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Notes S1 Habitat similarity among species within each of the angiosperm genera in the Netherlands 

  

We provide an example of habitat use along multiple environmental gradients and its variation among 

species within each of the angiosperm genera in the Netherlands (from Ozinga et al., 2013). We find that 

many of these genera exhibit minimal variation of the preferred habitats among their constituent 

species, while only a few show large variation, even after accounting for the present-day richness and 

the age of the genera (Fig. S1). This result appears to be true for the fossil record as well. Notes S3 

provides an example of both strong and weak variation in habitat use through deep evolutionary time 

from the fossil record. Overall, clades appear to vary strongly in the degree to which their species occupy 

similar habitats.  
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Notes S2 Relationship between competitiveness and habitat similarity within genera 

Methods: The investment of species into competitiveness was inferred following Grime’s CSR ecological 

plant strategy scheme (Grime, 1977; applied in Klotz et al., 2002). Essentially, this system interprets 

multiple life history traits such as plant and seed size as indicative of competitiveness and ranks these 

traits along gradients of a three-way trade-off between competitiveness, stress tolerance and the 

capacity to use disturbed (ruderal) environments (C, S, or R). The CSR classifications ranks species as non-

C (0), entirely C (1) or C combined with either stress tolerance or disturbance (0.5). We characterized 

genera by their means across species. Species possessing traits corresponding to competitiveness hence 

invest relatively more into competitiveness and less into the two other competing demands.  Although 

the CSR scheme has been criticized (Grace, 1991), it has proven to be a good predictor of patterns of 

species coexistence in a given region and of environmental conditions (e.g. Carlyle et al., 2010). 

Moreover, this scheme is the only one available to rank all species in our study region or in any other 

region according to their competitiveness.  

 

Result: High similarity of habitats among species within plant genera decreases rather than increases 

competitiveness (Fig. S2). This relationship is independent of whether high habitat similarity corresponds 

to high co-occurrence among congeners (indicated by an unsigned residual co-occurrence in lower 

quartile, left graph) or whether habitat similarity is unrelated to co-occurrence (i.e. unsigned residual co-

occurrence in higher quartile, right graph). An analysis including genus crown-age and species richness as 

covariables and treating residual co-occurrence as a continuous variable yields a non-significant 

interaction term ‘habitat similarity × residual co-occurrence’ (t=-1.29, P=0.2).    
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Notes S3 Habitat similarity among related species in fossil plant–insect relationships 

We are not aware of an example of habitat use by plants observed in the fossil record during the 

evolutionary history of a plant clade. There are, however, observations on long-term occupation of 

habitats involving insect herbivores. During the past two decades several studies of deep-time plant–

insect associations have documented the persistence or lack thereof of specialized, tissue specific niches 

on particular plant-host taxa. These examinations have involved clades of gall wasps, wood-boring 

beetles and leaf-mining moths (Waggoner & Poteet, 1996; Labandeira et al., 2001; Doorenweerd et al., 

2015, respectively), as well as instances of the ephemerality of such niches through their eradication by 

mechanisms such as plant-host switching and extinction, often involving leaf-miners (Labandeira, 1998; 

Winkler et al., 2015). For insect herbivores a habitat roughly corresponds to a host plant species and the 

tissue types used on that host plant. The paleoecology of plant–insect associations therefore can 

contribute insight on habitat similarity among related species within clades, including between ancestors 

and descendants within lineages. There is evidence for habitat occupancy that is similar or dissimilar 

among ancestors and descendants within clades. One example of fossil evidence for phylogenetic 

similarity in habitat use among such relatives is found in lepidopteran leaf miners on oaks (Fagaceae: 

Quercus) from western North America that span several million years from the Middle Miocene to the 

present (Opler, 1973, 1974a). Within this study perhaps the best studied system are certain herbivores 

on Quercus agrifolia (coast live oak, encina), an oak species with a fossil record extending to the middle 

