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ABSTRACT: Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the 
progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of 
obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death 
or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the 
long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for 
the first time. Mice lacking JNK1 (JNK12/2) were fed an obesogenic high-fat diet (HFD) for a long period. JNK12/2

mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative 
damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. 
However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin 
resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative 
damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not 
accumulate in the skin, may be safer and most effective.—Becattini, B., Zani, F., Breasson, L., Sardi, C., D’Agostino, 
V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation inmice confers long-termmetabolic protection 
from diet-induced obesity at the cost of moderate skin oxidative damage. 
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It is now appreciated that the saturation of adipocyte lipid
storage capacity, the consequent ectopic lipid deposition,
metabolic inflammation, and insulin resistance are closely
correlated events and hallmarks of obesity-associated
diseases (1–6). JNK-1 and -2 emerged as a major link
between obesity-driven lipotoxicity, metabolic inflamma-
tion, and insulin resistance (1, 2, 7, 8), with JNK1 being the
most important isoform (8, 9). JNK1 is activated by
saturated fatty acids, and mice lacking JNK1 have

reduced adiposity, reduced metabolic inflammation,
and improved insulin sensitivity (8, 10, 11). JNK1 was
initially believed to promote insulin resistance by direct
phosphorylation of the insulin receptor substrates (7, 8, 10,
12). However, current evidence indicates that part of the
improved insulin sensitivity in mice lacking JNK1 is an in-
direct consequenceof their leanerphenotype (11, 13),which
depends on JNK1 activity in neurons (13–15). Moreover,
JNK1activity inmyeloid cells plays an important role in the
development of obesity-driven metabolic inflammation,
which further promotes insulin resistance (11, 16, 17).

Although current studies consistently indicate that
JNK1 is a promising drug target for the treatment of
obesity-driven insulin resistance, the long-term efficacy of
JNK1 ablation for the treatment of obesity-related diseases
is unknown, and there are safety concerns. Obesity and
diabetes are conditions associated with oxidative stress
(18, 19), and JNK1 is a central mediator of the physiologic
response to oxidative stress, with outcomes ranging from
increased survival to cell death, depending on intensity,
length, and context of its activation (20–22). JNK was
shown to promote tolerance to oxidative stress and
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increase life span in Drosophila and in Caenorhabditis ele-
gans, by amechanism involving increasedForkheadboxO
(FoxO)-dependent antioxidant defense (23–26). JNK is a
major signal transducer mediating FoxO activation in re-
sponse to oxidative stress (20, 27), and controls the expres-
sion of the antioxidant proteins sestrin-2 (Sesn2) and heme
oxygenase (HO)-1 via the transcription factor AP-1 (28–31).
Mouse embryonic fibroblasts lacking JNK1 and -2 display
increased sensitivity to hydrogen peroxide, indicating that
JNKactivity sustainsoxidative stress tolerance invertebrate
cells (32). Finally, the well-documented action of sustained
JNK activation in promoting apoptosis in response to oxi-
dative stress may also play an important role in tissue ho-
meostasis by eliminating irreversibly damaged cells, hence
preventing the excessive inflammation that would result
from a necrotic cell (20–22). However, the physiologic and
pathophysiological relevance of JNK1-induced oxidative
stress tolerance in vertebrates, in particular in mouse
models of obesity and insulin resistance, is unknown. In-
deed, whereas JNK1 inactivation is known to protect mice
from diet-induced obesity, metabolic inflammation, and
insulin resistance, it must be noted that current studies are
limited to 20-wk exposure to a high-fat diet (HFD) (11).
Hence, the long-term effects of JNK1 inactivation in obesity
areunknown.To learnabout the safetyandefficacyof long-
term JNK1 inactivation for the treatment of obesity-driven
insulin resistance, we investigated metabolic homeostasis
andoxidative stress inmice lacking JNK1 (JNK12/2) fed an
obesogenicHFD for a long period. Our results indicate that
systemic inactivation of JNK1 leads to prolongedmetabolic
protection from diet-induced obesity and reduced oxida-
tive damage in liver and adipose tissue, at the cost of in-
creased predisposition to skin oxidative damage.

