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Abstract

This documentation wants to be a “user manual” for the N-light-N frame-
work1. The goal is not only to introduce the framework but also to provide
enough information such that one can start modifying and upgrading it after
reading this document. This document is divided into five chapters.

The main purpose of Chapter 1 is to introduce into our notation and for-
mulation. It refers to further literature for deeper introductions into the
theory. Chapter 2 gives quick-start information allowing to start using the
framework in an extremely short time. Chapter 3 provides an overview of
the framework’s architecture. Interactions among different entities are ex-
plained and the main work flow is provided. Chapter 4 explains how to
write a custom XML script for the framework. Proper usage of all imple-
mented commands is described. Finally, Chapter 6 explains how to extend
the framework by creating your own script commands, layers (encoder/de-
coder), and autoencoders. Having read both Chapters 3 and 6 before start-
ing to extend the framework is extremely recommended.

As the framework will evolve, this documentation should be kept up-to-
date2.

1Available at: https://github.com/seuretm/N-light-N
2The most recent version can be found at

https://github.com/seuretm/N-light-N/blob/master/N-light-N.pdf
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Foreword

The foundations of neural networks are surprisingly old, as the first artificial
neural networks date from the 1940s with the development of the McCulloch-
Pitts neuron [1, 2, 3]. Since then, they have been used in many domains,
including speech recognition [4], pattern recognition [5], stock market pre-
diction [6], ... Decades of increasingly active research in this field have shown
that artificial neural networks have a huge potential, and also that there is
still much to learn.

Novel training methods and faster computers now allow to train and use
neural networks which are much larger than it was feasible in the past.
The term “deep learning” refers to the use of neural networks to learn data
representation with different levels of abstraction, which can then be used
for machine learning purpose.

Many libraries and deep learning frameworks are being used with increas-
ing success in many fields. Accordingly to Bahrampour et al. [7], the most
frequently used ones are Caffe [8], Theano [9], Torch7 [10], TensorFlow [11],
and deeplearning4j3. These libraries allow for efficient training of deep neu-
ral networks with high parallelization and implementation on graphic cards,
making them very useful, especially for image processing.

However, such optimizations have a two-fold cost for research and analysis.
First, the performance optimization are obstacles for adaptability by non-
experts, as high programming skills are required. Second, these optimiza-
tions decrease the users’ analysis capabilities, and thus generate difficulties
for a deeper understanding of the networks.

Thus, there is a gap that N-light-N aims to fill, as highly-adaptable frame-
work for Convolutional Neural Networks (Cnn) allowing not only deep mod-
ifications with minimal effort, but also investigations on the inner working
of the networks with ease. For this purpose, N-light-N follows a simplicity
principle: base components that any user might some day want to modify
should be kept as simple as possible, even if speed has sometimes to be
sacrificed. Thus, barriers to entry for researchers are kept very low. It is

3http://deeplearning4j.org/
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the authors’ hope that N-ligne-N will lead to exciting discoveries about deep
learning.

A more scientific presentation of N-light-N together with experimental vali-
dation and analysis is presented in [12]. This framework has also been used
in published research on historical document analysis [13, 14, 15], historical
document images clustering [16], feature selection [17], and for Arabic text
detection in video frames [18]. Ongoing research is being done on novel meth-
ods for Autoencoder (AE) training, central multilayer features usage [19],
document graph [20] edge labelling, deeper understanding of historical doc-
ument image clustering, and novel kinds of neuron-like units.
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Chapter 1

Theoretical Foundations

This chapter is a refresh for those who are already familiar with the topics
of machine learning, autoencoders and neural networks. Shall this not be
the case, you can read this as quick introduction but do not think that this
short theory somehow replace a proper study of the subject. For getting a
solid knowledge about deep learning, we recommend the following books. As
introduction to neural networks, we recommend reading “Neural networks:
a systematic introduction” [2]. A thorough historical survey of deep learn-
ing, “Deep Learning in Neural Networks: An Overview” [3], provides both
information about past and current research on neural networks. Finally,
“Deep Learning” [21] is a course covering most, if not all, aspects modern
deep learning.

Stacked Convolutional Autoencoders (Scaes) are based on three principles
which will be described in the following sections: autoencoding, convolving
and stacking.

1.1 Autoencoding

AEs are mostly used for computing feature vectors which can then be used
for machine learning purpose. They are composed of two functions:

~y = E (~x) and ~x′ = D (~y) such that ~x ≈ ~x′.

The idea is to take an input vector ~x, encode it into ~y and then decode it
again to ~x′ expecting to have only little differences with the initial input ~x.
The encoding and decoding functions are learned during the training of the
AE, where the training error is the difference between ~x and ~x′.

An AE can be represented with the typical black box often used in computer
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science. Figure 1.1 shows an AE taking as input a 3×3 pixels patch from a
one-channel image and outputs a four-dimension vector.

Figure 1.1: An autoencoder with his inputs and outputs. The arrows
correspond to the data flow. Red arrows correspond to encoding the inputs,
and blue arrows to decoding the outputs.

There are many different kinds of AE1, and while we mostly focus on the
neural network terminology for simplicity reasons, you can consider an au-
toencoder to be “anything that can encode and decode data”.

1.1.1 Dimension of the Encoded Representation ~y

The dimension of the encoded representation ~y is not fixed as it depends on
the architecture of the AE itself. We have the three cases:

|~y| < |~x| → the encoded output is a is a compressed representation of ~x.
This is particularly useful because if ~x ≈ ~x′ holds, it means as the
input can be reconstructed with a fair accuracy with less values,
some unnecessary information is discarded. In other words, all
information lost during dimensionality reduction are not needed
and thus we have that ~y is the “essence” of ~x. In computer science
we often call this “essence”: features.

|~y| = |~x| → the encoded output is the identity ~x. This is in general not
used as the AE could just learn the identity function and would
therefore not lead to useful features.

|~y| > |~x| → might be done when training the AE to generate a sparse2

representation of ~x.
1 For now, the software supports the following kinds of AE: autoencoding neural net-

works, denoising autoencoders, principal component analysis, and a naive implementation
of restricted Boltzmann Machines.

2The implementation of a sparse Layer in the framework is currently under way.
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1.2 Stacking

Stacking AEs literally means creating a stack with them. This means that
the output of a first AE is used as input for a second (and different) AE.
It can be done sequentially, typically with increasing compression rate such
that |~yi| > |~yi+1|, where ~yi is the output of the i-th layer of the stack, as
illustrated in Figure 1.2.

Figure 1.2: Stacked autoencoders. When encoding data, AE-1 has to be
computed first, while when decoding data, AE-2 comes first.

1.3 Convolving

AEs can be convolved, i.e., it is possible to compute the output of a single
AE at different locations in a neighborhood (typically in a grid-like pattern,
often with overlapping patches). The outputs of the AE are collected in
a 3D array called encoded representation, as shown in Figure 1.3. In this
document, we call convolution width and convolution height the number of
times the AE is applied horizontally and vertically (2 and 2 in Figure 1.3).
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Figure 1.3: 2 × 2 Convolution of an AE with input 3 × 3, resulting in a
2 × 2 × 4 array. Note that the gray parts in the image are disregarded in
this example.

As seen in Figure 1.3, the area covered by the convolution does not nec-
essarily have the same size has the input image. For example, in case of
pixel-labelling tasks, it is usually sufficient if the pixels being classified as
well as some neighborhood are covered by the convolution. However, when
classifying the whole content of an image, then the whole image has to be
used for input.

Take note however that using Scaes on high-resolution images can be very
time-consuming. The computational cost of a neural network is roughly
linearly proportional to its number of inputs multiplied by its number of
outputs. Convolutional Neural Networks (Cnn) or Scae are less expensive,
as a single output of a layer is not connected to all inputs of that layer,
but nevertheless the computational cost can be high when large areas are
covered.

1.3.1 Convolution Offset

We call convolution offset the space between two AEs in a convolution. The
offset is defined with two numbers H and V which specify how many pixels
should be left horizontally and vertically between two input patches of the
AE. In the literature, this is also often called “stride”. The reference point
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for the input patch of an AE is the top left corner, as ilustrated in Figure 1.4.

Figure 1.4: Examples of horizontal convolution using an AE with a 3 × 3
pixels input patch. The red and green correspond to two locations, A and B,
of the AE in the convolution. The full color squares represent the reference
point of the AE in location A or B. In the left case the offset is 4 pixels,
leading to a distance of 1 pixel between two AE locations. In the right case
the offset of 2 pixels leads to an overlap of 1 pixel on the 3rd column.

What is illustrated in Figure 1.4 applies also for the vertical axis. There are
two special cases. First, if the offset value is equal to the input dimensions
of the AEs, then there is no overlapping and not distance between the input
patches (like in Figure 1.3). Second, if the offset value is 0 it means the AE
will be applied always on the same place: this is a mistake which should
lead the library to raise an exception.

1.4 Stacking & Convolving Autoencoders

The main idea of this framework is to convolve and stack AEs, as depicted
in Figure 1.5, in order to get different levels of features which can then be
used for machine learning purposes. The main questions for setting up an
Scae are:

• Which input patch size is optimal for each layer?

• How many features should there be in the different layers?

• Which convolution width & height should be used?

• Which convolution horizontal & vertical offsets should be chosen?

There seem to be no magical formula for answering accurately to these
questions, thus to the best authors’ knowledge, only experimentation can
really do this. Take note that as the weights of the AEs are initialised
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randomly, small accuracy differences might not be significant unless you run
the tests several times. In such a case, we recommend to use the t-test from
DivaServices3 [22] which allows to run significance tests in an extremely
simple way.

Figure 1.5: A stacked convolution autoencoder composed of two layers.

1.4.1 Determining Sizes

When building a stack of AEs, each layer corresponds to the convolution
of an AE. The top layer however is a 1 × 1 convolution, i.e., its AE is
computed at only one location, as it can be seen in Figures 1.5 and 1.6.

Assuming that we have a N -layers stack, then, for adding the N+1-th layer
the size of the convolution in layer N has to be increased because it must
have an output of the same dimension as the input of the (N + 1)-th layer.
The effect of resizing the size of the N -th layer is that the (N − 1)-th must
also be resized, and so on for all layers. For this reason, adding a layer to an
Scae might have a huge impact on its architecture. While users do not have
to implement this backward size selection themselves, it is very important
to understand it well when designing new architectures.

Figures 1.5 and 1.6 depict the convolution resizing. For simplicity reasons,
offsets of the same size as the inputs are used in order to avoid overlapping.
The first layer AE takes as input 3 × 3 pixels and outputs 4 values. The
second convolution takes 3×3×4 values as input, thus when adding a second
layer the first layer has to be convolved 3× 3 times as shown in Figure 1.5.

The third layer, as depicted in Figure 1.6 requires an input of 2×2×5 values.

3http://divaservices.unifr.ch/ttest/
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Table 1.1: Definition of Scaes in Figures 1.5 and 1.6. While the input
size corresponds to only one layer, the number of pixels covered by an AE
depends also on the previous layers.

layer 1 2 3

input size 3× 3 3× 3 2× 2
offset 3× 3 3× 3 –
covered pixels 3× 3 9× 9 18× 18

hidden 4 5 3

This means that the second layer must be convolved 2×2 times. The second
layer then requires 6 × 6 × 4 inputs, which is obtained by convolving 6 × 6
the first layer.

Convolution sizes and offsets for a convolution layer are always based on
its input. In Figure 1.5, the second layer has an input size of 3 × 3, which
corresponds to having a 3×3 convolution in the first layer, and not to pixels
in the image. Table 1.1 shows the difference between layer input size and
pixels covered by the Scae shown in Figures 1.5 and 1.6.

