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ABSTRACT

Production function in aquaculture has received very littfe 

attention. An attempt has been made to evaluate the production function of 

mariculture systems. Production functions are generally based on growth and

I

mortality or mathematically = N  ,.d w  .d t . Numerous mathematical
0

functions have been used to describe the age-weight relationship in cattle and 

poultry: however, little work has been done in modeling growth of organisms in 

aquaculture. The functions evaluated were Gompertz, Logistic, von Bertalanffy, 

Richards, modified Janoschek and polynomial growth equations. The Gauss- 

Newton and Quasi-Newton method of the nonlinear regression procedure of 

SYSTAT was used to estimate parameters of each function for individual 

weight-age curves. The growth models were used for the derivation of 

production functions along with no assumption on mortality and different 

assumptions of mortality like linear and exponential model. In the case of grey 

mullet M ugil cephalus logistic growth model gave the best fit while that for 

molluscs Crassostrea m adrasensis and Pem a v i^ is  Gompertz growth curve 

was the best. The production function was estimated for the oyster data. It was 

found that the linear and exponential assumptions in mortality along with the 

Gompertz growth curve gave better results.
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1. INTRODUCTION

During the past decade, aquaculture has been the world's fastest 

growing food production system. This spectacular growth has been fuelled by a 

steadily increasing demand for seafood and a leveling of production from 

capture fisheries throughout the world. Food and Agriculture Organisation 

(FAO, 1984) has defined aquaculture production as that portion of fisheries 

production achieved through human intervention involving physical control of 

the organism at some point in its life cycle other than at harvest. This 

intervention can range from minimal, such as the trapping of shrimp seed stock 

in coastal lagoons to cause an eventual increase in harvest, to maximal, such 

as the production of trout in closed systems.

Even though aquaculture is as old as first century B.C., it is still an 

emerging science. The practice of aquaculture is varied and based on different 

components. It is based on scientific knowledge -  a formal knowledge 

contained in books and papers giving a rationale for taking decisions, then on 

folk wisdom -  where things are done because it ts known why and that they 

work to a certain degree and finally on conjecture where the situation is novel 

and there is no guidance from knowledge and tradition but one has to do 

something. The purpose of aquaculture research is to increase the percentage 

of the first component - scientific knowledge - at the expense of the other two 

components thereby increasing the efficiency of production.

Scientific knowledge is not just about observational data but it 

includes a conceptual scheme or hypothesis that corresponds with those data 

and it is the continual interaction between hypothesis and observational data 

that leads to progress. Any branch of science as it progresses from the 

qualitative to the more quantitative, reaches a point, where mathematics



becomes essential for connecting theory to experiment. At this context 

emerges the science of mathematical modeling.

In mathematical modeling, mathematics is used as a language for 

expressing the numerical observations so that it can be properly connected with 

the hypothesis. A mathematical model is a simple description of a physical, 

chemical or biological state or process. Hypothesis expressed in mathematics 

can provide a quantitative description and understanding of biological process. 

Models are used to imply the existence of an apriori logical identification 

between the equations, variables, parameters and analytical behaviour on one 

hand and biological phenomena on the other hand. Three components or steps 

underlie the specification and use of a model;

1 B iological c o m p o n e n tThe biological component must provide at 

least one measurable quantity.

2 M athematical com ponent Investigation of the properties of the 

model is the mathematical component.

3 Statistical com ponent The estimation of the parameters and 

testing of the fit constitute the statistical component.

Growth is a factor of prime importance in aquaculture since every 

cultured organism demands a stipulated size in the market to fetch optimum 

price. From the farmer's point of view this should be attained in the shortest 

time for attaining maximum profit. So understanding the growth characteristics 

of a species is fundamentally important in aquaculture. Growth of any organism 

depends on intrinsic factors typical of the genetic constitution of the population 

as well as extrinsic environmental factors acting on the individual throughout its 

ontogenic development. Growth is the increase in length, volume or weight



over time (Nikolskii, 1969; Hartnell, 1983) and is the result of balance between 

the process of anabolism and catabolism that occur in an individual {von 

Bertalanffy, 1938).

Various attempts at mathematically describing the growth of 

animals have been made over the centuries. Much research has been devoted 

to modeling growth processes, and there are many ways of doing this like 

mechanistic models, time series modeling, stochastic differential equations etc. 

Research has continued in recent years with most of this effort aimed at 

establishing comparative curves for different animals. Due to the complexity of 

the various issues, models could not always be applied to specific situations. A 

better understanding of growth could result in significant benefits in terms of 

productivity, sustainability and profitability for aquaculture operations, provided 

this greater understanding is translated into relevant and simple applications.

Information on the growth of animals is important for studying their 

population dynamics, physiology and biochemistry (Peters, 1983; Calder. 1984; 

Schmidt-Nielsen, 1984; Reiss, 1989; Xiao, 1998). Growth models can be of 

great value from production planning and management points of view (Iwama 

and Tautz, 1981). The use of growth models offers an objective and practical 

way of describing pattern of growth and predicting production. It also forms the 

basis for understanding mortality or survival and other characteristics that 

determine yield. Proper models can allow intrapolation of growth data to 

estimate weight between sampling intervals. This may be very helpful for the 

accurate estimation of the standing stock and the amount of feed to be 

distributed. Growth models can also be used to forecast (extrapolate) weight at 

a certain point in time past sampling interval. This may be helpful for example, 

to estimate time required to achieve a given target weight (e.g. market weight). 

The accuracy and utility of growth models have improved with the ability of 

modern computers to calculate complex concepts rapidly.



Aquaculture is a promising feature, which is expected to improve 

sustainability as well as the economic situation on small-scale rural farms 

through diversification and nutrient recycling. To determine the carrying 

capacity of a water body it is necessary to evaluate its production. In general, 

production is not synonymous with yield. Production is defined as the total 

amount of tissue elaborated In the population or community under study during 

a given period. It is a dynamic quantity that can rarely be measured directly. Its 

measurement or estimation calls essentially for knowledge of the biomass of 

the population or community at the beginning and end of the period and of the 

mass of living components that have been lost by death or emigration during 

the period (Allen, 1971).

Production Models are just a more complex series of calculations 

based on growth models. To manage a fish production facility or site, it is 

desirable to be able to model the individual fish stocks and to project fish stocks 

for an extended period. Production models, which simulate the performance or 

grow/th of aquatic animals in an aquaculture grow-out facility, can be practical 

and valuable tools for both the researcher and the pond manager. For the 

aquaculture researcher, such a model facilitates comparison of quantitative 

relationships between biological variables and animal growth with the actual 

growth data. Consequently this can further the understanding of the grow-out 

system biology and can result in determination of the key variables that 

determine growth. For the pond manager, such a model provides an inventory 

system under current management procedures and by simulating the grow-out 

system over different management strategies such as different stocking and 

harvesting schedules and stocking densities the model assists in selecting 

optimum management strategies. Once production has been quantified, it is 

possible to improve quantitative analysis by comparing production outputs 

varying one parameter at a time. To optimize profits, the optimum harvest time 

can also be determined by linking biomass models to total cost.



It is well known that mathematical modeling and simulation have 

numerous applications in describing animal growth and biological systems. 

Most of the models are excellent planning and management tools, but like all 

tools their effectiveness has as much to do with operator’s experience, as it 

deals with the structure and design of the model. The field of modeling has 

expanded in the past decade, and should continue to do so, considering the 

costs involved with animal experimentation and the advancement of 

microcomputers.

