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Accurate identification of effective epidemic threshold is essential for understanding epidemic

dynamics on complex networks. In this paper, we systematically study how the recovery rate affects
the susceptible-infected-removed spreading dynamics on complex networks, where synchronous
and asynchronous updating processes are taken into account. We derive the theoretical effective
epidemic threshold and final outbreak size based on the edge-based compartmental theory. To vali-
date the proposed theoretical predictions, extensive numerical experiments are implemented by
using asynchronous and synchronous updating methods. When asynchronous updating method is
used in simulations, recovery rate does not affect the final state of spreading dynamics. But with syn-
chronous updating, we find that the effective epidemic threshold decreases with recovery rate, and
final outbreak size increases with recovery rate. A good agreement between the theoretical predic-
tions and the numerical results are observed on both synthetic and real-world networks. Our results
extend the existing theoretical studies and help us to understand the phase transition with
arbitrary recovery rate.

How to accurately predict the effective epidemic threshold

has attracted increasing attentions. The difference of re-

covery rate among real diseases and the accompanying

effects on the human health have been well known, while

the important role of recovery rate in the prediction of

effective epidemic threshold has not been systematically

studied. In this work, the effect of recovery rate on the

effective threshold of epidemic outbreak is systematically

studied. We first develop a novel theoretical framework

based on the edge-based compartmental theory. The devel-

oped theory predicts that recovery rate does not affect the

spreading dynamics with asynchronous updating, but with

synchronous updating, the effective epidemic threshold

decreases with the recovery rate, and the final outbreak

sizes increase with the recovery rate for a given effective

transmission rate. It should be noted that in asynchronous

updating the networks are more resilient to spread the dis-

ease. To verify the accuracy of the theoretical predictions,

we numerically predict the effective epidemic threshold

using the variability measure on random regular networks,

where the numerical results agree well with the theoretical

predictions. Moreover, we investigate how the recovery

rate affects the epidemic outbreaks with synchronous

updating on scale-free networks and real-world networks

and find the same variation trend of effective epidemic

threshold. This work provides us a deep understanding of

the effective epidemic threshold and would promote fur-

ther studies on phase transition of epidemic dynamics.

I. INTRODUCTION

Susceptible-infected-recovered (SIR) model on complex

networks has been used to model a wide variety of real

epidemic spreading.1–3 Examples include the spreads of mumps,

varicella, rabies, and Acquired Immune Deficiency Syndrome

(AIDS).4 In the SIR model, an infected node can transmit a dis-

ease to each of its susceptible neighbors with infection rate b.
At the same time, the infected nodes recover with recovery rate

l. In this context, a critical value of the effective transmission

rate k ¼ b=l (or the effective epidemic threshold kc) exists

above which the final fraction of recovered nodes is finite.5,6

In previous studies, it is pointed out that the effective

epidemic threshold decreases with the average connectivity

hki under the assumption of homogeneous mixing.4

Considering the heterogeneity of connectivity, the heteroge-

neous mean-field (HMF) theory7–9 was employed to predict

the effective epidemic threshold, which can be expressed as

kHMF
c ¼ hki

hk2i � hki ; (1)

where hki and hk2i represent the first and second moments of

degree distribution P(k),10 respectively. On networks with

power-law scaling PðkÞ � k�c where c represents the degree
exponent,10,11 the vanishing threshold for scale-free net-

works with c � 3 and the finite threshold for c > 3 are pre-

dicted by the HMF approach.5

The connection between the static properties of the SIR

model and bond percolation was recognized long ago.12 By

mapping the SIR model to a bond percolation process,13 the

effective epidemic threshold is predicted by
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kc ¼ hki
hk2i � 2hki : (2)

