. To protect from clogging 

the cells were passed through a 30 μm cell strainer before applying to the MACS 

columns. The cells were then applied on the column connected to magnetic field. 

After washing the column remained cells were flushed with 5 ml MACS buffer. 

After enrichment the cells were centrifuged, counted and processed for the further 

application.  

 

For the isolation of mouse MDSCs mouse Myeloid Derived Suppressor Cells 

Isolation Kit was used (191) with a pre-isolation of CD19 cells (192). For pre-

isolation of mouse CD19- T cells mouse CD19 MicroBeads were used. Using 

these beads CD19+ T cells are directly labelled. In general, the cells were counted 

and re-suspended in MACS buffer (90 μL buffer per 1x107 cells) and the CD19α 
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MicroBeads were added (10 μl beads per 1x107 cells). The mix was incubated for 

15 min at 4 °C in the dark and subsequently re-suspended in 10-20 times the 

labelling volume of MACS buffer and centrifuged for 10 min at 300 xg. Finally, the 

supernatant was carefully discarded and the cells were re-suspended in up to 500 

μL MACS buffer per 1x108 cells. To protect from clogging the cells were passed 

through a 30 μm cell strainer before applying to the MACS columns. The cells 

were then applied on the column connected to magnetic field. After washing the 

column, passed through cells were collected, centrifuged, counted and processed 

for the further MDSCs isolation.  

In general, the cells then re-suspended in MACS buffer (350 µl buffer per 1 x 108) 

and the FC Block was added (50µl per 1x108). The mix was incubated for 10 

minutes at 4°C. After incubation, 100µl of biotin-conjugated αLy6G antibody was 

added, and the cells incubated for a further 10 min at 4°C. Cells were washed by 

adding 10 ml of buffer and centrifuged at 300 xg for 10 min at 4°C. The cells were 

re-suspended in 800µl of buffer per 1 x 108 and 200µl of anti-biotin MicroBeads 

was added, mixed well, and incubated for 15 min at 4°C. Cells were washed by 

adding 10ml of buffer and centrifuged at 300 xg at 4°C. The cell pellet was re-

suspended in 500µl of buffer, and magnetic separation was performed to positively 

isolate Gr1high Ly6G+. To protect from clogging the cells were passed through a 30 

μm cell strainer before applying to the MACS columns. The cells were then applied 

on the column connected to magnetic field. After washing the column remained 

cells were flushed with 5 ml MACS buffer. After enrichment the cells were 

centrifuged, counted and processed for the further application 

Negatively isolated, Ly6G- cells were centrifuged 300 xg for 10 min at 4°C. The 

pellet was re-suspended in 400µl of buffer per 1x108 cells and 100µl of biotin-

conjugated αGr1 antibody was added, mixed well and incubated for 10 minutes at 

4°C. Cells were washed by adding 10ml of buffer and centrifuged at 300 xg at 4°C 

for 10 minutes. The cell pellet was re-suspended in 900µl of buffer per 1x108 and 

100µl of streptavidin-conjugated MicroBeads was added, mixed well and 

incubated for 15 minutes at 4°C. Cells were washed by adding 10ml of buffer and 

centrifuged at 300 xg at 4°C. The cell pellet was re-suspended in 500µl of buffer 

and magnetic separation was performed to positively isolate Gr1low Ly6G-. To 
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protect from clogging the cells were passed through a 30 μm cell strainer before 

applying to the MACS columns. Cells were then applied on the column connected 

to magnetic field. After washing the column remained cells were flushed with 5 ml 

MACS buffer. After the enrichment the cells were centrifuged, counted and 

processed for further application 

 

3.16 In vitro suppression assay 

Bead-isolated CD8+ T cells from naïve TCRtg mice (55) were incubated for the 

different lengths of time with F-MuLV CD8+ T cell peptide loaded onto mouse DCs 

in complete RPMI medium. The DCs were loaded with 5 μg peptide 

(AbuAbuLAbuLTVFL) for 1 hour at 37 °C. After loading, the DCs were washed, 

counted and seeded at a ratio of 1 DC to 5 CD8+ T cells. Additionally, bead-

isolated gMDSCs or mMDSCs from B6, PD-L1 KO or CD39 KO mice were 

isolated, stained with Violet Tracer dye for 20 min at 37°C followed by 

manufacturer’s instructions, and added to this setup at different concentrations. 

The cells were incubated for 3 days at 37°C with 5 % CO2. After 3 days the cells 

were harvest, stained for surface and intracellular molecules, and proliferation of 

live CD8+ cells was analyzed. The cells were re-suspended in FACS buffer and 

transferred into FACS tubes for the measurement on the LSRII.  

Additionally, for experiments that examined the effect of NO and arginase, 

described above assay was used for the characterization of gMDSCs functions in 

vitro with use of inhibitors. Besides bead-isolated CD8+ T cells from naïve TCRtg 

mice, peptide loaded DCs and Violet Tracer stained gMDSCs an arginase inhibitor 

(0.5 mM) nor-NOHA (NW-hydroxyl-nor-L-arginine) and NO inhibitor (0.5 mM) L-

NMMA were added at the beginning of the culture (193). 

 

3.17 Statistical analyses  

Statistical analyses and graphical presentations were computed with Graph Pad 

Prism version 5. Statistical differences (p-value) between two groups were 
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performed using unpaired t test. Statistical differences (p-value) between the 

different parameters were performed testing with the one-way ANOVA analysis 

with Bonferroni multiple comparison post analysis. The p-value is a probability with 

a value ranging from zero to one.  

https://en.wikipedia.org/wiki/Bonferroni_correction
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4. Results 

 

4.1 Myeloid derived suppressor cells expand during FV infection  

Myeloid derived suppressor cells (MDSCs) were shown to play a role in the 

suppression of immune responses not only in cancer, but also in various infectious 

diseases, such as LCMV, HCV, HBV and HIV. However their exact role in 

retroviral infections is still elusive (45-47). 

In order to characterize MDSCs during FV infection, B6 mice were infected and 

the kinetics of the MDSC response was determined. The numbers of both 

monocytic (mMDSC, Ly6G- Ly6Chigh) and granulocytic (gMDSC, Ly6Ghigh Ly6Clow) 

MDSCs were analyzed at different time points in the spleen of FV infected mice 

(Figure 4.1). mMDSCs were detectible in naïve mice and their frequency was 

about three thousand mMDSCc per one million nucleated splenocytes. This 

number of MDSCs was stable during early FV infection until day 10. At day 12 and 

14 after infection, the population of mMDSCs expanded significantly. The 

expansion of mMDSCs peaked on day 14 post infection in the spleen (Figure 4.1 

A), and the frequency of these cells reached more than 6 000 per one million 

spleen cells. gMDSC numbers also peaked on day 14 post infection, reaching 6 

000 per one million spleneocytes (Figure 4.1 B). During the chronic phase of FV 

infection, both numbers of granulocytic and monocytic MDSC were only slightly 

elevated in comparison to non-infected mice (Figure 4.1). These data indicate that 

the populations of mMDSCs and gMDSCs expanded at day 14 after FV infection, 

a time point that is concomitant with the reduction in virus-specific effector CD8+ T 

cell responses (77).  
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Figure 4.1 Kinetics of the mMDSC and gMDSC response during acute FV infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV or left un-infected, and MDSC 

numbers were measured using flow cytometry. Total spleen cells were analyzed at 

various time points post infection. (A) The numbers of Ly6Ghigh Ly6Clow and Ly6G- Ly6Chigh 

per 1x106 live splenocytes are displayed. At least 7 mice per group from five independent 

experiments were analyzed. Bars represent SEM of the mean. For statistical analysis an 

ANOVA multiple comparison test was carried out with the group of naïve mice as 

reference (* < 0.05, **, *** < 0.0005). 

 

Next, it was of interest whether FV can infect MDSCs. During the course of 

infection, FV infects erythroblasts, B cells, and myeloid cells. To determine 

infected MDSCs, AK720, an antibody which binds to MuLV-env gp70, was used. 

gp70+ MDSCs were found in both the monocytic and the granulocytic 

subpopulation of MDSCs at 7 days post infection (Figure 4.2 B). More mMDSCs 

than gMDSC were infected at this time point. However, while most infected 

mMDSCs subsequently disappeared from the spleen, infected gMDSCs were still 

detectable at 14 days post infection. Thus, MDSCs can be targets for FV infection.  
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Figure 4.2 Kinetics of mMDSCs and gMDSCs infection during acute FV infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV or left un-infected, and MDSC 

numbers were measured in the spleen at various time points post infection using flow 

cytometry. (A) The numbers of gp70+ Ly6Ghigh Ly6Clow and Ly6G- Ly6Chigh per 1x106 live 

cells in the spleen are displayed. At least five mice per group from 4 independent 

experiments were analysed. Bars represent the mean with SEM. 

 

4.2 Upregulation of molecules associated with activation and effector 
functions on gMDSCs and mMDSCs during acute FV infection 

It was previously shown that functional MDSCs express different molecules that 

were associated with the suppressive activity of these cells (45-47). PD-L1, CD80, 

NOS2 and Arg1 expression on both MDSCs populations were analyzed at the 

peak of MDSC expansion, which was day 14. PD-L1 (Program death–ligand 1) is 

a molecule expressed on a variety of cells, mostly antigen presenting cells. 

Through interaction with its receptor PD-1, PD-L1 suppresses responses of T 

lymphocytes. In various studies, PD-L1 was shown to be expressed on MDSC and 

was associated with MDSC activation (72).  

CD80, which is also expressed on various cells, such as B cells and monocytes, is 

a member of the B7 family and is a co-stimulatory molecule of T cell activation. It 

is a ligand for two receptors: CTLA-4 and CD28. While CD28 induces T cell 

activation, CTLA-4 mediates T cell suppression (72). 
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Figure 4.3 Expression of CD80 and PD-L1 molecules on the MDSCs during acute FV 
infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV or left un-infected, and the expression 

of PD-L1 and CD80 on the surface of MDSCs was measured using flow cytometry on day 

14 post infection. (A) Representative histograms and (B) frequencies of CD80 and PD-

L1high expression on the surface of Ly6Ghigh Ly6Clow and Ly6G- Ly6Chigh cells in the spleen 

at 14 dpi are displayed. At least five mice per group from three independent experiments 

were analyzed. Bars represent the mean with SEM. For statistical analysis, a student t 

test was carried out with the group of naïve mice as a reference. (* < 0.05, ** < 0.005). 

 

 

5% of the naïve mMDSCs were PD-L1high (Figure 4.3 A), and up to 30% of the 

naïve gMDSCs (Figure 4.3 C) expressed high levels of this molecule (Figure 4.3 A 

and C). During FV infection, frequencies of the PD-L1high gMDSCs increased four 

times up to 20% (Figure 4.3 C). 70% of mMDSC expressed PD-L1high on the cell 

surface, increasing 2.5 times compared to naïve mice (Figure 4.3 A). 

Approximately 10% of the mMDSCs and 20% of the gMDSCs from naïve mice 

expressed CD80 (Figure 4.3 B and D). Upon infection a mean of 25% of the 

mMDSCs and 43% of the gMDSCs expressed CD80 (Figure 4.3 D). These data 
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demonstrate that the percentages of PD-L1high and CD80+ of MDSCs increased 

during FV infection and suggest that MDSCs become active upon FV infection. 

Adenosine metabolism was shown to play an important role in many processes 

involved in homeostasis and immune regulation of T cells. CD39 (Ectonucleoside 

triphosphate diphosphohydrolase-1) is an enzyme involved in the conversion of 

ATP (Adenosine triphosphate) to ADP (Adenosine diphosphate) and AMP 

(Adenosine monophosphate), which is further metabolized by CD73 (Ecto-

5’nucleotidase) to adenosine. Both of these enzymes were shown to be involved in 

Treg mediated suppression of effector T cell responses (40).  

To further characterize MDSCs during FV infection, the CD39 and CD73 

expression, both involved in the adenosine metabolism, were analyzed. 15% of 

the naïve mMDSCs were positive for CD39, and upon infection this frequencies 

did not change. Percentages of CD39+ gMDSC from both naïve and FV infected 

mice reached 70% (Figure 4.4 A), with no difference between the distinct groups. 

Only 7% of the mMDSCs from naïve or infected mice expressed CD73, with no 

influence of the infection. 20-30% of the gMDSCs were positive for CD73 in both 

naïve and FV infected animals (Figure 4.4 B). According to this observation, the 

adenosine mechanism of immune regulation was not induced by FV infection. 
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Figure 4.4 Expression levels of CD39 and CD73 on MDSCs during acute FV 
infection. B6 mice were infected i.v. with 20 000 SFFU of FV or left un-infected, and the 

expression of CD39 and CD73 on MDSCs was measured using flow cytometry at day 14 

post infection.  Frequencies of (A) CD39 and (B) CD73 expressing Ly6Ghigh Ly6Clow and 

Ly6G- Ly6Chigh cells in the spleen are displayed. At least five mice per group from three 

independent experiments were analyzed. Bars represent the mean with SEM. For 

statistical analysis, a student t test was carried out. 

 

 

In order to investigate the function of MDSCs, it was of interest to identify whether 

the main known mechanisms of MDSCs’ mediated suppression were induced 

during acute FV infection. Arg1 was of special interest, which is an enzyme 

converting ι-arginine to urea and ι-ornithine, and NOS2, an enzyme further 

synthetizing nitric oxide (NO) and ι-citrulline (13).  

Naïve animals did not express high levels of intracellular NOS2 on MDSCs. 

However, after infection up to 15% of all mMDSCs started to express NOS2. In the 

granulocytic subset, NOS2 expression was at the same frequency as in naïve 

animals (1-1.5%) (Figure 4.5 A). Arg1 was expressed in 2-5% of gMDSCs and 

mMDSCs from naïve mice but increase to around 10% post infection (Figure 4.5 

B).   

Summarizing the phenotypic data, it can be postulated that MDSCs become 

activated during FV infection. Elevated expression of PD-L1high and CD80 may be 

associated with this activation. The expression of CD39 and CD73 on the cell 

surface of MDSCs did not change during infection. Possible mechanisms of 

mMDSC function may include nitric oxide metabolism and ι-arginine conversion by 

Arg1 
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Figure 4.5 Expression levels of Arg1 and NOS2 in MDSCs are upregulated during 
acute FV infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV or left un-infected and the expression 

of Arg1 and NOS2 in the MDSCs was measured using flow cytometry for spleen cells at 

day 14 post infection. Frequencies of (A) NOS2 and (B) Arg1 expressing Ly6Ghigh Ly6Clow 

and Ly6G- Ly6Chigh cells in spleen are displayed. At least five mice per group from three 

independent experiments were analyzed. Bars represent the mean with SEM. For 

statistical analysis, a student t test was carried out with the group of naïve mice as a 

reference (* < 0.05, ** < 0.005). 

 

 

4.3 5FU and αLy6G selectively deplete MDSCs 

 

After characterizing the MDSC expansion and activation it was of interest to 

confirm the suppressive role of MDSCs in vivo during an ongoing FV infection. 
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Different methods to eliminate, block or suppress MDSCs have already been 

described, including antibody treatment (αGr1, αLy6G), directly acting drugs (5-

Fluorouracil (5FU), Silendafil, doxorubicine) and drugs, which were described to 

maturate MDSCs (ATRA, CpG) (44, 50).    

