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Abstract — A simple theoretical approach is used to investigate active colloids at the free interface
and near repulsive substrates. We employ dynamical density functional theory to determine the
steady-state density profiles in an effective equilibrium system (FARAGE T. F. F. et al., Phys.
Rev. E, 91 (2015) 042310). In addition to the known accumulation at surfaces, we predict wetting
and drying transitions at a flat repulsive wall and capillary condensation and evaporation in a slit
pore. These new phenomena are closely related to the motility-induced phase separation (MIPS)

in the bulk.

Introduction. — Understanding self-organisation and
non-equilibrium phase behaviour in active systems is cur-
rently a subject of intense research activity [1-3]. Bulk
systems of spherically symmetric, repulsive active Brown-
ian particles (ABPs) have been demonstrated to undergo a
motility-induced phase separation (MIPS) into coexisting
high- and low-density non-equilibrium phases [3-9]. The
phenomenon of MIPS is a consequence of the persistent
trajectories of active particles; the particles run into each
other and thus tend to cluster [9]. Systems for which the
passive interaction has an attractive component exhibit
an even richer collective behaviour. In this case, it has
been found that increasing activity can lead first to a sup-
pression of passive phase separation [10-12], followed by a
re-entrant phase separation at high activity [11,12].

A convenient strategy to describe the phenomenology
of active systems involves an effective equilibrium pic-
ture [12-14]. The theory proposed in ref. [12] accounts
for certain aspects of MIPS for both repulsive and attrac-
tive interactions. Within this approach the non-Gaussian
noise due to orientational fluctuations in the microscopic
equations of motion of ABPs is replaced with appropri-
ate Ornstein-Uhlenbeck processes (OUPs). Deriving an
approximate Fokker-Planck equation for this model and
taking the low-density limit yields an effective pair po-
tential, extending the bare interaction potential via pa-
rameters specifying the activity [12]. The effective poten-
tial may be used as input to established liquid-state theo-

ries [15-17] to make predictions about phase equilibria and
the microstructure of particles propelled by OUPs and, for
systems not too far from equilibrium [12], also of ABPs.

Compared to the bulk, much less is known about ac-
tive systems at interfaces, although swimming micro-
organisms are naturally found in confinement, leading
to surface accumulation [2,18]. In some limiting cases
the steady-state problem is tractable analytically on the
single-particle level [19-22], providing intuition for inter-
acting active particles under gravity [23], in a harmonic
trap [21] or running into substrates [24-26]. Recent sim-
ulations of two-dimensional ABPs indicate more general
interfacial phase transitions [26] and show that, despite
a negative interfacial tension arising from interparticle
forces, there exists a stable free interface between coex-
isting MIPS states [27]. A point of particular interest is
now whether inhomogeneous steady states of ABPs can be
adequately described using an effective approach, which
would enable experience from equilibrium thermodynam-
ics to be exploited.

In this letter we combine the ideas of refs. [12] and [21]
to construct a general dynamical density functional the-
ory (DDFT) [28,29] for inhomogeneous situations. The
resulting effective equilibrium theory is used to investi-
gate the collective behaviour of a model for ABPs at the
free interface, near a repulsive planar substrate and un-
der confinement between two repulsive walls. Considering
state-points close to the MIPS phase boundary (binodal)
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we predict the phenomena of activity-induced wetting
and capillary condensation in systems of repulsive ABPs.
For attractive ABPs we observe analogues of drying and
capillary evaporation. Finally, we discuss our approach
regarding recent opinions about active thermodynam-
ics [3,27,30-36].

Theory. — We consider a system of interacting,
spherical ABPs with the spatial coordinate r; and a self-
propulsion of speed vg acting in the direction of their ori-
entation, specified by the unit vector p;. The Langevin
equations

7 =wvopi+7  F+ &, (1)
with the friction coefficient v and the total force F°¢(r)
on particle ¢ describe the motion of ABPs. The stochas-
tic vectors &;(t) and m;(t) are Gaussian distributed with
zero mean and have the time correlations (&;(¢)€;(t')) =
2D;16;56(t—t") and (n;(t)n;(t")) = 2D,16,;;6(t—t'), where
Dy = kgT/y = (By)~! and D, are the translational and
rotational diffusion coefficients, respectively, and (3 de-
notes the inverse of the temperature T with the Boltz-
mann constant kg. The approximation methods adopted
in the following to eliminate the orientational degrees of
freedom are detailed in refs. [12,21].

