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ABSTRACT: We have studied the long-term dynamics of shear-induced
breakage of individual colloidal clusters, covering a wide range of fractal
dimensions, using Stokesian dynamics. We found that the time evolution of the
normalized average size of the fragments generated by the breakup process
could be scaled using a unique dimensionless time defined by multiplying the
real time with the cluster breakage rate constant (τ = t·kB). Clusters with
different masses but the same fractal dimension exhibited almost identical
breakage dynamics when exposed to equal overall hydrodynamic forces
(ηγRg,0

2 ). The steady-state values of the average size, mass, and standard
deviation of fragment mass distribution showed a universal scaling depending
only on the overall hydrodynamic force, irrespective of the initial cluster
properties. We also identified two asymptotic regimes for the evolution of the
fractal dimension, ⟨df⟩, of fragments: open clusters (df ≤ 2.1) produced dense
fragments with a limiting ⟨df⟩ ≈ 2.4 ± 0.1; conversely, dense clusters (df ≥ 2.5)
produced fragments with ⟨df⟩ ≈ 2.5 ± 0.1.

I. INTRODUCTION

Colloidal suspensions are one of the most commonly
investigated model systems in soft-matter physics. They are
also relevant in numerous processes of practical interest, such as
in the production and/or processing of polymers and
agricultural and food products, in wastewater treatment, and
so forth. Whenever the colloidal stability of particles is
compromised and attractive interactions dominate, particles
tend to aggregate into clusters, which usually have a very
irregular geometry and are described by means of fractal
geometry concepts.1−3 When colloidal aggregates are exposed
to high shear rates, and therefore to strong hydrodynamic
forces, their structure is deformed and collisions are enhanced,
leading to both enhanced aggregation and breakage of clusters.
Although shear-induced aggregation has been thoroughly
studied in the literature through both experiments and
simulations,4−11 there is still a lack of understanding of cluster
breakage, in spite of the experimental12−23 and theoretical
works15,24−27 published. This is primarily due to the intricate
entanglement of various physical phenomena occurring
simultaneously.20

Quantifying the aggregate breakage process through
experimental approaches has always been challenging because
of the need for very fast and high-resolution measurement
techniques to track the three-dimensional position of individual
particles in the clusters.28−30 For these reasons, scientists have
used simulations to investigate the breakage of colloidal
clusters. The most common techniques applied for this
purpose are Langevin-type simulations, which follow the
trajectory of individual particles in the clusters subject to
known interactions. Typical interparticle interactions include
standard colloidal interactions, such as attractive van der Waals

forces and repulsive electrostatic or steric interactions, and in
some instances, the discrete element method (DEM)24,31,32 has
been used to describe the contact forces of particles, the
presence of which has been experimentally verified.33 Where
most of the simulation techniques differ substantially is in the
description of hydrodynamic interactions among particles,
which play a crucial role in properly describing the interactions
of particles with the fluid. Several models have been used to
account for hydrodynamic interactions, including lattice-
Boltzmann simulation,34 finite element method,31 free-draining
approximation,35,36 and Stokesian dynamics (SD).37−42 The
free-draining approximation is the simplest and hence the most
commonly used model in colloidal science because it
completely neglects interparticle hydrodynamic interactions,
thus substantially reducing the computational cost of the
simulations. However, several publications have demonstrated
the importance of including hydrodynamic interactions to
properly describe the dynamics of hard spheres43−45 and of
interacting particles,46,47 as well as the formation of colloidal
gels.48

In recent publications,49,50 we have investigated the breakage
rate of colloidal clusters, covering a broad range of masses and
fractal dimensions. To focus only on the breakage rate, we
performed simulations only up to the very first binary breakage
event experienced by a cluster. In this work, we have used the
same modeling approach, based on SD, to investigate the
breakup of colloidal aggregates under simple shear flow, when
particles are subject to van der Waals attractive and Born short-
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range repulsive interactions and contact forces described
through DEM.51 The objective here is to monitor the fate of
an individual cluster for a sufficiently long time, until no further
breakage events or structural modifications are observed in the
overall population of produced fragments. A variety of new
results have been obtained, which represent a substantial
advancement in the field.

