Supplementary Information

Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1

Valentin Mitterer¹, Nadine Gantenbein¹, Ruth Birner-Gruenberger^{2,3}, Guillaume Murat⁴, Helmut Bergler¹, Dieter Kressler⁴, Brigitte Pertschy^{1,*}

¹ Institut für Molekulare Biowissenschaften, Universität Graz, Humboldtstrasse 50, 8010

Graz, Austria

² Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz

³Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz

⁴ Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland

* Correspondence: brigitte.pertschy@uni-graz.at (B.P.)

Supplementary Figure S1. Kap60/Kap95, Kap123 and Pse1 are required for efficient nuclear import of Rps3. The localization of the indicated N-terminal Rps3 reporter constructs (a), (b) and (c) or SV-40NLS (d) fused to 3xyEGFP was assessed by

fluorescence microscopy in W303 wild-type or the indicated karyopherin mutant strains after incubation at the indicated temperatures. (a) 3xyEGFP alone was used as control and displayed predominantly cytoplasmic localization.

Supplementary Figure S2. Rps3 is transferred from the Rps3/Yar1 complex onto importins. The indicated GST-tagged importins were expressed in *E. coli*, immobilized on glutathione-agarose beads and subsequently incubated with purified His6-Rps3/Flag-Yar1 complex, purified Flag-Yar1 or buffer (-). As negative control, empty glutathione-agarose beads were incubated with the His6-Rps3/Flag-Yar1 complex or Flag-Yar1 (beads). After subsequent washing steps, bound material was eluted and analyzed by SDS-PAGE and Coomassie staining or Western blotting with the indicated antibodies. Notably, Yar1 was not detected bound to any of the tested importins, also not in the samples where Rps3-binding was observed.

Supplementary Figure S3. Deletion of *KAP123* slightly enhances the growth defect of a *yar1* deletion strain. A *kap123* Δ *yar1* Δ strain was transformed with plasmids harboring the indicated wild-type alleles or empty plasmids (-). Cells were spotted in 10-fold serial dilutions on SD-Ura-Leu plates and incubated at the indicated temperatures for 3 days.

b

	20 min CHX	10 min	30 min	60 min	120 min
Yar1-GFP	0.9°°°	298	ૢ૾૾ૺૢ૾ૺ૾	000°	000
	ිදුරු	Egs.	् (२२) २२)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0000

Supplementary Figure S4. Yar1 enters the nucleus after Rps3 depletion or inhibition of protein synthesis. (a) A 3xmCherry tag was C-terminally fused to the *YAR1* gene locus in a leptomycin B (LMB)-sensitive *crm1*T539C *rps3* Δ mutant strain in which plasmid-encoded *RPS3* was expressed under the control of a *GAL1* promoter The localization of the Yar1-3xmCherry fusion protein was assessed under conditions allowing Rps3 expression (medium containing 2% raffinose and 0.2% galactose as carbon source) (upper panel) or after depletion of Rps3 for 2h in medium containing glucose as carbon source (lower panel). The Yar1-3xmCherry localization was examined in untreated cells or after addition of LMB for the indicated time. (b) A LMB-sensitive *crm1*T539C *yar1* Δ strain was transformed with a plasmid encoding a Yar1-eGFP fusion protein. The localization of Yar1-eGFP was assessed after incubation for 20 min with cycloheximide (CHX) prior to LMB addition (lower panel).

Supplementary Figure S5. Yar1 does not interact with nucleoporins. The indicated GSTtagged nucleoporins (or truncations thereof; see Table S3) were immobilized on glutathioneagarose beads and incubated with purified His6-Yar1. As positive control the Nup116 FGrepeat fragment was incubated with purified His6-Arx1 (pre-60S export factor). Bound material was eluted in buffer containing 20 mM reduced glutathione and samples were subsequently analyzed by SDS-PAGE and Coomassie staining or Western blotting. Asterisks indicate the respective bait proteins.