Effective interaction potential. — Representing the ori-
entational degrees of freedom of ABPs by OUPs x; with
the same coloured-noise statistics as vgp; in eq. (1),
i.e, (xi(t)x; (")) = vd1d;; exp(—2D,|t — ¢'])/3, an ap-
proximate Fokker-Planck equation for the configurational
probability distribution P(r",t) and thus the following
effective, activity-dependent pair potential can be identi-
fied [12]:

eff 6 Bu( )
Bu (r) /T dr’ [ D)

where u(r) is the bare pair potential, D(r) = 1+ Pe?7/(3+
37(r/d)=20,[r?0,Bu(r)]) and 0, = 9/Jr, with the par-
ticle diameter d entering w(r). The only parameters,
describing the strength of activity, are the dimensionless
persistence time 7 = D;/(2D,d?) and the Péclet number
Pe = vyd/Dy.

The position of the minimum of u*®(r) (if present)
moves to shorter separations with increasing Pe (see
figs. 1(b) and 3(a)). This is due to the fact that ac-
tive particles run into each other and spend more time
at closer separations than in the corresponding equilib-
rium system. Within our picture this “self-trapping” ef-
fect is mimicked by lending such configurations additional
statistical weight. In ref. [12] the effective potential was
input to liquid-state integral-equation theory and found
to accurately reproduce the phenomenology of MIPS in a
system of ABPs. We next extend the effective equilibrium
approach to treat inhomogeneous problems.

Di =1 X D

+0, D), (2)

Effective external potential. ~ From eq. (1) it can be
exactly shown that the joint probability distribution,

P(rN,p",t), of ABPs evolves according to
N
P =Y "V;-[D(Vi—BF) —vyp;] P+ DR} P, (3)
i=1

where R = p x V,, is the rotation operator. Integration
of eq. (3) over orientations and N — 1 coordinates yields

(4)

This coarse-grained equation of motion for the one-body
density p(r,t) = [dp p(r,p,t) involves the activity force

T?
vo/dpp p)

and the average interaction force

Op =Dy V - (V = BF™ 4+ V3V — BF™) p

BF (r 1) (5)

Flnt r t ! / t V /
///dpdpd /p (T7"napap7 ) U(|’I”—’I”D7 (6)
p(r.1)
where p3) (v, v/, p,p’,t) is the non-equilibrium two-body

density. To proceed we will approximate egs. (5) and (6).

We first address the activity force (5), which can be ap-
proximated using the methods of Pototsky and Stark [21].
We specialise here to a planar geometry for which the den-
sity varies only in the z-direction. In the low-density limit
the probability P in eq. (3) factorises and the problem re-
duces to that of a single particle in a planar external field
Vext (7). Asymptotic analysis in terms of the small param-
eter 7 [21] yields an approximate steady-state solution for
the activity force on a single particle

Pet 0, Vext (2)
1+ Pe27BVexs(2)

Fie'(2) = Pe (7)
Equation (7) is easily integrated to obtain an activity-
dependent potential. Together with the bare external field
this yields the effective external potential

Ve (2) = Vet (2)

ext

— 8 tIn (1+ PeQTﬁV;m(z)) )

As for the effective interaction, eq. (2), the effective exter-

nal field VST (2) vanishes wherever V() is zero.

Awverage interaction force.  To approximate the inter-
action of ABPs in eq. (6), we make the adiabatic assump-
tion, which is standard within DDFT [28,29], that

0Filp)
dp(r,t)’

can be expressed as the gradient of a local equilibrium (ex-
cess) chemical potential piex. We further assume that the
excess Helmholtz free-energy functional Fg, °ff it that of par-
ticles interacting via the effective potentlal eq. (2). Pre-
vious attempts have either used an adaptable parameter
in F'™(r,t) [7,8] or the excess free energy corresponding
to the bare potential u(r) [21], which cannot account for
MIPS.

