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Suppression of spin-exchange relaxation in tilted magnetic fields within the geophysical range
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We present a detailed experimental and theoretical study on the relaxation of spin coherence due to the
spin-exchange mechanism arising in the electronic ground states of alkali-metal vapor atoms. As opposed to
the well-explored formation of a stretched state in a longitudinal geometry (magnetic field parallel to the laser
propagation direction) we employ adapted hyperfine-selective optical pumping in order to suppress spin-exchange
relaxation. By comparing measurements of the intrinsic relaxation rate of the spin coherence in the ground state of
cesium atoms with detailed density-matrix simulations we show that the relaxation due to spin-exchange collisions
can be reduced substantially even in a tilted magnetic field of geomagnetic strength, the major application case of
scalar magnetic surveying. This explains the observed striking improvement in sensitivity and further deepens the
understanding of the light-narrowed Mx magnetometer, which was presented recently. Additionally, new avenues
for investigating the dynamics in alkali-metal atoms governed by the spin-exchange interaction and interacting
with arbitrary external fields open up.
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I. INTRODUCTION

Optically pumped magnetometers (OPMs) [1] are based on
the interaction of atomic spins with an external magnetic field
to be measured [2]. The interaction leads to the precession
of the spins, which modifies optical properties of the atoms.
However, to detect the modulation of optical properties of a
whole medium, the spin precession needs to be synchronized.
The first step in such synchronization is optical polarization
of the atoms. The alkali-metal vapor, typically employed
in OPMs, can be efficiently oriented (polarized) by optical
pumping [3] using resonantly tuned circularly polarized light.
In such a case, the precession of spins can be synchronized,
e.g., by a driving radio-frequency (rf) field, and the optical
properties of the vapor get modulated [4]. This synchronization
occurs when the rf-field frequency ωrf coincides with the
Larmor frequency ωL

ωL = gμB

�
B0, (1)

where g is the Landé factor, μB the Bohr magneton, � the
reduced Planck constant, and B0 the modulus of the magnetic
field, giving rise to the resonance in the intensity [5] or
polarization [6] of the laser light transmitted through the cell.

The fundamental sensitivity limit of OPMs is determined
by the spin-projection noise

δB = �

gμB

√
γ2

nV τ
, (2)

where n is the number density of atoms, V is the cell volume, γ2

is the spin-coherence relaxation rate, and τ is the measurement
time. Equation (2) shows that the sensitivity of an OPM
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improves with the number of alkali-metal atoms probed. Thus,
for a given cell volume V , one can push the sensitivity by
heating the magnetometer cell and its alkali-metal reservoir to
increase the atomic vapor density n. However, this increase
in vapor density is accompanied by the growth of the spin-
coherence relaxation rate γ2 as the spin-exchange interaction
[3,7] between the alkali-vapor atoms increases with n. Thus,
eventually the spin-exchange relaxation gets dominant and
the magnetic-resonance linewidth broadens. This sets a limit
on the sensitivity improvement of an OPM and practically
constrains the temperature of the vapor. For a long time the
increase in spin-exchange relaxation presented a major obsta-
cle in further improvement of sensitivity per unit cell volume,
until two ways of suppressing the spin-exchange relaxation
were realized. The problem was mitigated in the spin-exchange
relaxation-free (SERF) magnetometers [8] based on an effect
discovered in the 1970s [9] and in implementations using
the light-narrowing effect [10–14] as introduced by Appelt
et al. [15]. As a consequence OPMs with record-breaking
sensitivities were developed [13,16]. Additionally, the ability
to improve the sensitivity per unit cell volume allows for
miniaturization of magnetometer cells without a great sacrifice
in sensitivity [17,18], which simultaneously offers several
advantages such as the reduced influence of magnetic field
gradients, compactness of the sensor head and the possibility
of a tight spacing of several identical cells for mutual
referencing [19] or highly sensitive magnetic-field imaging
[20,21]. Modern OPMs find application in fields ranging
from magnetocardiography [22] and magnetoencephalogra-
phy [21,23] through magnetorelaxometry of nanoparticles [24]
to tests of fundamental physics [25].

II. SUPPRESSION OF SPIN-EXCHANGE RELAXATION

In contrast to SERF magnetometers that fundamentally
depend on operation near zero ambient magnetic field, the
magnetometers based on the light-narrowing effect can be
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applied for the detection of static magnetic fields up to the
millitesla range. The approach facilitates the suppression
of spin-exchange relaxation by concentrating most of the
alkali-metal atoms into either the magnetic ground-state
sublevel with highest spin angular projection |F,mF 〉 =
|I + 1/2,I + 1/2〉 or the sublevel with lowest spin angular
projection number |F,mF 〉 = |I + 1/2, − (I + 1/2)〉, where
F is the total angular momentum, I is the nuclear spin and mF

is the magnetic quantum number.
In spin-exchange collisions, the total spin of the colliding

atoms is conserved, but the atoms may get redistributed
between the hyperfine ground states F = I ± 1/2 and their
magnetic sublevels mF [26]. When atoms change the hy-
perfine ground-state level they also change their sense of
precession [27]. The distribution and dephasing shortens the
coherence relaxation rate γ2, i.e., broadens the magnetic
resonance width. However, due to total-spin conservation spin-
exchange collisions between two atoms both populating either
the sublevel with highest or the sublevel with the lowest
magnetic quantum number mF cannot redistribute them, thus
dephasing and the relaxation of spin coherence is suppressed.

One way to exploit the light-narrowing effect is the
preparation of a system in a stretched state [15]. In such
a case, a static magnetic field, determining the quantization
axis, is applied in parallel to the propagation direction of
the circularly polarized light. In this configuration, called
the Faraday geometry, optical pumping by strong circularly
polarized σ+ (σ−) light operating simultaneously on the
two hyperfine ground states will concentrate the atoms in
the magnetic sublevel with the highest (lowest) magnetic
number mF = I + 1/2 (mF = −(I + 1/2))1. In this way, for
pumping with completely unresolved hyperfine structure, for
example due to buffer-gas pressure broadening [28] or using a
broadband light source, a very high degree of spin orientation
and almost complete suppression of spin-exchange relaxation
can be achieved [10,11,13].

The other way to employ the light-narrowing effect is
to implement hyperfine-selective optical pumping. This is
usually done by application of an additional laser pumping
the atoms at the F = I − 1/2 hyperfine ground state. This
approach shows a dramatic increase in spin orientation and
thus a gain of the magnetic-resonance signal [18,29].