MATERIALS AND METHODS

In vivo studies

Miceweremales on a pureC57BL6/J background, and JNK12/2

mice were bred as previously described (11). An HFD (60% of
calories from fat) was purchased from Bio-Serv (diet F3282; Fle-
mington,NJ,USA). Themicewerekept at our standard facility in
a 12 h light–dark cycle at room temperature (23°C). Two in-
dependent cohorts fromdifferentbreederswere investigated.For
the first cohort 15 wild-type (WT) mice and 15 JNK12/2 mice
were weaned onto an HFD andmaintained on it. For the second
cohort, 9WTmice and 12 JNK12/2mice were alsoweaned onto
the HFD and kept on it up to 44 wk of age (40 wk of HFD).
Glucose tolerance (GTT) and insulin tolerance (ITT) tests were
performed at various times (see Figs. 1 and 2) (33). Experi-
mental procedures were authorized by the Cantonal Veteri-
nary Committee (Service de la Sécurité Alimentaire et des
Affaires Vétérinaires, Givisiez, Switzerland.).

Molecular measurements

Total RNA was isolated from tissues by guanidinium–
thiocyanate extraction.

For quantitative real-time PCR (qPCR), cDNA was prepared
with a reverse transcription kit (Promega, Madison, WI, USA),
and PCR was performed with a commercial SYBR green mix
(Bio-Rad, Hercules, CA, USA) and specific primers (Supple-
mental Table S1). Data are expressed as relative RNA levels

normalized on cyclophilin. For microarray analysis, total RNAs
were hybridized in quadruplicate on a whole mouse genome
4x44K microarray (G4122F; AMADID 014868; Agilent Technol-
ogies, Santa Clara, CA, USA), scanned with the Agilent micro-
array scanner at 5mmresolution, andanalyzed numericallywith
the manufacturer’s software. All microarray data are available
through the Gene Expression Omnibus database (National In-
stitutes of Health, Bethesda, MD, USA; http://www.ncbi.nlm.nih.
gov/geo/) under theaccessionnumberGSE73759.For immunoblot
analysis, the antibodieswereP-AKTSer473,AKT, P-FoxO1Ser356,
P-FoxO1 Thr24, FoxO1, catalase, and superoxide dismutase
(SOD)-2 (Cell Signaling Technology, Danvers, MA, USA); HO
(Enzo Life Sciences, Farmingdale, NY, USA); and Sesn2 (Pro-
teintec, Rosemont, IL, USA). Quantification of adipose tissue
crown-like structures (CLSs) was performed as described else-
where (33).Malondialdehyde (MDA) levelsweremeasuredwith
a commercial kit (Abcam, Cambridge, MA, USA). Macrophage
immunostaining of liver sections was performed with F4/80
antibodies (AbD Serotec, Raleigh, NC, USA). Immunofluores-
cence analysis of FoxO proteins in skin sections was performed
with anti-Fox03a (Cell Signaling Technology) or anti-Fox04
(Abcam), and images were acquired with the Apotome micro-
scope (Zeiss, Thornwood, NY, USA) with a320 objective.

Statistical analysis

Survival curveswere analyzedby log-rank (Mantel-Cox) test and
by Gehan-Breslow-Wilcoxon test. DNA microarray data were
analyzed with the R software environment for statistical com-
puting (http://www.r-project.org/) and the Bioconductor library of
biostatistical packages (http://www.bioconductor.org/). Statistical
significance was set at P , 0.05. The Database for Annotation,
Visualization and Integrated Discovery (DAVID) resource was
used for enrichment analysis of differentially expressed genes,
with annotations fromGeneOntology, Kyoto Encyclopedia of
Genes andGenomes (KEGG) (http://www.genome.jp/kegg/) and
PFAM (http://www.pfam.xfam.org). A value of P , 0.05 denoted
significant overrepresentation.

All other data are expressed as means 6 SEM; A value of
P , 0.05 by Student’s t test indicates statistical significance.

RESULTS

JNK12/2 mice kept on an HFD display
sustained protection from obesity and insulin
resistance, but are predisposed to skin aging

Mice JNK12/2 and their WT controls were kept on an
HFD after weaning, and we monitored life span, body
weight, and glucose homeostasis. We did not find a sta-
tistically significantdifference between the survival curves
of WT and JNK12/2 mice, although we observed a non-
significant tendency toward decreased age at 50% survival
andincreasedmaximumlifespan in JNK12/2mice (Fig.1A).

