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Abstract We study harmonic and quasi-harmonic discs in metric spaces admitting a uni-
formly local quadratic isoperimetric inequality for curves. The class of such metric spaces
includes compact Lipschitz manifolds, metric spaces with upper or lower curvature bounds
in the sense of Alexandrov, some sub-Riemannian manifolds, and many more. In this set-
ting, we prove local Hölder continuity and continuity up to the boundary of harmonic and
quasi-harmonic discs.
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1 Introduction and statement of main results

1.1 Background

Questions around the existence and regularity of energyminimizing harmonicmaps in various
settings have been the topic of research for many years. In his pioneering work [27], Morrey
proved regularity of energy minimizing harmonic maps from a two-dimensional surface to
a homogeneously regular Riemannian manifold. A regularity theory for higher-dimensional
energy minimizing harmonic maps was developed in [31]. More recently, harmonic maps
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with values in singular metric spaces have been introduced and studied for example in [10]
and [20], with a particular emphasis on metric spaces of non-positive curvature in the sense
of Alexandrov. In [20] it was proved that harmonic maps from Euclidean domains to a metric
space of non-positive curvature in the sense Alexandrov are locally Lipschitz continuous.
In [26] it was shown that harmonic maps from the 2-dimensional unit disc in R

2 to certain
compact Alexandrov spaces are locally Hölder continuous in the interior and continuous
up to the boundary. Finally, the paper [2] establishes local Lipschitz regularity for energy
minimizing harmonic maps from Euclidean domains to the Heisenberg groups endowed with
aCarnot–Carathéodory distance. The study of harmonicmaps between singularmetric spaces
has also recently gained momentum. For regularity results for energy minimizing harmonic
(real-valued) functions and, more generally, quasi-harmonic functions defined on a metric
space domain we refer to [18,21]. Regularity results for harmonic maps defined on certain
singular metric spaces and with values in metric spaces of non-positive curvature can be
found in [5,7,8,15,22,37].
In the present paper we consider harmonic and quasi-harmonic maps from two-

dimensional Euclidean domains to metric spaces. The aim of the paper is to prove Hölder
regularity for such maps under much weaker conditions on the target space than was consid-
ered in the papers cited above.

1.2 Main regularity results

There exist several equivalent definitions of Sobolev maps defined on a Euclidean domain
and with values in a complete metric space, see e.g. [3,11–14,20,28–30] and Sect. 2 below.
We briefly recall the definition proposed by Reshetnyak [28]. Let X be a complete metric

space, � ⊂ R
2 a bounded open set, and p > 1. A measurable and essentially separably

valued map u : � → X is said to belong to W 1,p(�, X) if there exists g ∈ L p(�) such that
for every 1-Lipschitz function f : X → R the composition f ◦u lies in the classical Sobolev
space W 1,p(�) and its weak gradient satisfies

|∇( f ◦ u)| ≤ g (1.1)

almost everywhere in �. The Reshetnyak p-energy of u ∈ W 1,p(�, X), denoted by E p
+(u),

is defined to be the infimum of the integral of g p over all g satisfying (1.1).
It is well-known that u ∈ W 1,p(�, X) in the sense above if and only if u has a repre-

sentative belonging to the Newton-Sobolev space N 1,p(�, X) in the sense of [12]. It can
be shown that the Reshetnyak energy E p

+(u) equals the p-th power of the L p-norm of the
minimal weak upper gradient of such a representative of u in the Newton-Sobolev space
N 1,p(�, X). We note that a different energy was introduced by Korevaar–Schoen in [20]
which generalizes the classical Dirichlet energy.
Finally, recall that every map u ∈ W 1,p(�, X) defined on a bounded Lipschitz domain

� ⊂ R
2 has a well-defined trace tr(u) which is in L p(∂�, X), see [20] and Sect. 2 below.

In this paper we consider harmonic maps and, more generally, quasi-harmonic maps
defined as follows.

Definition 1.1 Let � ⊂ R
2 be a bounded Lipschitz domain. A map u ∈ W 1,2(�, X) is

called M-quasi-harmonic if

E2+(u|�′) ≤ M · E2+(v)

for every Lipschitz domain �′ ⊂ � and every v ∈ W 1,2(�′, X) with tr(v) = tr(u|�′).
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Note that the class of quasi-harmonic maps remains unchanged if the Reshetnyak energy
is replaced for example by Korevaar–Schoen’s energy mentioned above or by any other
definition of energy in the sense of [24]. Harmonic maps are particular examples of 1-quasi-
harmonic maps. Here, a map u ∈ W 1,2(�, X) is said to be harmonic if u has minimal
E2+-energy among all maps in W 1,2(�, X) with the same trace as u. If X is a proper metric
space (closed, bounded subsets of X are compact) and v ∈ W 1,2(�, X) is such that its trace is
essentially contained in a bounded ball then there exists a harmonic map with the same trace
as that of v, see Theorem 2.3. The class of quasi-harmonic maps has several useful properties.
The restriction of an M-quasi-harmonic map u ∈ W 1,2(�, X) to a Lipschitz subdomain of
� is again M-quasi-harmonic. The class of quasi-harmonic maps is also invariant under
biLipschitz changes of the metric on X or on �.
The main class of target spaces considered in the present paper are spaces admitting

a uniformly local quadratic isoperimetric inequality for curves. In what follows, the open
Euclidean unit disc in R

2 will be denoted by D. We refer to Sect. 2 for the precise definition
of the parametrized (Hausdorff) area Area(u) of a Sobolev map u ∈ W 1,2(�, X) used below.

Definition 1.2 A complete metric space X is said to admit a uniformly local quadratic
isoperimetric inequality if there exist C, l0 > 0 such that every Lipschitz curve c : S1 → X
of length �(c) ≤ l0 is the trace of a map u ∈ W 1,2(D, X) with Area(u) ≤ C · �(c)2.

If the constants matter we will also say that X admits a (C, l0)-isoperimetric inequality.
Many classes ofmetric spaces admit a uniformly local quadratic isoperimetric inequality. This
includes homogeneously regular Riemannianmanifolds in the sense ofMorrey [27], compact
Lipschitz manifolds and, in particular, compact Finsler manifolds. It also includes complete
CAT(κ)-spaces for all κ ∈ R, compact Alexandrov spaces, and more generally complete
metric spaces all of whose balls up to a certain radius are Lipschitz contractible in the sense
of [35]. It furthermore includes certain sub-Riemannian manifolds such as the Heisenberg
groups H

n of topological dimension 2n + 1 ≥ 5, endowed with a Carnot–Carathéodory
metric. We refer to [23] for more examples.
We turn to the statements of our main regularity results.