In the same way, the light-narrowed (LN) Mx-
magnetometer configuration, presented in Ref. [30], allows
operation with just a single, appropriately tuned laser that
selectively pumps on a partly resolved hyperfine structure.
However, besides a strong increase in spin orientation, we
additionally observed a substantial narrowing of the magnetic
resonance, despite operation in the Mx setup [5] with a tilted
magnetic field. In this configuration, the transferring of atoms
into the stretched state |I + 1/2,I + 1/2〉 is limited, as while
being pumped atoms start to undergo Larmor precession and
get redistributed among the ground-state Zeeman sublevels
and subsequently stay prone to the spin-exchange relaxation.

1Hereafter, we focus on the use of σ+-polarized light, which
pumps the atoms towards the |I + 1/2,I + 1/2〉 state. The analog
discussion can be performed for σ−-polarized light pumping towards
the |I + 1/2, − (I + 1/2)〉 state.

Nevertheless, we phenomenologically explained our narrow-
ing effect to arise due to the suppression of spin-exchange
relaxation, yet, at the time, we were not able to investigate
the linewidth behavior in more detail. In particular, to infer
the intrinsic relaxation rate for a given configuration requires
extrapolation to zero laser power [31]. This turned out to
be problematic for the high laser powers needed for the
LN-magnetometer configuration, as reduction of the laser
power not only reduces the power broadening of the magnetic
resonance, but also deteriorates the concentration of atoms
in the F = I + 1/2 hyperfine state, especially in its mF =
I + 1/2 magnetic sublevel, leading to increased spin-exchange
relaxation.

In this paper, we separated these two effects by using a vapor
cell with resolved hyperfine ground states and two independent
lasers: a commonly used pump and an additional, detuned
repump laser. With that, we were able to determine the intrinsic
relaxation rates in dependence on the cell temperature, repump
laser power, and static-magnetic-field orientation. We support
the measurements by detailed density-matrix calculations that
take into account the optical pumping by the two laser fields on
the cesium D1 line, the tilted static magnetic field B0 and the
oscillating radio-frequency field Brf of the frequency ωrf , as
well as the dynamics of spin-exchange relaxation in the ground
state. The dynamical description of the perturbation due to
the spin-exchange collisions is necessary because the spin-
exchange relaxation depends on the population distribution in
the atomic ground state [27]. By solving a proper system of
nonlinear equations, we prove that spin-exchange-relaxation
suppression not only can be achieved in the Faraday geometry
[10–14], but also in other geometries. It should be noted
that while the dependence of amplitude and width of an
optically detected magnetic resonance on the magnetic-field
orientation was explored before, until now the spin-exchange
relaxation has been modeled by a rate that was assumed to be
independent of the static magnetic-field inclination angle [32].
This might be a justified approximation for room-temperature
alkali-vapor cells, but is not appropriate for cells operated
at elevated temperatures and high vapor density, where spin
exchange by far dominates the other relaxation mechanisms
[31]. To our knowledge no quantitative analysis of the dynamic
spin-exchange mechanism in tilted magnetic fields is available
yet.

This paper is organized as follows. After describing
the experiments (Sec. III) and the density-matrix modeling
(Sec. IV) we carried out, results are presented, compared and
discussed in Sec. V, followed by the conclusion (Sec. VI).

III. EXPERIMENTS

A. Experimental setup

The experimental setup is shown in Fig. 1.
We use a microfabricated cylindrical cell (4 mm thick,

4 mm in diameter) filled with Cs-metal (I = 7/2) vapor
and nitrogen as a buffer gas [33]. The density of nitrogen
(0.060 amg) is chosen to be lower than the value determined
to yield the lowest intrinsic magnetic linewidth [31] to ensure
the Cs hyperfine ground states of the 6 2S1/2 level to be
resolved. The hyperfine levels of the 6 2P1/2 excited state
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FIG. 1. Experimental setup: Slightly inclined (α ≈ 2◦) circularly
polarized probe and repump laser beams are both fully illuminating
the Cs cell. The static magnetic field B0 is tilted by angle θ with
respect to the propagation direction of the probe laser. The probe
power is detected by a photodiode (PD). The signal gets transformed
by a transimpedance amplifier (I/U) and recorded by a lock-in
amplifier, which is referenced to the driving rf-field frequency ωrf ,
which is swept across the Larmor frequency ωL of the static magnetic
field B0.

are unresolved. Thus, the transmission spectrum of the cell
shows two separated absorption features (of width 	νcell ≈
3.9 GHz FWHM). The cell gets fully illuminated by two
nearly parallel, circularly polarized (same helicity, residual
ellipticity <1%) laser beams generated by two narrow-band
(	νlaser < 5 MHz � 	νcell) DFB lasers with wavelengths
independently tuned to the specific transitions of the Cs D1 line
(894.6 nm) and individually controlled powers. Throughout
this work, the probe laser is tuned to the absorption center of
the F = 4 → F ′ transitions, while the repump laser is tuned to
the maximum absorption of the F = 3 → F ′ transitions. The
small angle between the beams allows the separate detection
of the probe light transmitted through the cell. The signal
gets amplified by a transimpedance amplifier and its in-phase
(PX) and quadrature (PY) components are extracted by a
lock-in amplifier operating at the first harmonic of the rf-field
frequency ωrf . The rf field is applied parallel to the propagation
direction of the probe light by a pair of Helmholtz coils. The
ambient static magnetic field is controlled in magnitude and
direction by a triaxial Helmholtz-coil system that is placed
inside a threefold cylindrical μ-metal magnetic shield [19].
The cell temperature is set by exposing the lateral silicon
parts of the cell array to fiber-coupled heating laser radiation
(λ = 808 nm) [34] and gets monitored by a nonmagnetic
fiber-optical sensor thermally connected to the cell’s bulk
silicon.

B. Determination of intrinsic relaxation rates

The linewidth of the magnetic resonance is determined by
the spin-coherence (transverse) relaxation rate γ2, which is
limited by several intrinsic relaxation processes induced by
collisions of the atoms with the cell wall and with buffer-gas
particles, and by spin-exchange and spin-destruction collisions
between cesium atoms. As mentioned above, at the cell
temperature and buffer-gas pressure used in the work, the
relaxation due to spin-exchange collisions is the dominating
intrinsic process. However, this relaxation process always
gets superimposed by operational contributions arising due
to power broadening of the magnetic resonance caused by
the interaction of the atoms with the laser light and/or the rf
field. To infer the intrinsic transverse relaxation rate γ20, the

power-broadening contributions have to be avoided. In this
work this is done by using very low rf field amplitudes and by
using the lock-in’s phase signal ϕ, which is immune to rf-field
broadening [35], and by the extrapolation to zero (probe) laser
power.