Body weight measurements showed that, while con-
suming an HFD, JNK12/2 mice were significantly leaner
than control mice until the age of 65 wk, although by the
age of 80 wk, body weight was similar between the ge-
notypes (Fig. 1B). JNK12/2 mice at their plateau of body
mass, at 50 wk of age, weighed ;13 g less than their WT
control. We performed GTTs and ITTs at different time
points, and we observed that JNK12/2 mice displayed
improved insulin tolerance vs. control mice, at least until
48 wk of age (Fig. 1C). GTT on 47-wk-old mice did
not reveal any difference between groups (Supplemental
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Fig. S1). However, comparison of GTTs performed at dif-
ferent time points indicated that the absence of difference
between groups at 47 wk of age was due to an improve-
ment of glucose tolerance in control mice (Supplemental
Fig. S1).

During our routine health checks of the mice we ob-
served that, compared to WT controls, JNK12/2 mice
displayedmore signs of alopecia and hair depigmentation
(Fig. 1D).

Overall, these data indicate that JNK1 ablation leads to
a long-term protection from diet-induced obesity and in-
sulin resistance, but also indicate that JNK1 activity may
protect against skin aging.

JNK12/2 mice display sustained protection
from obesity-induced adipose tissue
inflammation and insulin resistance

To reproduce the observations described above and fur-
ther learn about the role of JNK1 in prolonged HFD
feeding, we investigated a second independent cohort of
mice, which we euthanized at 44 wk of age, when differ-
ences in fur quality between genotypes were evident. We
could reproduce the sustained leaner phenotype and long-
term improved insulin tolerance of JNK12/2 mice, al-
though by 43wk of age, therewas nodifference in glucose
tolerance between genotypes (Fig. 2A–H). The latter was
explained by an improved glucose tolerance of the WT
mice (Fig. 2D,H),whichwas consistentwith that observed
in the previous cohort (Supplemental Fig. S1). Mac-2
immunostaining of adipose tissue sections revealed that
44-wk-old JNK12/2 mice, kept on an HFD, displayed a
decreased number of CLSs compared to theirWT controls
(Fig. 2I, J). Consistently, the expression of adipose tissue
macrophagemarkers (F4/80 andCD11c) and of cytokines
associated with classic M1 macrophage activation (IL-6,
TNFa, IL-1Ra, and MIP-1a) was also decreased in white
adipose tissue from JNK12/2mice compared toWTmice
(Fig. 2K). Genome-wide gene expression analysis revealed
that the expression of several genes implicated in immu-
nity was down-regulated in white adipose tissues from
JNK12/2mice, andgene ontology analysis of these down-
regulated genes indicated reduced leukocyte recruitment,
and milder immune responses to chronic obesity in adi-
pose tissues from JNK12/2 mice compared to that in

control mice (Fig. 2L). Altogether, our data indicate that
JNK1 ablation in mice confers long-term protection from
HFD-induced adipose tissue inflammation and insulin
resistance.

JNK12/2 mice display sustained protection
from HFD-induced hepatosteatosis but not
from liver inflammation

Liver histology revealed that, relative to WT mice,
JNK12/2mice kept onHFDwere protected fromhepatic
steatosis at least up to 44 wk of age and 40 wk of HFD
feeding (Fig. 3A). However, immunostaining of liver
sections with the macrophage marker F4/80 indicate
that the number of liver macrophages was similar be-
tween WT and JNK12/2 mice (Fig. 3B, C). Consistently,
qPCR analysis of liver samples indicated that F4/80
mRNA levels and expression of major proinflammatory
cytokines were similar between JNK12/2 mice and WT
control mice after long-term HFD feeding (Fig. 3D). Fi-
nally, genome-wide gene expression analysis of liver
samples from these mice did not reveal significant dif-
ferences in the expression of inflammatory genes be-
tween genotypes (data not shown). Overall, these results
indicate that JNK1 ablation in mice confers sustained
protection from the effects of chronic HFD feeding on
hepatosteatosis, but not from liver inflammation.

