
Introduction

Octafluorotetrahydrofuran (c-C4F8O) is considered for use 

as a radiating medium in Cherenkov detectors [1] and as a 

cleaning agent for chemical vapor deposition chambers to 

replace plasma processing gases with high global warming 

potential (GWP) [2]. The GWP of c-C4F8O is about 8000 [2]. 

It could also be considered as an alternative to sulphur hexa-

fluoride (SF6) in high voltage gaseous insulation. SF6 has a 

high dielectric strength, low boiling point and chemical sta-

bility, but it has a GWP of 23 500 [3]. Therefore, it could be 

advantageously replaced by diluted mixtures of c-C4F8O with 

one or more buffer gases, such as N2 or CO2.

Electron swarm parameters such as the effective ioniz-

ation rate, the electron drift velocity and the electron diffusion 

coefficient are useful for modeling low temperature plasmas 

in general [4, 5], and in particular for modelling non-thermal 

gas discharges and assessing the performance of an electron-

egative gas for high voltage insulation [6, 7]. It is common 

practice to calculate the effective ionization rate by solving the 

electron Boltzmann equation [8], or by means of Monte-Carlo 

simulations [9, 10]. The required electron scattering cross sec-

tions can be obtained for instance by means of electron beam 

experiments [11]. However, the ion kinetic processes are often 

neglected in such models, since it would require considerable 

effort to determine the scattering cross sections of ions and to 

calculate the transport properties of both electrons and ions. 

This is problematic in some electronegative gases where elec-

tron attachment proceeds through the formation of an unstable 

parent anion, and the collisions of this anion with neutrals 

are crucial for the electron attachment rate [12, 13]. Another 

approach is to measure the effective ionization rate in a swarm 

experiment [14]. The effective ionization rate coefficient 

resulting from all kinetic processes is obtained, but less infor-

mation is gained on the kinetic scheme itself. Therefore, the 

two approaches are complementary. Finally, since both beam 

and swarm experiments are performed in specific conditions, 

typically at low gas pressures, and for a limited number of gas 
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mixtures, kinetic models are necessary to extend this data to 

other conditions, such as the high gas pressures of several bar 

used in high voltage insulation equipment.

In the present work, the properties of c-C4F8O are investi-

gated in two different environments: pure c-C4F8O at low gas 

pressure in an electron beam experiment, and diluted mixtures 

of c-C4F8O in N2, CO2 and Ar at intermediate gas pressure 

in a swarm experiment. The results are combined to propose 

a model for electron attachment to c-C4F8O. The structure 

of this work is shown in figure  1. In section  1, the attach-

ment cross sections and the total ionization cross section of 

c-C4F8O are obtained using an electron beam experiment. In 

section 2, the electron Boltzmann equation  is solved in the 

buffer gases N2, CO2 and Ar to obtain the electron energy 

distribution function, the electron drift velocity and the effec-

tive ionization rate. It is discussed how the attachment and 

ionization processes in c-C4F8O identified in the beam exper-

iment can be used for calculating the effective ioniz ation rate 

in c-C4F8O mixtures with N2, CO2 and Ar. Then, the effec-

tive ionization rate is calculated in the mixtures of 0.5% 

c-C4F8O in CO2, 0.6% c-C4F8O in N2 and 0.1% c-C4F8O in 

Ar. In section 3, the electron swarm parameters are measured 

in N2, CO2 and Ar and in the aforementioned mixtures with 

c-C4F8O, at different gas pressures, using a pulsed Townsend 

experiment. Swarm parameters measurements in similar mix-

tures were presented in a previous work [15], however, these 

measurements were limited to a narrower pressure range and 

the pressure dependence of results was not investigated. As 

the results from sections 2 and 3 are found to be conflicting, a 

three-body attachment mechanism is proposed in section 4 to 

complete the electron kinetics scheme described in section 2. 

This model is consistent with the two experiments, and useful 

for extending the present data to arbitrary gas pressures and 

small concentrations of c-C4F8O.

1. Beam experiment

1.1. Experimental setup

In the first experimental setup—a quantitative dissociative 

electron attachment (DEA) spectrometer [16, 17]—the elec-

tron beam passes a stagnant gas target of c-C4F8O at single-

collision conditions. The electrons emitted from a hot filament 

are selected according to their kinetic energy in a trochoidal 

electron monochromator. They are then accelerated to desired 

energy and pass through the collision chamber filled with the 

studied gas. The electron current is monitored by a Faraday 

cup located behind the collision cell.