II. MODEL FORMULATION

The dynamic behavior of clusters is a complicated function of
their structure and the fluid flow profile. The structure of a
cluster is defined in terms of two quantities: coordination
number and fractal dimension, representing respectively, the
average number of nearest-neighbor particles of each particle in
the cluster and the cluster density. These quantities affect both
interparticle and hydrodynamic interactions. The first ones are
short-ranged and are governed by the coordination number.
The second ones, being much more long-ranged, are
determined by the overall cluster morphology and structure
and by its orientation relative to the flow. To properly describe
a cluster behavior when exposed to shear forces, both
interactions need to be accurately accounted for.
In this work, we have used the identical model methodology

as described in our previous work,49,50 which is briefly
described in the following.
II.A. Hydrodynamic Contribution. For a multiparticle

system, consisting of uniform-sized spherical particles in
laminar flow, Stokes’ law for a single particle has been
successfully adapted by Brady and Bossis39 into the so-called
SD approach. In this method, the multipoles of forces acting on
each particle in the system are related to the velocities of each
particle. The force−torque−stresslet version of the SD model
in the mobility form can be written as52
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Thus, the velocities (translational, U̅n, and angular, Ω̅n) of each
particle are linearly proportional to the forces (F̅n), torques
(T̅n) acting on each particle, and the rate of strain (E̿∞),
translational (U̅∞), and angular velocities (Ω̅∞) of the applied
flow evaluated at the center of the particle. The proportionality
term is a complex tensorial quantity referred to as grand
resistance matrix (R). The grand resistance matrix, R, can be
represented in terms of submatrices as
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the elements of which account for hydrodynamic interactions
among particles and are functions of only the relative positions
of the particles. The exact calculation of the grand resistance
matrix cannot be carried out for more than two particles.2,52−54

Therefore, a suitable approximation is necessary. In SD, the
grand resistance is approximated by adding up different
contributions: (1) inverse of the pair-wise additively found
many-body far-field mobility (M∞) and (2) exact two-body
lubrication resistance (R2B

lub), from which the exact two-body far-

field resistance interaction matrix (R2B
∞) is subtracted to avoid

double counting of the two-body far-field interactions.
In the present work, we have adopted this procedure as the

method has been proven to work at very large solid volume
fractions; hence, it accounts for multibody hydrodynamic
interactions accurately and can be virtually extended to any
number of particles.39,52

II.B. Interparticle Interactions. In a suspension, the
hydrodynamic force acting on one particle is transmitted to
the other particles either through the particle−fluid−particle,
also called hydrodynamic interactions, or via other particle−
particle interactions. The propagation mechanism with
interparticle interactions encompasses two classes of phenom-
ena, namely, contact and noncontact interactions, with the
former acting only when two particles are touching each
other.55 These are briefly described in the following.

II.B.1. Noncontact Interactions. The most common type of
colloidal interactions that particles experience are attractive and
repulsive interactions, commonly described by Derjaguin−
Landau−Verwey−Overbeek theory.56,57 The theory accounts
for the London−van der Waals attractive and electrostatic
repulsion potentials between charged nontouching surfaces of
particles, and the net potential energy is the sum of these two.
In the present work, we have considered only van der Waals
interactions, which occur when electrostatically stabilized
particles are under fully destabilized conditions. The van der
Waals attractive potential is given by the Hamaker equation
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where Ah is the nonretarded Hamaker constant and s is the
dimensionless distance between the pair of particles, s = r/Rp,
where r is the actual distance between the centers of particles
and Rp is the primary particle radius.
In addition, to prevent particles from overlapping, a short-

range Born repulsive potential has been introduced, which is
given by
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where Nborn is the Born repulsion constant.
It must be noted here that, as opposed to some other

research works42,58 dealing with the breakup of colloidal
aggregates and taking into account colloidal particle−particle
interactions, no arbitrary bounds have been imposed on the
potentials.

