
WORKING
PAPERS

SES

N. 479
II.2017

Faculté des sciences économiques et sociales

WirtschaFts- und sozialWissenschaFtliche Fakultät

Evaluating local average and 
quantile treatment effects 
under endogeneity based on 
instruments: a review

Martin Huber 
and 
Kaspar Wüthrich

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/79428015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Evaluating local average and quantile treatment effects under

endogeneity based on instruments: a review

Martin Huber* Kaspar Wüthrich�
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Abstract

This paper provides a review of methodological advancements in the evaluation of het-

erogeneous treatment effect models based on instrumental variable (IV) methods. We focus

on models that achieve identification through a monotonicity assumption on the selection

equation and analyze local average and quantile treatment effects for the subpopulation of

compliers. We start with a comprehensive discussion of the binary treatment and binary

instrument case which is relevant for instance in randomized experiments with imperfect

compliance. We then review extensions to identification and estimation with covariates,

multi-valued and multiple treatments and instruments, outcome attrition and measurement

error, and the identification of direct and indirect treatment effects, among others. We also

discuss testable implications and possible relaxations of the IV assumptions, approaches

to extrapolate from local to global treatment effects, and the relationship to other IV ap-

proaches.
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1 Introduction

In empirical research, the assessment of the causal effect of a treatment (e.g. training or ed-

ucation) on an outcome of interest (e.g. earnings) is frequently complicated by endogeneity,

implying that the treatment is not as good as randomly assigned. In other words, individ-

uals may select themselves into the treatment in a non-random way that is related to their

expected gains from the treatment in the outcome. This happens for instance in randomized

experiments with non-compliance in which access to the treatment is randomly assigned, but

some individuals decide not to comply with the randomization but choose a different treatment

state. If compliance behaviour is associated with unobserved characteristics (e.g. motivation or

ability) that also affect the outcome, endogeneity jeopardizes a causal analysis based on simple

comparisons between treated and non-treated observations. In the presence of an instrumental

variable (IV) that (i) affects the treatment decision of (at least) some subpopulation and (ii)

is otherwise not associated with the potential outcomes under either treatment state, causal

effects can nevertheless be identified. For this reason, IV methods have become a cornerstone

of causal inference.

This paper reviews the methodological advancements in the IV-based evaluation of treat-

ment effects. We focus on methods that allow treatment effects to be heterogenous, implying

that the effectiveness of a treatment may vary across study subjects as a function of their

observed and unobserved characteristics. In such models with a binary treatment and binary

instrument and under the restriction that the treatment is weakly monotonic in the instru-

ment, two stage least squares (TSLS) consistently estimates the average treatment effect for

the compliant subpopulation. This effect is usually referred to as local average treatment effect

(LATE). In the experimental context, compliers are those individuals whose treatment status is

induced by the assignment. That is, they take-up the treatment when randomized in, but ab-

stain from it when randomized out. Following the seminal paper of Imbens and Angrist (1994),

much progress has been made in extending the initial framework in various empirically relevant

dimensions. This includes for instance the evaluation of distributional and quantile treatment

effects, multivalued or multiple treatments and instruments, identification and estimation in

the presence of observed covariates, attrition and measurement error, and more. Furthermore,
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it has been acknowledged that the LATE assumptions have testable implications that may be

verified in the data and that specific causal effects might be point or partially identified under

weaker conditions. Finally, conditions and tests for the external validity of the LATE with re-

spect to the average treatment effect (ATE) in the total population have been proposed, which

appears important in the light on the controversial debate in the literature about the empirical

relevance of the complier population; see for instance the discussions in Deaton (2010), Imbens

(2010a), Heckman and Urzúa (2010).

Our survey complements more introductory surveys of the LATE framework, see Imbens

(2014) and the textbook discussions in Angrist and Pischke (2009) and Angrist and Pischke

(2015). A more specialized review focussing on the specific aspects of identifying and estimating

the local quantile treatment effect (LQTE) is provided by Melly and Wüthrich (2016).

We structure the review as follows. Section 2 reviews the IV assumptions in the binary

instrument and treatment case and the identification of the LATE, LQTE, and potential out-

come means and distributions. It also discusses identification under multivalued treatments and

instruments and considers the concept of marginal treatment effects. Section 3 discusses a con-

ditional version of the IV assumptions in the presence of covariates along with the identification

of local, quantile, and marginal treatment effects as well as more general functionals among

compliers. Section 4 discusses extensions of the IV framework to more complex identification

problems, including non-response bias in the outcome, measurement errors in the treatment or

the instrument, the presence of dynamic, i.e. sequentially assigned, or multiple treatments, and

the evaluation of causal mechanisms (or direct and indirect effects) of the treatment. Section 5

discusses how violations of the IV assumptions affect identification and under which relaxations

of the assumptions causal effects on specific subpopulations can nevertheless be obtained. Sec-

tion 6 outlines approaches to test the IV assumptions and briefly discusses sensitivity checks

and bounds analysis under specific violations of the assumptions. Section 7 is concerned with

the external validity of the LATE for the entire popluation. It discusses potential checks for

external validity based on observables, conditions for extrapolating the LATE to the ATE and

along with testable implications, and partial identification of the ATE based on the IV assump-

tions and possibly further restrictions. Section 8 clarifies the relationship of the framework

considered in this paper and other IV approaches suggested in the literature. Specifically, we
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discuss the connection to the classical linear IV model with covariates and to the instrumental

variable quantile regression model (Chernozhukov and Hansen, 2005). Section 9 concludes.

2 Identification and estimation without covariates

We first consider a setup with a binary treatment and a binary instrument. Section 2.1 discusses

the IV assumptions, while Section 2.2 shows the identification of the LATE, LQTE, and the

potential outcomes among compliers. Section 2.4 extends the initial framework to the case

of a multivalued treatment, while Section 2.3 is concerned with multivalued instruments and

introduces the concept of marginal treatment effect.

2.1 Assumptions

The leading case in the program evaluation literature is the assessment of the effect of some

binary intervention or treatment D (with D ∈ {1, 0}). Examples include receiving (D = 1) or

not receiving (D = 0) a labor market intervention like a job training, an educational interven-

tion like private schooling, or a health intervention like a medical treatment. Y denotes the

outcome on which the effect ought to be estimated, for instance, labor market success such as

employment or earnings, which is measured at some point in time after the treatment. Under

endogeneity, unobserved factors affect both D and Y such that treatment effects cannot be

identified from simple comparisons of the treatment and the control group. However, if there

exists an instrumental variable Z which is relevant in the sense that it influences the treatment

status and valid in the sense that it is not associated with the unobserved factors and does not

directly affect the outcome, treatment effects can be identified.

Our formal discussion is developed within the potential outcome framework (see for instance

Rubin, 1974). Denote by D(z) the potential treatment state that would occur if the instrument

Z was exogenously set to some value z, and by Y (d) the potential outcome for setting the treat-

ment to some d ∈ {1, 0}. We will henceforth assume a binary instrument (Z ∈ {1, 0}), which for

the time being simplifies the exposition, while Section 2.3 extends the framework to multi-valued

Z. As an illustrative example, consider the experimental evaluation of a job training program

in which Z and D denote the randomized assignment of and the actual participation status in
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the training, respectively. In this context, D(1) and D(0) denote the potential participation

states when randomized into or out of the job training. Similarly, Y (1) and Y (0) denote the

potential outcomes (e.g. employment states) when participating and not participating in the

training. For each subject, only one of the two potential outcomes and treatment states are

observed, because the observed variables are defined as Y = D · Y (1) + (1 − D) · Y (0) and

D = Z ·D(1) + (1−Z) ·D(0). Consequently, causal effects cannot be identified without further

assumptions.

Table 1: Definition of types

Types (T ) D(1) D(0) Notion

a 1 1 Always takers
c 1 0 Compliers
d 0 1 Defiers
n 0 0 Never takers

Even without any assumptions, the population can, however, be split into four treatment

compliance types (denoted by T ∈ {a, c, d, n}) defined by the joint potential treatment states

under z = 1 and z = 0, see the discussion in Angrist et al. (1996). As shown in Table 1, the

compliers (c : D(1) = 1, D(0) = 0) react on the randomization as intended by the researcher

and participate in the training when z = 1, while abstaining from it when z = 0. For the

remaining three types, D(z) 6= z for either z = 1, or z = 0, or both: The always takers

(a : D(1) = 1, D(0) = 1) always take the training irrespectively of the instrument status, the

never takers (n : D(1) = 0, D(0) = 0) are never treated, and the defiers (d : D(0) = 1, D(0) = 1)

react counter-intuitively to randomization by participating in the treatment when randomized

out, but not participating when randomized in. As either D(1) or D(0) remains unknown in

the data, one cannot infer on any subject’s type, which is a function of both potential treatment

states. This implies that any subject with a particular observed combination of the treatment

and the instrument may belong to one of two types, as summarized in Table 2.

Table 2: Observed subgroups and types

Observed values of Z and D Potential types T

{Z = 1, D = 1} belongs either to a or to c
{Z = 1, D = 0} belongs either to d or to n
{Z = 0, D = 1} belongs either to a or to d
{Z = 0, D = 0} belongs either to c or to n

Therefore, comparing E[Y |D = 1]−E[Y |D = 0] or E[Y |D = 1, Z = z]−E[Y |D = 0, Z = z]
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(for z ∈ {1, 0}) does generally not yield any causal effect, as the mixture of types differs across

D or (D,Z), respectively. The reason is that types generally have different distributions of

unobservables which may confound the treatment and outcome. To convey the intuition, we

consider the following nonparametric IV model:

Y = φ(D,U), D = η(Z, V ), (2.1)

φ and η denote general functions, while U and V are the unobserved terms (possibly scalars

or vectors) which may be arbitrarily associated with each other, thus causing the treatment to

be endogenous. Potential outcomes and treatment states are readily obtained by exogenously

setting the treatment and the instrument to particular values d and z:

Y (1) = φ(1, U), Y (0) = φ(0, U), D(1) = η(1, V ), D(0) = η(0, V ).

As D(1) = η(1, V ) and D(0) = η(0, V ) differ across types, i.e., they have different potential

treatments for same values of z, the distribution of V must necessarily differ across types (as

D is a function of Z and V only). Therefore, U also differs across types if it is associated with

V . This can be easily illustrated by means of the following parametric model, which is a special

case of the general IV model (2.1):

Y = α+ βD + U, D = I{γ + δZ ≥ V }. (2.2)

α, γ are constants, β and δ slope coefficients, and I{·} the indicator function which is equal to

one if its argument is satisfied and zero otherwise. Furthermore, U, V are assumed to be scalars

for the sake of simplicity. For the compliers, it holds that D(1) = I{γ + δ ≥ V } = 1, D(0) =

I{γ ≥ V } = 0, so that the distribution of V satisfies γ + δ ≥ V > γ. Among always takers,

however, D(1) = I{γ+δ ≥ V } = 1, D(0) = I{γ ≥ V } = 1, so that V ≤ γ. Consequently, unless

U and V are independent, the treatment and the outcome are confounded. Treatment effects

can therefore only be identified under additional assumptions on Z are satisfied, as outlined
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below.

Note that the parametric model in (2.2) postulates homogeneous treatment effects due to the

additive separability of D and U . However, there is generally no reason to believe that treatment

effects are constant across individuals. One therefore typically prefers models that allow for

heterogeneous treatment effects. That is, the impact of D on Y may vary across the values of

other (unobserved) factors. Imbens and Angrist (1994) postulate the identifying assumptions

for nonparametric IV models like (2.1), with the caveat that under effect heterogeneity, effects

can generally only be obtained for the subpopulation of compliers. The assumptions impose (i)

statistical independence between Z and the joint distribution of the potential treatment states

and outcomes and (ii) weak monotonicity of the treatment in the instrument. Formally, the

first assumption can be stated as follows:

Assumption 2.1 (Joint independence). Z⊥(D(1), D(0), Y (1), Y (0))

The symbol “⊥” denotes independence. Assumption 2.1 implies two subconditions. First,

the instrument must be random so that it is unrelated with factors affecting the treatment

and/or outcome, implying that (U, V )⊥Z holds in model (2.1). Therefore, not only the potential

outcomes/treatment states, but also the types, which are defined by the joint potential treatment

states, are independent of the instrument. Second, Z must not have a direct effect on Y

other than through D, i.e., satisfy an exclusion restriction, which can be seen from the fact

that the potential outcomes are only defined in terms of d rather than z and d. This holds

by the model definitions in (2.1) and (2.2), because Z does not enter the equation of Y as

explanatory variable. To make these two aspects explicit, Assumption 2.1 may be split into

two conditions, see Angrist et al. (1996): (i) Z⊥(D(1), D(0), Y (1, 1), Y (1, 0), Y (0, 1), Y (0, 0))

and (ii) Y (1, d) = Y (0, d) = Y (d) for d ∈ {1, 0} (exclusion restriction), where Y (z, d) denotes a

potential outcome defined in terms of both the instrument z and the treatment d.

Concerning the plausibility of Assumption 2.1 in empirical applications, note that in a suc-

cessfully conducted experiment, the randomness of Z holds by construction. Furthermore, the

exclusion restriction holds if mere assignment for instance to a training program does not have

a direct effect on the outcome, e.g. through increased motivation or frustration due to being

(not) offered the training. While Assumption 2.1 is plausible for instance in a medical trial
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where individuals in the control group receive placebo treatments, it might be more dubious

in so-called quasi-experimental settings. Taking the estimation of the returns to education (D)

as an example, Angrist and Krueger (1991) suggest using quarter of birth as instrument (Z),

as it is related to years of education through regulations concerning the school starting age,

but arguably neither is driven by factors also affecting income nor has a direct effect on in-

come. However, Bound et al. (1995) contest Assumption 2.1 in the context of quarter of birth

instruments and present evidence that seasonal patterns of births are related to family income,

physical and mental health, and school attendance rates, all of which may affect income. Fur-

thermore, Buckles and Hungerman (2013) document large differences in maternal characteristics

for births throughout the year (with winter births being more often realized by teenagers and

unmarried women) based on U.S. birth certificate data and census data. A careful assessment

of instruments that may appear plausible at the first glance is therefore in order, in particular

when they are not randomly assigned by the researcher and no placebo treatments are given to

the control group.