Growth modeling and production modeling in aquaculture has not 

received its requisite status in India. This work was undertaken as an attempt 

to fill in the void. In the present study, an attempt has been made to model the 

growth of various organisms of mariculture importance like mussels, oysters 

and fish. For the estimation of production based on these growth models and 

assumptions made on mortality, production functions were derived. These were 

applied to the data set available and the production estimated.

V

The objectives of the study were

1) Mathematical modeling of growth of different organisms of 

mariculture importance.

2) Derivation of production functions based on different assumptions 

on growth and mortality.

3) Evaluation of production functions.
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2. REVIEW OF LITERATURE

Webster’s New World Dictionary defines growth as “the process of 

growing or developing, - gradual development towards maturity”. In reality, 

growth does not have such a simple and constant meaning. Beever et al. 

(1992) defined animal growth as the increase in size and the change in 

functional capabilities of the various tissues and organs within the animal. 

Beever also provided a simpler definition of growth as the net accretion of 

protein and fat in respective tissues, controlled by nutrition, environment and 

the genetic capacity to grow.

Growth of crustaceans and other invertebrates d/ffers s/gnif/cantly 

from that of vertebrates, such as fish. Although tissue growth is essentially a 

continuous process in crustaceans, the accompanying increase in external 

dimensions is discontinuous. This proceeds by a series of molts or ecdyses, 

when the old integument is cast off and a rapid increase in size occurs before 

the new integument hardens and becomes inextensible (Hartnoll, 1983).

Growth of fish Is in many ways similar to growth of higher 

vertebrates. Fish can survive starvation for extended periods of time (days to 

months) and lose very significant amount of weight and remain able to resume 

their growth, without ill-effect, when conditions become more favorable again 

(Weatherley and Gill, 1987).

There have been many attempts to mathematically describe 

growth of fish using a large diversity of approaches and concepts. It is common 

to find growth expressed as centimeters per month, instantaneous growth rate, 

and percentage of change in weight (Iwama and Tauz, 1981; Muller-Feuga, 

1990).



Since growth rate is liighly dependent on species, genetics, 

nutrition, environment, husbandry and other factors, it is essential to calculate 

growth rate for a given aquaculture condition. Production records are very 

valuable starting points when trying to determine most appropriate growth 

model and consequently, predicting growth of the fish (Cho and Bureau, 1998).

Mathematical Models of Grovrth

A model is an abstnactfon of reality. It is a formal description of 

the essential elements of a problem (Jeffers, 1978). "A Mathematical model is 

an equation or set of equations which represents the behaviour of a system 

(Thornley, 1984). There are different type of models; physical versus abstract, 

dynamic versus static, empirical (correlative) versus mechanistic (explanatory), 

deterministic versus stochastic and simulation versus analytical.

Many mathematical equations representing growth have been 

developed (Brody, 1945; Guttman and Guttman, 1965; Fabens, 1965; Heinichs 

and Hargrove, 1987; Laird, 1966; Richards, 1959). A growth curve is simply a 

mathematical relation between weight of an animal and time (Fabens, 1965). 

Growth curves relate the interrelationships of the genetic ability of an animal to 

grow and mature and the environment in which the animal grows (Fitzhugh, 

1976).

One of the earliest works in mathematically describing the growth 

of animals was reported by Gompertz (1825) as cited by Parks (1982) for the 

calculation of mortality rates. It is still one of the most frequently used curves in

modeling growrth and is given by: f f , = roe*^ ''''‘'*"\where iv, is the 

corresponding weight at time t, W^\s the value at time, t=0, g is the 

instantaneous rate of growth and k is a dimensionless parameter.



Verhulsf (1838) proposed a mode) for population growth, which

can be used for somatic growth as well. It is defined by: w, = — ^ —  where A
 ̂ ' \ +  he-^'

is the adult value, both b and c are free parameters that adjust the shape of the 

curve. The autocatalytic or logistic curve is symmetrical around its inflection 

point. Growth rate increases with age till A or until the inflection point, where it 

decreases until maximum age is reached.

The Gompertz curve has an inflection point earlier than a logistic 

curve, precisely when W  = A/e. In addition, the Gom pertz curve is 

asymmetrical about its inflection point.

Ludwig von Bertalanffy (1957), in his studies of growth functions 

across many species, attempted to relate growth to metabolic rate, thus 

providing a physiological basis for growth functions. He theorized that, anabolic 

rate and body weight relationships are similar to metabolic rate and body weight 

relationships, implying that metabolic rate can predict growth 

type VI’,. = w a { \ -e ~ ‘"Y  where is the asymptotic weight or adult value, the 

value that is attained as t approaches infinity.

The most frequently used model nowadays was developed by 

Richards (1959) and is defined by: W = A il + e '^ 'y '^  where A Is asymptotic 

(mature) weight, k is rate of approach to mature weight and M is a shape 

parameter that allows for a variable inflection point. The Richards function is 

essentially a modification of the monomolecular curve, with M added as an 

exponent to adjust the proportion of mature size at the inflection point. The 

Richards’ equation allowed flexibility by adding M to vary to account for an 

inflection point but the others treat M as a given fixed constant, hence 

increasing its usefulness. This high flexibility is, however, combined with



disadvantages as well. The parameters (b, k, M) have a high covariance, which 

can produce problems during nonlinear regression.

Janoschek (1957) proposed grov\rth curve that is nearly as flexible

as the Richards function. It is defined by; =  {W Q)e~^‘ ‘ where is the

adult value or asymptote, because this value Is attained as t approaches infinity. 

The parameters k and p adjust both slope and point of inflection of the curve.

Many other models were also developed based on a linear 

relationship between age and weight; weight = a + b *(age); where a = intercept 

and b = slope (Russel, 1969). The models are generally empirical, static or 

deterministic in form. Therefore, the application of each model across a 

population under varied environmental conditions is limited.

The previously described functions (monomolecular, logistic, 

Gompertz, Bertalanffy, and Richards) all assume growth is a continuous 

process resulting in a smooth shaped growth curve. These nonlinear equations 

of animal growth have a physiological basis, similar to the approach of 

Bertalanffy, implying that the parameters have biological meaning.

The main criteria for choosing a grow/th curve are quality of fit and 

convenience. Ideally, growth models for fish and shrimp should offer possibility 

for comparing growth rates of animals of various sizes reared at various 

temperatures and culture conditions (Iwama and Tautz, 1981).

Application Of Growth Curves

Many equations have been used to predict growth in animals, 

which include Gompertz, Robertson's logistic, Brody, Bertalanffy, Feller, Weiss 

and Kavanau, Fitzhugh, Richards, Laird, and Parks equations (Brown e t a i,



1976; Fitzhugh Jr., 1976; DeNise and Brinks, 1985; Johnson e t a}., 1990; 

Beltran e t al., 1992; Lopez de la Torre et al., 1992; Mezzadra and Miquel, 

1994). Summarized descriptions can be found in Parks (1982).

According to HartnoN (1983), most crustacean species appear to 

have a finite size or grow towards an asymptotic weight. He presented a series 

of curves representing the growth (in size) of various crustaceans throughout 

their life cycle.

The Chapman-Rlchards model has been applied successfully by 

Siqueira e t al. (1989) to the penaeid shrimp Penaeus subtilis (Perez Farfante) in 

rearing ponds in a marine farm in north-east Brazil. Jackson and Wang (1998) 

adapted the Gompertz growth model to Penaeus monodon under aquaculture 

conditions. This model accounts for the effects of temperature, mortality and 

pond age.

Weymouth and Thompson (1930) applied the Gompertz curve to 

the growth of a bivalve. Thiesen (1973) generalized and suggested that growth 

of all lamellibranchs are sigmoidal and recommended a combined Gompertz 

von-Bertalanffy model. Galiucci & Quinn (1979) suggested a new parameter for 

Bertalanffy's model to enable growth properties for the bivalve, Macoma 

balthica  (Linnaeus) in different spatial regions.

