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There is an increasing awareness that as a result of structural variation, a reference sequence

representing a genome of a single individual is unable to capture all of the gene repertoire

found in the species. A large number of genes affected by presence/absence and copy

number variation suggest that it may contribute to phenotypic and agronomic trait diversity.

Here we show by analysis of the Brassica oleracea pangenome that nearly 20% of genes are

affected by presence/absence variation. Several genes displaying presence/absence variation

are annotated with functions related to major agronomic traits, including disease resistance,

flowering time, glucosinolate metabolism and vitamin biosynthesis.
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B
rassica oleracea is a diploid, agronomically important plant
species encompassing many popular crops, including
cabbage, cauliflower, broccoli, Brussels sprout, kohlrabi

and kale. Brassica crops display remarkable morphological
diversity, and are grown for their inflorescences, axillary buds,
leaves and stems. While two reference genomes of B. oleracea are
available1,2, a reference sequence cannot capture the entire gene
content of a species owing to structural variants, namely the
presence/absence variants (PAVs) and copy number variants3–6.
Plant reference genomes have been shown to lack a number of
agronomically important genes, restricting the gene space
available for analysis, for example, in association studies7. To
address this, pangenomes have been constructed for a number of
species, including maize, rice and soybean7–9. The term
pangenome was first introduced by Tettelin et al.10 in 2005 and
refers to a full genomic (genic) makeup of a species. Construction
of a pangenome allows capturing of sequence affected by
structural variation and possibly absent from the reference
sequence of a single individual. A number of pangenome
assembly approaches exist, including comparison of full de novo
genome assemblies and reference guided assembly approaches6.

Here we describe the construction and analysis of a B. oleracea
pangenome using nine morphologically diverse B. oleracea
varieties and a wild relative—Brassica macrocarpa. The
pangenome comprises 61,379 genes, 18.7% of which demonstrate
PAV in the varieties analysed. Several of the variable genes are
annotated with functions related to major agronomic traits,
including disease resistance, flowering time, glucosinolate
metabolism and vitamin biosynthesis, suggesting that PAVs
may be important for the breeding of improved Brassica crops.

Results
Pangenome construction. The Brassica C pangenome was built
using an iterative mapping and assembly approach, anchored by
the publicly available genome of rapid cycling line TO1000
(ref. 2) and including additional sequences from nine other lines
(eight cultivated lines and one wild type—B. macrocarpa,
Supplementary Tables 1 and 2). The assembled pangenome is
587 Mbp in size and contains 61,379 gene models, compared with
the B. oleracea var TO1000 assembly of 488 Mbp and 59,225 gene
models (including 54,457 confident non-TE (transposable
element) gene models used in the analysis; Supplementary
Table 3 and Supplementary Fig. 1); and the 535 Mbp assembly
and 45,758 gene models reported for B. oleracea var capitata
(cabbage)1,2. Among the contigs contributed by nine additional
lines, 28% could be placed along the nine TO1000 chromosomes
using paired read sequence information (Fig. 1 and
Supplementary Fig. 2).

Gene presence/absence discovery and characterization. The
majority (81.3%, 49,895) of the pangenome is composed of core
genes present in all lines, while 18.7% (11,484) of the genes are
variable, with 2.2% (1,322) present in one line only
(Supplementary Fig. 3). Modelling of pangenome size (Fig. 2)
suggests a closed (restricted) pangenome with a finite number of
genes (orthologous gene clusters), consistent with pangenome
analyses in maize8 and soybean9. Variable genes were shorter
than core genes, with fewer exons per gene (Fig. 3a,b and
Supplementary Table 4), consistent with previous reports
concerning genes displaying PAV11,12.

TE density surrounding core and variable genes was investi-
gated. Higher TE density surrounding variable genes (compared
with the core genes) was observed (U-test, Po0.001). In addition,
a higher proportion of haT superfamily transposons and long
interspersed nuclear elements in the vicinity of variable genes was

observed (Supplementary Fig. 4). Long interspersed nuclear
elements have previously been found to be associated with
structural variants, and are thought to mediate structural variant
generation via non-allelic homologous recombination13,14.
Similarly, it was suggested that haT superfamily transposons
mediate structural variant formation via alternative transposition15.