1.4.2 Training Stacked Autoencoders

Training a deep neural network can be computationally expensive. Although
recent methods have been shown to lead to little or no vanishing gradient,
computing new weights for a full network can be time-consuming. To tackle
this issue, Scaes are trained layer by layer during their construction. Before
adding a new layer to an Scae, its (current) top layer is trained to encode
and decode its input with little error. Already-trained layers are not trained
anymore.

1.5 Classification

The features learned by an Scae correspond to the output of the top-layer
AE. Three options are possible:

• They can be extracted and given to an external classifier (e.g., an
Support Vector Machine (Svm)),

• Classification layers can be added on top of the Scae, turning it into
a classifier.

• The features at the center of each Cae of the Scae can be concate-
nated and given to an external classifier.
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Figure 1.6: A stacked convolutional autoencoder composed of three lay-
ers. Note that it was obtained by adding a layer to the Scae depicted in
Figure 1.5.

The first option is closely related to methods based on hard-coded features
extraction followed by classification. An example about how to do this is
given in Section 2.2.

The second option is more interesting, as it allows to backpropagate classifi-
cation errors not only through classification layers, but also through feature-
extraction layers in order to fine-tune the features for a classification task.

The third option is a novel approach existing to our best knowledge only in
N-light-N.
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Chapter 2

Quick Start

This chapter contains the minimal information for using the framework as
it is. More details about its component or its use are provided in the other
chapters. We will first present how to train a Cae, then how to compute
features from images using the Cae from a Java application.

2.1 Training a Convolutional Autoencoder (Cae)

The compiled jar file is a standard Java application, which does not require
anything exotic to be installed on your computer, so you can just start it
from the command-line:

1 java -Xmx8G -jar gae.jar my-training-script.xml

The -Xmx8G option tells the virtual machine that it can use up to 4 GB of
memory. Depending on the task, you might want to increase or decrease
this. When the memory is not or barely sufficient, then Java’s garbage
collector will use a lot of CPU power trying to free some memory – it is
usually better to allow the use of more memory than necessary.

The -jar option with parameter gae.jar, tells the virtual machine which
jar file should be executed.

Finally, the my-script.xml indicates which script should be executed. Some
sample scripts are provided with N-light-N which you can use, and adapt if
needed.

Please make sure that both the path of the jar and the one of the script
are correct before launching the program. Note that you should avoid using
absolute paths if possible.
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2.2 Extracting Features

Once you have created and trained a Cae, extracting features from an image
is a simple task which you can easily do from a Java application. You simply
have to:

1. Load the Cae,

2. Load the image,

3. Let the Cae know where it should input data,

4. And ask it to compute a feature vector.

These 4 tasks correspond to the 4 following lines of Java code.

1 SCAE myScae = SCAE.load("scae.ae");

2 DataBlock inImg = DataBlock.dataBlockFromImage("input.png");

3 myScae.centerInput(inImg, centerX, centerY);

4 float[] features = scae.forward();

This feature vector can then be used for machine learning purposes. Take
note that the array returned by the forward() method is allocated only
once – if you want to store several feature vectors you will have to clone it.

2.3 The OSX Special Case

By default, Mac OSX seems to use the 1.6 version of Java, which dates
from 20051. The framework requires Java 1.8 (or more recent), therefore
you might have to install the most recent version of Java and set your
IDE/OS to use it. Some users have even indicated that installing Java 1.8
is not sufficient – a manual uninstallation of Java 1.6 could potentially be
required.

1Apple wants you to develop only for OSX & IOS.
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Chapter 3

Framework Architecture

This chapter provides an overview of the framework’s architecture. Inter-
actions among different entities are explained and a brief description of the
main work flow is provided. If you intend to work on the framework, i.e.,
to extend or modify it (see chapter 6), you will need a very good knowledge
about all of this.

3.1 Parsing Scripts

The class responsible parsing scripts and executing them XMLScript.java.
When the framework is launched as stand-alone application, an XMLScript

object is created and a map between command names and their implemen-
tation is generated. Then, the XML script is loaded and parsed. Invalid
XMLs (e.g., if closing tags are missing) will be rejected at this point. Then
the content of the script is processed as shown in Figure 3.1 and described
below:

(1) The children of the XML’s root element are processed in the same se-
quence as they appear in the script.

(2) Commands matching the child’s names are retrieved from the map – if
none is found then an error will be raised and the application will close.

(3) The command then receives the tag as parameter so that it has access
to its attributes and children, and is then executed.

20



Figure 3.1: Command execution procedure.

3.1.1 XMLScript

This class is the core for parsing the XML. As mentioned in Section 3.1, it
contains a map linking all command names to the corresponding command
objects. These objects also get a reference to the XMLScript object in order
to be able to access to the resources, e.g., datasets or Scaes.

Each resource is is stored in a map and can be retrieved with its ID. The
list of resources and information which the different commands might need
is given below.

1. Image.Colorspace colorspace:
stores which color space is being used by the script. Commands must
take this into account where needed.

2. Map<String, Dataset> datasets:
in lists of DataBlocks which can be used for training purposes.

3. Map<String, NoisyDataset> noisyDataSets:
special datasets storing not one DataBlock per image but two – one
clean and one noisy version.

4. Map<String, SCAE> scae:
stores the Scae currently in memory.

5. Map<String, Classifier> classifiers:
stores the different classifiers currently in memory.

When creating new commands, it is mandatory to take the colorspace into
account, even if not needed for the current experiment. One never knows
what will happen next.

New commands must be added in the constructor of XMLScript following
the same procedure as for the other ones.
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3.1.2 AbstractCommand

All commands must inherit from AbstractCommand. This class allows not
only to add new commands to the script, regardless of their nature, with
minimum effort. It also provides some methods to extract and process data
from XML elements. When implementing a new command, additionally to
having to pass the reference to the XMLScript reference to the constructor
(hint: think about the super keyword), two methods have to be imple-
mented:

execute(Element)

responsible for carrying out the functionality the command provides. Here
is where all the magic of the framework happens. The XMLScript object
will call this passing the fetched node as parameter.

tagName()

returns the name of the command. This name must be a string which
will perfectly match the name of the corresponding tag in the XML script.
Names must respect general XML tag naming rules. Additionally, in or-
der to keep the command names consistent, they should follow the form
word1-word2-..., without capital letters. For instance command is is
named load-dataset.

3.2 Data Structure

The whole framework works with the data structure of DataBlock. These
blocks of of data are used as input for the neural networks, between layers
and as output for neural networks. Users of the framework will have to deal
with DataBlocks – fortunately they are very easy to use.

The following subsections present the DataBlock class, and its subclass
BiDataBlock.

3.2.1 DataBlock

The DataBlock is an object which “simply” stores a 3D matrix of floats.
Images can also be seen as 3D data, as they have a width, an height, and
a given number of channels (e.g., 1 for grayscale images or 4 for CMYK
images). The size of these dimensions is not fixed, i.e., the width, height
and depth can have any value greater than 0 – as long as there is enough
available memory.

The output of a convolution can be stored as an A × B × C DataBlock,
where A is its width, B its height and C its depth, or number of channels.
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The output of a single AE can be stored as an 1× 1× C DataBlock. This
is well illustrated in Figure 1.5.

The framework uses DataBlocks instead of standard 3D arrays of floats
in order to provide additional functionalities, including loading and saving
DataBlocks, extracting areas from them into 1D float arrays, and “pasting”
data into them with overlapping.

In the following parts of this section, we will present how to read and write
data in a DataBlock. In Creating & Loading DataBlocks, the DataBlock

constructors are presented. In Data Access, methods which are simple but
should be sufficient for almost all uses are presented. Unless you need to
modify deeply the framework, knowing these I/O methods is probably suffi-
cient. In Non-Image Data, how to load custom data is explained. This might
be very useful if you do not intend to work on image data. In Extracting &
Pasting Patches, some additional methods to transform DataBlock patches
to and from float arrays. And finally, in Weighted Paste, we explain how
to cope with overlapping data, i.e., how to take into account that overlap-
ping in convolutions can lead to a single value to be constructed from two
different sources.

Creating & Loading DataBlocks

DataBlocks has several constructors:

Listing 3.1: DataBlock constructors

1 public DataBlock(int width, int height, int depth)

2 public DataBlock(Image src)

3 public DataBlock(BufferedImage src)

4 public DataBlock(String fName) throws IOException

The first, and most generic constructor, allows to create a DataBlock with
given dimensions. Should the user want to work on 1D or 2D data, some
dimensions of the DataBlock can be set to 1. When storing individual
samples in DataBlocks, we would recommend for performance issues to set
the width to 1 when dealing with 2D data, and both the width and the
height to 1 when dealing with 1D data.

Data Access

The dimensions of a DataBlock can be accessed with the following methods:

Listing 3.2: Access to DataBlock dimensions

1 public int getWidth()

23



2 public int getHeight()

3 public int getDepth()

It is possible to access to single values in a DataBlock. The coordinates of
a value are first indicated with the depth (corresponding to a color channel
when the DataBlock contains an image, and to a feature when it is the
output of an AE), and then x and y coordinates:

Listing 3.3: Access to a single value

1 public float getValue(int channel, int x, int y)

2 public void setValue(int channel, int x, int y, float v)

It is also possible to directly access to all channels corresponding to a given
set of coordinates using float arrays. The following two accessors do not
work “by copy” – the array returned by getValues is the one actually
stored in the DataBlock. Also the array passed as parameter of setValues
will replace the one stored in the DataBlock.

Listing 3.4: Access to all channels at a given location

1 public float[] getValues(int x, int y)

2 public void setValues(int x, int y, float[] z)

Non-Image Data

DataBlocks have some constructors to load image data. The XML scripts
allowing to train networks such data, and if you intend to use different kinds
of data as input for neural networks, you will have to implement a subclass
of DataBlocks. For this, it is highly recommended to read Chapter 5 and,
depending on what you intend to do, also Chapter 6.

As indicated in Section 3.2.1, DataBlocks consist in a 3D array of floats, so
any data that fits in such an array can be loaded into a DataBlock.

If you have 2D data (similar to a grayscale image), then it is more efficient
to project this data along the height and depth axes of the DataBlock. Let
us assume that you have a function F (x, y) that returns the value of your
data at coordinates (x, y), and that your data has a size of w × h. This
could be done, e.g., by reading from a file. Then, you can load this into a
DataBlock in this way:

Listing 3.5: Loading 2D data into a DataBlock

1 DataBlock db = new DataBlock(1, h, w);

2 for (int x=0; x<w; x++) {

3 for (int y=0; y<h; y++) {
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4 db.setValue(x, y, 0, F(x,y));

5 }

6 }

For 1D data, the values should be projected along the depth axe of the
DataBlock. Assuming that you have a function F (x) that returns the x-th
value of your data, and that your data is composed of w values, then you
can load it into a DataBlock in the following way:

Listing 3.6: Loading 1D data into a DataBlock

1 DataBlock db = new DataBlock(1, 1, w);

2 for (int x=0; x<w; x++) {

3 db.setValue(x, 0, 0, F(x));

4 }

This second case is probably the most likely to happen, as useful feature
vectors extracted from data are sometimes already available, or when data
of inconsistent size has to be mapped to a fixed-size space. For example,
currently experiments are being made on classifying edges of graphs that
represent the structure of document pages [20]. For classification with N-
light-N, we compute a fixed-length vectorial representation of an edge that
captures the structure of its local neighborhood (subgraph). Hence, a stan-
dard AEs can be used.

Extracting & Pasting Patches

Scaes take as input patches in DataBlocks. A patch correspond to the
values of all channels in a rectangular area of a DataBlock. For simplifying
read/write accesses to patches from layers composing Scaes, the DataBlock
class offers several useful methods.