In order to investigate the role of MDSCs during FV infection in living mice either 

gMDSCs or both the gMDSC and mMDSC population were depleted. By single 

administration of 5FU four days prior to sacrificing the mice on day 14 post 

infection, both MDSC populations were depleted, with an efficacy of 91% (Figure 

4.6 C). The pyrimidine analog 5FU is a cytostatic drug with MDSCs specific 

cytotoxicity. 
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Figure 4.6 Schematic of the MDSC depletion during acute FV infection in the spleen.  
B6 mice were infected i.v. with 20 000 SFFU of FV, and/or treated with 5FU or αLy6G. 

Experimental design of the MDSC depletion by administration of (A) 5FU or (B) αLy6G. 

(C) Representative dotplots of MDSC during FV infection after administration of 5FU, 

αLy6G or untreated.  

The second approach, the i.p. administration of αLy6G antibody, selectively 

depleted only gMDSCs, with a depletion efficiency of 98% (Figure 4.6 C).  αLy6G 
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antibody was administered four times every third day and organs were harvest at 

day 14 post infection.  

 

4.3.1 Depletion of MDSCs leads to a reduction in FV loads and an increase of 
cytotoxic CD8+ T cells 

 

The depletion of MDSCs was first shown in cancer models and led to a reduction 

of tumor size and activation of different immune cell subsets, primarily T cells. 

Therefore, it was of interest to investigate the influence of MDSC depletion on 

acute retroviral infection.   

The main question after the depletion of MDSCs appeared to be whether the 

reduction of these cells has an effect on viral loads and on different immune cell 

subsets. First, an Infectious center assay was performed in order to analyses the 

viral loads. After depletion of total MDSCs with 5FU (gMDSCs and mMDSCs), a 

up to 10 fold reduction in viral loads per million cells was observed. After the 

depletion of only gMDSCs a slight and not significant reduction of viral loads was 

observed (Figure 4.7 A). Replication of FV is normally associated with a mild 

splenomegaly in C57/Bl6 mice. The depletion of all MDSCs resulted in diminished 

spleen weights after administration of 5FU. The depletion of only gMDSCs with 

αLy6G antibodies likewise diminished spleen sizes (Figure 4.7B). These data 

suggest that MDSC influence numbers of FV-infected cells in vivo. 



Results 

 
 

63 
 

 

Figure 4.7 Depletion of MDSCs leads to a reduction in viral loads during acute FV 
infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV, and/or treated with 5FU and/or 

αLy6G, and viral loads as well as spleen weight were estimated at day 14 post infection. 

(A) The numbers of infected cells per 1x106 cells in spleen are displayed. (B) Spleen 

weights were assessed. At least five mice per group from three independent experiments 

were analyzed. Bars represent the mean with SEM. For statistical analysis an ANOVA 

multiple comparison test was carried out (* < 0.05, *** < 0.0005). 

 

Previous data show that the elimination of MDSCs led to a reduced number of 

infected cells. CD8+ T cells were shown to play a major role in the control of acute 

FV infection and reduction of viral loads during the acute phase of FV Infection 

(82). Interestingly, the contraction phase of the CD8+ T cell response at day 12 

post infection correlated with the expansion of MDSCs (77). Thus it was of interest 

whether the population of effector CD8+ T cells was influenced by MDSCs. CD43+, 

a sialoglycoprotein, expressed on the cell surface of a variety of hematopoietically 

derived cells, including T lymphocytes, is a part of the receptor-ligand complex, 

required for T cell activation (52-53). Naïve CD8+ cells do not express CD43+, but 

CD43+ becomes highly up-regulated on antigen specific effector CD8+ T cells 

(58).  Interestingly, after the depletion of all MDSCs, the frequency of CD43+ CD8+ 

T cells increased significantly, reaching levels of 20 000 CD43+CD8+ cells per one 

million spleen cells in comparison to 10 000 activated CD8+ cells per million in only 
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FV-infected mice (Figure 4.8A). After the depletion using αLy6G antibodies, higher 

frequencies of activated CD8+ T cells were observed, reaching 18 000 activated 

CD8+ T cells per one million cells. These results suggest that the depletion of 

MDSCs and the following reduction in viral loads during acute FV infection may be 

a result of an improved expansion CD8+ T cell response. 

 

Figure 4.8 Depletion of MDSC leads to an expansion of effector CD8+ T cells during 
acute FV infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV and/or treated with 5FU and/or αLy6G 

or left un-infected and CD8+ numbers were measured using flow cytometry for spleen 

cells at 14 days post infection. (A) The numbers of CD43+ of live CD8+ per 1x106 live cells 

in spleen are displayed. (B) The numbers of FV-DbgagL class I tetramers of live 

CD8+CD43+ cells in spleen are displayed. At least five mice per group from three 

independent experiments were analyzed. Bars represent the mean with SEM. For 

statistical analysis an ANOVA multiple comparison test was carried out (* < 0.05). 

 

Next, it was of interest whether the expanded population of CD8+ T cells was 

specific for the immunodominant epitope of Friend virus. With the use of FV-

DbgagL class I tetramers it was possible to assess that the administration of 5FU 

did not result in increased percentages of virus-specific effector CD8+ T cells. 

However, the depletion with αLy6G antibodies significantly increased the 
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frequency of tetramer+ CD8+ cells. These data imply that antibody mediated 

gMDSCs depletion leads to an expansion of virus-specific CD8+ T cells, but the 

administration of 5FU was more associated with polyclonal expansion of CD8+ 

effector cells.   

 

 
 
Figure 4.9 Increased proliferation of CD8+ T cells after MDSC depletion during acute 
FV infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV and/or treated with 5FU and/or αLy6G 

or left un-infected, and the CD8+ numbers were measured using flow cytometry for spleen 

cells at 14 days post infection. The numbers of Ki67+ of live CD43+CD8+ per 1x106 live 

cells in spleen are displayed. At least five mice per group from three independent 

experiments were analyzed. Bars represent the mean with SEM. For statistical analysis 

an ANOVA multiple comparison test was carried out ( *** < 0.0005). 

 

Ki67 is a nuclear protein involved in cell proliferation (18). To characterize the 

proliferation of the CD8+ T cell population upon MDSC depletion, the intranuclear 

expression of Ki67 was analyzed. During the 5FU administration almost 2000 

CD43+ CD8+ cells per million proliferated compared to the infected only group, in 

which 1300 cells were positive for Ki67+. In gMDSC depleted mice, 1600 activated 

CD8+ T cells were proliferating, however this difference was not significant (Figure 
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4.9). Thus, the depletion of MDSCs may lead to an increased proliferation of CD8+ 

cells.  

 

IL-2, IFNγ and TNFα are three cytokines produced by activated functional CD8+ T 

cells. Therefore, the cytokine profile of the CD8+ T cell population was analyzed 

after MDSC depletion. IFNγ is a very important cytokine in both the innate and the 

adaptive immune response. The main functions are the activation of macrophages 

and induction of MHC class II expression. TNFα shows a strong pro-inflammatory 

capacity with direct lytic effects on tumor cells. IL-2 stimulates the T and B cell 

proliferation, induces cytotoxicity of macrophages, and induces cytokine 

production. Expression of TNFα, INFγ and IL-2 in activated CD8+ cells after 

intracellular cytokine staining was analyzed. During FV infection around 15% of 

the CD8+ T cells expressed TNFα or IFNγ. IL-2 expression was lower at around 

8%. Depletion of total MDSCs (5FU) resulted in significant increases in the 

percentages of TNFα (up to 27%), IFNγ (up to 28%), and IL-2 (up to 15%) 

producing CD8+ T cells (Figure 4.10 A-B). In contrast, gMDSC depletion (αLy6G 

antibody) did not influence cytokine responses of CD8+ T cells. The depletion of total 

MDSCs but not gMDSCs resulted in an increased functionality of CD8+ T cells in 

terms of cytokine production.   
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Figure 4.10 Upregulation of proinflammatory cytokine expression by CD8+ T cells 
after MDSC depletion during acute FV infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV and/or treated with 5FU and/or αLy6G 

or left un-infected, and CD8+ numbers were measured using flow cytometry for spleen 

cells 14 days post infection. The frequencies of (A) TNFα, (B) IFNγ and (B) IL-2 of live 

CD8+ in spleen are displayed. At least five mice per group from three independent 

experiments were analyzed. Bars represent the mean with SEM. For statistical analysis, 

an ANOVA multiple comparison test was carried out with a group of naïve mice as 

reference (* < 0.05). 

 

 

Virus-specific CD8+ T cells kill FV-infected cells by releasing cytotoxic granules. 

The main cytotoxic effector molecule stored in the granule of cytotoxic CD8+ T 

cells is Granzyme B (GzmB). To further characterize effector CD8+ T cells after 

MDSC depletion, a closer look was taken at the GzmB expression by these cells. 

After depletion of the total MDSC population, the frequency of GzmB+ activated 

CD8+ T cells was almost twice as high as in the infected only group. Specific 

gMDSC depletion showed a slight, however not significant, increase in GzmB+ 

cells compared to the infected only group (Figure 4.11). Thus, only depletion of 

total MDSCs resulted in an increased cytotoxicity of CD8+ T cells. 
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Figure 4.11 Increased production of granzyme B by CD8+ T cells after MDSC 
depletion during acute FV infection.  
B6 mice were infected i.v. with 20 000 SFFU of FV and/or treated with 5FU or αLy6G or 

left un-infected, and CD8+ numbers were measured using flow cytometry for spleen cells 

at 14 days post infection. The numbers of GzmB+ of live CD43+CD8+ cells in spleen are 

displayed. At least five mice per group from three independent experiments were 

analyzed. Bars represent the mean with SEM. For statistical analysis, an ANOVA multiple 

comparison test was carried out with the group of naïve mice as reference (*** < 0.0005). 

 

To analyze whether MDSCs have an influence on CD8+ T cell killing, an in vivo 

cytotoxicity assay was performed. B6 mice were infected with FV and depleted for 

MDSCs with 5FU. On day 14 post infection all groups of mice received 

lymphocytes from naïve donor mice that were loaded with a MHC class I-

restricted, FV-specific CD8+ T cell epitope peptide and labelled with CFSE. One 

hour after i.v. injection of target cells, mice were sacrificed and the in vivo killing 

activity was quantified. It was not possible to detect any differences in the in vivo 

killing between infected and the infected MDSC depleted mice in any of the 

analyzed organs. Thus, depletion of total MDSCs did not significantly improve 

CD8+ T cells killing target cells during FV infection (Figure 4.12). 

 

Figure 4.12 Depletion of total MDSCs did not affect in vivo cytotoxicity of CD8+ T 
cells. Spleen cells from donor naïve mice were isolated and loaded with a MHC class I-

restricted FV-specific CD8+ T cell epitope peptide labelled with CFSE and injected i.v. into 

FV-infected B6 mice. Mice were treated with 5FU or left untreated One hour after i.v. 

injection of CFSE targets, mice were sacrificed and the in vivo killing activity was 
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quantified in single-cell suspensions from the spleen, lymph nodes and bone marrow. At 

least two independent experiments were analyzed.  
 

 

 

4.4 gMDSC suppress CD8+ T cell responses in vitro  

 

After characterizing MDSCs during Friend Virus infection, it was of interest to 

analyze the suppressive activity and effector mechanisms of MDSCs in an in vitro 

model.  

To achieve this goal, a CD8+ T cell proliferation assay was performed. Bone 

marrow derived dendritic cells were incubated with Violet Cell tracer labeled virus-

specific CD8+ T cells isolated from DbGagL TCR transgenic mice, of which more 

than 90% of the CD8+ T cells contained a TCR specific for the DbGagL FV epitope 

(73). The DCs were loaded with the DbGagL epitope peptide to induce virus-

specific proliferation of the CD8+ T cells. mMDSCs and gMDSCs were isolated 

from FV-infected mice and added in different cell numbers in order to determine 

the effect of these cells on the CD8+ T cell response. After 3 days, CD8+ T cell 

proliferation and GzmB expression was analyzed. At this time point an average of 

90% of the CD8+ T cells in the culture had undergone at least one cell division. 

Interestingly, this CD8+ T cell proliferation was only suppressed by gMDSCs, but 

not by mMDSCs (Figure 4.13). The suppression by gMDSCs was cell number 

dependent and a 4.5 fold reduction of proliferation was found at an effector target 

ratio of 1:10. At this ratio no significant effect of mMDSCs on the proliferation of 

FV-specific CD8+ T cell was found.  
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Figure 4.13 Granulocytic myeloid derived suppressor cells inhibited CD8+ T cell 
proliferation.  
CD8+ T cells isolated from DbGagL TCR transgene mice were incubated with dendritic 

cells loaded with MHC class I-restricted FV-specific CD8+ T cell epitope peptide and co-

incubated with either gMDSCs or mMDSCs. (A) Representative histograms and (C) 

percentages of CD8+ T cells after co-incubation with or without either gMDSC or mMDSCs 

from FV-infected mice are shown. (B) CD8+ T cell proliferation was measured after co-

incubation with different effector target rations of gMDSCs. CD8+ T cells incubated with 

peptide loaded DC serve as a positive control, CD8+ T cells incubated with non-loaded DC 

serve as negative control. At least three independent experiments were analyzed. Bars 

represent the mean with SEM. For statistical analysis, an ANOVA multiple comparison 

test was carried out with the group of naïve mice as a reference (** < 0.005). 

 

Additionally, the GzmB expression of activated CD8+ T cells was measured. An 

average of 90% of all CD8+ T cells in the cultures produced GzmB. This 

expression of GzmB was also diminished by gMDSCs, but not by mMDSCs co-
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incubation (Figure 4.14). An effector target ratio of 1:10 gMDSCs reduced the 

percentage of GzmB+ CD8+ T cells to a mean of below 20% which corresponds 

with the previously obtained results on the suppression of proliferation (Figure 

4.12).  

 

 
Figure 4.14 Granulocytic myeloid derived suppressor cells inhibited GzmB 
production by CD8+ T cells.  
CD8+ T cells isolated from DbGagL TCR transgene mice were incubated with dendritic 

cells loaded with MHC class I-restricted FV-specific CD8+ T cell epitope peptide and co-

incubated with either gMDSCs or mMDSCs. Frequencies of GzmB expressing 

CD43+CD8+ cells after incubation of CD8+ cells with gMDSCs or mMDSCs from FV-

infected mice are shown. Bars represent the mean with SEM. For statistical analysis, an 

ANOVA multiple comparison test was carried out (*** < 0.0005). The experiment was 

repeated five times with comparable results. 
 

These data suggest that gMDSC but not mMDSCs from FV-infected mice were 

able to suppress virus specific CD8+ T cell responses in vitro.  

 

4.4.1 gMDSC suppression of CD8+ T cells was blocked by arginase or NO 
inhibition  
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Different mechanisms of MDSC suppression were described, among them the 

pathways of L-arginine metabolism. There are two enzymes essential for this 

process. Arg1 converts ι-arginine to urea and ι-ornithine. This is followed by 

NOS2, which metabolizes substrates to nitric oxide (NO) and ι-citrulline (13). 

These two enzymes play an important role in ι-arginine metabolism.. As shown 

above, during FV infection, the expression of Arg1 in gMDSCs increased but the 

expression of NOS2 on gMDSCs was not altered (Figure 4.4). mMDSC expression 

of both Arg1 and NOS2 was augmented during FV infection (Figure 4.4). 