F(r 1) = ey = — 9)
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Fig. 1: (Colour online) Effective potentials of (a) a single wall
and (b) between two particles, given by eq. (8) and eq. (2)
with BVexi(2) = (2/d)™*2 and Bu(r) = (r/d)~*?, respectively,
7 = 0.065 and Pe is increased from 0 to 45 in steps of 5.

Substituting eqgs. (7) and (9) into eq. (4) yields

dp(r,t) 5ﬁ-7:eff[9])
ot dp(r,t) )

The effective equilibrium free-energy functional reads

=DV <p(r7t)V (10)

Folp) = Fulpl + Fellpl + [ AV, (1)
where 3Falp] = [drp(r) (In(A®p(r)) — 1) is the exact
ideal-gas contrlbutlon with the thermal wavelength A.

To arrive at a closed theory, we require an expression
for ¢ in eq. (11) which describes the effective interaction
and apphes for all densities. In liquid-state theories, a po-
tential of Lennard-Jones type, with its minimum at rg, is
usually treated by a separation, u(r) = Urep(r) + Uatt(7),
into repulsive and attractive contributions. We employ
the Weeks-Chandler-Anderson prescription [37] by choos-
ing urep(r) = u(r) — u(ro) and waw, (r) = u(ro) if r < ro
and, otherwise, uyep(r) = 0 and uai(r) = w(r). The
soft repulsion is then mapped onto a system of hard
spheres with suitably chosen diameter ¢. This choice
is not unique [17]. We use the simple criterion, o =
Jo° dr (1—exp(—Bug (r))), by Barker and Henderson [38],
which is both independent of the density and free of em-
pirical parameters. The proposed separation yields the
approximate functional

//drldrgp (r1)p(r2) attérw),

(12)

which provides a mean-field treatment of the attraction

usll (r12), where r13 = |r; — 73|. For the hard-sphere ref-

Ffpl = F) [

erence free energy, Fibo) [p], we employ the well-known
Rosenfeld functional [39], where p = pd3/o®. With
the form of eq. (12), our aim is to provide a simple
but qualitatively robust description of interacting ABPs
(or OUPs).

Effective equilibrium theory.  In the resulting equilib-
rium density functional theory (DFT) [15,16] a minimi-
sation 0Q[p]/dp(r) = 0 of the grand potential functional

Qp] = FMp] — [drpp(r) with u being the chemical po-
tential, ylelds the (unique) inhomogeneous steady-state

density profile. A study of the dynamics via eq. (10) is
also possible, but goes beyond the scope of this work.
For our purposes we consider soft repulsive substrates.
The one-body external field of a single wall is specified
by BVext(2) = (2/d)~12 and that of a slit pore of width W
by BVt (2) = (/d) 12 4 (W — 2) /)12

We can rationalise some active phenomena alone from
the effective potentials. According to fig. 1, the evolution
for a single wall is qualitatively similar to that of the pair
potential [12]: as Pe increases, VS (2) develops an attrac-
tive well. This reflects the higher probability of an ABP
to be found in the vicinity of the wall [22] and the wall
accumulation on the collective level [24-26]. Tt is also ob-
vious from eq. (8) that we can qualitatively describe the
experimental observation [23,40] that activity counteracts
the sedimentation in a gravitational field Vet (z) = mgz.
The aim of the present study is, however, different. In the
following, we apply our DF'T to interfaces in the vicinity of
the binodal line, which requires the existence of MIPS in
the bulk system. Although being well understood in equi-
librium, the resulting phenomena are not obvious from
discussing the effective interactions alone.

Passively repulsive system. — We first consider pas-
sively repulsive spheres, fu(r) = (r/d)~2, which exhibit
MIPS in the bulk for Pe > Peqy = 19.41 within our
DFT for a fixed 7 = 0.065, see fig. 2(a). Note that the
critical point is located at a smaller Pe than in ref. [12],
where a more accurate bulk integral-equation theory was
employed. However, the spinodals obtained in both ap-
proaches agree qualitatively.