This approximation leads to a more accurate epidemic

threshold than the HMF method.5

The quenched mean-field (QMF) theory was proposed

in attempt to improve the HMF theory, since the latter

neglects the quenched structure of the network and dynami-

cal correlations between the state of adjacent nodes.14 In the

QMF theory, the actual quenched structure of the network is

fully preserved, and the effective epidemic threshold is pre-

dicted as15–18

kQMF
c ¼ 1

KN
; (3)

where KN represents the maximum eigenvalue of the adja-

cency matrix of a given network. However, the QMF result

is even qualitatively not correct, because the vanishing

threshold for power-law distributed networks with c > 3 pre-

dicted by the QMF is in conflict with the visually numerical

results.19

Recently, the dynamical message passing (DMP)

method was developed to study the SIR spreading dynamics

in finite-size networks.20–22 The DMP method uses the non-

backtracking matrix to determine the complete network

structure. This method can both describe the complete net-

work structure and capture some of the dynamical correla-

tions among the states of neighbors that are neglected in the

HMF and QMF methods. In large sparse networks, the DMP

method provides an accurate estimation of the effective epi-

demic threshold as

kDMP
c ¼ 1

KM
; (4)

where KM is the leading eigenvalue of the non-backtracking

matrix.

In real spreading processes, each disease has its own spe-

cial infection duration. The symptoms of mumps resolve after

7–10 days.23 The time period between contracting the rabies

disease and death can vary from less than one week to more

than one year.24 Without treatment, the stage of Human

Immunodeficiency Virus (HIV) infection can last from about

three years to over 20 years25,26 (on average, about eight

years). These diseases with different infection durations have

lead to different levels of prevalence. According to the statis-

tics, about 0.1%–1% of the population are affected by mumps

virus per year.23 Rabies causes about 26 000–55 000 deaths

worldwide per year.24 Since its discovery, AIDS has caused an

estimated dozens of million deaths worldwide.27 In the SIR

spreading model, the recovery rate l determines the infection

duration of a given disease. The above theoretical predictions

have been made by considering arbitrary recovery rate l, and
pointed out that the value of l does not affect the effective epi-

demic threshold for continuous-time spreading dynamics.

However, in numerical simulations, the spreading

dynamics is simulated with either asynchronous or synchro-

nous updating methods, which are two famous numerical

methods for dynamics.28 For the same dynamical model, the

two updating methods can lead to distinct results due to their

difference in updating nodes’ states.29,30 For example, in co-

operative games, the cooperators and defectors appear in

turn in synchronous simulations, while the matrix always

evolves rapidly into a state of overall defection in asynchro-

nous simulations.31 In these two updating methods, how the

recovery rate influences the spreading dynamics such as the

effective epidemic threshold is long neglected. Here, we de-

velop an edge-based compartmental theory32–34 to derive the

effective epidemic thresholds for the SIR model with arbi-

trary recovery rate, in both asynchronous and synchronous

updating spreading processes. The proposed theory could be

considered as supplementary to the existing theories, and it

predicts that the effective epidemic threshold is independent

of (decreases with) the recovery rate in asynchronous (syn-

chronous) updating spreading processes. We further validate

the theory based on extensive numerical simulations on syn-

thetic and real-world networks. In most cases, our theoretical

predictions are in a good agreement with the numerical

effective epidemic thresholds identified by the variability

measure,35,36 which has been confirmed to be effective for

identifying the SIR effective epidemic threshold.37 Although

there exist some differences between the theoretical predic-

tions and numerical results in networks with disassortative

mixing, the theoretical effective epidemic threshold displays

the same trend to that of the numerical effective epidemic

threshold.

II. MODEL

In the SIR model, a node of networks can be susceptible,

infected, or recovered. At the beginning, q0 fraction of nodes

are randomly chosen as the initial infected (i.e., seed), and

all other nodes are susceptible. In consideration of the impor-

tance of the asynchronous and synchronous updating proc-

esses for epidemic dynamics,28 the simulations of the SIR

dynamics are implemented by using both synchronous and

asynchronous updating methods. The effective transmission

rate is defined as k ¼ b=l, where the parameter b represents

the infection rate and l represents the recovery probability

in the synchronous updating spreading process and the re-

covery rate in the asynchronous updating spreading process,

respectively.

In the synchronous updating spreading process,38 at

time step t, each susceptible node i becomes infected with

probability 1� ð1� bDtÞni if it has one or more infected

neighbors, where ni is the number of its infected neighbors.