II.B.2. Contact Interactions. Recently, Pantina and
Furst59−61 have experimentally demonstrated that tangential
contact interactions among particles are responsible for
providing bending strength to interparticle bonds and should
be incorporated to correctly describe the dynamics of chains of
particles. These interactions have been already included in
computer simulations by Becker and Brisen62 using a DEM
approach.51 In the present work, we have adopted their
approach to estimate the relative tangential velocities and hence
the relative tangential force, which are present when two
particles are separated by a very small distance (δmin = 3 Å for
particles with a radius of 1 μm), corresponding to the minimum
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of the potential interaction curve. For colloidal particles to be
considered, connected values of interparticle distance equal to
several angstroms are reported in the literature.57,63 The force
(Ft) and torque (Tt) due to the tangential interactions are
estimated as follows
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where Kt is the coefficient of tangential rigidity, ξ ̅ is the length
of the tangential displacement of the spring between the
connected particles, and n ̅ is the normal vector connecting the
centers of two particles, i and j. The tangential spring is broken
when its length exceeds the maximum value of the relative
tangential displacement, ξm̅ax, which is obtained as described by
Becker and Briesen62 and using the same set of parameters as
reported in their paper.

III. SIMULATION METHODOLOGY
We used an in-house cluster library, generated using various
Monte Carlo algorithms, containing clusters with a wide range
of morphologies (i.e., fractal dimensions) and masses. All our
clusters follow the fractal scaling law
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where N is the number of primary particles in the cluster, Rp is
the primary particle size, Rg is the radius of gyration of the
cluster, kf is a prefactor, which has usually a value close to 1, and
df is the fractal dimension of the cluster. Here, N also represents
the mass of the cluster as all particles are uniform-sized spheres
made of the same material. The structures of typical initial
clusters with different fractal dimensions (morphologies) are
shown in Figure 1a. It is of paramount importance to note that
a true fractal object should exhibit self-similarity. This is clearly
not the case here, considering that the clusters used in this work
are rather small. Under these circumstances, the exponent df in
eq 1 should be considered as a mass−size scaling exponent
more than a real fractal dimension. Nevertheless, it is rather
common in the literature to refer to this exponent as fractal
dimension; hence, we maintain this denomination throughout
this work.
The range of applied shear stresses (σ = ηfγ, where ηf is the

fluid viscosity and γ is the shear rate) between 25 and 100 Pa
was found to be suitable to study the complete breakup
dynamics of our aggregates in a reasonable computational time.
These applied stresses correspond to Pećlet numbers,
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, where D is the diffusion coefficient, kB is

the Boltzmann constant, and T is the ambient temperature, for
particles in water in the order of 105, which also justifies our
choice of neglecting the Brownian motion of individual
particles. A schematic of the initial position of the cluster in
the flow field is shown in Figure 1b. The origin of the Cartesian
axes was chosen at the center of mass of the original cluster.
A cluster of given mass and fractal dimension was randomly

chosen from our cluster library. The clusters used in the present
work are randomly chosen from an in-house cluster library.
Various Monte Carlo algorithms were used to generate clusters
with different properties (df, N). However, the generated
clusters were not energetically stable in the configuration at the

beginning of the simulation as the particles were arranged by
random contact while generating the clusters. Hence, the
clusters were not in the minimum-energy configurations. The
distances between particles at contact, for the clusters produced
with Monte Carlo simulations, are defined within a small
tolerance but without accounting for any interparticle
interactions. A small initial overlap among particles in contact
due to tolerance has a strong effect on interparticle interactions.
This required equilibration of the clusters, wherein the particles
were allowed to move with respect to each other, however in
the absence of fluid flow, for the clusters to attain an
energetically stable structure. It must be noted that, as a result
of equilibration, only minimal particle displacements were
observed, without any effect on the overall structure (radius of
gyration or fractal dimension) of the original cluster.
After equilibration, the actual simulation was started, wherein

by knowing the relative positions of all particles, the
hydrodynamic resistance matrix and the interparticle inter-
actions were computed. Once all interparticle forces and fluid
velocities at the center of each particle are known, their
velocities, and hence the displacements of individual particles,
were computed using the SD model. The critical distance, sbreak,
below which two particles were still considered connected, has
been set to 2 nm. This is also where the value of total potential
dropped to 1/4th and the attractive force to 2% of its value at
the minimum of the potential well. At each time step, the
number of fragments produced and the size of each fragment
were calculated. All simulations were performed until a steady
state was reached by monitoring the evolution of the average
radius of gyration ⟨Rg⟩ of the fragment normalized by the radius
of the particle. The time required to attain a steady state is large
and increases with the cluster mass. Hence, we have performed
most simulations for the specific case of clusters with a mass N
= 60. The number of clusters that could be simulated in a
reasonable time was restricted by two important factors. First of
all, as the number of particles in a cluster increases, the