Free interface. In fig. 2(b) we show the density profiles
at the free interface for different values of Pe > Peit. As
could be anticipated from our effective thermodynamic de-
scription, the functional form is familiar from equilibrium
studies and is consistent with recent simulations [27]. All
plots in fig. 2(b) are fitted well by a hyperbolic tangent
profile, p(=) & pg + (p1 — pg)(1 + tanh((z — A2)/(26))/2),
where p, and p; are the coexisting (colloid-poor) gas and
(colloid-rich) liquid densities, respectively, and § is the in-
terfacial width. The interface broadens as the value of
Pe is reduced, eventually diverging at the critical point.
Within a mean-field description, the width diverges in the
same fashion as the bulk correlation length [16], namely
§ ~ (Pe — Pegi )~ /2. Accordingly, the (thermodynamic)
interfacial tension decreases to zero with the exponent 3/2.

Simulations reveal strong interfacial fluctuations [27],
which are omitted within mean-field theory. These long-
wavelength fluctuations would lead to a broadening of
the “intrinsic” interfacial profile generated by mean-field
theory. Although techniques exist to incorporate capillary
waves [41], it is not clear whether the interfacial fluctua-
tions between the MIPS states are of capillary-wave type,
or whether the interface is either rough or smooth [16].

Wetting and capillary condensation.  In fig. 2(c) we
show the steady-state density at a single wall as the
binodal is approached on the path drawn in fig. 2(a),



T T T ~ T
r:g: B (a) Phase diagram % (b) Free interface poso
0,6 :m
””” 04
!
0.2 0.4 P 0,2 Increasing Pe 1
—— H=R(20) =
L L ! I
0,8 I P -5 0 5 z/d
~ T T T T T ~Mm T T 7
3 (c) Wetting ) (d) Capillary condensation
& a
0,61 — B
Increasing Pe Increasing Pe
0,41 H
0.2 % = ! | - ! [
0 4 8 12 z/d 0 5 10 15 20 z/d

Fig. 2: (Colour online) Phase behaviour for the effective po-
tentials in fig. 1. (a) Binodal and spinodal in the pnh-Pe
plane (p, = pd®). The thinner lines denote all (including
metastable) points of equal chemical potential p = puc(20)
touching the binodal at Pe = 20. The closeup in the inset
reveals the stable phases along this path in the bulk or in a cap-
illary. (b) Free interfaces between colloid-rich and colloid-poor
phases. (c) Wetting near a single wall at p = uc(20). Double-
dot—dashed lines denote that the dense phase is metastable.
(d) Density in a slit (see text) of width W = 25d at p = p(20),
increasing Pe from 19.9 to 20 (steps of 0.01). At Pe = 19.97
(see fig. 2(a)) capillary condensation occurs and the slit fills
with the liquid phase.

increasing Pe at fixed pu. The strong first peak reflects
the minimum in the effective wall potential in fig. 1(a).
For Pe 2 19.92, where the liquid branch meets the spin-
odal, a macroscopic region of increased density emerges
at the substrate, i.e., a wetting layer of the colloid-rich
phase forms. Further approaching the binodal, the layer
thickness grows significantly for Pe 2 19.98 and eventu-
ally diverges at Pe = 20, whereas the peaks near the wall
practically remain identical.

In fig. 2(d) we plot the density profiles under the same
conditions as in fig. 2(c), but now considering two repul-
sive walls at a separation W = 25d. By increasing Pe we
observe the onset of wetting at both walls. At Pe ~ 19.97
the density profile jumps discontinuously and the slit fills
with the colloid-rich phase, which is only metastable in the
bulk (see fig. 2(a)): an activity-induced capillary conden-
sation occurs. This discontinuous change in the density
leads to a jump in both excess adsorption and osmotic
pressure acting on the walls. The transition point shifts
to even lower Pe upon decreasing W (not shown).