Theorem 1.3 Let X be a proper metric space admitting a (C, l0)-isoperimetric inequality
and � ⊂ R

2 a bounded Lipschitz domain. If u ∈ W 1,2(�, X) is M-quasi-harmonic then
u has a locally α-Hölder continuous representative ū for some α depending only on C and
M. Moreover, if tr(u) has a continuous representative then ū extends continuously to the
boundary ∂�.

In particular, it follows from the theorem and [36] that the locally Hölder continuous
representative of a quasi-harmonic map satisfies Lusin’s property (N).
Our second result shows that in the same setting as above a quasi-harmonic map with

Lipschitz trace is globally Hölder continuous. For simplicity, we state our theorem for the
unit disc only.

Theorem 1.4 Let X be a proper metric space admitting a (C, l0)-isoperimetric inequality.
Let u ∈ W 1,2(D, X) be an M-quasi-harmonic map whose trace has a representative which
is Lipschitz continuous. Then u has a representative which is globally α-Hölder continuous
for some α depending only on C, M.

We note that Hölder continuity in Theorems 1.3 and 1.4 is the best one may expect, even
for harmonic maps, and cannot in general be improved to local Lipschitz continuity. This is
shown by simple examples of cones over small circles, see e.g. [26] or [23]. Theorems 1.3
and 1.4 (partly) generalize the regularity results obtained in [2,20,26,27,32].
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1.3 An energy filling inequality

The following theorem, which can be considered as the main theorem of the present paper,
is the main new ingredient in the proof of our regularity results above. As will be shown in
Sect. 4, our regularity results above follow from the following theorem together with classical
arguments going back to Morrey.

Theorem 1.5 Let X be a proper metric space admitting a (C, l0)-isoperimetric inequality.
Then for every Lipschitz curve c : S1 → X, parametrized proportional to arc length, with
�(c) ≤ l0 there exists u ∈ W 1,p(D, X) with tr(u) = c and such that

[
E p

+(u)
] 1

p ≤ C ′ · �(c) (1.2)

for some p > 2 and C ′ depending only on C.

While the geometric meaning of (1.2) might not be as clear as themeaning of the quadratic
isoperimetric inequality it has several advantages due to better stability properties. For exam-
ple, Theorem 1.5 can be used to prove stability of a uniformly local quadratic isoperimetric
inequality under pointed Gromov–Hausdorff convergence of metric spaces, see [25].
Note that the map u in Theorem 1.5 has several useful properties. Firstly, it provides

an isoperimetric filling of c in the sense that Area(u) ≤ C ′′ · �(c)2 for some constant C ′′
depending only on C . Secondly, u has a representative ū which is Hölder continuous on all
of D, that is,

d(ū(z), ū(z′)) ≤ L · ν · |z − z′|1− 2p
for all z, z′ ∈ D, where ν is the Lipschitz constant of c and L depends only on C , see
e.g. [23, Proposition 3.3]. We furthermore note that any complete metric space X in which
the conclusion of Theorem 1.5 holds admits a (C, l0)-isoperimetric inequality with C = C ′

2π .
Theorem 1.5 together with a simple reparametrization argument implies the following

energy filling inequality, which is prominently used in the proof of the regularity results
stated above, see Sect. 4. If X is a proper metric space admitting a (C, l0)-isoperimetric
inequality then there exists C ′ depending only on the isoperimetric constant C such that
every continuous c ∈ W 1,2(S1, X) with �(c) ≤ l0 is the trace of a map u ∈ W 1,2(D, X)

satisfying
E2+(u) ≤ C ′ · E2(c), (1.3)

where E2(c) denotes the energy of the curve c. The filling energy inequality (1.3) combined
with classical arguments due to Morrey yield Theorem 1.3 with Hölder exponent α = 1

2MC ′
and Theorem 1.4 with α = 1

λMC ′ , where λ is a universal constant. The constant C ′ in (1.3)
which we obtain, and thus also the Hölder exponents α, are far from optimal. Much more
refined methods than the one used in our proofs would be needed in order to obtain optimal
regularity results. In [23] and [24] we obtained optimal Hölder exponents for maps which are
parametrized quasi-conformally in the sense of [23] and minimize area rather than energy
among all maps with the same trace. Note that such maps u are quasi-harmonic since every
v ∈ W 1,2(�′) with tr(v) = tr(u|�′) satisfies

E2+(u|�′) ≤ Q2 · Area(u|�′) ≤ Q2 · Area(v) ≤ Q2 · E2+(v),

where Q is the quasi-conformality factor of u. Thus, our results here generalize qualitative
properties of quasi-conformal area minimizers to the class of quasi-harmonic maps.
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1.4 Outline of proof and questions

The proof of Theorem 1.5 relies on the existence results for solutions to Plateau’s problem
in the setting of proper metric spaces established in [23]. We briefly outline the proof and let
c be a Lipschitz curve as in the theorem. After possibly rescaling the metric on X we may
assume that c has length 2π . Consider the enlarged space Y = X × R

2 and the uniformly
biLipschitz curve ĉ(z) := (c(z), z) in Y . We now solve Plateau’s problem for the curve ĉ
using the results in [23] and obtain an area minimizing map v ∈ W 1,2(D, Y ) whose trace
is a reparametrization of ĉ and which is moreover

√
2-quasi-conformal in the sense of [23].

Since Y admits a uniformly local quadratic isoperimetric inequality (with some constant only
depending on C) it follows from the area minimizing property and the quasi-conformality
that v has E2+-energy bounded above by a constant multiple of �(ĉ)2. Moreover, v satisfies
a “global” weak reverse Hölder inequality and hence v ∈ W 1,p(�, Y ) for some p > 2 and

E p
+(v)

1
p ≤ C ′′E2+(v)

1
2 , see Theorem 3.1. Finally, the biLipschitz property of ĉ can be used

to find a Sobolev annulus with suitably bounded energy that reparametrizes tr(v) to ĉ, thus
yielding a Sobolev map with trace ĉ. Projecting this map to X yields the desired map u in
Theorem 1.5.
As mentioned above, the constant C ′ which we get in the theorem is far from optimal

and thus yields non-optimal Hölder exponents in the regularity results. A first step towards
obtaining more efficient bounds would be to understand the optimal isoperimetric constant
for products of metric spaces. We formulate this as a question, compare with Lemma 3.2.

Question 1.6 Let X be a proper geodesic metric space which is not a tree and admits a
quadratic isoperimetric inequality with constant C. Does the direct product X × R admit a
quadratic isoperimetric inequality with the same constant C?