In the same time, all infected nodes recover (or die) with

probability lDt and the recovered nodes acquire permanent

immunity. Time increases by Dt ¼ 1, and the dynamical pro-

cess terminates when there is no infected node in the

network.

The asynchronous updating spreading process28 is per-

formed as follows. At time step t, the number of infected

nodes is denoted as NIðtÞ, and the number of active edges

(i.e., the edges connecting susceptible nodes and infected

nodes) is recorded as EAðtÞ. At each step, a randomly chosen

infected node becomes recovered with probability

pr ¼ lNIðtÞ=½lNIðtÞ þ bEAðtÞ�, otherwise, an active edge is
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chosen at random and the susceptible node attached to it

becomes infected with probability 1� pr. The time is

updated as t ! tþ 1=½lNIðtÞ þ bEAðtÞ�. The process termi-

nates until there is no infected node in the network. To

numerically identify the effective epidemic threshold knumc of

the SIR model, we use the variability measure35,36

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR12i � hR1i2

q
hR1i ; (5)

where R1 denotes the density of final recovered nodes.

The variability D exhibits a peak over a wide range of k,
and we estimate the numerical effective epidemic threshold

knumc from the position of the peak of the variability. The

validity of this numerical identification method for the SIR

model has been confirmed in Ref. 37.

III. THEORY

To qualitatively understand the SIR dynamic with arbi-

trary recovery rate, we develop the edge-based compartmen-

tal theory based on Refs. 32–34. On an uncorrelated and

large sparse network, the SIR model can be described in

terms of S(t), I(t), and R(t), which represent the densities of

the susceptible, infected, and recovered nodes at time t,
respectively.

Let us now consider a randomly chosen node u, and
assume this node is in the cavity state20,32 initially, which

means that it cannot transmit any disease to its neighbors but

can be infected by its neighbors. We define hðtÞ to be the

probability that a neighbor v of u has not transmitted the dis-

ease to u along the edge connecting them up to time t. We

assume that hðtÞ is identical for all edges. Initially, a vanish-
ingly small q0 fraction of nodes are chosen to be infected

and none of them transmits the disease to its neighbors, that

is hð0Þ ¼ 1. According to the cavity theory,20,39 we obtain

the probability that the node with degree k is susceptible by

time t as sðk; tÞ ¼ hðtÞk. Averaging over all k, the density of

susceptible nodes at time t is given by

SðtÞ ¼
X1
k¼0

PðkÞhðtÞk: (6)

Obviously, to solve S(t), we need to know hðtÞ. Since a

neighbor of node u may be susceptible, infected, or recov-

ered, hðtÞ can be expressed as

hðtÞ ¼ nSðtÞ þ nIðtÞ þ nRðtÞ; (7)

where nSðtÞ [nIðtÞ or nRðtÞ] is the probability that the neighbor
v is in the susceptible (infected or recovery) state and has not

transmitted the disease to node u through their connection.
According to the definition of cavity state above, the

node u cannot transmit the disease to its neighbors when u is

in the cavity state. In this case, the neighbor v can only get

the disease from its other neighbors except the node u. Thus,
node v with degree k0 will keep susceptible at time t with
probability hðtÞk0�1

. For uncorrelated networks, the probabil-

ity that one edge from node u connects with an node with

degree k0 is k0PðkÞ=hki. Summing over all possible k0,
we obtain

nS tð Þ ¼
P

k0k
0P kð Þh tð Þk0�1

hki : (8)

The time evolutions of nR are slightly different in the syn-

chronous and asynchronous updating spreading processes. For

the case of synchronous updating method, an infected node first

may transmit the infection to its neighbors and then becomes

recovered in a discrete time step. Since the infection and recov-

ery events may happen consecutively, the notation nR means

that the infected neighbor v has not transmitted the disease to u
with rate 1� b via their connection, and simultaneously it

recovers with rate l. Taking these into consideration, we get

dnR tð Þ
dt

¼ l 1� bð ÞnI tð Þ: (9)

For the case of asynchronous updating method, the infection

and recovery cannot happen simultaneously, Eq. (9) thus

becomes

dnR tð Þ
dt

¼ lnI tð Þ: (10)

In the edge-based compartmental theory, the only difference

between synchronous and asynchronous updating processes

is the time evolution of nR, as shown in Eqs. (9) and (10).