A study was performed by Shin e t al. (1995) to determine the 

growth and production of M actra veneriform is  on the Songdo tidal flat off 

Inchon, west coast of Korea. They found that the growth in shell length fitted 

well to the von Bertalanffy model and the meat weight to the Gompertz model.

In the works conducted by Devillers e t a!. (1998) shell length (SL) 

records of known-age northern quahogs Mercenaria mercenaria  over a 12-year



period were used to compare Richards, Gomoertz, logistic, and von Bertalanffy 

growth models. The Richards model gave the most accurate prediction of 

biologically and economically important ages.

A modified Gompertz function was fitted bv nonlinear numerical 

methods to the absolute growth-rates, (mm/day) of the. marine gastropod, 

ConchoJepas conchofepas. The modified Gompertz function provided a better 

fit than the bertalaffy function to the growth rate data (Rodriguez,,2001).

Jorg Urban (2002) fitted. Gompertz, Special von Bertalanffy, 

Richards, Logistic and Generalized ,von Bertalanffy models to growth data of the 

Caribbean pearl oyster, Pinctada imbricata. Gompertz, Logistic and the 

Generalized von Bertalanffy model underestimated asymptotic length. Of all 

models, the Generalized von Bertalanffy model yielded the best fit.

Fish growth data are usually fitted through mathematical functions 

appropriate to generalize the process to predict and compare growth patterns 

within (or between) population or species (Chen et a!., 1992). The von 

Bertalanffy model is one of the functions mostly applled to fish growth (Beverton 

and Holt 1957; Ricker 1 9 7 5 ,1 9 7 9 -and Santos 1978). Springborn (1991) 

reported that the initial value solution, a modification of von Bertalanffy's 

equation gave improved growth parameter estimates for aquaculture. However, 

this growth model could not explain variable rates offish growth. He developed 

an initial value solution of von Bertalanffy’s equation, which used the size offish 

stocked as a model starting point, instead of a theoretical age of the fish at zero 

size.

Springborn e t al. (1994), working in aquaculture experiments, 

showed that fish could increase dramatically in asymptotic length and growth 

rate. A variable growth model was developed to describe fish growth 

oscillations observed in aquaculture experiments. This provided an improved



estimate of von Bertalanffy equation in aquaculture and can be used for an 

efficient evaluation offish production.

Many researchers have used polynomial equations to fit data of 

fish growth, while others suggested replacing Bertalanffy's growth curve with 

polynomial models (RafaiI1971, 1972; Ricker 1975; Roff 1980).

However, Chen et al. (1992) compared Bertalanffy's model and 

polynomial equations to fit growth data of sixteen populations, including six 

freshwater fish species. They concluded that Bertalanffy's model was more 

flexible for all populations than the polynomial equations with three and four 

parameters.

However according to Melo (1993) there are cases where fish 

grovirth is not well described by the Von Bertalanffy model, confirming Richard’s 

(1959) and Chapman’s (1961) assertions. It is therefore useful to test other 

mathematical models, as good data fitting is one of the criteria proposed by 

Ricker (1979) for choosing growth curves. Silliman (1967) used Gompertz 

model for fishes and Zweifel and Lasker (1976) argue that it should be the 

preferred model for fishes -including lan/al growth.

Rosa et al. (1997) compared different growth models like 

Chapman-Richards, Gompertz, Bertalanffy, Silva, Brody, Monomolecular and 

Logistic in cultures of Oreochromis niioticus L. and Cyprinus carpio L. The 

Chapman-Richards growth model was shown to be the most appropriate for 

Oreochromis niioticus L., while Silva’s model best expressed growth for 

Cyprinus carpio L.

Walia et al. (1998) conducted study on three species of inland 

fish. viz.. rohu. mrigal and common carp. Non-linear statistical models were



fitted to forecast fish weight at the time of harvest after 12 months of stocking 

fish. Results revealed that forecast of fish weight can be made three months 

before harvest. For indigenous species like rohu and mrigal, logistic growth 

model can be used while that for exotic species, like common carp Gompertz 

model can be used to forecast the fish weight.

Fitting o f nonlinear equations and goodness o f fit

A procedure was advocated by Rao (1958) for growth comparison 

in which he suggested that efficient comparisons are possible if the data can be 

reduced to a few parameters, which summarize the aspects of growth. This is 

the most commonly used and powerful technique available to an investigator.

Most non-linear regression programmes calculate asymptotic 

standard errors and correlations for the parameter estimates. One approach is 

to use these statistics along with the parameter estimates in hypothesis test. 

Kingsley (1979) Galucci and Quinn (1979) and Misra (1980) have carried out 

univariate comparisons based on either the T or chi-square test for 

simultaneous comparisons of two or all three of the von Bertalanffy’s 

parameters. The other approach advocated by Kimura (1980) is based on 

likelihood ratio statistic. Kingsley (1979) and Bernard (1981) suggested a 

procedure based on Hotelling T^ statistic.

In the works conducted by Cerrato (1990) the equations were 

fitted to the surf clam data using the iterative Gauss-Newton algorithm and the 

goodness of fit was checked by likelihood ratio, t-statistic, univariate chi-square 

and T^ test. Out of which, likelihood ratio test was found to be the most 

appropriate. He also showed that maximum likelihood estimation for the von 

Bertalanffy curve is equivalent to finding least-square estimates of model 

parameters.



Rosa e t a!. f1997) fitted the growth models after transforming, 

using the differences of equations method as in Clutter, Forston, Pienaar, 

Brister & Bailey (1983). The models were fitted by the quasi-Newton and 

simplex methods, using SYSTA T software (Wilkinson, 1990). Transformations 

were made to aliow the incorporation of desirable characteristics such as 

convergence and invariance into the growth models. Fitted models were 

compared through respective values of index of fit (IF), which resembles the 

coefficient of determination (R^), because the dependent variable is the same in 

all models (Schlaegel, 1981). The difference between IF and is related to 

the methodology employed to estimate the parameters of the models. For the 

least square method, model is adjusted through the linearization of the 

observed data and R  ̂ is calculated with these linearized data. For the quasi- 

Newton and simplex methods, the parameters of a model are estimated through 

iteration processes, without any change in the observed data, and the IF is 

calculated directly on the observed data, relating them to the estimated data.

Production Function

Production is defined as the total elaboration of fish tissue during 

any time interval A / including what is formed by individuals that do not survive 

till the end of A t (Ivlev, 1945,1964). According to Ricker (1971) production 

can be defined as the increase in biomass in a given time including the growth 

of those which die or which are caught during this interval.

Estimation of production involves indirect methods and those so 

far developed seem to fall into three principal categories: those in which 

production is estimated from knowledge of the number and size of the 

individuals in the population at a series of points in time; those based on 

estimates of the amount of food consumed by the population and the efficiency 

of its conversion into the tissues of the population components; and those



based on  e s tim a te s  o f the food consumption o f a predator population, which is 

assu m ed  to  ta k e  up m ost o f th e  production to be estim ated (A llen .1971).

Ricker (1946) first devised a way in which production can be 

estimated given that, data on instantaneous growth rate (G) and instantaneous

mortality rate (Z) is also constant and known— = ( G - Z ) 5 . This follows the
dt

assumption that number decreases and weight increases exponentially. 

Integrating the above equation B, where B^= biomass at time = 0.