We would also like to emphasize that properness of the underlying space is crucial in our
arguments but we do not know to which extent this is actually essential for the conclusions
of the theorems above.
The structure of the paper is as follows. In Sect. 2 we fix notation and recall some basic

definitions from the theory of Sobolev maps from a Euclidean domain to a complete metric
space, including the definition of parametrized Hausdorff area for a Sobolev disc. In Sect. 3
we first establish global higher regularity of quasi-conformal area minimizers whose trace
parametrizes a chord-arc curve, see Theorem3.1.We use this in order to prove ourmain result,
Theorem 1.5. Finally, Sect. 4 contains the proofs of our regularity results for quasi-harmonic
discs.

2 Preliminaries

2.1 Notation

The Euclidean norm of a vector v ∈ R
n will be denoted by |v|. The unit sphere in R

n with
respect to the Euclidean norm is denoted by Sn−1 and will usually be endowed with the
Euclidean metric. The open unit disc in Euclidean R

2 will be denoted by D. For r > 0 we
denote by γr : S1 → R

2 the curve

γr (z) = r · z.
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Let (X, d) be a metric space and x ∈ X . The open ball in X centered at x of radius r > 0
will be denoted by

B(x, r) := {x ′ ∈ X : d(x, x ′) < r}.
The length of a curve c : I → X from an interval I ⊂ R is defined by

�(c) := sup
{

m−1∑
k=0

d(c(tk), c(tk+1)) : t0 < t1 < · · · < tm and ti ∈ I

}
.

This definition readily extends to curves defined on S1. A map u : � → X , where � ⊂ R
n ,

is called (L , α)-Hölder continuous if

d(u(z), u(z′)) ≤ L · |z − z′|α (2.1)

for all z, z′ ∈ �. If (2.1) only holds locally around every point then u is called locally
(L , α)-Hölder continuous.
Integration on measurable subsets of R

2 will always be performed with respect to the
Lebesgue measure, unless otherwise stated. If f is an integrable function on R

2 and B ⊂ R
2

a measurable set of strictly positive Lebesgue measure |B| then∫
−

B
f (z) dz := 1

|B| ·
∫

B
f (z) dz

denotes the averaged integral. The Hausdorff n-measure on a metric space will be denoted
by Hn . The normalizing constant will be chosen so that Hn coincides with the Lebesgue
measure on Euclidean R

n .

2.2 Sobolev maps with values in metric spaces

There exist several equivalent definitions of Sobolev maps from a Euclidean domain with
values in a metric space, see e.g. [3,4,11–14,20,28–30]. We will use the following definition
due to Reshetnyak [28]. Let (X, d) be a complete metric space, � ⊂ R

n a bounded, open
set, and p > 1. We will only need the cases n = 1 and n = 2 in the present paper.
Definition 2.1 A measurable and essentially separably valued map u : � → X belongs to
the Sobolev space W 1,p(�, X) if the following properties hold:

(i) for every x ∈ X the function ux (z) := d(x, u(z)) belongs to the classical Sobolev space
W 1,p(�).

(ii) there exists g ∈ L p(�) such that for every x ∈ X we have |∇ux | ≤ g almost everywhere
on �.

Using a local biLipschitz homeomorphism from R to S1 one defines the space
W 1,p(S1, X). Similarly, one defines the space W 1,p(S1 × (0, 1), X).
Let u ∈ W 1,p(�, X). Then for almost every z ∈ � there exists a unique semi-norm on

R
n , denoted by apmd uz and called the approximate metric derivative of u, such that

ap lim
y→z

d(u(y), u(z)) − apmd uz(y − z)

|y − z| = 0,

see [16] and [23]. Here, ap lim denotes the approximate limit, see [6]. For Sobolev maps
defined on an interval or on S1 we will write |ċ|(s) or |c′|(s) instead of apmd cs(1).
The following notion of energy was introduced by Reshetnyak, see [28] and [23].
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Definition 2.2 The Reshetnyak p-energy E p
+(u) of a map u ∈ W 1,p(�, X) is defined by

E p
+(u) =

∫
�

I p
+(apmd uz) dz,

where, for a semi-norm s on R
n , we have set I p

+(s) := max{s(v)p : v ∈ Sn−1}.
It can be shown that the function

gu(z) := I1+(apmd uz)

is the minimal weak upper gradient (of a Newtonian representative) of u, see [12, Theorem
7.1.20]. It thus follows that E p

+(u) is the L p-norm to the power p of the minimal weak upper
gradient of u. For Sobolev maps c defined on an interval (a, b) the Reshetnyak p-energy is
simply given by ∫ b

a
|ċ|p(t) dt

and will be denoted by E p(c) instead of E p
+(c).

In [20], Korevaar–Schoen introduced a different energy which generalizes the classical
Dirichlet energy.We will not use the Korevaar–Schoen energy but mention that it agrees with
the Reshetnyak energy up to a non-constant bounded multiple.
We next recall the construction of the trace of a Sobolev map in [20]. Let � ⊂ R

n be a
bounded Lipschitz domain and u ∈ W 1,p(�, X). For every z ∈ ∂� there exist open sets
U ⊂ R

n and V ⊂ R
n−1 with z ∈ U and a biLipschitz homeomorphism ϕ : V ×(−1, 1) → U

such that ϕ(V × (−1, 0)) = U ∩ � and ϕ(V × {0}) = U ∩ ∂�. For almost every v ∈ V
the map t �→ u ◦ ϕ(v, t) is in W 1,p((−1, 0), X) and hence has an absolutely continuous
representative, denoted by ū(v, t). For Hn−1-almost every point z ∈ U ∩ ∂� the trace of u
at z is defined by

tr(u)(z) := lim
t→0−

ū(v, t),

where v ∈ V is such that ϕ(v, 0) = z. It was shown in [20, Lemma 1.12.1] that the definition
of tr(u) is independent of the choice of ϕ. Thus, covering ∂� by a finite number of images of
biLipschitz maps, one can define tr(u) almost everywhere on ∂�. By [20, Theorem 1.12.2],
the trace tr(u) belongs to the space L p(∂�, X) of measurable and essentially separably
valued maps from ∂� to X such that the composition with the distance function to any point
in X is in the classical space L p(∂�). We will need the following gluing construction given
in [20, Theorem 1.12.3]. Let � ⊂ R

n be a bounded Lipschitz domain and suppose � is the
disjoint union of two Lipschitz domains�1,�2 and the Lipschitz boundary S := ∂�1∩∂�2.
Let ui ∈ W 1,p(�i , X), i = 1, 2, be such that tr(u1) = tr(u2) on S. Then the map u given by
ui on �i for i = 1, 2 is in W 1,p(�, X) and its energy is given by

E p
+(u) = E p

+(u1) + E p
+(u2).

We have the following existence result for energy minimizing maps.

