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ABSTRACT: With the large differences in surface energy
between film and substrate in combination with the low
sticking coefficient of hydrocarbon radicals, nanocrystalline
diamond growth on foreign substrates typically results in poor
nucleation densities. A seeding technique is therefore required
to realize pinhole-free and thin coalesced films. In this work, a
chemical nucleation method for growth of diamond on nondiamond substrates based on 2,2-divinyladamantane is shown. After
treating with the carbon-containing DVA, the chemically treated wafers were exposed to low-power-density plasma, known as the
incubation phase, to facilitate the formation of diamond nucleation sites followed by a high-power-density growth regime to
produce coalesced films. The resulting films demonstrate high crystallinity, whereas the Raman spectra suggest high-quality
diamond with low sp2 content.
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1. INTRODUCTION

For all but single-crystal iridium with its ability to dissolve and
then expel carbon sufficiently fast for single-crystalline growth,
diamond growth on foreign substrates typically results in
polycrystalline diamond films.1,2 For example, the large
differences in surface energy between diamond and silicon (6
vs 1.5 J cm−2) in combination with the low sticking coefficient
of methyl precursors lead to the formation of three-dimensional
clusters of density of 1 × 104 to 1 × 105 cm−2 upon growth on
unseeded silicon.3,4 To aid coalescence and produce thin films,
a seeding step is therefore required to reach the nucleation
densities required. In the literature a wide range of techniques
can be found from mechanical abrasion of the substrate
surface,5−7 ultrasonic particle treatment,8,9 bias enhanced
nucleation10 and the attachment of nanodiamond particles
onto the substrate surface11 for subsequent growth. In addition,
researchers have also tried nucleation of surfaces using chemical
precursors like diamondoids.12−16 With the small size of
diamondoid molecules (1 nm), successful use of such a seed
would allow the growth of ultrathin layers of diamond on top of
nondiamond substrates. However, although enhanced nuclea-
tion was observed during these studies, the increase in density
was not enough to produce thin coalesced films.17

With regards to the choice of chemical precursor, it was
initially suggested by Olah18 that organic molecules with cage
structure can act as possible nucleation sites for diamond
growth. The following years, Linford et al.19,20 showed that it is
possible to covalently attach organic molecules to the
hydrogen-terminated silicon surface. This led Leroy et al.21 to
design adamantane based 2,2-divinyladamantane (DVA) for
chemical nucleation of diamond consisting of the smallest
diamondoid, adamantane (C10H16), with two vinyl groups to
facilitate covalent attachment to the silicon surface. Giraud et
al.22 were then able to demonstrate an increase in the

nucleation density above that of bare silicon upon using
DVA, however coalesced films were not obtained.
It is to be noted that in many of the previous studies on the

chemical nucleation of diamond growth the diamondoid
molecules were spun-coated on substrates by dissolving in
solvents like glycol15 or toluene.16 Therefore, it is important to
investigate the effects these solvents have on the nucleation
density on the substrates. For example, in the course of the
present study, it was found that solvents like toluene or
cyclohexane can also lead to enhanced nucleation on silicon
substrates, in agreement with results reported within previous
studies.23,24 As a result, such solvent-mediated nucleation sites
may interfere with diamondoid based chemical nucleation.
The main motivation for a chemical-based nucleation process

is to develop a protocol that is cleanroom compatible, thus
making diamond an attractive material to the electronic
fabrication industry. Within the present study DVA is used to
produce coalesced films, with the addition of a low-temperature
incubation step to allow the chemical precursor to stabilize and
act as nucleation sites for subsequent diamond growth. Varying
the grafting procedure meanwhile demonstrates the require-
ment for UV radiation to facilitate covalent attachment of the
DVA molecules to the silicon surface, whereas the carrier
solvent used has been shown to affect the resulting growth with
toluene, leading to an enhanced nucleation density.