Miocene 12.5 million years ago (Mensing, 2005), as evidenced by megafloral occurrences (Axelrod, 1967, 

1987) and stereotypical gall-wasp galls (Larew, 1992) indicating Q. agrifolia. Quercus agrifolia currently 

hosts four leaf-mining genera that form serpentine or blotch mines in internal leaf tissues: Stigmella 

(Nepticulidae), Bucculatrix (Bucculatrigidae), Lithocolletis (Gracillariidae) and Evippe (Geometridae) 

(Opler, 1974b; Fig. S3A). Distinctive leaf mines (Labandeira et al., 2007; Doorenweerd et al., 2015) can be 

traced through modern Q. agrifolia to ancestral host species that are preserved as diagnostic, fossil leaf-

mine morphotypes structurally identical to modern congeners. While there may have been host-

switching among genera of other leaf miners and appearances and disappearances of other leaf miners 

on Q. agrifolia, these four genera exhibited deep-time persistence and continuity, and maintained 

habitat occupancy during an interval lasting from 12.5 to 5.3 million years ago (Opler, 1973) and to the 

present (Opler, 1974), in spite of profound environmental change, particularly from Pleistocene 

glaciation cycles. 



 

A different mode emerges from the much older, component arthropod community (sensu Root, 1973), 

on Late Paleozoic Psaronius marattialean tree ferns. Psaronius occurs during the Late Carboniferous of 

the paleoequatorial Illinois and Appalachian basins, U.S.A. (Rothwell & Scott, 1983; Labandeira & Phillips, 

1996, 2002; Labandeira et al., 1997) and analogous habitats in European Euramerica (Rösler, 2000). 

Some of these associations continued throughout the Permian of North China and South China, 

paleocontinents that were being sutured to eastern Eurasia, forming Cathaysia (D’Rozario et al., 2011; 

Fig. S3B). In the case of host Psaronius chasei and closely related species of the Illinois Basin, the 

collective evidence indicates significant convergence of insect consumer clades in habitat use. 

Independently garnered body-fossil insect data indicate considerable insect lineage turnover during this 

time interval, particularly at extinction events (Labandeira, 2005). As well, there is a parallel, more 

gradual pattern of replacement of the late Paleozoic insect fauna by the Modern fauna throughout the 

Permian (Labandeira, 2005). In the Psaronius component community, several functional feeding groups – 

distinctive, diagnosable, types of feeding, as analogous to leaf mining example mentioned above, were 

examined based on damage-type distinctiveness, a condition frequently detected in the fossil record 

(Labandeira, 2002; Labandeira et al., 2007). These shifts in insect consumer clades occupying a particular 

habitat indicate low habitat similarity among ancestors and descendants. 
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Notes S4 Species within clades occupying similar habitats: no consequences for the capacity to respond 

to environmental change 

 

1. Suitable habitats remain available locally and can be tracked, particularly by species sharing similar 

habitats with their relatives. 

Mechanism 

Habitats have undergone periods of rapid and major shifts throughout the deep-time history of most 

clades. These rapid environmental shifts would be devastating for biotas that have slowly evolving 

habitat niches, provided that habitats can change equally across very large areas. Such a uniform change 

would preclude any rapid escape to more hospitable areas. However, the reality appears quite different. 

Many landscapes in biomes ranging from tundra to tropical forests exhibit small-scale heterogeneity of 

abiotic environments at the scales of hundreds of meters or less (Scherrer & Körner, 2011). Biotic 

environments may vary at even a finer grain; for instance, provision for nectar production and 

pollination services (Thompson, 2004), or soil microbial activity (Bennett et al., 2009; Jacquemyn et al., 

2014). For most species, large and continuous stretches of suitable environmental conditions are rare 

because they are overlain by spatially fine-grained habitat variation. Paradoxically, this fine-grained 

habitat heterogeneity can ensure that suitable environments remain accessible under large-scale 

(regional or continental) environmental change (Fig. S4). Large-scale changes might hence be 

compensated by small-scale redistribution. Indeed, this has been demonstrated for arthropods that 

redistribute among microhabitats on tree bark (Prinzing, 2005), or for thermophilous species inhabiting 

numerous extra-Mediterranean refugia during glacial stages of the Pleistocene (Schmitt & Varga, 2012). 