The entire experiment is pulsed: the electrons pass the 

target chamber during 200 ns while it is field-free and after 

additional 200 ns (when the electrons leave the chamber) a 

negative voltage of  −300 V is pulsed across the chamber 

which pushes the anions formed in the cell towards the ion 

time-of-flight (TOF) mass analyzer in the direction perpend-

icular to the electron beam. The anions are detected with a 

microchannel plate, counted, and their arrival times are ana-

lyzed. The time between anion production and their detec-

tion is in the order of microseconds, namely  μ7.6 s for the 

heaviest anion in the present measurements. The experiment 

is repeated with 50 kHz frequency. The spectra are stored 

as two-dimensional maps—ion count as a function of elec-

tron energy and of arrival time. This allows the extraction of 

both negative ion mass spectra and ion-yield versus electron-

energy for each anion.

The electron-energy scale is calibrated using the onset of 

O−signal from CO2 at 3.99 eV. The shape of the O− peak is also 

used to determine the energy resolution of the electron beam 

as described in [18]. The absolute cross sections are calibrated 

using two independent reference values: the O− from CO2 [19] 

Figure 1. Structure of the paper and overview of the measurements and calculations. ‘EEDF’ stands for electron energy distribution 
function, ‘p’ stands for gas pressure.
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and HCOO− from HCOOH [20]. The uncertainty of the 

obtained cross sections is  ±20% (two standard deviations). It 

is obtained as a combination or the error of the present relative 

measurements (±15%) and of the error of the absolute cross 

sections used for normalization. The latter is taken as  ±15% 

in view of the results from various groups listed in [20].

The electron-beam resolution in the current experiment is 

approximately 200 meV. As seen from test measurements with 

a small impurity of SF6, the electrons down to the energy of 

approximately 100 meV are present in the beam. The pressure 

in the cell is monitored with a capacitance manometer and is 

varied from × −1 10 2 to × −1 10 1 Pa. This range of pressures 

ensures single-collision conditions between electrons and the 

gas molecules, and ensures that the collision probability of 

created anions with other molecules is negligible on timescale 

of the anion extraction.

Additionally to electron attachment cross sections, both 

dissociative and non-dissociative, the total positive ionization 

cross section has also been measured. For the purpose of this 

measurement, the setup was used in the total ion collection 

mode [19]. Here the monochromator is not pulsed and the 

total analogue ion current (in the order of picoamperes) is 

measured on the molybdenum electrode placed in the col-

lision chamber. This is the same electrode that serves as a 

pusher in the pulsed mode. For the sake of the continuous 

wave measurements, it is connected to a picoampermeter. 

The ion current is recorded as a function of electron energy. 

The cross section is then calibrated by recording the ion cur-

rent for argon which has known positive ionization cross 

section [21].

1.2. Ionization and attachment cross sections of c-C4F8O at 

single-collision conditions

Upon electron impact in the electron energy range up to 

6 eV, the c-C4F8O molecule exhibits a rich fragmentation 

pattern. Figure 2(a) shows the negative ion mass spectrum 

recorded at the electron energy of 2 eV. A number of anionic 

fragments can be seen, which is expected for a molecular 

system of this size [18]. What is not expected, is the obser-

vation of the parent anion C4F8O−. At single collision con-

ditions, the process of electron attachment basically always 

proceeds via formation of the transient anion, also called a 

resonance, in this case ( )− ∗C F O4 8 . The transient anion has 

an excess of internal energy which is released either by 

autodetachment of the electron on the timescale of typically 

femto- to picoseconds, or by anion’s dissociation on the 

same timescale which leads to stable anionic fragments. In 

present case, however, some transient negative ions survive 

up to  μ7.6 s, which is their detection time in the time-of-

flight spectrometer.

Figure 2(b) shows the total dissociative electron attach-

ment cross section σda (sum of partial cross sections for all the 

anionic fragments) and the cross section σpa for the production 

of the parent anion ( )− ∗C F O4 8 L (‘L’ is standing for long-lived). 