Figure 1. (a) Representative colloidal clusters used in the present
work, df = (i) 1.8, (ii) 2.1, (iii) 2.5, and (iv) 3.0. (b) Schematic of a
typical simple shear flow field to which a cluster is exposed to.
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computational efforts required for estimating the hydrodynamic
resistance matrix increase substantially (being proportional to
∼(11N)3 times) as inverting the far-field mobility matrix is the
bottleneck of the whole simulation method. Second, very small
time steps, Δt = 10−10−10−9 s, are required to avoid
overlapping of particles.
To understand the role of initial cluster morphology, a range

of cluster morphologies (df = 1.8−3.0) were considered,
covering practically occurring three classes of colloidal
aggregates: open clusters (df = 1.8, 2.1), moderately dense
clusters (df = 2.5), and very dense clusters (df = 3.0). For each
cluster fractal dimension, 10 different cluster realizations were
simulated to obtain statistically representative results.

IV. RESULTS AND DISCUSSION

We have studied the dynamics of evolution of fragments
produced by the breakup of aggregates, focusing primarily on
the clusters composed of 60 particles with primary particle
radius of 1 μm, covering a broad range of fractal dimensions (df
= 1.8−3.0) and applied shear stresses (σ = ηfγ = 25−100 Pa).
At first, we have looked at the time evolution of the average

size and size distribution and the fractal dimension of the
fragments produced. In all cases, we introduced a dimensionless
time, τ, defined as the product of the physical time (t) and the
cluster breakage rate constant (kB) derived from our previous
work,49 that is, τ = kBt. Considering the size evolution of the
fragments, we have defined the following dimensionless size:

⟨ ′⟩ = ⟨ ⟩ − ⟨ ⟩
− ⟨ ⟩

⎜ ⎟
⎛
⎝

⎞
⎠R

R R

R Rg
g g,s

g,0 g,s
, where ⟨Rg⟩ and ⟨Rg,s⟩ are the weight-

average radii of gyration of the entire fragment population at
any time t and at a steady state, respectively. As Rg,0 is the
dimensionless radius of gyration of the original cluster (i.e.,
normalized by the primary particle radius), the value of ⟨Rg′⟩
ranges from 1 at the beginning to 0 at the steady state. The
time evolution of ⟨Rg′⟩ against τ is shown in Figure 2a,b for
clusters with df = 1.8 and 2.5, respectively, for various applied
stresses σ along with the representative snapshots of the initial
cluster and the evolution of the fragments produced.
It can be observed that ⟨Rg′⟩ decreases exponentially,

following a trend almost independent of the applied shear
stress value but only depending on the cluster fractal
dimension, even though the dimensional ⟨Rg⟩ values at a
given time and for different applied stresses σ are different. This
indicates that the breakage rate, obtained from very short
simulation times, defines the appropriate characteristic time
even for the long-term breakage process. We have fitted an
exponential decaying function to model the decrease in
dimensionless size with time. The exponential factor α is a
function of only the fractal dimension, and for df = 1.8, 2.1, 2.5,
and 3.0, we found α = 0.07, 0.05, 0.02, and 0.015, respectively.
The values of α indicate that the decay dynamics of clusters
becomes slower as the fractal dimension increases.
The simulations indicate that open clusters show a rapid

reduction in the average cluster size, whereas dense clusters
show a sluggish decrease of the average fragment size along
with an oscillatory behavior, with values of ⟨Rg′⟩ reaching larger
than 1 immediately after imposing the shear. This behavior is
particularly prominent at low shear rates. This means that open
clusters are prevalently broken by the application of shear,
whereas denser clusters show breakage accompanied by cluster
deformation and restructuring, with a more pronounced effect
at low shear stresses. The dynamics for two extremes of the

applied stresses for two different cluster morphologies is shown
in the insets in Figure 2a,b. This is consistent with the
observation that high shear rates promote breakage whereas
lower shear rates promote restructuring of clusters. The results
also indicate that a dense cluster is more resistant to any
applied shear rate than an open cluster. Furthermore, it can be
seen that this conclusion is very well supported by the included
snapshots of the fragments produced along the evolution of
⟨Rg′⟩. The dimensionless time required for reaching the steady
state increases with increasing fractal dimension. For open
clusters, the steady state is reached monotonically at τ ∼ 50 for
all applied stress values, whereas for initially dense clusters,
larger values of τ ∼ 100−150 are required.
In the case of dense clusters, at intermediate times, the scaled