Listing 3.7: Extracting a patch from a DataBlock

1 public void patchToArray(

2 float[] arr,

3 int posX,

4 int posY,

5 int w,

6 int h

7 )

8 public float[] patchToArray(

9 int posX,

10 int posY,

11 int w,

12 int h
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13 )

The first version of patchToArray puts values from a patch starting at
coordinates (posX, posY) and of size w×h into the (already-existing) array
arr. The array must have a size of w×h×d, where d is the depth of the
DataBlock.

The second version of patchToArray works in a similar way, but allocates
the returned array and returns the result. It might be slower, but does not
require to have an already-existing array.

The reverse operation, i.e., copying an array to a patch, can be done with
the following method:

Listing 3.8: Extracting a patch from a DataBlock

1 public void arrayToPatch(

2 float[] arr,

3 int posX,

4 int posY,

5 int w,

6 int h

7 )

where the values in the array arr are copied in a w×h×d patch, where d is
the depth of the DataBlock.

Note that the layers composing an AE (see Section 3.3.1) work with float
arrays extracted by the patchToArray method. This extraction is done by
the AEs (see Section 3.3).

Weighted Paste

The convolutions in Scaes might have some overlapping, which means an
input value might be used more than one time. This also means that when
decoding data, an Scae might transmit several values to the same coordi-
nates of a DataBlock. The solution to deal with this is to accumulate these
values, count for each location of the DataBlock how many values were ac-
cumulated, and later divide the values by this count in order to get their
mean. This count, which we call weight, is stored as floats which are shared
for all channels of the DataBlock.

Using weighted paste and normalizing data, i.e., dividing values by the cor-
responding weights, can be done with the following methods:

Listing 3.9: Pasting with weight

1 public void weightedPaste(DataBlock source, int x, int y)
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2 public void weightedPaste(

3 float[] arr,

4 int from,

5 int x,

6 int y

7 )

8 public void weightedPatchPaste(

9 float[] arr,

10 int posX,

11 int posY,

12 int width,

13 int height

14 )

15 public void normalizeWeights()

16 public void clear()

The first weightedPaste pastes a DataBlock into the target; this source
DataBlock can be at most as big as the target. The second method pastes
at a given location an array which length must be equal to the depth of the
DataBlock. The third method pastes an array onto a patch – the length of
this array must be equal to the number of values in the patch.

The normalizeWeights method divides all values by the corresponding
weights, and sets all weights to 1. Finally, the clear method can be used
to set all values and weights of a DataBlock to 0. This last method should
always be called before starting to paste data with weights.

BiDataBlock

The BiDataBlock.java is an extension of DataBlock.java. The difference
is that instead of a 3D matrix of floats, the data is stored in a BufferedImage

(hence the name: BufferedImage DataBlock). The advantage of using this
instead of a normal DataBlock is that it occupies less space in memory and
is loaded faster. The drawback is that is it slower when being used, as
RGB codes have to be turned into floats. It is possible to write float values
in a BiDatablock with the different accessors, however these floats will be
approximated as only 256 different values can be stored.

3.2.2 Dataset

Datasets are collections of DataBlocks. They are used by XML scripts,
but can also be used outside of it. They implement the generic interface
Collection<DataBlock>. Data is shuffled every time the iterator me-
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thod is called, so iterating several times on a Dataset will not be done in
the same sequence.

NoisyDataset

It is possible for a Dataset to contain two versions of each sample, one
clean and one noisy. They can be used for training Denoising Autoencoders
(Daes).

3.3 Autoencoder Building Blocks

Autoencoders (AEs) are the core of the framework. They are the building
block for Scaes, which are then used for building classifiers.

In this framework, AEs act as an interface between the high level entities
(such as Scaes, classifiers) and the low level layers. The AE stores references
to four DataBlocks : input, output, previous error and error, which are
detailed below.

INPUT this is a reference to the input DataBlock. For the first layer
this usually corresponds to an input image (which has typically a
depth of 1 or 3, depending on whether the image is in grayscale or
in color). For the other layers, the input corresponds to the output
DataBlock of the previous layer and has depth equal to the number
of features generated by the previous layer. The AE takes an input
patch which might be smaller than its input DataBlock, and stores
the coordinates of the top left corner of this input patch, as well
as its width, height and depth. These coordinates (x,y of the top
left corner) are the same for the previous error datablock, but are
different for output and error.

OUTPUT this is a reference to the output DataBlock. If the AE is not
convoluted this DataBlock has size 1 × 1 × n, where n is the
number of outputs of the AE’s encoder. Otherwise, the next
layer of the Scae determines the size of this DataBlock, as
the input patch size of the next layer specifies how many times
the current layer has to be convoluted. See Section 1 for more
details. The depth of the output DataBlock corresponds to the
number of outputs of the encoding layer of the AE; for each
position in the convolution of the Scae corresponds a position
in the output DataBlock. Thus, the encoding-layer requires
only a reference to the corresponding 1D float array within the
output DataBlock.
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Figure 3.2: Data flow in an autoencoder. Note that input,output, previous
error and error are Datablocks. The size (especially the depth) of the
DataBlocks on the left of the figure might differ from the size of the ones
on the right.

ERROR this is a reference to a DataBlock storing the error of the AE, rel-
atively its encoding layer. When trained for encoding and decod-
ing, or when trained for classification purposes, errors are back-
propagated to the encoding-layer of the AE. These errors are
stored in this DataBlock. The error DataBlock has the same size
as the output one; when trained, the AEs read their error in this
DataBlock at the same coordinates as they write in the output
DataBlock.

PREVIOUS ERROR this is a reference to the error DataBlock of the
previous layer of the Scae or classifier. For the
first layer, this reference is null, thus accessing
to this DataBlock should be done carefully. This
DataBlock is used when backpropagating classifi-
cation errors.

As we can see in figure 3.2 an AE is composed of two main parts: an encoder
and a decoder. These two objects implements Layer the interface, which is
detailed in Section 3.3.1, or extend the AbstractLayer class which already
provides the implementation of some methods defined in the interface. The
encoder and decoder of an AE do not necessarily have to be of the same
class. This opens the possibility to create different kinds of AEs by simply
providing them different kind of layers.

The abstract class AutoEncoder provides the basic functionalities for a nor-
mal behaving AE (meant as the typical definition found on books and de-
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scribed in Chapter 1). The AutoEncoder itself is used for managing its two
layers by connecting them together correctly, managing inputs and outputs,
and delegating calls of encode and decode methods, so the encoding itself
is not implemented in the AutoEncoder class.

The concrete class StandardAutoEncoder implements AutoEncoder and
provides constructors allowing to select the Layers by specifying their class
name. The list of existing layers is given in Section 3.4.1.

For creating different kinds of AE which do not follow the standard encode-
decode methodology, please refer to section 6.3 of chapter 6.

3.3.1 Layers

The two layers contained by an AutoEncoder must implement the Layer

interface. As shown in Figure 3.3, all inputs and outputs are arrays of floats
and not Datablock. Subclasses of AutoEncoder have to provide these ar-
rays correctly to the different Layers, which means that when implementing
a new kind of Layer it is not necessary to care about complicated data
structures.

Figure 3.3: Interface of a layer. Notice how all inputs and outputs are
array of floats and not Datablock, which means creating new layers does
not require dealing with complex data.

The following methods below are present in the Layer interface. While
there seem to be a frightening lot of them1, most are only accessors which
are extremely easy and fast to implement and in most cases the abstract
class AbstractLayer can be used (see Section 3.3.1).

In any case, the overhead of implementing this interface compared to the
implementation of the encoding or decoding method can be considered as
negligible. Listing 3.10 gives the list of the most important methods.

Listing 3.10: Some important methods from the Layer interface

1 void setInputArray(float[] inputArray);

2 void setOutputArray(float[] inputArray);

1There are 23 of them, which can be considered as a lot.
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3 void setError(float[] error);

4 float[] getError();

5 void setPreviousError(float[] prevError);

6 void compute();

7 void setExpected(int pos, float expectedValue);

8 float backPropagate();

9 float learn();

10 Layer clone();

These methods are described below:

setInputArray Indicates to the Layer from which array data will be read.
Note that it might be called once or several times, so any
class implementing the Layer interface should keep a copy
of this reference.

setOutputArray Indicates to the Layer to which array it should write data.
Note that it might be called once or several times, so any
class implementing the Layer interface should keep a copy
of this reference.

setError Indicates to the Layer where it will have to read its errors during
the training phase. Note that it might be called once or several
times, so any class implementing the Layer interface should keep
a copy of this reference.

getError Returns a reference to the error array.

setPreviousError Indicates to the layer where it should backpropagate
errors to. This does not correspond to the output error
of a previous layer, but to an array which is generated
by the AutoEncoder class (see Figure 3.2).

compute This is the main, and potentially most interesting, method of the
class. When it is invoked, the Layer should compute the outputs
with regard to the inputs.

setExpected This method is used during the training phase. It indicates
for a given output the values which would have been expected.
An error can be computed for each output by subtracting the
expected value to the actual output. This error should be
stored in the error array. Take note that depending on how
the training is done, this method might not be called – it
might be possible that errors will be written directly to the
error array.
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backPropagate This method should have to effects. First, the error stored
in the error array should be backpropagated to the previous
Layer. Backpropagation is usually used only in artificial
neural networks and is mathematically well defined. De-
pending on what the Layer is, this backpropagation might
be implemented in a different way – try to estimate how
by how much the inputs should be modified in order to de-
crease slightly the output error, and transmit it to the pre-
vious error array. Second, the error array should be used
to compute how to modify the parameters of the Layer.
In the case of a neural network, it corresponds to comput-
ing the error gradients. In order to allow batch training,
these values should be accumulated and not applied im-
mediately. The method should return the mean output
error.

learn This method is invoked when the parameters of the Layer have to be
updated. It might be done after each backPropagate call, or after
several ones.

AbstractLayer

the abstract class AbstractLayer already implements some of the methods
of the Layer interface. This class can be used as “starting point” for most
kinds of standard layers.

The only abstract methods in this class are compute, backPropagate, learn
and clone.

3.4 Package Overview

As there are many classes in the framework, it might be worth know where
they are, and what kind of classes are in the different packages. The first
tier of packages is composed by ae (autoencoder) and diuf.diva.dia.ms. In
the former there is only the Main class2, while in the latter there is the
framework, divided in three sub categories: ml (machine learning), script
and util. They are briefly presented below.

2This class should be left untouched, and the only arguments which should be provided
are the names of the XML scripts to execute.
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3.4.1 diuf.diva.dia.ms.ml

This is the core of the framework. The classes contained in this package and
subpackages are related to machine learning.

The single interface present in this package is Classifier, which all types
of classifiers of the framework should implement if possible in order to allow
easy comparisons between them.

diuf.diva.dia.ms.ml.ae

The ae package is supposed to contain AutoEncoders. Should an user im-
plement a new kind of AE, the corresponding class should be placed in this
package.

There here is also a subpackage for every type of higher level construct
(Scae, classifier, ...):

aec is the package which contains all classes relative to the AEClassifier, a
classifier using features from all layers of an Scae.

ffcnn is the package which contains all classes relative to the Feed Forward
Convolutional Neural Network. These classes are the Convolution-

Layer (which clones AEs and “convolve” them) and the core FFCNN

classes. Note that while called “neural network”, the FFCNN can be
composed of anything extending the Layer interface correctly.

ccnn is the package which contains all classes relative to the Combined
Convolutional Neural Network. This work in progress is not accessible
from scripts, and does not implement the Classifier. The reason
for this weak integration within the framework is that it allows to
combine several Scaes taking each possibly a different DataBlock as
input. Including this into scripts could lead to spaghetti code, which
nobody would ever want to work with.

mlnn is the package which contains all classes relative to Multi-Layered
Neural Network (MLNN). This is used in the AEClassifier.

scae is the package containing all classes relative to Scaes: the Convolution
(which convolve the AEs) and the core SCAE classes.

diuf.diva.dia.ms.ml.layer

This package contains the classes which do most of the neural network’s
work: the layers. Layers can be used as encoder, decoder, or even general-
purpose “neural” network layer. This package contains two base elements,
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the Layer interface, and the AbstractLayer abstract class. They are de-
scribed with more details in Section 3.3.1.