As the absorption lines of the F = 3 → F ′ and F = 4 →
F ′ transitions do not overlap, the probe laser only detects the
magnetic resonance signal emerging from the F = 4 state.
Furthermore, due to the separation of the two absorption lines,
it is reasonable to determine γ20 (half width at half maximum)
by extrapolation of the probe laser power on F = 4 to zero,
even though at the same time the repump laser is pumping on
F = 3 to depopulate all sublevels of the lower ground state.
We determine the intrinsic (half) linewidth γ20 for a given
repump-laser power from the values γ2 inferred by fits to the
lock-in’s phase signal [35]

ϕ = arctan

(
PY

PX

)
= − arctan

(
δ

γ2

)
, (3)

(with the detuning δ = ωrf − ωL) for several low probe powers
and subsequent extrapolation to zero probe power as described
more in detail in Ref. [31]. As the magnetic resonance width is
always much larger than the nonlinear Zeeman splitting in the
magnetic field (B0 = 50 μT) investigated, the superposition
of the individual Zeeman resonances within a hyperfine state,
as observed in the magnetic resonance spectra, shows up as a
single feature.

IV. SIMULATIONS

The system of the cesium D1 line is modeled as a system
of four hyperfine states: F = 3,4 in ground state 6 2S1/2 and
F ′ = 3,4 in excited state 6 2P1/2. In total, this gives rise to 32
Zeeman sublevels (see Fig. 2). Our ensemble of cesium atoms
can therefore be described by a 32 × 32 density matrix ρ̂ [36].

The time evolution of ρ̂ is governed by the Liouville
equation as adapted from Refs. [2,37,38]

˙̂ρ = 1

i�
[Ĥ ,ρ̂] − 1

2
{�̂,ρ̂} + �̂(ρ̂) + �̂sec(ρ̂). (4)

In this equation, the Hamiltonian Ĥ describes both the
unperturbed atom and its interaction with external fields,
while the matrix �̂ accounts for the uniform relaxation and
depolarization of all atomic states due to effects such as wall-
and buffer-gas collisions (corresponding relaxation rate γuf).
The matrix �̂ describes the repopulation of the ground-state
levels due to the spontaneous decay of the excited states and
due to the uniform relaxation. Details on the formulation of the
operators can be found in the Appendix. �̂sec is the operator
describing the spin-exchange relaxation. Grossetête has shown
that the full dynamics of the spin-exchange mechanism in the
ground state can be described by

�̂sec(ρ̂)

Rsec
= −3

4
ρ̂F + Ŝ · ρ̂F Ŝ + 〈Ŝ〉({Ŝ,ρ̂F } − 2i Ŝ × ρ̂F Ŝ),

(5)

where ρ̂F = TrF ′ ρ̂ is the reduced density matrix of the ground
state, Rsec = nCsvCsσsec is the collision rate, and Ŝ is the
electron-spin operator [15,39] (see Appendix for details).
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FIG. 2. The Cs D1 level system as modeled: Atoms, excited by
circularly polarized probe light and repump light at Rabi frequencies
�pr and �rep, decay back into the ground state at a rate γe. In the
ground state of the atoms the magnetic sublevels are coupled by
Larmor precession (indicated by the curved arrows) driven by a
resonantly tuned rf field at the frequency ωrf near ωL and the Rabi
frequency �rf , the spin-exchange mechanism [Eq. (A24)] at rate Rsec

and uniform relaxation due to wall- and buffer-gas collisions at a
rate γuf (not shown). For clarity some pumping transitions are not
depicted (as indicated by the dots) and allowed decay channels are
shown exemplarily for one excited state only.

Here nCs is the cesium-saturated atomic vapor density, vCs

the relative thermal velocity of the atoms, and σsec is the
spin-exchange cross section.

We define two circularly polarized light fields of equal
helicity, which couple the states F = 4 → F ′ = 3,4 (probe,
frequency ωpr, strength �pr) and F = 3 → F ′ = 3,4 repump,
frequency ωrep, strength �rep) and assume pumping from and
relaxation back into the ground states to be in accordance with
electric-dipole selection rules.2 The small magnetic rf field
Brf is introduced to drive transitions between the ground-state
Zeeman sublevels. Within a given hyperfine level, the sublevels
are assumed to be equally split by the static magnetic field
B0 (absence of the nonlinear Zeeman effect). The angle θ

between B0 and the laser propagation direction k (i.e., the
quantization axis) is varied between θ = 0◦ and θ = 90◦.
The Zeeman splitting of the excited state has been neglected
as it is very small compared to the optical linewidth and
hence does not affect optical-pumping dynamics. Moreover,
the coupling of excited-state sublevels by Brf is off-resonance,
due to the smaller excited-state Landé factor, and thus can be
neglected. To speed up the evaluation of the full density-matrix
system, we further neglected all hyperfine coherences as we
are interested in ground-state Zeeman coherences only.3 We
set up the system using the AtomicDensityMatrix package [40]
and numerically solve the coupled equations in Mathematica

2The nitrogen buffer gas in our cell leads to an effective quenching,
but the pressure is too low to initiate collisional mixing of excited
states [3].

3Hyperfine coherences oscillate at frequencies at least three orders
of magnitude larger than the Larmor frequency and will be filtered
out by lock-in detection.

[41]. After the system has evolved into a steady state, or
more precisely into a state of steady Larmor precession, the
quadrature and in-phase components of the signal given by the
transmitted probe-light intensity are calculated. The magnetic-
resonance signal is obtained by repeating the calculation, while
ωrf is swept step by step across ωL. The evaluation of one
magnetic resonance curve represented by 40 data points at
different detunings δ consumes approximately 15 minutes of
calculation time on a 48-kernel AMD Opteron 6174 machine.
Finally, the resonance linewidth γ2 is determined by fits to
the phase signal [Eq. (A38)] in dependence on δ as done with
experimental data. Values of γ2 are computed at several probe
light powers and used to extrapolate to the intrinsic relaxation
rate γ20 at vanishing probe power.

V. RESULTS

Figure 3(a) shows the measured dependence of γ20 on
the repump power for four distinct cell temperatures and the
corresponding results of the numerical simulation [Fig. 3(b)].
Throughout the paper, the uniform relaxation rate is set fixed
to γuf = 75 Hz, which is, in good approximation, the exper-
imentally expected value in the investigated cell-temperature
range [31].