The electron attachment cross sections show three peaks (one 

peak in σpa and two peaks in σda) which correspond to elemen-

tary attachment processes mediated by the formation of dif-

ferent types of transient anions. The peaks are positioned at 

0.9, 1.8 and 3.4 eV. The first peak at 0.9 eV corresponds to 

the production of the long-lived parent anion ( )− ∗C F O4 8 L. It is 

produced at energies considerably higher than thermal, which 

is rare. Most of the known long-lived parent anions created in 

binary collisions with an electron are formed at energies close 

to 0 eV, e.g. SF6− or CCl4−. The stabilization mechanism of 

the ( )− ∗C F O4 8 L on the microsecond time scale and its fragmen-

tation pathways will be discussed in a separate publication 

[22]. The second and third peaks at 1.8 and 3.4 eV correspond 

to dissociative attachment processes.

In order to ensure that three-body mechanisms do not play 

a role in the beam experiment, a range of control measure-

ments was performed. All ion yields—both of the fragmented 

anions and of the parent anion ( )− ∗C F O4 8 L—were found to be 

linearly dependent on the target gas pressure. Also, all signals 

were linearly dependent on the electron current passing the 

collision cell.

Figure 2. (a) Negative ion mass spectrum in the beam experiment recorded at an electron energy of 2 eV. (b) Total dissociative electron 
attachment cross section  daσ  (sum of the partial cross sections for all the anionic fragments shown in (a)), and parent anion attachment cross 
section  paσ .
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Figure 3 shows the total positive ionization cross section σi 

of c-C4F8O. Since the positive cross section is measured with 

the setup operated in the total ion collection mode, the partial 

cross sections are not available. This cross section was meas-

ured to provide an input for calculations of section 2, where 

only the total ionization cross section  is needed. The ioniz-

ation energy is 11.8 eV. It was determined by fitting the meas-

ured data by a Wannier-like threshold law [23, 24].

2. Electron kinetic model

In section  1, the total ionization and dissociative attach-

ment cross sections, σi and σda were obtained, as well as the 

long-lived parent anion attachment cross section σpa. These 

scattering cross sections correspond to the kinetic processes 

(1)–(3)

+ + ++→   ( ) (     )e
k

C F O 2e A B all ionization processes ,4 8
i (1)

e
k

C F O D E

all dissociative attachment processes ,

4 8
da+ +−→    

(       )
 (2)

e kC F O C F O

parent ion attachment, long-lived .

4 8 pa 4 8 L+ − ∗�  ( )  
(       )

 
(3)

In the above kinetic scheme, ki, kda and kpa are the reaction 

rate coefficients for the processes of ionization, dissociative 

attachment, and long-lived parent ion formation. The rate 

coefficient k can be calculated from the corresponding scat-

tering cross section σ as follows

( / )∫ σε ε ε=
∞

k
m

f E N
2

, d ,
e 0

 (4)

where me is the electron mass and ( / )εf E N ,  is electron energy 

distribution function (EEDF) in the gas or gas mixture. The 

EEDF is obtained by solving the Boltzmann equation for elec-

trons, which requires the input of the electron scattering cross 

sections  for all the considered gases. Full cross section sets 

are available for N2, CO2 and Ar, for instance on the LXcat 

database [5, 25]. In this work, the cross section set from Biagi 

[26] is used for N2, Phelps [27] for CO2, and SIGLO [28] for 

Ar. A set of electron scattering cross sections for c-C4F8O is 

presently not available. However, it can be assumed that the 

EEDF in the buffer gas is not changed when a small amount 

of c-C4F8O is added [29, 30]. Therefore, the rate coefficients 

ki, kda and kpa in the diluted c-C4F8O mixtures can be calcu-

lated using equation (4) and taking the EEDF calculated for 

the buffer gas.

The electron Boltzmann equation is solved using the solver 

Bolsig+ [8], which makes use of the two-term approx imation, 

to obtain the EEDF, the effective ionization rate coefficient 

keff
b , the electron drift velocity wb and the longitudinal elec-

tron diffusion coefficient N DL
b in the buffer gases N2, CO2 and 

Ar. The present calculations are performed at relatively low 

density reduced electric field E/N (E is the electric field and 

N is the gas number density). In this range of E/N, the two-

term approximation yields precise results, as was shown for 

instance in N2 [31] and Ar [32].