JNK12/2 mice chronically fed an HFD are
predisposed to skin damage
and inflammation

JNK12/2mice andWT controls kept onHFDwere closely
monitored for signs of alopecia and hair depigmentation.
Consistent with the data from the previous cohort (Fig. 1),
weobserved that JNK12/2micedevelopalopeciaandhair
depigmentation before their WT controls (Fig. 4A, B). By
the age of 44 wk, both JNK12/2 mice and WT controls
displayed at least someminor sign of alopecia (compared
to young mice); however, it was more pronounced in
JNK12/2 mice. Furthermore, we did not detect hair de-
pigmentation inWTmice up to 44wkof age,whereas 75%
of JNK12/2 mice showed some depigmentation, which
was quite variable within the group, ranging from minor
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depigmentation to overt (Fig. 4A, B). Histologic analysis
of skin samples showed that epidermal thickness was
significantly increased in JNK12/2 mice, which also
displayed signs of inflammation (Fig. 4C, D). qPCR
analysis revealed an induction of the expression of genes
associated with M1 macrophage activation (IL-6, -1b,
and -1Ra) and decreased expression of genes associated
with alternative M2 macrophage activation (MGL-1,
MRC-2, and FIZZ1) (Fig. 4E). These data indicate that
skin macrophages of JNK12/2 mice are polarized to-
ward an M1 proinflammatory phenotype, which is
consistent with the skin histology data, and in marked
contrast with what was observed in adipose tissue. To
further learn about the pathways altered in the skin of
JNK12/2 mice, we performed genome-wide gene ex-
pression analysis of skin samples and analyzed the data
by gene ontology analysis. The results revealed that
several genes related to keratinization, epidermis de-
velopment, hair cycle, pigmentation, and inflammation
were up-regulated in skin samples from JNK12/2 mice
compared with gene expression in samples from WT

controls (Fig. 4F). This pattern of gene expression is
consistent with the idea of increased tissue damage, in-
flammation, and repair in the skin of JNK12/2 mice.

Taken together, our data indicate that JNK12/2 mice
kept on anHFD for a prolonged period are predisposed to
skin damage and inflammation.

JNK1 ablation has opposite effects on fat and
skin oxidative damage in mice fed an HFD for
a prolonged period

To evaluate the effects of JNK1 ablation on oxidative stress
damage inmicekeptonanHFD,wemeasured the levelsof
the lipid peroxidation product MDA in different tissues
from the WTmice and JNK12/2 mice described above.

MDA levels were similar between genotypes in kidney
and heart, were slightly but significantly decreased in
liver, and were markedly decreased in white adipose tis-
sue from JNK12/2 mice compared with levels in WT
controls (Fig. 5A). By contrast, MDA levels were signifi-
cantly elevated in skin samples from JNK12/2 mice
compared to WT controls indicating increased oxidative
damage in this tissue. To further learn about the mecha-
nisms of increased oxidative damage in the skin of
JNK12/2 mice, we measured mRNA levels of HO-1, a
potent antioxidant and anti-inflammatory enzyme with
expression that has been shown to be elevated in kera-
tinocyte cell cultures by oxidative stress inducers and by
lipid peroxidation products in a JNK1-dependent man-
ner (34, 35). HO-1 mRNA levels were similar between
genotypes in kidney, heart, and liver, butweremarkedly
reduced in white adipose tissue of JNK12/2 mice com-
pared to WT controls (Fig. 5B). This pattern of gene ex-
pression parallels the MDA levels in these tissues and is
consistentwith the concept ofHO-1 as anoxidative stress
and lipid-peroxidation–responsive gene. However, we
also observed thatHO-1mRNA levelswere significantly
lower in the skin of JNK12/2 mice vs. WT controls, de-
spite increased MDA levels in the former. This observa-
tion is consistent with keratinocyte cell culture studies
indicating amajor role for JNK1 in the induction ofHO-1
gene expression in response to oxidative stress and lipid
peroxidation products. We then used real-time qPCR to
measure the expression of several genes implicated in
oxidative stress tolerance in skin samples fromWTmice
and JNK12/2 mice.