In order to investigate whether CD8+ T cell suppression is arginase or NO 

dependent, the previously described proliferation assay was used. Additionally, 

nor-NOHA, which is a pan arginase inhibitor, or L-NMMA, a pan NO inhibitor, were 

used. After administration of the arginase inhibitor, we observed an approximately 

2.5 times higher percentage of proliferating CD8+ T cells in the presence of 

gMDSCs in comparison to the untreated control. Administration of the NO inhibitor 

led to an almost 3 times higher percentage of proliferating CD8+ T cells compared 

to the untreated group.(Figure 4.15). These data suggest that ι-arginine 

metabolism is at least one mechanism of gMDSCs mediated suppression of T cell 

proliferation in vitro.  

 

 



Results 

 
 

73 
 

Figure 4.15 Suppression of nitric oxide and arginase partially restored CD8+ T cell 
proliferation.  
CD8+ T cells isolated from DbGagL TCR transgenic mice were incubated with dendritic 

cells loaded with MHC class I-restricted FV-specific CD8+ T cell epitope peptide and co-

incubated with gMDSCs with or without addition of L-NMMA or nor-NOHA. (A) 

Representative histograms and (B) percentages of CD8+ T cell proliferation after co-

incubation with or without gMDSCs in the presence or absence of L-NMMA/nor-NOHA are 

shown. At least three independent experiments were analyzed. Bars represent the mean 

with SEM. For statistical analysis, an ANOVA multiple comparison test was carried out (*** 

< 0.0005). 

 

 

4.4.2 gMDSC suppression of CD8 T cells was partially abrogated when 
MDSC lacked PD-L1 

 

PD-1 (Programmed cell death receptor-1) is a well-characterized receptor involved 

in the suppression of immune response of virus-specific T cells (42). By binding 

with its ligand, PD-L1, PD-1 expressing T cells become dysfunctional or 

“exhausted”. PD-L1 is expressed on a variety of cells, including MDSCs (25). As 

shown above, the expression of PD-L1 on MDSCs increased during FV infection 

(Figure 4.3). Therefore, it is of interest to analyze whether PD-L1 plays a role in 

MDSC mediated suppression.  

To analyze the role of PD-L1 during the T cell suppression by gMDSCs, the 

previously described proliferation assay was used. For this experiment, gMDSCs 

were isolated from FV-infected PD-L1 knockout mice.  
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Figure 4.16 Lack of PD-L1 or CD39 partly restored CD8+ T cell proliferation        
CD8+ T cells isolated from DbGagL TCR transgenic mice were incubated with dendritic 

cells loaded with MHC class I-restricted FV-specific CD8+ T cell epitope peptide and co-

incubated with gMDSCs isolated from PD-L1 KO or CD39 KO mice. (A) Representative 

histograms and (B) percentages of CD8+ T cells after co-incubation with or without 

gMDSCs isolated from B6, PD-L1 KO or CD39 KO FV infected mice are shown. At least 

three independent experiments were analyzed. The bars represent the mean with SEM. 

For statistical analysis, an ANOVA multiple comparison test was carried out (*** < 0.0005). 

 

Interestingly, gMDSCs lacking PD-L1 were not able to efficiently suppress CD8+ T 

cell proliferation in vitro (76% of all CD8+ T cell proliferated) in contrast to  PD-L1 

expressing gMDSCs (25% proliferation rate) (Figure 4.16). This suggests the 

importance of PD-L1 in gMDSC mediated CD8+ T cell suppression. 

Adenosine metabolism plays an important role in maintaining immune 

homeostasis. CD39 (Ectonucleoside triphosphate diphosphohydrolase-1), an 

enzyme involved in the conversion of ATP to ADP and AMP, was shown to have a 

role in the effector T cell suppression mediated by regulatory T cells. Therefore, it 

was of interest to investigate whether adenosine metabolism may also be involved 

in MDSC mediated immune suppression.   

The previously described CD8+ T cell proliferation assay was again used to 

answer this question. After incubation of gMDSCs isolated from CD39 KO mice 

with CD8+ T cells, 64% of the CD8+ T cells had undergone cell division, which was 
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almost 2.5 higher as in the control group with gMDSCs from wild type mice (Figure 

4.16). These data suggest a significant role of adenosine metabolism in gMDSC 

mediated suppression.   

 

The first part of this thesis concentrated on MDSCs and their function during acute 

FV infection. We observed an expansion of both gMDSCs and mMDSCs at day 14 

post infection and they also showed a higher expression of PD-L1high, CD80, Arg1 

compared to naïve mice. Further, we were able to show that mainly FV-activated 

gMDSCs but not mMDSCs were able to suppress virus-specific CD8+ T cell 

responses in vitro. Moreover, in vivo depletion of MDSCs resulted in a reduction of 

viral loads and in augmented cytotoxic CD8+ T cell responses. As mechanisms of 

gMDSC mediated suppression of virus-specific T cell proliferation in vitro NO or 

arginase metabolism as well as PD-L1 and CD39 expression were identified. 

These data demonstrate the importance of MDSCs in the regulation of CD8+ T cell 

responses during acute retroviral infection and identify mechanisms involved in the 

suppressive function of these cells.  
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5 The interaction of inhibitory mechanisms: MDSCs, T regulatory cells 
(Tregs) and inhibitory receptors. 

The immune response to acute viral infection is restrained by different 

mechanisms such as MDSCs, Tregs or inhibitory receptors to prevent severe 

immunopathology by overshooting T cell responses. All of these mechanisms 

were shown to work independently. Recently, immune therapies involving immune 

checkpoint blockers are gaining increasing attention. However, the interactions 

between the different suppressor mechanisms are not very well studied. 

Therefore, the question arises what influence the depletion or blockage of one of 

these mechanisms may have on the quality and quantity of the other inhibitory 

mechanisms.   

5.1 Regulatory T cell responses during MDSC depletion 

Another important mechanism of suppressing immune responses is the activity of 

Tregs. Previous work showed the importance of the Treg mediated inhibition of T 

cells in acute and chronic FV infection (137).     

During the depletion of MDSCs in FV-infected mice, an increase of Tregs was 

observed. In naïve mice approximately 10% of CD4+ cells are Foxp3+.  In FV-

infected mice approximately 17% of the CD4+ T cells are Foxp3+ Tregs, whereas 

animals depleted for total MDSCs (5FU) had up to 25% of Tregs and αLy6G 

treated mice 22% (Figure 5.1 A). After MDSC depletion we found a slight increase 

in Treg proliferation (Ki67+), but this was not statistically significant (Figure 5.1B). 

This result shows that indeed different immune checkpoints influence each other 

and the question arose how the MDSC response is altered during FV infection if 

Tregs are depleted and/or inhibitory receptors are blocked.  
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Figure 5.1 Tregs expand upon MDSCs depletion in FV-infected mice  
B6 mice were infected i.v. with 20 000 SFFU of FV or left un-infected, and Tregs 

frequencies were measured using flow cytometry for spleen cells at 14 days post 

infection. (A) The frequencies of FoxP3+ of live CD4+ in spleen are displayed. (B) The 
frequencies of Ki67+ of live FoxP3+CD4+ in spleen at 14 dpi are displayed. At least five 

mice per group from three independent experiments were analyzed. Bars represent the 

mean and SEM. For statistical analysis, an ANOVA multiple comparison test was carried 

out (* < 0.05, ** < 0.005,). 

 

 

To answer this question, a DEREG mouse model was used for the selective 

depletion of Tregs, and MDSC numbers were assessed. After Treg depletion, 

almost 4-times higher frequencies of mMDSCs (Figure 5.2 A) and 2-times of 

gMDSCs, compared with infected non-depleted mice, were observed (Figure 5.2 

B).  The expanded populations of gMDSCs also showed slightly increased 

percentages of CD80+ and PD-L1high cells (Figure 5.3 A). This increase in CD80 

and PD-L1 expressing cells was even more pronounced in the mMDSC population 

after Treg depletion (Figure 5.3 B).    
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Figure 5.2 Depletion of Tregs led to MDSC expansion in FV-infected mice  
DEREG mice were infected with 20 000 SFFU of FV and depleted for Tregsand MDSC 

numbers were measured using flow cytometry for spleen cells at 14 days post infection. 

The numbers of (A) mMDSCs and (B) gMDSCs per 106 living cells in spleen at 14 dpi are 

displayed. At least five mice per group from three independent experiments were 

analyzed. Bars represent the mean and SEM. For statistical analysis, an ANOVA multiple 

comparison test was carried out (* < 0.05, ** < 0.005). 

 

 

Notably, the loss of one suppressive mechanism led to a compensatory 

mechanism for another inhibitor. Depletion of MDSCs resulted in the expansion of 

Tregs during acute FV infection. Similarly, the depletion of Tregs resulted in an 

activation of MDSCs.  
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Figure 5.3 Characterization of MDSCs after Treg depletion during acute FV 
infection. 
DEREG mice were infected with 20 000 SFFU of FV, treated with diphtheria toxin or left 

un-treated, and the expression of PD-L1high and CD80 on the surface of MDSCs was 

measured using flow cytometry. (A) Frequencies of CD80 and PD-L1 expression on the 

surface of Ly6Ghigh Ly6Clow and Ly6G- Ly6Chigh cells in spleen at 14 dpi are displayed. At 

least five mice per group from three independent experiments were analyzed. Bars 

represent the mean with SEM. For statistical analysis, an ANOVA multiple comparison 

test was carried out with the group of naïve mice as reference (* < 0.05, ** < 0.005, *** < 

0.0005). 
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5.2 Combination of MDSC and Treg depletion  

 

As shown in the previous chapter, the depletion of one inhibitory cell population 

led to compensatory mechanisms. The question arises whether the simultaneous 

depletion of different inhibitory cell populations may lead to a stronger activation of 

effector mechanisms as well as a reduction of viral loads. In order to answer this 

question, both gMDSC and Tregs were simultaneously depleted during FV 

infection and mice were analyzed on day 14 post infection. Interestingly, the 

reduction in viral loads was higher in Treg plus gMDSC depleted animals than in 

only Treg or gMDSC depleted mice, however this difference was not significant 

(Figure 5.4 A). Moreover, after the depletion of the two regulatory cell populations, 

the frequencies of activated, virus specific CD8+ T cells significantly increased 

compared to mice depleted for Tregs. (Figure 5.4 B).  

 

 

 

Figure 5.4 Combination of gMDSCs and Tregs depletion leads to a reduction in viral 
loads and increased numbers of activated virus specific CD8+ T cells.  
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DEREG mice were infected with FV, and/or treated with DT and/or αLy6G, and an IC 

assay was performed and CD8+ T cell numbers were analyzed. (A) The numbers of 

infected cells per 1x106 cells in the spleen are displayed. The numbers of (B) Tetr+ or (C) 

GzmB+ of live CD43+CD8+ in the spleen at 14 dpi are displayed. Bars represent the mean 

with SEM. For statistical analysis, an ANOVA multiple comparison test was carried out 

with the group of naïve mice as reference (* < 0.05, ** < 0.005, *** < 0.0005). 

 

However, it is important to notice that on the last day of the experiment, animals 

were starting to experience light health disturbance, their fur was slightly 

unpolished and matt, and the movements were slower compared to animals 

treated with DT or αLy6G. Therefore, it is of importance to further investigate the 

combination treatment of gMDSCs and Tregs depletion, with regard to the 

development of immunopathology. These results suggest that combination therapy 

with depletion of gMDSCs and Tregs might improve immune responses and be 

may considered as immunotherapy for retroviral infection. However, it is crucial to 

further investigate this topic. 

 

5.3 Combined blockage of inhibitory receptors with Treg depletion 

 

We have previously shown that a combination therapy which blocks the inhibitory 

receptors PD-1 and Tim-3 reduces viral loads and restores CD8+ T cell responses 

in chronic FV infection (137).  
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Figure 5.5 Treatment of acute FV infection with αPD-L1, αTim3 and depletion of 
Tregs. Schematic representation of the experiment. Shortly, DEREG mice were infected 

with 20 000 SFFV FV + LDV, treated with DT and αPD-L1, αTim3 in combination or alone 

or left untreated. On day 18 post infection spleen, bone marrow, peripheral lymph nodes, 

and intestinal lymph nodes were harvest for further analysis. 

 

It was of interest weather a combination therapy targeting two checkpoint blockers 

(inhibitory receptors and Tregs) would affect the MDSC and T cell response in 

acutely FV infected mice. First, viral loads were analyzed after combination 

therapy. At day 14 post infection an average of 5000 cells per million splenocytes 

were infected in mice inoculated with FV. Treg depletion or antibody therapy 

reduced this viral load to 50 to 100 infected cells per million. Interestingly, 

combination treatment resulted in a further reduction of viral loads to around 20 

infected cells per million (Figure 5.6). These results suggest that the simultaneous 

blocking of different inhibitory mechanisms may further reduce viral loads and 

improve the therapy outcome.  

 

Figure 5.6 Depletion of Tregs combined with blocking inhibitory receptors leads to 
reduction of viral loads during acute FV infection.  
Shortly, DEREG mice were infected with FV + LDV and treated with DT, αPD-L1, αTim3 in 

combination or alone, or left untreated, and infectious center assay was performed on day 

14 post infection. The numbers of infected cells per 1x106 cells in spleen are displayed. At 
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least five mice per group from three independent experiments were analyzed. Bars 

represent the mean with SEM. For statistical analysis, an ANOVA multiple comparison 

test was carried out (* < 0.05, ** < 0.005). 

 

 

 

Figure 5.7 CD8+ T cell responses during acute FV infection after Treg depletion 
combined with αPD-L1 and αTim3 treatment.  
DEREG mice were infected with FV + LDV, treated with DT, αPD-L1, αTim3 in 

combination or alone, or left untreated. Numbers of (A) CD43+ CD8+ and (B) 

CD8+Tetramer+ of one million spleen cells at 14 dpi are displayed. At least five mice per 

group from three independent experiments were analyzed. Bars represent the mean and 

SEM. For statistical analysis, an ANOVA multiple comparison test was carried out (* < 

0.05, ** < 0.005). 

To investigate the immune response during combinatorial treatment, we had a 

closer look at different populations of T cells. Frequencies of activated CD8+ T 

cells increased upon treatment, reaching the highest values during combination 

treatment at more than 80 000 CD43+ CD8+ cells per million, however, the 

difference to only FV infected mice was not significant (Figure 5.7 B). After 

combination treatment, we were also able to observe increased frequencies of 

virus-specific CD8+ T cells in comparison to the group of only infected mice. Even 
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though the results for the combination therapy group were not significantly 

different compared to the groups with single treatment they always had the highest 

values (Figure 5.7 A). Further, the cytotoxic effector function of T cells was of 

interest. Combination therapy significantly increased the percentage of GzmB+ 

CD8+ T cells in comparison to all other groups, reaching up to 40% of all CD8+ 

spleen cells. Similarly, we observed a very strong increase in the percentage of 

GzmB+ CD4+ T cells after combination treatment during acute FV infection. Thus, 

the combination treatment resulted in augmented cytotoxic CD8+ and CD4+ T cell 

response. 