Therefore, we next introduce the theory based on the syn-

chronous update method, unless explicitly stated.

Once the infected neighbor v transmits the disease to u
successfully, hðtÞ will change as

dh tð Þ
dt

¼ �bnI tð Þ: (11)

For the case of synchronous updating process, combining

Eqs. (9)–(11), and initial conditions hð0Þ ¼ 1 and nRð0Þ ¼ 0,

we obtain

nR tð Þ ¼ l 1� h tð Þ½ � 1� bð Þ
b

: (12)

Substituting Eqs. (8) and (12) into Eq. (7), we get an expression

for nIðtÞ in terms of hðtÞ, and then we can rewrite Eq. (11) as

dh tð Þ
dt

¼ �b h tð Þ �
P

k0k
0P k0ð Þh tð Þk0�1

hki

" #

þl 1� h tð Þ½ � 1� bð Þ:
(13)

We pay special attention to the final state of the

epidemic spreading, where hðtÞ will never change [i.e.,

dhðtÞ=dt ¼ 0] and thus we get

h 1ð Þ ¼
P

k0k
0P k0ð Þh 1ð Þk0�1

hki þ l 1� h 1ð Þ½ � 1� bð Þ
b

: (14)

Substituting the solution h�ð1Þ of Eq. (14) into Eq. (6), we

can obtain the final susceptible density Sð1Þ and the final

outbreak size Rð1Þ ¼ 1� Sð1Þ.
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The value hð1Þ ¼ 1 is always a solution of Eq. (14).

Define the right hand of Eq. (14) as f ðhð1ÞÞ. In order to get

a nontrivial solution, the condition

df h 1ð Þð Þ
d h 1ð Þð Þ

����
h 1ð Þ¼1

> 1 (15)

must be fulfilled.38 This relation implies that

b
l
>

hki
hk2i þ lhki � 2hki : (16)

This condition defines the effective epidemic threshold with

synchronous updating

ksyncc ¼ hki
hk2i � 2hki þ lhki : (17)

It can been seen from Eq. (17) that the effective epidemic

threshold not only is affected by the network structure but

also decreases with the recovery probability l in the syn-

chronous updating process. Specially, Eq. (17) is exactly the

HMF prediction when l¼ 1, and it approaches Eq. (2) when

l ! 0.

In a similar way, we can solve out the effective epi-

demic threshold for the asynchronous updating method by

substituting Eq. (10) into the corresponding equations.

Specifically, Eqs. (12) and (14) are rewritten as

nR tð Þ ¼ l 1� h tð Þ½ �
b

(18)

and

h 1ð Þ ¼
P

k0k
0P k0ð Þh 1ð Þk0�1

hki þ l 1� h 1ð Þ½ �
b

; (19)

respectively. Thus in the asynchronous updating process, the

effective epidemic threshold of SIR model is given by

kasyncc ¼ hki
hk2i � 2hki : (20)

From Eq. (20), we know that the effective epidemic thresh-

old is only correlated with the topology of network, and irrel-

evant to the recovery rate.

IV. MAIN RESULTS

To compare the theoretical predictions with the numeri-

cal results, we have performed extensive numerical simula-

tions of the SIR dynamics on various types of networks.

A. Random regular networks

We first consider the final outbreak size Rð1Þ as a func-
tion of k for different recovery rates on random regular net-

works (RRNs), where all nodes have exactly the same

degree k. We investigate the effect of recovery rate on the

SIR spreading dynamics by, respectively, using asynchro-

nous and synchronous updating simulation methods.