__  '  D  f A O - Z )  _  IN

The average biomass over year is B = . d i - — ------------^
J G - Z

Generally, Z and particularly G rarely remain constant during the 

life span of an animal. In such cases, this technique can still be applied to a 

succession of sub periods within which it can reasonably be assumed that both 

G and Z  are constant. It may, however, be more satisfactory and less laborious 

to use a formula for calculating production based on a growth curve that more 

closely resembles those found in nature and thus avoid the sub divisions of the 

life span that are otherwise required. Formulae suitable for this approach have 

been developed for the negative exponential growth curve by Allen (1950) and 

for the von Bertalanffy growth curve by Gulland in Chapman (1968).

The graphical method of estimating production (Allen,1951) is, 

the solution by mechanical means of the equation in which progressive values 

for number of fish are plotted against mean weight of individuals. The area 

beneath such a curve represents production, which can be determined for any

“'f \  dW
part of the year which can numerically be given as P =  jN ,dw , = ^ N , - ^ d t .

r,

He computed production in a trout population in this manner where N ,and  W, 

are the number of animals and the mean individual weight respectively at time t.



Ricker (1946) and Allen (1950) have found the production function 

P = GB where P is the production; G is the instantaneous growth rate in weight 

and B the average biomass during the period of reference. It is assumed here 

that G does not vary during the period and the growth in weight follows 

exponential law with time viz., W  = Wo e whereas change in numbers may 

follow any law. Chapman (1968) considered this to be a realistic formula, if G is 

known to be constant.

Beverton and Holt (1957) have evaluated the production function 

on the assumption that, growth in weight follows Von Bertlanffy’s model and 

change in numbers follows exponential law with time. For annual production by 

a fish population, Chapman (1968) developed a formula based on exponential 

rates did not include the assumptions that either individual fish or fish 

populations grow or die in an exponential manner.

A series of mathematical models representing various 

combinations of several different simple growth models like exponential growth, 

simple asymptotic growth, von Bertalanffy growth, linear growth in length and 

linear growth in weight and mortality functions like simple exponential mortality, 

multiple exponential mortality, linear model and fixed life span model was 

developed by Allen (1971) and was used to investigate the ratio between mean 

biomass and production over unit time.

Gulin and Rudenko (1973) have estimated production of lake 

Demenets by using P, ^  a ,N ,{\-e ~ ^ ‘ ) lz ,  assuming that growth in weight is 

linear and change in numbers is exponential with time.

Huang e t al. (1976) used the dynamic production modeling 

approach, which considered the prawn population in a pond as a system, where



the number of prawn at any given time can be estimated when the relationship 

between survival and growth can be determined.

To quantify the production of commercial aquaculture, Santos 

(1978) used mathematical models such as weight or length growth rate, weight 

and length growth models and survival models, all serving as the basis for 

biomass models.

Polovina and Brown (1978) used a stochastic population model to 

simulate the prawn size distribution in the grow-out ponds as a function of time. 

The model allowed growth and mortality parameters, which were dependent on 

size class and pond biomass.

Different types of production functions were derived by 

Alagaraja (1986) based on linear and exponential models on both growth and 

mortality, [n certain models no assumption was taken either for growth or 

mortality. From these he concluded that model based on linear relationship on 

numbers over time and growth over time were considered superior for its 

simplicity, theoretical soundness and practical applicability.
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3. MATERIALS AND METHODS

3.1 GROWTH MODELS

Growth is one of the most complex activities of an organism and is a 

factor of utmost importance in aquaculture. The weight of any organism can be 

expressed as a function of time (age) and so growth models are a standard product 

of weight at age data. The different growth models fitted to the data are described 

below.

3.1.1 Gompertz growth model

This model was proposed by Gompertz (1825) to describe a portion of 

the ages in human population. It is the most used model for describing growth and is 

given by

W t  =  W qG

where

IV̂  is the weight at timet

^ 0  is the initial weight i.e. weight at time, t=o 

g is the instantaneous rate of growth . 

k is a dimensionless parameter.

3.1.2 Logistic growth model

The integral form of the logistic equation introduced by Verhulst (1838) 

for modeling growth. The logistic law of growth assumes that systems grow 

exponentially until an upper limit or "carrying capacity" inherent in the system is 

approached, at which point the growth rate slows and eventually saturates, producing 

the characteristic S-shape curve. It is given by



0

 ̂+ J e '
W  =

where

IV, is the weight at timet, 

a  is the asymptotic weight 

k is the instantaneous rate of growth . 

p  is the free parameter that adjust the shape of the curve.

3.1.3 von Bertalanffy growth model

Von Bertalanffy (1957), derived a function for body weight growth 

based on the principles of Putter (1920). The Von Bertalanffy growth curve assumes 

that fish grows towards some theoretical maximum weight and as they get closer to 

the maximum, the slower the rate of change of size. It has become one of the corner 

stones in fishery biology as it is used as a sub model in more complex models 

describing the dynamics of fish population. It assumes isometric relationship 

between length and weight and is given by

w ,

is the asymptotic weight or adult value, 

k is the instantaneous rate of growth .

3.1.4 Richards growth model

In 1959, Richards developed a function, which is the most frequently 

used growth model. It is defined by:

W , = f i { \ + e

where



A is asymptotic (mature) weight 

k is rate of approach to mature weight

M is a shape parameter that allows for a variable inflection point.

The Richards growth curve is the generalization of all the growth curves 

mentioned above. At M=1 it changes into the Logistic function and at M against +/- 

infinity into the Gompertz function.

3.1.5 Modified Janoschek growth model

This model was introduced by Janoschek and a modified form of the 

model is given by

W , =

where is the adult value or asymptote

The parameters k and p adjust both slope and point of inflection of the curve.

3.1.6 Polynomial growth model 

The polynomial functions evaluated is

Wt = a + bt + ct  ̂

where iv, is the weight at time t 

a, b and c are the constants

3.1.7 Pow er Function

W( = a + bt'̂  

where w, is the weight at time t

a, b and c are the constants



3.2 Fitting o f nonlinear models

Nonlinear Estimation is a general fitting procedure that will estimate any 

kind of relationship between a dependent (or response variable), and a list of 

independent variables. In general, all models may be stated as:

y= F(Xi, X2 , . . . ,  Xn)

In most general terms, we are interested in whether and how a 

dependent variable is related to a list of independent variables: the term F(x...) in the 

expression above means that y, the dependent or response variable, is a function of 

the x's, that is, the independent variables.

3.2.1 Least squares estimation.

In the most general terms, least squares estimation is aimed at 

minimizing the sum of squared deviations of the observed values for the dependent 

variable from those predicted by the model. The term least squares was first used by 

Legendre, 1805.

Minimization of residual sum of squares yield normal equations, which 

are nonlinear in the parameters. Since it is not possible to sofve nonlinear equations 

exactly, the next alternative is to obtain approximate analytic solutions by employing 

iterative procedures. Three main methods of this kind are;

I. Linearization (or Taylor series) method

II. Steepest Descent method

III. Levenberg-l\/1arquardt’s method

The most widely used method of computing nonlinear least squares 

estimators is the Levenberg-Marquardt’s method. This method represents a 

compromise between the other two methods and combines successfully the best 

features of both and avoids their serious disadvantages. The Levenberg-Marquardt 

(LM) algorithm allows for a smooth transition between these two methods as the



iteration proceeds. It is good in the sense that it almost always converges and does 

not 'slow down’ at the latter part of the iterative process.

3.2.2 Loss Functions.

Any deviation of an observed score from a predicted score signifies 

some loss  in the accuracy of prediction, for example, due to random noise (error). 