The effective ionization rate coefficient keff
0  (the exponent 

0 is used later on in section 4 to signify ‘limit at low pres-

sure’) in a diluted mixture of c-C4F8O with N2, CO2 or Ar can 

obtained as

( ) ( )= − + − −k r k r k k k1 ,eff
0

eff
b

i da pa (5)

where r is the ratio of c-C4F8O in the mixture.

In this model—processes (1)–(3)—electron detachment 

from ( )− ∗C F O4 8 L is neglected. Autodetachment from ( )− ∗C F O4 8 L 

is indeed negligible on the timescale of the swarm experiment 

since the lifetime of ( )− ∗C F O4 8 L was found to be at least micro-

seconds, but there is the possibility for collisional detachment 

in the swarm experiment. Therefore, the electron attachment 

via process (3) is possibly overestimated.

Using equation  (5), keff
0  is calculated in the mixtures of 

0.6% c-C4F8O in N2, 0.5% c-C4F8O in CO2 and 0.1% c-C4F8O 

in Ar. The calculated values of keff
b , wb and N DL

b in the gases 

N2, CO2 and Ar and of keff
0  in the corresponding gas mixtures 

are shown in figures 7–9, respectively, and compared to the 

same quantities measured in the swarm experiment.

3. Swarm experiment

3.1. Experimental setup and methods

The swarm parameter measurements were performed with the 

automated pulsed Townsend (PT) setup described in [33]. The 

experimental setup allows for varying the electrode gap dis-

tance, the voltage and the gas pressure. The measurements are 

performed at room temperature, which is monitored. About 

107 electrons are released in the gas vessel from a 12 nm 

thick palladium photocathode, which is back illuminated by a 

266 nm laser. The laser pulses have a duration of 1.5 ns FWHM 

and a 20 Hz repetition rate. The released electrons drift in an 

homogeneous electric field between two Rogowski profiled 

electrodes. Upon collision with sample gas molecules, ioniz-

ation and attachment events lead to a growth or decrease of the 

Figure 3. Total positive ionization cross section of c-C4F8O.
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electron swarm. The electrical displacement current across the 

gap is measured.

The electron swarm is modeled with a Gaussian spatial dis-

tribution of the electrons and the corresponding current can be 

expressed for ⩾t 0 as [33]

( ) ( )
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟ν

τ
= −

−
I t

I
t

t T

t2
exp 1 erf

2
,e

0
eff

e

D

 (6)

I
n q

T
,0

0 0

e

= (7)

where q0 is the electron charge, I0 is the electron current at 

time t  =  0, Te is the drift time and νeff is the effective ioniz-

ation rate. The canonical error function ‘erf’ accounts for the 

absorption of the electrons at the anode. The characteristic 

time for longitudinal diffusion τD is related to the longitu-

dinal diffusion coefficient DL via τ=D w2 L
2

D, where w is the 

electron drift velocity. The initial distribution of the electrons 

released by the laser is assumed to be a Dirac delta. The ana-

lytical model (6) is fitted to the measured current as described 

in detail in [34] to obtain the electron swarm parameters 

/ν=k Neff eff , w and NDL.

The measurements were performed in pure N2, CO2 and 

Ar, and in the mixtures of 0.6% c-C4F8O in N2, 0.5% c-C4F8O 

in CO2 and 0.1% c-C4F8O in Ar. The c-C4F8O has a purity of 

99.5% (Linde), the Ar and N2 have a purity of 6.0 and the CO2 

a purity of 5.0. The gases are filled into a vessel previously 

evacuated to a pressure of  ∼1 Pa. The total gas pressure was 

varied from 2 to 10.5 kPa, the electrode gap distance from 11 

to 17 mm, and the density reduced electric field E/N from 5 to 

135 Td (   = −1 Td 10 21 V · m2).

3.2. Results

Sample current measurements in the mixtures of 0.6% 

c-C4F8O in N2, 0.5% c-C4F8O in CO2 and 0.1% c-C4F8O in 

Ar are shown in figures 4–6 respectively. The analytical model 

(6) fits well all the measured currents, except the falling edge 

of the measured current at 8 and 10 kPa in figures 4(b) and (c), 

which is discussed later.

The effective ionization rate coefficient keff, electron drift 

velocity w and longitudinal electron diffusion coefficient NDL 

obtained experimentally in N2, CO2 and Ar, and in the corre-

sponding mixtures are shown in figures 7–9. This data is also 

available on the LXcat website, ETHZ database [35].