From the presented data, a narrowing of the magnetic
resonance with increasing repump power compared to the
values at zero repump power, corresponding to the conven-
tional spin-exchange broadened Mx-magnetometer operation,
is apparent. In particular, for the typical Mx configuration
(θ = 45◦) a narrowing by a factor of three is observed at
elevated temperatures, when the transverse relaxation gets
dominated by the spin-exchange interaction. At the lowest cell
temperature shown in Fig. 3(a), the calculated contribution
of wall- and buffer-gas relaxation is only a factor of two
lower than estimated from the spin-exchange relaxation [31].
The slight mismatch of the experimental and simulated
relaxation-rate values can be attributed to the uncertainty
in the determination of the alkali-vapor density. While the
temperature variation of the cell array is very small (±0.1◦C)
due to the large heat capacity of the silicon parts [34],
the absolute measurement of the temperature of the alkali
vapor is difficult. At high temperatures, when the relaxation
is dominated by spin-exchange collisions, an uncertainty in
temperature of ±1◦C leads to a possible variation of the
relaxation rate by 5%. Beyond the laser power maximizing
the narrowing, a slight increase in the intrinsic linewidth is
apparent for increasing repump power in the experimental
data. This is most likely due to the weak coupling of the
off-resonant repump laser to the F = 4 → F ′ transitions. With
rising repump power, the excitation of the F = 4 state by the
repump light increases and introduces power broadening of
the magnetic resonance.

In Fig. 3(b), the simulated relaxation rates are shown in
the dependence on the ratio of the repump Rabi frequency
�rep to the excited-state relaxation rate γe of a single atom and
reveal the narrowing to get in full effect at the same repumping
ratio �rep

γe
≈ 0.1 for all vapor temperatures. This is different

in the experiments, where �rep per atom decreases with cell
temperature due to the increase in atomic vapor density. In
experiments, the repumping rate per atom is a complicated
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FIG. 3. (a) Measured and (b) calculated intrinsic relaxation rate γ20 for distinct cell temperatures in dependence on the repump power and
the repumping ratio �rep/γe, respectively. The magnetic field B0 = 50 μT is tilted by θ = 45◦. Every data point is the result of a second-order
polynomial extrapolation of several low probe powers to γ20 = γ2(�pr = 0). Please note the different x-axis scalings (for details see text). Lines
are to guide the eye.

function of repump power as the light intensity changes across
the length of the cell due to absorption and additionally the
absorption coefficient of the atoms depends on the degree of
the spin polarization [42].

The calculated dependence of the intrinsic magnetic-
resonance linewidth on the repump power and the angle θ

between static magnetic field of 50 μT and laser direction k is
shown in Fig. 4. The results reveal that even at very large angles
the narrowing occurs. Interestingly, the repump power needed
to maximize the narrowing is lower for smaller tilt angles θ

as in this case more atoms get pumped into the stretched state
|4,4〉; when the fraction of atoms pumped into the stretched
state increases, collisions between stretched atoms, which do
not introduce relaxation, get more likely. As in this way also
the distribution of atoms among the ground state sublevels due

FIG. 4. Calculated intrinsic relaxation rate γ20 in dependence
on the angle θ for different values of the repumping ratio �rep/γe

at 120 ◦C. For each data point the probe laser power has been
extrapolated to zero. Lines are to guide the eye.

to spin exchange is reduced, the repump power necessary for
the depletion of the F = 3 state is decreased.

The upper part of Fig. 5 shows the measured and simulated
dependence of the intrinsic relaxation rate γ20 on the angle θ

for high repump power and a repumping ratio maximizing the
narrowing effect, respectively. The narrowing is observed to
strongly depend on θ in both measurements and simulations,
but in any case the linewidth is much less than in the case
without repump laser, i.e., �rep/γe = 0 (see Fig. 5). For
small θ the magnetic linewidth is reduced; in the case of
fully parallel magnetic field (Faraday geometry) the spin-
exchange relaxation is completely suppressed. For large θ

the relaxation rate is maximized, as the magnetic field is
nearly perpendicular to optical pumping axis. For θ = 90◦ the
dark-state mechanism, relying on a magnetic-field component
parallel to photon spin (i.e., in longitudinal) direction, is
virtually absent. Nevertheless, even at the largest tilt angles
a narrowing by almost a factor of 2 is observed. While
the simulated results are shown for a large repumping ratio
�rep/γe = 0.2, again in the measurements the improvement in
narrowing by increasing the repump power is counteracted
by growing power broadening of the magnetic resonance
due to the coupling of the repump laser to the F = 4 → F ′
transitions. This may explain why at high cell temperatures,
when high repump power was used, a part of the experimental
data lies above the theoretical expectations. Simultaneously, at
large tilt angles θ some of the values measured at high vapor
density are even below the calculated (best) expectation. It is
noted that as the spin-exchange rate of Rsec/2π = 5.6 kHz is
much smaller than the Larmor frequency (ωL/2π = 175 kHz),
a SERF-related effect is to be excluded. The inclusion of
a detailed model of the absorption profile of optically very
thick cells (especially at high tilt angles, where the dark-state
mechanism is inhibited) is a matter for future work.

It is interesting to look at the corresponding population
distributions in the ground state, which can be inferred from
the simulations. The lower part of Fig. 5 shows the calculated
population distributions at T = 110 ◦C for a large and a small
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FIG. 5. Top: Measured (circles, squares, triangles) and calculated
(lines) intrinsic relaxation rate γ20 as a function of the angle θ

for distinct cell temperatures at high repump powers and at a
repumping ratio of �rep/γe = 0.2 (solid lines) and �rep/γe = 0
(dashed lines). In experiments, the repump power is set to minimize
the intrinsic linewidth at θ = 45◦ at each cell temperature. The
linewidth gets reduced for decreasing θ as the Faraday geometry
is approached, but the narrowing effect of the magnetic resonance
is significant in the complete range of angles investigated. Bottom:
Population distributions ρ̂FmF ,FmF

calculated for T = 110 ◦C at the
correspondingly lettered data points (stars) for a large (θ = 80◦) and a
small angle (θ = 10◦) with (�rep/γe = 0.2) and without (�rep/γe = 0)
the action of a strong repump laser. The population distributions were
calculated using a very low probe power (�pr/γe = 10−4).

angle θ with and without the action of a strong repump
laser.

To condense the population distributions shown in Fig. 5,
we may define the population P and the orientation O in the
hyperfine manifold F as

PF =
∑
mF

ρ̂FmF ,FmF
(6)

and

OF = 1

F

∑
mF

mF ρ̂FmF ,FmF
. (7)

Table I compares the calculated quantities with and without
repumping for a small and a large angle θ . Without repumping
the magnetic sublevels of the ground state are very nearly
equally populated and the distribution does not depend on the
angle θ . The residual orientation (induced by the very weak

TABLE I. Comparison of the degree of population PF and
orientation OF of the hyperfine ground states at small and large angle
θ with (�rep/γe = 0.2) and without (�rep/γe = 0) repump laser. The
columns correspond with the lettered data points in Fig. 5.