 

 

 

Figure 5.8 Percentage of CD8+GzmB+ and CD4+GzmB+ T cells after Treg depletion 
combined with αPD-L1 and αTim3 treatment during FV infection.  
DEREG mice were infected with FV + LDV, treated with DT, αPD-L1, αTim3 in 

combination or alone, or left untreated. The frequencies of (A) GzmB+ CD8+ and (B) 

GzmB+ CD4+ from spleen cells at 14 dpi are displayed. At least five mice per group from 

three independent experiments were analyzed. Bars represent the mean and SEM. For 

statistical analysis, an ANOVA multiple comparison test was carried out (* < 0.05, ** < 

0.005). 

 

A B 
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5.4 Combined depletion of Tregs and PD-L1 and Tim3 blocking leads to 
massive expansion of MDSC  

 

During combination treatment for depletion of Tregs and blocking of PD-L1 and 

Tim3 during acute FV infection an expansion of potentially cytotoxic CD8+ and 

CD4+ T cells was observed. As MDSC may try to counter-regulate these T cell 

responses MDSC populations were analyzed in the spleen and small intestine 

after combination therapy. On day 18 post FV + LDV infection, an expansion of 

mMDSCs and gMDSCs was observed which was most predominant after 

combination treatment. Only for mMDSC in the spleen the expansion was similar 

between mice that received combination therapy and those that were only Treg 

depleted (Figure 5.9 A and B). In the small intestine the expansion of both MDSC 

populations after combinatorial treatment was most dramatic (Figure 5.9 C). 
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Figure 5.9 MDSC expansion after Treg depletion combined with αPD-L1 and αTim3 
treatment.  
DEREG mice were infected with FV + LDV, treated with DT, αPD-L1, αTim3 in 

combination or alone, or left non-treated. (A) Representative dot plots of splenic gMDSCs 

and mMDSCs are displayed. The numbers of gMDSCs and mMDSCs of (B) spleen and 

(C) small intestine are displayed. At least five mice per group from three independent 

experiments were analyzed. Bars represent the mean with SEM. For statistical analysis, 

an ANOVA multiple comparison test was carried out with the group of naïve mice as a 

reference (* < 0.05, ** < 0.005). 
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The gMDSCs that expanded during combination treatment were further analyzed 

for activation and functional markers. The percentages of CD80+ gMDSC after 

combination treatment were significantly higher compared to FV-infected mice, 

reaching over 60% of all MDSCs. No significant difference was found for PD-L1high 

and Arg1 expression of gMDSCs between the groups (Figure 5.10). 

Treatment by depletion of Treg and blocking of αPD-L1 and αTim3 may result in 

the expansion of MDSCs, as a compensatory mechanism to counter-regulate T 

cell responses 

 

 

Figure 5.10 Characterization of gMDSCs after Tregs depletion combined with αPD-
L1 and αTim3 treatment. 
DEREG mice were infected with FV + LDV, treated with DT, αPD-L1, and αTim3 in 

combination or left untreated. Bars represent mean frequencies (with SEM) of CD80, PD-

L1high and Arg1 expression of gMDSCs from spleen. For statistical analysis, an ANOVA 

multiple comparison test was carried out with the naïve group as a reference (** < 0.005). 

 

5.5 Newly expanded population of MDSCs suppresses CD8 T cell responses 

 

Interestingly, after combination treatment a new population of MDSCs was 

observed, expressing low levels of CD11b and Gr1 (Figure 5.11 A). For this 

experiment the spleen cells were pre-isolated with Cd19+ B cells (MACS 

technology) from mice treated with DT, αPD-L1 and Tim3. The cells were sorted 

on the basis of FITC and APC fluorescence. The separation of the Gr1high CD11b+  
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and Gr1+ CD11bdim cells was performed on a FACSDiVa cell-sorter (Becton 

Dickinson, San Jose, CA). Gr1 was excited with a 488 nm laser wavelength and 

fluorescence was measured through a 585/42 nm bandpass filter. CD11b was 

excited with a 650nm laser wavelength and fluorescence was measured through a 

694/42 nm bandpass filter For each experiment 200.000–330.000 cells were 

sorted by flow cytometry.  

After the separation of the cells the purity of the separated cell populations was 

always analyzed again by flow cytometric analysis of 10.000 cells. To >95% pure 

populations of Gr1high CD11b+ or Gr1+ CD11bdim cells was achieved.  The cells 

were then and co-incubated with CD8+ T cells in the previously described 

suppression assay in different effector target ratios. Interestingly, we observed that 

CD8+ T cell proliferation was already suppressed by a lower ratio of the CD11bdim 

population in comparison to gMDSCs (Figure 5.11 B). This may suggest that the 

absence of other inhibitory mechanisms results in the compensatory appearance 

of a new CD11bdim population of MDSCs with higher suppressor functions. 

 

Figure 5.11 Newly expanded Gr1+ CD11bdim population suppressed CD8+ T cell 
proliferation. 
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CD8+ T cells isolated from TCRtg mice were incubated with dendritic cells loaded with 

MHC class I-restricted FV-specific CD8+ T cell epitope peptide and co-incubated with Gr1+ 

CD11bdim or gMDSCs isolated from DEREG mice infected with FV + LDV, treated with DT, 

αPD-L1, and αTim3 in combination. (A) A representative dotplot of Gr1+ CD11bdim after 

treatment with DT, αPD-L1 and αTim3 isolated at day 18 post FV infection. (B) 

Representative histograms for CD8+ T cell proliferation after co-incubation with Gr1+ 

CD11bdim or gMDSCs at different ratios to CD8+ T cells. As a control group CD8+ cells 

without gMDSCs were used.  

 

In current work we show a compensatory response of different inhibitory 

mechanisms during an acute retroviral infection. The depletion of one of inhibitory 

mechanism resulted in the expansion and increased activation of different 

inhibitory mechanism. Results presented in this thesis show the importance of 

inhibitory mechanisms in the immune response against retroviral infection.  
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6. Discussion 

Myeloid derived suppressor cells play an important role in regulating the immune 

response. Their influence may be beneficial, as they limit immune responses in 

order to prevent tissue damage via cell cytotoxicity. On the other hand, they may 

be suppressing immune responses against retroviral infections, which results in 

inability to completely eliminate the virus and, consequently, establishment of 

chronicity (40). The exact mechanisms controlling the impact of MDSCs on 

different cell types are not fully understood. Therefore, it is of immense importance 

to define the mechanisms and functions of MDSCs in order to find a better way to 

modulate immune responses, and to further develop immunotherapies for 

retroviral infections.  

The work presented in this thesis demonstrates the influence of MDSCs on 

cytotoxic CD8+ T cells during an acute FV infection. MDSCs expanded during the 

late phase of acute FV infection (Figure 4.1), which was correlated with CD8+ T 

cell dysfunction (27). Additionally, we found suppression of FV-specific, cytotoxic 

CD8+ T cells by the gMDSC subpopulation (Figure 4.12). We also showed the 

important role of PD-L1 and arginase in the suppression process. Finally, we 

observed interplays between different inhibitory mechanisms, such as Tregs and 

inhibitory receptors and their ligands. Moreover, blocking of these two 

mechanisms resulted in the expansion of MDSCs with a new CD11bdim phenotype, 

which showed strong suppressive activity against CD8+ T cell proliferation.   

Under normal conditions, common precursors of myeloid cells develop into mature 

myeloid cells. Under pathological conditions, these cells may not fully mature and 

start to develop inhibitory functions. This population of immature myeloid cells 

showing robust suppressive activity is known as MDSCs (41, 45,). Since MDSC is 

a recently discovered population, studies upon these cells are controversially 

discussed and various aspects, including phenotypic and functional 

characterization differ depending on experimental models (39, 47, 52). The 

commonly used gating strategy for murine MDSCs is based on co-expression of 

the markers CD11b and Gr1. The subpopulations of MDSCs, monocytic and 

granulocytic, are distinguished by high or dim expression of the Gr1 marker. 

Initially, identification by these two markers was useful. However, exact 
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characterization of mMDSCs and gMDSCs may encounter obstacles due to the 

blurred line between high and low expression of Gr1 in these two populations. In 

order to more precisely distinguish the gMDSC and mMDSC population, use of 

two Gr1 epitopes: Ly6C and Ly6G was proposed: gMDSCs are defined as CD11b+ 

Ly6G+ and Ly6C-, and mMDSCs are characterize as CD11b+ Ly6G- Ly6C+. The 

Gr1 marker was used by several groups together with Ly6C and Ly6G in one 

panel. However, simultaneous use of the Gr1 and Ly6G may lead to incorrect 

MDSCs numbers due to competition of specific antibodies for Gr1 epitopes (121). 

One difficulty is the correct characterization of MDSCs, since they share many 

markers with other cell types, especially myeloid precursor cells and neutrophils 

(45, 46). gMDSCs share an important marker with neutrophils, which is Ly6G. This 

may cause difficulties in distinguishing both populations (46). Neutrophils are 

classically described as a short-lived, homogenous cell type and their role is 

restricted to the elimination of pathogens during the innate immune response. In 

numerous publications, gMDSC populations are called neutrophil like MDSCs (21) 

or MDSCs like neutrophils (20, 21), indicating their similar, if not identical 

characteristics.  

In this study we characterize MDSCs by using antibodies against CD11b+, 

Ly6G+ and Ly6C+. It was also of importance to distinguish MDSC subpopulations, 

since it has been shown that they possess distinct functions. MDSCs were also 

characterized by PD-L1, CD80, as well as functional markers Arg1 and NOS2. The 

described strategy allows to precisely distinguish the MDSC subtypes in mice. 

Only in experiments with combination therapy, due to appearance of CD11bdim 

population, the Gr1+CD11b+ strategy was used. Additionally, to correctly define the 

MDSC populations it is important to assess their suppressive activity, as well as 

biochemical and molecular markers described for MDSCs. Thanks to this attempt 

one may be sure the correct population of MDSCs is characterized. 

Expansion of MDSCs was previously observed in various experimental models. 

Recent studies suggest that MDSC may serve as a prognostic marker for disease 

progression in various cancer models as well as during viral infections. The main 

aim of this thesis was to characterize MDSC during an acute retroviral infection of 

mice. In this study we could show an expansion of gMDSCs on day 14 post 
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infection and of mMDSCs between day 12-14 post infection (Figure 4.1). Elevation 

of MDSC numbers was also observed in blood of chronic HCV patients (54, 87, 

105, 159), as well as during human (53, 104, 143) and murine HBV infection (29). 

The total MDSC population as well as only gMDSCs was shown to be increased in 

numbers in HIV infection (5, 110, 142).  

Chronic infections expand MDSCs with immune suppressive activity, as T cell 

responses were found to be suppressed by MDSC in HIV, HBV and HCV infection 

(47-49). Most studies conducted in viral infections evaluated the whole 

Gr1+CD11b+ MDSCs population, without distinguishing between different 

subpopulations (5, 142). However, the effects of MDSC subpopulations on 

immune responses may vary significantly. The question remained which 

subpopulation of the MDSCs is mainly involved in restricting T cell responses in 

retroviral infections. Our current study demonstrates the suppressive impact of 

gMDSCs on CD8+ T cells in acute Friend virus infection, whereas mMDSCs were 

less effective. In contrary to our findings, mMDSCs were able to suppress the T 

and B cell response in a model of murine LP-BM5 retrovirus infection (63,64). The 

different results might be explained by technical differences in the T cell 

proliferation assay used in both studies. While we stimulated virus-specific T cells 

with its cognate antigen presented by DCs, a physiological way of inducing T cell 

proliferation and differentiation, Robertson et al., used a non-specific stimulation of 

T cells with CD3 and CD28. It was already reported that mMDSCs mainly 

suppress polyclonally activated T cells, as shown in tumor models (184) and in 

different infections such as LP-BM5, LCMV, HBV, HCV (46-49). On the other hand 

antigen-specific suppression of T cells was associated with gMDSCs function 

(183). Thus, gMDSCs may have a significant influence on disease progression in 

various cancer diseases, including multiple melanoma (149), hepatic inflammation 

and fibrosis (155), and in HIV infection (142).  

 

An activation of MDSCs has been associated with expression of different 

molecules. CD80, PD-L1, CD73, CD39, CD270, CD62L are just a few markers 

which were shown to be expressed on the cell surface of MDSCs and were linked 

to an activation of these cells (45-52). In the current study we analyzed the 
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expression of PD-L1 and CD80 as markers associated with the activation of 

MDSCs. An upregulated PD-1 expression on virus-specific CD8+ T cells in 

chronically infected mice was shown to be involved in the development of CD8+ T 

cell dysfunction. It has previously been shown that the ligand PD-L1 is expressed 

on the cell surface of activated MDSCs and might be associated with their 

suppressive potential (20). Both gMDSCs and mMDSCs showed an increased 

expression of PD-L1 upon FV infection (Figure 4.3). These results may be 

associated with the suggested role of the PD-1/PD-L1 pathway in MDSC-mediated 

immunosuppression. This possibility was proposed in various diseases, e.g. 

multiple melanoma (116) as well as in HIV (140). Vollbrecht et al. illustrated the 

role of PD-1/PD-L1 signaling in suppression mediated through HIV expanded 

gMDSC (43). The functional role of PD-L1 in MDSCs mediated CD8+ T cell 

suppression was determined in an in an in vitro analysis of CD8+ T cell 

proliferation. MDSCs used for this study lacked PD-L1, and were not able to 

suppress CD8+ proliferation as efficiently as gMDSCs expressing PD-L1 control 

group (Figure 4.15). However, more studies are required to determine the exact 

role of PD-L1 in MDSC mediated immunosuppression.  

CD80 was analyzed as an additional marker associated with MDSC activation and 

suppression. Expression of CD80 on MDSCs increased during FV infection 

(Figure 4.3). There are two different receptors for CD80, which differ in 

functionality. Binding of CD80 to the co-stimulatory receptor CD28, together with 

the T cell receptor (TCR)-CD3 complex, may generate cell-activating signal. CD28 

is expressed predominantly on naïve and early activated T cells. On the other 

hand, the binding of CD80 to CTLA-4 may deliver inhibitory signals. CTLA-4 is 

expressed by subset of late- and post-activated T lymphocytes (93, 147). CD80 

was shown to be a possible inhibitory mechanism involved in T cell suppression, 

e.g. in Cutaneous T cell Lymphoma (172). The importance of CD80 in MDSC 

function was suggested in 2008 in melanoma studies (153) and was confirmed in 

the following years (58-59). In our study we found increased frequencies of CD80 

expressed on mMDSC and gMDSC, however the exact role of CD80 in MDSC 

mediated immunosuppression should be closer characterized. 
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The phenotypic characterization of MDSCs can be challenging, therefore their 

functional properties should be the focus of attention. In the current work, MDSCs 

were functionally characterized by the expression of NOS2 and Arg1, as well as by 

the use of a virus-specific T cell proliferation assay. Expression of NOS2 increased 

only in mMDSCs, but not in gMDSCs. Arg1 expression increased in both gMDSCs 

and mMDSCs upon FV infection (Figure 4.3). These two important mechanisms of 

MDSC mediated immunosuppression are connected to ι-arginine metabolism. 