Wetting [42] and capillary condensation [43] are quite
familiar from equilibrium studies of attractive particles at
attractive walls. Here we emphasise that the behaviour is
a consequence of the activity, represented by the effective
interparticle and external potentials, and would be entirely
absent in the purely repulsive passive system. Simulations
reveal similar density profiles in two dimensions, but we do
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Fig. 3: (Colour online) Density p,(z) = p(2)d® for 7 = 0.045
and different Pe. Pair potential Su(r) = 4 (r/d) ™2 —4 (r/d)~5,
external potential BV (z) = (2/d)~'2. (a) Effective pair
potential u*(r) for i) Pe € {0,5,6.2}, ii) Pe € {10,15,20}
and iii) Pe € {28,36.05,45}. Inset: binodals in the Pe-py
plane (thick curves) and points of equal chemical potential
1 = pe(5). The i) thin solid, ii) dashed and iii) double-dot—
dashed lines denote the regions bounded by the two critical
points Peais and Pel.. The thicker (straight) lines denote
bulk coexistence at Pe = 5 and Pe = 36.05. (b) Free interface
for i) Pe < 6.2 (as in fig. 2(b)) and iii) Pe > 28 (inverted at
z = 0). (c) Density near a single wall at u = pc(5). i) Drying
for 0 < Pe < 5 (decreasing steps, compare with fig. 2(c)),
ii) increasing accumulation at the wall for Pe € {10,15,20}
and iii) wetting-like behaviour for 30 < Pe < 36.05 (decreasing
steps, compare with fig. 2(c)). (d) Density in a slit of width
W = 15d at p = pc(5), increasing Pe from 4 to 5 in steps of
0.1. At Pe = 4.74 capillary evaporation occurs.

not reproduce the strong oscillations with W in the surface
tension resulting from crystalline order in the slit [26].

Passively attractive system. — As shown in fig. 3(a),
the effective pair potential of an active Lennard-Jones
fluid with Bu(r) = 4 (r/d)~*2 — 4 (r/d)~% and 7 = 0.045
develops a repulsive tail for Pe > 15. The DFT from
eq. (12) predicts an exotic phase diagram for such inter-
actions [44]. We find two critical points in the active sys-
tem at Pegic = 6.24 and Pel;, = 27.98 accounting for a
motility-induced suppression of the phase separation and a
re-entrant MIPS, respectively. In the latter case, the pre-
cise character of the transition is an open problem, as the
colloid-rich phase will very likely consist of clusters [12,44].

Free interface. ~ We first discuss fig. 3(b) for the free
interface, which also reflects the rich bulk phase behaviour
from fig. 2(a). The shape of the density profiles at small Pe
is similar to that in the passively repulsive case (fig. 2(b))
although the response to a change in activity is the op-
posite. At Peuiy < Pe < Pe},, there is no phase
separation, until a new interface develops at higher activ-
ity. The density profile of this re-entrant interface is non-
monotonic, which is most pronounced on the colloid-rich



side. Moreover, the bulk correlation length, i.e., the in-
terface width, is markedly smaller than at lower activ-
ity, which we see when comparing characteristic profiles.
This could already be anticipated from the smaller effec-
tive diameter o of the reference fluid at higher activity
(see fig. 3(a)).

The interfacial tension is smaller at higher activity,
which is consistent with the fact that activity consumes
energy from the system. To substantiate this observa-
tion we study the near-critical behaviour. Approaching
Peg,it, the interfacial tension v is about 20 times higher
than for Pe}.,, which we see by comparing the prefac-
tors vo and 7 in the fits to v = vy (Pecrit — Pe)?’/2 and
v = 7§ (Pe — Pef,;)?/? for sufficiently close sets of data
points.