It is worth noting that when aiming to identify a mean effect like the LATE (see (2.15)

below), full independence between Z and Y (1), Y (0) as postulated in Assumption 2.1 can be

replaced by the weaker mean independence restriction E(Y (d)|T = t, Z = 1) = E(Y (d)|T =

t, Z = 0) = E(Y (d)|T = t) for d ∈ {0, 1} and t ∈ {a, c, d, n}. However, when distributional

features like quantile treatment effects are of interest, (full) independence is required. From a

practical perspective, the distinction between mean and full independence is often less relevant,

as it is generally hard to think of scenarios in which mean independence holds, but the stronger

full independence does not. For instance, if one is willing to assume that an instrument is

mean independent of the potential hourly wage, it seems reasonable to also assume that it is

mean independent of the log of potential hourly wage. As the latter variable is a (one-to-one)

nonlinear transformation of the original potential outcome, this implies independence also with

respect to higher moments. Therefore, strengthening mean to full independence often comes

with little costs in terms of credibility such that we do not consider mean independence in the

remainder of this paper.

Assumption 2.2 (Monotonicity). Pr(D(1) ≥ D(0)) = 1 or Pr(D(1) ≤ D(0)) = 1
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Assumption 2.2 says that the potential treatment state of any individual does either not

decrease (positive monotonicity, Pr(D(1) ≥ D(0)) = 1) or not increase (negative monotonicity,

Pr(D(1) ≤ D(0)) = 1) in the instrument. We will henceforth only consider the case of positive

monotonicity, because the case of negative monotonicity is symmetric. Assumption 2.2 rules

out the existence of defiers (type T = d), because for the latter group, D(1) < D(0). As a con-

sequence, always takers, never takes and compliers exhaustively partition the whole population.

Note that this condition is implicit in parametric models like (2.2), where δ is a constant so

that the effect of Z is homogeneous and V is a scalar unobservable. Again, this may not be the

case in more general models.

Assumption 2.2 is satisfied by construction in randomized experiments with so-called one-

sided non-compliance (see Bloom (1984)) and a first stage: if no subject randomized out of a

job training can manage to “sneak into” the training anyway, then Pr(D(0) = 1) = 0 such that

defiers as well always takers do not exist. Even in many field experiments where Pr(D(0) = 1) >

0, the presence of defiers appears implausible as it would imply counter-intuitive behavior to the

randomization protocol. In several quasi-experimental settings, however, the assumption might

be disputable. Reconsidering the quarter of birth instrument, positive monotonicity appears

plausible in the U.S. context at a first glance. Arguably, among students entering school in the

same year, those who are born in an earlier quarter can drop out after less years of completed

education at the age of 16 when compulsory schooling ends than those born later, in particular

after the end of the academic year. However, strategic postponement of school entry due to

redshirting or unobserved school policies as discussed in Aliprantis (2012), Barua and Lang

(2009), and Klein (2010) may reverse the relation of education and quarter of birth for some

individuals such that defiers exist. Assumption 2.2 therefore needs to be scrutinized with similar

care as Assumption 2.1.

The next key condition, Assumption 2.3, assumes the existence of compliers (type T = c)

in the population.

Assumption 2.3 (First-stage). Pr(D(1) > D(0)) > 0

Under Assumption 2.1 and 2.2, Pr(D(1) > D(0)) > 0 is equivalent to the existence of a

first stage, E(D|Z = 1)− E(D|Z = 0) > 0 and thus corresponds to one of the two classical IV
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assumptions. In our parametric model, this is satisfied if δ is positive and sufficiently large to

shift the treatment decision at least for a subpopulation when switching from z = 0 to z = 1.

In seminal work, Vytlacil (2002) shows that Assumptions 2.1 – 2.3 correspond to a particular

nonparametric IV model (2.1) with the following threshold crossing selection equation

D = 1(µ(Z) ≥ V ), (2.3)

where V is a scalar unobservable and µ(Z) is a nontrivial function of Z.

It is interesting to note that IV-based identification can also be obtained in structural models

different from (2.2) and (2.2), which appear rather conventional. This concerns for instance the

relation of Z and D, consider for instance the model provided in Hernan and Robins (2006):

Y = φ(D,U), D = η(V,U), Z = κ(V ), U⊥V,

where φ(·), η(·), κ(·) are unknown functions. Here, D is not affected by Z. However, the

two variables are correlated through the unobservable V so that Z predicts D. As V and U

are independent, Assumption 2.1 holds. Further examples can be found in Chalak and White

(2011), who exhaustively discuss the structural relations under which a variable may serve as

instrument Z in regression models.

2.2 Identification under a binary treatment and instrument

To demonstrate how Assumptions 2.1 – 2.3 permit identifying the LATE, LQTE, and the

potential outcome distributions (including the means), we introduce some further notation

that heavily borrows from Kitagawa (2009). Let f(y,D = d|Z = z) denote the (observed) joint

density of the observed outcome and D = d conditional on Z = z for d, z ∈ {1, 0}. Furthermore,

denote by f(y(d), T = t|Z = z) the unobserved joint density of the potential outcome and type

t conditional on Z = z, where t ∈ {a, c, d, n}. In the absence of Assumptions 2.1 – 2.3, it

follows from Table 2 that any observed joint density is a function of the potential outcomes of

two different types conditional on Z, such that the subsequent relationships of observed and
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unobserved joint densities hold for all y in the support of Y :

f(y,D = 1|Z = 1) = f(y(1), T = c|Z = 1) + f(y(1), T = a|Z = 1), (2.4)

f(y,D = 1|Z = 0) = f(y(1), T = d|Z = 0) + f(y(1), T = a|Z = 0), (2.5)

f(y,D = 0|Z = 1) = f(y(0), T = d|Z = 1) + f(y(0), T = n|Z = 1), (2.6)

f(y,D = 0|Z = 0) = f(y(0), T = c|Z = 0) + f(y(0), T = n|Z = 0). (2.7)

When imposing Assumption 2.1, f(y(d), T = t|Z = 1) = f(y(d), T = t|Z = 0) = f(y(d), T =

t) for any type and treatment state, otherwise the potential treatment states and/or potential

outcomes were not independent of the instrument. Under Assumption 2.2, f(y(1), T = d) and

f(y(0), T = d) are equal to zero. Therefore, equations (2.4) to (2.7) simplify to

f(y,D = 1|Z = 1) = f(y(1), T = c) + f(y(1), T = a), (2.8)

f(y,D = 1|Z = 0) = f(y(1), T = a), (2.9)

f(y,D = 0|Z = 1) = f(y(0), T = n), (2.10)

f(y,D = 0|Z = 0) = f(y(0), T = c) + f(y(0), T = n). (2.11)

where f(y(0), T = c) and f(y(1), T = c) are nonzero for at least some values (y(0), y(1)) in the

support of (Y (0), Y (1)) by Assumption 2.3. Subtracting (2.9) from (2.8) and (2.10) from (2.11)

yields the joint densities of the compliers under treatment and non-treatment:

f(y,D = 1|Z = 1)− f(y,D = 1|Z = 0) = f(y(1), T = c), (2.12)

f(y,D = 0|Z = 0)− f(y,D = 0|Z = 1) = f(y(0), T = c). (2.13)

To obtain the LATE, note that
∫
f(y(d), T = c)dy = πc, where πc = Pr(T = c) denotes the

share of compliers in the population (and more generally, πt = Pr(T = t) will henceforth denote
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the share of type t). Therefore, πc is identified by

πc =

∫
[f(y,D = 1|Z = 1)− f(y,D = 1|Z = 0)]dy

= Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0) = E(D|Z = 1)− E(D|Z = 0). (2.14)

Furthermore,
∫
y[f(y(d), T = c)]dy =

∫
y[f(y(d)|T = c)]πcdy = E[Y (d)|T = c] · πc implies that

E[Y (1)− Y (0)|T = c] · πc

=

∫
y{[f(y,D = 1|Z = 1)− f(y,D = 1|Z = 0)]− [f(y,D = 0|Z = 0)− f(y,D = 0|Z = 1)]}dy

=

∫
y[f(y|Z = 1)− f(y|Z = 0)]dy = E(Y |Z = 1)− E(Y |Z = 0),

which is the intention-to-treat effect (ITT). The latter generally deviates from the average

treatment effect in the total population because it does not comprise the effects on the always

and never takers, who do not react on the instrument. By scaling the ITT by the share of

compliers we obtain the standard identification result for the LATE (denoted by ∆c):

E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
= E[Y (1)− Y (0)|T = c] = ∆c. (2.15)

That is, the so-called Wald estimand, which in the binary treatment and instrument case cor-

responds to the probability limit of TSLS, identifies the LATE. It is worth noting that under

one-sided noncompliance, the LATE simplifies to E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1) and coincides with the

average treatment effect on the treated (ATT), ∆D=1, a parameter of major interest in the
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treatment evaluation literature:

∆c = E(Y (1)− Y (0)|D(1) = 1, D(0) = 0)

= E(Y (1)− Y (0)|D(1) = 1)

= E(Y (1)− Y (0)|D(1) = 1, Z = 1)

= E(Y (1)− Y (0)|D = 1, Z = 1)

= E(Y (1)− Y (0)|D = 1)

= ∆D=1.

The second equality follows from Pr(D(0) = 1) = 0 (one-sided non-compliance) such that

D(1) = 1 implies T = c, the third from Assumption 2.1, the fourth from the definition of

potential treatments, and the fifth from Pr(D(0) = 1) = 0 ⇒ Pr(D = 1|Z = 0) = 0 such that

D = 1⇒ D = 1, Z = 1.

Also the density functions of the potential outcomes among compliers are identified, see

Imbens and Rubin (1997). By (2.12) and (2.14)

f(y(1)|T = c) =
f(y,D = 1|Z = 1)− f(y,D = 1|Z = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

=
f(y|D = 1, Z = 1) · Pr(D = 1|Z = 1)− f(y|D = 1, Z = 0) · Pr(D = 1|Z = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)
.

By (2.13) and (2.14)

f(y(0)|T = c) =
f(y,D = 0|Z = 0)− f(y,D = 0|Z = 1)

Pr(D = 0|Z = 0)− Pr(D = 0|Z = 1)

=
f(y|D = 0, Z = 0) · Pr(D = 0|Z = 0)− f(y|D = 0, Z = 1) · Pr(D = 0|Z = 1)

Pr(D = 0|Z = 0)− Pr(D = 0|Z = 1)
.

The mean potential outcomes among compliers correspond to the following expressions, see
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also Imbens and Rubin (1997) and Abadie (2002):

E(Y (1)|T = c) =

∫
y{f(y,D = 1|Z = 1)− f(y,D = 1|Z = 0)}dy

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

=
E(Y,D = 1|Z = 1)− E(Y,D = 1|Z = 0)

E(D|Z = 1)− E(D|Z = 0)

=
E(Y ·D|Z = 1)− E(Y ·D|Z = 0)

E(D|Z = 1)− E(D|Z = 0)
. (2.16)

E(Y (0)|T = c) =

∫
y{f(y,D = 0|Z = 0)− f(y,D = 0|Z = 1)}dy

Pr(D = 0|Z = 0)− Pr(D = 0|Z = 1)

=
E(Y,D = 0|Z = 0)− E(Y,D = 0|Z = 1)

Pr(D = 0|Z = 0)− Pr(D = 0|Z = 1)

=
E(Y · (1−D)|Z = 0)− E(Y · (1−D)|Z = 1)

E(1−D|Z = 0)− E(1−D|Z = 1)

=
E(Y · (1−D)|Z = 1)− E(Y · (1−D)|Z = 0)

E(1−D|Z = 1)− E(1−D|Z = 0)
. (2.17)

E(Y (1)|T = c) can be consistently estimated by a modified version of TSLS when using Z as

instrument in a regression of Y · D on a constant and D, where the coefficient on the latter

gives the estimate. Likewise, an estimate of E(Y (0)|T = c) is obtained by a TSLS regression of

Y · (1−D) on (1−D).

As shown in Lemma 2.1 of Abadie (2002), the identification results (2.16) and (2.17) not

only hold with respect to Y , but also for any function of the outcome, denoted by h(y), with a

finite first moment. As an important case, setting h(y) = 1(Y ≤ y), with y being some value on

the real line, allows identifying cumulative distribution functions (cdf) of potential outcomes:

FY (1)|T=c(y) =
E(1(Y ≤ y) ·D|Z = 1)− E(1(Y ≤ y) ·D|Z = 0)

E(D|Z = 1)− E(D|Z = 0)
, (2.18)

FY (0)|T=c(y) =
E(1(Y ≤ y) · (1−D)|Z = 1)− E(1(Y ≤ y) · (1−D)|Z = 0)

E(1−D|Z = 1)− E(1−D|Z = 0)
,

FY (1)|T=c(y)− FY (0)|T=c(y) =
E(1(Y ≤ y)|Z = 1)− E(1(Y ≤ y)|Z = 0)

E(D|Z = 1)− E(D|Z = 0)
.