Theorem 2.3 Let X be a proper metric space and � ⊂ R
n a bounded Lipschitz domain. Let

p > 1 and v ∈ W 1,p(�, X). If there exist x0 ∈ X and R > 0 such that tr(v)(z) ∈ B(x0, R)

for almost every z ∈ ∂� then there exists u ∈ W 1,p(�, X) with

E p
+(u) = inf {E p

+(w) : w ∈ W 1,p(�, X), tr(w) = tr(v)
}

and such that tr(u) = tr(v).
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In particular, if n = p = 2 one obtains the existence of harmonic maps with prescribed
trace.

Proof Let (u j ) ⊂ W 1,p(�, X) be a minimizing sequence with respect to the Reshetnyak
p-energy with tr(u j ) = tr(v) for all j . By [23, Lemma 3.4] we have∫

�

d p(u j (z), x0) dz ≤ L
(
R p + E p

+(u j )
)

for every j and some L depending only on n, p, �, where d denotes the metric on X . By
Theorems 1.12.2 and 1.13 in [20] there exists a subsequence (u ji ) converging in L p(�, X)

to some u ∈ W 1,2(�, X) with tr(u) = tr(v). By the weak lower semi-continuity of E p
+, see

[28] or [23, Corollary 5.7], it follows that

E p
+(u) ≤ lim

i→∞ E p
+(u ji ).

Thus, u has minimal energy among all maps with the same trace as v. ��
We now specialize to the case n = 2. There exist several natural but different definitions of

area in the literature, see [23]. Throughout this article, we will only work with the Hausdorff
area defined as follows. Let � ⊂ R

2 be an open and bounded set in the plane.

Definition 2.4 The parametrized (Hausdorff) area of a map u ∈ W 1,2(�, X) is defined by

Area(u) =
∫

�

J(apmd uz) dz,

where the Jacobian J(s) of a semi-norm s on R
2 is the Hausdorff 2-measure on (R2, s) of

the unit square if s is a norm and zero otherwise.

If u is injective and satisfies Lusin’s property (N) then Area(u) = H2(u(�)) by the area
formula [16,19]. By [23, Lemma 7.2], we have

J(apmd uz) ≤ (gu(z))2

for almost every z ∈ �.
We will need the following infinitesimal notion of quasi-conformality from [23]. A semi-

norm s on R
2 is called Q-quasi-conformal if s(v) ≤ Q · s(w) for all v,w ∈ S1. A map

u ∈ W 1,2(�, X) is called Q-quasi-conformal if apmd uz is Q-quasi-conformal for almost
every z ∈ �. Note that this is a much weaker notion of quasi-conformality than the one used
in the field of analysis on metric spaces since u is not required to be a homeomorphism. If u
is Q-quasi-conformal then

Q−2 · (gu(z))2 ≤ J(apmd uz) (2.2)

for almost every z ∈ �, see [23, Lemma 7.2].
We will need the following simple energy estimate.

Lemma 2.5 Let p > 1 and let u ∈ W 1,p(D, X). Then for every s ∈ (0, 1) there exists
t ∈ (s, 1) such that u ◦ γt ∈ W 1,p(S1, X) with

E p(u ◦ γt ) ≤ 1

1− s
· E p

+(u),

where γt is the closed curve defined by γt (z) = t · z for all z ∈ S1.

8



Proof By [23, Proposition 4.10] and its proof, we have u ◦ γr ∈ W 1,p(S1, X) with

|(u ◦ γr )
′|(v) = apmd uγr (v)(γ

′
r (v))

for almost every r ∈ (0, 1) and v ∈ S1. In particular,

|(u ◦ γr )
′|p(v) ≤ r p · I p

+(apmd uγr (v))

for such r and v.
Integration in polar coordinates thus yields

E p
+(u) =

∫ 1

0

∫
S1

r · I p
+(apmd uγr (v)) dH1(v) dr ≥

∫ 1

0
r1−p · E p(u ◦ γr ) dr,

from which the claim follows. ��
2.3 Curves and reparametrizations

Let I denote the open unit interval in R or the unit circle S1 and let c ∈ W 1,p(I, X) for some
p > 1 and some complete metric space X . Then the continuous representative of c, denoted
by c again, is an absolutely continuous and thus rectifiable curve, which can be extended
continuously to Ī . Let c̄ be the constant speed parametrization of c, see e.g. [1, Proposition
2.5.9]. We will need the following elementary observation.

Lemma 2.6 There exists a homotopy ϕ : Ī × [0, 1] → X from c to c̄ relative to endpoints
which belongs to W 1,p(I × (0, 1), X) and satisfies Area(ϕ) = 0 and E p

+(ϕ) ≤ M · E p(c),
where M depends only on p.

If I = S1 then relative to endpoints should mean that ϕ(1, t) = c(1) for all t .

Proof Wemayassume I to be the unit interval, the case of the circle being almost identical.We
may furthermore assume that λ := �(c) > 0. The normalized length function � : [0, 1] → R

defined by

�(s) = λ−1 · �(c|[0,s])
satisfies c = c̄ ◦ �. Moreover, � ∈ W 1,p(I ) with �′(s) = λ−1 · |ċ|(s) for almost every
s ∈ [0, 1]. Define

ψ(s, t) = (1− t) · �(s) + t · s

for all s ∈ Ī and all t ∈ [0, 1]. Then ϕ := c̄ ◦ ψ is a homotopy from c to c̄ relative to
endpoints. Since ψ is in W 1,p it follows that ϕ ∈ W 1,p(I × (0, 1), X). Clearly, ϕ has zero
area and a direct calculation shows that

E p
+(ϕ) ≤ Mλp ·

∫ 1

0
|�′(s)|p ds = M · E p(c)

for some M depending only on p. ��

3 Isoperimetric inequality implies energy filling inequality

The main aim of this section is to prove Theorem 1.5 stated in the introduction. We will first
prove a global higher integrability result for quasi-conformal area minimizers with chord-arc
boundary.
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3.1 Global higher integrability

Let (X, d) be a complete metric space and � ⊂ X a Jordan curve. We denote by�(�, X) the
family of Sobolevmaps u ∈ W 1,2(D, X)whose trace tr(u) has a representativewhichweakly
monotonically parametrizes �. This means that a representative of tr(u) is the uniform limit
of homeomorphisms from S1 to �. Recall that a Jordan curve � ⊂ X is called λ-chord-arc
curve if for any x, y ∈ � the length of the shorter of the two segments in � connecting x and
y is bounded from above by λ · d(x, y).

Theorem 3.1 Let X be a complete metric space admitting a (C, l0)-isoperimetric inequality,
and let � ⊂ X be a λ-chord-arc curve. If u ∈ �(�, X) is Q-quasi-conformal and satisfies

Area(u) = inf{Area(v) : v ∈ �(�, X)}
then u ∈ W 1,p(D, X) for some p > 2 depending only on C, Q, λ.