size shows oscillations, which reflect a combination of
restructuring of the fragments, indicating successive stretching
and compression phases imposed by simple shear conditions.
Compared to an open cluster, a dense cluster is smaller in size
and thus experiences a smaller overall hydrodynamic force for
the same shear rate. Moreover, in a dense cluster, there is also a
screening effect of hydrodynamic stress due to a more compact
structure. Under these conditions, a dense cluster is more prone
to restructuring than an open one. Figure 2b also shows that
⟨Rg′⟩ rapidly increases first, then decays, and then undergoes
oscillations, which are highly cluster specific. It is clear that the
simple exponential decay is not able to account completely for

Figure 2. Evolution of ⟨Rg′⟩ as a function of τ for N = 60 for clusters
with two different fractal dimensions: df = 1.8 (a) and 2.5 (b). The
fitted trend line is obtained with ⟨Rg′⟩ ∼ exp(−ατ).
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such a trend. This also means that not only the first event of
breakage but also the overall breakup dynamics of denser
clusters is slower than that of the open clusters.
As colloidal dispersions typically also consist of aggregates

covering a broad range of masses, we investigated the dynamics
of clusters with different initial number of particles. A simple
scaling argument to estimate the total hydrodynamic force
experienced by a cluster subject to a simple shear flow leads to
the following result; that is, Fhydro

cluster ∼ σRg,0
2 , which means that

the hydrodynamic force is proportional to the square of the
cluster size and the applied stress. We decided to see whether
the clusters with the same fractal dimension but different
number of particles (N = 60 and 100) would show the same
long-term breakage dynamics when subject to the same
hydrodynamic force. The evolution of ⟨Rg′⟩ for a few clusters
satisfying this requirement is presented in Figure 3a,b for two

different cluster fractal dimensions (df = 1.8 and 2.5). A semilog
plot as an inset in the figures shows this behavior clearly. From
the figure, it can be seen that the evolution of ⟨Rg′⟩ is almost
independent of the initial number of particles in the cluster and
the applied stress, as long as the total hydrodynamic force
applied on the clusters is kept constant when plotted as a
function of the dimensionless time τ. These results indicate that
the total hydrodynamic force acting on the clusters of a specific

fractal dimension and their short-term breakage rate are the
dominant factors for their long-term breakage dynamics. This
motivated us to concentrate our computational efforts in
investigating the dynamic behavior of the clusters of a fixed
number of particles. Therefore, unless explicitly stated, all of the
results discussed here have been obtained from the simulations
of clusters having N = 60.
In addition to the cluster size, the simulations allowed us to

monitor also the evolving fragment morphology in terms of
their fractal dimension. Very few attempts have been reported
in the literature20,26,64 to keep track of the fractal dimension
during the breakup process of an aggregate. Here, we have
studied the evolution of the fractal dimension of the fragments
under various conditions. The fractal dimensions have been
obtained from a power law fit of the masses versus sizes of the
fragments produced by the breakup of a few clusters with the
same cluster mass and fractal dimension, excluding single
particles and doublets. In Figure 4, the evolution of the fractal

dimension of fragments starting with open (df = 1.8) and
moderately dense (df = 2.5) clusters under different shear
stresses has been presented. It can be seen from the figure that
initially open clusters tend to produce denser fragments and
increase their fractal dimension to a limiting value. The increase
in the fractal dimension can be explained as a result of the
breakup of clusters combined with their densification, as a
consequence of the exposure to compressive and extensional
stresses during cluster rotation, in accordance with what was
reported by Harshe et al.,20 Tang et al.,64 Harada et al.,42 and
Seto et al.65 In all of these works, the authors observed
densification of initially open clusters as an effect of flow with a
rotational component. One should also notice that no universal
master curve has been obtained in this case because the growth
of the fractal dimension can be well fitted with an exponential
curve, with a characteristic time depending on the shear rate.
Such an empirical function has already been used in the
literature by Harada et al.58 Furthermore, though not shown in
the figure, we observed similar behavior for clusters with initial
df = 2.1. On the other hand, it is interesting to note that
moderately dense clusters with df = 2.5 do not change their

Figure 3. Dynamics of breakup for clusters with different cluster
masses but with the same total hydrodynamic force applied for two
different fractal dimensions: (a) 1.8 and (b) 2.5.