With asynchronous updating, Fig. 1 shows all simulation

results for different values of recovery rate l completely

overlap with each other. Thus, we obtain a trivial conclusion:

the effective epidemic threshold and final outbreak size is

not affected by the recovery rate. According to the asynchro-

nous updating method, the recovery probability pr and time

interval Dt can be rewritten as NIðtÞ=½NIðtÞ þ kEAðtÞ� and

1=l½NIðtÞ þ kEAðtÞ�. When the effective transmission rate

k ¼ b=l is fixed, the change of recovery rate l does not

affect the recovery probability pr and infection probability

1� pr, while only alters the relative size of time scale

Dt ¼ 1=l½NIðtÞ þ kEAðtÞ�. Therefore, the recovery rate does

not change the effective epidemic threshold and final out-

break size in the asynchronous updating spreading process.

The developed theory can describe the phenomena very

well.

With synchronous updating, Fig. 1(a) shows that the

final outbreak size for small recovery rate (e.g., l ¼ 0:2) is
obviously smaller than that for large recovery rate (e.g.,

l ¼ 1:0) at the same effective transmission rate k, and the

simulated results can agree fairly well with the theoretical

predictions from the edge-based compartmental theory. This

phenomenon indicates that the recovery rate will have a

remarkable effect on the SIR epidemic dynamics with

FIG. 1. Overview of SIR dynamics with different recovery rates l on RRNs.

(a) Final outbreak size R1 vs. k for l¼ 0.2 (squares and short dashed line),

0.6 (circles and solid line) and 1.0 (up triangles and dotted line) with syn-

chronous updating, l ¼ 0:2; 0:6; 1:0 (down triangles and short dashed line)

with asynchronous updating, where symbols and lines represent the numeri-

cal results and theoretical predictions, respectively. (b) Variability D vs. k
for l¼ 0.2 (squares), 0.6 (circles) and 1.0 (up triangles) with synchronous

updating, l ¼ 0:2; 0:6; 1:0 (down triangles) with asynchronous updating,

respectively. The blue arrow points to the numerical effective epidemic

thresholds for l ¼ 1:0 (the other cases behave similarly). The results are

averaged over 102 � 104 independent realizations on 102 different networks.

The parameters are chosen as N ¼ 104 and k¼ 6.
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synchronous updating. In Fig. 1(b), we further plot the vari-

ability D as a function of k to numerically identify the effec-

tive epidemic threshold for the synchronous updating method.

The results show that the peak of the D gradually shifts to the

left as the recovery rate l increases. In other words, the effec-

tive epidemic threshold increases with the decrease of l when

the synchronous updating method is used.

From Fig. 1, we know the recovery rate only alters the

time scale of asynchronous updating spreading dynamics,

but significantly affects the synchronous updating spreading

dynamics. Moreover, we find that the synchronous updating

spreading breaks more easily and has a greater final outbreak

size compared with the case of asynchronous updating (give

a qualitative explanation later). Next, we only focus on the

effect of recovery rate on the synchronous updating spread-

ing dynamics, unless explicitly stated.

Given the value of k, we show the final outbreak size as

a function of l under the synchronous updating method in

Fig. 2, where a small k ¼ 0:23 and a large k ¼ 0:60 are con-

sidered, respectively. As shown in Fig. 2(a), for the small

value of k, the final outbreak size is very tiny when l is

small, while the epidemic can infect a finite proportion of

nodes for large l. For the large value of k, the final outbreak
size for the small l is still smaller than that for large l.

In Fig. 2(b), one can see that the effective epidemic

threshold decreases with l both numerically and theoretically.

The consistency of the simulated results and theoretical pre-

dictions confirms the validity of the edge-based compartmen-

tal theory. To qualitatively understand these phenomena, the

inset of Fig. 2(b) shows the mean transmission probability T
through one edge of an infected node before it recovers,

where T ¼ P1
t¼1 ½ð1� lÞð1� bÞ�t�1b. Once the value of k is

given, T increases with the recovery rate l, which is greater

than T ¼ k=ð1þ kÞ for the case of asynchronous updating.5

In other words, the mean infection ability of a single infected

node is enlarged by large recovery rate. This effect leads to

the decrease of the effective epidemic threshold with the

recovery rate l. It means that when the recovery rate is large,

the epidemic can outbreak even if k is small, while when the

FIG. 2. In the spreading dynamics with synchronous updating, the final out-

break size R1 and effective epidemic threshold kc as a function of recovery rate
l on RRNs. (a) R1 vs. l for k ¼ 0:23 (squares and dashed line) and k ¼ 0:60
(circles and solid line), respectively. (b) kc vs. l. The inset of (b) shows the