Estimation is straightforward by TSLS when regressing 1(Y ≤ y)·D on D and 1(Y ≤ y)·(1−D)

on (1−D), respectively.
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Finally, quantiles of the potential outcomes of compliers are obtained by inverting the cdfs:

QY (d)|T=c(τ) = [inf
y

Pr(Y (d) ≤ y|T = c) ≥ τ ] = F−1
Y (d)|T=c(τ), (2.19)

where τ ∈ (0, 1) is the rank in the potential outcome distribution under D = d. This allows

defining the local quantile treatment effect (LQTE) at the τ th quantile, which corresponds to

∆c(τ) = QY (1)|T=c(τ)−QY (0)|T=c(τ). (2.20)

Estimation can be performed by inverting the empirical potential outcome cdfs. Under standard

regularity conditions the resulting estimators are consistent and asymptotically normal if the

densities of the potential outcomes among compliers are positive at y: f(y(d)|T = c) > 0 for

d ∈ {0, 1}.

2.3 Multivalued instruments and marginal treatment effects

In this section we consider extensions to setups with nonbinary instruments while maintaining

the assumption that the treatment is binary.

First, if the instrument is multivalued one can identify a LATE with respect to any pair of

values (z′′, z′) satisfying Assumptions 2.1 – 2.3. Instead of identifying many pairwise effects,

we might be interested in the effect for the largest possible complier population. If we define

monotonicity with respect to the treatment propensity score p(z) = Pr(D = 1|Z = z), this can

be achieved by identifying the LATE with respect to the two instrument values that minimize

and maximize p(z), (zmin, zmax):

∆c(p(zmin), p(zmax)) =
E(Y |p(Z) = p(zmax))− E(Y |p(Z) = p(zmin))

E(D|p(Z) = p(zmax))− E(D|p(Z) = p(zmin))
.

If Z is multidimensional, the different elements in Z can straightforwardly be collapsed into a

single instrument by using p(Z).

If the instrument(s) is/are continuous, it is possible to identify a continuum of treatment
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effects. This has been outlined in Heckman and Vytlacil (2001b) and Heckman and Vytlacil

(2005), who call the resulting parameter based on an infinitesimal change in the instrument the

marginal treatment effect (MTE). The latter is defined as average treatment effect conditional

on V , the unobserved term in the treatment model (2.1):

∆(v) = E(Y (1)− Y (0)|V = v).

Assume that V represents the (unobserved) cost or disutility of treatment. The MTE can then

be interpreted as average effect among persons who would be indifferent between treatment

or not if exogenously assigned a value of Z, say z, such that µ(z) = v, which follows from the

treatment model representation D = 1(µ(Z) ≥ V ), see (2.3). Any LATE (and any other average

treatment effect) can be expressed as a (density-)weighted average of MTEs. Note that for any

(z′′, z′) such that p(z′′) > p(z′), a complier is someone satisfying D(z′′) = 1(µ(z′′) ≥ V ) = 1 and

D(z′) = 1(µ(z′) ≥ V ) = 0. Put differently, compliers c(z′′, z′) are characterized by v′ < V ≤ v′′

so that D(z′′) = 1 and D(z′) = 0 holds. Therefore, the LATE for T = c(z′′, z′) is defined as

E(Y (1)− Y (0)|T = c(z′′, z′)) = E(Y (1)− Y (0)|D(z′′) = 1, D(z′) = 0)

= E(Y (1)− Y (0)|v′ < V ≤ v′′)

= ∆c(v
′′, v′) =

1

FV (v′′)− FV (v′)

∫ v′′

v′
∆(v)dFV (v).

V can be normalized so that the normalization (denoted by V̄ ) satisfies V̄ ∼ Uniform[0, 1].

Therefore, the normalization corresponds to the cdf: V̄ = FV . This normalization is innocuous

given our assumptions, because if D = 1(µ(Z) ≥ V ), then by applying a probability transfor-

mation, the model can be reparametrized so that D = 1(η(Z) ≥ V̄ ), with η(Z) = FV (µ(Z)). It

follows that

∆c(v̄
′′, v̄′) =

1

v̄′′ − v̄′

∫ v̄′′

v̄′
∆(v̄)dv̄.

The MTE can be identified by the fact that v̄′′ = FV (v′′) = Pr(D(z′′) = 1) = Pr(D = 1|Z =
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z′′) = p(z′′) and equivalently, v̄′ = p(z′). Therefore, the MTE is recovered pointwise by the

derivative of the conditional expectation of Y with respect to p(Z):

∆(V̄ = p(z)) =
∂E(Y |p(Z) = p(z))

∂p(z)
.

This follows from the fact that

E(Y |p(Z) = p(z)) = E(Y (0)|p(Z) = p(z)) + E(Y (1)− Y (0)|p(Z) = p(z), D = 1) · p(z)

= E(Y (0)) + E(Y (1)− Y (0)|p(z) ≥ V̄ ) · p(z)

= E(Y (0)) +

∫ p(z)

0
∆(v̄)dv̄,

such that the first derivative yields the parameter of interest. Heckman and Vytlacil (1999)

coined the term local IV (LIV) for ∆(V̄ = p), a parameter even ‘more local’ than the conditional

LATE ∆c(v̄
′′, v̄′) based on a quantifiable difference between v̄′′ and v̄′. Note, however, that the

conditional LATE is equivalent to the LIV for v̄′′ − v̄′ infinitesimally small.

Using similar arguments, Carneiro and Lee (2009) extend these ideas to the identification

of the QTE analogs of the MTE, the marginal quantile treatment effects (MQTE):

∆(τ |V̄ = p(z)) ≡ QY1(τ |V̄ = p(z))−QY0(τ |V̄ = p(z)).

QY1(τ |V̄ = p(z)) and QY0(τ |V̄ = p(z)) are identified as the inverses of

FY (1)(y|V̄ = p(z)) = FY (y|P (Z) = p(z), D = 1) + p(z)
∂FY (y|P (Z) = p(z), D = 1)

∂p
,

FY (0)(y|V̄ = p(z)) = FY (y|P (Z) = p(z), D = 0)− (1− p(z))∂FY (y|P (Z) = p(z), D = 0)

∂p
.

2.4 Multivalued treatments

In contrast to extensions of the standard LATE framework to multivalued instruments as con-

sidered in Section 2.3, generalizing binary to nonbinary treatments is not straightforward. To
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illustrate this point, consider a setup with a single binary instrument Z ∈ {0, 1} and an or-

dered discrete treatment D ∈ {0, 1, ..., J}, where J + 1 is the number of possible treatment

doses. We cannot identify causal effects for single compliance types at specific treatment val-

ues, e.g. for those increasing the treatment from 1 to 2 when the instrument switches from 0 to

1. However, it is possible to identify a weighted average of causal effects of unit increases in the

treatment, Y (j)− Y (j − 1), j ∈ {1, ..., J}. Specifically, Angrist and Imbens (1995) show that if

Pr(D(1) ≥ j > D(0)) > 0 for at least one value j such that compliers exist at some margin of

the treatment, we have that

E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
=

J∑
j=1

wj · E(Y (j)− Y (j − 1)|D(1) ≥ j > D(0)), (2.21)

where

wj =
Pr(D(1) ≥ j > D(0))∑J
j=1 Pr(D(1) ≥ j > D(0))

,

implying that 0 ≤ wj ≤ 1 and
∑J

j=1wj = 1. Therefore, the Wald estimand equals a weighted

average of per-unit treatment effects, where, unfortunately, the weights cannot be identified.

Angrist and Imbens (1995) show that similar results hold in setups with multiple instruments

and covariates. It is important to note that while this strategy yields weighted LATEs, it

cannot be applied to identify LQTEs as their identification hinges on separately identifying and

subsequently inverting marginal distributions of potential outcomes.

Several contributions discuss identification when treatment values cannot be ordered. Be-

haghel et al. (2013) consider multiple unordered treatments that are mutually exclusive, which

is equivalent to the case of a single treatment with multiple, albeit unordered values. They

demonstrate under Assumption 2.1 and a specific monotonicity assumption tailored to the in-

vestigated case of a three-valued treatment and instrument (D,Z ∈ {0, 1, 2}) that LATEs among

the two complier populations c1 : D(1) = 1, D(0) = 0 and c2 : D(2) = 2, D(0) = 0 are identi-

fied. Heckman and Pinto (2015) consider an unordered monotonicity assumption that requires

for any specific value of the unordered treatment that if some subjects move into (out of) the

18



respective value when the instrument is switched, then no subjects can at the same time move

out of (into) that value. Hull (2015) imposes conditional IV validity in the spirit of Assumption

3.1 and shows under a modified monotonicity assumption for a three-valued treatment that

LATEs can be obtained even from a binary instrument if (i) compliance is heterogeneous and

(ii) LATEs are homogeneous in observables X. Lee and Salanie (2015) discuss identification un-

der the conditions that any treatment value is a measurable function of some threshold-crossing

models and sufficiently many continuous instruments are available, but require no classical

monotonicity assumption.

3 Treatment evaluation with covariates

We subsequently discuss IV-based treatment evaluation in the presence of covariates. Section

3.1 presents the identifying assumptions, while Sections 3.2, 3.3, 3.4 consider the evaluation

of local, quantile, and marginal treatment effects, respectively. Section 3.5 shows that quite

general functionals rather than merely effects can be identified for compliers.

3.1 Identifying assumptions

It may not appear credible that an instrument satisfies Assumptions 2.1 – 2.3 unconditionally,

i.e. without controlling for further covariates. As an example, consider the study of Card (1995),

who evaluates the returns to college education using the U.S. National Longitudinal Survey of

Young Men. Geographic proximity to college serves as instrument for the potentially endogenous

decision of going to college. Proximity should induce some individuals to strive for a college

degree who would otherwise not, for instance due to costs associated with not living at home.

However, the instrument might be correlated with factors like local labor market conditions

or family background which might be related to the earnings outcome, implying a violation

of Assumption 2.1. For these reasons, Card (1995) includes a range of control variables in his

estimations, including parents’ education, ethnicity, urbanity, and geographic region.

We subsequently reconsider the binary instrument and treatment case of Section 2.1, but

now impose conditional IV assumptions (see for instance Abadie (2003)), which imply that the

IV assumptions only hold when controlling for a vector of observed covariates denoted by X.
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Assumption 3.1 (Conditional independence). Z⊥(D(1), D(0), Y (1), Y (0))|X

Assumption 3.2 (Monotonicity). Pr(D(1) ≥ D(0)|X) = 1

Assumption 3.3 (First-stage). Pr(D(1) > D(0)|X) > 0

Assumption 3.1 is weaker than Assumption 2.1, because independence now only holds among

units with the same values of X, implying that Z is as good as randomly assigned given X.

Assumption 3.2 requires that defiers do not exist for every value of X. Theoretically, one could

construct cases where defiers exist unconditionally (such that Pr(D(1) ≥ D(0)) = 1 as stated

in Assumption 2.2 does not hold), but not after conditioning on X, for instance if Z affected

X positively and X affected D (sufficiently strongly) negatively. Assumption 3.3 implies that

compliers exist for every value of X in its support, which is stronger than Assumption 2.3.

Pr(D(1) > D(0)|X) > 0 is required for identifying the conditional LATE or LQTE, see Sections

3.2 and 3.3 almost everywhere, while Pr(D(1) > D(0)) > 0 suffices if one is only interested in

the (unconditional) LATE and LQTE.

Assumption 3.4 (Common support). 0 < Pr(Z = 1|X) < 1

Assumption 3.4 is a common support restriction requiring that no value of X perfectly

predicts (non-)assignment to the instrument. If it was not satisfied, no comparable units (in

terms of X) across instrument states Z = 1 and Z = 0 would exist for some values of X so that

identification would break down at these values.

Similar to (2.1), we briefly consider a general IV model that now includes X to further

elucidate the implications of the assumptions:

Y = φ(D,X,U), Y (d) = φ(d,X,U),

D = δ(Z,X, V ), D(z) = δ(z,X, V ). (3.1)

Assumption 3.1 implies that (U, V )⊥Z|X. Furthermore, under Assumptions 3.2 – 3.3 , D can

also be represented as D = 1(µ(Z,X) ≥ V ); see Vytlacil (2002).
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3.2 LATE

Using analogous arguments as in Section 2, the conditional LATE given X = x is identified

under Assumptions 3.1 – 3.4 by

E(Y (1)− Y (0)|T = c,X = x) = ∆c(x) =
E(Y |Z = 1, X = x)− E(Y |Z = 0, X = x)

E(D|Z = 1, X = x)− E(D|Z = 0, X = x)
,(3.2)

see for instance Heckman (1997). Nonparametric estimation of ∆c(x) suffers from the curse of

dimensionality when X is high dimensional. To overcome this problem, one may either impose

parametric restrictions on the conditional means E(Y |Z = z,X = x) and E(D|Z = z,X = x)

for z ∈ {0, 1}, see Tan (2006), or employ a semiparametric approach based on the weighting

result by Abadie (2003) to construct weighted least squares estimates, see Section 3.5.

While identification of the conditional LATE allows investigating effect heterogeneity with

respect to observable covariates, the (unconditional) LATE is frequently the main parameter

of interest also under the conditional IV assumptions. It is obtained as a weighted average of

conditional LATEs among compliers, i.e. by integrating over the distribution X given T = c:

∆c =

∫
∆c(x)dFX|T=c(x).

Frölich (2007) shows that the LATE can also be represented in the following way:

∆c =

∫
{E(Y |Z = 1, X = x)− E(Y |Z = 0, X = x)}dFX(x)∫
{E(D|Z = 1, X = x)− E(D|Z = 0, X = x)}dFX(x)

. (3.3)

To see why (3.3) holds, note that ∆c =
∫

∆c(x)dFX|T=c(x). By Bayes’ theorem, dFx|T=c =

Pr(T = c|X = x)/πcdFX(x) so that ∆c =
∫

∆c(x) Pr(T = c|X = x)/πcdFX(x). Finally,
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plugging ∆c(x) into the last equation yields

∆c =

∫
{E(Y |Z = 1, X = x)− E(Y |Z = 0, X = x)}dFX(x)

πc

=

∫
{E(Y |Z = 1, X = x)− E(Y |Z = 0, X = x)}dFX(x)∫

Pr(T = c|X = x)dFX(x)

=

∫
{E(Y |Z = 1, X = x)− E(Y |Z = 0, X = x)}dFX(x)∫
{E(D|Z = 1, X = x)− E(D|Z = 0, X = x)}dFX(x)

.