It follows, in particular, that u has a representative which is globally α-Hölder continuous
with α = 1− 2

p , see [23, Proposition 3.3]. The proof of the theorem will furthermore show

that if Area(u) ≤ Cl20 then, after possibly precomposing u with a Moebius transformation,
we have

E p
+(u) ≤ L · [

E2+(u)
] p
2 (3.1)

for some constant L depending only on C , Q, λ.
The proof of Theorem 3.1 can be obtained by combining the arguments in the proofs of

Theorems 8.2 and 9.3 in [23]. For the sake of completeness we sketch the argument.

Proof By [23, Theorem 1.4] we may assume that u is continuous on all of D. Fix three
points p1, p2, p3 ∈ S1 at equal distance from each other and let q1, q2, q3 ∈ � be three
points such that the three segments into which they divide� have equal length. After possibly
precomposing u with a Moebius transformation we may assume that u satisfies the 3-point
condition u(pi ) = qi for i = 1, 2, 3.
Throughout the proof, we will denote by Ci , i = 1, 2, . . . , constants that only depend

on C , Q, and λ. Let 0 < r0 ≤ 1
4 be such that Area(u|D∩B(z,2r0)) ≤ Cl20 for every z ∈ D.

Define a non-negative function f ∈ L2(R2) by f (z) = I1+(apmd uz) if z ∈ D and f (z) = 0
otherwise. We first show that for every square W ⊂ R

2 of side length at most 2r0 the weak
reverse Hölder inequality

( ∫
−

W
f 2(z) dz

) 1
2 ≤ C1 ·

∫
−
2W

f (z) dz (3.2)

holds, where 2W denotes the square with the same center asW but twice the side length. Let
W ⊂ R

2 be a square of side length 2r ≤ 2r0 centered at some point z ∈ R
2. We may assume

that W ∩ D �= ∅. The proof of [23, Theorem 9.3] shows that
Area(u|D∩B(z,s)) ≤ C(1+ 2λ)2 · �(u|D∩∂ B(z,s))

2

for almost every s ∈ (
√
2r, 2r). Since

�(u|D∩∂ B(z,s)) ≤
∫

D∩∂ B(z,s)
f (z) dH1(z)

10



for almost every s, see e.g. the proof of [23, Proposition 8.4], we obtain together with (2.2)
that (∫

W
f 2(z) dz

) 1
2 ≤ Q · Area(u|D∩W )

1
2

≤ Q
√

C(1+ 2λ) ·
∫
−
2r

√
2r

∫
D∩∂ B(z,s)

f (z) dH1(z) ds

≤ Q
√

C(1+ 2λ)

(2− √
2)r

·
∫
2W

f (z) dz.

This implies (3.2). By the generalized Gehring lemma, see e.g. [33, p. 409] or [17, Theorem
1.5], there thus exists p > 2 depending only on C1, and thus only on C , Q, λ, such that( ∫

−
W

f p(z) dz

) 1
p ≤ C2 ·

( ∫
−
2W

f 2(z) dz

) 1
2

(3.3)

for every square W ⊂ R
2 of side length at most 2r0. Covering D by almost disjoint squares

of side length 2r0 and using (3.3) one obtains∫
D

f p(z) dz ≤ C3r
2−p
0 ·

(∫
D

f 2(z) dz

) p
2

and hence f ∈ L p(R2). It thus follows that u ∈ W 1,p(D, X) with

E p
+(u) ≤ C3r

2−p
0 · [

E2+(u)
] p
2 .

This completes the proof. ��
3.2 Proof of Theorem 1.5

The following simple construction, which produces a new Sobolev disc from an old one
by attaching a Sobolev annulus, will be employed several times in the proofs below. Let
v ∈ W 1,p(D, X) be a Sobolev disc for some p ≥ 2. Let � ⊂ R

2 be an annulus of the form
� = {1 < |z| < t} for some t ∈ (1, 2], and letw ∈ W 1,p(�, X). If tr(v) = tr(w)|S1 then the
gluing construction mentioned in Sect. 2.2 lets us glue v and w along S1 in order to obtain a
new Sobolev map defined on the disc of radius t . Thus, after rescaling the domain, we obtain
a map v′ ∈ W 1,p(D, X) with tr(v′) = tr(w) ◦ γt and such that

Area(v′) = Area(v) + Area(w)

and
E p

+(v′) ≤ L · E p
+(v) + L · E p

+(w) (3.4)

for some L depending only on p. The map v′ is said to be obtained by attaching the Sobolev
annulus w to the Sobolev disc v.
By possibly precomposing with a biLipschitz homeomorphism one can also attach a

Sobolev annulus defined on any set biLipschitz homeomorphic to � such as for example
S1 × (0, 1). In this case the constant L in (3.4) also depends on the biLipschitz constant.

Lemma 3.2 If a complete metric space X admits a (C, l0)-isoperimetric inequality then the
product space Y = X × R

2 admits a (C ′, l0)-isoperimetric inequality with C ′ = C + M for
some universal constant M.
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The proof will in fact show that every Lipschitz curve c in Y with the property that
its projection to X has length bounded by l0 is the trace of some u ∈ W 1,2(D, Y ) with
Area(u) ≤ C ′ · �(c)2.

Proof Let c = (c1, c2) : S1 → Y be a Lipschitz curve such that the component c1 has length
at most l0. In view of Lemma 2.6 and the gluing construction above, we may assume that c
is parametrized proportional to arc length.
Define a curve ĉ in Y by ĉ(z) = (c1(z), c2(1)). Since ĉ has length �(ĉ) = �(c1) ≤ l0 and

since its image is contained in a subspace of Y isometric to X there exists a Sobolev disc
v ∈ W 1,2(D, Y ) whose trace equals ĉ and whose area satisfies

Area(v) ≤ C · �(c1)
2 ≤ C · �(c)2.

We next define a homotopy w : S1 × [0, 1] → Y from c to ĉ by

w(z, t) = (c1(z), tc2(1) + (1− t)c2(z)).

Since c is parametrized proportional to arc length it follows thatw is M1 · �(c)-Lipschitz and
thus has Area(w) ≤ M2 · �(c)2 for some universal constants M1 and M2. We attach w to
v along the curve ĉ in order to obtain a Sobolev disc u ∈ W 1,2(D, Y ) whose trace is c and
whose area is

Area(u) = Area(v) + Area(w) ≤ (C + M2) · �(c)2.