Without repumping With repumping

θ = 80◦ θ = 10◦ θ = 80◦ θ = 10◦

Fig. 5 (a) (b) (c) (d)

P3 0.4376 0.4377 8.05 × 10−4 2.33 × 10−4

P4 0.5624 0.5623 0.9992 0.9998
O3 1.06 × 10−5 3.41 × 10−4 1.36 × 10−5 8.66 × 10−5

O4 1.87 × 10−5 6.19 × 10−4 0.0194 0.8217

probe light) is very low and would vanish for zero probe-laser
power. With strong repumping the population is concentrated
in the F = 4 states and the narrowing depends on the angle
θ . Nevertheless, even in the case of a large tilt angle θ = 80◦,
when the stretched-state mechanism is not effective and the
atoms are heavily redistributed among F = 3, which leads to a
rather small orientation of about 2%, a narrowing to 0.59 of the
magnetic linewidth without repumping is observed. At a small
tilt angle θ = 10◦ the stretched-state mechanism can work very
efficiently, resulting in a high degree of orientation (82%) in
F = 4 and a narrowing of the magnetic linewidth to 0.22 of the
width without repumping. The degree of narrowing depends
on the ratio between the uniform relaxation rate γuf and the
spin-exchange relaxation rate, and thus increases with cell
temperature when spin-exchange relaxation gets increasingly
dominant.

In practical magnetometer operation the probe laser power
is increased to optimize the slope of magnetic-resonance
signal. In this case, the probe laser on the one hand power
broadens the magnetic linewidth, but on the other hand also
induces a higher degree of orientation in F = 4, giving rise to a
narrowing due to the stretched-state mechanism. The detailed
investigation of this interplay in our system with respect to the
optimization of the magnetometer sensitivity is a subject for
further studies.

VI. CONCLUSION

The impact of spin-exchange collisions on the relaxation
of polarized Cs vapor was studied in the—experimentally
important, but theoretically challenging—general case of a
tilted magnetic field. We demonstrate, that even in the case of
a nonzero tilt angle, when the atoms are redistributed among
the sublevels of a hyperfine state due to Larmor precession,
the magnetic linewidth can be narrowed substantially by
suitable hyperfine repumping on the alkali ground-state levels.
The light-narrowing effect is revealed not to be limited to the
case of a longitudinal (Faraday) geometry. The experimental
data shows, in consistence with the density-matrix simulations,
that the narrowing effect strongly depends on the repump
power on the lower hyperfine ground state and on the tilt angle
of the magnetic field. While in this paper hyperfine-selective
pumping on the cesium D1 line is employed to mimic the LN-
magnetometer operation, the suppression of spin-exchange
relaxation may also be observable using different repumping
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schemes, e.g., using the cesium D2 line for probing and
repumping [12,43] or using D1 for probing and D2 for
pumping [44] or vice versa [45]. The presented phenomenon
of spin-exchange-relaxation suppression is not restricted to the
use of cesium, but works for the other alkali-metal atoms as
well. In contrast to the SERF technique, our approach is not
limited to operation at near-zero magnetic field, thus is also
ready to work in the μT range as well as in fields much higher
than the Earth’s magnetic field strength. This allows for further
sensitivity improvement of atomic dc magnetometers in major
application scenarios without the need of elaborate shielding
of the external magnetic fields.
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APPENDIX: DETAILS ON THE IMPLEMENTATION OF
SIMULATIONS

1. Liouville equation

To describe dynamics of atoms, interacting with light, static
and oscillating magnetic fields, and frequent atom-atom (spin-
exchange) collisions, we facilitate a density-matrix formalism.
The temporal evolution of the density matrix ρ̂ is given by the
Liouville equation

˙̂ρ = − i

�
[Ĥ ,ρ̂] − 1

2
{�̂,ρ̂} + �̂(ρ̂) + �̂sec(ρ̂), (A1)

where Ĥ is the full Hamiltonian of the system, �̂ is
the relaxation operator, �̂(ρ̂) is the repopulation operator,
�̂sec(ρ̂) is the spin-exchange operator, incorporating relaxation
and repopulation due to spin-exchange collisions, and �

is the Planck constant. The symbol [ ,] denotes the com-
mutator and the symbol { ,} denotes the anticommutator.
Determination of temporal evolution of the density matrix
enables one to calculate light observables. Particularly, one
can calculate the absorption of circularly polarized probe
light traversing the medium, i.e., the signal detected in our
experiment.

2. Hamiltonian

The Hamiltonian Ĥ , appearing in the first term of Eq. (A1),
is given by

Ĥ = Ĥ0 + Ĥint, (A2)

where Ĥ0 is the unperturbed part of the Hamiltonian, describ-
ing the energy structure of the ground (unprimed quantities)
and the excited (primed quantities) states

Ĥ0 =
∑
FmF

�ωFmF
|FmF 〉〈FmF | +

∑
F ′m′

F

�ωF ′m′
F
|F ′m′

F 〉〈F ′m′
F |

(A3)

with ωFmF
and ωF ′m′

F
being the energy of the ground

state |FmF 〉 and excited state |F ′m′
F 〉, respectively, where

F and F ′ denotes the total atomic angular momentum
quantum numbers of the ground and excited levels and mF

and m′
F are the corresponding magnetic quantum numbers

of the levels.4 We choose the basis of hyperfine states
according to

|F,mF 〉 = |4,+4〉, . . . ,|4,−4〉,|3,+3〉, . . . ,|3,−3〉,
|4′,+4′〉, . . . ,|4′,−4′〉,|3′,+3′〉, . . . ,|3′,−3′〉.

(A4)

The interaction part of the Hamiltonian Ĥint, given by

Ĥint = Ĥlaser + ĤB, (A5)

incorporates interaction of the atoms with laser light Ĥlaser =
−d̂ · E and external magnetic fields ĤB = −μ̂ · B, where
E and B are the electric and magnetic fields and d̂ and μ̂

denote the electric- and magnetic-dipole-moment operators,
respectively.

a. Light-field Hamiltonian

In our experiment, the atoms are subject to two
beams (repump and probe) of left-hand circularly polarized
light

E(t) = Erep[ex cos(ωrept) + ey sin(ωrept)]

+Epr[ex cos(ωprt) + ey sin(ωprt)]

= Erep√
2

(e+eiωrept + e−e−iωrept )

+ Epr√
2

(e+eiωprt + e−e−iωprt ), (A6)

where Epr and Erep are the amplitudes and ωpr and ωrep are the
frequencies of the probe and repump light, respectively and
e+ and e− are two orthogonal circular unit vectors.5 Using
Eq. (A6) to rewrite the light-atom interaction Hamiltonian
Ĥlaser, one obtains

Ĥlaser = − d̂+Erepe
iωrept

√
2

− d̂−Erepe
−iωrept

√
2

− d̂+Epre
iωprt

√
2

− d̂−Epre
−iωprt

√
2

, (A7)

where d̂+ and d̂− are the electric-dipole-moment operators
corresponding to the transitions with a change of the magnetic
quantum number mF by 1 or −1, respectively. Applying
the transition rules, one can give an explicit form of the
light-atom interaction Hamiltonian Ĥlaser in the experimental

4Hereafter, we assume the energy of the |3 0〉 state as a reference
energy, i.e., ω30 = 0.