By noting that
∫
E(Y |Z = 1, X = x)dFX(x) =

∫
(1/π(x))E(Y · Z|X = x)dFX(x) = E(Y ·

Z/π(X)), where π(X) = Pr(Z = 1|X) is the instrument propensity score, a weighting-based

expression is also obtained, see Tan (2006) and Frölich (2007):

∆c =
E[Y · Z/π(X)− Y (1− Z)/(1− π(X))]

E[D · Z/π(X)−D(1− Z)/(1− π(X))]
. (3.4)

Finally, making use of a result of Rosenbaum and Rubin (1983) showing that controlling for

the propensity score is in terms of identification as good as controlling for X when evaluating

average effects, a third representation of the LATE is given by

∆c =

∫
{E(Y |Z = 1, π(X) = p)− E(Y |Z = 0, π(X) = p)}dFπ(p)∫
{E(D|Z = 1, π(X) = p)− E(D|Z = 0, π(X) = p)}dFπ(p)

, (3.5)

which has the practical advantage that π(X) is one-dimensional, no matter of which dimension

X is. This implies that the LATE can be estimated as the ratio of two propensity score matching

estimators with Z being the ‘treatment’ and either Y (numerator) or D (denominator) being

the ‘outcome’.

Several analog estimators have been proposed based on (3.3), (3.4), and (3.5). Frölich (2007)

analyzes nonparametric matching- and (local polynomial and series) regression-based estima-

tion of (3.3), while Belloni et al. (2014) derive the properties of regression-based estimators

of (3.3) in data-rich environments. Donald et al. (2014b) and Donald et al. (2014a) propose

nonparametric inverse probability weighted estimators of (3.4), using series logit and local

polynomial regression-based estimation, respectively, of the instrument propensity score. All

of these estimators are
√
n-consistent and asymptotically normal under appropriate regularity
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conditions. The reason is that fully nonparametric estimation of unconditional LATE involves

averaging over conditional LATEs and does therefore not give rise to the curse of dimensionality.

Parametric estimation strategies for the unconditional LATE are outlined in Tan (2006) and

Uysal (2011), who both propose estimators that rely on parametric models for the propensity

scores and conditional expectations. To guard against misspecification, they consider so-called

doubly-robust (DR) estimators. DR estimators are consistent if either the propensity score, the

conditional expectations, or both are correctly specified. Finally, Hong and Nekipelov (2010)

provide general semiparametric efficiency results for the estimation of nonlinear LATE models.

When the IV assumptions hold conditionally onX, the LATE among all compliers is different

from the local average treatment effect among treated compliers (LATT), as the distribution

of X generally differs across treatment states. By appropriate reweighting of the previous

identification results, also the LATT is identified. For instance, by weighting observations in

expression (3.4) by π(X)/Pr(Z = 1) one obtains the LATT, see Donald et al. (2014b):

∆c,D=1 =
π(X) · (E[Y · Z/π(X)− Y (1− Z)/(1− π(X))])

π(X) · (E[D · Z/π(X)−D(1− Z)/(1− π(X))])
. (3.6)

Note that in the case of one-sided non-compliance given X, Pr(D(0) = 1|X) = 0, the LATE

does not correspond to the ATT under Assumptions 3.1 – 3.4 (in contrast to Assumptions 2.1

– 2.3). Frölich and Melly (2013a) show that in this case, the ATT is identified by

∆D=1 =
E(Y )−

∫
E(Y |Z = 0, X = x)dFX(x)

Pr(D = 1)

=
1

Pr(D = 1)
E

[
Y ·
(
D − (1−D) · π(X)− Z

1− π(X)

)]
.

3.3 LQTE

As for the LATE, one may define either conditional (given X) or unconditional LQTEs in the

presence of covariates. This distinction is important because of the definition of quantiles. Sup-

pose that we are interested in the relationship between education and wages. The unconditional

0.9 quantile of the wage distribution refers to high wage workers who typically have many years
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of schooling, whereas the 0.9 quantile of the wage distribution conditional on schooling refers to

the high wage earners within an education class who will not necessarily be high overall earners.

See also Frölich and Melly (2013b), who provide a more detailed discussion about the difference

between conditional and unconditional LQTEs. Abadie et al. (2002) consider estimation of the

conditional LQTE. Assuming that the conditional quantile function for the compliers satisfies

QY |D,X,T=c(τ) = αc(τ)D +X ′βc(τ), (3.7)

they show that conditional LQTE, ∆c(τ |x), is identified by αc(τ), the coefficient on D in the

following weighted quantile regression objective function:

(αc(τ), βc(τ)) = arg min
a,b

E[κ · ρτ (Y − aD −X ′b)]. (3.8)

κ, which is defined in Section 3.5 below, is a weighting function that allows identifying func-

tionals for compliers. Note that among the population of compliers, outcome comparisons by

D conditional on X as in (3.7) have a causal interpretation, which follows from Assumption 3.1

and the fact that compliers satisfy D = Z:

Z⊥(D(1), D(0), Y (1), Y (0))|X ⇒ Z⊥(Y (1), Y (0))|X,T = c

⇒ D⊥Y (1), Y (0)|X,T = c.

Although the population objective function (3.8) is globally convex, its sample counterpart

is typically not because κ is negative when D 6= Z, see the discussion in Section 3.5. Abadie

et al. (2002) therefore suggest replacing the κ-weights by their projections on (Y,D,X), which

are guaranteed to be positive. Their estimation strategy consists of two steps: (i) nonparametric

power series estimation of the weights and (ii) a weighted quantile regression using the estimated

weights from the first step. Under appropriate regularity conditions, the resulting estimators

α̂c(τ) and β̂c(τ) are
√
n-consistent and asymptotically normal, because the outcome equation

is parametric. As for the conditional LATE, conditional LQTE cannot be estimated at the
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√
n-rate without parametric assumptions.

Concerning unconditional LQTE estimation when controlling for covariates, first note that

the unconditional complier cdf is, in analogy to (2.18) combined with (3.3), identified as

FY (1)|T=c(y) =

∫
{E[1(Y ≤ y) ·D|Z = 1, X = x]− E[1(Y ≤ y) ·D|Z = 0, X = x]}dFX(x)∫

{E(D|Z = 1, X = x)− E(D|Z = 0, X = x)}dFX(x)

=
E(κFM · 1(Y ≤ y) ·D)

E(κFM ·D)
, (3.9)

see (Frölich and Melly, 2013b), where

κFM =
Z − π(X)

π(X) · (1− π(X))
· (2D − 1). (3.10)

An analogous result holds for FY (0)|T=c(y) by replacingD with 1−D, such that the unconditional

LQTE is given by

∆c(τ) = F−1
Y (1)|T=c(τ)− F−1

Y (0)|T=c(τ).

Alternatively, the unconditional QTE can be identified from the following weighted quantile

regression problem:

(αc(τ), βc(τ)) = arg min
a,b

E[κFM · ρτ (Y − aD − b)]. (3.11)

Finally, Frölich and Melly (2013a) show that under one-sided noncompliance, the quantile treat-

ment effect on the treated is given by

∆D=1(τ) = QY |D=1(τ)− F−1
Y (0)|D=1(τ),
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where

FY (0)|D=1(τ) =

∫
E[1(Y ≤ q)|Z = 0, X = x]dFX(x) + E[1(Y ≤ q) · (D − 1)]

Pr(D = 1)

=
1

Pr(D = 1)
E

[
1(Y ≤ q) · (1−D) · π(X)− Z

1− π(X)

]
.

Representations (3.9), (3.10), and (3.11) suggest estimators based on the respective sample

analogs. Belloni et al. (2014) consider regression-based estimators of (3.9) in data-rich environ-

ments. Hsu et al. (2015) derive uniformly consistent and asymptotically Gaussian estimators of

(3.10) using series logit regression for propensity score estimation. Frölich and Melly (2013b)

estimate (3.11) using local polynomial regression for propensity score estimation.

3.4 Marginal treatment effects

In the presence of covariates, the marginal treatment effect given X, ∆(v, x) = E(Y (1) −

Y (0)|V = v,X = x), is identified by LIV,

∆(V̄ = p(z, x)) =
∂E(Y |p(Z,X) = p(z, x))

∂p(z, x)
,

with p(z, x) = Pr(D = 1|Z = z,X = x), given that Assumptions 3.1 – 3.3 hold for all values

of p(Z,X) of interest. Assumption 3.4 adapted to the continuous instrument p(Z,X) implies

that the MTE is only identified over the common support of p(Z,X) across all values of X.

This limits the feasibility of nonparametric MTE evaluation in practice, in particular if X is

high dimensional and Z is not excessively strong or rich in support. We refer to Cornelissen

et al. (2016) for an introduction and overview of different methods for estimating MTE with

covariates.

As discussed in Carneiro et al. (2011), identifying power is increased if Assumption 3.1 is

replaced by the following condition:

Assumption 3.5. (Z,X)⊥(D(z), D(z′), Y (1), Y (0)) for z, z′ in the support of Z

Note that z = 1, z′ = 0 in the binary instrument case. This restriction imposes the inde-
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pendence of X and unobservables affecting the treatment or the outcome, which is therefore

substantially stronger than Assumption 3.1. While observed characteristics X as for instance

education or age are allowed to confound Z and D,Y they are not allowed to be associated

with unobservables as for instance motivation or ability that affect D,Y . If Assumption 3.5 is

nevertheless imposed, the MTE is (similarly as under Assumptions 2.1 – 2.3 and in the absence

of X) identified over the unconditional support of p(Z,X).

Identification of MQTE in the presence of covariates follows from the same arguments as

discussed in Section 2.3 conditional on X. Carneiro and Lee (2009) propose a semiparametric

estimation approach which relies on additive separability of the structural functions determining

potential outcomes and derive its asymptotic properties. In contrast, Yu (2014) proposes a

semiparametric estimation strategy that does not rely on separability of the structural functions.

He derives the corresponding weak limits and shows validity of the bootstrap for inference.

3.5 General functionals

Abadie (2003) shows that under Assumptions 3.1 – 3.4 , it is possible to identify a broad class

of functionals for the compliers, rather then merely treatment effects. For any real function

g(Y,D,X) with a finite first moment and weighting functions

κ(0) ≡ (1−D) · (1− Z)− (1− π(X))

(1− π(X)) · π(X)
,

κ(1) ≡ D · Z − π(X))

(1− π(X)) · π(X)
,

κ ≡ κ(0) · (1− π(X)) + κ(1) · π(X) = 1− D · (1− Z)

1− π(X)
− (1−D) · Z

π(X)
,

it holds that

E(g(Y,D,X)|T = c) =
E(κ · g(Y,D,X))

E(κ)
,

E(g(Y (0), X)|T = c) =
E(κ(0) · g(Y,X))

E(κ)
,

E(g(Y (1), X)|T = c) =
E(κ(1) · g(Y,X))

E(κ)
.
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In words, the weighting functions κ, κ(1), and κ(0) allow identifying functions (e.g. conditional

expectations and regression functions) for compliers, for compliers under treatment, and for

compliers under non-treatment, respectively. To see this, note for instance for κ that by the

law of iterated expectations,

E(κ) = E(1− Pr(D = 1|Z = 0, X)− Pr(D = 0|Z = 1, X))

= E(1− Pr(T = a|X)− Pr(T = n|X))

= E(Pr(T = c|X)) = πc,

implying that E(κ · g(Y,D,X))/E(κ) = E(g(Y,D,X)|T = c). However, κ does not produce

proper weights since it takes negative values when D differs from Z.

Section 3.3 has presented an application of this general weighting result to evaluate the

conditional LQTE. As a further application, consider the linear outcome model, Y = X ′α +

βD + U , with E[U |X,D] = 0 and α, β denoting the coefficients on the covariates and the

treatment, respectively. The optimization problem is

(αc, βc) = arg min
a,b

E((Y −X ′a− bD)2|T = c) = arg min
a,b

E(κ · (Y −X ′a− bD)2).

Note that division by E(κ) is not required as it does not affect the minimization problem. βc

gives the conditional LATE ∆c(x), which in our linear model also corresponds to the (uncondi-

tional) LATE ∆c, as well as the treatment effect in the entire population. In contrast to TSLS,

this approach does not require specifying a first stage equation about the relationship of D, Z,

and X, but instead relies on a model for the instrument propensity score π(X). Abadie (2003)

provides conditions under which two-step estimators based on the weighting functions κ, κ(1),

and κ(0) are consistent and asymptotically normal.
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4 Some extensions

The following sections briefly discuss extensions of the IV framework to more complex identifi-

cation problems. Section 4.1 presents approaches to LATE evaluation under outcome attrition,

outcome non-response, or sample selection. Section 4.2 discusses methods dealing with mea-

surement errors in the treatment or the instrument. Section 4.3 considers identifying the effects

of dynamic, i.e. sequentially assigned, or multiple treatments. Section 4.4 is concerned with

disentangling the (total) LATE into various causal mechanisms or direct and indirect effects.