Both arginase and NO inhibitors were used in the current study in order to confirm 

the mechanism of gMDSC mediated immunosuppression of CD8+ T cells. Both, L-

NMMA, as well as nor-NOHA, partially restored the CD8+ T cell proliferation in 

vitro. Although the NO inhibitor was able to partially restore the gMDSC mediated 

suppression of CD8+ T cell proliferation, our previous results showed no 

expression of NOS2 on gMDSCs (Figure 4.4). However, it is important to note the 

existence of two different enzymes involved in to nitric oxide metabolism: NOS1 

and NOS3 (173). The expression and activity of NOS3 was reported to play a role 

in gMDSC function in the murine model of malignant tumors (174). Thus, NOS3 

might also be involved in suppression by virus induced gMDSCs, which has not 

been studied so far.  

Adenosine metabolism with the two cell-surface enzymes CD39 and CD73 is 

involved in the regulation of T cell responses (18). Their significance in Treg 

mediated immunosuppression (17) has been demonstrated. During FV infection 

both CD39 and CD73 were expressed on the cell surface of MDSCs. However, the 

level of expression did not differ between MDSCs from infected and uninfected 

mice (Figure 4.4). It has been shown that the activity of CD39, but not of CD73, 

has been important in MDSCs-mediated immunosuppression of T cells in vitro in 

the murine melanoma model (38). However, this has not been investigated in viral 

infections so far. In this study, we were able to demonstrate that CD39 contributed 

to the MDSC mediated suppression of CD8+ T cell proliferation in vitro in retroviral 

infection (Figure 4.15). 

 

Different attempts to study the function of MDSCs in vivo have been presented. 

First, transfer experiments were performed, in which freshly isolated, 
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lipopolisaccharid (LPS) or IFNγ induced MDSCs were transferred into recipient 

mice. This attempt was shown to inhibit inflammation (147) and reduce CD8+ T 

cell responses in a melanoma model (128). Another approach to study the function 

of MDSCs in vivo is a specific depletion of these cells. There are different ways to 

modulate MDSC by reduction of numbers or blockade of the function of MDSCs in 

vivo. The most commonly used way of depletion is by administrating αLy6G or 

αGr1 antibodies into mice. This procedure allows the efficient depletion of all 

MDSCs (αGr1 antibody) or of granulocytic MDSCs only (αLy6G antibody). 

Nevertheless, as lately shown, long term administration of either αGr1 or αLy6G 

antibody leads to reappearance of immature Ly6G+ cells (45).  

The modulation of immune responses offers promising results for the therapy of 

different diseases, including cancer and viral infections. As a recently observed 

population, MDSCs give encouraging prospects for future treatments of viral 

infections. Different methods were described to deactivate or deplete MDSCs, as 

well as differentiate them into mature cells or block their development (44-50). 

Many of these agents, like 5-Fluorouracil (5FU), ATRA, PDE-5 inhibitors, NO-

aspirins, CSF-1R inhibitors, Zoledronic Acid, JAK/STAT3 inhibitors and Multi-

Kinase inhibitors, as well as VEGF inhibitors, are already under clinical 

investigation in cancer treatment (46). Nonetheless, it is important to note the 

influence of these immunomodulatory methods on different immune cells. 

Moreover, different therapeutic drugs already used in the clinic for treatment of 

various diseases, such as cytotoxic agents, vitamins or modulators of the cell 

signaling, are shown to regulate MDSCs (46). Similarly, different medicaments 

were described to interfere with different immune cells and have an influence on 

the immune response (161). Therefore, it is of immense importance to carefully 

plan and apply a combination of different therapies in order to achieve possible 

therapeutic success without overstimulating and burdening the immune system . 

In the current study, MDSC function was investigated by using αLy6G antibody, 

which selectively depletes gMDSC, and the use of 5FU, an anti-cancer drug 

known for selectively depleting all MDSCs. Both αLy6G and 5FU administration 

resulted in the depletion of MDSCs and led to an expansion of activated CD8+ T 

cells and Tregs. Although both depletion attempts have proven to be MDSC 
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specific, it is important to note that αLy6G is also used for the depletion of 

neutrophils, and that 5FU appears to be cytotoxic in higher concentration. 

Therefore, further studies and different immunomodulation attempts are necessary 

to precisely investigate MDSCs in vivo.   

The current study shows the interaction between MDSCs and Tregs during acute 

retroviral infection. Depletion of MDSCs resulted in an increased Treg expression, 

whereas Treg depletion led to growth of MDSCs numbers (Figure 5.2). Interaction 

between MDSCs and Tregs was first suggested by Yang et al in 2006 in an 

ovarian cancer model (152). Two years later, Borello and colleagues observed that 

MDSCs may induce Treg expansion, and MDSC depletion led to a suppressed 

Treg proliferation in the B cell lymphoma model (153). Since then several of 

studies have been investigating the interactions between MDSCs and Tregs. Most 

of them confirm the expansion of Tregs, as well as their de novo generation by 

MDSCs, through TGFβ dependent and independent mechanisms. (154-158). In 

viral infections the interaction between MDSCs and Tregs was observed so far in 

HCV (161), HBV (142) and murine retrovirus induced immunodeficiency (162).  

HCV induced mMDSCs from PBMCs led to the expansion of Tregs in vitro and the 

depletion of mMDSCs resulted in the reduction of Tregs in PBMCs (107).  

Inhibitory mechanisms are used by our organisms to maintain immune 

homeostasis. Without them, over-activation of cytotoxic cells may appear, causing 

tissue damage and organ failure. However, cancer and chronic infections may 

benefit from different suppressive mechanisms. One of the approaches used in 

this study is the combination treatment blocking different inhibitory mechanisms: 

inhibitory receptors and their ligands, as well as Tregs. The depletion of PD-L1, 

Tim3 and Tregs resulted in reduced viral loads (Figure 5.6) and an increased 

production of cytotoxic granula in T cells (Figure 5.7). Distinct studies involving 

combinational treatment by blocking different inhibitory mechanisms exhibit 

beneficial influence on the disease (19). It has been shown that the immune 

checkpoint blockade is a possible, effective way of treating cancer (61-65). 

Combination treatment blocking different checkpoint inhibitors resulted in a 

reduction of tumor size and an enhanced immune response in cancer patients 

(93). Inhibitors of PD-1 and CTLA-4 as a combination treatment were used in a 
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phase 3 clinical trial of melanoma therapy (138), as well as of metastatic renal cell 

carcinoma (160) with promising results. Further promising findings came e.g. from 

the cancer field, where combining radiation therapy with dual checkpoint blockade 

of melanoma (138) resulted in an enhanced T cell response and reversed CD8+ T 

cell exhaustion. Surprisingly, the model of combination therapy by  Treg depletion 

combined with dual blockade of inhibitory receptors presented in this work was 

shown to reduce viral loads and restore CD8+ T cell cytotoxicity during chronic FV 

infection (138). It is worth mentioning that in both of these studies blocking of αPD-

L1 was used as one of the immune checkpoint treatments. Interestingly, the level 

of PD-L1 on the cell surface had an influence on therapy outcome during αCTLA-4 

treatment. When the level of PD-L1 on the cell surface during αCTLA-4 treatment 

combined with radiation of melanoma tumor was high, CD8+ T cell functionality 

was not recovered. However, by addition of αPD-L1 antibody, its CD8+ T cell 

function was further restored (138).  

Finally, for the first time to our knowledge, we were able to show that the 

population of Gr1+ CD11bdim, isolated from mice treated with DT, αPD-L1, αTim3 

expanded during FV infection (Figure 5.11). Proliferation of CD8+ was suppressed 

by a lower number of Gr1+ CD11bdim cells compared to gMDSCs. Thus, these data 

suggest the appearance of a new Gr1+ CD11bdim MDSC subset, and the 

expansion of MDSCs during combination treatment may be a compensatory 

mechanism for blocking other inhibitory mechanisms to prevent tissue damage 

during acute retroviral infection. The newly described Gr1+ CD11bdim population 

will be further characterized. 

The FV infection of mice used in the current study is a good model to analyze 

retroviral infections in general. HIV infection of humans still presents a major threat 

to the world population. Even though current therapies of retroviral infections are 

effective in controlling viral replication, the virus cannot be completely eliminated. 

Therefore, it is important to develop possible immunotherapies of retroviral 

infections. The approach used in this study was focused on one of the inhibitory 

mechanisms that restrict retrovirus-specific immunity: MDSC. It has already been 

shown that MDSCs expand during HIV infection (127, 142). Enhanced numbers of 

MDSCs in patient blood were associated with a chronic progressive phase of HIV 
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infection (110). mMDSCs have been reported to expand in PBMCs from healthy 

volunteers incubated with HIV-1 proteins (gp120 or Tat) or the TLR4 ligand LPS in 

vitro (142). Targeting different subtypes of myeloid cells, including MDSCs, was 

suggested to be a new, promising approach for immunotherapy of HIV (142). 

Consequently, the results of this thesis suggest that MDSCs might be a possible 

target for the future treatment of retroviral infections, providing new important 

information about the interaction between different regulatory mechanisms and 

MDSCs. 
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7. Summary 

A recently observed population of myeloid-derived suppressor cells (MDSCs) 

restrains the T cell immune response by showing robust suppressive activity. The 

inhibitory influence of MDSCs was observed in different tumor diseases. First 

attempts to describe MDSCs in infectious diseases were conducted. Nonetheless, 

the role of these cells during viral infection is not fully understood.  

Friend virus is a good model to study both acute and chronic retroviral infections. 

In the FV model, similar to the Human Immunodeficiency Virus (HIV) or Hepatitis 

C Virus (HCV) infections, cytotoxic virus-specific CD8+ T Lymphocytes (CTLs) 

efficiently control acute virus infections but become exhausted when a chronic 

infection develops.    

The data presented in this thesis evidences the influence of myeloid derived 

suppressor cells on cytotoxic CD8+ T cells during acute Friend Virus infection. Two 

populations of MDSCs, granulocytic MDSCs (gMDSCs) and monocytic MDSCs 

(mMDSCs), are expanding during the late phase of acute FV infection, which may 

be correlated with the CD8+ T cell contraction. Additionally, the in vivo elimination 

of the expanded population of granulocytic MDSCs shows the suppressive 

influence of these cells on CD8+ T cell proliferation and their production of 

cytotoxic granules. This effect may be mediated by several mechanisms, as 

proven in vitro, such as PD-L1, arginase, nitric oxide and CD39. Furthermore, 

possible compensatory interactions between different inhibitory mechanisms, such 

as myeloid derived suppressor cells, T regulatory cells, and inhibitory 

receptors/ligands were observed. Finally, the elimination of two important immune 

regulatory mechanisms after the depletion of T regulatory cells, and blocking of 

PD-L1 and Tim3 resulted in an expansion of myeloid derived suppressor cells with 

appearance of the new CD11bdim population of cells. The newly revealed 

population was showing strong suppressive activity against CD8+ T cells during 

acute retroviral infection.  

Myeloid derived suppressor cells play an important role in the regulation of the 

immune response. Thus, the results presented in this thesis show the inhibitory 
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role of myeloid derived suppressor cells in the Friend virus infection and may be a 

possible target for the immune therapy of retroviral infections. 
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8. Zusammenfassung 

Myeloide Suppressorzellen (MDSCs) wurden vor kurzem auf Grund ihrer 

Suppression von T-Zellen identifiziert. Der inhibitorische Einfluss von MDSCs 

wurde in verschiedenen Tumorerkrankungen beobachtet. Die Funktion dieser 

Zellen während der viralen Infektion ist jedoch bis heute nicht vollständig 

verstanden. 

Das Friend Virus Mausmodell eignet sich sowohl für die Untersuchung der akuten 

als auch der chronischen retroviralen Infektion. Ähnlich wie bei Infektionen mit 

dem Humanen Immundefizienz-Virus (HIV) oder Hepatitis-C-Virus (HCV), 

bekämpfen zytotoxische virus-spezifische CD8+ T-Lymphozyten (CTLs) die akute 

Virusinfektion, wohingegen sie während der chronischen Infektion dysfunktional 

sind.  

Insgesamt wurde in dieser Doktorarbeit der Einfluss von Myeloiden 

Suppressorzellen auf zytotoxische CD8+ T-Zellen während der akuten Friend Virus 

Infektion untersucht. Zwei Populationen von MDSCs, granulozytäre MDSCs 

(gMDSCs) und monocytäre MDSCs (mMDSCs) werden während der späten 

Phase der akuten FV Infektion expandiert, was mit einer CD8+ T-Zell-Kontraktion 

korreliert. Eine Population der MDSCs, die Granulozytären MDSCs, zeigen einen 

suppressiven Einfluss auf die CD8+ T-Zell-Proliferation und die Produktion von 

zytotoxischen Granula in vivo. Dieser Effekt kann durch verschiedene 

Mechanismen modelliert werden, wie beispielsweise PD-L1, Arginase, 

Stickstoffmonoxid oder CD39. Die Interaktion zwischen verschiedenen 

hemmenden Mechanismen, wie Myeloide Suppressorzellen, regulatorischen T-

Zellen und inhibitorischen Rezeptoren und Liganden während der akuten FV 

Infektion wurde beobachtet. Die Elimination von zwei wichtigen 

immunregulatorischen Mechanismen führte nach Depletion der regulatorischen T-

Zellen und der Blockierung von PD-L1 und TIM3 zur Expansion der Myeloiden 

Suppressorzellen und einer neuen, durch CD11bdim charakterisierten Population, 

die starke supprimierende Effekte gegenüber CD8+ T-Zellen zeigt. 

Myeloide Suppressorzellen spielen eine wichtige Rolle bei der Regulation der 

Immunantwort. Die in dieser Arbeit vorgestellten Ergebnisse, d. h. die hemmende 
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Rolle von Myeloide Suppressorzellen während der akuten Friend Virus Infektion, 

können als Ansatz für eine Immuntherapie retroviraler Infektionen verwendet 

werden. 