2. EXPERIMENTAL SECTION
Silicon (111) wafers of 500 μm thickness was used as substrates
throughout. The wafers were first cleaned in acetone and iso-propanol
to remove any organic impurities present on the surface followed by 1
min in a 5% solution of hydrofluoric acid to remove the native oxide
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leaving a hydrogen terminated surface. The wafers were then
repeatedly cleaned in deionized water to remove any excess acid
present on the surface before the application of a thin coat of DVA.
The coated samples were then placed inside a chamber and flooded
with nitrogen at 900 mbar to remove the atmospheric oxygen and
minimize evaporation of the solution. After 2 h, the samples were
exposed to UV radiation of varying duration to facilitate the grafting of
the DVA molecules through the use of a deuterium lamp (30 W from
LOT-QuantumDesign, U.K.) with emission predominantly between
160 and 400 nm, or a xenon arc lamp(300 W from LOT-
QuantumDesign, UK) fitted with a water based IR filter limiting the
emission between 250 and 950 nm to reduce heating of the sample. In
the mechanism proposed by Giraud et al.22 UV exposure leads to
homolysis of the Si−H bonds present at the surface of the clean silicon
surface, initiating a bis-hydrosilyation25 process that allows the
formation of covalent bonds between silicon atoms and the DVA
molecules. Such covalent attachment then alleviates issues with the low
sublimation point of adamantane and increases the likelihood of the
molecules acting as nucleation sites upon being subjected to plasma
conditions.22

At the end of exposure, the samples were twice alternately rinsed in
ethanol and deionized water for 30 s to remove the excess DVA.
Subsequent sonication for 5 min in a portion of dichloromethane then
removed ungrafted DVA and residual traces of solvents. The samples
were then placed inside a Seki AX6500 series CVD reactor under high
vacuum (1 × 10−6 mbar) to complete the drying process, and in
preparation for deposition. CVD was initially carried out at a growth
temperature of 250 °C and a methane admixture of 5% CH4:
(CH4+H2) to prevent etching of the seeds when being exposed to the
hydrogen plasma at conventional growth temperatures of 700−900
°C, termed the incubation phase of growth. This incubation phase is
necessary to ensure the growth and stability of the volatile diamondoid
molecules. During the process heating of the sample occurs solely
from the plasma, with the plasma density used to control the resulting
substrate temperature at approximately 250 °C. Further information
about the need for an incubation step can be found within the review
by Williams.26 Upon establishment of the diamond seeds the methane
admixture was then reduced to 3% CH4:(CH4+H2) and the
temperature raised to 850 °C in an attempt to realize high-quality
nanocrystalline diamond films, termed as the growth phase. The
complete procedure of seeding and growth is summarized schemati-
cally in Figure 1. To investigate the contribution and optimum
duration of each stage of the process, we prepared 13 different samples
with parameters tabulated in Table 1: samples S1−S9 were coated with
DVA through the process detailed previously and exposed to UV light
from the Deuterium lamp for a duration of 1 h; samples S10 and S11
were similarly coated but exposed to light for 24 h from the Xenon and
Deuterium lamps respectively; sample S12 was coated with DVA
without exposure from either lamps; and finally, sample S13 had
neither DVA coat nor was exposed to light.
The samples were characterized using scanning electron microscopy

(SEM), atomic force microscopy (AFM) and Raman spectroscopy.
SEM was performed with the in-lens detector of Raith eLine operating
at 20 kV with a working distance of 10 mm, while AFM was carried
out with a Park Systems XE-100 AFM operating in noncontact mode.
Scans of the stabilized seeds were taken with Bruker Tespa V2 AFM
tips (Nominal frequency 320 kHz, spring constant 42 N/m, tip radius
8 nm) with particular care taken to tap lightly to prevent excessive
wear and retain the shape of the tip during scanning. Finally, the
quality of the resulting films were studied with Raman spectroscopy
utilizing a Renishaw inVia Raman microscope using the 514 nm line of
an Ar+ ion laser.