4.1 LATE evaluation under outcome attrition and sample selection

In addition to treatment endogeneity, treatment evaluation is frequently complicated by selective

attrition bias in the outcome, for instance due to drop-out bias in a follow-up survey in which

the outcome is measured after a randomized trial or due to sample selection, e.g. when the

wage outcome is only observed for the working. Outcome non-response is frequently modelled

by a so-called missing-at-random (MAR) restriction, which assumes conditional independence

of attrition and outcomes given observed variables (e.g. Z,D,X), see for instance Rubin (1976)

and Little and Rubin (1987). An alternative to MAR which is particularly tailored to the LATE

framework is the so-called latent ignorability (LI) assumption of Frangakis and Rubin (1999),

which requires outcome non-response to be independent of the potential outcomes conditional

on the compliance type. Furthermore, MAR and LI might be combined such that independence

is assumed conditional on both observed characteristics and compliance types, see for instance

Mealli et al. (2004):

Y⊥R|Z, T,X,

where R is a binary indicator for observing outcome Y . Note that this condition is equivalent to

Y⊥R|Z,D, T,X as Z and T perfectly determine D. Frölich and Huber (2014b) extend LATE

identification under MAR and both MAR and LI to dynamic non-response models with multiple

outcome periods.

A shortcoming of LI (and MAR) is that outcome non-response must not be related in a very
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general way to unobservables affecting the outcome, because the compliance type is essentially

assumed to serve as sufficient statistic for the association between response and unobservables,

at least conditional on observed variables. So-called non-ignorable non-response models do not

impose such restrictions on the relation of R and, for instance, U in (3.1). However, without

a second instrument for R, the LATE is only identified under tight structural assumptions, see

for instance Zhang et al. (2009) and Frumento et al. (2012). In contrast, Fricke et al. (2015)

discuss nonparametric LATE identification when a continuous instrument for non-response is

available in addition to the binary instrument for the treatment and present an application in

which either instrument is independently randomized from each other. Chen and Flores (2015)

do not consider instruments, LI, or MAR with respect to response, but partially identify the

LATE based on imposing monotonicity of R in D among compliers as well as a particular order

of mean potential outcomes under specific treatments across various subpopulations defined in

terms of compliance and response.

4.2 Measurement error in the treatment or instrument

Ura (2016) discusses LATE evaluation when the treatment is measured with error, i.e., misclas-

sified. While point identification is generally lost, the study provides upper and lower bounds

when Assumptions 2.1 – 2.3 are satisfied with respect to the true treatment. Ura (2016) clar-

ifies that the Wald estimand generally lies outside the identified set and is only included in

the latter if the conditions (6.1) in Section 6.1 are satisfied with respect to the mismeasured

treatment. In contrast, Chalak (2016) considers measurement error in the instrument rather

than the treatment. Denoting by W,Z the mismeasured and true instrument, respectively, W

is assumed to be mean independent of Y and D given Z and to satisfy an exclusion restriction,

while monotonicity is not imposed. In the binary instrument case and under the satisfaction

of Assumptions 2.1 – 2.3, W identifies the same LATE that would have been recovered under

Z. For more general settings with multiple treatment and/or instrument values, Chalak (2016)

shows that the Wald and LIV estimands using W identify weighted averages of LATEs or MTEs

and discusses necessary and sufficient conditions for the weights being nonnegative.
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4.3 Dynamic and multiple treatments

Rather then evaluating the effects of single treatments, one might be interested in the impact of

several sequentially assigned (i.e. dynamic) treatments that take place at various points in time.

Consider for instance the effectiveness of sequences of active labor market policies like a job

application training, which is followed by an IT course and a subsidized employment program.

This sequence could be compared to non-participation in any program or a different sequence

of interventions. Such a dynamic treatment framework generally requires multiple instruments

for each of the treatments and specific multi-period monotonicity conditions. More formally,

consider a set up with two treatment periods and let D1, D2 denote the first and second binary

treatment, respectively, and Y (d1, d2) the potential outcome potential outcome now defined in

terms of two treatment interventions (with d1, d2 ∈ {1, 0}). Furthermore, let T1 and T2 denote

the compliance types defined in terms of the reaction of D1 to the first instrument Z1 and

of D2 to the second instrument Z2. Miquel (2002) discusses various conditions under which

dynamic LATEs are identified for specific types defined in terms of first- and second-period

compliance, respectively. Among others, she considers the identification among compliers w.r.t.

either instrument:

E[Y (d1, d
′
2)− Y (d′′1, d

′′′
2 )|T1 = c, T2 = c] for d1, d

′
2, d
′′
1, d
′′′
2 ∈ {1, 0}.

Miquel (2002) also shows that if only one instrument is available for both treatment periods, only

the effects of particular sequences can be identified under specific assumptions for individuals

that are always or never takers in the first treatment and compliers in the second one or vice

versa.

If various treatments are not assigned sequentially, but rather at the same point of time such

that participation in the first treatment does not affect participation in the second one, we are

in a multiple treatment framework. At a first glance, the simultaneous availability of several

binary treatments (e.g. alternative active labor market policies) constitutes a similar evaluation

problem like a treatment with multiple ordered values as discussed in Section 2.4. However, if

no natural ordering between the various treatments arises, the monotonicity assumption is likely
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violated and even under the satisfaction of monotonicity, the weighted effect given in (2.21) is

hard to interpret. Furthermore, in the multiple treatment case, one might be interested in the

effect of assigning several treatments at the same time. Therefore, one generally requires distinct

instruments for each treatment. Blackwell (2015) considers LATE identification of separate and

joint effects of two treatments in various subpopulations defined upon compliance with either

of the binary instruments, namely: E[Y (1, 1)−Y (0, 0)|T1 = c, T2 = c], E[Y (1, 0)−Y (0, 0)|T1 =

c, T2 ∈ {c, n}], E[Y (1, 1)− Y (0, 1)|T1 = c, T2 ∈ {c, a}].

4.4 Direct and indirect effects (causal mechanisms)

As a further extension that is related to dynamic treatment effects, consider the problem of

disentangling the total impact of a treatment into a direct effect and an indirect effect that

operates via an intermediate variable (or so-called mediator) which also affects the outcome.

That is, the interest lies in disentangling a treatment effect into various causal mechanisms,

which may provide a better understanding of why specific treatments are effective or ineffective

by opening the ‘black box’ of the total effect. As an example, consider the health effect of

college attendance (D1), which likely affects the employment state (D2) which also influences

the health outcome. Disentangling the direct effect of college attendance from its indirect effect

operating via employment shows whether the health impact of college attendance is only driven

via its impact on labor market participation, or also through other (“direct”) channels, for

instance college peers-induced adaption of health behaviour.

To formally define the effects of interest, let D2(d1) denote the potential state of the second

treatment as a function of the first. The standard notation for potential outcomes defined in

terms of D1 can then easily be linked to the notation appropriate to analysing causal mech-

anisms, namely: Y (d1) = Y (d1, D2(d1)), which makes explicit that D1 might affect Y either

directly or indirectly through its effect on D2. Therefore, the LATE of the first treatment among

compliers in the first treatment period can be expressed as

∆c1 = E[Y (1)− Y (0)|T1 = c] = E[Y (1, D2(1))− Y (0, D2(0))|T1 = c], (4.1)
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and comprises both the direct and indirect effect of D1 on Y .

The direct effect, denoted by θc1(d1), is obtained by shutting down the indirect causal

mechanism by fixing D2 to its potential value under a particular d1, while exogenously varying

the first treatment D1:

θc1(d1) = E[Y (1, D2(d1))− Y (0, D2(d1))|T1 = c], for d1 ∈ {0, 1}. (4.2)

The indirect effect among compliers, denoted by δc1(d1), corresponds to the mean difference

in outcomes when exogenously shifting D2 to its potential values for d1 = 1 and d1 = 0, but

keeping the first treatment fixed at D1 = d1:

δc1(d1) = E[Y (d1, D2(1))− Y (d1, D2(0))|T1 = c], for d1 ∈ {0, 1}. (4.3)

The LATE is the sum of the direct and indirect effects defined upon opposite states of d1,

which can be seen from adding and subtracting either Y (0, D2(1)) or Y (1, D2(0)) in (4.1):

∆c1 = E[Y (1, D2(1))− Y (0, D2(0))|T1 = c]

= E[Y (1, D2(1))− Y (0, D2(1))|T1 = c] + E[Y (0, D2(1))− Y (0, D2(0))|T1 = c] = θc1(1) + δc1(0)

= E[Y (1, D2(0))− Y (0, D2(0))|T1 = c] + E[Y (1, D2(1))− Y (1, D2(0))|T1 = c] = θc1(0) + δc1(1).

The notation θc1(1), θc1(0), δc1(1), δc1(0) makes explicit that direct and indirect effects may be

heterogenous with respect to d1, which permits interaction effects between D1 and D2 on Y . In

the context of our health example, θc1(1) and θc1(0) are the direct effects of college attendance

among first period compliers if their labor market states were set to their potential values with

and without going to college.

Yamamoto (2013) shows identification of (4.2) and (4.3) based on an instrument for D1 and

a combined MAR and LI-type assumption, see the discussion in Section 4.1, with respect to

D2:

Y (d1, d2)⊥D2(d′1)|Z, T1 = c,X, for d1, d
′
1 ∈ {0, 1}.
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This allows controlling for the endogeneity of the latter despite the absence of a second instru-

ment for D2, given that conditional independence of D2 holds given the compliance type and

observed variables. While D1 and its instrument are both assumed to be binary, D2 might also

be discretely multivalued or even continuous.

In contrast, Frölich and Huber (2014a) base identification on two distinct instruments Z1 and

Z2 for D1 and D2, respectively. While Z1 and D1 are assumed to the binary, the authors consider

various sets of assumptions that yield (4.2) and (4.3) under continuous Z2, D2, continuous Z2 and

discrete D2, and discrete Z2 and continuous D2. Furthermore, they also discuss identification of

the so-called controlled direct effect defined as the effect of D1 when D2 is fixed at a particular

value d2 for every complier (rather than its potential value D2(d1)), a parameter that also fits

into dynamic treatment effects framework:

E[Y (1, d2)− Y (0, d2)|T1 = c].

5 Violations and relaxations of the IV assumptions

As discussed in Section 2.1 in the context of the quarter of birth instrument, the standard

IV assumptions or their conditional versions of Section 3 might be violated in many empirical

contexts. Sections 5.1 and 5.2 discuss how violations of Assumptions 2.1 and 2.2 affect identi-

fication and under which relaxations causal effects on specific subpopulations can nevertheless

be obtained. Troughout the section, we will assume that Assumption 2.3 holds.

5.1 Violation of the exclusion restriction

First, we analyze the Wald estimand under violations of the exclusion restriction Y (1, d) =

Y (0, d) = Y (d) for d ∈ {0, 1} inherent in Assumption 2.1, while maintaining the independence

(Assumption 2.1) and monotonicity (Assumption 2.2). First, consider a scenario under which

there is no exclusion restriction for the noncompliers (i.e., always and never takers). Angrist

34



et al. (1996) show that the Wald estimand equals the LATE plus a bias term given by

E[Y (1, D(1))− Y (0, D(0)]

E[D(1)−D(0)]
− E[Y (1, D(1))− Y (0, D(0))|T = c] = E[H|T 6= c] · 1− πc

πc

where H = Y (1, d)− Y (0, d) denotes the causal effect of Z on Y . Second, let us consider a sce-

nario in which there is not only a direct effect of Z on Y for noncompliers but also for compliers.

In addition, suppose that Y (1, 0)− Y (0, 0) = Y (1, 1)− Y (0, 1) for all compliers. The reason for

imposing this additional “homogeneity” assumption is that it allows us to conventiently express

the causal effect of Z on Y as H and the causal effect of D on Y as G = Y (z, 1) − Y (z, 0).

Using this additional notation, the IV estimand can be written as

E[Y (1, D(1))− Y (0, D(0)]

E[D(1)−D(0)]
= E[G|T = c] +

E[H]

πc
,

see Angrist et al. (1996). The second term gives the bias relativ to the LATE and is

E[H|T = c] + E[H|T 6= c] · 1− πc
πc

. (5.1)

To interpret this result, let us consider the two components of the bias (5.1) separately. The first

term originates from the direct effect of Z on Y for the compliers and does not depend on the

compliance rate πc. Thus, even under perfect compliance (that is if πc = 1) this part of the bias

would prevail whereas the second part would be zero. The second term equals the product of

the direct effect of Z on Y for noncompliers and the odds of being a noncomplier. This implies

that the sensitivity of the IV estimand to violations of the exclusion restriction depends on the

strength of the instrument as measured by the size of the compliant population. The exclusion

restriction is therefore crucial for point identification. In Section 6.2, we present alternative

approaches to obtain bounds on the LATE under violations of the exclusion restriction.
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5.2 Violation and relaxations of monotonicity

When maintaining Assumption 2.1, but relaxing the monotonicity Assumption 2.2 such that

defiers are permitted, the equality in (2.15) does not hold any more, see Angrist et al. (1996),

but corresponds to

E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
= ∆c −

πd · (∆c −∆d)

πc − πd
=
πc ·∆c − πd ·∆d

πc − πd
,

where ∆d = E[Y (1) − Y (0)|T = d] denotes the LATE among defiers. Only in the special case

that ∆c = ∆d does this yield the LATE among compliers (and defiers). That is, if one is willing

to replace the monotonicity assumption by homogeneity in average effects across complier and

defier populations, causal effects are still identified.

When not imposing the strong and therefore typically not attractive effect homogeneity

assumption, ∆c is generally not identified under a violation of Assumption 2.2. This does,

however, not necessarily mean that nothing can be said about the LATE at all. Small and Tan

(2007) show that the sign of ∆c is still identified if Assumption 2.2 is replaced by a somewhat

weaker stochastic monotonicity condition, which is satisfied if Pr(T = c|Y (1), Y (0)) ≥ P (T =

d|Y (1), Y (0)) (or Pr(T = c|U) ≥ P (T = d|U) when assuming model (2.1)). That is, given any

pair of potential outcome values under treatment and non-treatment, there must exist at least

as many compliers as defiers. The same kind of assumption has also been considered in DiNardo

and Lee (2011).