In total, 4,815,081 single-nucleotide polymorphisms (SNPs)
were identified in the pangenome with an overall SNP density of
8.2 SNPs per kb (Supplementary Table 5). Private SNP
abundance varied between B. macrocarpa and Cauliflower1
(Supplementary Fig. 5). There was greater SNP density within
the coding regions of core genes than variable genes. However,
when SNP density was adjusted for the number of instances of a
gene, the variable genes had higher SNP density (Fig. 3c). Core
genes have a greater proportion of synonymous SNPs and a lower
proportion of nonsynonymous and nonsense SNPs than variable
genes (Fig. 3d,e).

A phylogenetic tree of relationships between the 10 Brassica
genotypes was built using RAxML (Fig. 4a). Overall, 4,324
(37.7%) gene PAVs were consistent with the phylogenetic
estimates of relationships and may represent morphotype-
lineage-specific gene PAV. The largest number of uniquely
present and absent genes was found in B. macrocarpa, which
reflects its greater evolutionary distance from the other samples16,
while the line with the second greatest number of uniquely absent
genes was the TO1000 rapid cycling line.

Functional analysis of variable genes. Functional analysis of
variable genes suggests enrichment of genes and gene families
involved in disease resistance, defence response, water
homeostasis, amino-acid phosphorylation and signal transduc-
tion (Fig. 4b, and Supplementary Tables 6 and 7). PAV among
defence response (biotic stress) genes has been observed in several
plant species17,18. The presence/absence of resistance genes could
partially be due to their overlapping roles and large number
available for deletion following a whole-genome triplication event
shared by the Brassica species1,19,20, however the presence of
pathogens is also likely to impact gene retention due to strong
selection for corresponding resistance genes. In total, 439 putative
resistance genes were identified, including 251 core and 188
variable genes (Supplementary Fig. 6). The genes were classified
in different categories based on presence of leucine-rich repeat
(LRR), toll/interleukin-1 receptor-like (TIR) and coiled-coil (CC)
domains (Supplementary Table 8). The genes were distributed
unevenly across chromosomes, which is similar to observations
made in other plants21,22, and an estimated 45% of nucleotide
binding site (NBS) domain-containing genes were found in
clusters.

Functional annotation of morphotype-lineage-specific PAV
highlights genes involved in biotic and abiotic stress responses.
These may reflect the evolution or breeding for adaptive traits.
B. macrocarpa, which possesses a large number of uniquely
present genes, has previously been identified as a potential donor
of valuable traits23. Functional analysis suggests presence of
unique genes involved in defence response, response to salt stress,
cold and water deprivation (Supplementary Table 9).

Presence/absence variation of auxin-related genes. Whole-
genome triplication contributed to expansion of gene families
involved in auxin functioning (AUX, IAA, GH3, PIN, SAUR, TIR,
TPL and YUCCA), and morphology specification (TCP), and
duplicated genes may contribute to the extraordinary morpho-
logical variation in Brassica species1. As PAV among those genes
may also be a contributing factor, the homologues of auxin-
related genes and TCP were assessed. PAV within auxin-related
genes but not TCP was detected (Supplementary Table 10).
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Presence/absence variation of flowering related genes.
B. oleracea grows in a range of climatic zones and latitudes, and
different cultivars have been selected for flowering time and
maturity. There were 14 variable genes predicted to be involved in
flowering, with TO1000 demonstrating the greatest absence of
flowering genes (Supplementary Table 11 and Supplementary
Fig. 7). A similar observation was made in Brassica rapa, where a
rapid cycler was also missing several flowering time-related
genes24, suggesting that PAV may be a contributing factor
of flowering time regulation. The genes identified include
orthologues of genes encoding: MAF5, SEP2, ARP4, GID1B,
FPF1-like, FHY1, GA2, GA3 and CO. Flowering locus C (FLC) is