Thus the goal of least squares estimation is to minimize a loss function', specifically, 

this loss function is defined as the sum of the squared deviation about the predicted 

values. When this function is at its minimum, then we get the same parameter 

estimates (intercept, regression coefficients), because of the particular loss functions 

that yielded those estimates, we can call the estimates least squares estimates.

3.2.3 Quasi-Newton Method.

The slope of a function at a particular point can be computed as the 

first- order derivative of the function (at that point). The "slope of the slope" is the 

second-order derivative, which tells how fast the slope is changing at the respective 

point, and in which direction. The quasi-Newton method will, at each step, evaluate 

the function at different points in order to estimate the first-order derivatives and 

second-order derivatives. This information is used to follow a path towards the 

minimum of the loss function.

3.2.4 Simplex Procedure.

This algorithm does not re(y on the computation or estimation of the 

derivatives of the loss function. Instead, at each iteration the function will be 

evaluated at m+7 points in the m  dimensional parameter space. An additional 

strength of this method is that when a minimum appears to have been found, the 

Simplex wil! again be expanded to a larger size to see whether the respective 

minimum is a local minimum. Thus, in a way, the Simplex moves like a smooth single 

cell organism down the loss function, contracting and expanding as local minima or 

significant ridges are encountered.



3.2.5 Choice of Initial values.

All the procedures for nonlinear estimation require initial values of the 

parameters and the choice of good initial values is very crucial. However, there is no 

standard procedure for getting initial estimates. The most obvious method for making 

initial guesses is by the use of prior information. Estimates calculated from the 

previous experiments, known values for similar systems, values computed from 

theoretical considerations all these form ideal initial guesses.

3.3 Data treatm ent

Data was fitted using the least square method in Microsoft excel as 

described in Draper and Smith (1981). Non-/(near regression a/gorithm of SYSTAT 

7.0 used to estimate the parameters.

Fitting of the growth equation was also done after transforming equation 

using the difference of equation method. An example for transformation of data is 

given below.

W e have the von Bertalanffy growth equation

is the asymptotic weight or adult value, value is attained at t approaches infinity 

k is the instantaneous rate o f growth .

At time t=ti we have weight for the time as

- e  )

rearranging we get



we also have at time t=t2

w
Substituting for w   ̂ =  ( f . ' g - V r .y  - e   ̂ =

w   ̂ ^

Generalizing w  „ =  1 e  " ’ ^  Transformations were

made to allow the incorporation of desirable characteristics such as convergence and 

invariance into the model. After transforming, the data was fitted using the non-linear 

regression method in SYSTAT 7.0 software.

3.4 Goodness of fit

After estimating the parameters, an essential aspect of the analysis is to 

test the appropriateness of the overai! model.

3.4.1 Index of fit (IF)

Fits of models were also compared using the index of fit as in Rosa et 

al. (1997) which is defined as

[ Z ( y ,  - y , ) ^ ]
IF = 1 .  ----------------- }

[ S ( y ,  - y , ) ^
i = l

where

is the observed values 

y, Is the mean of the observed values 

y,-represents estimated values of y^



The difference between IF  and (coefficient of determination) is 

related to the methodology employed to estimate the parameters of the models. For 

the least square method, a model is adjusted through the linearisation of the 

observed data and is calculated with the linearised data. For Qausi-Newton and 

simplex method, the parameters of the model are through iteration processes, 

without any change in the observed data, and the IF  is calculated directly on the 

observed data relating them to the estimated data.

3.5 Production functions

Production is an increase in biomass over a given period of time. 

Production may be estimated either numerically or graphically.

Ricker (1946) and Allen (1950) have found the production function

P = GB

W here P is the production, G the instantaneous growth rate in weight 

and H the average biomass during the period of reference.Numerically Production

I

can be formulated as P, = jlV ^ .d w .d t , assuming without loss of generality that the
n

entire period is divided into segments as months, year, seasons etc . 

where P, is the production in (t, t+1) segments

N, is the number of organisms in t time segment

In the development of the model, different assumptions were put forward.

1) The individual organism under consideration is assumed to be biologically 

uniform i.e.. both in terms of age, weight and length.

2) Operation is restricted to one group of organism i.e., organism of the same 

year class



3) The external factors which determine the growth of the organism and that can 

be controlled such as water temperature, Ph and level of dissolved oxygen, 

feeding rate, etc are considered to be constant overtime.

3.5.2 Evaluation of production function

Production functions were derived using different assumptions for 

growth and mortality .

3.5.2.1 Growth models

The following growth models were taken into consideration.

1) Gompertz growth model

2) r Logistic growth model

3) von Bertalanffy growth model

4) Richards growth model

5) Modified Janoschek growth model

6) Power function

7) Polynomial growth model

3.5.2 Mortality assumptions

Three types of mortality were taken into consideration for derivation of 

production function.

i. No assumptions on mortality were made.

ii. Linear model - mortality is assumed to have a linear relation with

time.

N,(t) = a + bt

Where A^,(/)-number of animals at time = t , a = initial number of 

animals, b = rate of mortality



iii. Exponential model

N ,( t)= =  N ^e -^ '

Where A^,(^)=number of animals at time=t

^0  -  initial number of animals 

z = rate of mortality

3.5.3 Numerical integration

The Fundamental Theorem of Calculus gives an exact formula for
h

computing j / { x ) .d x . to find an integral for f. This method of evaluating definite 
0

integrals is called the analytic method. However, there are times when this is difficult 

or impossible. In these cases, an approximate, or numerical solution is obtained 

using the numerical integration process in MATLAB software.

3.6 Descriptions of Data used for analysis.

The analysis was carried out using secondary data sets on mariculture

experiments.

3.6,1 Data -1

Edible oyster Crassostrea madrasens/s is mainly cultured in temperate 

countries. In India oyster culture on commercial lines has not yet started. 

Experimental culture of edible oysters was done in Ashatamudi Lake to confirm its 

suitability for culture. The experiment was planned with the objective to collect the 

natural oyster spat from the extensive oyster beds in the Ashatamudi Lake and grow 

them. Monthly sampling was done and the weights were noted. Harvest was done 

after a period of 11 months (Velayudhan e ta i,  1998).



3.6 .2  D a ta -2

Culture of Green mussel Perna vicciis is gaining Importance in Kerala. 

An experimental culture was taken up the Molluscan Fisheries Division of CMFRI in 

Dalavapuram, Quilon district to test the suitability o f the site for culture. The seed for 

culture were collected from the Kollam bay and were seeded in ropes. These were 

cultured in Dafavapuram. The culture was for a period o f 6 months.

3.6.3 Data-3

Polyculture of mullets and shrimp are experimented in different systems 

in India and abroad. The feeding habits and its adaptation to varying salinity and 

availability o f seed makes Mugil cephalus a good species for polyculture. In the 

current experiment polyculture of mullets were done in the experimental ponds of 

Narrakkal to estimate the production and survival in a short-term period. Monthly 

sampling was done and the environmental parameters were also noted. Culture was 

done for a period of 8 months (Imelda etaf., 2001).

3.6.4 D a ta - 4

As a part of the Integrated Village Linkage Programme (IVLP) 

assessment of scientific monoculture of Mugil cephalus was under taken in tide- fed 

ponds of Elamkunnapuzha village of Ernakulam district. Monoculture of Mugil 

cephalus is the identified techno intervention to solve the intricate problem of low 

productivity in tide fed ponds. Sampling was done on a regular basis (Sathiadas et 

ai, 2003).





4. RESULTS

4.1 Fitting of Growth Models

The growth models were fitted to the data using Gauss-Newton 

method in nonlinear regression. The initial values of the parameters were 

made by making some guesses and using solver option in MS-EXCEL. The 

models were fitted both to the original and transformed data according to the 

difference of equation method.