Drying and capillary evaporation. In the following, we
fix p to find phase coexistence at Pe = 5 and Pe ~ 36.05.
Figure 3(c) illustrates the wide variety of phenomena pre-
dicted for a passively attractive fluid at a passively repul-
sive wall when following the path depicted in fig. 3(a). At
zero activity, Pe = 0, the density of a pure Lennard-Jones
fluid is depleted close to the wall, as the attractive inter-
particle interaction favours particle cohesion. For higher
Pe, the bulk density decreases and a region of the colloid-
poor phase begins to develop, as it becomes metastable
in the bulk for Pe 2 4.5, ultimately diverging at Pe = 5.
As in fig. 1(a), the effective substrate potential is barely
attractive for Pe < 5. Hence, the particles still prefer to
accumulate next to each other. The first main peak in
fig. 3(c) has developed for Pe = 10. Increasing Pe it be-
comes higher, reflecting the stronger effective attraction of
the wall.

Beyond Pe};,, we also observe an increase in height
of the second and third peaks before an infinite layer of
the colloid-rich phase appears at Pe =~ 36.05. In contrast
to fig. 2(c), this wetting-like behaviour occurs abruptly
due to the highly attractive effective wall potential and
the relatively small bulk correlation length (deduced from
fig. 3(b)). Thus, a wetting film would be merely thin com-
pared to the drying film for Pe < 5. In any case, arguing
about a true re-entrant wetting phenomenon at Pe > 28
remains rather speculative, due to the possible influence
of clustering [44].

Finally, we predict that a passively attractive system
(in a liquid-like bulk state) confined between two paral-
lel plates evaporates to a colloid-poor phase at a certain
value of Pe < Peqy (see fig. 3(d)), even before the ac-
tivity suppresses the phase separation in the bulk. For
the chosen example, the capillary evaporation in a slit of
width W = 15d occurs at Pe & 4.74, whereas the line in
fig. 3(a) meets the binodal only at Pe = 5. Given the re-
sults shown in fig. 3(c) one can also envisage a re-entrant
capillary-condensation transition (not shown in fig. 3(d)).

Discussion. — Our focus so far has been on the density
distribution of ABPs, calculated with an effective thermo-
dynamic theory. The definition of pressure [30-33] and

interfacial tension [27] within such a framework remains
the subject of debate [34,35]. In the following, we argue
in how far our theory captures the physics of ABPs and
how it connects to some more direct approaches.

Effective equilibrium regime. The bulk theory ad-
dresses coupled OUPs. Although the exact configurational
probability distribution does not satisfy a Fokker-Planck
equation, the optimal Markovian (Fox) approximation [12]
does so and thus provides the possibility of an equilibrium
description [34]. From eq. (3) we have derived an effec-
tive external field to complement our bulk theory. Despite
our approximations and certain discrepancies between the
steady-states of ABPs [36] and OUPs [20], we are confident
that our predictions in figs. 2 and 3 of the non-equilibrium
collective behaviour are qualitatively robust for both types
of self-propulsion mechanisms, as we assume moderate de-
viations from equilibrium and simulations in two dimen-
sions indicate a similar phenomenology [25,26].

We note that one prediction of the bulk theory omitted
so far is an effective diffusion coefficient [12], generalising
D(r) entering in eq. (2). It allows us to distinguish be-
tween the ideal Brownian Spg = p and ideal swim pressure
ﬁpgd) = pPe?7/3 [14,27,30-32] by setting the energy scale
via the effective temperature 3.4 = 371(1+ Pe?7/3), also
employed [14,20,23,40] to describe active sedimentation in
certain limits [19,36]. An effective external field for OUPs,
consistent with ref. [12], and a more general diffusion co-
efficient will be addressed in a future publication.

Previous works (see, e.g., refs. [3,5,36]) have proposed
an exact mapping to a local bulk free energy functional by
assuming a slowing down of the particles due to collisions.
In contrast, we employ an effective potential in eq. (9). We
stress that our free energy, eq. (12), is built on weighted
densities, i.e., convolutions of the density with geometri-
cal measures of a sphere [39], and is thus intrinsically non-
local. Hence, it treats homogeneous and inhomogeneous
situations on an equal footing, avoiding the need to add
square-gradient terms [3,36] to a local theory. The free en-
ergy in eq. (11) combines the effective forces derived from
independent approximations for bulk interactions and ex-
ternal fields. It thus approximately compensates the infor-
mation lost when integrating out the orientational degrees
of freedom, e.g., the anisotropy near boundaries [22].