3. RESULTS AND DISCUSSION

500 × 500 nm2 AFM images of the initial incubation only S1
and S2 samples are shown in Figure 2, with S1 and S2 subjected
to a low density plasma for 30 and 240 min, respectively. Panel
A of Figure 2 clearly shows the nucleated nanodiamonds on the
surface of the substrate with an average deviation in height over

the scan of approximately 5 nm. The seed density calculated
from the AFM image is approximately 6 × 1011 cm−2 which is
comparable to the existing state of the art.26 However, such a
density can only be useful if there is complete coverage of the
substrate. In comparison, the AFM image of the 240 min
incubation sample show nanodiamonds larger in lateral size and
height, with an average deviation in height of hemispherical
seeds of approximately 20 nm. AFM studies on BEN nucleated
silicon performed by Jiang et al.3 reveal a lack of crystals smaller
than 3 nm in height, suggesting a critical radius must be reached
to prevent etching and revaporisation of the nuclei present.
Similarly, Arnault et al.27 demonstrated the stability of 6.6 nm
detonation nanodiamond seeds dispersed onto silicon sub-
strates under a pure hydrogen plasma. The 240 min incubation
time was selected to test if good quality diamond can be grown
using such low density plasma, which from the SEM images is
clear introduces considerable surface damage. Therefore, it is
believed that the crystallite size of the 30 min incubation period
is sufficiently large to form nucleation sites at conventional

Figure 1. Schematic of the diamond growth with chemical nucleation.
The wafers were first cleaned with HF to remove native oxide and then
subsequently coated with DVA and followed by a multistep growth
process.

Table 1. List of Samples

sample DVA lamp
exposure

duration (h)
incubation

duration (min)
growth

duration (min)

S1 yes D 1 30
S2 yes D 1 240
S3 yes D 1 60
S4 yes D 1 5 60
S5 yes D 1 15 60
S6 yes D 1 30 60
S7 yes D 1 45 60
S8 yes D 1 60 60
S9 yes D 1 30 510
S10 yes Xe 24 30 60
S11 yes D 24 30 60
S12 yes 30 60
S13 no 30 60
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growth temperatures, reducing the thickness of the poorer
quality interfacial region26 as required in the growth of thin
films. In addition, upon closer inspection of the AFM images it
can be seen that there is considerable surface damage for the
film with longer exposure to the plasma, and reiterated by the
SEM image of the sample shown in Panel C. Such damage on
the surface is not visible in the shorter incubation period
sample, S1.
Once it was established that the initial low temperature step

of 30 min in duration can give rise to diamond nucleation sites,
thicker films were grown through varying the incubation time
between 0 and 60 min in intervals of 5 min to obtain the
minimum time needed to observe coalesced films. SEM images
of the resulting S3−S8 samples are shown within panels A−F,
respectively, of Figure 3. After the varying-duration, low-plasma
density/low-temperature incubation step, the power density of
the plasma was increased to raise the substrate temperature to
approximately 850 °C for a growth duration of 1 h. From the
images, it is quite clear that the low-temperature incubation

step plays a crucial role in the growth of films; as the length of
incubation is increased, the number of nucleation sites surviving
the high plasma density step increase, giving rise to coalesced
films. For the samples grown with incubation periods of 0, 5,
and 15 min (panels A, B, and C, respectively), growth leads to
island growth partially covering the substrate, whereas the
samples incubated for longer than 30 min (panels D, E, and F)
shows coalesced films as a result of stabilization of the seeds
from the DVA solution. Therefore, an incubation step of 30
min at temperatures below 250 °C is needed for the nucleation
sites to grow large enough to survive the high-plasma-density
growth regime. Finally, Figure 4 shows a film with a incubation
phase of 30 min that has been subjected to an extended growth
period of 510 min. As can be made out, the thicker film shows a
continuous polycrystalline film with large grains.
To test the quality of the resulting films, we studied the

samples with considerable coalescence with Raman spectros-
copy. Figure 5 shows the resulting Raman measurements of
samples S8 and S9. The 1332 cm−1 diamond peak is seen in
both the samples with little evidence of G-band (1560 cm−1)
and D-band (1350 cm−1) peaks attributable to ordered sp2

carbon and amorphous carbon, respectively. For the thinner
sample, the second-order TO peak of silicon is also visible at
950 cm−1.
With the demonstration that DVA can lead to enhanced

nucleation on Si(111), individual steps were then systematically
varied to investigate their importance within the seeding
process in samples S10−S13, with the results shown in Figure
6. All the samples were exposed to similar CVD conditions of