3.3. Discussion

3.3.1. Measurements and calculations in the buffer 

gases. There is relatively good agreement between the mea-

sured effective ionization rate coefficient, electron drift veloc-

ity and density normalized longitudinal electron diffusion 

coefficient in pure N2, CO2 and Ar, and the same quantities 

calculated with Bolsig+  from the cross section sets [26–28]. 

The agreement is not perfect, but different cross section sets 

are available for these gases (see for instance the LXcat proj-

ect [5]), and each set yields slightly different results. For 

instance the measured values in CO2 are in between the calcu-

lated values using the cross sections sets [27] and [28] for CO2 

(the latter is not shown here). For the purpose of this work, 

the calculations from the sets [26–28] are in sufficiently good 

agreement with the measurements.

3.3.2. Measurements of w and NDL in the c-C4F8O  

mixtures. In the mixture of 0.6% c-C4F8O in N2, at the pres-

sures of 8 and 10 kPa, a residual current is measured after 

the electron transit, as shown in figures 4(b) and (c) for times 

⩾t 110 ns. The falling edge of the waveform is asymmetrical, 

which indicates that the spatial distribution of electrons is not 

Gaussian. This asymmetrical broadening of the electron swarm 

could be due to delayed electrons, produced for instance via 

electron detachment from negative ions. Since the broaden-

ing of the swarm is different in the forward and backward 

directions, and is affected by another process than diffusion, 

the electron diffusion coefficient cannot be derived for these 

waveforms. Approximate values for the drift velocity at 8 and 

10 kPa are shown in figure 7(c). The electron drift velocity w 

measured in the mixture of 0.6% c-C4F8O in N2 seems slightly 

lower than the measured and calculated velocities in pure N2, 

although it is still within the measurement error. The diffusion 

coefficient NDL measured in the mixture of 0.6% c-C4F8O in 

Figure 4. Current versus time in the mixture of 0.6% c-C4F8O in N2 (a) for E N 26/ �  Td, (b) for E N 123/ �  Td and (c) for E N 137/ �  Td,  
at different gas pressures and for an electrode gap distance of 15 mm. In figure (a), the curves correspond from top to bottom to the 
pressures 2, 3, 4, 8 and 10 kPa, and the same color code is used in figures (b) and (c). The measured currents are in the range of 10–45 μA, 
they are here normalized so that the different curves have the same initial amplitude. The full lines are the measured currents, whereas the 
dashed lines correspond to fits of the analytical model (6).
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N2 is slightly larger than the measured and calculated NDL in 

pure N2.

The measured w and NDL in the mixture of 0.5% c-C4F8O 

in CO2 agree very well with the measured w and NDL in pure 

CO2 as shown in figures 8(b) and (c).

In the mixture of 0.1% c-C4F8O in Ar, in the range E/N  <  10 

Td, w strongly deviates from the measured and calculated 

values of w in pure Ar shown in figure 9(b). Such a change 

in w indicates a change of EEDF in the mixture. This makes 

the calculation of keff
0  in the c-C4F8O/Ar mixture in section 2 

less reliable. The same effect was observed in [36] for small 

admixtures about 0.5% of octafluorocyclobutane c-C4F8 in Ar. 

This decrease of the drift velocity, often referred to as negative 

differential mobility or negative differential conductivity, has 

been studied extensively [37–39] and is considered common 

for diluted mixtures of molecular gases in Ar.

3.3.3. Measurements and calculations of keff in the c-C4F8O 

mixtures. The measurements of keff show that the addition 

of small amounts of c-C4F8O in N2, CO2 and Ar strongly 

decreases keff, and thus increases the density reduced criti-

cal electrical field ( / )E N crit for which =k 0eff . This increase 

of ( / )E N crit is advantageous for electrical insulation applica-

tions. In all three mixtures the calculated values of keff
0  from 

section 2 clearly do not agree with the measured values of keff. 

They differ by approximately a factor of 5. Moreover, a strong 

pressure dependency of keff is observed in the c-C4F8O/N2 and 

c-C4F8O/CO2 mixtures. Since the electron kinetics scheme 

(1)–(3) obtained with the beam experiment fails to explain the 

swarm results, a model including three-body electron attach-

ment is introduced in section 4.