Figure 4. Evolution of average fractal dimension ⟨df⟩ for the breakup
of clusters with N = 60. The lines are fitted using

⟨ ⟩ = + ⟨ ⟩ − − − τ
σ( )( )d d d d( ) 1 expf f f,ss f 1.3 , with ⟨df,ss⟩ = 2.4 for df

= 1.8 and ⟨df,ss⟩ = 2.6 for df = 2.5.
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structure much, as indicated by the fractal dimension of the
fragments produced, which remains around 2.6 during the
entire breakup process, independent of the applied stress. This
is in agreement with the experimental results of Soos et al.16 for
the breakup of already dense clusters with df = 2.7, in which
they found that the clusters after breaking into smaller
fragments did not change the morphology and the aspect
ratio. For initially very dense clusters (df = 3.0), also not shown
in the figure, we noticed that first there is a sharp reduction in
their fractal dimension to a value around 2.6, which then
remained almost constant over time for all applied stresses.
This is typically the value experimentally measured under shear-
induced aggregation.16 In our case, we have considered only
single aggregates so that no reaggregation is present, as the
simulations are carried out under infinite dilution. From this
discussion, it can be inferred that there are two regimes for the
evolution of fractal dimension. The first one is the regime for
which the upper limiting value of ⟨df⟩ ≤ 2.5, where clusters with
low fractal dimension (or open structures) are densified,
producing denser fragments, and the steady state df value is
governed by the applied stress and by the original df values. The
second region is where ⟨df⟩ ≈ 2.6, in which the clusters with
initial ⟨df⟩ ≥ 2.6 keep the fractal dimension almost unchanged,
whereas very dense clusters (df = 3.0) decrease their df, reaching
lower limiting fractal dimension values around 2.6. These two
regimes can be clearly seen in Figure 4.
This densification of clusters along the breakup process was

also confirmed when the dynamics of the coordination number
(⟨Co⟩), defined as the average number of nearest neighbors per
particle, was followed. This evolution in terms of approaching
steady-state coordination number (⟨Co

s⟩ − ⟨Co⟩) for different
applied stresses is shown in Figure 5a,b for clusters with df = 1.8
and 2.5, respectively. From the figures, it can be seen that the
dynamics of (⟨Co

s⟩ − ⟨Co⟩) collapses on a single curve
irrespective of the applied stress and an exponential function
similar to the one suggested by Harada et al.58 can be used to
capture the trend. We fitted the data using ⟨Co

s⟩ − ⟨Co⟩ = λ
exp(φτ), shown by a solid line, and found values of φ = −0.015
and −0.05 for df = 1.8 and 2.5, respectively, and λ = 2.75,
indicating that the dynamics required to reach the steady-state
compaction is faster for a denser aggregate. The reason behind
this behavior lies in the shorter path that particles need to cover
to increase the number of their bonds. The figures also indicate
that the internal structure of aggregates is modified and the
produced fragments have a higher average number of bonds, as
a result of breakage and restructuring. This is not surprising,
given that Monte Carlo-generated clusters have statistically only
two bonds per particle. The coordination number increases
exponentially, as reported in the literature,40 but reached lower
values for higher shear rates, when breakage dominates.
We have eventually focused our attention to the steady-state

properties of clusters, using the total hydrodynamic force
initially acting on the cluster, σRg,0

2 , as a scaling quantity. We
have plotted against σRg,0

2 in Figure 6a−c three important
properties of the fragments: their average size normalized by
the initial cluster size, their average mass normalized by the
initial cluster mass, and the standard deviation of their mass
distribution, respectively. On a double-log plot, all of these
properties showed a linear dependence on σRg,0