Figure 2. Panels A and B show the atomic force microscopy images of
samples S1 and S2 produced with incubation periods of 30 and 240
min, respectively. For the 30 min incubation sample within panel A
nucleated diamonds are clearly present with an average height of 5 nm,
while the 240 min sample shows similar texture with a larger average
height of approximately 20 nm. Panel C, meanwhile, shows damage
present on the surface of the 240 min sample arising from the plasma.

Figure 3. Scanning electron micrographs of samples S3−S8 (A−F,
respectively) produced with 0−60 min of incubation and subsequent
hour of growth. At an incubation period of 30 min (panel D), a
transition is visible from isolated island growth to coalesced film,
indicating an incubation period of at least 30 min is required to
produce thin films.
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30 min under low-density plasma conditions, resulting in
substrate temperatures below 250 °C, followed by 1 h exposure
to high-density plasma conditions with substrate temperatures
of approximately 900 °C.
To investigate the effect of the wavelength on the grafting

process, we used two different radiation sources with different
emission spectra. During the earlier study by Giraud et al.,22 a
Xenon arc lamp was used for 24 h while filtering out
wavelengths above 280 nm to minimize heating of the DVA,
suggesting wavelengths within the UV are required. Therefore,
S10 was first coated with DVA and then exposed to white light
for 24 h using a Xe-arc lamp fitted with an IR filter to avoid any
overheating of the sample. As seen from panel A in Figure 6, it
is clear that this process enhances nucleation with a mix of
isolated island growth and areas of partial coalescence over the
substrate surface. The zoomed-in image of one such island
(right-hand side of panel A in Figure 6) clearly shows a
continuous film. S11 was meanwhile exposed for 24 h to UV

radiation through the use of a deuterium lamp. In this case, the
sample presents a higher nucleation density and a more
coalesced film with less of the substrate being visible. This film
is similar to the films with just 1 h exposure to UV radiation, as
shown within panel D of Figure 3, indicating saturation of the
attachment of the DVA molecule to the silicon surface. The
reduced time required to attach DVA to the silicon substrate
when using deuterium lamp is believed to be due to the higher
intensity of UV radiation emitted in comparison to the xenon
lamp.
To see the effects of radiation on the resulting nucleation

density, we prepared sample S12 by coating the sample
substrate with DVA and leaving in a nitrogen atmosphere for
the same duration as S10 and S11 without exposure to
radiation. Enhancement in nucleation is clearly visible (panel C
in Figure 6) but the absence of coalesced film illustrates the
importance of the exposure to UV light. Finally, sample S13
was left untreated with DVA, cleaned with ethanol, DI water,
and dicholoromethane, and then placed inside the CVD
chamber. As is evident with the low density of crystals visible
within panel D of Figure 6, the DVA coating plays an important
role in the nucleation of diamond. Based on the results shown
above it can be concluded that the attachment of the DVA
molecule to the silicon substrate happens under radiation
wavelengths below 250 nm since the Xe lamp used in this
experiment radiates between 250 and 950 nm while the
deuterium lamp radiates between 160 and 400 nm. Also, the
efficiency of attachment while using deuterium lamp is much
higher because samples with 1 and 24 h exposure have similar
nucleation densities and coverage area. A point that needs to be
emphasized here is the deuterium lamp is a 30 W source,
whereas the xenon lamp is a 300 W source. Even though the
deuterium lamp is one-tenth the power of xenon lamp, we have
effective attachment with much less exposure because the
component of radiation needed for grafting is more prominent
in the deuterium lamp.
So far, the results discussed are based on the use of DVA as

chemical precursor, derived from adamantanone using a
complex chemical process,28 which in turn is produced when
adamantane is dissolved in sulfuric acid.29 To see if it is

Figure 4. Scanning electron micrograph of sample S9 showing
produced with an incubation period of 30 min followed by an
extended growth duration of 510 min large diamond grains.