4. Three-body attachment model

The importance of the density of the gaseous media on elec-

tron attachment is well known [13]. Complex molecules such 

as c-C4F8O, when capturing a free electron, can form a large 

number of unstable negative-ion states, also called parent 

anions. Parent ions have typically short autodetachment times 

due to their excess energy, but they can be stabilized upon col-

lision with another molecule. In the beam experiment, due to 

the low pressure of the gas target, the ion-neutral collision tim-

escale is about 10−4 s, and the anion extraction time is about 

10−6 s. The collisional stabilization of parent ions is there-

fore negligible, and only stable anions and long-lived (mean 

autodetachment time  >10−6 s) parent anions are detected. 

In swarm experiments however, the collisions occur on the 

sub-nanosecond timescale, so that short-lived parent anions 

Figure 5. Current versus time in the mixture of 0.5% c-C4F8O in CO2 (a) for E N 55/ �  Td, (b) for E N 99/ �  Td and (c) for E N 105/ �  
Td, at different gas pressures and for an electrode gap distance of 15 mm. In figure (a), the curves correspond from top to bottom to the 
pressures 2, 3, 4, 6, 8 and 10 kPa, and the same color code is used in figures (b) and (c). The measured currents are in the range of 15–40 μA, 
they are here normalized so that the different curves have the same initial amplitude. The full lines are the measured currents, whereas the 
dashed lines correspond to fits of the analytical model (6).
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Figure 6. Current versus time in the mixture of 0.1% c-C4F8O in Ar (a) for E N 6/ �  Td, (b) for E N 26/ �  Td and (c) for E N 30/ �  Td, at 
different gas pressures and for an electrode gap distance of 11 mm. In figure (a), the curves correspond from top to bottom to the pressures 
5 and 10 kPa, and the same color code is used in figures (b) and (c). The measured currents are in the range of 5 to 20 μA, they are here 
normalized so that the different curves have the same initial amplitude. The full lines are the measured currents, whereas the dashed lines 
correspond to fits of the analytical model (6).
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can significantly contribute to electron attachment via a three-

body attachment mechanism. Furthermore, as the stabiliza-

tion time depends on the gas pressure, three-body attachment 

results in a pressure dependence of keff.

4.1. Three-body attachment mechanism

In this model, additionally to the electron kinetic processes 

discussed in section  2, it is assumed that one additional 

unstable negative-ion state is formed, with an autodetachment 

time too short to be detected in the beam experiment but suf-

ficiently long to allow stabilization in the swarm experiment. 

This short-lived parent anion, will be noted in the following 

( )− ∗C F O4 8 S. Three-body attachment can be described by the 

processes

eC F O C F O

parent ion attachment, short-lived ,

k

4 8 4 8 S
1

at

+
τ

− ∗
−
� ( )

(       )
 

(8)

+ +− ∗ −( ) →    
(   )

k
C F O M C F O M

collisional stabilization ,

4 8 S
stab

4 8

 

(9)

+ + +− ∗( ) →    
(   )

k
eC F O M C F O M

collisional detachment .

4 8 S
det

4 8 
(10)

In the above mechanism, kat is the rate coefficient of ( )− ∗C F O4 8 S 

formation, τ is the lifetime of ( )− ∗C F O4 8 S towards autodetach-

ment, kstab is the rate coefficient for collisional stabilization of 

( )− ∗C F O4 8 S by a buffer gas molecule M, and kdet is the rate coef-

ficient of electron detachment from ( )− ∗C F O4 8 S upon collision 

with buffer gas molecule M. Since it is not a priori known at 

which electron energy this short-lived parent ion is formed, 

the channel (8) is considered distinct from the dissociative 

attachment channels.