The results show that mRNA levels of Sesn-2 and cat-
alase were also significantly decreased in skin samples
from JNK12/2 mice (Fig. 5C). These differences may ex-
plain the increased oxidative damage in the skin of
JNK12/2 mice, despite the systemic metabolic protection
anddecreased oxidative damage in fat and liver. Catalase,
in particular, has been shown to play a major role in skin
and hair tolerance to oxidative stress (36, 37). Immunoblot
analysis indicated that HO-1 and Sesn-2 protein levels
were only marginally reduced in JNK12/2 mice, and the
differences were not statistically significant. However,
catalase and SOD2 protein levels were markedly reduced
in skin samples from JNK12/2 mice. mRNA levels of
catalase, Sesn-2, and SOD-2 were not reduced in adipose
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tissue, liver, heart, and kidney samples from JNK12/2

mice vs. their controls (Supplemental Fig. S2). Because
catalase and SOD2 expression are controlled by FoxO
transcription factors,we evaluated the activation of FoxOs
proteins and of their regulatorAKT in the skin of themice.
Our data showed that AKT activation and FoxO1 phos-
phorylation by AKT were similar in the skin of WT and
JNK12/2 mice (Supplemental Fig. S3A, B). Furthermore,
immunostaining of skin sections with FoxO3a- and
FoxO4-specific antibodies revealed an almost complete
nuclear localization of FoxO3a and FoxO4 in the skins of
both genotypes (Supplemental Fig. S3C).

Altogether, our results indicate that systemic JNK1
ablation leads to decreased oxidative damage in liver and
white adipose tissue and, by contrast, increased skin oxi-
dative damage and reduced expression antioxidant genes
specifically in the skin.

DISCUSSION

Several studies have demonstrated that JNK1 ablation
protects mice from diet-induced obesity and insulin

resistance (8–11, 16, 17). However, these medium-term
studies do not exceed 20wk of dietary treatment, and thus
the long-term effects of JNK1 inhibition in obesity are
largely unknown. In this study, we investigated for the
first time the late effects of JNK1 inactivation in agingmice
exposed for a prolonged period to an obesogenic HFD.
Our JNK12/2 mice kept on an HFD were mildly pre-
disposed to skin oxidative damage and inflammation.
However, the metabolic protection from the effects of di-
etary fat caused by JNK1 ablation was largely sustained
over least 40wkof anHFD, and this improvedmetabolism
was paralleled by reduced oxidative damage in liver and
adipose tissue. The protection from oxidative damage
observed in liver and fat of JNK12/2 mice can thus be
explained by decreased adiposity and reduced adipose
tissue inflammation observed in the mice, which is be-
lieved to havemajor local and systemic effects (17). In line
with this interpretation,MDAlevelswere significantlybut
modestly reduced in liver andmarkedly reduced inwhite
adipose tissue of JNK12/2 mice vs. their WT controls.
Furthermore, we observed that, although the JNK12/2

mice displayed long-term protection from fatty liver, he-
patic inflammation in them was similar to that in WT
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controls after 40 wk of an HFD, indicating limited pro-
tection in this tissue andamore specific role for JNK1 in the
control of adipose tissue inflammation. It is possible that
the lack of long-term protection from liver inflammation
observed in the JNK12/2 mice is the result of a compen-
satoryaction fromJNK2. Indeed, targeteddeletionof JNK1
in liver has been reported to cause hepatic microsteatosis,
whereas compounddeletionof JNK1and -2wasprotective
(38, 39). This observation suggests that simultaneous tar-
geting of JNK1 and -2 may be a more effective anti-
diabetogenic strategy than targeting JNK1 in isolation.
However, that mouse embryonic fibroblasts lacking JNK1
and -2 are more sensitive to hydrogen peroxide is a pos-
sible concern (32). Indeed, our observation that JNK12/2

mice fed an HFD over a long period displayed increased
skin oxidative damage and reduced antioxidant gene ex-
pression implies a role for JNK1 in promoting oxidative
stress tolerance in this tissue.

A limitation of our study is that only male mice were
investigated; thus, the impact of female steroids on the
observed phenotype remains unresolved. Another major
limitation of our study is that the use of systemic JNK1
inactivationdoesnot allow the identificationof the specific
cell type implicated in the increasedskinoxidativedamage
observed in JNK12/2 mice. Therefore, our data do not
exclude a non–cell-autonomous action of JNK1 in pro-
moting oxidative stress tolerance. Nonetheless, a role for
JNK in the control of antioxidant gene expression in