Table S1. S. cerevisiae strains

Name	Genotype	Source
W303	ade2-1, his3-11, 15, leu2-3,112, trp1-1,	1
	ura3-1, can1-100	
srp1-31/kap60ts	W303 MATa srp1-31	2
kap95ts	MATα leu2 his3 trp1 ura3 rsl1-4	Ed Hurt lab, backcross from PSY1103 ³ with W303
Δ <i>kap123</i> (PSY967)	W303 MATα kap123::HIS3	4
<i>pse1-1</i> (PSY1201)	W303 <i>MAT</i> a <i>pse1-1</i>	4
Δ <i>kap123 pse1-1</i> (PSY1042)	W303 MAT a pse1-1 kap123::HIS3	4
Δ <i>sxm1</i> (PSY1200)	W303 MATa sxm1::HIS3	4
$\Delta m tr 10$	W303 MATa mtr10::HIS3	5
$\Delta msn5 \Delta pdr6$	W303 MATa pdr6::HIS3 msn5::TRP1	Ed Hurt lab
$\Delta nmd5 \Delta pdr6$	W303 MATa pdr6::HIS3 nmd5::HIS3	Ed Hurt lab
RPS3-TAP KAP60-3xHA	W303 MATa RPS3-TAP::natNT2	this study
	KAP60-3xHA:: HIS3MX6	
<i>YAR1</i> -TAP <i>KAP60</i> -3xHA	W303 <i>MAT</i> a <i>YAR1</i> -TAP::natNT2 <i>KAP60</i> -3xHA:: <i>HIS3</i> MX6	this study
<i>KAP60</i> -3xHA	W303 MATa KAP60-3xHA:: HIS3MX6	this study
YAR1-TAP RPS3-Flag	W303 <i>MATa YAR1</i> -TAP::HIS3MX6 <i>RP</i> S3-Flag::natNT2	this study
srp1-31 ∆yar1	W303 MATa srp1-31 yar1::HIS3MX6	this study (YAR1 knockout in <i>srp1-31</i>)
kap95ts Δyar1	MATα leu2 his3 trp1 ura3 rsl1-4	this study (YAR1
	yar1::HIS3MX6	knockout in kap95 ts)
KAP104 shuffle	<i>MAT</i> α <i>kap104</i> ::natNT2 <i>ade3</i> ::kanMX4 [pRS316- <i>KAP104</i>]	6
Δkap123 Δyar1	W303 MATa ade3::kanMX4 yar1::natNT2 kap123::HIS3MX6	this study
crm1T539C YAR1-	W303 MATa ADE2 crm1T539C::kanMX4	this study
3xmCherry pGAL111-	YAR1-3xmCherry::hphNT1 rps3::natNT2	-
RPS3	[pGAL111-RPS3]	
Δcrm1 Δyar1 pRS315-	W303 MATa crm1::kanMX yar1::natNT2	this study (based on
crm1T539C	[pRS315-crm1T539C]	MNY8 strain from
		Neville and Rosbash ')