an important regulator of vernalization and flowering time. FLC
is thought to control flowering in a dosage-dependent manner,
and the flowering time variation appears to be affected by the
number of copies of FLC gene present25. Only one FLC gene
is present in Arabidopsis, whereas four, four and five genes have
been identified in B. rapa, B. oleracea and B. napus,
respectively26–28 A recent whole-genome assembly of B. napus
allowed identification of nine FLC genes (four on the A genome
and five on the C genome) and identified four FLC paralogues in
B. oleracea var TO1000 (ref. 21). These four were identified in all
lines examined, and two additional candidate FLC genes were
discovered; one (BoFLC2) present in all lines except TO1000 and
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the other (BoFLC5, partial gene model) present only in B.
macrocarpa and Cauliflower1 (Fig. 5a). Studies in B. rapa have
shown BrFLC2 to be a key regulator of flowering time29–31.
In cauliflower, the disrupted BoFLC2 allele was associated with
early flowering32. In addition, previous studies noted lack of
hybridization of a BoFLC2 probe in a rapid cycling variety
suggesting existence of an underlying deletion or substantial
sequence variation27,28. The PAV analysis presented together
with comparison of the contig harbouring the BoFLC2 gene with
the TO1000 genome suggest that a deletion is a likely cause of
BoFLC2 absence. Furthermore, it is a likely contributor to the
early flowering phenotype of rapid cycler, TO1000.

Presence/absence variation of glucosinolate-related genes. The
number of variable genes involved in biosynthesis and breakdown
of secondary metabolites (glucosinolates, carotenoids, ascorbate,
tocopherol and anthocyanin) was assessed (Supplementary

Tables 12 and 13, and Supplementary Fig. 8). In total, eight
variable genes involved in glucosinolate biosynthesis and break-
down were observed. The variable genes included orthologues of
genes involved in core structure formation, cytochrome
CYP79A2, SUR1 and SOT18, and side chain modification (AOP2).
Comparison of glucosinolates between Brassicas suggests sig-
nificant variation in glucosinolate types and abundance33. Our
analysis suggests that gene PAV may be a contributing factor to
the diversity observed. Previous reports in Arabidopsis and other
Brassica relatives have shown that gene duplications and
subsequent sequence divergence contribute to glucosinolate
pathway diversification21,34–36. AOP2 catalyses the conversion
of methylsulphinylalkyl glucosinolates to corresponding alkenyl
glucosinolates. It is of particular interest in Brassica crops because
it catalyses conversion of health protective glucoraphanin, into
deleterious products. In B. rapa, three functional, differentially
expressed AOP2 genes were observed37. Broccoli harbours
a non-functional AOP2 allele and accumulates glucoraphanin38.
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In cabbage, one full-length and two truncated AOP2 proteins
were reported1. In TO1000, four AOP2 genes were identified, two
of these display PAV (absent in B. macrocarpa) (Fig. 5b). Two of
the genes involved in ascorbate biosynthesis were variable
(orthologues of L-galactose dehydrogenase), however none of
the genes involved in carotenoid, tocopherol and anthocyanin
biosynthesis were variable.

Discussion
The observation that nearly 18.7% of the pangenome is composed
of variable genes may have implications for breeding. It is
commonly recognized that different Brassica crop types have a
restricted set of alleles compared with the wider species genepool,
and here we show that some of these variations can be attributed
to PAV. Performing wider crosses between crop types will give
access to additional genes not present in a particular Brassica crop
type. In addition, PAV may also contribute to the phenomenon
of heterosis in F1 hybrids, since the presence of additional
genes, even in heterozygous state, may give rise to increased
vigour6,39,40. Finally, the finding that B. macrocarpa possesses the
largest number of uniquely present genes suggests that Brassica
wild relatives represent a significant source of new genes that
were lost during domestication.