References 

 
 

103 
 

References: 

 
 
1. Akhmetzyanova I, Drabczyk M, Neff CP, Gibbert K, Dietze KK, Werner T, 
Liu J, Chen L, Lang KS, Palmer BE, Dittmer U, and Zelinskyy G. PD-L1 
Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell 
Killing. PLoS Pathog 11: e1005224, 2015. 
2. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, and Chen IS. High-
efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-
based retroviral vector pseudotyped with vesicular stomatitis virus envelope 
glycoprotein G. J Virol 70: 2581-2585, 1996. 
3. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, 
Bell JI, McMichael AJ, and Davis MM. Phenotypic analysis of antigen-specific T 
lymphocytes. Science 274: 94-96, 1996. 
4. Anthony DD, Umbleja T, Aberg JA, Kang M, Medvik K, Lederman MM, 
Peters MG, Koziel MJ, and Overton ET. Lower peripheral blood CD14+ monocyte 
frequency and higher CD34+ progenitor cell frequency are associated with HBV 
vaccine induced response in HIV infected individuals. Vaccine 29: 3558-3563, 2011. 
5. Anthony DD, Yonkers NL, Post AB, Asaad R, Heinzel FP, Lederman MM, 
Lehmann PV, and Valdez H. Selective impairments in dendritic cell-associated 
function distinguish hepatitis C virus and HIV infection. J Immunol 172: 4907-4916, 
2004. 
7. Antunes I, Tolaini M, Kissenpfennig A, Iwashiro M, Kuribayashi K, 
Malissen B, Hasenkrug K, and Kassiotis G. Retrovirus-specificity of regulatory T 
cells is neither present nor required in preventing retrovirus-induced bone marrow 
immune pathology. Immunity 29: 782-794, 2008. 
8. Arina A, and Bronte V. Myeloid-derived suppressor cell impact on 
endogenous and adoptively transferred T cells. Curr Opin Immunol 33: 120-125, 2015. 
9. Arina A, Corrales L, and Bronte V. Enhancing T cell therapy by overcoming 
the immunosuppressive tumor microenvironment. Semin Immunol 28: 54-63, 2016. 
10. Balu DT, Hodes GE, Hill TE, Ho N, Rahman Z, Bender CN, Ring RH, Dwyer 
JM, Rosenzweig-Lipson S, Hughes ZA, Schechter LE, and Lucki I. Flow 
cytometric analysis of BrdU incorporation as a high-throughput method for measuring 
adult neurogenesis in the mouse. J Pharmacol Toxicol Methods 59: 100-107, 2009. 
11. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, 
Pulendran B, and Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 
18: 767-811, 2000. 
12. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, 
Freeman GJ, and Ahmed R. Restoring function in exhausted CD8 T cells during 
chronic viral infection. Nature 439: 682-687, 2006. 
13. Bazhin AV, von Ahn K, Maier C, Soltek S, Serba S, Diehl L, Werner J, and 
Karakhanova S. Immunological in vivo effects of B7-H1 deficiency. Immunol Lett 162: 
273-286, 2014. 
14. Bengsch B, and Wherry EJ. The importance of cooperation: partnerless 
NFAT induces T cell exhaustion. Immunity 42: 203-205, 2015. 
15. Bergenfelz C, Larsson AM, von Stedingk K, Gruvberger-Saal S, Aaltonen 
K, Jansson S, Jernstrom H, Janols H, Wullt M, Bredberg A, Ryden L, and 
Leandersson K. Systemic Monocytic-MDSCs Are Generated from Monocytes and 
Correlate with Disease Progression in Breast Cancer Patients. PLoS One 10: 
e0127028, 2015. 



References 

 
 

104 
 

16. Bila C, Oberhauser V, Ammann CG, Ejaz A, Huber G, Schimmer S, Messer 
R, Pekna M, von Laer D, Dittmer U, Hasenkrug KJ, Stoiber H, and Banki Z. 
Complement opsonization enhances friend virus infection of B cells and thereby 
amplifies the virus-specific CD8+ T cell response. J Virol 85: 1151-1155, 2011. 
17. Bjoern J, Juul Nitschke N, Zeeberg Iversen T, Schmidt H, Fode K, and 
Svane IM. Immunological correlates of treatment and response in stage IV malignant 
melanoma patients treated with Ipilimumab. Oncoimmunology 5: e1100788, 2016. 
18. Bodogai M, Moritoh K, Lee-Chang C, Hollander CM, Sherman-Baust CA, 
Wersto RP, Araki Y, Miyoshi I, Yang L, Trinchieri G, and Biragyn A. 
Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive 
Cells Rely upon Education from Tumor-Associated B Cells. Cancer Res 75: 3456-
3465, 2015. 
19. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, 
Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, 
Jonuleit H, and Schmitt E. Cyclic adenosine monophosphate is a key component of 
regulatory T cell-mediated suppression. J Exp Med 204: 1303-1310, 2007. 
20. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, 
Giometto R, Hopner S, Centonze D, Bernardi G, Dell'Acqua ML, Rossini PM, 
Battistini L, Rotzschke O, and Falk K. Expression of ectonucleotidase CD39 by 
Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 
110: 1225-1232, 2007. 
21. Bowers NL, Helton ES, Huijbregts RP, Goepfert PA, Heath SL, and Hel Z. 
Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. 
PLoS Pathog 10: e1003993, 2014. 
22. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, 
Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica 
A, Umansky V, Vonderheide RH, and Gabrilovich DI. Recommendations for 
myeloid-derived suppressor cell nomenclature and characterization standards. Nat 
Commun 7: 12150, 2016. 
23. Buessow SC, Paul RD, and Lopez DM. Influence of mammary tumor 
progression on phenotype and function of spleen and in situ lymphocytes in mice. J 
Natl Cancer Inst 73: 249-255, 1984. 
24. Buonerba C, Di Lorenzo G, and Sonpavde G. Combination therapy for 
metastatic renal cell carcinoma. Ann Transl Med 4: 100, 2016. 
25. Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, DeMatteo 
RP, Ayala A, Joseph Espat N, Junghans RP, and Katz SC. Liver myeloid-derived 
suppressor cells expand in response to liver metastases in mice and inhibit the anti-
tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 64: 817-829, 2015. 
26. Cai W, Qin A, Guo P, Yan D, Hu F, Yang Q, Xu M, Fu Y, Zhou J, and Tang 
X. Clinical significance and functional studies of myeloid-derived suppressor cells in 
chronic hepatitis C patients. J Clin Immunol 33: 798-808, 2013. 
27. Cao Y, Feng Y, Zhang Y, Zhu X, and Jin F. L-Arginine supplementation 
inhibits the growth of breast cancer by enhancing innate and adaptive immune 
responses mediated by suppression of MDSCs in vivo. BMC Cancer 16: 343, 2016. 
28. Chae M, Peterson TE, Balgeman A, Chen S, Zhang L, Renner DN, 
Johnson AJ, and Parney IF. Increasing glioma-associated monocytes leads to 
increased intratumoral and systemic myeloid-derived suppressor cells in a murine 
model. Neuro Oncol 17: 978-991, 2015. 
29. Chen HM, Ma G, Gildener-Leapman N, Eisenstein S, Coakley BA, Ozao J, 
Mandeli J, Divino C, Schwartz M, Sung M, Ferris R, Kao J, Wang LH, Pan PY, Ko 
EC, and Chen SH. Myeloid-Derived Suppressor Cells as an Immune Parameter in 



References 

 
 

105 
 

Patients with Concurrent Sunitinib and Stereotactic Body Radiotherapy. Clin Cancer 
Res 21: 4073-4085, 2015. 
30. Chen S, Akbar SM, Abe M, Hiasa Y, and Onji M. Immunosuppressive 
functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine 
model of chronic hepatitis B virus. Clin Exp Immunol 166: 134-142, 2011. 
31. Chen W, Qin H, Chesebro B, and Cheever MA. Identification of a gag-
encoded cytotoxic T-lymphocyte epitope from FBL-3 leukemia shared by Friend, 
Moloney, and Rauscher murine leukemia virus-induced tumors. J Virol 70: 7773-7782, 
1996. 
32. Chesebro B, Miyazawa M, and Britt WJ. Host genetic control of spontaneous 
and induced immunity to Friend murine retrovirus infection. Annu Rev Immunol 8: 477-
499, 1990. 
33. Cmarik J, and Ruscetti S. Friend Spleen Focus-Forming Virus Activates the 
Tyrosine Kinase sf-Stk and the Transcription Factor PU.1 to Cause a Multi-Stage 
Erythroleukemia in Mice. Viruses 2: 2235-2257, 2010. 
34. Cullen JN, Yuan C, Totton S, Dzikamunhenga R, Coetzee JF, da Silva N, 
Wang C, and O'Connor AM. A systematic review and meta-analysis of the antibiotic 
treatment for infectious bovine keratoconjunctivitis: an update. Anim Health Res Rev 
17: 60-75, 2016. 
35. Darcy CJ, Minigo G, Piera KA, Davis JS, McNeil YR, Chen Y, Volkheimer 
AD, Weinberg JB, Anstey NM, and Woodberry T. Neutrophils with myeloid derived 
suppressor function deplete arginine and constrain T cell function in septic shock 
patients. Crit Care 18: R163, 2014. 
36. De Sanctis F, Bronte V, and Ugel S. Tumor-Induced Myeloid-Derived 
Suppressor Cells. Microbiol Spectr 4: 2016. 
37. De Sanctis F, Solito S, Ugel S, Molon B, Bronte V, and Marigo I. MDSCs in 
cancer: Conceiving new prognostic and therapeutic targets. Biochim Biophys Acta 
1865: 35-48, 2016. 
38. De Veirman K, Van Ginderachter JA, Lub S, De Beule N, Thielemans K, 
Bautmans I, Oyajobi BO, De Bruyne E, Menu E, Lemaire M, Van Riet I, 
Vanderkerken K, and Van Valckenborgh E. Multiple myeloma induces Mcl-1 
expression and survival of myeloid-derived suppressor cells. Oncotarget 6: 10532-
10547, 2015. 
39. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, 
Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, and Robson SC. 
Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells 
mediates immune suppression. J Exp Med 204: 1257-1265, 2007. 
40. Di Mitri D, Toso A, and Alimonti A. Molecular Pathways: Targeting Tumor-
Infiltrating Myeloid-Derived Suppressor Cells for Cancer Therapy. Clin Cancer Res 21: 
3108-3112, 2015. 
41. Dietze KK, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, and Dittmer U. 
Combining regulatory T cell depletion and inhibitory receptor blockade improves 
reactivation of exhausted virus-specific CD8+ T cells and efficiently reduces chronic 
retroviral loads. PLoS Pathog 9: e1003798, 2013. 
42. Dittmer U, and Hasenkrug KJ. Different immunological requirements for 
protection against acute versus persistent Friend retrovirus infections. Virology 272: 
177-182, 2000. 
43. Dittmer U, He H, Messer RJ, Schimmer S, Olbrich AR, Ohlen C, Greenberg 
PD, Stromnes IM, Iwashiro M, Sakaguchi S, Evans LH, Peterson KE, Yang G, and 
Hasenkrug KJ. Functional impairment of CD8(+) T cells by regulatory T cells during 
persistent retroviral infection. Immunity 20: 293-303, 2004. 



References 

 
 

106 
 

44. Dittmer U, Race B, Peterson KE, Stromnes IM, Messer RJ, and Hasenkrug 
KJ. Essential roles for CD8+ T cells and gamma interferon in protection of mice 
against retrovirus-induced immunosuppression. J Virol 76: 450-454, 2002. 
45. Dolen Y, Gunaydin G, Esendagli G, and Guc D. Granulocytic subset of 
myeloid derived suppressor cells in rats with mammary carcinoma. Cell Immunol 295: 
29-35, 2015. 
46. Draghiciu O, Boerma A, Hoogeboom BN, Nijman HW, and Daemen T. A 
rationally designed combined treatment with an alphavirus-based cancer vaccine, 
sunitinib and low-dose tumor irradiation completely blocks tumor development. 
Oncoimmunology 4: e1029699, 2015. 
47. Draghiciu O, Lubbers J, Nijman HW, and Daemen T. Myeloid derived 
suppressor cells-An overview of combat strategies to increase immunotherapy 
efficacy. Oncoimmunology 4: e954829, 2015. 
48. Draghiciu O, Nijman HW, Hoogeboom BN, Meijerhof T, and Daemen T. 
Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer 
vaccine to enhance antigen-specific immune responses and tumor eradication. 
Oncoimmunology 4: e989764, 2015. 
49. Drake K. Quality of life for cancer patients: From diagnosis to treatment and 
beyond. Nurs Manage 2012. 
50. Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, and Robson SC. 
CD39 and control of cellular immune responses. Purinergic Signal 3: 171-180, 2007. 
51. Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS, 2nd, Imai 
M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, 
Robson SC, and Rosenberg RD. Targeted disruption of cd39/ATP 
diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 
5: 1010-1017, 1999. 
52. Failli A, Legitimo A, Mazzoni A, Urbani L, Scatena F, Mosca F, and 
Consolini R. The combination of immunosuppressive drugs with 8-methoxypsoralen 
and ultraviolet a light modulates the myeloid-derived dendritic cell function. Int J 
Immunopathol Pharmacol 24: 89-99, 2011. 
53. Fan HZ, Yu HP, Yu R, Zhang Y, Deng HJ, and Chen X. Passive transfer of 
lipopolysaccharide-derived myeloid-derived suppressor cells inhibits asthma-related 
airway inflammation. Eur Rev Med Pharmacol Sci 19: 4171-4181, 2015. 
54. Fang Z, Li J, Yu X, Zhang D, Ren G, Shi B, Wang C, Kosinska AD, Wang S, 
Zhou X, Kozlowski M, Hu Y, and Yuan Z. Polarization of Monocytic Myeloid-Derived 
Suppressor Cells by Hepatitis B Surface Antigen Is Mediated via ERK/IL-6/STAT3 
Signaling Feedback and Restrains the Activation of T Cells in Chronic Hepatitis B 
Virus Infection. J Immunol 195: 4873-4883, 2015. 
55. Fang Z, Zhu K, Guo N, Zhang N, Guan M, Yang C, Pan Q, Wei R, Deng C, 
Liu X, Zhao P, and Leng Q. HCV J6/JFH1 tilts the capability of myeloid-derived 
dendritic cells to favor the induction of immunosuppression and Th17-related 
inflammatory cytokines. Pharm Res 32: 741-748, 2015. 
56. Fletcher M, Ramirez ME, Sierra RA, Raber P, Thevenot P, Al-Khami AA, 
Sanchez-Pino D, Hernandez C, Wyczechowska DD, Ochoa AC, and Rodriguez 
PC. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived 
suppressor cells. Cancer Res 75: 275-283, 2015. 
57. Foster JR. The functions of cytokines and their uses in toxicology. Int J Exp 
Pathol 82: 171-192, 2001. 
58. Frank MM, and Fries LF. The role of complement in inflammation and 
phagocytosis. Immunol Today 12: 322-326, 1991. 
59. Friend C. Cell-free transmission in adult Swiss mice of a disease having the 
character of a leukemia. J Exp Med 105: 307-318, 1957. 



References 

 
 

107 
 

60. Gabrilovich DI, and Nagaraj S. Myeloid-derived suppressor cells as 
regulators of the immune system. Nat Rev Immunol 9: 162-174, 2009. 
61. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, 
Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, 
Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, 
Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, 
Eggermont AM, Fearon DT, Fridman WH, Fucikova J, Gabrilovich DI, Galon J, 
Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, 
Jager D, Kalinski P, Karre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth 
A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, 
Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, 
Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, 
Sautes-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, 
Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, 
Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, 
Zitvogel L, Zou W, and Kroemer G. Classification of current anticancer 
immunotherapies. Oncotarget 5: 12472-12508, 2014. 
62. Gato-Canas M, Martinez de Morentin X, Blanco-Luquin I, Fernandez-
Irigoyen J, Zudaire I, Liechtenstein T, Arasanz H, Lozano T, Casares N, 
Chaikuad A, Knapp S, Guerrero-Setas D, Escors D, Kochan G, and Santamaria 
E. A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. 
Oncotarget 6: 27160-27175, 2015. 
63. Green KA, Cook WJ, and Green WR. Myeloid-derived suppressor cells in 
murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to 
define the immunodeficiency. J Virol 87: 2058-2071, 2013. 
64. Green KA, Wang L, Noelle RJ, and Green WR. Selective Involvement of the 
Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, 
Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected 
with an Immunodeficiency-Causing Retrovirus. J Virol 89: 9693-9698, 2015. 
65. Guan Q, Blankstein AR, Anjos K, Synova O, Tulloch M, Giftakis A, Yang 
B, Lambert P, Peng Z, Cuvelier GD, and Wall DA. Functional Myeloid-Derived 
Suppressor Cell Subsets Recover Rapidly after Allogeneic Hematopoietic 
Stem/Progenitor Cell Transplantation. Biol Blood Marrow Transplant 21: 1205-1214, 
2015. 
66. Gupta PK, Godec J, Wolski D, Adland E, Yates K, Pauken KE, Cosgrove 
C, Ledderose C, Junger WG, Robson SC, Wherry EJ, Alter G, Goulder PJ, 
Klenerman P, Sharpe AH, Lauer GM, and Haining WN. CD39 Expression Identifies 
Terminally Exhausted CD8+ T Cells. PLoS Pathog 11: e1005177, 2015. 
67. Hammerich L, and Tacke F. Emerging roles of myeloid derived suppressor 
cells in hepatic inflammation and fibrosis. World J Gastrointest Pathophysiol 6: 43-50, 
2015. 
68. Hasenkrug KJ. The leptin connection: regulatory T cells and autoimmunity. 
Immunity 26: 143-145, 2007. 
69. Hasenkrug KJ. Lymphocyte deficiencies increase susceptibility to friend virus-
induced erythroleukemia in Fv-2 genetically resistant mice. J Virol 73: 6468-6473, 
1999. 
70. Hasenkrug KJ, Brooks DM, Nishio J, and Chesebro B. Differing T-cell 
requirements for recombinant retrovirus vaccines. J Virol 70: 368-372, 1996. 
71. Hasenkrug KJ, Brooks DM, Robertson MN, Srinivas RV, and Chesebro B. 
Immunoprotective determinants in friend murine leukemia virus envelope protein. 
Virology 248: 66-73, 1998. 