Additionally, it contains the implementations of the Layer interface. It is
mandatory to place new ones in this package, as the full class name (includ-
ing packages3) is used when creating new Scaes from XML scripts.

The list below contains the list of currently existing layers.

NeuralLayer this is a typical Neural Network (NN) layer. It uses a soft
sign activation function and can be trained with back-propa-
gation.

LinearLayer this is a linear associator layer which does not have an ac-
tivation function. The output is given simply by ~b + ~w × ~x,
where ~b is the bias vector, ~w the set of weights and ~x the
input. This layer can be trained with back-propagation as
well. At the moment, as the weights are never re-scaled it
might happen that some of them grow uncontrollably and
lead to float overflows. Fixes for this behavior are currently
being investigated.

OjasLayer this is a linear associator layer which does not have an activa-
tion function. The output is given simply by ~b+ ~w × ~x, where
~b is the bias vector, ~w the set of weights and ~x the input. This
layer can be trained with the Oja’s rule algorithm, which is
a modified version of Hebb’s Rule. This algorithm makes the
weights of the layer converge towards a value that computes
the principal components of the input. There is a parameter γ
to find by trial & error such that the weights do not diverge in
a similar fashion as they do with the naive implementation of
a linear associator.

3.4.2 diuf.diva.dia.ms.script

This package contains the XMLScript class.

Its subpackage diuf.diva.dia.ms.script.command contains the different com-
mands, which all inherit from AbstactCommand. New commands should of
course be added at the right place.

3.4.3 diuf.diva.dia.ms.util

This package contains classes which serves as support for the framework:

3Nevermind, just make sure they’re all in there.
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DataBlock
This is the class used for storing data in the framework. It is described in
Section 3.2.1.

BiDataBlock
This is a subclass of DataBlock storing image data in BufferedImage It is
described in Section 3.2.1.

DataBlockDisplay
This is an abstract class allowing to display on the screen DataBlocks
having either three channels (interpreted as RGB data) or one channel (in-
terpreted as grayscale data).

FeatureDisplay
Implementation of the DataBlockDisplay used to display the features
learned by an Scae. Every time the update method is called, features
will be extracted and displayed.

Dataset
This is a set of DataBlocks which can be used for training Scaes. It is
described in Section 3.2.2.

NoisyDataset
This is a set of noisy and clean DataBlocks which can be used for training
Dae. It is described in Section 3.2.2.

Image
This class is used for managing colorspaces. It is used for loading im-
ages, and provides methods (e.g., toCMYK) for switching from a colorspace
to another one. DataBlocks can be created out of Images. The class
diuf.diva.dia.ms.util.Image should not be mixed up with the Image

class from java.awt.

PCA
This class4 is used for performing Principal Component Analysiss (Pcas)
on data.

Tracer
This class allows to draw error plots when training machine learning meth-
ods.

4Which is based on https://github.com/mkobos/pca transform
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Chapter 4

Scripts

This chapter explains how to write a custom XML script for the framework.
Proper usage of all implemented commands is described.

4.1 Why XML Scripts?

The nature of the framework is lightweight and modular. Hence the user
should not write Java code for running an experiment, but rather use scripts.
Thereafter are mentioned the main advantages of using the script:

• No framework knowdledge: using the framework requires no knowledge
about it. In fact, it is only required to write a very simple script to
benefit of the most complex functionality implemented.

• No coding knowledge: it is possible to use the framework with no
coding skills. The fact that the framework is implemented in Java is
completely transparent to the user.

• Easy storage: experimental code is often erased for newer versions,
while scripts can be easily stored everywhere.

• Easy variation: after a simple copy-paste of the script is possible to
make a variations of it while not modifying a single bit in the frame-
work.

• Repeatability : since scripts they are easily stored, it is also easy to
repeat experiments later. We recommend strongly users not to update
scripts, but to make new versions of them in order to be easily able to
reproduce experimental results if needed.

• Parallel runs: it is extremely easy to have multiple experiments run-
ning at the same time.
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4.2 Writing Scripts

A script is composed of a root tag (which name is unimportant) and a
sequence of tag corresponding to instructions. Each instruction has its own
tag. Instructions parameters are composed of attributes or children tags.

Take note commands are executed one at a time and sequentially as they are
written into the script. For this reason, initialization of data is usually done
at beginning of the script. For example, you first need to load the dataset
and an Scae before training it or adding a layer to it. The following sections
describe the different commands which have been so far implemented.

4.3 Loading & Saving

This section explains how to load and save entities such as datasets, SCAE,
classifiers or any kind of saved files which is supported from the framework.

4.3.1 Loading a Dataset

Datasets are sets of images. The user can then use these images as they like.
For example, one can load a dataset and use it as:

• training dataset

• evaluation dataset

• ground truth dataset in case of pixel-labelling tasks

The role of datasets is not specified and its determined from the context
of execution. For instance, when training an Scae the framework will just
assume that the provided dataset is a training dataset and use it as such. In
case the dataset provided was not a training dataset (for example a ground
truth one) no errors will arise and the duty of find out this semantic mistake
is left to who wrote the script.

Mandatory fields

Datasets are referred to using an ID which must be specified as attribute of
the parent tag.

<folder> specifies the path to the images. It can be both relative or ab-
solute path. Note that if relative path can be given relatively to
the current working directory.
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<size-limit> specifies the maximum number of images which are loaded.
This can be useful when using a computer with a low quantity
of available memory, when using large datasets, or to test
quickly a script. If the size limit is set to 0, then all images
are loaded.

Listing 4.1: Loading a dataset - mandatory fields

1 <load-dataset id="stringID">

2 <folder>stringPATH</folder>

3 <size-limit>int</size-limit>

4 </load-dataset>

Optional Fields

Optionally it is possible to specify that the dataset has to be composed of
buffered data blocks (see Section 3.2.1) by adding the <buffered/ > tag.
The advantage of the BiDataBlocks is that they save memory as they are
buffered, and the disadvantage is that data access is much slower.

<buffered/> If present buffered data blocks will be used instead of normal
data blocks.

Moreover, it is possible to generate several versions of the BiDataBlocks at
different scales.

<scales> parent tag for one or more <scale>. Take note that when loading
several scales of an image, the size limit of the dataset will be
loaded for all scales. That is, if you have a limit of n images, n
different images are loaded for each scale, having a total number
of n ·#scales images loaded.

<scale> specifies what is the desired scaling factor. For example with 0.5
as value, the dataset will be loaded and downscaled to half of his
original size.

Listing 4.2: Loading a dataset - full parameters

1 <load-dataset id="stringID">

2 <folder>stringPATH</folder>

3 <size-limit>int</size-limit>

4 <buffered/>

5 <scales>
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6 <scale>float</scale>

7 <scale>float</scale>

8 [..]

9 <scale>float</scale>

10 </scales>

11 </load-dataset>

Loading a Noisy Dataset

Datasets with two versions of each image, one with degradations and the
other without, can also be loaded in order to train Denoising Autoencoders
(Daes). Noisy datasets cannot yet be composed of BiDataBlocks, nor store
several scales of the data. Two folders have to be specified:

Listing 4.3: Loading a noisy dataset - full parameters

1 <load-dataset id="stringID">

2 <clean-folder>stringPATH</clean-folder>

3 <noisy-folder>stringPATH</noisy-folder>

4 <size-limit>int</size-limit>

5 </load-dataset>

4.3.2 Unloading a Dataset

In certain situation, the possibility of unloading a dataset which is no longer
used will come handy in order to free some memory. For example, after
training a classifier it is possible to unload the training sets and load the
evaluation sets. It is only necessary to specify the ID of the desired dataset
in the attribute of the parent tag.

Listing 4.4: Unloading a dataset - full parameters

1 <unload-dataset id="stringID"/>

4.3.3 Loading an Entity

Datasets are not the only “things” which can be loaded from file. At the
moment the framework can load Scaes and classifiers as well. It is only
necessary to specify the ID of the desired entity in the attribute of the
parent tag.

<file> specifies the path to the entity. It can be both relative or absolute
path.
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Listing 4.5: Loading an entity

1 <load id="stringID">

2 <file>stringPATH</file>

3 </load>

4.3.4 Saving an Entity

SCAE and classifiers can be saved to file and stored for further use. To use
stored items in other scripts it is necessary to load them (see Section 4.3.3).

<file> specifies the path to the entity. It can be both relative or absolute
path.

Listing 4.6: Saving something

1 <save ref="stringID">

2 <file>stringPATH/output.dat</file>

3 </save>

4.4 Stacked Convolution AutoEncoders (SCAE)

This section explains how to create, add layers to, train and evaluate Scaes.

4.4.1 Creating a SCAE

Stacked Convolutional Autoencoders (Scaes) are initially created with a
single layer and convolution is only executed when more layers are added
later. Every layer should be trained before adding a new one on top of it.
For more details about that, or if the reader is not familiar with convolution
principles, reading Chapter 1 is advised.

Mandatory Fields

Scaes are referred to using an ID which must be specified as attribute of
the parent tag.

<unit> what type of unit should be used for encoding/decoding. Different
units might have different syntax, but in every case the parent tag
would define the units type (in the example below “standard”) and
the children the specific parameters for that unit (in the example
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how many hidden nodes we want and what kind of layers should
be used to encode/decode).

<width> width of the input patch in pixels

<height> height of the input patch in pixels

<offset-(x,y)> by how much the AE has to be shifted when this layer
is convolved. If these values match the width and height
of the input patch there will be no overlapping when con-
volved. Note these values are completely meaningless if
this will be the only layer (no further layers means no con-
volution!). Values smaller than one are not allowed.

Listing 4.7: Creating a simple SCAE with standard autoencoder

1 <create-scae id="stringID">

2 <unit>

3 <standard>

4 <layer>stringClassName</layer>

5 <hidden>int</hidden>

6 </standard>

7 </unit>

8 <width>int</width>

9 <height>int</height>

10 <offset-x>int</offset-x>

11 <offset-y>int</offset-y>

12 </create-scae>

Syntax For Different Units

The syntax for the different units is described in the following paragraphs.

standard: Standard autoencoder. It has real inputs and outputs.

<layer> specifies what type of layer should be used to encoder and decode.
Note that in this field the exact name of the Java class without
extension should be used. For example “NeuralLayer” is a correct
value and “NeuralLayer.java” is not. In section 3.4.1 the possible
values for this field are presented.

<hidden> defines how many hidden neurons have to be used.
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Listing 4.8: Syntax of standard unit

1 <unit>

2 <standard>

3 <layer>string</layer>

4 <hidden>int</hidden>

5 </standard>

6 </unit>

DAENN: De-noising autoencoding Neural Network. It has real inputs and
outputs.

<hidden> defines how many hidden neurons have to be used.

Listing 4.9: Syntax of DAENN unit

1 <unit>

2 <DAENN>

3 <hidden>int</hidden>

4 </DAENN>

5 </unit>

BasicBBRBM: Binary-binary RBM, basic implementation. As it requires
binary inputs, the previous layer should have a binary output.

<hidden> defines how many hidden units have to be used.

Listing 4.10: Syntax of BasicBBRBM unit

1 <unit>

2 <BasicBBRBM>

3 <hidden>int</hidden>

4 </BasicBBRBM>

5 </unit>

BasicGBRBM: Gaussian-binary RBM, basic implementation. It has real
inputs and binary outputs.