The mechanism (1)–(3) and (8)–(10) corresponds to a 

system of differential equations for the densities of electrons 

and ions. Through the processes (8)–(10), the density of elec-

trons is coupled with that of ( )− ∗C F O4 8 S. After a few τ, the 

growth of the electron number is exponential, with the rate 

[34, 40]

( ) [ ] ( )[ ]
[ ][ ]

( )[ ]

ν
τ

τ

= + − −

−
+ +

N k k k k

k k

k k

M C F O

C F O M

1 M
.

eff eff
b

i da pa 4 8

at stab 4 8

det stab

 (11)

Figure 7. (a) Effective ionization rate coefficient, (b) electron drift velocity and (c) density normalized longitudinal electron diffusion 
coefficient versus E/N in N2 and in the mixture of 0.6% c-C4F8O in N2. Markers are measured values at different gas pressures, lines are 
calculated as indicated in section 2.
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The number concentrations [ ]M  and [ ]C F O4 8  can be expressed 

as a function of the total gas number density N and the ratio 

r of c-C4F8O

[ ] ( )= − r NM 1 , (12)

[ ] = rNC F O .4 8 (13)

We recognize the term k k k kM C F Oeff
b

i da pa 4 8+ − − =[ ] ( )[ ]
k r Neff

0 ( )  calculated in section 2. Since we consider small ratios 

( �r 1) of c-C4F8O, we make the simplification

[ ]≈NM . (14)

Furthermore, in the following we use the notations

τ=k k k ,quad at stab (15)

(( ) )τ= + −N k k ,sat stab det
1 (16)

=k k N .sat quad sat (17)

Adopting the above notations, equation (11) becomes

( ) ( )
/

ν = −
+

N k r N
k rN

N N1
.eff eff

0 quad
2

sat

 (18)

The effective ionization rate νeff is a strong function of the 

gas density N in the experiment. By comparing N to Nsat, two 

limiting cases can be identified [40]

 (i) When �N Nsat, equation (18) simplifies as

( ) ( )ν = −N k r N k rN ,eff eff
0

quad
2 (19)

and the three-body attachment rate increases quadrati-

cally with the gas density.

 (ii) When �N Nsat, equation (18) simplifies as

( ) ( )ν = −N k r N k rN ,eff eff
0

sat (20)

and the three-body attachment rate increases linearly with 

the gas density.

Thus, the quantity Nsat can be seen as a ‘saturation’ density for 

three-body attachment.

4.2. Rate coefficients and saturation density for three-body 

attachment to c-C4F8O

The simple model for the three-body electron attachment to 

c-C4F8O described in section 4.1 enables us to quantitatively 

characterize the kinetic processes (8)–(10) by determining 

Nsat, ksat and kquad.

Figure 8. (a) Effective ionization rate coefficient, (b) electron drift velocity and (c) density normalized longitudinal electron diffusion 
coefficient versus E/N in CO2 and in the mixture of 0.5% c-C4F8O in CO2. Markers are measured values at different gas pressures, lines are 
calculated as indicated in section 2.
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For measurements in the c-C4F8O/N2 and c-C4F8O/CO2 

mixtures, the observed dependency of ( )ν Neff  corresponds 

not to either limiting cases (i) and (ii) but to the general case 

(18), where Nsat may be of the same order of magnitude as N 

( ∼N Nsat ). Therefore kquad and Nsat are directly obtained from 

the fit of equation (18) to the measured ( )ν Neff . The rate coef-

ficient ksat is obtained simultaneously as the product k Nquad sat 

from equation (17). Examples of the fit of equation (18) on the 

measured ( )ν Neff  are shown in figure 10(a) for the N2 mixture 

and in figure 10(b) for the CO2 mixture.

In the c-C4F8O/Ar mixture, the measured keff is independent 

from the gas density. Normally, this could be interpreted as 

the absence of three-body attachment, but keff is much lower 

than keff
0  calculated with the electron kinetics scheme from 

Figure 9. (a) Effective ionization rate coefficient, (b) electron drift velocity and (c) density normalized longitudinal electron diffusion 
coefficient versus E/N in Ar and in the mixture of 0.1% c-C4F8O in Ar. Markers are measured values at different gas pressures, lines are 
calculated as indicated in section 2.
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mixture for sample E/N values between 50 and 104 Td. Markers are measured values of effν , and lines are fits with equation (18).
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section  2. Thus, the measurements in the c-C4F8O/Ar mix-

ture correspond rather to the regime of saturated three-body 

attachment (ii). In this case, the saturated three-body attach-

ment rate coefficient ksat can be obtained as ( )/−k k reff
0

eff  from 

equation (20). However, the calculation of keff
0  in the c-C4F8O/

Ar mixture is probably imprecise, because the drift velocity 

measured in the c-C4F8O/Ar mixture indicates that the EEDF 

deviates from the EEDF of pure Argon, as mentioned in 

section 3.3.