This completes the proof. ��
We finally turn to the proof of Theorem 1.5. Let c : S1 → X be a Lipschitz curve of

length �(c) ≤ l0 which is parametrized proportional to arc length. Since the conclusions of
the theorem are invariant under rescaling of the metric we may assume that �(c) = 2π and
2π ≤ l0.
Consider the product space Y = X × R

2 and let ĉ : S1 → Y be the curve given by
ĉ(z) := (c(z), z) for all z ∈ S1. Since the natural projection from Y to X is 1-Lipschitz
it suffices to show that there exists a map u ∈ W 1,p(D, Y ) with tr(u) = ĉ and such that
E p

+(u) ≤ C ′ for some p > 2 and C ′ only depending on the isoperimetric constant C . We
will construct such a map u in several steps. We will first exhibit a Sobolev disc v1 whose
trace is only a weakly monotone reparametrization of ĉ. We will then attach suitable Sobolev
annuli to v1 in order to obtain a map whose trace actually equals ĉ.
In what follows, C1, C2, . . . will denote constants depending only on C . We construct the

Sobolev disc v1 as follows. First note that ĉ is λ-biLipschitz for some universal λ and hence
its image � is a chord-arc curve in Y with universal chord-arc parameter. Lemma 3.2 and the
subsequent remark imply that �(�, Y ) is not empty and that

m := inf{Area(v) : v ∈ �(�, Y )} ≤ C1 · �(ĉ)2 ≤ C2.

By [23, Theorem 1.1] there thus exists v1 ∈ �(�, Y ) which is
√
2-quasi-conformal and

satisfies Area(v1) = m ≤ C2. It thus follows from Theorem 3.1 that there exist p > 2
and L > 0 depending only on C such that v1 ∈ W 1,p(D, Y ) and such that, after possibly
precomposing v1 with a Möbius transformation, we have

E p
+(v1) ≤ L · [

E2+(v1)
] p
2 ≤ L · [2 Area(v1)]

p
2 ≤ C3.

In particular, v1 (has a representative which) is (C4, α)-Hölder on all of D with α = 1− 2
p ,

see e.g. [23, Proposition 3.3]. This completes the construction of the Sobolev disc v1 whose
trace is a weakly monotone parametrization of ĉ.
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Wewill next attach a Sobolev annulusw1 to v1 in order to obtain a Sobolev disc v2 whose
trace is a p-Sobolev curve with image in ĉ. This annulus will be obtained by restricting v1 to
a suitably chosen, small annulus {t < |z| < 1} and then mapping it via a Lipschitz projection
onto the curve ĉ. For this, observe first that � is an absolute Lipschitz neighborhood retract
since ĉ isλ-biLipschitz. In particular, there exists anM-Lipschitz retractionη : Nε(�) → � of
the closed ε-neighborhood Nε(�) of� inY to� for some universal constants ε, M > 0. Since
v1 is (C4, α)-Hölder there exists s ∈ (0, 1) depending only onC such that v1(z) ∈ Nε(�) for
every z ∈ Dwith |z| ≥ s. ByLemma2.5 there exists t ∈ (s, 1) such thatv1◦γt ∈ W 1,p(S1, Y )

and

E p(v1 ◦ γt ) ≤ 1

1− s
· E p

+(v1) ≤ C5.

Let w1 be the Sobolev annulus given by composing the restriction of v1 to the annulus
{t < |z| < 1}with the map η. Attachingw1 to v1 along the outer boundary S1 of the annulus
we obtain a map v2 ∈ W 1,p(D, Y ) whose energy E p

+(v2) is bounded by some constant C6
and whose trace equals c0 := η ◦ v1 ◦ γt . Notice that E p(c0) ≤ M pC5 ≤ C7.
We finally attach a Sobolev annulus ϕ to v2 in order to obtain a map v3 with trace ĉ as

follows. We first observe that c0 is of the form c0 = ĉ ◦ � for some map � : S1 → S1 which
is homotopic to the identity. We can now define a ‘linear’ homotopy ϕ from c0 to ĉ with

E p
+(ϕ) ≤ C8 · E p(c0) ≤ C9

as in the proof of Lemma 2.6. Attaching the annulus ϕ to the map v2 along the curve c0 we
finally obtain a map v3 ∈ W 1,p(D, Y ) whose trace equals ĉ and whose p-energy is bounded
by some constant C10. This completes the proof of Theorem 1.5.
The last part of the proof of Theorem 1.5 shows the following:

Corollary 3.3 Let Y be a complete metric space, � ⊂ Y a chord-arc curve, and u ∈
�(�, Y ) ∩ C0(D, Y ). Then there exists u0 ∈ �(�, Y ) such that tr(u0) parametrizes �

proportionally to arc length and Area(u0) = Area(u).

Proof The Sobolev annuliw1 and ϕ constructed in the proof have zero area. Thus, attaching
the two annuli to u yields a map u0 with the desired properties. ��
The proof of Theorem 1.5 together with Lemma 2.6 moreover yields the following

strengthening of the theorem. The filling area of a continuous curve c : S1 → X is defined
by

Fillarea(c) := inf{Area(v) : v ∈ W 1,2(D, X), tr(v) = c}.
We then have:

Theorem 3.4 Let X be a proper metric space admitting a (C, l0)-isoperimetric inequality.
Then for every ε > 0 there exist p > 2 and C ′ only depending on C, ε with the following
property. Every continuous curve c ∈ W 1,p(S1, X) with �(c) ≤ l0 is the trace of some
u ∈ W 1,p(D, X) with

Area(u) ≤ Fillarea(c) + ε · �(c)2 ≤ (C + ε) · �(c)2

and E p
+(u) ≤ C ′ · E p(c).

Proof By Lemma 2.6, one may assume that c is parametrized proportional to arc length.
After rescaling the metric, we may furthermore assume that c has length �(c) = 2π . In order
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to obtain the better area bound one considers, for ε > 0 fixed, the curve ĉ(z) := (c(z), ε · z)
instead of the curve ĉ defined in the proof of Theorem 1.5. The image � of ĉ is a chord-arc
curve in Y with chord-arc parameter depending on ε. If the map v in the proof of Lemma 3.2
is chosen such that it has almost minimal area then the Sobolev disc constructed in the proof
yields a filling of ĉ whose area is bounded by Fillarea(c) + Mε for some universal constant
M . Note that Fillarea(c) ≤ C · �(c)2 by the quadratic isoperimetric inequality. Thus, the
quasi-conformal area minimizer v1 ∈ �(�, Y ) in the proof of Theorem 1.5 has the same
area bound. The rest of the proof is identical to that of Theorem 1.5. Since the Sobolev
annuli w1 and ϕ in the proof have zero area the filling of c has area bounded from above by
Fillarea(c) + Mε ≤ C · �(c)2 + Mε. ��

4 Regularity of quasi-harmonic maps

In this sectionwe prove themain regularity results of the present paper stated in Theorems 1.3
and 1.4. As already mentioned in the introduction, these results follow from Theorem 1.5
together with classical arguments going back toMorrey, which we will briefly explain below.
The main implication of Theorem 1.5 which we will need is the following energy filling
inequality.