5The relation between spherical and Cartesian basis is given by

(
e+
e0
e−

) = 1/
√

2(
−ex − iey√

2ez

ex − iey

), where ex,y,z are the unit vectors in the

Cartesian coordinate system.
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system

Ĥlaser = −Erep√
2

∑
F ′,m3

(
d

m3,m3+1
3,F ′ eiωrept |3 m3〉〈F ′ m3 + 1|

+ d
m3,m3−1
3,F ′ e−iωrept |3 m3〉〈F ′ m3 − 1|)

− Epr√
2

∑
F ′,m4

(
d

m4,m4+1
4,F ′ eiωprt |4 m4〉〈F ′ m4 + 1|

+ d
m4,m4−1
4,F ′ e−iωprt |4 m4〉〈F ′ m4 − 1|), (A8)

where summations run over all Zeeman sublevels of the F = 3
ground state coupled with the repump and all sublevels of the
F = 4 states coupled with the probe and all sublevels of the
excited-state hyperfine levels (F ′ = 3,4).6 The d

mF ,mF ±1
F,F ′ term

can be calculated using the Wigner-Eckart theorem

d
mF ,mF ±1
F,F ′ = 〈F mF |d|F ′ mF ± 1〉

= 〈F‖d‖F ′〉(−1)F−mF

(
F 1 F ′

−mF ±1 mF ± 1

)
,

(A9)

where (. . .

. . .) is the Wigner 3-j symbol and 〈F‖d‖F ′〉
is the reduced electric-dipole matrix element given

by

〈F‖d‖F ′〉 = (−1)J
′+I+F+1

√
(2F + 1)(2F ′ + 1)

×
{
J ′ F ′ I

F J 1

}
〈J‖d‖J ′〉. (A10)

Here, I is the nuclear spin, J and J ′ are the electron angular
momentum of the ground and excited state, respectively, and

{· · ·· · ·} is the Wigner 6-j symbol. The last term in Eq. (A10),

〈J‖d‖J ′〉, can be calculated from

Rγe = 4

3

ω3
JJ ′

2J ′ + 1
〈J‖d‖J ′〉2, (A11)

where R is the branching ratio for the J ′ → J transition, γe

is the excited-state relaxation rate, and ωJJ ′ is the transition
frequency between two fine states (ground and excited states).
To calculate slow (much slower than optical frequency ωev �
ωrep) evolution of the density-matrix, we apply the rotating-
wave approximation (RWA) to the Hamiltonian Ĥlaser [38]

Ĥ RWA
laser = U+ĤlaserU − iU+ dU

dt
, (A12)

where U is a diagonal unitary transformation matrix, to
remove the fast oscillating component from the density-matrix
evolution. To transform the system to the rotating frame, the
matrix U takes the form

U =

1 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 e−iΔωt . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . e−iΔωt 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 e−iωprt . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0 0 . . . e−iωprt 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 e−iωrept . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . e−iωrept

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A13)

where 	ω = ωpr − ωrep is the probe-repump frequency difference and color rectangles mark the submatrices corresponding to
the ground and excited hyperfine levels. Substituting U into Eq. (A12), one can write the light-atom interaction Hamiltonian in

6In derivation of Eq. (A8), it was assumed that the pressure and Doppler broadenings of the optical transitions are significantly smaller
than the ground-state hyperfine-level splitting but larger than excited-state hyperfine-level splitting. Thereby, each light beam couples a single
ground-state level with both excited-state levels.
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its RWA form

ĤRWA
laser =

0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

... M3,3′ M3,4′

0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

... M4,3′ M4,4′

0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0

M3′,3 M3′,4
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0

M4′,3 M4′,4
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A14)

where the block matrices MF,F ′ couple the ground and excited hyperfine states and are given by

M3,3′ = Erep

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 d
−3,−2
3,3′ 0 . . . 0 0 0

0 0 d
−2,−1
3,3′ . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 d
1,2
3,3′ 0

0 0 0 . . . 0 0 d
2,3
3,3′

0 0 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A15)

M4,4′ = Epr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 d
−4,−3
4,4′ 0 . . . 0 0 0

0 0 d
−3,−2
4,4′ . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 d
2,3
4,4′ 0

0 0 0 . . . 0 0 d
3,4
4,4′

0 0 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A16)

M3,4′ = Epr

⎛
⎜⎜⎜⎝

0 0 d
−3,−2
3,4′ . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . d
2,3
3,4′ 0

0 0 0 . . . 0 d
3,4
3,4′

⎞
⎟⎟⎟⎠, (A17)

M4,3′ = Erep

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d
−4,−3
4,3′ 0 . . . 0

0 d
−3,−2
4,3′ . . . 0

...
...

. . .
...

0 0 . . . d
2,3
4,3′

0 0 . . . 0
0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A18)

and MF ′,F = M�
F,F ′ . Substituting Eq. (A14) into Eq. (A6) enables one to calculate evolution of the density matrix due to the

electric field of light.
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b. Magnetic-field Hamiltonian

In our system, the magnetic field consists of two parts: a static field B0, and a field Brf applied along ez (e0) oscillating at the
frequency ωrf , which in the spherical basis takes the form7

B = B0 + Brf =

⎛
⎜⎝

− i√
2
B0 sin θ

B0 cos θ + Brf cos ωrf t

−i
√

2B0 sin θ

⎞
⎟⎠ = �

gF μB

⎛
⎜⎜⎝

− i√
2
ωL sin θ

ωL cos θ + �rf cos ωrf t

− i√
2
ωL sin θ

⎞
⎟⎟⎠, (A19)

where gF is the gyromagnetic factor of the hyperfine level
F , μB is the Bohr magneton, �rf and ωL are the Larmor
frequencies of the oscillating and static magnetic fields,
respectively, and θ is the angle between the field B0 and
the light propagation direction (ez). The magnetic-interaction
Hamiltonian ĤB (acting in our model on the ground states
only)8 is given by

ĤB = −μ̂ · B = −gF μB

�

∑
F,mF ,m′

F

〈FmF |F|Fm′
F 〉 · B.