Several contributions even show that particular treatment effects can be point identified

under specific relaxations of Assumption 2.2. Klein (2010) considers a nuisance term in the

treatment equation that is unrelated with the potential outcomes and other unobserved factors

affecting D (V in model (2.1)) and entails random departures from monotonicity such that some

subjects defy. He discusses the conditions under which bias approximations for the identification

of the LATE and MTE are obtained.

Secondly, de Chaisemartin (2016) shows that the Wald estimand identifies the LATE among

a subpopulation of compliers, which he denotes as ‘comvivors’, if the following assumption is

satisfied:
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Assumption 5.1 (Compliers-defiers). There exists a subpopulation of compliers, denoted by

T = cd, which satisfies πcd = πd and E[Y (1)− Y (0)|T = cd] = ∆cd = ∆d.

Assumption 5.1 states that some proportion of the total of compliers is equal to the defiers in

terms of average effects and population size. Assumptions 2.1, 2.3 and 5.1 identify the LATE on

the remaining compliers not necessarily resembling the defiers, the so-called comvivors, which

are defined as T = cv : c without cd, i.e. all compliers that outnumber those compliers resembling

the defiers:

E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
= E[Y (1)− Y (0)|T = cv] ≡ ∆cv.

Therefore, the Wald estimator and TSLS still consistently estimate a causal effect as in the

standard LATE framework, however, for a more local complier population.

Assumption 5.1 may appear abstract at the first glance, but de Chaisemartin (2016) dis-

cusses several restrictions that imply Assumption 5.1 and are easier to interpret. One pos-

sible condition is that compliers always outnumber defiers with the same treatment effect:

Pr(T = c|Y (1) − Y (0)) ≥ Pr(T = d|Y (1) − Y (0)), which is implied by, but weaker than the

stochastic monotonicity assumption of Small and Tan (2007) discussed before. A second re-

striction is that the LATEs on defiers and compliers have the same sign and that the ratio of

the LATEs is not ‘too’ large: Either sgn∆d =sgn∆c 6= 0 and ∆d/∆c ≤ πc/πd or ∆d = ∆c = 0.

de Chaisemartin (2016) gives several empirical examples in which Assumption 2.2 appears

unrealistic but Assumption 5.1 is arguably likely satisfied, for instance in the evaluation of

employment effects of disability insurance when average allowance rates of randomly assigned

examiners serve as instrument as in Maestas et al. (2013). Similar arguments hold for studies

of the effects of incarceration when using average sentencing rates of randomly assigned judges

as an instrument for incarceration, see Aizer and Doyle (2013).

As a further strategy, Dahl et al. (2016) consider replacing Assumption 2.2 by a weaker local

monotonicity condition given particular values of either marginal potential outcome distribution:

Assumption 5.2 (Local monotonicity). Either Pr(T = d|Y (d) = y(d)) = 0 or Pr(T = c|Y (d) =

y(d)) = 0 for d ∈ {0, 1} and all y(d) in the support of Y (d).
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While Assumption 5.2 allows for the presence of both compliers and defiers in the total

population, it implies that conditional on a specific value of the potential outcome under treat-

ment or non-treatment, either one or the other must not exist. Put differently, compliers and

defiers are required to ‘inhabit’ different and non-overlapping regions of the marginal potential

outcome distributions. Then, ∆c is identified over all y satisfying f(y,D = 1|Z = 1)−f(y,D =

1|Z = 0) > 0 and f(y,D = 0|Z = 0) − f(y,D = 0|Z = 1) > 0 (see (2.12) and (2.13)),

while ∆d is based on all y for which f(y,D = 1|Z = 1) − f(y,D = 1|Z = 0) < 0 and

f(y,D = 0|Z = 0)− f(y,D = 0|Z = 1) < 0. As an empirical example, reconsider the quarter of

birth instrument for education and redshirting (postponement of school entry) as source of de-

fiers, which more frequently occurs among families with a high socio-economic state, see Bedard

and Dhuey (2006) and Aliprantis (2012). Assumption 5.2 would be satisfied if the socioeco-

nomic status determined both defiance and the potential outcomes in a deterministic matter

(e.g. children coming from defying families with a high socio-economic status can expect higher

potential earnings than children of complying families).

In most applications including the quarter of birth instrument, a non-overlapping support in

the potential outcomes of compliers and defiers appears unrealistic. However, when combining

the ideas of local monotonicity and stochastic monotonicity, Assumption 5.2 can be weakened

to an empirically more plausible local stochastic monotonicity condition:

Assumption 5.3 (Local stochastic monotonicity). For d ∈ {1, 0} and y(d) ∈ supp(Y (d)):

Pr(T = c|Y (d) = y(d)) ≥ Pr(T = d|Y (d) = y(d)) implies that

Pr(T = c|Y (1) = y(1), Y (0) = y(0)) ≥ Pr(T = d|Y (1) = y(1), Y (0) = y(0));

and

Pr(T = c|Y (d) = y(d)) ≤ Pr(T = d|Y (d) = y(d)) implies that

Pr(T = c|Y (1) = y(1), Y (0) = y(0)) ≤ Pr(T = d|Y (1) = y(1), Y (0) = y(0))

This assumption allows for both compliers and defiers at any value of either marginal poten-

tial outcome distribution. However, it requires that if the share of one type weakly dominates

the other conditional on either Y (1) or Y (0), it must also dominate conditional on both po-

tential outcomes jointly, i.e. Y (1) and Y (0). de Chaisemartin (2012) demonstrates that under

Assumptions 2.1, 2.3 and 5.3, the methods of Dahl et al. (2016) identify the LATEs on a subset
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of compliers outnumbering the defiers whenever Pr(T = c|Y (1) = y(1), Y (0) = y(0)) ≥ Pr(T =

d|Y (1) = y(1), Y (0) = y(0)) and a subset of defiers outnumbering the compliers whenever

Pr(T = c|Y (1) = y(1), Y (0) = y(0)) ≤ Pr(T = d|Y (1) = y(1), Y (0) = y(0)).

6 Testing, sensitivity checks, and bounds

We subsequently discuss various approaches to test the IV assumptions, see Section 6.1, and

outline sensitivity checks and bounds on the parameters of interest if one is not willing to

maintain the satisfaction of Assumptions 2.1 – 2.3; see Section 6.2.

6.1 Testing the LATE assumptions

Under Assumptions 2.1 – 2.3, (2.12) and (2.13) not only permit evaluating local treatment

effects, but also provide testable implications of the identifying assumptions. Namely, f(y,D =

1|Z = 1) − f(y,D = 1|Z = 0) = f(y(1), T = c) and f(y,D = 0|Z = 0) − f(y,D = 0|Z = 1) =

f(y(0), T = c) imply for all y in the support of Y that

f(y,D = 1|Z = 1) ≥ f(y,D = 1|Z = 0), f(y,D = 0|Z = 0) ≥ f(y,D = 0|Z = 1), (6.1)

otherwise the joint densities of the compliers would be negative, even though a density has a

lower bound of zero. Therefore, if one or both of the weak inequalities in (6.1) are violated, at

least one of Assumptions 2.1 – 2.3 is violated. These constraints were first derived by Balke

and Pearl (1997) for binary outcomes, while Heckman and Vytlacil (2005) formulated them in

terms of continuous outcomes. Note that the testable implications (6.1) remain unchanged when

easing Assumption 2.2 to stochastic monotonicity of the form Pr(T = c|Y (d)) ≥ Pr(T = d|Y (d))

for d ∈ {1, 0}, see Mourifié and Wan (2014).

For testing, (6.1) could be verified at each value y in the support of Y . However, if the out-

come is of rich support (e.g., continuous), finite sample power may be higher when partitioning
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the support into a finite number of subsets. The testable constraints then are

Pr(Y ∈ A,D = 1|Z = 1) ≥ Pr(Y ∈ A,D = 1|Z = 0),

Pr(Y ∈ A,D = 0|Z = 0) ≥ Pr(Y ∈ A,D = 0|Z = 1), (6.2)

where A denotes a subset of the support of Y . Kitagawa (2015) proposes a test based on re-

sampling a variance-weighted two sample Kolmogorov-Smirnov-type statistic on the supremum

of Pr(Y ∈ A,D = 1|Z = 0)− Pr(Y ∈ A,D = 1|Z = 1) and Pr(Y ∈ A,D = 0|Z = 1)− Pr(Y ∈

A,D = 0|Z = 0), respectively, across multiple subsets A. The method can also be used for

testing conditional on observed covariates, if the latter are binned into subsets of the support in

a similar way as the outcomes. As an alternative approach, Mourifié and Wan (2014) show that

a modified version of (6.2) making use of conditional moment inequality constraints fits the in-

tersection bounds framework of Chernozhukov et al. (2013b). For this reason, the corresponding

STATA package of Chernozhukov et al. (2013a) can for instance be used to implement the test

either unconditionally or conditional on observed covariates. For binary outcomes, Machado

et al. (2013) propose a procedure that both verifies the constraints and the sign of the average

treatment effect on the entire population.

As an alternative set of testable constraints, Huber and Mellace (2015) show that the LATE

assumptions imply the following restrictions related to the mean potential outcomes (i) of the

always takers under treatment and (ii) of the never takers under non-treatment:

E(Y |D = 1, Z = 1, Y ≤ yq) ≤ E(Y |D = 1, Z = 0) ≤ E(Y |D = 1, Z = 1, Y ≥ y1−q),

E(Y |D = 0, Z = 0, Y ≤ yr) ≤ E(Y |D = 0, Z = 1) ≤ E(Y |D = 0, Z = 0, Y ≥ y1−r).(6.3)

Under Assumptions 2.1 – 2.2, q = Pr(D = 1|Z = 0)/Pr(D = 1|Z = 1) gives the share of always

takers among those with D = 1 and Z = 1, i.e., in the mixed population of compliers and

always takers, and yq is the qth quantile of Y given D = 1 and Z = 1. r = 1− (Pr(D = 1|Z =

1)−Pr(D = 1|Z = 0))/Pr(D = 0|Z = 0) corresponds to the share of never takers among those

with D = 0 and Z = 0, and yr is the rth quantile of Y given D = 0 and Z = 0. Considering the
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first line of (6.3), the intuition of the test is as follows: E(Y |D = 1, Z = 0) point identifies the

mean potential outcome of the always takers under treatment, as any subject with D = 1, Z = 0

must be an always taker in the absence of defiers. Furthermore, the mean potential outcomes of

the always takers are bounded by the averages in the upper and lower outcome proportions with

D = 1 and Z = 1 that correspond to the share of the always takers in the mixed population:

E(Y |D = 1, Z = 1, Y ≤ yq), E(Y |D = 1, Z = 1, Y ≥ y1−q). E(Y |D = 1, Z = 0) must lie

within the latter bounds, otherwise the identifying assumptions are necessarily violated. An

analogous result applies to the mean potential outcome of never takers under non-treatment.

Any procedure suitable for testing multiple moment inequalities could be used for verifying

(6.3), for instance the method by Chen and Szroeter (2014).

While it appears attractive to have tests of the IV assumptions even in the just identified

case with one instrument and one treatment, it needs to be pointed out that any of the tests

discussed so far check for necessary, albeit not sufficient conditions. That is, the tests are

inconsistent in the sense there may exist counterfactual distributions which satisfy the testable

restrictions, but violate Assumptions 2.1 – 2.3.1 Sharma (2016) offers an extension to merely

testing (6.2) by determining the likelihood an instrument is valid when the testable constraints

are satisfied. To this end, the test defines classes of valid causal models satisfying Assumptions

2.1 – 2.3 as well as as invalid models and compares their marginal likelihood in the observed

data.

Several further tests that are not based on constraints (6.2) have been proposed. Slichter

(2014) suggests testing conditional IV independence (Assumption 3.1) by finding covariate val-

ues X = x for which Z has no first stage and checking whether Z is associated with Y despite

the absence of a first stage. For the multivalued treatment case as discussed in Section 2.4,

Angrist and Imbens (1995) argue that Assumption 2.2 implies that the cdfs of D given Z = 1

and Z = 0, respectively, do not cross (i.e., stochastic dominance),

Pr(D ≥ j|Z = 1) ≥ Pr(D ≥ j|Z = 0), D, j ∈ {0, 1, ..., J}, (6.4)

1Interestingly, asymptotic power ceteris paribus increases as the share of compliers decreases, i.e. as the
instrument becomes weaker. Therefore, the tests supposedly have very low power in randomized trials with a
large first stage, where, however, the LATE assumptions often appear quite credible. On the other hand, the
tests might be used in quasi-experimental settings where the assumptions are more challengeable and the first
stage is small, as in the case of the quarter of birth instrument.
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which may be verified in the data. Fiorini and Stevens (2014) point out that testing the neces-

sary (albeit not sufficient) condition (6.4) can have power against violations of both Assumption

2.2 and the independence of Z and D(1), D(0) which is part of Assumption 2.1. In the pres-

ence of both a binary and a continuous instrument, Dzemski and Sarnetzki (2014) suggest a

nonparametric overidentification tests for IV validity. Finally, if outcome variables are observed

already in periods prior to instrument and treatment assignment, placebo tests based on esti-

mating the effect of Z on pre-instrument outcomes may be performed to check the plausibility

of Assumption 2.1.