2 , irrespective of
the initial cluster size, mass, and fractal dimension. This implies
that data for all cluster masses collapse on a single master curve,
which can be used to determine the steady-state values of these
parameters, knowing the applied stress and the initial cluster

properties. This data set can be combined with the scaled ⟨Rg′⟩
dynamics from Figure 2 to determine the complete breakup
dynamics of a cluster in terms of actual evolution of the average
fragment size, ⟨Rg⟩. Moreover, it should be noted that for very
small values of the overall hydrodynamic force, the normalized
fragment size and mass reach a plateau value very close to 1,
indicating the critical force that the cluster can survive without
breakage. In Figure 6a, we have also included the experimental
data points from the work of Soos et al.16 and Harshe et al.20 to
compare with our proposed scaling law. In both works,
researchers have followed breakup of clusters with two different
fractal dimensions (df = 1.7 and 2.7) composed of primary
particles of two different sizes (Rp = 45 and 405 nm) in a
contracting nozzle until a steady state was reached. Here,
knowing the steady-state average fragment size for a specific
applied stress, starting with a particular size of the initial
aggregate, we have produced the data points. It can be seen that
the proposed scaling very well compares with the already
established experimental data. This comparison strengthens the
finding of our scaling laws for universal behavior of colloidal
aggregates when exposed to flow. A single fracture exponent for
all quantities as a function of the total hydrodynamic force,

Figure 5. Evolution of average coordination number, ⟨Co⟩, of
fragments for clusters with N = 60 and df = 1.8 (a) and 2.5 (b) for
different applied shear stresses, and the solid line is fitted with ⟨Co

s⟩ −
⟨Co⟩ = λ exp(φτ): φ = −0.015 and −0.05 for df = 1.8 and 2.5,
respectively, and λ = 2.75.
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σRg,0
2 , acting on the cluster, independent of the initial cluster

fractal dimension, can be explained by observing that the
structure of all clusters exposed to high shear rates tends to
evolve toward similar values of fractal dimension, independent
of their initial structure. This observation is further supported

by the data presented in Figure 7, where the steady-state
fragment size is plotted against the fragment mass for different

initial cluster fractal dimensions. The fitted lines for each of the
data set showed a scaling representing the average fragment
fractal dimension. This also confirms our finding from Figure 4
that there exist two regimes of fragment morphologies
depending on the initial cluster morphology.

V. CONCLUSIONS

In conclusion, we have studied the long-term breakup dynamics
of colloidal aggregates made of monodisperse spherical particles
using SD. We found that the specific time evolution of the
normalized cluster size shows a master curve dependence and is
governed by only the initial cluster, df. The dynamics of
evolution can also be scaled appropriately for clusters of
different masses but the same fractal dimension if the overall
hydrodynamic force is kept constant. Moreover, the steady-
state average fragment size, mass, and mass distribution were
found to be uniquely related to this overall hydrodynamic force
acting on a cluster, irrespective of the mass and morphology of
the initial cluster. The proposed scaling law for the dependence
of the normalized average radius of gyration of fragments
against the overall hydrodynamic force acting on the original
cluster is in very good agreement with the already published
experimental data by Soos et al.16 and Harshe et al.20 Thus, the
suggested scaling laws can be used to determine the steady-
state properties of the produced fragments after a breakup
process. Finally, the dynamics of fragment fractal dimension
showed two distinctive regimes, depending on the initial cluster
morphology: initially open clusters produced denser fragments
with asymptotic ⟨df⟩ ≈ 2.4, and dense clusters lead to fragments
with ⟨df⟩ ≈ 2.6. These results are in agreement with the limited
data available in the literature and further enhance the scope of
such observations. All of these results contribute to rationalize
the phenomena involved during the breakup process of a
colloidal aggregate under simple shear and could be further
validated by performing controlled experiments.

Figure 6. Steady-state average radius of gyration ⟨Rg,s⟩ (a) and number
of particles ⟨Np,s⟩ (b), respectively, normalized by initial cluster size
Rg,0 and number of particles Np,0 in the original cluster, and standard
deviation ⟨χd,s⟩ (c) of fragment mass distribution against the total
hydrodynamic force σRg,0

2 on the original cluster.

Figure 7. Steady-state average number of particles in fragment ⟨Np,s⟩
vs average fragment size ⟨Rg,s⟩, for breakup of clusters with different
initial fractal dimensions. Lines are fitted to simulation data with the
slopes indicated by ⟨df,s⟩.
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