<hidden> defines how many hidden units have to be used.
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Listing 4.11: Syntax of BasicGBRBM unit

1 <unit>

2 <BasicGBRBM>

3 <hidden>int</hidden>

4 </BasicGBRBM>

5 </unit>

PCA: Principal Component Analysis. It has real inputs and real outputs.
Instead of using random initial weights, a PCA algorithm is used for initial-
izing them. It is possible to drop dimension or to keep them all as well.

<layer> specifies what type of layer should be used to encoder and decode.
Note that in this field the exact name of the Java class without
extension should be used. For example “NeuralLayer” is a correct
value and “NeuralLayer.java” is not. In section 3.4.1 are presented
the possible values for this field.

<dimensions> how many hidden neurons (consider this as the dimension-
ality of subspace projected by the PCA)

Listing 4.12: Syntax of PCA unit

1 <unit>

2 <PCA>

3 <layer>stringClassName</layer>

4 <dimensions>full|int</dimensions>

5 </PCA>

6 </unit>

4.4.2 Training a SCAE

Training an Scae requires a dataset, but there is no need for a ground truth
as AEs are unsupervised machine learning methods.

Mandatory Fields

As Scaes are referred to using an ID, here is necessary to provide a reference
ID as attribute to the <train-scae> method. The execution stop as soon
as only one of the two conditions (maximum number of samples, maximum
running time) is met.
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<dataset> The ID of the dataset which has to be used for training.

<samples> maximum number of samples to use during the training. Sam-
ples are image patches selected randomly. A value of 0 means
“no limit”.

<max-time> maximum training time in minutes. A value of 0 means “no
limit”.

Listing 4.13: Training an SCAE - mandatory fields

1 <train-scae ref="stringID">

2 <dataset>my-dataset</dataset>

3 <samples>int</samples>

4 <max-time>int</max-time>

5 </train-scae>

Optional Fields

While training Scaes is possible to log some information. It is possible to
watch the features of the AE and the recording (code/decode) of an image
result as they change in time during training. It can be very useful for
getting an idea of what is being learned, and how well features describe
data. There is also the possibility to show a plot reporting the training
error of the Scae epoch wise. It is also possible to save this plot to file.

<display-features> if present, features will be showed during training.
The numeric value specifies the frequency of update
for the frame showing the features (every how many
samples shall the features be updated). A good value
is ≈ 1

1000 the number of samples which will be used
during the training.

<display-recoding> if present, recoding will be showed during training.
The string value specifies the path of the image which
will be displayed. It is highly recommended to use a
very small image, otherwise processing it might take
much more time than the training itself.

<display-progress> if present, the plot with training error will be shown
during training.

<save-progress> if present, the plot with training error with be save at
the location specified.
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Listing 4.14: Training an SCAE - full parameters

1 <train-scae ref="stringID">

2 <dataset>stringID</dataset>

3 <samples>int</samples>

4 <max-time>int</max-time>

5 <display-features>int</display-features>

6 <display-recoding>stringPATH</display-recoding>

7 <display-progress>int</display-progress>

8 <save-progress>stringPATH</save-progress>

9 </train-scae>

4.4.3 Adding a Layer to an Autoencoder

Adding a layer to an AE uses almost the same syntax as creating one. Be-
ware that when a layer is added the whole previous structure gets convoluted
as many times as the input of the new layer. Refer to the Chapter 1 for
more information.

Mandatory Fields

As Scaes are referred to using an ID, it is necessary to provide the reference
(ID) of the Scae that we want to add a layer to as attribute <add-layer>.

<unit> the type of unit should be used for encoding/decoding. See section
4.4.1 for more information about the different units.

<width> width of the input patch, not in pixels, but sampled on the out-
puts of the previous layer.

<height> height of the input patch, not in pixels, but sampled on the
outputs of the previous layer.

<offset-(x,y)> by how much the AE has to be shifted when this layer
will be convoluted. If these values match the width and
height of the input patch there will be no overlapping when
convoluted. Note these values are not used if this will be
the only layer (no further layers means no convolution!).
Values smaller than one are not allowed.

Listing 4.15: Adding a layer to an SCAE

1 <add-layer ref="stringID">

2 <unit>
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3 <Standard>

4 <type>NeuralLayer</type>

5 <hidden>int</hidden>

6 </Standard>

7 </unit>

8 <width>int</width>

9 <height>int</height>

10 <offset-x>int</offset-x>

11 <offset-y>int</offset-y>

12 </add-layer>

4.4.4 Recode Images & Store The Result

It is possible to visualize the reconstructed image after coding/decoding with
an Scae. This could be useful to have a quick idea on the performance of
the Scae for this task.

Mandatory Fields

As Scaes are referred to using an ID, it is necessary to provide the reference
(ID) of the SCAE we want to evaluate as attribute <recode>.

<dataset> reference ID of the dataset that will be reconstructed (cod-
ed/decoded).

<destination> specifies the path where the reconstructed images will be
saved. It can be both relative or absolute path.

Listing 4.16: Showing the recoded image of an SCAE - mandatory fields

1 <recode ref="stringID">

2 <dataset>stringID</dataset>

3 <destination>stringPATH</destination>

4 </recode>

Optional Fields

Optionally is possible to specify a desired offset for the operation. By default
the offset would be the size of the input patch. Ideally with a offset of 1
all pixels would be reconstructed and we would obtain the most precise
recoding possible. However, the more layers the SCAE has, the slower the
computation will be. This becomes a concern with big images, where the
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computation time can easily become prohibitive. In case the recoding take
too much time it is suggested to leave the default value. Note that with the
default value if the SCAE has more than one layer the final image will present
“patterns” which are the consequence of the offsetting with a value higher
than 1.

<offest-(x,y)> this specifies the x and y offset of the recoding.

Listing 4.17: Showing the recoded image of an SCAE - full parameters

1 <recode ref="stringID">

2 <dataset>stringID</dataset>

3 <offset-x>int</offset-x>

4 <offset-y>int</offset-y>

5 <destination>stringPATH</destination>

6 </recode>

4.4.5 Show Learned Features

It is possible to visualize the feature learned by an Scae after the training.
For visualizing the features during the training please refer to Section 4.4.2.

Mandatory Fields

As Scaes are referred to using IDs, it is necessary to provide the reference
(ID) of the Scae which features we want to visualize as attribute to <show-
features>.

<scale> scaling factor. It stretches the images without interpolation and
makes them more comfortable to look at without zooming. Note
that large values might lead to huge images being generated.

<file> specifies the path where the features image will be saved. It can be
both relative or absolute path.

Listing 4.18: Showing features after training

1 <show-features ref="stringID">

2 <scale>int</scale>

3 <file>stringPATH</file>

4 </show-features>
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4.5 Classifiers

4.5.1 Creating a Classifier

The framework allows the creation of classifier starting from an already
existing (and trained!) SCAe. As of now, two different kinds of classifiers
are supported by the framework: Auto Encoder Classifier (AEC) and Feed
Forward Convolutional Neural Network (FFCNN).

Mandatory Fields

Classifiers are referred to using an ID which must be specified as attribute
of <create-classifier>.

<type> specifies which kind of classifier should be built. A description
of the different classifiers is provided later in this section. The
possible values for this field are AEClassifier and FFCNN. It must
be written literally so (case sensitive and typos’ free).

<layer> specifies what type of layer should be used to encoder and decode
in the classification layers. Note that in this field the exact name
of the Java class without extension should be used. For example
“NeuralLayer” is a correct value and “NeuralLayer.java” is not. In
section 3.4.1 the possible values for this field are presented. Cur-
rently, only the FFCNN can use this option, so it is not mandatory
to AEClassifiers.

<scae> reference ID of the SCAE which will be used to build (initialize) the
classifier.

<neurons> indicates the number of neurons in the different hidden layers,
separated by commas. For example, a value of “4,7” means
that there will be two hidden layer with respectively 4 and 7
neurons. This value is “unbounded”, meaning that there is no
restriction on the amount of the hidden layers one can add.
Beware that the more layers the slower the classifier will be
(among other issues!). If this tag is present, then at least one
number must be provided.

<classes> indicates how many classes the classifier will work with. This
number also corresponds to the number of neurons in the output
layer.
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Listing 4.19: Creation of a classifier

1 <create-classifier id="stringID">

2 <type>enum{AEClassifier,FFCNN}</type>

3 <layer>stringClassName</layer>

4 <scae>stringID</scae>

5 <neurons>int,[int]*</neurons>

6 <classes>int</classes>

7 </create-classifier>

Autoencoder Classifier: The AEClassifier is a combination of an Scae
and a neural network which takes as input the Central Multilayer Feature
(Cmf) of the Scae. During the training, the Scae is not fine-tuned. This
leads to a much faster training, and the Cmf allows to classify small-scale
details in the center of the input patch.

Feed Forward Convolutional Neural Network: this classifier is built
out of an Scae. Several instances of classes implementing the Layer in-
terface are added to perform the classification task. While training the
classification layers, the AEs also gets trained per back propagation. In the
convolutions, the AEs are cloned instead of applying the same at different
locations. Thus, they can learn different weights at different locations during
the training as classifier and get therefore more adapted to the task1.

4.5.2 Training a Classifier for Pixel Labelling

One of the most recent features of the framework is the possibility of training
a classifier for pixel labelling scripts. All classifiers which can be created with
a script can also be trained for pixel labelling in the same script if desired.
Note that it currently works only when working with RGB images.

Mandatory Fields

As classifiers are referred to using an ID, it is necessary to provide the
reference (ID) of the classifier which we want to train as attribute <train-
classifier>. The execution stop as soon as only one of the two conditions
(maximum number of samples, maximum running time) is met.

<dataset> The ID of the dataset containing input images which have to

1In “FFCNN” the term “convolution” is slightly misused as the training “deconvolves”
the layers.
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be used for training.

<groundTruth> The ID of the dataset which has to be used as ground
truth for training. The RGB code of each pixel must
match its class number, i.e., 0x000000 for the class 0,
0x000001 for the class 1, ...

<samples> Maximum number of samples to use during the training, i.e.,
how many training steps2 A value of 0 means “no limit”.

<max-time> Maximum training time in minutes. A value of 0 means “no
limit”.

Listing 4.20: Training a classifier - mandatory fields

1 <train-classifier ref="stringID">

2 <dataset>stringID</dataset>

3 <groundTruth>stringID</groundTruth>

4 <samples>int</samples>

5 <max-time>int</max-time>

6 </train-classifier>

Optional Fields

While training a classifier is possible to log some information in a plot re-
porting the training error of the classifier epoch-wise. It is also possible to
save this plot to a file.

<display-progress> If present, the plot with training error will be shown
during training.

<save-progress> If present, the plot with training error with be saved at
the specified location.

Listing 4.21: Training a classifier - full parameters

1 <train-classifier ref="stringID">

2 <dataset>stringID</dataset>

3 <groundTruth>stringID</groundTruth>

4 <samples>int</samples>

5 <max-time>int</max-time>

6 <display-progress>int</display-progress>

7 <save-progress>stringPATH</save-progress>

8 </train-classifier>

2Gradient descents in case of standard neural networks.
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4.5.3 Evaluating a Classifier

After having trained a classifier for pixel labelling, it is possible to evaluate
how well it performs directly from a script. All classifiers which can be
created and trained with a script, can also be evaluated in the same script if
desired. With single-class evaluation the accuracy metric will be measures,
whereas with the multi-class evaluation precision and recall will be computed
per class.

Mandatory Fields

As classifiers are referred to using an ID, here is necessary to provide the
reference (ID) of the classifier which we want to evaluate as attribute of
<evaluate-classifier>.