The growth models fitted were

>  Gompertz grovirth model

> Logistic growth model

> von Bertalanffy growth model

> Richards grov4h model

> Modified Janoschek growth mode!

> Power function

> Polynomial grov\1h model

After fitting the models, the models were evaluated using the index of

fit.

Data -1

The models were fitted to monthly growth data of Crassostrea 

madrasensJs. Both the shell on weight and the meat weight were fitted. The 

estimated parameters and the index of fit are given in Table. 1 for shell on 

weight and in Table2 and Table 3 for the meat weight. Logistic model gave 

the best fit compared to all other models for shell on weight while Gompertz 

model gave a better fit for meat weight (Fig.1. and Fig.2.)



Gompertz Model

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Para Tieters

Confidence

Limits(95%)

Upper Lower Upper Lower

WO
1.5 -0.314 3.314

WO _

k
3.364 2.245 4.484

k
3.3 1.845 4.755

g 0.339 0.219 0.458 g 0.3 0.12 0.48
Index of F t 0.97 ndex of Fit 0.94

Logistic Model

Original Data Transformed Data

Pararneters

Confidence

Limits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

alpha 39.483' ■ ‘ 35.878 43.088 alpha

b 14.347 5.15 23.545 b 14 -2.119
30.119

k 0.607 0.436 0.778 k 0.6 0.312
0.888

Index of Fit 0.98 Index of Fit 0.95

Polynom ial Mod el (a+bt+ct'^2)

: Original Data Transformed Data

Param sters

Confidence

Limits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

a
-1.06 -5.464 3.344

b
5.71 3.852 7.568

c
-0.171 -0.332 -0.01

Index o f Fit 0.96 Index 0 Fit



Gom pertz Model

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

WO
0.172 -0.155 0.499

WO

k
3.385 1.523 5.248

k
3.3 1.943 4.657

g 0.594 0.354 0.833 g 0.59 0.229 0.951
Index 0 FFit 0.96 Index o f Fit 0.875

Log is tic  IVIodei

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Parameters

Confidence

Limits{95%)

Upper Lower Upper Lower

alpha 4.988 4.658 5.319 alpha
b 13.21 1.727 24.709 b 13 0.021 25.979
k 0.921 0.609 1.234 k 0.92 0.516 1.324

Index 0 Fit 0.96 Index of Fit 0.873



VBGF

Original Data

Parameters

Confidence

Limits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

WO
5.051 4.613 5.488

WO

g 0.596 0.474 0.718 g 2.43 0.677 4.183

index of Fit 0.95 index 0 f Fit 0.815

Polynom ial Model (a+bt+ct'^2)

Orlginai Data Transformed Data

Parameters

Confidence
Limits{95%) Parameters

Confidence

Limits{95%)

Upper Lower Upper Lower

a
-0 .12 0.32 -0.377

b 1.195 0.894 1.495

c -0 .06 -0.094 -0.042

index of F■it 0.95 Index 0 fFit



Fig.1. Different growth models fitted for data-1 {Crassostrea madrasensis shell 
on weight).

Fig.2. Different growth models fitted for data-1 {Crassostrea madrasensis meat 

weight).



The models were fitted to the monthly shell on weight and the 

meat weight of Pema virpis. Table .4and Table 5 gives the estimated 

parameters, confidence intervals and the index of fit for shell on weight and 

the meat weight. Gompertz model gave the best fit compared to all other 

models for both shell on weight and meat weight {Fig.3. and Fig.4.)

Data-3

Growrth models were fitted to the monthly data of Mugil cephalus. The 

estimated parameters and the index of fit are given in Table.6. Fig.5 shows 

that the logistic model gave the best fit compared to all other models.

Data —4

The models were fitted to growth data of Mugil cephalus. The 

estimated parameters, confidence limits and the index of fit are given i 

Table.7. the logistic model described the data in a better way .

4 .2  P R O D U C T IO N  F U N C T IO N

Production function can be estimated using the formulae

in

N , .d W ,.d t

where

P, is the production in (t, t+1) segments ,

N, is the number of organisms in t time segment

d(W ,)



Gompertz Modet

Original Data Transformed Data

Parameters

Confidence

Llmits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

WO
2.4 -1.6 6.4

WO

k
4.078 3.008 5.147

k
3.92 -0.38 8.226

g 0.172 0.034 0.31 9 0.22 -0.146 0.6
Index 0fF it 0.96 Index of Fit . .897

Log is tic  Model

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Parameters

Confidence

Limits{95%)

Upper Lower Upper Lower

afpha .96.46 50.468 142.462 alpha
b 22.39 5.587 39.192 b 22 -27.47 71.47
k 0.402 0.2 0.604 k 0.43 0.006 0.872

Index 0 'F it 0.97 Index of Fit 0.893

Polynom ial Model (a+bt+ct^2)

Original Data Transformed Data

Parameters Confidence
Limits(95%)

Parameters
Confidence

Limits{95%)

Upper Lower Upper Lower

a
-0.58 -9.62 8.446

b
3.811 0 7.621

c
o.'sos -0.027 0.633

Index of Fit 0.965



Gompertz IModel

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Pararneters

Confidence

Limits(95%)

Upper Lower Upper Lower

WO
0.691 -0.66 2,043 WO

k
4.497 3.177 5.817 k

4.4 0.247 8.553
g 0.179 0.043 0.316 g 0.221 -0.082 0.525

Index of Fit 0.976 ndex of Fit 0.911

Logistic Model

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

alpha 41.68 23.952 59.408 alpha
b 28.564 6.691 50.437 b 28 -33.894 89.894

k 0.425 0.233 0.617 k 0.451 0.035 0.867

Index of Fit 0.972 ndex of Fit 0.907 .

Polynomial MoG el (a+bt+ct^2)

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Parameters

Confidence 

Limits{95%) ,

Upper Lower Upper Lower

a 1.47 -0.374 3.314

b 0.157 -0.003 0.317

c 0.65 -3.722 5.022

Index of Fit 0.96 Index o Fit
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Rg.3. Different growth models fitted for data-2 {Perna vindis shell on weight).

Fig.4. Different growth models fitted for data-2 {Perna viridis meat weight).



Table 6. The param eters ob ta ined fo r d iffe ren t grow th  models fo r the 
data-3

Log is tic  Model

Original Data Transformed Data

Parameters

Confidence

Limits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

alpha 189.2 133.443 245.063 alpha
b 41.02 9.573 72.481 b 38.2 -20.756 97.23
k 0.648 0.419 0.877 k 0.64 0.268 1.026

Index 0 f Fit 0.99 Index of Fit 0.949

VBG -

Original Data

Parameters

Confidence

Limits(95%) Parameters

Confidence

Limits(95%)

Upper Lower Upper Lower

WO
316 191.685 440.315

WO

g 0.2 0.145 0.255 g 0.23 0.073 0.391

Index of Fit 0.98 index of Fit 0.939
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Fig.5. Different growth models fitted for tlie data-3.
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Fig.6. Different growth models fitted for data-4.



other notations used in the results

B, =The biomass at time t 

= Initial number of animals 

z = rate of mortality

The production function based on different growth models and 

under different mortality assumptions are described in the following sections. 

In case o f functions whose integral cannot be obtained by analytic methods, 

solution can be found by numerical integration.