4.1 Energy filling inequality

Let X be a proper metric space admitting a (C, l0)-isoperimetric inequality. Then Theo-
rem 1.5, Lemma 2.6, and the gluing construction at the beginning of Sect. 3.2 imply that X
admits a uniformly local energy filling inequality in the following sense. There existsC ′ > 1

2
depending only on C such that every continuous c ∈ W 1,2(S1, X) with �(c) ≤ l0 is the trace
of a map u ∈ W 1,2(D, X) satisfying

E2+(u) ≤ C ′ · E2(c). (4.1)

We will say that X admits a (C ′, l0)-energy filling inequality. Note that conversely, if X is a
complete metric space admitting a (C ′, l0)-energy filling inequality in the sense above then
X admits a (C, l0)-isoperimetric inequality with C = C ′

2π .

4.2 Regularity in spaces with energy filling inequality

Theorems 1.3 and 1.4 are direct consequences of the statement in Sect. 4.1 and the following
regularity results.

Proposition 4.1 Let X be a complete metric space admitting a (C ′, l0)-energy filling inequal-
ity, and let � ⊂ R

2 be a bounded Lipschitz domain. If u ∈ W 1,2(�, X) is M-quasi-harmonic
then u has a continuous representative which is locally α-Hölder continuous on � with
α = 1

2MC ′ .

The proof of the proposition relies on the following version for metric spaces of Morrey’s
growth theorem. Let r0 > 0 be fixed. For z ∈ � set

�(z) := min{r0, dist(z, ∂�)}. (4.2)

Then we have:
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Lemma 4.2 Let X be a complete metric space, K ≥ 0, and α ∈ (0, 1). Suppose u ∈
W 1,2(�, X) satisfies

E2+(u|B(z,r)) ≤ K · �(z)−2α · r2α (4.3)

for all z ∈ � and r ∈ (0, �(z)). Then u is locally α-Hölder continuous on �.

More precisely, the proof will show that u has a continuous representative which is (K ′, α)-
Hölder continuous on B(z, �(z)/2) for every z ∈ �, where K ′ = L

√
K · �(z)−α for some

L only depending on α.

Proof Let x ∈ X . Then the composition ux := dx ◦ u of u with the distance function dx to
x in X is in W 1,2(�) with

|∇ux (w)| ≤ I1+(apmd uw)

for almost every w ∈ �. Thus, Hölder’s inequality and (4.3) yield∫
B(z,r)

|∇ux (w)| dw ≤ √
πr · (

E2+(u|B(z,r))
) 1
2 ≤ √

Kπ · �(z)−α · r1+α

for every z ∈ � and every r ∈ (0, �(z)). This together with Morrey’s theorem, see e.g. [9,
Theorem 7.19], implies that ux has a continuous representative which is (K ′, α)-Hölder
continuous on B(z, �(z)/2) for each z ∈ �, where K ′ = L

√
K · �(z)−α for some L only

depending on α.
Using the above for a dense sequence of x in the essential image of u one easily obtains that

also u has a continuous representative which is (K ′, α)-Hölder continuous on B(z, �(z)/2)
for each z ∈ �. ��
Proof of Proposition 4.1 Let r0 > 0 be such that E2+(u|�∩B(z,r0)) ≤ A for every z ∈ �,
where A = (2π)−1MC ′l20 . Let � be defined as in (4.2) and set α = 1

2MC ′ . We will show that

E2+(u|B(z,r)) ≤ E2+(u) · �(z)−2α · r2α (4.4)

for all z ∈ � and r ∈ (0, �(z)). The proposition will follow from this and Lemma 4.2.
Let z ∈ � and set r1 := �(z). For r > 0 let γz,r : S1 → R

2 be the curve γz,r (v) := z +rv.
As in the proof of Lemma 2.5 we have that u ◦ γz,r ∈ W 1,2(S1, X) and

|(u ◦ γz,r )
′|2(v) ≤ r2 · I2+(apmd uγz,r (v)) (4.5)

for almost every r ∈ (0, r1) and v ∈ S1. We claim that for each such r we have

E2+(u|B(z,r)) ≤ MC ′ · E2(u ◦ γz,r ). (4.6)

Indeed, if the length of the absolutely continuous representative of u ◦ γz,r is smaller than l0
then (4.6) follows from the quasi-harmonicity of u and (4.1). If this length is larger than l0
then (4.6) is a consequence of Hölder’s inequality and the bound E2+(u|B(z,r1)) ≤ A. This
proves (4.6).
Now, by (4.5) and the change of variable formula, we have

E2(u ◦ γz,r ) ≤ r ·
∫

∂ B(z,r)

I2+(apmd uw) dH1(w) = r · d

dr
E2+(u|B(z,r))

for almost every r ∈ (0, r1) and thus

E2+(u|B(z,r)) ≤ MC ′ · r · d

dr
E2+(u|B(z,r)).

From this, (4.4) follows upon integration. ��
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Remark 4.3 The proof of Proposition 4.1 does not use the full strength of the definition of
quasi-harmonicity. Indeed, one only needs the quasi-harmonicity condition on balls which
are compactly contained in �. The proof in particular shows that if E2+(u) ≤ A, where A is
as in the proof, then for every z ∈ � the continuous representative ū of u is (K ′, α)-Hölder

continuous on B(z, �/2), where � is the distance of z to ∂� and K ′ = L · E2+(u)
1
2 · �−α for

some L ≥ 1 only depending on α.

The second part of Theorem 1.3 follows from Sect. 4.1 and the following proposition.

Proposition 4.4 Let X be a complete metric space admitting a uniformly local energy filling
inequality, and let � ⊂ R

2 be a bounded Lipschitz domain. If u ∈ W 1,2(�, X) ∩ C0(�, X)

is quasi-harmonic and tr(u) has a continuous representative then u extends continuously to
∂�.

We sketch the proof of the proposition, which is the same as that of [23, Theorem 9.1]
and relies on the following lemma appearing in [23, Lemma 9.2].

Lemma 4.5 Let (X, d) be a complete metric space and v ∈ W 1,2(D, X) ∩ C0(D, X). If v

satisfies d(tr(v)(z), v(0)) ≥ ε > 0 for almost every z ∈ S1 and d(v(z), v(0)) < ε
2 for all

z ∈ D with |z| < 1
2 then E2+(v|v−1(B(v(0),ε))) ≥ Fε2 for some universal constant F ∈ (0, 1).