References 

 
 

108 
 

72. Hasenkrug KJ, and Chesebro B. Immunity to retroviral infection: the Friend 
virus model. Proc Natl Acad Sci U S A 94: 7811-7816, 1997. 
73. Hasenkrug KJ, and Dittmer U. Immune control and prevention of chronic 
Friend retrovirus infection. Front Biosci 12: 1544-1551, 2007. 
74. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-
Enriquez A, Friedlander P, Gonzalez R, Weber JS, Gajewski TF, O'Day SJ, Kim 
KB, Lawrence D, Flaherty KT, Luke JJ, Collichio FA, Ernstoff MS, Heinrich MC, 
Beadling C, Zukotynski KA, Yap JT, Van den Abbeele AD, Demetri GD, and 
Fisher DE. Imatinib for melanomas harboring mutationally activated or amplified KIT 
arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol 31: 3182-
3190, 2013. 
75. Ito H, Ando T, and Seishima M. Inhibition of iNOS activity enhances the anti-
tumor effects of alpha-galactosylceramide in established murine cancer model. 
Oncotarget 6: 41863-41874, 2015. 
76. Joedicke JJ, Dietze KK, Zelinskyy G, and Dittmer U. The phenotype and 
activation status of regulatory T cells during Friend retrovirus infection. Virol Sin 29: 
48-60, 2014. 
77. Joedicke JJ, Zelinskyy G, Dittmer U, and Hasenkrug KJ. CD8+ T cells are 
essential for controlling acute friend retrovirus infection in C57BL/6 mice. J Virol 88: 
5200-5201, 2014. 
78. Kahan SM, Wherry EJ, and Zajac AJ. T cell exhaustion during persistent viral 
infections. Virology 479-480: 180-193, 2015. 
79. Kang X, Zhang X, Liu Z, Xu H, Wang T, He L, and Zhao A. CXCR2-Mediated 
Granulocytic Myeloid-Derived Suppressor Cells' Functional Characterization and Their 
Role in Maternal Fetal Interface. DNA Cell Biol 35: 358-365, 2016. 
80. Kang X, Zhang X, Liu Z, Xu H, Wang T, He L, and Zhao A. Granulocytic 
myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 
expression in CD4+CD25-T cells by activation of the TGF-beta/beta-catenin pathway. 
Mol Hum Reprod 22: 499-511, 2016. 
81. Karakhanova S, Link J, Heinrich M, Shevchenko I, Yang Y, Hassenpflug 
M, Bunge H, von Ahn K, Brecht R, Mathes A, Maier C, Umansky V, Werner J, and 
Bazhin AV. Characterization of myeloid leukocytes and soluble mediators in 
pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology 
4: e998519, 2015. 
82. Kawano M, Mabuchi S, Matsumoto Y, Sasano T, Takahashi R, Kuroda H, 
Kozasa K, Hashimoto K, Isobe A, Sawada K, Hamasaki T, Morii E, and Kimura T. 
The significance of G-CSF expression and myeloid-derived suppressor cells in the 
chemoresistance of uterine cervical cancer. Sci Rep 5: 18217, 2015. 
83. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, and Mosmann TR. T 
regulatory and primed uncommitted CD4 T cells express CD73, which suppresses 
effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine. J 
Immunol 177: 6780-6786, 2006. 
84. Kong X, Sun R, Chen Y, Wei H, and Tian Z. gammadeltaT cells drive 
myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-
induced immunotolerance. J Immunol 193: 1645-1653, 2014. 
85. Kumar V, Patel S, Tcyganov E, and Gabrilovich DI. The Nature of Myeloid-
Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 37: 208-
220, 2016. 
86. Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann 
A, Wagner H, Huehn J, and Sparwasser T. Selective depletion of Foxp3+ regulatory 
T cells induces a scurfy-like disease. J Exp Med 204: 57-63, 2007. 



References 

 
 

109 
 

87. Lander MR, and Chattopadhyay SK. A Mus dunni cell line that lacks 
sequences closely related to endogenous murine leukemia viruses and can be 
infected by ectropic, amphotropic, xenotropic, and mink cell focus-forming viruses. J 
Virol 52: 695-698, 1984. 
88. Lee JE, Walsh MC, Hoehn KL, James DE, Wherry EJ, and Choi Y. Acetyl 
CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses. PLoS One 10: 
e0137776, 2015. 
89. Lei AH, Yang Q, Cai WP, Liu YF, Lan Y, Qin AP, Hu FY, and Zhou J. Clinical 
Significance of Myeloid-Derived Suppressor Cells in Human Immunodeficiency Virus-
1/ Hepatitis C Virus-coinfected Patients. Scand J Immunol 83: 438-444, 2016. 
90. Lindau D, Gielen P, Kroesen M, Wesseling P, and Adema GJ. The 
immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T 
cells and natural killer T cells. Immunology 138: 105-115, 2013. 
91. Luke JJ, and Hodi FS. Ipilimumab, vemurafenib, dabrafenib, and trametinib: 
synergistic competitors in the clinical management of BRAF mutant malignant 
melanoma. Oncologist 18: 717-725, 2013. 
92. Mairhofer DG, Ortner D, Tripp CH, Schaffenrath S, Fleming V, Heger L, 
Komenda K, Reider D, Dudziak D, Chen S, Becker JC, Flacher V, and Stoitzner 
P. Impaired gp100-Specific CD8(+) T-Cell Responses in the Presence of Myeloid-
Derived Suppressor Cells in a Spontaneous Mouse Melanoma Model. J Invest 
Dermatol 135: 2785-2793, 2015. 
93. Markowitz J, Wesolowski R, Papenfuss T, Brooks TR, and Carson WE, 
3rd. Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 140: 
13-21, 2013. 
94. McCoy JP, Jr., and Overton WR. Quality control in flow cytometry for 
diagnostic pathology: II. A conspectus of reference ranges for lymphocyte 
immunophenotyping. Cytometry 18: 129-139, 1994. 
95. McCoy KD, and Le Gros G. The role of CTLA-4 in the regulation of T cell 
immune responses. Immunol Cell Biol 77: 1-10, 1999. 
96. Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev 
Immunol 4: 841-855, 2004. 
97. Mills KH, and McGuirk P. Antigen-specific regulatory T cells--their induction 
and role in infection. Semin Immunol 16: 107-117, 2004. 
98. Mills KR, Reginato M, Debnath J, Queenan B, and Brugge JS. Tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of 
autophagy during lumen formation in vitro. Proc Natl Acad Sci U S A 101: 3438-3443, 
2004. 
99. Moreau-Gachelin F. Multi-stage Friend murine erythroleukemia: molecular 
insights into oncogenic cooperation. Retrovirology 5: 99, 2008. 
100. Moses K, and Brandau S. Human neutrophils: Their role in cancer and 
relation to myeloid-derived suppressor cells. Semin Immunol 28: 187-196, 2016. 
101. Moses K, Klein JC, Mann L, Klingberg A, Gunzer M, and Brandau S. 
Survival of residual neutrophils and accelerated myelopoiesis limit the efficacy of 
antibody-mediated depletion of Ly-6G+ cells in tumor-bearing mice. J Leukoc Biol 99: 
811-823, 2016. 
102. Munn DH, and Bronte V. Immune suppressive mechanisms in the tumor 
microenvironment. Curr Opin Immunol 39: 1-6, 2016. 
103. Murphy K, Travers P, Walport M, and Janeway C. Janeway's 
immunobiology. New York: Garland Science, 2012, p. xix, 868 p. 
104. Myers L, and Hasenkrug KJ. Retroviral immunology: lessons from a mouse 
model. Immunol Res 43: 160-166, 2009. 



References 

 
 

110 
 

105. Ning G, She L, Lu L, Liu Y, Zeng Y, Yan Y, and Lin C. Analysis of monocytic 
and granulocytic myeloid-derived suppressor cells subsets in patients with hepatitis C 
virus infection and their clinical significance. Biomed Res Int 2015: 385378, 2015. 
106. O'Connor MA, Fu WW, Green KA, and Green WR. Subpopulations of M-
MDSCs from mice infected by an immunodeficiency-causing retrovirus and their 
differential suppression of T- vs B-cell responses. Virology 485: 263-273, 2015. 
107. Odorizzi PM, Pauken KE, Paley MA, Sharpe A, and Wherry EJ. Genetic 
absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ 
T cells. J Exp Med 212: 1125-1137, 2015. 
108. Pallett LJ, Gill US, Quaglia A, Sinclair LV, Jover-Cobos M, Schurich A, 
Singh KP, Thomas N, Das A, Chen A, Fusai G, Bertoletti A, Cantrell DA, 
Kennedy PT, Davies NA, Haniffa M, and Maini MK. Metabolic regulation of hepatitis 
B immunopathology by myeloid-derived suppressor cells. Nat Med 21: 591-600, 2015. 
109. Pang X, Song H, Zhang Q, Tu Z, and Niu J. Hepatitis C virus regulates the 
production of monocytic myeloid-derived suppressor cells from peripheral blood 
mononuclear cells through PI3K pathway and autocrine signaling. Clin Immunol 164: 
57-64, 2016. 
110. Passiglia F, Bronte G, Bazan V, Natoli C, Rizzo S, Galvano A, Listi A, 
Cicero G, Rolfo C, Santini D, and Russo A. PD-L1 expression as predictive 
biomarker in patients with NSCLC: a pooled analysis. Oncotarget 7: 19738-19747, 
2016. 
111. Pauken KE, and Wherry EJ. Overcoming T cell exhaustion in infection and 
cancer. Trends Immunol 36: 265-276, 2015. 
112. Pauken KE, and Wherry EJ. SnapShot: T Cell Exhaustion. Cell 163: 1038-
1038 e1031, 2015. 
113. Pinton L, Solito S, Damuzzo V, Francescato S, Pozzuoli A, Berizzi A, 
Mocellin S, Rossi CR, Bronte V, and Mandruzzato S. Activated T cells sustain 
myeloid-derived suppressor cell-mediated immune suppression. Oncotarget 7: 1168-
1184, 2016. 
114. Qin A, Cai W, Pan T, Wu K, Yang Q, Wang N, Liu Y, Yan D, Hu F, Guo P, 
Chen X, Chen L, Zhang H, Tang X, and Zhou J. Expansion of monocytic myeloid-
derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J 
Virol 87: 1477-1490, 2013. 
115. Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, 
Ochoa AC, Fletcher M, Velasco C, Wilk A, Reiss K, and Rodriguez PC. 
Subpopulations of myeloid-derived suppressor cells impair T cell responses through 
independent nitric oxide-related pathways. International journal of cancer 134: 2853-
2864, 2014. 
116. Ren JP, Zhao J, Dai J, Griffin JW, Wang L, Wu XY, Morrison ZD, Li GY, El 
Gazzar M, Ning SB, Moorman JP, and Yao ZQ. Hepatitis C virus-induced myeloid-
derived suppressor cells regulate T-cell differentiation and function via the signal 
transducer and activator of transcription 3 pathway. Immunology 148: 377-386, 2016. 
117. Robertson MN, Miyazawa M, Mori S, Caughey B, Evans LH, Hayes SF, and 
Chesebro B. Production of monoclonal antibodies reactive with a denatured form of 
the Friend murine leukemia virus gp70 envelope protein: use in a focal infectivity 
assay, immunohistochemical studies, electron microscopy and western blotting. J 
Virol Methods 34: 255-271, 1991. 
118. Robertson MN, Spangrude GJ, Hasenkrug K, Perry L, Nishio J, Wehrly K, 
and Chesebro B. Role and specificity of T-cell subsets in spontaneous recovery from 
Friend virus-induced leukemia in mice. J Virol 66: 3271-3277, 1992. 
119. Robertson SJ, Ammann CG, Messer RJ, Carmody AB, Myers L, Dittmer U, 
Nair S, Gerlach N, Evans LH, Cafruny WA, and Hasenkrug KJ. Suppression of 



References 

 
 