4.2.1 GOMPERTZ GROWTH MODEL

The Gompertz model Is given by

dW ,  

dt dt

= kge

I .N 0 assumption on mortality

Here no assumption on mortality is taken and the production 

function in this case is obtained as

I
P, =

0

I
= ' N  ,kge W ,

0

=  k T J i l  -  )



2. L inear assum ption  on m orta lity

When a linear relationship is assumed in mortality, we can write

N. as

and production can be estimated as

P. = N , .d W , .d t

=  B  - bW

3. Exponentia l assum ption  on m orta lity .

When the change in population size is exponential, we have 

N , = N , e - ^ '  

and then production will be

P. = N ,.d W , .d t

-  z i  -  ke

4.2.2 LOGISTIC GROWTH MODEL

Let us assume that growth is according to the logistic law

then,

IV . =
a

1 + /Je -  k!

which on differentiation gives



d  {W  , )  

d(
=  k p  e

-  kt a

I .N 0 assumption on mortality

The production function in this case can be obtained as

0

C M , .W , k p c

N , .d W  ,.dt

~ ki

( ]  + c

/ _ - i/

-  k i

= k p  B,

)

.dt

. d(

( I + )

= 5 , ( ( io g ( I  + /7e -^0 )“ ( lo g ( l + /?)))

2. Linear assumption on mortality

When there is a linear assumption on mortality.

The corresponding production function is obtained as

P. = N , . d W  ,.d{

-  B r -
b , a  ,

' .dt

. 3. Exponential assumption on mortality

When the mortality is assumed to follow the exponential law,

we have



Nf  = N q o '^ ^

In this production function can be derived as

P. = N  , .d W  ,.d (

= 5  , + N z 

4.2.3 RICHARDS GROWTH MODEL

i  e ' ’-' ^  P e - ^ ‘ )-  h -.dt

According to Richards mode! we have

and

= A M k  O +  e '* ')
dt

k(

I .N 0 a ssu m p tio n  on m o rta lity

In the absence o f pre assumed relation on mortality we have

P. = N , .d W , .d t

N ,A M k  (1

M B ,  lo g (2 -e  ■* ')

2. L inea r a ssu m p tio n  on m orta lity

Here N  t ~  ^  \ +  b

The production function in this situation is
f

P  ̂ = N , .dW , .dt



'r 6 ,A (1  + e - ‘ '
.dt

-  k l  N _  a t

= B t -
b , A  'r (] + e - ^ '  )
K { e - ^ '  )

.dt

3. Exponential assumption on mortality.

With the exponential assumption on mortality we have

- Z t

p. = N, .dW , .d t

- M

= B,  + N  ^Az  (1 + e - “ )
0

4.2.4 MODIFIED JANOSCHEK GROWTH MODEL

This growth model is given by 

w ,  = ( f T o ) e - * ' ' ’

^  = -  W^kpe

I .No assumption on mortality

In this case the evaluated production function is

-kl

P. = N ,.dW ,.d t  

-  W^kpe



2. Linear assumption on mortality

When N   ̂ +  Z?, / i.e., under the linear

assumption on mortality ,the production function can be obtained as

P. =

- if '  j. e .d t

3. Exponential assumption on mortality .

When mortality is according to the exponential taw we have 

N, and consequently the production function becomes

p, = N , ,d W , .d t

= B, + N o z W g  6 - ’“ ' .dt
0

4.2.5 POWER FUNCTION

The following power function was used to evaluate the 

production function under different assumptions on mortality.

W j.= a t +  b f



d W ,

d t

C ’ \

I .N 0 assumption on mortality

In this case the production function can be derived as

P. = N,.dW

=  N  .at  + N , { c b t  " ■ ' )

2. Linear assumption on mortality

The production function evaluated under the linear assumption

. . . . .  -.u 1 +  ^ ^on mortality, i.e., with ‘  ̂ is

= N , . d W  ,.d t

= N i ( a t  +  b f ) -
h^at^ b ^ b t

c  +  \

3. Exponential assumption on mortality.

Under this assumption we have N, = and the derived 

production function is



IP =  N . .d W . .d tf /

N , { a t + b t ^ ) - N - \ )  + b z \ e - ^ ' t ^
0

4.2.6  POLYNOMIAL GROWTH MODELS

The quadratic model Wj- -  A-¥ B t -¥Ct^ is considered here 

for the derivation of production functions. On differentiating this function with 

respect to time we get

^ ^ = B  + 2Ct  
dt

I.N 0 assumption on mortality

The production function under the quadratic model with no 

assumption on mortality is

I

P, = jN , . d f V , . d t

0

N , ( B  + 2 0  )

2. Linear assumption on mortality

In this case N , ~  -h b ^ t  , i.e, the change in population

size is linear with respect to time and the production function can be 

evaluated as



p. = N,.dW ,.dt

= N. 0 - 6 .
c t \

3. Exponential assumption on mortality

The production function under the exponential assumption of

mortality is

p. = N,.dW,.d t

N ,e -^ ' (6 + 2 c /)

N^e-^-'2cl

N ob
1 - e

- z t

Z  ’ ' z

4.3 Evaluation of production function

The derived production function was fitted to the data. 

Production of Oysters cultured in the Ashtamudi Lake of Quilon district was 

used for analysis. All the models derived were fitted and since good results 

were given by Gompertz and logistic growth models with linear and 

exponential assumptions on mortality. The results are given in Table-8 and 

the fitted models are graphically described in fig.7. 8,9 respectively



Table. 8 The production function fitted along with the assumptions 

taken and the index of fit.

SI.No Growth model Mortality Index of fit

1 Gompertz No assumption 0.61

linear 0.71

exponential 0.71

2 Logistic No assumption 0.68 j
linear 0.66 1

exponential 0.71
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Flg.7. Production function when there is no assumption on mortality.
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Fig.8. Production function when assumption on mortality is linear.



Flg.9. Production function when assumption on mortality is exponential.
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5. DISCUSSION

As man is on the lookout of new sources of protein, aquaculture 

especially mariculture is gaining momentum globally. Growth is generally 

defined as the three-dimensional increase in the size of the organism over time, 

(t represents the net outcome of a series of behavioural and physiological 

processes. Growth is the most important aspect of biology that is important for 

the farmer for determining the success of the culture.

Immense work has been done in modeling the growth of animals 

in relation to age, ecological factors, nutritional factors etc. In the present work 

an attempt has been made to model the growth of organism of mariculture 

importance in relation to the time of stocking. Molluscs are one of the most 

important groups that are gaining importance in culture worldwide.

In the present contest we had tried to model the growth of two 

species of mollusc Crassostrea madrasensis and Pema virdis. All the growth 

models earlier described in materials and methods were fitted to both average 

shell on weight and meat weight. In the case of oyster best results for the 

average shell on weight were obtained for Logistic model. was found to be 

as high as 0.98 but for meat weight Gompertz fitted best. When the mussels 

cultured in Dalavapuram cultured were modeled Gompertz was found to give a 

better fit in both shell on and meat weight.

Shin et al. (1995) found that the growth in shell length fitted to the 

von Bertalanffy model and the flesh dry weight to the Gompertz model. When 

the northern quahogs Mercenaria mercenaria growth was modeled the 

Richards model gave the most accurate prediction. The modified Gompertz 

function provided a better fit to the Chilean loco Concholepas concholepas 

growth rate data. (Rodriguez et a!., 2001). All this helps us to conclude that the



growth of mollusc is commonly sigmoid. The fact that in natural population 

seasonal changes in growth rates can give a sigmoid curve for each year, 

(Wilbur and Yonge, 1968) also substantiate our findings.