Swim pressure.  In dense systems, the interplay be-
tween the bare interaction pressure p; and ps has been
proposed as the driving force of MIPS [30,32]. As the swim
pressure arises from the coupling between particle posi-
tion and orientation [27,30], the latter being not resolved
in our theory [12], it is not directly accessible. However,
Bps = pPe(p)PeT/3 can be expressed [32] in terms of a
density-dependent projected velocity Pe(p) [3,6]. Com-
paring eq. (9) to refs. [3,5] (in our case pex = 0 if p = 0)
vields Pe?(p) = (Pe? + 3/7)exp(2Bptex) — 3/7. The
virial pressure Bp; = (2p°7/3) [ drr3g(r) d,u(r) [17] with
the effective radial distribution g¢(r), obtained with DFT
methods [15,16] and the Ornstein-Zernicke equation [17]
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Fig. 4: (Colour online) Effective bulk pressure peg compared to
swim pressure ps, interaction pressure pr (small values for hard-
sphere potential) and ideal Brownian pressure pp (see text)
using Bu(r) = (r/d)"*?, 7 = 0.065 and (a) Pe = 15 or (b) Pe =
20. The insets show the projected velocity Pe(p) (see text).

(we set g(r < o) = 0), is calculated either for the bare
potential u(r) or, more consistently with our DFT imple-
mentation, for hard spheres of diameter o(Pe = 0). Note
that g(r) and thus py is ill-defined within the spinodal.

Regarding the shortcomings of mean-field theory, un-
derestimating (e and leaving it unclear how to ideally
calculate py, fig. 4 certifies a reasonable agreement of
PI = Peff — Ps — PB, With the overall effective pressure peg,
minimising our functional on the active energy scale ﬁgﬂl.
The swim pressure pg(p) behaves reasonably [30,32] up to
the minimum of the velocity Pe(p), which, above a certain
Pe > Peg,iy, decreases almost linearly to zero [3-6]. A sim-
ilar procedure for inhomogeneous situations, while imple-
menting the aforementioned improvements, could clarify
in how far our free-energy—based theory consistently de-
scribes the mechanical pressure exerted on a wall [33] and
the interfacial tension [27,35] in active systems. Some ap-
proximate expressions for these quantities were recently
derived [45] from another effective treatment of the OUPs
model [13,14] without explicitly employing effective pair
interactions.

Conclusions. — Using an effective equilibrium descrip-
tion we predict that ABPs (or other systems showing bulk
MIPS) will exhibit a variety of interfacial phase transitions
induced by activity. To construct a DDFT for inhomo-
geneous active systems, we derive from the position and
orientation-resolved Fokker-Planck equation an effective
external potential [21], which we combine with the effec-
tive interparticle potential from ref. [12]. We discussed
some caveats and quantitative issues but we are not aware
of any alternative first-principles theory capable of dealing
with MIPS either in the bulk or at interfaces.

The tendency of repulsive particles to accumulate even
at repulsive substrates for finite activity can be seen di-
rectly from our density profiles and understood intuitively
from comparing the effective potentials, as shown in fig. 1.
We further anticipate that active fluids exhibit motility-
induced wetting phenomena and, in a slit pore, capillary
condensation. It would also be interesting to investigate
the capillary crystallisation observed for two-dimensional
ABPs [26]. At a sufficiently low Péclet number, the accu-
mulation near the wall can be suppressed when the bare
interaction between the particles is already attractive. An
experimental system similar to that used in ref. [10] may

well show drying and capillary evaporation, when one or
two opposing repulsive planar substrates are introduced.

As a next step we will develop new grand-canonical—-
type simulation methods in three dimensions to test our
predictions. A natural continuation of the present work
would be to investigate dynamical properties, although it
is unclear to what extent the effective equilibrium picture
remains valid beyond steady states. Moreover, it would be
interesting to extend our current methods to study mix-
tures and to exploit recent work in equilibrium DFT [46]
for treating anisotropic swimmers [1,2].
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