(A20)

The angular momentum operator in dipole approximation (in
the spherical basis) can be evaluated using the Wigner-Eckart
theorem

〈FmF |F|Fm′
F 〉 = 〈F‖F‖F 〉(−1)F−mF

(
F 1 F

−mF q m′
F

)
,

(A21)

with q = 0, ± 1 for the spherical components and the reduced
matrix element of the angular momentum operator

〈F‖F‖F 〉 =
√

F (F + 1)(2F + 1). (A22)

3. Relaxation and repopulation

The relaxation operator �̂, accounting for uniform relax-
ation of all states (ground and excited) at a rate γuf and an
additional relaxation of the excited states at a rate γe, is given
by [2]

�̂ =
∑
FmF

γuf|FmF 〉〈FmF | +
∑

F ′mF ′

(γuf + γe)|F ′m′
F 〉〈F ′m′

F |.

(A23)

Equation (A23) shows that the relaxation operator �̂ only
concerns the density-matrix independent relaxation processes
such as collisions with the walls and relaxation of the excited
state due to spontaneous emission but excludes processes
depending on the density matrix, particularly, relaxation due to

7Since there are no preferred directions in the plane perpendicular to
the propagation direction, without loss of generality, here, we assume
that the static magnetic field is oriented in the yz plane.

8For the magnetic field explored in this work, the magnetic-sublevel
splitting is small compared to the excited-state relaxation rate γe. As
a result, the splitting in the excited state can be neglected in our
considerations, which reduces the computational power required to
solve the model.

spin exchange collisions. The spin-exchange relaxation (and
repopulation) is described by the operator �̂sec(ρ̂) [39,46]

�̂sec(ρ̂)

Rsec
= −3

4
ρ̂F + Ŝ · ρ̂F Ŝ + 〈Ŝ〉({Ŝ,ρ̂F } − 2i Ŝ × ρ̂F Ŝ),

(A24)

where ρ̂F = TrF ′ ρ̂ is the reduced density matrix of the ground
state (both ground-state hyperfine levels) with TrF ′ ρ̂ denoting
the partial trace of ρ̂ over both excited-state hyperfine levels.
Rsec is the spin-exchange-collision rate, which, under our
experimental conditions, takes the form Rsec = nCsvCsσsec,
where nCs is the cesium-saturated atomic-vapor density, vCs

is the relative thermal velocity of the atoms, and σsec is the
spin-exchange cross section. The electron-spin operator Ŝ in
the |FmF 〉 representation takes the form

Ŝ = �

2

⎛
⎝�x

�y

�z

⎞
⎠, (A25)

where is the �i are the generalized 2(2I + 1)-dimensional
Pauli matrices of the ground-state hyperfine levels with F =
I ± 1/2. Their matrix representation can be written as

�i =
∑

mI ,m
′
I ,mJ ,m′

J

〈ImI 1/2mJ |FmF 〉 1(2I+1)×(2I+1)

⊗ σi 〈Im′
I 1/2m′

J |F ′m′
F 〉, (A26)

where σi refers to the standard (2 × 2) Pauli matrices with i =
{x,y,z}. These generalized Pauli matrices (A26) for 133Cs (I =
7/2) are provided at the end of the Appendix. Repopulation of
the ground states9 is given by the two-term operator �̂(ρ̂)

�̂(ρ̂) = �̂uf + �̂se(ρ̂), (A27)

where �̂uf is the repopulation operator, accounting for uniform
relaxation of the ground-state sublevels (e.g., relaxation of
atoms due to wall collisions, collisions with the buffer gas
particles, and due to flow of unpolarized atoms from cell’s
alkali metal reservoir) and �̂se(ρ̂) is the spontaneous-emission
repopulation operator. In cesium, the first term takes the form

�̂uf = γuf

4I

∑
Fm

|FmF 〉〈FmF |. (A28)

In contrast to the uniform relaxation, where the relaxation
does not depend on the density matrix, the repopulation due to

9Note that there are no repopulation of the excited state, i.e.,
�̂(ρ̂)|F ′ ≡ 0.
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FIG. 6. In-phase (OX) and quadrature (OY) lock-in signals simulated as a function of the rf-field frequency detuning (other simulation
parameters are summarized in Table II). The signals were simulated (a) for the repump light switched off, �rep = 0, and (b) with the repump
light turned on, �rep = 100 MHz. (We take the different coupling strength of the laser light field to the atomic hyperfine transitions into account
by weighting with their respective reduced dipole matrix elements.) The dots are results of the calculations and and lines are to guide the eye.

spontaneous emission depends on the excited-state part of the
density matrix

�̂se(ρ̂) =
∑

FmFi
mFj

�FmFi
,FmFj

(ρ̂)|FmFi
〉〈FmFj

|, (A29)

where �FmFi
,FmFj

(ρ̂) is given by [2]

�Fmi,Fmj
(ρ̂)

= γe

∑
F ′

(2J ′ + 1)(2F + 1)

{
J F I

F ′ J ′ 1

}2

×
∑

m′
im

′
j q

〈Jmi1q|J ′m′
i〉〈Jmj 1q|J ′m′

j 〉ρ̂F ′m′
i ,F

′m′
j
, (A30)

with 〈. . . | . . . 〉 being the Clebsch-Gordan coefficient. Combin-
ing Eqs. (A23)–(A30) enables one to account for all relaxation
and repopulation processes in our system.

4. Observable

The discussion provided in Secs. II and III enables one to
determine the evolution of the density matrix in our system.
This offers the ability to calculate the observable correspond-
ing to experimental quantities detected in our experiment.
The laser light transmitted through the cell is affected by the
optical polarization of the vapor. The expectation value of the
polarization of the medium at a vapor number density n is
given by

P = n Tr(ρ̂ d̂). (A31)

At the same time one can write the medium polarization in
terms of the real parameters P1, P2, P3, and P4 as

P = Re{ei(k·r−ωt−φ)[(P1 − iP2)ex + (P3 − iP4)ey]}, (A32)

where k is the wave vector of the probe [38]. In the experiment,
we detect absorption of the σ+-polarized probe light tuned
to the F = 4 → F ′ = 3,4 transitions. The absorption of the

probe light for a unit length is given by [38]

A(t) = 1

Epr

dEpr

dl
(t) = 1√

2

∑
F ′

(P2 + P3)

= P(t)4→3′ + P(t)4→4′ . (A33)

Combining Eqs. (A31) and (A32) allows one to rewrite
Eq. (A33) and calculate the absorption in the cell of
length l

Epr = E0 exp[(P(t)4→3′ + P(t)4→4′)l], (A34)

where

P(t)F→F ′ = −nπωpr〈F ||d||F ′〉

× Im

[∑
mF

〈FmF 11|F ′mF + 1〉ρFmF ,F ′mF+1

]
.