Figure 5. Raman spectrum of samples S8, S9, and silicon background
diamond peaks in the sample. In both samples the 1332 cm−1 is
prominent with little indication of nondiamond carbon through the
presence of the G-band or D-band peaks at 1560 and 1350 cm−1,
respectively.

Figure 6. SEM images of samples S10−13 produced to investigate the
importance of each step of the seeding process are shown in panels A−
D, respectively. The tiles to the right of panels A, B, and C show
magnified views of the coalesced sections of the respective films.
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essential to tailor the adamantane molecule to be effective for
chemical nucleation, further experiments with adamantane and
1-mercaptoadamantane(C10H16S) dissolved in cyclohexane
were conducted along with studies of the effects of solvents
like toluene and cyclohexane on the crystal density through the
use of the low temperature incubation step. Furthermore, while
previous studies have dissolved tailored diamondoids in
solvents such as toluene16 it needs to be seen if such chemicals
can also give rise to nucleation sites. Four samples were
therefore spin- coated with various chemical precursors and
then exposed to CVD with the process detailed previously (low
temperature incubation for 30 min followed by high temper-
ature growth for 60 min). The chemical precursors used were
(A) adamantane in cyclohexane, (B) 1-mercaptoadamantane in
cyclohexane, (C) cyclohexane, (D) toluene. None of these
samples were exposed to any radiation prior to deposition.
Panel A in Figure 7 shows the SEM image of sample spin

coated with adamantane dissolved in cyclohexane, with little
difference in the density when comparing to the SEM of the
untreated sample of Figure 6D. In panel B, meanwhile, the
SEM image of the sample which was spin coated with 1-
mercaptoadamantane dissolved in cyclohexane is shown with a
clear enhancement in nucleation. This is a clear indication that

to use adamantane for chemical nucleation it is important to
tailor the parent molecule to enhance the attachment to the
substrate surface.
Lastly, the effects of solvents like toluene, cyclohexane, and

dicholoromethane were also examined. Although it is possible
to remove the effects of dichloromethane completely (Figure
6D), the same is not the case for cyclohexane or toluene. Even
after extensive cleaning, samples coated with cyclohexane or
toluene showed enhanced nucleation as seen in the SEM
images in panels C and D of Figure 7, respectively. In the case
of toluene the enhancement was more pronounced with the
presence of diamond microislands. It should be noted that the
low-temperature step of the growth at 250 °C is well above the
boiling point of toluene. In the last two panels of Figure 7,
zoomed-in views of sections from panel D are shown with
panel E showing a magnified view of one of the numerous
nanodiamonds, whereas panel F shows a magnified view of the
area marked by the yellow box. From the magnified views, clear
faceting of the surfaces can be seen, confirming the high quality
of the diamond nanoparticles, whereas the coalesced area is
reminiscent of NCD films. Such continuous areas may be
possible because of the low-temperature step introduced in our
process but it is the chemical nucleation using DVA that is
capable of giving coalesced films over large areas, not just
microislands. In combination with the previous reports on the
increase in nucleation upon using organic precursors as
reported within the introduction, it is clear from the present
studies that solvent choice is therefore important when coating
the substrates with tailored adamantane molecules.

4. CONCLUSION
A modified adamantane molecule (DVA) has been used to
create nucleation sites on nondiamond substrates for the
growth of thin diamond films. Tethering of the modified DVA
molecule through the UV-driven homolysis of the Si−H bonds
present on the substrate has been demonstrated to minimize
the effect of sublimation, allowing the molecules to act as
nucleation sites. A low-temperature incubation step of 250 °C
allowing the seeds to stabilize and subsequent conventional
growth regime at 850 °C has then been shown to produce
highly coalesced and high-quality diamond thin films. It has also
been demonstrated that the choice of adamantane-containing
solvent can give rise to nucleation sites, necessitating careful
removal of all traces before subjecting the treated substrates to
CVD.
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