If tracking a suitable environment in space is impracticable, species may still respond to environmental 

changes by adaptive plasticity or maternal effects (Kuijuper & Hoyle, 2015), or track suitable 

environments in time through a persistent seed bank in plants (Ozinga et al., 2009) or hibernation in 

animals (Ultsch, 2006). Finally, even if environmental change operates at longer spatial or temporal 

scales, species may succeed in tracking environmental changes by long-distance dispersal. The fossil 

record provides rich examples of species that changed their ranges by tracking redistribution of their 

habitat-niche under Pleistocene climatic fluctuations (Lang, 1994).  

Overall, even under major regional to global environmental shifts, suitable habitat environments often 

remain accessible (Fig. S4). Consequently, low variation of habitat niches and associated characters 



 

among species may not prevent survival under changing environments, albeit some predicted climate 

changes may exceed observed migration capacities (Normand et al., 2011). One might expect that clades 

whose species can track shifting environments have been able to conserve their ancestral niches 

(Prinzing, 2003). In such cases, similar habitat niches among related species within a clade would result 

from a particularly high capacity to track suitable patches of their preferred habitat, and not from a 

particularly low capacity for establishment in a new habitat niche. 

 

Tentative evidence 

We explored tentative evidence supporting the hypothesis that clades whose species use similar habitats 

succeed in tracking habitats. We used results from Ozinga et al. (2005) who had applied ordination 

techniques (DCA and CCA) to predict which habitat patches across fragmented Dutch landscapes are 

suitable for each single species of the Dutch flora. For some species, predictions matched observations 

better than for others, indicating that these species better tracked their habitat niches. The degree of 

habitat tracking was related to life-history traits of the species. Much of this interspecific variation of life-

history traits could be explained by the capacity of species for long-distance dispersal (inferred from 

morphological characters), a long life span, and the existence of a persistent seed bank (Ozinga et al., 

2005). We averaged each of these three traits within genera; measured habitat similarity among species 

(section II); and found that none of the traits were correlated to the similarity of habitats among-species 

within genera (section II; unsigned r<0.21, P>0.73). Then we used a multiple regression analysis to 

explain the genus-means of the degree of habitat tracking by: (i) the genus-means of each of the three 

traits, (ii) the within-genus habitat similarity, and (iii) the interaction terms between habitat similarity 

and each of the three trait means. We found a significant positive interaction term between habitat 

similarity within genera and mean adult life-span (df=144, t=2.1 P=0.040, total R² of model=0.34): only 

for genera whose species occupy similar habitats, did high adult life-span improve habitat tracking (Fig. 

S5). Overall, for the same life span and capacity of long-distance dispersal, genera whose species share 

similar habitats did seem to have a higher capacity to track suitable habitat patches. 

  



 

2. Any species carries the potential of evolving responses to present and future changing 

environments, even if species within clades have maintained similar habitats during the past. 

Mechanism 

If relatives within a clade occupy similar habitats this suggests slow or limited habitat differentiation in 

the past. Here, we argue that limited past differentiation does not necessarily prevent rapid innovation 

and habitat shift when the ancestral habitat niche entirely disappears (Armbruster & Baldwin, 1998). 

Specifically, we will explore possible mechanisms of how clades composed of species using similar 

habitats may have retained the potential to expand or change habitat niches with only limited genomic 

evolution. 