Table S2. S. cerevisiae plasmids

Name	Relevant Information	Source
p <i>ADH</i> 111- <i>RPS3</i> (1-15)-(GA)₅-3xyEGFP	CEN, LEU2, PADH1, TADH1, C-	8
	terminal (GA)₅3xyEGFP	
p <i>ADH</i> 111- <i>RPS3</i> (1-15.KKRK>A)-(GA) ₅ -	CEN, LEU2, PADH1, TADH1, C-	this study
3xyEGFP	terminal (GA)₅3xyEGFP	
p <i>ADH</i> 111- <i>RPS3</i> (1-15.K7/K10>A)-(GA) ₅ -	CEN, LEU2, PADH1, TADH1, C-	this study
3xyEGFP	terminal (GA)₅3xyEGFP	
p <i>ADH</i> 111- <i>RPS3</i> (1-95)-(GA)₅-3xyEGFP	CEN, <i>LEU</i> 2, PADH1, TADH1, C-	this study
	terminal (GA)₅3xyEGFP	
p <i>ADH</i> 111- <i>RPS3</i> (1-95.KKRK>A)-(GA)₅-	CEN, <i>LEU</i> 2, PADH1, TADH1, C-	this study
3xyEGFP	terminal (GA)₅3xyEGFP	
p <i>ADH</i> 111- <i>RPS3</i> (1-95.K7/K10>A)-(GA)₅-	CEN, <i>LEU</i> 2, PADH1, TADH1, C-	this study
3xyEGFP	terminal (GA)₅3xyEGFP	
p <i>ADH</i> 111- (GA)5-3xyEGFP	CEN, <i>LEU</i> 2, PADH1, TADH1, C-	8
	terminal (GA)₅3xyEGFP	
p <i>ADH</i> 111-SV40-NLS-(GA)₅-3xyEGFP	CEN, <i>LEU</i> 2, PADH1, TADH1, C-	8
	terminal (GA)₅3xyEGFP	
pRS314- <i>KAP60</i>	CEN, URA3	9
pRS314- <i>KAP95</i>	CEN, URA3	Ed Hurt lab,
		subcloned from ¹⁰
pRS315- <i>YAR1</i>	CEN, <i>LEU</i> 2, P <i>YAR1</i> , T <i>YAR1</i>	8
pRS315- <i>RP</i> S3	CEN, <i>LEU</i> 2, P <i>RPS3</i> , T <i>RPS3</i>	8
pRS314- <i>kap104-16</i>	CEN, <i>TRP1</i> , P <i>KAP104</i> , T <i>KAP104</i>	11
YCplac22-KAP123	CEN, <i>TRP1</i> , P <i>KAP123</i> , T <i>KAP123</i>	this study
pGAL111-RPS3	CEN, LEU2, PGAL1, TADH1	this study
pRS316- <i>YAR1</i> -EGFP	CEN, URA3, PYAR1, TADH1	8

P and T denote promoter and terminator, respectively.

Table S3.	E . (coli ex	pression	plasmids
-----------	--------------	---------	----------	----------

Name	Relevant Information	Source
pETDuet-1-His6-Rps3/Flag-Yar1	amp ^r , T7 promoter/ <i>lac</i> operator	this study
pETDuet-1-His6-Rps3(K7/K10>A)/Flag-	amp ^r , T7 promoter/ <i>lac</i> operator	this study
Yar1		
pETDuet-1-Flag-Yar1	amp ^r , T7 promoter/ <i>lac</i> operator	12
pETDuet-1-His6-Yar1	amp ^r , T7 promoter/ <i>lac</i> operator	8
pProEx-GST-TEV-Kap60∆IBB (Kap60	amp ^r , TRC promoter/ <i>lac</i> operator	this study
amino acids 81-542)		
pGEX-4TEV- <i>KAP123</i>	amp ^r , TAC promoter/ <i>lac</i> operator	13
pGEX-4TEV- <i>PSE1</i>	amp ^r , TAC promoter/ <i>lac</i> operator	13
pGEX-4TEV-KAP104	amp ^r , TAC promoter/ <i>lac</i> operator	14
pGEX-4T-SXM1	amp ^r , TAC promoter/ <i>lac</i> operator	15
pGEX-4T-NMD5	amp ^r , TAC promoter/lac operator	15
pGEX-5G-KAP120	amp ^r , TAC promoter/lac operator	15
pGEX-4T- <i>KAP114</i>	amp ^r , TAC promoter/ <i>lac</i> operator	15
pGEX-4T-PDR6	amp ^r , TAC promoter/ <i>lac</i> operator	15
pGEX-4TEV-MTR10	amp ^r , TAC promoter/ <i>lac</i> operator	15
pGEX-4T- <i>M</i> SN5	amp ^r , TAC promoter/ <i>lac</i> operator	15
pGEX-Nup1 (amino acids 332-1076)	amp ^r , TAC promoter/ <i>lac</i> operator	16
pGEX-Nsp1-C (amino acids 591-823)	kan ^r , TAC promoter/ <i>lac</i> operator	17
pGEX-Nup42	amp ^r , TAC promoter/ <i>lac</i> operator	16
pGEX-Nup116 (amino acids 165-715)	amp ^r , TAC promoter/ <i>lac</i> operator	16
pGEX-Nup159 (amino acids 457-900)	amp ^r , TAC promoter/ <i>lac</i> operator	18
pET32a-Arx1	amp ^r , T7 promoter/ <i>lac</i> operator	this study