cultured skin cells has been reported (34, 35, 40, 41), and
that the skin was the only tissue of JNK12/2 mice dis-
playing increased oxidative damage is consistent with the
idea that JNK1 activitywithin a specific skin cell typemay
protect against local oxidative damage. Indeed, because
JNK1 deletion improves metabolic homeostasis and re-
duces adiposity, the expected systemic outcome of JNK1
deletionwould be reduced oxidative stress, as observed in
liver and adipose tissue.We found thatmice lacking JNK1
and having prolonged exposure to an HFD displayed,
specifically in skin cells, reducedmRNAandprotein levels
of catalase, an enzyme playing a major role in skin
tolerance to oxidative stress, whose reduced expression
correlates strongly with hair depigmentation (36, 37).
Furthermore, we observed a marked reduction of SOD2
protein levels and decreased mRNA levels of the antioxi-
dant genes Sesn-2 and HO-1 in the skin of JNK1 mice.
Because catalase and SOD2 expression is controlled by
FoxO transcription factors, it is possible that the effects of
JNK1 activity on skin catalase levels are mediated by
JNK1s effect on FoxOs proteins (27). However, other
mechanisms may also be involved, as we did not observe
signs of reduced FoxO1 activation and of FoxO3a and -O4
nuclear localization in skin samples from JNK12/2 mice.
Furthermore, SOD2,HO-1, and Sesn-2 have been reported
to be directly regulated by the JNK-AP1 pathway in a cell-
autonomous fashion (28–31, 40). Hence, the increased
oxidative damage in the skin of JNK12/2 mice could be
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explained by a local effect on antioxidant gene expression.
We observed some discrepancies between mRNAs and
protein levels of the antioxidant genes with down-
regulated expression in the skin of JNK12/2 mice.
Sesn2 and HO-1 mRNA levels were significantly re-
duced in the skin of JNK12/2 mice, whereas we ob-
served only a marginal, statistically nonsignificant,
reduction in SOD2 mRNA levels. By contrast, SOD2
protein content was markedly reduced in the skin of
JNK12/2mice, whereas HO-1 and Sesn2 protein levels
were only marginally reduced, and these differences
did not reach statistical significance. Only catalase was
consistently reduced at the mRNA and protein levels,
although the observed differences in protein levels
were larger than for the differences in mRNA content.
The reasons for these apparent discrepancies are not
clear and may suggest posttranscriptional regulation
mechanisms. However, it should be considered that
these genes are rhythmically expressed in a circadian
fashion (42), and the observed differences in mRNA
and protein content may be caused by a lag time be-
tween the circadian changes in mRNA and protein
levels consequent to the relative abundance and sta-
bility of these proteins.

Overall, our data show that the effects of JNK1 ab-
lation on oxidative stress tolerance in obese mice are
specific for the skin and are less dramatic than those
reported in the Drosophila and Caenorhabditis elegans
models (23–26). Furthermore, we show that protection
against obesity, adipose tissue inflammation, steatosis,
and insulin resistance is largely sustained over a long
period in JNK12/2 and is paralleled by reduced oxi-
dative damage in white adipose tissue and liver. Our
results suggest that prolonged use of drugs targeting
JNK may predispose patients to skin oxidative dam-
age; however, this possible side effect can be easily
detected and may be largely preventable by minimiz-
ing skin exposure to oxidative stress sources such as
irritants and UV radiation. Indeed, JNK is a UV-
responsive kinase (43) that is activated in human skin
by UV light (44).

We conclude that JNK1 should be regarded as an ef-
fective and relatively safe target for long-term treatment of
obesity and insulin resistance and that compounds that
target JNK1 in brain and adipose tissue and do not accu-
mulate in the skin could be the more effective and safer
drug candidates.
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Figure S1. Glucose tolerance in WT and JNK1-/- mice on chronic high-fat diet.
Glucose tolerance tests (GTT) of the mice described in figure 1.
15 WT and 15 JNK1-/- mice were kept on HFD from weaning and GTT was 
performed via intraperitoneal injection of 1g for glucose per Kg of body weight at
the age of 17 weeks (A), and of 47 weeks (B).
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Figure S2. Expression of antioxidant genes in metabolically relevant 
tissues. The expression of the FOXOs target genes catalase and SOD2 
and the AP1 target gene Sesn2 was measured by qPCR in heart, kidney,
liver and adipose tissue.
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Figure S3. (A) Immunoblot analysis of AKT phosphorylation, and FoxO1 phosphorylation at its AKT phosphorylation sites of the skin 
samples described in figure 4C. (B) Quantification of the blots in A. (C) FoxO3a Immunoflurescence staining of the skin sections above.
(D) FoxO4 Immunoflurescence staining of the skin sections above.
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