mean transmission probability T versus l at k ¼ 0:23 (black squares), k ¼ 0:40
(blue up triangles), and k ¼ 0:60 (red circles). In each figure, symbols and lines

represent the numerical and theoretical results, respectively. The parameters are

chosen as N ¼ 104 and k¼ 6. The results are averaged over 102 � 104 inde-

pendent realizations on 102 different networks.

FIG. 3. In the spreading dynamics with

synchronous updating, the final out-

break size R1 and effective epidemic

threshold kc as a function of recovery

rate l on SFNs with degree exponents

c ¼ 2:5 [(a) and (c)] and c ¼ 4:0 [(b)

and (d)], where the network size is set

as N ¼ 104. (a) R1 vs. l for k ¼ 0:2
(squares and dashed line) and k ¼ 0:4
(circles and solid line), respectively. (b)

R1 vs. l for k ¼ 0:4 (squares and

dashed line) and k ¼ 0:7 (circles and

solid line), respectively. (c) and (d) kc
vs. l. In each figure, symbols and lines,

respectively, represent the numerical

and theoretical results. We perform

102 � 104 independent realizations on

102 different networks.
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recovery rate is small, the epidemic can outbreak just for a

large k.

B. Scale-free networks

We further consider the SIR epidemic dynamics with ar-

bitrary recovery rate on scale-free networks with power-law

degree distribution PðkÞ � k�c, where the synchronous

updating method is implemented. We build scale-free net-

works (SFNs) based on the configuration model.10 The so-

called structural cutoff40 kmax � N1=2 is considered to con-

strain the maximum possible degree kmax on SFNs. Fig. 3

shows the final outbreak size and the effective epidemic

threshold as a function of l for SFNs with c ¼ 2:5 and

c ¼ 4:0. Like the case on RRNs, the final outbreak size

increases with recovery rate when the value of k is given

[see Figs. 3(a) and 3(b)], and the effective epidemic thresh-

old decreases with l [see Figs. 3(c) and 3(d)]. Due to the

weak degree heterogeneity of SFNs with c ¼ 4:0, the effec-

tive epidemic threshold decreases more rapidly with l in

such networks than that for SFNs with c ¼ 2:5. The theoreti-
cal predictions are very close to the simulated results for

SFNs with c ¼ 4:0, while there are some difference between

them for SFNs with c ¼ 2:5. This can be explained by the

fact that for scale-free networks with small degree exponent

c and large network size N, the strong degree heterogeneity

leads to the result that the high degree vertices connect pref-

erentially to low degree ones, and as a consequence, such

networks show disassortative mixing.41 The actual disassor-

tative mixing pattern contradicts with the theoretical assump-

tion that the network is uncorrelated, which results in the

difference between the simulated result and the theoretical

prediction. While for the networks with large degree expo-

nent c ¼ 4:0, the degree distributions are relatively homoge-

neous, thereby the edge-based compartmental theory could

provide the relatively accurate predictions.

C. Real-world networks

To further study the cases of real-world networks with

synchronous updating, we consider four typical real net-

works, which are arXiv astro-ph,42 Facebook (NIPS),43

Pretty Good Privacy,44 and US power grid.45 Several struc-

tural characteristics of these four real example networks are

presented in Table I, where the difference among these net-

works implies the complexity of real network structure to a

certain extent. The numerical and theoretical thresholds of

these networks are shown in Fig. 4, where the results again

show that both the theoretical and numerical thresholds

decrease with the recovery rate. Although the theoretical pre-

dictions agree relatively well with the numerical thresholds

for assortative networks, there is an obvious gap between

them for the Facebook (NIPs) network showing disassorta-

tive mixing. Compared with the cases on other real networks,

we can find that the effective epidemic threshold changes

more rapidly with the recovery rate on the US power grid

TABLE I. Structural characteristics of four real-world networks. N is the network size, kmax is the maximum degree, hki is the average degree, c is the cluster-
ing coefficient, r is the Pearson correlation coefficient, and d stands for the diameter of the network.