Supplementary References

- Thomas, B. J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. *Cell* 56, 619–630 (1989).
- Loeb, J. D. et al. The yeast nuclear import receptor is required for mitosis. Proc. Natl. Acad. Sci. U. S. A. 92, 7647–7651 (1995).
- Goffin, L. *et al.* The unfolded protein response transducer Ire1p contains a nuclear localization sequence recognized by multiple beta importins. *Mol. Biol. Cell* 17, 5309– 5323 (2006).
- 4. Seedorf, M. & Silver, P. A. Importin/karyopherin protein family members required for mRNA export from the nucleus. *Proc. Natl. Acad. Sci. U. S. A.* **94**, 8590–8595 (1997).
- Senger, B. *et al.* Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. *EMBO J.* 17, 2196–2207 (1998).
- Pillet, B. *et al.* The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site. *PLoS Genet.* 11, e1005565 (2015).
- Neville, M. & Rosbash, M. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. *EMBO J.* 18, 3746–3756 (1999).
- Koch, B. *et al.* Yar1 protects the ribosomal protein Rps3 from aggregation. *J. Biol. Chem.* 287, 21806–21815 (2012).
- Yano, R., Oakes, M. L., Tabb, M. M. & Nomura, M. Yeast Srp1p has homology to armadillo/plakoglobin/beta-catenin and participates in apparently multiple nuclear functions including the maintenance of the nucleolar structure. *Proc. Natl. Acad. Sci. U. S. A.* **91**, 6880–6884 (1994).
- Koepp, D. M., Wong, D. H., Corbett, A. H. & Silver, P. A. Dynamic localization of the nuclear import receptor and its interactions with transport factors. *J. Cell Biol.* 133, 1163– 1176 (1996).
- 11. Aitchison, J. D., Blobel, G. & Rout, M. P. Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. *Science* **274**, 624–627 (1996).

- 12. Mitterer, V. *et al.* Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. *Nat. Commun.* **7**, 10336 (2016).
- 13. Fries, T. *et al.* A novel conserved nuclear localization signal is recognized by a group of yeast importins. *J. Biol. Chem.* **282**, 19292–19301 (2007).
- Maurer, P. *et al.* The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). *Mol. Biol. Cell* 12, 539–549 (2001).
- 15. Caesar, S., Greiner, M. & Schlenstedt, G. Kap120 functions as a nuclear import receptor for ribosome assembly factor Rpf1 in yeast. *Mol. Cell. Biol.* **26**, 3170–3180 (2006).
- Allen, N. P., Huang, L., Burlingame, A. & Rexach, M. Proteomic analysis of nucleoporin interacting proteins. *J. Biol. Chem.* 276, 29268–29274 (2001).
- Bailer, S. M., Balduf, C. & Hurt, E. The Nsp1p carboxy-terminal domain is organized into functionally distinct coiled-coil regions required for assembly of nucleoporin subcomplexes and nucleocytoplasmic transport. *Mol. Cell. Biol.* 21, 7944–7955 (2001).
- Strässer, K., Bassler, J. & Hurt, E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. *J. Cell Biol.* 150, 695–706 (2000).