Proof of Proposition 4.4 Since quasi-harmonicity is preserved under passing to Lipschitz
subdomains and under precomposing with a biLipschitz map we may assume that � = D.
Let C ′, l0, M be such that X admits a (C ′, l0)-energy filling inequality and u is M-quasi-
harmonic. Set α = 1

2MC ′ and let A and L ≥ 1 be as in Remark 4.3. Finally, let F ∈ (0, 1) be
the constant from Lemma 4.5.
Let ū : D → X be the map which coincides with u on D and with the continuous

representative of tr(u) on S1.Wemust show that ū is continuous. For this it is enough to prove
that ū is continuous at each z ∈ S1 since ū is continuous on D. Fix z ∈ S1 and let 0 < ε < F

2L .
By the continuity of the restriction ū|S1 and the Courant-Lebesgue lemma there exists r > 0
such that the restriction of ū to the boundary of �′ := D ∩ B(z, r) is continuous and has
image contained in B(ū(z), ε). See the proof of [23, Theorem 9.1] for details. Moreover, this
r can be chosen arbitrarily small and we may therefore assume that E2+(u|�′) < min{A, ε4}.
We will show that d(ū(z), u(x)) < 2ε for every x ∈ �′, thus establishing continuity of ū at
z. Fix x ∈ �′ and let ϕ : D → �′ be a conformal diffeomorphism which maps 0 to x . We
want to apply Lemma 4.5 to the map v := u ◦ ϕ. Observe first that v ∈ W 1,2(D, X) with
E2+(v) = E2+(u|�′) and tr(v) = ū|∂�′ ◦ ϕ|S1 . Moreover, since u is M-quasi-harmonic and ϕ

is a conformal diffeomorphism it follows that v satisfies the M-quasi-harmonicity condition
for every Lipschitz domain compactly contained in D. Thus, v is (K ′, α)-Hölder continuous
on B(0, 12 ) with K ′ ≤ L · ε2, by Remark 4.3. In particular,

d(v(z′), v(0)) ≤ L · ε2 · |z′|α <
ε

2

for every z′ with |z′| < 1
2 . Moreover, the image of tr(v) is the same as that of ū|∂�′ and

hence contained in B(ū(z), ε). Thus, we must have d(v(0), ū(z)) < 2ε since otherwise
d(tr(v)(z′), v(0)) > ε for every z′ ∈ S1 and Lemma 4.5 would then give

Fε2 ≤ E2+(v) < ε4 < Fε2,

a contradiction. This shows that d(u(x), ū(z)) < 2ε and thus the proof is complete. ��
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We finally prove Theorem 1.4. This is a consequence of the statement in Sect. 4.1 together
with Proposition 4.4 and the following:

Proposition 4.6 Let X be a complete metric space admitting a (C ′, l0)-energy filling inequal-
ity. Let u ∈ W 1,2(D, X) ∩ C0(D, X) be an M-quasi-harmonic map. If u|S1 is Lipschitz then
u is globally α-Hölder continuous with α = 1

λC ′ M , where λ is a universal constant.

We first recall the following global analog of Morrey’s theorem, which can be obtained
from the corresponding classical result as in Lemma 4.2. Let r0 > 0 and suppose u ∈
W 1,2(D, X) satisfies

E2+(u|D∩B(z,r)) ≤ K · r2α

for every z ∈ D and every r ∈ (0, r0). Then u has a globally α-Hölder continuous represen-
tative. We will furthermore need the following simple observation.

Lemma 4.7 Let β ∈ (0, 2) and A ≥ 0. Let f : [0, r0] → [0,∞) be a continuous and
increasing function such that

f (r) ≤ 1
β

· r · f ′(r) + Ar2

for almost every r ∈ [0, r0]. Then

f (r) ≤
(

f (r0) · r−β
0 + Ā · r2−β

0

)
· rβ

for every r ∈ [0, r0], where Ā = Aβ
2−β

.

Proof The continuous and increasing function given by F(r) := f (r) + Ār2 satisfies the
differential inequality

F(r) ≤ 1
β

· r · f ′(r) + Ar2 + Ār2 = 1
β

· r · F ′(r)

for almost every r ∈ [0, r0]. Upon integration, we obtain
F(r) ≤ F(r0) · r−β

0 · rβ

for every r ∈ [0, r0], from which the result follows. ��
Proof of Proposition 4.6 Let 0 < r0 < 1 be such that for every z ∈ D we have

E2+(u|D∩B(z,r0)) ≤ (2π)−1 · MC ′l20 .

Fix z ∈ D. Define a continuous and increasing function by f (r) := E2+(u|D∩B(z,r)). In view
of Lemma 4.7 and the global analog ofMorrey’s theoremmentioned above it suffices to show
that

f (r) ≤ λC ′M · r · f ′(r) + Ar2 (4.7)

for almost every r ∈ (0, r0), where λ ≥ 1 is a universal constant and where A ≥ 0 depends
on C ′, M , and on the Lipschitz constant of u|S1 .
By the proof of Proposition 4.1 we have (4.7) with λ = 1 and A = 0 for almost every

r ∈ (0, r0) such that B(z, r) ⊂ D. Let now r ∈ (0, r0) be such that B(z, r) �⊂ D. We denote
by γr the curve γr (v) := z + rv for v ∈ S1. Set �1 := γ −1

r (D) and let ϕ be a biLipschitz
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homeomorphism from B(z, r) to D ∩ B(z, r) with a universal biLipschitz constant η and
such that ϕ is the identity on �1. Such a map ϕ exists by [34]. Firstly, we claim

f (r) ≤ η4C ′M · E2(u ◦ ϕ ◦ γr ). (4.8)

Indeed, if �(u ◦ ϕ ◦ γr ) ≤ l0 then this is a consequence of the energy filling inequality and
the quasi-harmonicity of u. If �(u ◦ ϕ ◦ γr ) > l0 then this follows from a direct calculation
using the choice of r0. Secondly, we use the Lipschitz condition on u|S1 to bound the energy
E2(u ◦ϕ ◦ γr ) from above. Indeed, after possibly neglecting a zero measure set of r , we may
assume that

E2(u ◦ ϕ ◦ (γr )|�1) ≤ r ·
∫

D∩∂ B(z,r)

I2+(apmd uw) dH1(w) = r · f ′(r),

see the proof of Proposition 4.1. Moreover, the fact that u|S1 is ν-Lipschitz for some ν ≥ 0
implies

E2(u ◦ ϕ ◦ (γr )|S1\�1) ≤ 2πη2ν2r2

and hence
E2(u ◦ ϕ ◦ γr ) ≤ r · f ′(r) + A′r2 (4.9)

with A′ = 2πη2ν2. Combining (4.8) with (4.9) yields (4.7) with λ = η4 and A = η4C ′M A′.
This completes the proof. ��
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