<dataset> The ID of the dataset which has to be used for training.

<groundTruth> The ID of the dataset which has to be used as ground
truth for training. It must have the same format as when
training a classifier (see Section 4.5.2).

<offest-(x,y)> In order to accelerate tests, it can be possible to skip some
of the pixels. With an offset of 1, all pixels will be classified
and evaluated, with an offset of 2 only 25% of them will
be, ... In order to get an idea about how good a classifier is
performing, it is not necessary to evaluate all the pixels. It
is possible to compare classifiers when the same test data
and the same offsets are used. In case of large images,
selecting offsets leading to ≈ 10’000 classifications for each
image, should lead to already rather accurate evaluations.

<method> specifies whether the evaluation should be single or multi class.
The possible values are single-class and multiple-classes.

Single-class: Only the output class with the highest
response get considered, then it is either the correct one
or not. The output is an image (green/red only) for each
picture in the dataset.

Multiple-classes: all the outputs of the classifier gets
evaluated and the error is computed for all of them. The
output is an image for each class for each picture in the
dataset.

<output-folder> specifies the path where the images representing the
evaluation will be stored. It can be both relative or

51



absolute path. On these images, the colors have to be
interpreted as follows:

• BLACK: True negative

• BLUE: False negative

• RED: False positive

• GREEN: True positive

Listing 4.22: Training a classifier - mandatory fields

1 <evaluate-classifier ref="stringID">

2 <dataset>stringID</dataset>

3 <groundTruth>stringID</groundTruth>

4 <offset-x>int</offset-x>

5 <offset-y>int</offset-y>

6 <method>enum(single-class,multiple-classes)</method>

7 <output-folder>stringPATH</output-folder>

8 </evaluate-classifier>

4.6 Utility

4.6.1 Beep

If the operating system allows it, it is possible to make a beep on demand.
This might be useful to warn the user that a long procedure (like training
an SCAE or a classifier) is over. It uses default system sound.

Listing 4.23: Beep !

1 <beep/>

4.6.2 Printing Text

It is possible to output text to the standard output. It comes handy to
display the current action being performed, the training error, the evaluation
reconstruction or anything you might want to know.

<print> the content that you want to print

Listing 4.24: Printing text

1 <print>string</print>
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4.6.3 Describing an Entity

Sometimes, it might be useful to describe the content of an SCAE, a dataset
or a classifier. This command prints to screen useful information about the
selected entity. Provide the ID of the entity which you want to be described.

Listing 4.25: Describing something

1 <describe ref="stringID"/>

4.6.4 Variables

As the scripts are meant to describe simple procedures, it does not seem nec-
essary to make a complex script language with loops, expressions, conditions
and such. New procedures should rather be included into the framework;
for example a new training methodology could be implemented as a new
type of AE or as a new instruction. The script however contains something
similar to variables, which can be used for different purposes3.

Mandatory Fields

As entities are referred to using an ID, here is necessary to provide a reference
(the ID) of the variable as attribute of the parent tag.

<define> the content of the variable

Listing 4.26: Defining a variable

1 <define id="stringID">string</define>

Usage

Variables can be defined and their name is replaced in all values and options
(but not tag names!) by a search-and-replace method when the script is
executed.

Listing 4.27: Setting and using a variable

1 <test-script>

2 <define id="MYVARIABLE">World</define>

3 [..]

4 <print>Hello MYVARIABLE!<print/>

5 <test-script>

3For example when saving an AE, including its training accuracy in the file name.
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It is not possible to replace tag names with variables. For example, the next
example is incorrect:

Listing 4.28: Incorrect use of variables

1 <test-script>

2 <define id="display">print</define>

3 [..]

4 <display>Hello World !</display>

5 <test-script>

4.6.5 Storing a Result

It is possible to store the result of an instruction in a variable. All instruc-
tions return a String. For most of them it is empty, but other return useful
information; for example, when you train an Scae, the training error is
returned. The result of the last instruction is displayed if the scripts exits
without error. Each instruction also stores its result in the $ANS variable, so
you can use it immediately after the instruction. If you need to use it later,
or twice, you have to store it.

Mandatory Fields

As entities are referred to using an ID, here is necessary to provide a reference
(the ID) of the variable where the result will be stored as attribute of the
parent tag.

Listing 4.29: Storing a result

1 <store-result id="MY_VAR"/>

Usage

Listing 4.30: Example of storing a result

1 <test-script>

2 <display>Hello World !</display>

3 <store-result id="MY_VAR"/>

4 <print>The previous command returned MY_VAR</print>

5 </test-script>
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4.6.6 Colorspace

The framework can be used with different colorspaces. So far, no evaluation
has been done in order to see if a colorspace is more interesting than another
one for a given task. Only one colorspace can be used in a script; it is not
possible to change it during the execution of the script. The colorspace is
defined with the colorspace attribute of the root element of the script, as
shown in Listing 4.31. If no colorspace is defined, then the RGB colorspace
is used.

Listing 4.31: Script using the YUV colorspace

1 <test-script colorspace="YUV">

2 <print>Hello World !</print>

3 </test-script>

The different colorspaces currently available are:

RGB red, green and blue components of the pixels. It is the default col-
orspace.

XYZ it corresponds to a linear transformation of the RGB colorspace.

YUV luminosity, U chrominance and V chrominance. It is a linear trans-
formation of the RGB colorspace.

HSV hue, saturation, value.

CSSV it is a transformation of the HSV colorspace. The hue, which is
cyclical, is replaced by both its sine and cosine. This colorspace has
therefore four dimensions.

CSS this is a modification of the CSSV colorspace, where the two first
parameters are multiplied by the value, and the value is removed. It
is therefore a three-dimensions colorspace.

CMYK corresponds to the cyan, magenta, yellow and black components of
the color. It is the colorspace which is usually used by printers.

GRAYSCALE this is a one-dimension colorspace obtained by averaging
the RGB values. If you use images which are are already
in grayscale, you still must specify to use the grayscale
colorspace, otherwise they will be loaded as RGB images.

All images are transformed to the correct colorspace automatically when
loaded. Take note that it also defines the depth of the input of the first layer

55



of Scaes; when used in Jana programs, the same colorspace transformation
has to be made. For this, you can use the instances of Image as parameter
of the DataBlock constructor (see Sections 3.2.1 and 3.4.3).
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Chapter 5

Using the Framework as a
Java Library

N-light-N can be used both as a stand-alone executable to run XML scripts, or
as a Java library. In the latter case, the full potential of N-light-N is revealed,
as all classes become available and can be combined to run experiments and
to deal with data that is not handled by the scripts.

The following sections present how to use the most important classes of the
Framework.

5.1 DataBlocks

DataBlocks have been presented in Section 3.2.1. Here, some usage exam-
ples are given.

5.1.1 Loading from Images

Listing 5.1: Loading a DataBlock from an image, 3 cases

1 // Case 1: using the file name

2 DataBlock db = new DataBlock("input.jpg");

3 // Case 2: using a buffered image

4 BufferedImage bi = ...;

5 DataBlock db = new DataBlock(bi);

6 // Case 3: using an Image and changing the colorspace

7 Image img = new Image("input.jpg");

8 img.toCMYK();

9 DataBlock db = new DataBlock(img);
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5.1.2 Creation from Scratch

When dealing with different kinds of data format, it is possible to fill manu-
ally a DataBlock. The following example creates a 10× 20× 30 DataBlock

and fills it with random values in [0, 1[.

Listing 5.2: Creating and filling a DataBlock

1 int width = 10;

2 int height = 20;

3 int depth = 30;

4 DataBlock db = new DataBlock(width, height, depth);

5 for (int x=0; x<width; x++) {

6 for (int y=0; y<heiht; y++) {

7 for (int z=0; z<depth; z++) {

8 db.setValue(z, x, y, (float)Math.random());

9 }

10 }

11 }

Should you use a specific data format, you can subclass DataBlock and
implement constructors for loading this format.

5.1.3 Saving & Loading

As most class in the framework, DataBlock uses the Serializable interface,
which means Object streams can be used for loading and saving DataBlock

instances.

Listing 5.3: Saving and loading DataBlocks

1 // Saving ’myDataBlock’

2 ObjectOutputStream oos = new ObjectOutputStream(

3 new FileOutputStream("out")

4 );

5 oos.writeObject(myDataBlock);

6 oos.close();

7 // Loading a datablock

8 ObjectInputStream ois = new ObjectInputStream(

9 new FileInputStream("input")

10 );

11 myDataBlock = (DataBlock) ois.readObject();

12 ois.close();

Additionally, the DataBlock class offers two static methods for loading
DataBlocks, and two non-static ones for saving them:
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Listing 5.4: I/O methods for DataBlocks

1 public static DataBlock load(String fname)

2 public static DataBlock load(ObjectInputStream ois)

3 public void save(String fname)

4 public void save(ObjectOutputStream oos)

5.2 Scae

Scaes created and trained with XML scripts can be loaded, but it is also
possible to create them manually. In this section, we first present how to
load Scaes, how to construct them manually, how to train them, and how
to extract features with them.

5.2.1 Loading & Saving Scaes

As it is the case for most classes of the framework, the SCAE class implements
Serializable and can thus be easily saved and loaded with object streams.
Two methods are present for this:

Listing 5.5: I/O methods for SCAEs

1 public void save(String fileName)

2 public static SCAE load(String fileName)

Here is an usage example:

Listing 5.6: Loading and saving an SCAE

1 mySCAE.save("output.ae");

2 SCAE otherSCAE = SCAE.load("output.ae");

5.2.2 Creating an Scae

As explained in Chapter 1, Scaes are created and trained layer-by-layer.
Creating an Scae and adding a layer to it have almost the same syntax and
are therefore presented together.

The constructor and addLayer method take three parameters as input:

1. An AutoEncoder,

2. The horizontal offset when convolving it,

3. The vertical offset when convolving it.
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An example is given below:

Listing 5.7: Creating an SCAE

1 SCAE scae = new SCAE(

2 new StandardAutoEncoder(5, 5, 3, 10, "NeuralLayer"),

3 1,

4 2

5 );

In this example, the first layer correspond to an AE using standard neural
layers, taking as input a 5 × 5 × 3 patch, outputting 10 features. When
convolved, the AE will offset by 1 pixel horizontally, and 2 pixels vertically.

Adding a layer follows the same syntax. Take note that the AE does not
know about the Scae, so you have to specify as input depth the number of
outputs of the previous layer – in this case 10:

Listing 5.8: Adding a layer to an SCAE

1 scae.addLayer(

2 new StandardAutoEncoder(3, 3, 10, 20, "NeuralLayer"),

3 1,

4 2

5 );

5.2.3 Training Scaes

The layers of the Scaes are trained one after another, i.e., you need to
train a layer before adding a next one. Assuming that some DataBlocks are
available, the training is done by repeating the following operation many
times:

1. Select a random DataBlock

2. In this DataBlock, select a random location such that the Scae can
take it as input without border problems,

3. Set the input of the Scae to that location,

4. And finally, call the train method.

This is illustrated below:

Listing 5.9: Training an SCAE

1 Random rand = new Random();

60



2 for (int sample=0; sample<limit; sample++) {

3 // Select DataBlock

4 DataBlock db = getRandomDataBlock();

5

6 // Select location

7 int x = rand.nextInt(

8 db.getWidth() - scae.getInputPatchWidth()

9 );

10 int y = rand.nextInt(

11 db.getHeight() - scae.getInputPatchHeight()

12 );

13

14 // Set input

15 scae.setInput(db, x, y);

16

17 // Train

18 scae.train();

19 }

5.2.4 Extracting Features

To extract features corresponding to the input patch at a given location,
there are two options:

1. The features learned by the top layer are returned by the compute

method,

2. The Central Multilayer Feature (Cmf) can be extracted by the
getCentralMultilayerFeatures method.

This is illustrated below, assuming that db is an input DataBlock, and that
we want to extract features from a patch centered on (x,y):

Listing 5.10: Extracting features

1 scae.centerInput(db, x, y);

2 float[] topFeatures = scae.forward();

3 float[] cmf = scae.getCentralMultilayerFeatures();

Note that if you want only the Cmf array, then you can ignore the return
value of forward, but calling this method is still needed. Also the arrays
returned by both methods are always the same; each forward call will over-
write them. If you need to store several feature arrays, then you should
clone them, as illustrated below:
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Listing 5.11: Extracting and storing features

1 List<float[]> lst = new ArrayList<>();

2 for (int x=0; x<10; x++) {

3 for (int y=0; y<10; y++) {

4 scae.centerInput(db, x, y);

5 lst.add(

6 scae.forward().clone()

7 );

8 }

9 }

5.3 Classifiers

N-light-N contains several classifiers, which work in different ways although
they are all based on Scaes. They are described in this section.