6.2 Sensitivity checks and bounds

If IV validity appears dubious or has even been refuted by the tests presented in Section 6.1,

one may consider sensitivity checks on the robustness of the LATE under violations of the IV

assumptions or the derivation of upper and lower bounds on the effect (rather than point iden-

tification) under weaker assumptions. Huber (2014), for instance, proposes sensitivity checks

under the non-satisfaction of the IV exclusion restriction (inherent in Assumption 2.1) or As-

sumption 2.2. Under a presumed violation of the exclusion restriction while maintaining the

random assignment of Z and Assumptions 2.2 and 2.3, the LATE can be shown to correspond

to

E(Y |Z = 1)− E(Y |Z = 0)− Pr(D = 1|Z = 0) · γa − Pr(D = 0|Z = 1) · γn
Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

− γc, (6.5)

where γc, γa, and γn denote the potentially heterogenous average direct effects of Z to the

mean potential outcomes of the compliers, always takers, and never takers, respectively. Jones

(2015) derives a related result under the assumption that the direct effect on the never takers

(γn) is equal to zero. Under a homogeneous direct mean effect across types, implying that

γa = γn = γc = γ, (6.5) simplifies to (E(Y |Z = 1) − E(Y |Z = 0) − γ)/(Pr(D = 1|Z =

1) − Pr(D = 1|Z = 0)). Inference can therefore be conducted if the researcher has a plausible

prior about the possible range of values γc, γa, γn, or γ might take, see also Conley et al. (2012).

The approach suggested by Slichter (2014) based on his IV validity test (see Section 6.1) may

be used for determining such values in sensitivity checks.
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Under a violation of Assumption 2.2 while maintaining Assumptions 2.1 and 2.3, Huber

(2014) shows that the mean potential outcomes of the compliers correspond to the following

expressions:

E(Y (1)|T = c) =
Pr(D = 1|Z = 1) · E(Y |D = 1, Z = 1)

ρa(Pr(D = 1|Z = 0)− πd) + Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0) + πd
,

E(Y (0)|T = c) =
Pr(D = 0|Z = 0) · E(Y |D = 0, Z = 0)

ρn(Pr(D = 0|Z = 1)− πd) + Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0) + πd
,

(6.6)

where ρa = E(Y (1)|T = a)/E(Y (1)|T = c) and ρn = E(Y (0)|T = n)/E(Y (0)|T = c) are the

ratios of mean potential outcomes (i) of always takers and compliers under treatment and (ii) of

never takers and compliers under non-treatment, respectively. Considering various combinations

of ρa, ρn, πd allows investigating the sensitivity of the LATE on compliers to violations of

monotonicity.

If plausible values for the aforementioned tuning parameters appear hard to justify, a bounds

analysis may appear more credible, at the potential cost of getting a larger set of potential values

for the LATE. Flores and Flores-Lagunes (2013) maintain Assumption 2.2 and the random

assignment of Z, but assume the violation of the exclusion restriction. They instead impose

restrictions on the order of specific mean potential outcomes (i) across treatment or instrument

states within particular types and (ii) across types to narrow the bounds. Mealli and Pacini

(2013) show that bounds can alternatively be tightened if an auxiliary variable is at hand for

which the exclusion restriction (contrary to the outcome of interest) holds, as for instance a

covariate measured prior to randomization, and which is associated with the outcome and/or

the compliance type. Richardson and Robins (2010) maintain Assumption 2.1, but assume a

violation of Assumption 2.2 and derive bounds for the LATEs of various compliance types when

the outcome is binary. Under mean independence of Z and the potential outcomes/treatment

states, Huber et al. (2014) bound the LATEs on several subpopulations (also for non-binary

outcomes) when monotonicity is violated, with and without invoking a particular order in the

mean potential outcomes across types.
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7 External validity of the LATE

Whether the LATE or other local effects are relevant parameters given that they only refer

to the subpopulation of compliers heavily depends on the empirical context and has been con-

troversially discussed in the literature, see for instance Imbens (2010b), Deaton (2010), and

Heckman and Urzúa (2010). In treatment evaluation, one typically strives for the identification

of ‘global’ effects on the entire or the treated population. One could therefore argue that the

relevance of the LATE crucially depends on its external validity, i.e. its similarity to the a

priori unidentified average treatment effect (ATE) in the entire population. For this reason, we

subsequently discuss potential checks for external validity based on observables (Section 7.1),

conditions for extrapolating the LATE to the ATE and tests thereof (Section 7.2), and partial

identification of the ATE based on the IV assumptions and further restrictions (Section 7.3).

7.1 Comparability in terms of observables

Comparing compliers and the total population in terms of observed characteristics may be

useful for judging the plausibility of the LATE being (close to) externally valid. Angrist and

Fernández-Val (2010) consider Pr(X = x|T = c)/Pr(X = x), the relative likelihood of covariate

values X = x among compliers compared to the entire population, which is identified under

Assumptions 2.1 – 2.3 by the ratio of the first stage given X = x to the overall first stage:

Pr(X = x|T = c)

Pr(X = x)
=

Pr(T = c|X = x)

Pr(T = c)
=
E(D|Z = 1, X = x)− E(D|Z = 0, X = x)

E(D|Z = 1)− E(D|Z = 0)
.

Furthermore, under the conditional IV assumptions (Assumptions 3.1 – 3.4), the mean or

other distributional features of the covariates among compliers can be obtained by using the

κ-weighting function of Abadie (2003) provided in Section 3.5:

E(X|T = c) =
E(κ ·X)

E(κ)
.

While such checks may provide important insights about the representativeness of compliers in

terms of X, the important caveat remains that nothing can be said about unobserved charac-
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teristics which may be related to the potential outcomes.

7.2 Conditions for extrapolation and testing

This section discusses various structural assumptions that allow extrapolating from the LATE to

the ATE. Angrist (2004) distinguishes two restrictions in which the LATE is directly externally

valid, i.e. corresponds to the ATE. Under the first restriction, there is no selection in the sense

that mean potential outcomes under either treatment state are constant across types. Under

the second restriction, selection is of a rather specific form such that the levels of the mean

potential outcomes differ across types, but the mean effects do not, i.e. are homogeneous. Note

that under the first restriction, both (i) the Wald estimand and (ii) E(Y |D = 1)−E(Y |D = 0) =

E(Y (1)|T ∈ {c, a})−E(Y (0)|T ∈ {c, n}) identify the ATE because E(Y (d)|T ) = E(Y (d)), while

under the second restriction, only (i) but not (ii) yields the effect, as E(Y (d)|T ) 6= E(Y (d)).

Angrist (2004), Brinch et al. (2012), and Huber (2013) consider tests for the external validity

of the LATE under the first restriction based on differences in mean potential outcomes across

types. To see the intuition, consider the following regression representation, which is fully

nonparametric as D,Z are binary:

E(Y |D,Z) = β0 + βDD + βZZ + βDZDZ,

with

βZ = E(Y |D = 0, Z = 1)− E(Y |D = 0, Z = 0) = E(Y (0)|T = n)− E(Y (0)|T ∈ {c, n}),

βDZ = E(Y |D = 1, Z = 1)− E(Y |D = 0, Z = 1)− {E(Y |D = 1, Z = 0)− E(Y |D = 0, Z = 0)}

= E(Y (1)|T ∈ {c, a})− E(Y (0)|T = n)− {E(Y (1)|T = a)− E(Y (0)|T ∈ {c, n})} .

βZ captures selection driven by the difference in mean potential outcomes of compliers and

never takers under non-treatment (or differences in U under model (2.1)). βDZ reflects both

selection and treatment effect heterogeneity across types.

If βZ = 0, βDZ simplifies to E(Y (1)|T ∈ {c, a})− E(Y (1)|T = a), and a difference may be
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due to selection or differential treatment effects across always takers and compliers. Therefore,

jointly testing for βZ and βDZ has in general non-trivial power to detect heterogeneity in mean

potential outcomes across types, either driven by selection or treatment effect heterogeneity,

which generally implies that the LATEs differ across types, too. However, not all potential

violations can be tested, as the potential outcome of never takers under treatment and always

takers under non-treatment is never observed. Strictly speaking, βZ = βDZ = 0 is therefore not

sufficient for external validity under the first restriction of Angrist (2004). Furthermore, it is

not necessary either, because the LATE can theoretically be homogenous across groups even if

potential outcomes differ (second restriction of Angrist (2004)). However, under the assumption

that differences in mean potential outcomes either occur across all or across no types (i.e. either

E(Y (d)|T ) = E(Y (d)) or E(Y (d)|T = t) 6= E(Y (d)|T = t′) for any t 6= t′ and t, t′ ∈ {c, a, n}),

βZ suffices for detecting selection. Conditional on βZ = 0, βDZ in this case exclusively detects

effect heterogeneity across types. For this reason, it appears worthwhile testing βZ = βDZ = 0,

which can be easily implemented by means of an F -test.2 In the case of one-sided noncompliance

(Pr(D(0) = 1) = 0), only E(Y |D = 0, Z = 1)− E(Y |D = 0, Z = 0) = 0 is testable.

If Assumptions 3.1 – 3.4, rather than Assumptions 2.1 – 2.3 are satisfied, the same type of

test may be conducted conditional on X, see de Luna and Johansson (2014) and Black et al.

(2015). In this case, testing can also be framed as a check for the conditional mean indepen-

dence of the treatment and the potential outcomes given observed covariates: E(Y (d)|D,X) =

E(Y (d)|X), which would imply that E(Y |D = 1, X) − E(Y |D = 0, X) yielded the causal ef-

fect E(Y (1) − Y (0)|X). Donald et al. (2014b) suggest an alternative approach to test this

condition based on a comparison of treatment effects under one-sided noncompliance, ruling

out always takers and defiers. As in the latter case the LATT (∆c,D=1) corresponds to the

ATT (∆D=1), Donald et al. (2014b) construct a Durbin-Wu-Hausmann-type test based on the

z-statistic for the difference of the respective estimates ∆̂c,D=1 and ∆̂D=1. These estimates are

obtained by the sample analogue of (3.6) and the approach suggested in Hirano et al. (2003),

respectively. While the satisfaction of conditional mean independence of the treatment implies

2The following approaches are asymptotically equivalent to this F-test: Testing (i) E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1)−E(D|Z=0)

=

E(Y |D = 1) − E(Y |D = 0) as in the classical Hausman (1978) test, (ii) E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1)−E(D|Z=0)

= E(Y |D = 1, Z =

0) − E(Y |D = 0, Z = 1) as suggested in Angrist (2004), and (iii) E(Y |D = 1, Z = 1) = E(Y |D = 1, Z = 0),
E(Y |D = 0, Z = 1) = E(Y |D = 0, Z = 0) as considered in the context of fuzzy regression discontinuity designs
by Bertanha and Imbens (2015).
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that identification and extrapolation can be achieved without an instrument, the availability of

an instrument is required to obtain an overidentifying restriction and being able to construct

a test for E(Y (d)|D,X) = E(Y (d)|X). Note that if the latter assumption holds, not only the

LATE on compliers, ATE, and ATT are identified, but also the LATEs on never and always

takers, as discussed in Frölich and Lechner (2015).

If the strong assumption of effect homogeneity across types is not satisfied, the LATE may

nevertheless permit extrapolation to the ATE even under a binary instrument if particular

parametric assumptions hold. This is shown in Brinch et al. (2012), who assume the MTE

∆(V̄ = p(z)) of Section 2.3 to be linear in p(Z) = Pr(D = 1|Z) by imposing linearity on

E(Y (0)|p(Z)) and E(Y (1)|p(Z)), see also Restriction 3 in Angrist (2004). Brinch et al. (2012)

further demonstrate that polynomial (rather than linear) MTE functions are identified if the

MTE is additively separable in X and unobservable factors and if X satisfies specific support

conditions.

As an alternative source of extrapolation, Angrist and Fernández-Val (2010) and Aronow

and Carnegie (2013) consider homogeneity of the average treatment effects given X across

types, a conditional version of (unconditional) effect homogeneity under the second restriction

of Angrist (2004):

Assumption 7.1 (Conditional effect homogeneity). E(Y (1)−Y (0)|T,X) = E(Y (1)−Y (0)|X) =

∆(x)

Assumption 7.1 implies that heterogeneity in average effects across types is solely due to X,

such that ∆c(x) = ∆(x), implying that the ATE, denoted as ∆, is obtained by
∫

∆c(x)dFX(x) =

E(∆c(x)) if the conditional LATE assumptions (Assumptions 3.1 – 3.4) are satisfied.3 More

generally, the ATE on some population selected by the binary indicator S (e.g. S = D for the

treated and S = 1−D for the nontreated) corresponds to

∆S=1 =

∫
∆c(x)dFX|S=1(x) =

∫
∆c(x)

Pr(S = 1|X)

Pr(S = 1)
dFX(x) = E

[
∆c(x)

Pr(S = 1|X)

Pr(S = 1)

]
.

It is important to note that conditional effect homogeneity rules out that effect heterogene-

3In fact, under Assumption 7.1, Assumption 3.2 might even be relaxed for instance to stochastic monotonicity
given X.
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ity is driven by unobserved gains, which importantly restricts the source of treatment effect

heterogeneity and is, for instance, not consistent with the Roy (1951) model.

Angrist and Fernández-Val (2010) demonstrate that Assumption 7.1 is testable (conditional

on the satisfaction of Assumptions 3.1 – 3.4) if more than one instrument is available. Denote

by ∆W
c (x) and ∆Z

c (x) the conditional LATEs based on two different instruments W and Z. It

must hold that

∆S=1 =

∫
∆W
c (x)

Pr(S = 1|X)

Pr(S = 1)
dFX(x) =

∫
∆Z
c (x)

Pr(S = 1|X)

Pr(S = 1)
dFX(x).

See also Heckman et al. (2010) for testing approaches in the context of the MTE framework

that verify conditional effect homogeneity based on multiple instruments.

Another extrapolation strategy is based on the rank invariance assumption discussed in

Section 8.2. Vuong and Xu (2014) and Wüthrich (2016) show that under rank invariance, the

counterfactual mappings,

P01|T=t ≡ QY (0)|T=t

(
FY (1)|T=t(y)

)
and P10|T=t ≡ QY (1)|T=t

(
FY (0)|T=t(y)

)
,

which relate each individual outcome to its counterfactual, do not depend on the type T = t.