Network Category N kmax hki c r d

arXiv astro-ph42 Coauthorship 17903 504 22.004 0.633 0.201 14

Pretty Good Privacy44 OnlineContact 10680 206 4.558 0.266 0.239 24

US power grid45 Infrastructure 4941 19 2.669 0.080 0.003 46

Facebook(NIPS)43 Social 2888 769 2.064 0.027 �0.668 9

FIG. 4. In the spreading dynamics with

synchronous updating, the effective

epidemic threshold kc as a function of

recovery rate l on real-world net-

works. (a) arXiv astro-ph network. (b)

Pretty Good Privacy network. (c) US

power grid network. (d) Facebook

(NIPs) network. In each figure, the

symbol represents the numerical effec-

tive epidemic threshold, whose value

is shown by the left scale mark, and

the solid line represents the theoretical

effective epidemic threshold, whose

value is shown by the right scale mark.

We perform 106 independent realiza-

tions on each real network.
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network. The difference in the variation of the effective epi-

demic threshold for different networks could be attributed to

the complexity of real network structures.

V. CONCLUSION AND DISCUSSION

In this paper, we have made a detailed study of the SIR

model with arbitrary recovery rate. First, we developed an

edge-based compartmental theory to predict the final out-

break size and the effective epidemic threshold for arbitrary

recovery rate. Two basic updating methods are considered:

asynchronous updating and synchronous updating. For the

case of asynchronous updating, the recovery rate only alters

the time scale of SIR spreading dynamics but does not affect

the phase transition and final state. However, for the case of

synchronous updating, the developed theory predicted that

the effective epidemic threshold decreases with the recovery

rate, and the final outbreak size for small recovery rate is

obviously smaller than that for large recovery rate when the

value of k is given.

To verify the theoretical predictions, we considered the

SIR dynamics on RRNs with constant degree. With asyn-

chronous updating, both the effective epidemic threshold and

the final outbreak size remain unchanged for different recov-

ery rates, while the obvious difference in final outbreak size

for different values of l is observed in the synchronous

updating spreading process. We numerically identified the

effective epidemic threshold kc with the variability measure,

which has been confirmed to be effective for identifying the

SIR effective epidemic threshold, and found that kc indeed
decreases with l for the case of synchronous updating. As

the infection and recovery events may happen consecutively

in the synchronous updating process, the mean infection abil-

ity of a single infected node is enlarged by large recovery

rate. The results showed good agreements between the theo-

retical predictions and the simulated results on RRNs. To

explore the university of these conclusions, we further carry

on these studies on scale-free and real-world networks,

where the similar phenomena were observed. Although a

certain gap between the theoretical predictions and the nu-

merical thresholds still exists for some networks with disas-

sortative mixing patterns, the developed theory can indeed

give a relatively accurate prediction of the effective epi-

demic threshold in most cases.

We have theoretically and numerically demonstrated

that with synchronous updating, the effective epidemic

threshold and the final outbreak size of the SIR dynamical

processes are affected by the recovery rate. The results

showed that if one ignores the effect of the recovery rate, it

may lead to the misunderstanding of SIR synchronous updat-

ing dynamics with effective spreading rate k ¼ b=l. Our

work supplemented the existing studies on the effective epi-

demic threshold and provided us with deeper understanding

on the phase transition of epidemic dynamics. It should be

noted that the SIR epidemic of synchronous updating out-

breaks more easily than that of asynchronous updating, and

the final state of synchronous updating tends to that of asyn-

chronous updating when the recovery rate is close to zero.

Moreover, there still exists a certain gap between the

theoretical predictions and the simulated results for some

disassortative networks, and thus the more accurate analytic

approximation of the effective epidemic threshold (e.g.,

message-passing approach21,22) for SIR dynamics with arbi-

trary recovery rate remains an important problem.
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