5.3.1 FFCNN

The FFCNN is a feed-forward convolutional neural network which is based on
an Scae and can be trained for classification tasks. This is done by:

• “Deconvolving” the Scae, i.e., allowing different weights to be learned
for each position of the AEs in the convolutions,

• Adding one or several fully-connected layers on top of the Scae,

• And training the resulting network with backpropagation through all
layers, including the ones coming from the Scae.

Creating an FFCNN

The FFCNN class offers several constructors, which are given below:

Listing 5.12: Constructors of the FFCNN class

1 public FFCNN(SCAE scae)

2 public FFCNN(SCAE base, String layerName, int nbClasses)

3 public FFCNN(

4 final SCAE base,

5 String layerClassName,

6 final int nbClasses,

7 int[] additionalLayers

8 )
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The first one will create an FFCNN without adding new layers to the Scae.
It might be useful to plug the FFCNN into a CCNN (see Section 5.3.3).

The second, and probably most useful constructor allows to add a single
classification layer on top of the Scae. The type of layer has to be specified
in the exact same way as for Scaes; the list of available layers is given in
Section 3.4.1. The number of classes (or outputs) has to be specified.

Finally, the third constructor adds the possibility to stack several layers,
each with a different number of neurons. This number of neurons has to be
specified in the last parameters. For example, to create an FFCNN with three
additional layers, one with 80 neurons, one with 25 and an output layer with
2 neurons, the syntax would be the following:

Listing 5.13: Construction of an FFCNN

1 FFCNN ffcnn = new FFCNN(

2 myScae,

3 "NeuralLayer",

4 2,

5 new int[]{80, 25}

6 );

5.3.2 AEClassifier

The AEClassifier is an experimental approach making use of Central Mul-
tilayer Feature (Cmf) coupled to a multilayer neural network. Proper in-
vestigation has not been published yet, however preliminary results tend to
indicate that this approach could lead to an accuracy similar to fine-tuned
networks (see Section 5.3.1).

Creating an AEClassifier

This class has a single constructor:

Listing 5.14: Constructor of the AEClassifier class

1 public AEClassifier(

2 SCAE ae,

3 int nbClasses,

4 int... additionalLayers

5 )

The number of classes also corresponds to the size of the last layer of the
AEClassifier; as there is no backpropagation done through the Scae, it is
recommended to add more layers to the classifier.

63



For example, an AEClassifier with three classification layers of 80, 25, and
2 neurons is constructed as following:

Listing 5.15: Construction of an AEClassifier

1 AEClassifier aec = new AEClassifier(

2 myScae,

3 2,

4 80,

5 25

6 );

The AEClassifier takes as input the Central Multilayer Feature (Cmf)
generated by the Scae. These features have been applied successfully for
pixel-level layout analysis [13], although we have shown that not all of them
might be relevant for a classification task [17]. Although not properly shown
yet, we can expect the Cmf to perform better for the classification of small-
scale elements than using the output of the top layer of an Scae without
fine-tuning.

5.3.3 CCNN

CCNN stands for “Combined Convolutional Neural Networks”. It consists of
a two-stages construct:

• A set of FFCNNs and/or CCNNs,

• Which outputs are given to a set of neural layers.

The different FFCNNs composing the CCNN can have different input sources, of
different dimensionality. This is currently an experimental classifier which
has not been thoughtfully investigated.

The constructor of the CCNN is the following:

Listing 5.16: Constructor of the CCNN class

1 public CCNN(CCNN[] ccnn, FFCNN[] ffcnn, int... topNeurons)

5.4 Training a Classifier

Training a classifier requires data and time. The required data is a set of
inputs with the corresponding expected classification results. The networks
are trained by presenting them with values and letting them know what was
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expected of them, and after a while, the networks should learn to give better
results than random choices.

The classifiers, excepted the CCNN, implement the same interface which al-
lows an easy training.

Let us assume that we have an array of DataBlocks (e.g., loaded from the
images of the MNIST1 dataset), and an array of integer corresponding to
class labels (e.g., the digits corresponding to the MNIST images). Then the
training can be done as follow:

Listing 5.17: Training a Classifier

1 // Load the data

2 DataBlock[] data = loadData();

3

4 // Load the labels

5 int[] label = loadLabels();

6

7 // Number of classes

8 int nbClasses = 10;

9

10 // Number of training epochs - can be different

11 int nbEpochs = 25;

12

13 // Load the classifier

14 Classifier classifier = loadClassifier();

15

16 // For a given number of epochs...

17 for (int epoch=0; epoch<nbEpochs; epoch++) {

18

19 // We initialize a counter

20 int nbErr = 0;

21

22 // We go through the dataset

23 for (int i=0; i<data.length; i++) {

24 // We set the input of the classifier

25 classifier.setInput(data[i], 0, 0);

26

27 // We ask the classifier to compute

28 classifier.compute();

29

30 // We ask for the class number (single class)

31 int res = classifier.getOutputClass(false);

32

1http://yann.lecun.com/exdb/mnist/
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33 // We count the errors

34 if (res!=label[i]) {

35 nbErr++;

36 }

37

38 // For all output, we set its expected value, which

39 // is 1 for the output corresponding to the expected

40 // class, 0 for the other ones

41 for (int j=0; j<nbClasses; j++) {

42 if (label[i]==j) {

43 classifier.setExpected(i, 1);

44 } else {

45 classifier.setExpected(i, 0);

46 }

47 }

48

49 // We backpropagate the error

50 classifier.backPropagate();

51

52 // And make the classifier learn

53 classifier.learn();

54 }

55

56 // We can display the number of errors

57 System.out.println("Epoch "+epoch+", nbErr="+nbErr);

58 }

Note that for simplicity reason, data loading code is not given. If you want
more details about this, see Section 5.1. In this code, the classifier can be
an instance of FFCNN or AEClassifier.

In case of a CCNN, the syntax would be similar, but with the following dif-
ferences:

• The CCNN is supposed to use several input sources, not only a single
DataBlock as in this example,

• And the setInput method gets an additional parameter, the FFCNN

number in the CCNN.

5.5 Classification

Using a classifier is extremely simple once you know how to train it. It can
be done in a similar fashion as in Listing 5.17, without the training phase
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(i.e., without loading labels, and stopping at line 31).

5.5.1 Advices

Training a classifier is both a simple and complicated task. The approach
below is a bit naive and lacks some tricks which would probably increase
the accuracy – some of them are given below.

Balance the Data

Some machine learning methods are lazy. If one of the classes appears
extremely rarely, then the methods might learn never to output it. We
recommend that if you have N classes, that you select ≈ 1

N of the training
data from each class.

Don’t Wait for Hours

If the accuracy of a network does not seem to continue increasing after a
while, it is usually unlikely that this will suddenly change. If the network
does not reach a desired accuracy, then you should maybe change its topol-
ogy, input size, ...

Don’t Test Once

When networks are initialized with random weights and trained on randomly
selected data, then the final accuracy will have some randomness. If you test
two different approaches and notice that one is slightly better after a single
test, it does not mean it will always be like this. Do tests several times to
increase your level of confidence.

You can use the following tool, provided by the DivaServices [22], to com-
pute levels of confidence from a set of results:

http://divaservices.unifr.ch/ttest/

This tool currently considers that higher results are better, so provide an
accuracy measurement, and not an error rate.

Shuffle !

Do not train sequentially. Let us assume that you have a two-classes prob-
lem, and that you train first on N samples from the first class, and then on
N samples from the second class. Then, we can make two observations:
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1. You have balanced training data, which is good,

2. But as the last N training steps will ask only for the second class, the
network might learn to output only it.

Shuffle your data, is possible between each epoch. For any short training se-
quence, there should be as much entropy in both the inputs and the expected
outputs.
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Chapter 6

Framework Upgrade

This chapter is a guide on how to implement new components for the frame-
work. Do please read chapter 3 for getting an idea of the framework archi-
tecture before trying to implement something.

6.1 Creating your Own XML Command

This section explain how to implement a brand new commands which will
be then possible to run with an XML script.

Where to Start

Every command must extend the AbstractCommand class. In the construc-
tor, you have to pass the XMLScript reference to the super constructor,
as shown in Listing 6.1. This is necessary to allow access access to all
script resources. Now we only need to implement the two abstract methods
execute(Element element) and tagName().
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Listing 6.1: Starting a new commands from scratch

1 public class myCommand extends AbstractCommand {

2 public myCommand(XMLScript script) {

3 super(script);

4 }

5

6 public String execute(Element element) {

7 // Implement your command functionality here

8 }

9

10 public String tagName() {

11 // Tag will be <newcommand></newcommand>

12 return "newcommand";

13 }

14 }

Implementing tagName()

This method must return the name of the command in the XML. It must
not have the same name as an already-existing command. Additionally,
it should follow the naming convention “no-capital-letter”, with different
words separated by a “-”. Avoid special characters, spaces or digits.

Implementing execute(Element element)

This is the core of the command, so it is where we will implement the func-
tionality that we want to carry out. The XMLScript will call this methods
passing as parameter the node with the name provided in tagName(). From
this node we can extract the children or attributes of our command. The ab-
stract class AbstractCommand provides a couple of methods which are very
useful to handle the XML nodes, so that you don’t need to get your hands
“dirty” with JDom or any other XML libraries. These methods are:

• readAttribute(Element e, String name)

Reads an attribute of a tag

• readElement(Element parent) Returns the text contained into the
tag. For example, if applied to <a>hello</a>, it would returns
”hello”.

• readElement(Element parent, String child) Returns the content
of the specified child of the parent element passed.
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With these methods we can easily extract all the data we need to proceed.
Note that if you do not use these methods, then you will have to take care
of the variables yourself (see Section 4.6.4).

Example

The example below illustrates better how commands can be added. The
new command makes a simple math operation, with an additional optional
parameter to print something to screen.

The desired command is the following:

Listing 6.2: XML examlpe of the new command

1 <test>

2 <new-command operator="plus">

3 <first>1</first>

4 <second>2</second>

5 <text>Hello world</text>

6 </new-command>

7 </test>

And the Java implementation is:

71



Listing 6.3: Example implementation of our new command

1 package diuf.diva.dia.ms.script.command;

2

3 public class MyCommand extends AbstractCommand {

4 public myCommand(XMLScript script) {

5 super(script);

6 }

7

8 public String execute(Element element) {

9 // Fetching the attribute

10 String operator = readAttribute(element, "operator");

11

12 // Fetching operands

13 int a = Integer.parseInt(readElement(element, "first"));

14 int b = Integer.parseInt(readElement(element, "second"));

15

16 // Compute operation

17 int result;

18 switch (operator) {

19 case "plus":

20 result = a + b;

21 break;

22 default:

23 result = -1;

24 System.out.println("Unknown operator");

25 }

26

27 // Testing if additional parameter is present

28 String text=""; // empty by default

29 if (element.getChild("text") != null) {

30 text = readElement(element, "text");

31 }

32

33 // Print result

34 script.print(

35 "Result=" +

36 result + " " + text);

37 }

38 return String.valueof(result);

39 }

40

41 public String tagName() {

42 // Tag will be <new-command></new-command>

43 return "new-command";

44 }

45 }
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Adding A Command To XMLScript

Even though we now have our perfectly working new command, the instance
of XMLScript does not know about its existence. We then need to add our
newly implemented command to the hard-coded list of available ones. To do
so, just add the following line (listing 6.4) in the method prepareCommands()
in XMLScript.java.