Hence, one can use P01|T=c(y) and P10|T=c(y), which are both identified under Assumptions 2.1

– 2.3, for imputing the counterfactual distributions of Y (1) for never takers and of Y (0) for

the always-takers. This is exactly the intuition underlying the instrumental variable quantile

regression model discussed in Section 8.2.

7.3 Partial identification of the ATE

Even if point identification of the ATE fails because the LATE estimates are not externally

valid, the identifying power of the IV assumptions may still be used to at least partially identify

the ATE and other parameters such as the ATT not discussed here. Balke and Pearl (1997)

(for binary outcomes) as well as Heckman and Vytlacil (2001a) and Kitagawa (2009) (for more

general outcomes) derive bounds on the ATE under Assumptions 2.1 – 2.3 and also provide the

interesting result that they coincide with the bounds of Manski (1990), who merely assumes
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E(Y (d)|Z = 1) = E(Y (d)|Z = 0) for d ∈ {1, 0}. Shaikh and Vytlacil (2011) sharpen the

bounds on the ATE in the binary outcome case under the assumption that the treatment effect

is either weakly positive or weakly negative for all individuals (while the direction is a priori

not restricted). Cheng and Small (2006) extend the results for binary outcomes to the case that

the treatment can take three values under particular forms of (one-sided) noncompliance.

Under mean independence of Z and the potential outcomes/treatment states and Assump-

tion 2.2, Huber et al. (2014) bound the ATE when assuming a particular order in the mean

potential outcomes across types. Also Flores et al. (2015) consider such restrictions in addition

to Assumptions 1 and 2, but also invoke a specific order of mean potential outcomes across

treatment states within specific types. Furthermore, see Chiburis (2010) and references therein

for the derivation of semiparametric (rather than nonparametric) bounds on the ATE under

the IV assumptions. Kowalski (2016) considers the MTE framework and assumes the marginal

outcomes under treatment and non-treatment, E(Y (1)|V = v) and E(Y (0)|V = v), to be mono-

tonic in the unobserved term in the treatment model (2.1) to bound the ATE. Angrist (2004)

offers a sensitivity check for the ATE based on particular proportionality conditions across the

mean potential outcomes of various types. Finally, Mogstad et al. (2016) develop a framework

for obtaining identified sets on the ATE and other policy relevant parameters by exploiting the

fact that the IV estimand and many other parameters of interest can be expressed as a weighted

average of MTE where the weights are known or identified.

8 Relationship to other instrumental variable approaches

In this section, we discuss the relationship between the LATE framework and two other widely

used IV models: the classical linear IV model and the instrumental variable quantile regression

model (IVQR) due to Chernozhukov and Hansen (2005).

8.1 Linear IV models

Linear IV models such as

Y = X ′γ + βD + ε
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play a central role in applied empirical research. If we are willing to assume that treatment

effects are homogeneous across individuals, the coefficient β corresponds to the population ATE,

which can be consistently estimated using classical estimators such as TSLS or limited infor-

mation maximum likelihood (LIML). However, in most applications it appears implausible that

treatment effects are homogeneous and thus unrelated to observable or unobservable character-

istics. It is therefore important to understand which parameters classical estimators of the linear

IV model such as TSLS and LIML estimate when treatment effects are in fact heterogeneous.

To formalize the analysis, we follow Angrist and Imbens (1995) and Angrist and Pischke

(2009) and consider the TSLS estimand with fully saturated first and second stage equations

D = πX + π1XZ + u, Y = αX + βD + ε,

where πX and αX denote saturated models for covariates and π1X denotes separate first-stage

effects of Z for every value of X. Under the assumptions of the LATE framework with covariates

(Assumption 3.1 – Assumption 3.4) it can be shown that

β = E (E (Y (1)− Y (0)|T = c,X)ω(X)) ,

where

ω(X) =
V ar (E(D|X,Z)|X)

E (V ar (E(D|X,Z)|X))
.

That is, TSLS with a fully staturated first stage and a second stage which is saturated in the

covariates produces a weighted average of covariate-specific LATEs with weights proportional

to the average conditional variance of the population first-stage fitted value E(D|X,Z).

Kolesar (2013) generalized the analysis in Angrist and Imbens (1995) by characterizing the

estimands of general two-step estimators (such as TSLS) and minimum distance estimators

(such as LIML) under the LATE framework. His analysis shows that while the probability limit

of TSLS can be expressed as a convex combination of LATEs as in the special case discussed

before, LIML and related estimators may end up being outside the convex hull of LATEs. As
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a consequence, minimum distance estimands may not correspond to a causal effect if treatment

effects are heterogenous.

8.2 IV quantile regression

The instrumental variable quantile regression (IVQR) model introduced by Chernozhukov and

Hansen (2005) provides an alternative framework for identifying and estimating heterogeneous

treatment effects with IVs. In contrast to the LATE framework, the IVQR model does not

impose a monotonicity assumption in the selection equation. Instead, it relies on rank invariance

in the outcome equation, a restriction on the evolution of individual ranks across treatment

states.4 By virtue of the rank invariance assumption, the IVQR model identifies population

level treatment effects. This is in sharp contrast to the LATE framework under which treatment

effects are only identified for the compliers. However, rank invariance substantially restricts

treatment effect heterogeneity and may therefore be implausible in many applications. For

instance, as noted by Heckman and Vytlacil (2007), rank invariance rules out scenarios in which

agents self-select based on their individual effects and does not allow for effect heterogeneity as

generated by the generalized Roy model.

To formalize the rank invariance assumption, note that by the Skorohod representation of

random variables, the potential outcome Y (d) can be related to its quantile function QY (d)(τ)

in the following way:

Y (d) = QY (d)(U(d)), where U(d) ∼ Uniform(0, 1). (8.1)

If the potential outcomes are continuous random variables, QY (d)(·) is strictly increasing and

the disturbance U(d) determines the individual position or rank in the distribution of Y (d).

We therefore refer to U(d) as ’rank’. With this notation at hand, we can formally define

rank invariance as U(1) = U(0). Under rank invariance and instrument independence, the

population QTE, ∆(τ) = QY (1)(τ) − QY (0)(τ), can be identified and estimated based on the

4Chernozhukov and Hansen (2005) show that rank invariance can be somewhat relaxed to rank similarity
that allows for random deviations from the expected rank.
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following conditional moment restriction:

Pr
(
Y ≤ QY (D)(τ)|Z

)
= τ (8.2)

On the surface, the IVQR and the LQTE model do not seem to be connected since they

rely on different non-nested assumptions and identify treatment effects for different populations.

Despite these differences, Wüthrich (2016) shows that

∆(τ) = ∆c

(
FY (0)|T=c

(
QY (0)(τ)

))
= ∆c

(
FY (1)|T=c

(
QY (1)(τ)

))
, (8.3)

where QY (1)(τ) and QY (1)(τ) are defined as

Q−1
Y (1)(y) = πaFY (1)|T=a(y) + πcFY (1)|T=c(y) + πnFY (0)|T=n

(
QY (0)|T=c

(
FY (1)|T=c(y)

))
Q−1
Y (0)(y) = πnFY (0)|T=n(y) + πcFY (0)|T=c(y) + πaFY (1)|T=a

(
QY (1)|T=c

(
FY (0)|T=c(y)

))
.

Equation (8.3) demonstrates that the IVQR QTE estimand at quantile level τ corresponds

to the LQTE at τ ′, where τ will generally not be equal to τ ′. The difference between the

two estimates is determined by two factors: (i) the differences between the potential outcome

distributions of the untreated compliers and never takers as well as the differences between the

potential outcome distributions of the treated compliers and always takers, and (ii) the relative

size of the three subpopulations.

The results in Wüthrich (2016) confirm that with unrestricted treatment effect heterogeneity,

all the information on treatment effects has to come from the compliers, i.e. the group observed

under either treatment state. Moreover, they provide insights on how the IVQR model extrap-

olates from the compliers to the whole population. This motivates the use of the IVQR as an

approach to extrapolation in the LQTE framework; see Section 7.2.
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9 Conclusion

This paper provides a survey on the methodological advancements in the evaluation of local

average treatment effects based on instruments. We first review the classical framework go-

ing back to the seminal contributions of Imbens and Angrist (1994) and Angrist et al. (1996),

which have been very influential in applied empirical research. We then proceed by summa-

rizing and synthesizing important methodological extensions, for example distributional and

quantile treatment effects, multivalued or multiple treatments and instruments, identification

and estimation in the presence of observed covariates, attrition and measurement error, testing

and relaxations of identifying assumptions, conditions for external validity, and the relationship

to other IV approaches. We thereby complement more introductory reviews that focus on im-

plementation and applications such as Imbens (2014) and the textbook discussions in Angrist

and Pischke (2009) and Angrist and Pischke (2015).
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Frölich, M., Lechner, M., 2015. Combining matching and nonparametric instrumental variable

estimation: Theory and an application to the evaluation of active labour market policies.

Journal of Applied Econometrics 30 (5), 718–738.
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Wüthrich, K., 2016. A comparison of two quantile models with endogeneity. Unpublished

Manuscript.

Yamamoto, T., 2013. Identification and estimation of causal mediation effects with treatment

noncompliance. unpublished manuscript, MIT Department of Political Science.

Yu, P., 2014. Marginal quantile treatment effect and counterfactual analysis. Unpublished

Manuscript.

Zhang, J., Rubin, D., Mealli, F., 2009. Likelihood-based analysis of causal effects of job-training

programs using principal stratification. Journal of the American Statistical Association 104,

166–176.

59



Authors

Martin HUBER
University of Fribourg, Department of Economics, Bd. de Pérolles 90, 1700 Fribourg, Switzerland.  
Phone: +41 26 300 8274;  Email: martin.huber@unifr.ch;  Website: http://www.unifr.ch/appecon/en/team/martin-huber 

Kaspar WÜTHRICH 
UC San Diego, Department of Economics, San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA. 
Phone: +1 858 534-3383  Email: kwuthrich@ucsd.edu;  Website: https://sites.google.com/site/wuethricheconomics/

 

Bd de Pérolles 90, CH-1700 Fribourg
Tél.: +41 (0) 26 300 82 00
decanat-ses@unifr.ch      www.unifr.ch/ses

Université de Fribourg, Suisse, Faculté des sciences économiques et sociales 
Universität Freiburg, Schweiz, Wirtschafts- und sozialwissenschaftliche Fakultät 
University of Fribourg, Switzerland, Faculty of Economics and Social Sciences

Working Papers SES collection

Abstract
This paper provides a review of methodological advancements in the evaluation of heterogeneous 
treatment effect models based on instrumental variable (IV) methods. We focus on models that 
achieve identification through a monotonicity assumption on the selection equation and analyze 
local average and quantile treatment effects for the subpopulation of compliers. We start with a 
comprehensive discussion of the binary treatment and binary instrument case which is relevant 
for instance in randomized experiments with imperfect compliance. We then review extensions 
to identification and estimation with covariates, multi-valued and multiple treatments and 
instruments, outcome attrition and measurement error, and the identification of direct and indirect 
treatment effects, among others. We also discuss testable implications and possible relaxations 
of the IV assumptions, approaches to extrapolate from local to global treatment effects, and the 
relationship to other IV approaches.

Citation proposal
Martin Huber, Kaspar Wüthrich. 2017 «Evaluating local average and quantile treatment effects under endogeneity based on 
instruments: a review». Working Papers SES 479, Faculty of Economics and Social Sciences, University of Fribourg (Switzerland)

Jel Classification
C26

Keywords
Instrument, LATE, treatment effects, selection on unobservables

Last published
473  Deuchert E., Huber M., Schelker M.: Direct and indirect effects based on difference-in-differences with an application to 

political preferences following the Vietnam draft lottery; 2016
474  Grossmann V., Schäfer A., Steger T., Fuchs B.: Reversal of Migration Flows: A Fresh Look at the German Reunification; 

2016
475 Pesenti A.: The Meaning of Monetary Stability; 2016
476 Furrer O., Sudharshan D., Tsiotsou Rodoula H., Liu Ben S. : A Framework for Innovative Service Design; 2016
477 Herz H., Taubinsky D.: What Makes a Price Fair? An Experimental Study of Transaction Experience and Endogenous 

Fairness Views; 2016
478 Zehnder C., Herz H., Bonardi J.-P.: A Productive Clash of Cultures: Injecting Economics into Leadership Research; 2016

Catalogue and download links
http://www.unifr.ch/ses/wp                          
http://doc.rero.ch/collection/WORKING_PAPERS_SES 

Publisher

Working Paper 479 february 2017

http://www.unifr.ch/ses/wp
http://doc.rero.ch/collection/WORKING_PAPERS_SES

	Front.pdf
	Evaluating local average and quantile treatment effects under endogeneity based on instruments a review.pdf
	Introduction
	Identification and estimation without covariates
	Assumptions
	Identification under a binary treatment and instrument
	Multivalued instruments and marginal treatment effects
	Multivalued treatments

	Treatment evaluation with covariates
	Identifying assumptions
	LATE
	LQTE
	Marginal treatment effects
	General functionals

	Some extensions
	LATE evaluation under outcome attrition and sample selection
	Measurement error in the treatment or instrument
	Dynamic and multiple treatments
	Direct and indirect effects (causal mechanisms)

	Violations and relaxations of the IV assumptions
	Violation of the exclusion restriction
	Violation and relaxations of monotonicity

	Testing, sensitivity checks, and bounds
	Testing the LATE assumptions
	Sensitivity checks and bounds

	External validity of the LATE
	Comparability in terms of observables
	Conditions for extrapolation and testing
	Partial identification of the ATE

	Relationship to other instrumental variable approaches
	Linear IV models
	IV quantile regression

	Conclusion

	Back