Methods
Pangenome assembly. Sequence data are listed in Supplementary Table 1. The
pangenome was assembled using an iterative mapping and assembly approach. The
approach is related to previously described reference-guided approaches7,8,41.
The iterative mapping and assembly strategy was chosen considering the nature of
the data. Lack of long insert libraries resulted in highly fragmented whole-genome
assemblies, which made whole-genome alignment challenging6. The publicly
available reference sequence for a Chinese kale rapid cycling line (TO1000)2 was
used as a reference for pangenome construction. The procedure involved three
main steps: mapping of the reads to the reference sequence; assembly of the
unmapped reads; and production of a new reference sequence by updating the old

one with the newly assembled contigs. The mappings and assembly were
performed in the following order: Cabbage1; Cabbage2; Kale; Brussels sprout;
Kohlrabi; Cauliflower1; Cauliflower2; Broccoli; and Macrocarpa. Different orders
were tested however the resulting assembly sizes were similar regardless of order
used (Supplementary Fig. 9). Mapping was performed using Bowtie2 (ref. 42)
v2.2.5 (--end-to-end --sensitive -I 0 -X 1000) and assembly was performed using
MaSuRCA43 v3.1.3. The TO1000 genome and the newly assembled contigs
together constituted the pangenome. Mitochondrial (NC_016118.1) and
chloroplast (NC_015139.1) genomes were included in the mappings (added to the
TO1000 genome sequence) to eliminate potential plastid contamination. Before
assembly, adapters were removed using Trimmomatic44 v0.36. The assembly was
validated by remapping the reads to the assembly (Supplementary Figs 10–12)

Sequencing. For all samples, DNA was extracted from leaf tissue. For CA25,
AC498, ARS_18 and HRIGRU011183, DNA was extracted using the megabase-
sized isolation protocol2. Illumina paired-end libraries with 300–500 bp insert size
were prepared following the manufacturer’s instructions and sequenced using
HiSeq2000 (100 and 101 bp reads) and HiSeq2500 (126 bp reads). For Badger
Inbred 16, HRIGRU009617, BOL909 and B. macrocarpa, DNA was extracted using
the QIAGEN DNeasy plant mini kit. Illumina paired-end libraries with 300–350 bp
insert size were prepared following the manufacturer’s instructions and sequenced
using HiSeq2000. For Early Big, DNA was extracted using the CTAB procedure.
Illumina paired-end library with 350 bp insert size was prepared following the
manufacturer’s instructions and sequenced using the Genome Analyzer II.

Bacterial contamination. BLAST45 v2.2.30 against NCBI nt database (03.05.2016)
was used to identify and remove potential contamination. Contigs whose best hits
were not against green plants were tagged as contamination. Contaminant contigs
were included in all the mappings but not included in the subsequent analysis.

Alignment of the newly assembled contigs to the pangenome. The newly
assembled contigs from each stage of the assembly were aligned to the portion of
the pangenome, which served as a reference at this stage using LASTZ v1.02.00
(--notransition --chain --ambiguous¼ n --identity¼ 93 --coverage¼ 90
--continuity¼ 95). The sequence identity cutoff was estimated based on B. rapa
and B. oleracea divergence. B. rapa and B. oleracea chromosomes 1 were aligned
using LASTZ v1.02.00 (--chain --ambiguous¼ n, genic regions were masked on
both chromosomes). The per cent identity cutoff value was calculated as follows
(estimated B. oleracea wild species divergence time)� (first quartile B. rapa�B.
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Figure 5 | Phylogenetic trees presenting relationships between FLC and AOP2 gene protein products. (a) There are six FLC genes identified in the
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oleracea per cent identity)/(estimated B. rapa�B. oleracea divergence time). The
B. oleracea wild species divergence time used was 1.44 myr ago (ref. 46). The
B. rapa�B. oleracea divergence time used was 2.54 myr ago (ref. 46).

Pangenome annotation. Newly assembled contigs Z1,000 bp in length were
annotated using MAKER2 (ref. 47) v2.31.8. De novo gene prediction used SNAP48

and Augustus49, the EST evidence was based on B. oleracea genes downloaded
from UniGene (ftp://ftp.ncbi.nlm.nih.gov/repository/UniGene/Brassica_oleracea/
Bol.seq.uniq.gz) and 95 k ESTs (http://brassica.nbi.ac.uk/array_info.html), while
protein evidence was based on Brassicaceae proteins downloaded from RefSeq.
Publically available RNASeq data were downloaded from SRA and used as
additional evidence. Sequence was masked against ‘te_proteins.fasta’ in the
MAKER2 package. The total number of genes predicted may be underestimated
due to lack of comprehensive RNASeq libraries for all the lines used in the analysis.