Listing 6.4: Adding out example to available command list

1 addCommand(new MyCommand(this));

6.2 Creating your Own Layer

In order to create your own layer, you need to properly implement the
Java Layer interface. The abstract class AbstractLayer, which already
implements most methods of the Layer interface, can also be used. This is
a simple class which serves as “starting point” when creating a new kind
of layer. Unless when implementing very special layers, it is recommended
to use AbstractLayer rather than Layer. This way, one can focus on logic
rather than utility methods as setInput() or so.

As a reminder, as shown in figure 6.1, the input, output, previous error and
error are array of floats and not Datablock. This means that their value is
passed by reference and not by value, hence you should store the references
of these arrays and not make copies of them! It is now briefly presented
what is exposed in the layer interface and what is their expected behaviour.

Figure 6.1: Interface of a layer. Notice how all inputs and outputs are array
of floats and not Datablock, thanks to the work done by the AutoEncoder

class.
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Computing

As it names indicates, compute method is has to compute the output values
using the inputs and the parameters learned by the layer. Writing to the
output float array is sufficient, there is no need to care about the DataBlocks
used by the Scae.

Learning Related

The following three methods are the core of the layer training methodology.
They implement the learning functionality and therefore, with compute()
they define the behavior of the layer.

void setExpected(int pos, float expectedValue) This method
uses the expected value passed as parameter to compute the error
of a given output. This is not necessarily the only way to set the
error. This method is used in two cases: 1) the expected values of a
decoder correspond to the input of the encoder, and 2) if the layer is
on the top of a classifier, then the expected outputs correspond to the
classification results.

float backPropagate() This method corresponds, in a ”standard“
neural network1, to an error backpropagation and gradient computa-
tion. This means that the error of the output has to be transmitted
to the input (previous error in Figure 6.1). Additionally, modifi-
cations of the layer’s parameters have to be planned. This means, in
the case of a ”standard“ neural network, that gradients must not be
subtracted to the weights at this point, but accumulated. This me-
thod might be called several times (batch training) before the learn

method gets called.

float learn() This method is used to apply parameter modifications
accumulated by one or many backpropagate calls. Once it is done,
values which were accumulated must be reset to 0.

Input Related

The following are methods which make it easy to handle the input of the
layer.

float[] getInputArray()

This returns a reference to the input array.

1Some layers might work in a completely different way, but the terminology should be
kept for clarity (and interface) reasons.
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void setInputArray(float[] inputArray)

This set the array passed per parameters as new input array.

Output Related

The following are methods which make it easy to handle the output of the
layer.

int getOutputSize()

This returns the size of the output vector. This must correspond to
getOutputArray().length.

float[] getOutputArray()

This returns a reference of the output array.

void setOutputArray(float[] inputArray)

This set the array passed per parameters as new output array.

Error Related

The following getters & setters for the two float[] array representing pre-
vious error and error. Take care that everything should be handled by
reference: getters should return a reference of the array and not a copy and
setters should not copy the array before setting it!

float[] getPreviousError()

void setPreviousError(float[] prevError)

float[] getError()

void setError(float[] error)

Utiliy

Layer clone() It is of utmost importance that the layer can be cor-
rectly cloned, otherwise AEs cannot properly clone themselves.

6.3 Creating your Own Autoencoder

In order to create your own AE, you need to properly extend the Java
abstract class AutoEncoder. To do so, at least the following methods have
to be implemented or rewritten:
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• constructor()

Although not so special, the constructor is an important part. Here
after calling
super(inputWidth, inputHeight, inputDepth, outputDepth),
you need to provide the AE with the two Layer objects for encoder
and decoder.

• AutoEncoder clone()

This is the typical cloning methods. It is mandatory that it cre-
ates a deep copy of the AE because otherwise other entities (such
as FFCNN) will have unexpected behaviors when using AE.

• char getTypeChar()

This methods return a char indicating the type of the AE. For example
the classic NN returns ’n’. This is useful for logging and printing
purposes, especially when describing Scaes.

When these methods are implemented, the new AE is ready to be initialized
and used inside classifiers or Scaes. Note that although you can create a
new kind AE, in the sense that it did not exist before in the framework, by
providing the two Layer objects (encoder, decoder layers) in the constructor,
it could also be done with the StandardAutoEncoder class.

The main advantage of subclassing AutoEncoder is that any behavior can
differ much if other methods are overwritten. For example, one could imag-
ine some pre-processing of the input patch before putting it into the encoding
layer’s input array.

Keep in mind however, that an autoencoder is a delicate and well oiled
machine. This means that you should override methods (like learn() or
train()) only if you know what you are doing. Do not hesitate to add
assertions at many places in order to make sure that everything goes well.

6.4 Creating your Own Classifier

In order to create your own classifier, it is recommended to properly im-
plement the Java interface Classifier. Dong so would allow to simple
comparison of classifiers, and to integrate it in the scripts for pixel-labelling
tasks. The methods in the Classifier interface are detailed below.

Setting Inputs

One very important point for a classifier is setting the input correctly. There
are in two methods for setting the input:
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void setInput(DataBlock db, int x, int y)

In this methods x and y are the coordinate of the top left corner of
the patch.

void centerInput(DataBlock db, int cx, int cy)

In this method, cx and cy are exactly the coordinates of the central
pixel of the input patch..

The input width and input height hhave to be taken into account when
using the classifier in order to avoid accessing to values which are outside
of the input DataBlock. For example, on the x-axis it is clear that with
setInput() you can start at 0, while with centerInput() you have to
start at half the patch size at least.

Furthermore, in case of pixel labelling, be sure that the location you set
as input corresponds to what you want. It sounds strange but consider
that with setInput() the pixel under evaluation is NOT the one at the
coordinates you provided to the method but one half patch down-right (as it
is the center of the patch that gets evaluated). This can cause problems when
comparing classification results to a ground truth if not handled carefully.

Computing

For the aspect of computing the result the interface is very simple. The
compute() method has to be implemented. It has no return value, as other
methods will be used for interpreting classification results.

void compute()

This method will execute the classifier and make him produce an out-
put that can be subsequently fetched.

Getting the Output/Results

After computing the outputs, it is necessary to interpret them. The interface
provides the following to methods to handles this.

int getOutputClass(boolean multiClass)

This method returns the classification result of the last evaluated in-
put. The classification might be single or multi-class. In case of single
class the result will be a normal integer indicating the class number.
In case of multiclass result, it will return an integer which bits indicate
whether the pixel belongs to the different classes or not. For example
a result of 5 (0..01012), with single-class means that the output got
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classified as belonging to class 5, whereas with multiclass the same
result means output got classified as belonging to the class two and
zero, as bits 0 and 2 are set to 1.

int getOutputSize()

This method simply returns the output size and an integer. This also
corresponds to the number of neurons of the last stage of the classifier,
i.e., the number of classes.

Learning

These methods provide the possibility to set the expected values (supervised
training) and teaching the classifier.

void setExpected(int classNumber, float expectedValue)

This method feeds the expected value for each class to the classifier.
This means that after computing the output, it should be set the
expected value to 0 for all classes except the correct one(s), where the
expected value should be set to 1.

float backpropagate()

This method backpropagate the error in the same way as for Scaes,
i.e., transmits the error to the previous layer and accumulates param-
eter modifications.

float learn()

This method applies the parameter modifications accumulated by the
different backpropagate calls.

Utility

The following are general purpose utility methods. This section only covers
the basics stuff that should be common among all classifier. However, each
classifier shall have an own set of utility methods which are specific to his
nature.

String name()

Must return a string indicating the name of the classifier (AEClassi-
fier,FFCNN, ...). Useful to avoid using the java “instanceof” every-
where.

String type()

Must return a string indicating the type of the classifier (pixel, graph,
XML ...). Useful to for easily extend the framework to work with
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other data types. At the moment the only possible value implemented
is “pixel”.

int getInputWidth()

Returns the width of the input patch.

int getInputHeight()

Returns the height of the input patch.

void save(final String fName)

Saves the object on file through the serializable interface.

At this point your classifier is ready to be used.

6.5 Plotting Graphs

Writing in the standard output training errors and classification accuracy
is useful for comparing different Scaes or classifiers. However it might be
very enlightening to plot the training error in function of the number of
training samples used in order not to compare only the accuracy of different
approaches, but also their behavior during the training. The Tracer class
can be used for this purpose.

As a large quantity of samples can be used during the training (up to mil-
lions), plotting all of them it not realistic, nor useful. For this reason, the
tracer will sub-sample the data it receives and display only a fraction of it.

Additionally, the plotter can be set not to display anything, and to only
store the sub-sampled data into a text file. This can be useful when the
framework is used in an environment without graphical user interface, e.g.,
a cluster, or when users want to make specific plots themselves.

Creating a Tracer

At the creation of the tracer it is necessary to specify the title of the plot,
the label of the x and y axis and three additional parameters:

numSamples Specifies what is the expected number of samples which will
be fed to the tracer. As the values passed to the tracer will
be sub-sampled, it is necessary to know how approximately
many of them will be received in order to skip the right
amount between two stored values.

maxPoints This is the number of points that will be displayed on the plot
after the sub sampling. A value of 200 is suggested.
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visible Indicates whether the graphical interface should be used or not.

Listing 6.5: Creating a tracer

1 tracer = new Tracer(

2 "Title",

3 "x label",

4 "y label",

5 numSamples,

6 maxPoints,

7 visible

8 );

Adding a Point

To add point to the tracer, just call the addPoint(double,double) method,
providing x and y values.

Listing 6.6: Adding a point to the tracer

1 tracer.addPoint(xValue,yValue);

Plotting Data

Once all the data has been fed to the tracer, it is possible to plot it to screen
as well as saving the plot to a file. In order to have more stable curves, it
might be useful to plot the average of the data or some other metric and
not just the raw samples. For this reason there are already some built in
features, which can be then easily extended by simply adding a methods to
the Tracer class. The possible trace are:

Raw data Displays the stored samples as they are fed to the tracer.

Cumulated average Displays the average of all samples cumulated along
the x axis.

Moving average Displays moving average computed with a moving kernel
of 1/10 of maxPoints.

Moving median Displays moving median computed with a moving kernel
of 1/10 of maxPoints.
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It is possible to add one or several of them. To do so, use their respective
method, as shown below.

Listing 6.7: Adding the tracks on the tracer

1 tracer.addRawData();

2 tracer.addCumulatedAverage();

3 tracer.addMovingAverage();

4 tracer.addMovingMedian();

Displaying Data

To visualize the different traces, call the display() method.

Listing 6.8: Displaying the plot

1 tracer.display();

Saving Data

It is possible to save the plot and data to a file with savePlot(String fPath).
There should be no file extension, as two files will be created:

1. A .tracer file storing the sub-sampled data, thus allowing users to
further analyse it.

2. A .png file, storing the plot.

If the Plotter was created invisible, the .png file will not be created.

Listing 6.9: Saving plot on a file

1 tracer.savePlot(fPath));
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