(A35)

Here we assumed that polarization of a whole medium is a
simple product of a polarization of a single atom and the vapor
density number n. In general, not all atoms but only atoms
that are in resonance with the probe and repump beams (due
to the laser tuning and the Doppler shift) contribute to the
optical signals. However, in our experimental arrangement,
besides the alkali metal (cesium) atoms, the vapor cell is
additionally filled with a buffer gas (N2). The pressure of the
buffer gas is orders of magnitude larger than the pressure of
the alkali metal vapor, so the alkali-metal atoms predominantly
collide with nitrogen. Such collisions change the velocity of
the alkali-metal atoms and hence their Doppler detuning, but
they preserve the polarization of the colliding atoms. In turn,
all atoms in the cell interact with the repump light and are
polarized. Similarly, all atoms contribute to the change of the
properties of the probe light. Thereby, in our experimental
system, not a fraction of the total number of atoms but, in
fact, all atoms contribute to the absorption of the probe light
(no integration over the speed of atoms is required) and the
signal is a product of the single atom polarization and the
vapor density number. Finally, integration of the observable
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A(t) over one modulation period Trf = 2π
ωrf

of the oscillating
magnetic field (assuming steady-state of the system) enables
determination of in-phase and quadrature locking signals:

OX = 1

Trf

∫ t

t−Trf

sin(ωrf t
′)A(t ′)dt ′, (A36)

OY = 1

Trf

∫ t

t−Trf

cos(ωrf t
′)A(t ′)dt ′. (A37)

The lock-in’s phase signal, from which we infer the spin-
coherence relaxation rate γ2 is given by

ϕ = − arctan

(
δ

γ2

)
= arctan

(OY

OX

)
, (A38)

where δ is the rf-field frequency detuning.

5. Results of the simulations

Figure 6 shows two signals simulated based on our model.
To demonstrate the effect of narrowing of the observed signals
(reduction of the spin-exchange relaxation), the signals were
simulated with only a weak probe beam (a) and with both the
probe and the repump beam turned on (b) (other simulation

TABLE II. Quantities used for simulations of the signals.

Quantity name Symbol Value

Larmor frequency of the static field ωL/2π 175 kHz
Static magnetic field B0 50 μT
Magnetic-field-orientation angle θ 45◦

Larmor frequency of the rf field �rf/2π 100 Hz
Uniform relaxation rate γuf/2π 75 Hz
Probe-light Rabi frequency �pr/2π 1 MHz
Temperature T 120 ◦C
Alkali vapor density nCs 4.95 × 1013 cm−3

Rel. thermal vel. of alkali-metal atoms v̄Cs 3.5 × 102 m/s
Excited-state relaxation ratea γe/2π 1 GHz
Spin-exchange cross section σsec 2.0 × 10−14 cm2

Ground-state hyperfine splitting δω/2π 9.19 GHz
Gyromagnetic ratio γF /2π 3.5 kHz/μT
Nuclear spin I 7/2

aIncluding collision-induced relaxation.

parameters are listed in Table II). The presented data shows
that application of the repump light resulted in narrowing of the
resonance (as observed in the experiment). This is a result of
reduction of the spin-exchange-collision relaxation associated
with pumping atoms into a stretched state.

6. Pauli matrices of the cesium ground state

Using Eq. (A26) one can calculate the generalized Pauli
matrices �i for 133Cs (I = 7

2 ):

�x = 1

4
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0 0 0 0 0 2
√

7 0 0 0 0 0 0

2 0
√

7 0 0 0 0 0 0 0
√

21 0 0 0 0 0

0
√

7 0 3 0 0 0 0 0 −1 0
√

15 0 0 0 0

0 0 3 0
√

10 0 0 0 0 0 −√
3 0

√
10 0 0 0

0 0 0
√

10 0
√

10 0 0 0 0 0 −√
6 0

√
6 0 0

0 0 0 0
√

10 0 3 0 0 0 0 0 −√
10 0

√
3 0

0 0 0 0 0 3 0
√

7 0 0 0 0 0 −√
15 0 1

0 0 0 0 0 0
√

7 0 2 0 0 0 0 0 −√
21 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −2
√

7

2
√

7 0 −1 0 0 0 0 0 0 0 −√
3 0 0 0 0 0

0
√

21 0 −√
3 0 0 0 0 0 −√

3 0 −√
5 0 0 0 0

0 0
√

15 0 −√
6 0 0 0 0 0 −√

5 0 −√
6 0 0 0

0 0 0
√

10 0 −√
10 0 0 0 0 0 −√

6 0 −√
6 0 0

0 0 0 0
√

6 0 −√
15 0 0 0 0 0 −√

6 0 −√
5 0

0 0 0 0 0
√

3 0 −√
21 0 0 0 0 0 −√

5 0 −√
3

0 0 0 0 0 0 1 0 −2
√

7 0 0 0 0 0 −√
3 0

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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�y = i

4
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 0 0 0 0 0 0 0 −2i
√

7 0 0 0 0 0 0

2 0 −√
7 0 0 0 0 0 0 0 −√

21 0 0 0 0 0

0
√

7 0 −3 0 0 0 0 0 − 0 −√
15 0 0 0 0

0 0 3 0 −√
10 0 0 0 0 0 −√

3 0 −√
10 0 0 0

0 0 0
√

10 0 −√
10 0 0 0 0 0 −√

6 0 −√
6 0 0

0 0 0 0
√

10 0 −3 0 0 0 0 0 −√
10 0 −√

3 0

0 0 0 0 0 3 0 −√
7 0 0 0 0 0 −√

15 0 −
0 0 0 0 0 0

√
7 0 −2 0 0 0 0 0 −√

21 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 −2
√

7

2
√

7 0 0 0 0 0 0 0 0
√

3 0 0 0 0 0

0
√

21 0
√

3 0 0 0 0 0 −√
3 0

√
5 0 0 0 0

0 0
√

15 0
√

6 0 0 0 0 0 −√
5 0

√
6 0 0 0

0 0 0
√

10 0
√

10 0 0 0 0 0 −√
6 0

√
6 0 0

0 0 0 0
√

6 0
√

15 0 0 0 0 0 −√
6 0

√
5 0

0 0 0 0 0
√

3 0
√

21 0 0 0 0 0 −√
5 0

√
3

0 0 0 0 0 0 0 2
√

7 0 0 0 0 0 −√
3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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�z = 1

4
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4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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7 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 −2
√

3 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 −√
15 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 −√
15 0 0

0 0 0 0 0 0 −2 0 0 0 0 0 0 0 −2
√

3 0

0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 −√
7

0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0

0 −√
7 0 0 0 0 0 0 0 −3 0 0 0 0 0 0

0 0 −2
√

3 0 0 0 0 0 0 0 −2 0 0 0 0 0

0 0 0 −√
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0 0 0 0 0 −√
15 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −2
√

3 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 −√
7 0 0 0 0 0 0 0 3

⎞
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