111 
 

acute anti-friend virus CD8+ T-cell responses by coinfection with lactate 
dehydrogenase-elevating virus. J Virol 82: 408-418, 2008. 
120. Robertson SJ, and Hasenkrug KJ. The role of virus-induced regulatory T 
cells in immunopathology. Springer Semin Immunopathol 28: 51-62, 2006. 
121. Robertson SJ, Messer RJ, Carmody AB, and Hasenkrug KJ. In vitro 
suppression of CD8+ T cell function by Friend virus-induced regulatory T cells. J 
Immunol 176: 3342-3349, 2006. 
122. Robertson SJ, Messer RJ, Carmody AB, Mittler RS, Burlak C, and 
Hasenkrug KJ. CD137 costimulation of CD8+ T cells confers resistance to 
suppression by virus-induced regulatory T cells. J Immunol 180: 5267-5274, 2008. 
123. Rodriguez PC, Quiceno DG, and Ochoa AC. L-arginine availability regulates 
T-lymphocyte cell-cycle progression. Blood 109: 1568-1573, 2007. 
124. Rood JE, Rao S, Paessler M, Kreiger PA, Chu N, Stelekati E, Wherry EJ, 
and Behrens EM. ST2 contributes to T-cell hyperactivation and fatal hemophagocytic 
lymphohistiocytosis in mice. Blood 127: 426-435, 2016. 
125. Saha A, O'Connor RS, Thangavelu G, Lovitch SB, Dandamudi DB, Wilson 
CB, Vincent BG, Tkachev V, Pawlicki JM, Furlan SN, Kean LS, Aoyama K, Taylor 
PA, Panoskaltsis-Mortari A, Foncea R, Ranganathan P, Devine SM, Burrill JS, 
Guo L, Sacristan C, Snyder NW, Blair IA, Milone MC, Dustin ML, Riley JL, 
Bernlohr DA, Murphy WJ, Fife BT, Munn DH, Miller JS, Serody JS, Freeman GJ, 
Sharpe AH, Turka LA, and Blazar BR. Programmed death ligand-1 expression on 
donor T cells drives graft-versus-host disease lethality. J Clin Invest 126: 2642-2660, 
2016. 
126. Santiago ML, Montano M, Benitez R, Messer RJ, Yonemoto W, Chesebro 
B, Hasenkrug KJ, and Greene WC. Apobec3 encodes Rfv3, a gene influencing 
neutralizing antibody control of retrovirus infection. Science 321: 1343-1346, 2008. 
127. Sasso MS, Lollo G, Pitorre M, Solito S, Pinton L, Valpione S, Bastiat G, 
Mandruzzato S, Bronte V, Marigo I, and Benoit JP. Low dose gemcitabine-loaded 
lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate 
cancer immunotherapy. Biomaterials 96: 47-62, 2016. 
128. Schepers K, Toebes M, Sotthewes G, Vyth-Dreese FA, Dellemijn TA, 
Melief CJ, Ossendorp F, and Schumacher TN. Differential kinetics of antigen-
specific CD4+ and CD8+ T cell responses in the regression of retrovirus-induced 
sarcomas. J Immunol 169: 3191-3199, 2002. 
129. Schlie K, Westerback A, DeVorkin L, Hughson LR, Brandon JM, 
MacPherson S, Gadawski I, Townsend KN, Poon VI, Elrick MA, Cote HC, 
Abraham N, Wherry EJ, Mizushima N, and Lum JJ. Survival of effector CD8+ T 
cells during influenza infection is dependent on autophagy. J Immunol 194: 4277-
4286, 2015. 
130. Schuler PJ, Westerkamp AM, Kansy BA, Bruderek K, Dissmann PA, 
Dumitru CA, Lang S, Jackson EK, and Brandau S. Adenosine metabolism of 
human mesenchymal stromal cells isolated from patients with head and neck 
squamous cell carcinoma. Immunobiology 2016. 
131. Seddiki N, Brezar V, and Draenert R. Cell exhaustion in HIV-1 infection: role 
of suppressor cells. Curr Opin HIV AIDS 9: 452-458, 2014. 
132. Serafini P, Mgebroff S, Noonan K, and Borrello I. Myeloid-derived 
suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory 
T cells. Cancer Res 68: 5439-5449, 2008. 
133. Shen L, Sundstedt A, Ciesielski M, Miles KM, Celander M, Adelaiye R, 
Orillion A, Ciamporcero E, Ramakrishnan S, Ellis L, Fenstermaker R, Abrams SI, 
Eriksson H, Leanderson T, Olsson A, and Pili R. Tasquinimod modulates 



References 

 
 

112 
 

suppressive myeloid cells and enhances cancer immunotherapies in murine models. 
Cancer Immunol Res 3: 136-148, 2015. 
134. Shi G, Wang H, and Zhuang X. Myeloid-derived suppressor cells enhance the 
expression of melanoma-associated antigen A4 in a Lewis lung cancer murine model. 
Oncol Lett 11: 809-816, 2016. 
135. Smith LL, Wherry SJ, Larkey LK, Ainsworth BE, and Swan PD. Energy 
expenditure and cardiovascular responses to Tai Chi Easy. Complement Ther Med 
23: 802-805, 2015. 
136. Starborg M, Gell K, Brundell E, and Hoog C. The murine Ki-67 cell 
proliferation antigen accumulates in the nucleolar and heterochromatic regions of 
interphase cells and at the periphery of the mitotic chromosomes in a process 
essential for cell cycle progression. J Cell Sci 109 ( Pt 1): 143-153, 1996. 
137. Stoye JP. Studies of endogenous retroviruses reveal a continuing evolutionary 
saga. Nat Rev Microbiol 10: 395-406, 2012. 
138. Stromnes IM, Dittmer U, Schumacher TN, Schepers K, Messer RJ, Evans 
LH, Peterson KE, Race B, and Hasenkrug KJ. Temporal effects of gamma 
interferon deficiency on the course of Friend retrovirus infection in mice. J Virol 76: 
2225-2232, 2002. 
139. Sui Y, Hogg A, Wang Y, Frey B, Yu H, Xia Z, Venzon D, McKinnon K, 
Smedley J, Gathuka M, Klinman D, Keele BF, Langermann S, Liu L, Franchini G, 
and Berzofsky JA. Vaccine-induced myeloid cell population dampens protective 
immunity to SIV. J Clin Invest 124: 2538-2549, 2014. 
140. Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, and Hahn 
YS. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses 
through the production of reactive oxygen species. Hepatology 55: 343-353, 2012. 
141. Takenaka MC, Robson S, and Quintana FJ. Regulation of the T Cell 
Response by CD39. Trends Immunol 37: 427-439, 2016. 
142. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, 
Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, 
Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, 
Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, and Minn 
AJ. Radiation and dual checkpoint blockade activate non-redundant immune 
mechanisms in cancer. Nature 520: 373-377, 2015. 
143. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, 
Martin F, Apetoh L, Rebe C, and Ghiringhelli F. 5-Fluorouracil selectively kills 
tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-
dependent antitumor immunity. Cancer Res 70: 3052-3061, 2010. 
144. Vollbrecht T, Stirner R, Tufman A, Roider J, Huber RM, Bogner JR, 
Lechner A, Bourquin C, and Draenert R. Chronic progressive HIV-1 infection is 
associated with elevated levels of myeloid-derived suppressor cells. Aids 26: F31-37, 
2012. 
145. Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, and Rustgi AK. 
Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2: e24117, 
2013. 
146. Wang L, Zhao J, Ren JP, Wu XY, Morrison ZD, El Gazzar M, Ning SB, 
Moorman JP, and Yao ZQ. Expansion of myeloid-derived suppressor cells promotes 
differentiation of regulatory T cells in HIV-1+ individuals. Aids 30: 1521-1531, 2016. 
147. Weber C. Hepatitis: Myeloid-derived suppressor cells in HBV infection. Nat 
Rev Gastroenterol Hepatol 12: 370, 2015. 
148. Wesolowski R, Markowitz J, and Carson WE, 3rd. Myeloid derived 
suppressor cells - a new therapeutic target in the treatment of cancer. J Immunother 
Cancer 1: 10, 2013. 



References 

 
 

113 
 

149. Wherry EJ, and Kurachi M. Molecular and cellular insights into T cell 
exhaustion. Nat Rev Immunol 15: 486-499, 2015. 
150. Wherry JN, Huffhines LP, and Walisky DN. A Short Form of the Trauma 
Symptom Checklist for Children. Child Maltreat 21: 37-46, 2016. 
151. Winograd R, Byrne KT, Evans RA, Odorizzi PM, Meyer AR, Bajor DL, 
Clendenin C, Stanger BZ, Furth EE, Wherry EJ, and Vonderheide RH. Induction of 
T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and 
Improves Survival in Pancreatic Carcinoma. Cancer Immunol Res 3: 399-411, 2015. 
152. Wu J, Zhang R, Tang N, Gong Z, Zhou J, Chen Y, Chen K, and Cai W. 
Dopamine inhibits the function of Gr-1+CD115+ myeloid-derived suppressor cells 
through D1-like receptors and enhances anti-tumor immunity. J Leukoc Biol 97: 191-
200, 2015. 
153. Youn JI, Collazo M, Shalova IN, Biswas SK, and Gabrilovich DI. 
Characterization of the nature of granulocytic myeloid-derived suppressor cells in 
tumor-bearing mice. J Leukoc Biol 91: 167-181, 2012. 
154. Young MR, Newby M, and Wepsic HT. Hematopoiesis and suppressor bone 
marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer 
Res 47: 100-105, 1987. 
155. Yu Z, Tan Z, Lee BK, Tang J, Wu X, Cheung KW, Lo NT, Man K, Liu L, and 
Chen Z. Antigen spreading-induced CD8+T cells confer protection against the lethal 
challenge of wild-type malignant mesothelioma by eliminating myeloid-derived 
suppressor cells. Oncotarget 6: 32426-32438, 2015. 
156. Zaunders JJ, Ip S, Munier ML, Kaufmann DE, Suzuki K, Brereton C, 
Sasson SC, Seddiki N, Koelsch K, Landay A, Grey P, Finlayson R, Kaldor J, 
Rosenberg ES, Walker BD, Fazekas de St Groth B, Cooper DA, and Kelleher AD. 
Infection of CD127+ (interleukin-7 receptor+) CD4+ cells and overexpression of 
CTLA-4 are linked to loss of antigen-specific CD4 T cells during primary human 
immunodeficiency virus type 1 infection. J Virol 80: 10162-10172, 2006. 
157. Zehn D, and Wherry EJ. Immune Memory and Exhaustion: Clinically Relevant 
Lessons from the LCMV Model. Adv Exp Med Biol 850: 137-152, 2015. 
158. Zelinskyy G, Balkow S, Schimmer S, Schepers K, Simon MM, and Dittmer 
U. Independent roles of perforin, granzymes, and Fas in the control of Friend 
retrovirus infection. Virology 330: 365-374, 2004. 
159. Zelinskyy G, Balkow S, Schimmer S, Werner T, Simon MM, and Dittmer U. 
The level of friend retrovirus replication determines the cytolytic pathway of CD8+ T-
cell-mediated pathogen control. J Virol 81: 11881-11890, 2007. 
160. Zelinskyy G, Kraft AR, Schimmer S, Arndt T, and Dittmer U. Kinetics of 
CD8+ effector T cell responses and induced CD4+ regulatory T cell responses during 
Friend retrovirus infection. Eur J Immunol 36: 2658-2670, 2006. 
161. Zelinskyy G, Robertson SJ, Schimmer S, Messer RJ, Hasenkrug KJ, and 
Dittmer U. CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent 
Friend retrovirus infection. J Virol 79: 10619-10626, 2005. 
162. Zelinskyy G, Werner T, and Dittmer U. Natural regulatory T cells inhibit 
production of cytotoxic molecules in CD8(+) T cells during low-level Friend retrovirus 
infection. Retrovirology 10: 109, 2013. 
163. Zeng QL, Yang B, Sun HQ, Feng GH, Jin L, Zou ZS, Zhang Z, Zhang JY, 
and Wang FS. Myeloid-derived suppressor cells are associated with viral persistence 
and downregulation of TCR zeta chain expression on CD8(+) T cells in chronic 
hepatitis C patients. Mol Cells 37: 66-73, 2014. 
164. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, 
Rimoldi D, Guillaume P, Meidenbauer N, Mackensen A, Rufer N, Lubenow N, 
Speiser D, Cerottini JC, Romero P, and Pittet MJ. Effector function of human 



References 

 
 

114 
 

tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. 
Cancer Res 64: 2865-2873, 2004. 

 
 

 



Appendix 

 
 

115 
 

10 Appendix 
 

10.1 List of Abbreviations 
 
 
Abbreviations Full name 

5FU 5-Fluorouracil 

˚C Degree Celsius 

µl Microlitre 

ADCC Antibody dependent cell mediated 
cytotoxicity 

AF 700 Alexa Fluor 700 

AF 488 Alexa Fluor 488 

AF 647 Alexa Fluor 647 

AIDS Acquired Immune Deficiency 
Syndrome 

APC Antigen presenting cells 

APC Allophycocyanin 

APC-Cy7 APC-cyanine 7 

Arg Arginase 

B7RP1 B7-Related protein1 

BCL-6 B cell lymphoma 6 

BM Bone marrow 

BSA Bovine Serum Albumin 

BV421 Brilliant violet 421 
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BV605 Brilliant violet 605 

CAD Caspase-activated 
deoxyribonuclease 

cAMP Cyclic adenosine monophosphate 

CD Cluster of differentiation 

CFSE Carboxyfluorescein succinimidyl 
ester 

CTL Cytotoxic T cells 

CTLA-4 Cytotoxic T Lymphocyte Antigen 4 

DC Dendritic cell 

DEREG Depletion of regulatory T cells 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DT Diphtheria toxin 

DTR Diphtheria toxin receptor 

EDTA Etylenadiaminetetraacetic acid 

eF650 eFluor 650 

eF780 eFluor 780 

eF450 eFluor 450 

Env Envelope protein 

FACS Fluorescence Activated Cells 
Scanner (Flow cytometer) 

FASL FAS ligand 
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FCS Fetal Calf Serum 

FITC Fluorescein isothiocyanate 

F-MuLV Friend murine leukemia virus 

Foxp3 Forkhead box P3 

FSC Forward scatter 

FV Friend Virus 

FVD Fixable viable dye 

g Gram 

Gag Group specific antigen 

GATA-3 Gata binding protein 3 

GFP Green fluorescence protein 

gMDSC Granulocytic myeloid derived 
suppressor cell 

Gzm Granzyme 

HBV Hepatitis B Virus 

HCV Hepatitis C Virus 

HIV Human Immunodeficiency Virus 

HPV Human papillomavirus 

HTLV-1 Human T cell leukemia virus-1 

i.p. Intraperitoneal 

i.v. Intravenous 
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ICOS Inducible costimulatory 

IDO Idoleamine 2,3-dioxygenase 

IFN-γ Interferon gamma 

Ig Immunoglobulin 

IL Interleukin 

iTregs Induced Tregs 

KLRG-1 Killer cell lectin-like receptor 
subfamily G member 1 

l Liter 

LAG-3 Lymphocyte-activation gene 3 

LN Lymph nodes 

L-NMMA NG-Monomethyl-L-arginine, 
monoacetate salt 
 

LTR Long Treminal Repeat 

Mab Monoclonal antibody 

MDSC myeloid derived suppressor cell 

mg Miligram 

MHC Major histocompatibility complex 

ml Mililitre 

mMDSC monocytic myeloid-derived 
suppressor cell 

mRNA Messenger RNA 
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MSV Murine sarcoma virus 

n.s. Non-significant 

NK Natural Killer cells 

Nor-NOHA Nω-hydroxy-nor-Arginine 

NOS Nitric oxide synthase 

Nrp-1 Neuropilin-1 

nTregs Natural Tregs 

PAMPs Pathogen-Associated Molecular 
Patterns 

PBBS Phosphate Buffered Saline, 
containing 1.0 g glucose 

PBS Phosphate Buffered Saline 

PD-1 Programmed cell death 1 

PD-L1 Programmed cell death ligand 1 

PE Phycoerythrin 

PE Cy5 Phycoerythrin-Cyanine 5 

PE Cy7 Phycoerythrin- Cyanine 7 

PerCP Peridinin-chlorophyll-protein 
complex 

PI Propidium iodide 

PMT Photomultiplier tube 

Pol Polymerase 

PRR Pathogen Recognition Receptors 
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RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPMI-1640 Rosewell Park Memorial Institute 
Medium 1640 

RSV Rous sarcoma virus 

s.c. Subcutaneous 

SFFV Spleen focus forming virus 

si Small intestine 

SPF Specific pathogen-free 

SSC Sideward scatter 

STAT Signal Transducer and Activator of 
Transcription 

Tcon Conventional CD4+ T cells 

TCR T cell receptor 

Tetr Tetramer 

TGF-β Transforming Growth Factor-beta 

Th T helper cells 

Tim3 T cell immunoglobulin domain and 
mucin domain-3 

TLR Toll-Like Receptor 

TNFR Tumor necrosis factor receptor 

TNF-α Tumor necrosis factor-alpha 

TRAIL Tumor-necrosis-factor-related 
apoptosis-inducing ligand 
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Tregs Regulatory T cells 
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