Cryptic and epigenetic diversity maintains adaptive plasticity—Species within clades may, for instance, 

carry adaptations necessary for occupying a new habitat because of preadaptation or, more 

appropriately ‘exaptation’ (Gould & Vrba, 1982), particularly if physiological constraints imposed by the 

new habitat are similar to those of the old niche. Such preadaptation might involve multiple alleles 

available in polyploid species (Ainouche et al., 2009), or epigenetically masked characters (Bossdorf et 

al., 2008) that increase the robustness and survival of populations in changing environments (Angers et 

al., 2010). Cryptic variation evidently has no effect on phenotypes within a given environmental 

background, but it potentially can be advantageous following environmental change (Hayden et al., 

2011, and references therein), ensuring a high potential for habitat-niche evolution even in populations 

and species with low genetic diversity (Richards et al., 2012; Verhoeven & Preite, 2014). Expression of 

this hidden genetic variation may then be promoted by stressful environments (Hayden et al., 2011). 

Collectively, these genetic mechanisms can increase in situ mean fitness under environmental changes 

and thus provide adaptation of a species to variable habitats, with almost no changes in its genetic 

composition. This would occur even if habitat niches have evolved relatively slowly in the past 

(Hoffmann & Sgrò, 2011). 

Adaptation to variable environments through changes in metabolic pathways—Metabolism may be an 

important key toward understanding the capacity of species to quickly adapt to environmental change. 

Such rapid accommodation may occur even after long-term stasis in a habitat niche and under conditions 

of a conserved genetic background. On the one hand, a given metabolite may have functions that vary 

according to the habitat that the organism occupies, particularly for plant secondary compounds that 

may have versatile functions. For example, anthocyanins and monoterpenes are insect attractants in 

flowers while simultaneously possessing insecticidal and antimicrobial properties to protect vegetative 



 

tissues (Wink, 2003). Alternatively, a given metabolic pathway may develop a new function. Recent 

findings reveal different mechanisms by which metabolic pathways respond to niche fluctuations. One 

group of mechanisms concerns genes or gene regulators driving the metabolome. Regulatory evolution 

may play important roles in short-term responses of species to environmental changes through, for 

instance, functional divergence of the transcription factors that regulate the metabolic pathways 

(Grotewold, 2005). In addition, mutations in regulatory loci alter the expression of functionally 

conserved proteins (Carroll, 2008; Fig. S4). 

A second group of mechanisms concerns the possible recycling of enzymes in plant secondary 

metabolism. Plants maintain a ‘silent metabolism’ (Lewinsohn & Gijzen, 2009); that is, a hidden reservoir 

of metabolic capabilities through numerous but normally unused enzymes. Silent metabolism may result, 

for instance, from epistatic mutations having produced enzymes without any apparent endogenous 

substrate or function. These ‘occult’ enzymes may, in turn, evolve new pathways when expressed 

(Lewinsohn & Gijzen, 2009). Such enzyme repurposing would be facilitated by relaxed selection; that is, 

the removal of any selection pressure that would maintain the initial function of the enzyme (Ober, 

2005; Lewinsohn & Gijzen, 2009). Such enzyme repurposing has been increasingly documented in 

bacteria, plants and animals and there now is evidence that this often plant-driven process is easily 

accomplished and has occurred independently in various lineages (Stefano & Kream, 2007; Bradbury et 

al., 2014; Fig. S4). Many examples now have shown that the diversification of metabolism in plants often 

involves reusing previously evolved genetic material (Ober, 2005, Yang et al., 2015). This ‘silent 

metabolism’ suggests that plants have evolved the means of maintaining potentially useful chemicals 

without the evolution of those chemicals (Lewinsohn & Gijzen, 2009). The above-described adaptive 

mechanisms involving the metabolome suggest ways by which species retain the capacity for habitat 

flexibility, even in clades that currently and likely in the past exhibited only little variation in occupation 

of habitat niches and in underlying genotypes (Lewinsohn & Gijzen, 2009; Hennion et al., 2012). 

Tentative evidence 

It repeatedly has been shown that, despite limited variation of habitat-niche positions among species 

within clades, the habitat-niche breadths may vary strongly among related species (Brändle et al., 2002). 