Growth of an organism depends directly on the suitability of the 

habitat for the organism concerned in terms o f environment, food and space 

availability. In both cases the growth rate of the organism was found to increase 

during the first six months and later decrease tremendously. It might be due to 

the fact the prevailing ecological conditions as ecological condition influence the 

growth rate of the mollusc (Wilbur and Yonge, 1968). It may also due to the 

fact as Walne (1958) has stated that larger individuals grew less rapidly i.e. 

individuals of the same age exhibited a grov\rth deficiency as their size 

increased. Perna has generally better growth rate than its cold-water relative 

Mytilus because of the tropical distribution where elevated water temperature 

and less prominent seasonality in food supply favour continuous growth 

throughout the year. Further works in tune with the variation of growth rate and 

ecological and physical conditions should be studied and growth be modeled 

using the corresponding parameters.

One of the objectives of aquaculture is to obtain a maximum 

economic return within a minimum time. In aquaculture experiments even of a 

short duration, organisms may reach their asymptotic size and growth rates 

may vary greatly (Springborn, 1994). In the current experiment-involving oyster 

at the point of harvest the weight was found to be 41 g while the asymptotic 

weight was found to be only 39. During the last phase of growth we can easily 

find that there is slower grov^h and the farmer is not profited by this extra month 

and hence an earlier harvest by one month could be recommended.

Fish growth data are usually fitted through production models 

appropriate to predict and compare growth patterns between population and 

within species (Chen et al., 1992). Various growth models were used to model



the growth of grey mullet Mugil cephaius that were reared in two different 

culture conditions viz. polyculture and monoculture. In both the cases, Logistic 

growth models fitted the data significantly better with relatively higher The 

growth rate was found to be higher in the monoculture condition. VBGF is a 

simple growth mode! in which fish grows to an asymptotic size is described in 

terms of biologically meaningful parameters of asymptotic size and a growth 

coefficient. The VBGF model was able to explain about 96%variation in the 

data. It gave an asymptotic weight nearer to 330,eventhough the growth rate 

between the two culture systems showed a three-time difference.

In open waters, environmental conditions (e.g., temperature and 

presence o f predators), cause fish to either grow rapidly toward a small size 

(high k. low ), or leisurely toward a large size (low k, high ). This leads to 

their growth performance index (0 ’ = In k +.67 In remaining nearly constant 

among different populations of the same species (Pauly, 1994). In our case the 

performance index was around 5 in both the cases.

The reasons for this near constancy of 0 ’, which is ultimately due 

to the way fish allocate the scarce oxygen diffusing through their gills, are 

discussed in Pauly (1981, 1994). For most captive fish, the absence of 

predators and sexual competitors allows the allocation of more oxygen to 

feeding and growth, and away from behaviors that are costly in terms of oxygen 

demand, such as darting about to evade predators, or fighting against sexual 

competitors. This results in captive fish usually having 0 ’ values higher than 

those predicted from the growth performance of free-living populations. 

Moreover, the strength of this effect increases with the sophistication of the 

culture system (Pauly et a/., 1988). Obviously, this effect will be strengthened 

by genetic enhancement for fast growth, e.g., in Nile tilapia (Pullin, 1988) or 

Atlantic salmon (Gjedrem, 1985), which, if often unwittingly, selects for the calm 

behavior that allows optimal allocation of oxygen to grow/th (Jones, 1996; 

Bozynski, 1998). Combined, these effects cause the 0 ’ values of fish in



intensive culture systems to be much higher than for their conspecifics in open 

waters.

In general it can be concluded that among the different models 

fitted the Richards and the modified Janoschek provided the least fit. with highly 

varying values and overestimation of the adult values for the data. The 

Gompertz and Logistic models were found to be the best fit growth models.

Production is defined as the increase in biomass over time Ricker 

(1945), Chapman (1968) and Alagaraja (1986) have derived production 

functions based on different assumption o f grov\rth and mortality. But the 

models used for growth were mainly exponential or linear. From the earlier part 

o f work it can be concluded that growth need not always be exponential and 

new production functions were derived using different popular growth curves 

and different assumptions on mortality.

Earlier works were mainly based on simple growrth models since 

when on integrating with assumptions of mortality the function tend to become 

complex. With the advent of computers and efficient software these functions 

could be evaluated.

When the grov^h of oysters was modeled we found out that 

Gompertz and Logistic models gave the best fits. So production functions using 

these grov^rth models were fitted to the data. The goodness of fit was estimated 

using the index of fit.

When no assumption on mortality was taken, both the 

models fitted equally well, with Logistic equation giving a slightly better Index of 

fit. The best fit was obtained for Gompertz equation when linear assumption on 

mortality was taken Into consideration. Equally good fits were obtained for



Gompertz and Logistic when exponential model was used. All the models 

estimated less during the initial period of production.

Day by day aquaculture is diversifying with different species and 

technologies are expanding rapidly with various types of culture. Any model 

useful for the farmer should be based on the environmental climatic, biological 

and econom ic assumptions. Even though the systems are complex, important 

factors can be identified and models can be developed. Growth is one of the 

most important aspects of fish physiology, which responds sensitively and 

rapidly to the changes. The growth o ffish  depends on number of factors both 

exogenous (environmental) and endogenous to the management of the culture. 

These factors, which govern the rate, must lie at the heart of any investigation 

of production. Since a commercial aqua culturist is profit oriented, his objective 

would be profit maximization. Then the model should be linked with economic 

factors like feed cost, operational cost, harvesting cost etc. along with biological 

constraints. This will help us to test the economic efficiency of the technology 

and to show how to operate the facility most efficiently. Also further research 

using new technologies like artificial neural network should also be undertaken 

to assess production.





SUMMARY

Aquaculture, the farming and husbandry of aquatic organisms are 

important in the fooci and economy of many nations. Although, much practical 

knowledge and experience has accumulated in this field, mathematical 

modeling in aquaculture is relatively new and undeveloped. Models include a 

particular group of components and their relationship, which are deliberately 

chosen to answer a particular problem, question or intended use. An important 

princ'ple o f modeling is that mathematical equation serves as a model of a 

biological process.

In the present study, an attempt has been made to evaluate the 

production of mariculture systems. Production can be defined as an increase in 

biomass over a given period of time and so production necessarily involves 

both growth and mortality. Growth is a factor of utmost importance in 

aquaculture. It is influenced by both endogenous and exogenous factors. The 

endogenous factors influencing growth are age and feeding rate. Since feeding 

rate is constant in aquaculture farm and exogenous factors can be controlled by 

the farmer. grov;th can be expressed in terms of age i.e.. weight as a function of 

age.

Earlier production functions were derived on the linear and 

exponential model of growth but the pattern of growth need not always be so. 

So different growth models like Gompertz, logistic. Richards. VBGF, modified 

janoschek and polynomial growth equations were fitted to the age-weight data 

of [nussels. oysters a n d  fish, The n o n l in e a r  algorithm of SYSTAT was used for 

analysis. Most o f the equations accounted for the variation in the data set, but it 

was found that Gompenz and the logistic growth equations gave the best fit.



Production functions were then derived using these growth 

models and different assumptions on mortality, mainly three assumptions were 

taken. In the first case, no mortality assumptions were taken and for the next 

two it was assumed to be linear or exponential. When the integral functions 

became complex these were solved through numerical integration. These 

derived production functions were later fitted to data sets of oysters. It was 

found that linear and exponential mortality assumptions of Gompertz growth 

model gave good results. Aquaculture Is a dynamic enterprise with many 

variables influencing its success. Since growth is the major factor, the growth of 

the organisms should be further modeled using climatic and environmental 

factors. Along with these, the production models should also be linked with 

economic factors like harvesting cost, operational cost, optimum harvesting 

time etc. to get good results. Further research including these factors should be 

undertaken to ensure success in this field.
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