The quadratic three-body attachment rate coefficient kquad, 

the saturation density Nsat and the saturated three-body attach-

ment rate coefficient ksat in the c-C4F8O/N2 and c-C4F8O/CO2 

mixtures are shown in figure 11. The saturation density Nsat 

is of the same order of magnitude as the gas density in the 

swarm experiment.

Interestingly, since the swarm measurements in the 

c-C4F8O/N2 and c-C4F8O/CO2 mixtures were performed in 

the pressure range where ∼N Nsat , it was possible to identify 

both kquad and Nsat. This makes it possible to calculate keff at at 

arbitrary gas pressure (provided that the pressure of c-C4F8O 

stays below its vapor pressure) and arbitrary low concentra-

tions of c-C4F8O ( �r 1) in the buffer gases N2 and CO2 using 

equation (18). In particular the limit of ( )k Neff  at low gas pres-

sure is given by ( )k reff
0  and the limit of ( )k Neff  at high pressure 

is given by ( )= −∞k k r rkeff eff
0

sat. The possibility to calculate 

keff for other low concentrations of c-C4F8O is not explored 

in this work. However, keff is calculated at different pres-

sures, between 0.1 kPa and 100 kPa in the mixtures of 0.6% 

c-C4F8O in N2 and 0.5% c-C4F8O in CO2. The calculated keff 

are shown in figures 12(a) and (b). The limits of keff at low and 

high pressures, keff
0  and ∞keff, are shown as well. It is instruc-

tive to visualize the evolution of ( )k Neff  in figure 12, because 

it makes the link between the (low pressure) beam and (high 

pressure) swarm results. Towards low gas pressures, the calcu-

lated effective ionization rate ( )k Neff  approaches keff
0  that was 

calculated from the beam cross sections  with equation  (5). 

This is expected, since the model was constructed based on 

the beam data. However, it can be seen that at pressures as low 

as a few millibar, three-body attachment is already significant. 

The calculations of keff at high pressures, in particular the limit 
∞keff, can be of interest for instance for high voltage insulation 

applications, where pressures of a few bars are used.

4.3. Discussion

As the electron kinetics scheme identified with the beam 

study fails to explain attachment in c-C4F8O at superior gas 

pressure in the swarm experiment, a three-body attachment 

scheme was introduced. This model explains the strong pres-

sure dependence of the effective ionization rate observed in 

Figure 11. (a) Quadratic three-body attachment rate coefficient kquad, (b) density of saturation Nsat and (c) saturated three-body attachment 
rate coefficient ksat as a function of E/N in N2 and CO2.
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the swarm study. Similar dependencies of the effective ioniz-

ation rate on the gas pressure or temperature were observed 

in numerous other gases [34, 40, 41] and were attributed to 

the occurrence of three-body electron attachment. Thus the 

occurrence of three-body attachment to c-C4F8O is quite 

plausible. However, three-body attachment could occur with 

a more complex scheme than the one presently used. Some 

models were proposed for instance involving ion clusters [42]. 

In the present work, the kinetics scheme was chosen to be 

as simple as possible but consistent with the measured data. 

Thus, it should be seen only as a first attempt to explain the 

complex electron attachment mechanism to c-C4F8O, and 

a useful guess tool for extending the present data to higher 

pressures. An analysis of the ion composition produced in the 

swarm experiment would be a possible approach to gain more 

information on the attachment mechanism to c-C4F8O.

5. Conclusion

In conclusion, we have measured electron attachment proper-

ties of c-C4F8O in two different environments. The electron 

attachment and ionization cross sections  of c-C4F8O were 

obtained using a beam experiment. The effective ionization 

rates in the diluted mixtures of c-C4F8O in buffer gases in the 

pressure range 2–10 kPa were obtained using a swarm experi-

ment. The pressure difference between the two experiments—
approximately five orders of magnitude—leads to dramatic 

changes in attachment properties of c-C4F8O. Therefore, 

a three-body attachment model was proposed. This model 

explains the increased electron attachment observed in the 

swarm experiment, provides a direct link between low-pres-

sure and high-pressure data, and predicts the effective ioniz-

ation rate of c-C4F8O mixtures with N2 and CO2 at conditions 

beyond the range of the present experiments.
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