A given ancestral habitat-niche breadth of a species resulting from past ecological constraints does not 

prevent more recent niche expansion or contraction. Also, for a given habitat-related character, within-

species dissimilarity is compatible with lack of among-species similarity. For instance, phylogenetic 

constraints on the absolute levels of metabolite composition do not prevent species from shifting the 



 

relative composition of metabolites in response to habitat change (Hennion et al., 2012). Such 

intraspecific responses to changing habitats have been demonstrated to result from heritable epigenetic 

variation (Zhang et al. 2013) and such epigenetic responses may be more important than genetic ones 

(Richards et al. 2012).  
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Fig. S1 An example of variation in habitats among species within different angiosperm genera, based on the 
flora of the Netherlands. For each species, positions along light, temperature, soil moisture, pH and soil 
productivity axes are taken from Ozinga et al. (2013) as explained in section II. Habitat variations among 
species within genera are calculated as the standard deviations separately for each environmental gradient 
(habitat-niche axis) and then are averaged across axes. The upper graph (a) shows raw values of within-genus 
variation, which differ by a factor of 30 among genera. The lower graph (b) shows residuals of within-genus 
variation after accounting for species richness and phylogenetic crown age of the genera (from Hermant et al., 
2012; see section II). See Notes S1 for further explanations.  
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Fig. S2 Relationship between competitiveness and habitat similarity within genera. Genera in which 

habitat similarity corresponds to co-occurrence are analysed separately of genera that do not show this 

relationship. See ‘Results’ of Notes S2 for further explanations. 
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Fig. S3 Varying degrees of habitat similarity among ancestors and descendants in the fossil record of 

plant–insect interactions. Habitat conservatism between ancestors and descendants occurs in (A), and 

habitat convergence in (B). (A) Quercus agrifolia hosts four leaf-mining genera that have an antiquity 

from c. 12.5 to 5.3 million years, and continuing to the present, supporting a hypothesis of habitat-niche 

conservatism with low niche variation among species within genera. Each of the four leaf-mining feeding 

niches (distinctive mine morphotypes) houses only members of a single clade of (very) closely related 

species, likely a single species. (B) By comparison, the much older late Paleozoic Psaronius chasei and 

related species indicate significant entering, exiting and persistence of various unrelated insect consumer 

lineages that include detritivores (DET), external foliage feeders (EFF), piercer and suckers (P&S), gallers 

(GAL), spore and sporangia feeders (SPO), and pith borers (BOR). This pattern is consistent with the 

habitat convergence hypothesis that states high habitat variation among species within genera. Scales at 

left and right are given as millions of years (Ma); black dots indicate fossil occurrences; see Notes S3 text, 

Labandeira & Phillips (2002), and D’Rozario et al. (2011) for details. Reconstruction in (B) by Mary 

Parrish. See Notes S3 for further explanations. 
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Fig. S4 Scheme summarizing the scenarios in which similarity in habitat use among closely related 

species has no consequences on the vulnerability of species to present environmental change. Species in 

the upper of the two clades, occupy similar habitats (sh = similar habitat use clade), contrary to species 

in the lower clade. Shades of grey correspond to environments used, such as different moisture 

conditions. See Notes S4 for further explanations. 
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Fig. S5 Habitat tracking (z, colours) as a function of the capacity of long-distance-dispersal (x) and of 

adult life span (y). Analyses based on within-genus averages of data from Ozinga et al. (2005). Separate 

analyses for genera whose species each use similar or dissimilar habitats (as in Fig. S4). Note that genera 

of high adult life span and long-distance dispersal have relatively high capacity of habitat tracking – 

provided that the species in that genus use similar habitats. Note that an analysis across the full data set 

treating habitat similarity as a continuous variable yields a significant interaction term ‘habitat similarity 

× adult life span’ (P=0.04, see text for details). Everything else being equal, habitat tracking is higher in 

genera whose species occupy similar habitats. 

 

 

 

 