TE-related genes were detected using hmmsearch50 v3.1b2 (trusted cutoff)
using 137 identified TE-related domains51.

R genes were identified using hmmsearch v3.1b2 (trusted cutoff). Genes that
contained PF00931 (NB-ARC) domain were considered to be R genes. The LRR
and TIR domains were also assigned based on hmmsearch results. The CC domain
was discovered using Paircoil2 (ref. 52). Resistance gene clusters were determined
by their physical position order22,53,54. The parameter to define a cluster was two or
more R genes that occurred within a maximum of ten non-R and R genes. The
neighbour joining tree was drawn using QuickTree55 v1.1.

Placement of contigs along TO1000 chromosomes. The newly assembled
contigs 4200 bp in length were placed along the TO1000 chromosomes using
paired-end read information. Reads from the nine varieties (Cabbage1, Cabbage2,
Kale, Brussels sprout, Kohlrabi, Cauliflower1, Cauliflower2, Broccoli and Macro-
carpa) were mapped to the pangenome (TO1000 genome and the newly assembled
contigs) using Bowtie2 v2.2.5 (--end-to-end --sensitive -I 0 -X 1000). Duplicates
were marked using Picard tools MarkDuplicates. Each of the mappings were
processed separately looking only at contigs that originated from a given line.
Reads mapping to the first and last 300 bp of each newly assembled contig, which
had mates mapping to a different chromosome/contig, were extracted using
Samtools56. Only reads fulfilling the following criteria were extracted: MAPQ Z10
(� q 10); not mapped in proper pairs (� F 2); not unmapped (� F 4); mate not
unmapped (� F 8); and not duplicate (� F 1024). All the extracted reads were
inspected for the mapping position of the mate. If mates of 80% or more of the
inspected reads from one end of a contig mapped to a single chromosome and the
mapping positions of mates (leftmost mapping coordinate) did not span more than
1,000 bp, this end of the newly assembled contig was placed on the chromosome
and assigned a position equal to the median of mates leftmost mapping
coordinates. If both ends of a newly assembled contig were placed on a single
chromosome, a lower placement coordinate was assigned. In case of conflicts no
placement was made. Each placement had to be supported by at least 10 reads.

Gene presence/absence variation discovery. Gene presence/absence variation
was characterized using the SGSGeneLoss package57. Reads from the 10 lines were
mapped to the pangenome using Bowtie2 v2.2.5 (--end-to-end --sensitive -I 0 -X
1000). Reads from lines were subsampled to B25� using Seqtk v1.1. Only reads
mapping in proper pairs were retained. SGSGeneLoss utilizes a depth-of-coverage
calculation across all exons of the gene and calls gene absence when the horizontal
coverage across exons (total number of exon bases covered by reads) of the gene
was o5%. Only genes that were annotated on contigs with a length Z1,000 bp
were used in this analysis. A gene was considered core if it was present in all lines
and variable if it was absent in at least one line.

Presence/absence validation. Presence/absence gene calls were validated using
PCR. Primers were designed for 28 genes (35 primers in total, Supplementary
Tables 14 and 15). Presence/absence was tested in five varieties (Cabbage1, Brussels
sprout, Cauliflower2, Kale and Kohlrabi).

Gene clustering. Genes were clustered using OrthoMCL58 v2.09 (default
parameters). B. oleracea pangenome genes were clustered with A. thaliana genes59

(TAIR 10), and gene families were divided into core and variable. A gene family
was considered to be core if at least one gene in the family was present in all the
varieties. The gene family was considered variable if the whole gene family was
missing from at least one line.

Pangenome modelling. Curves describing pangenome size, core genome size and
new gene number for both individual genes and genes families were fitted in
R using the nls function (nonlinear least squares) from package stats. Points used in
regression corresponded to all the possible combinations of genomes. The
combinations of genomes were obtained according to the following formula:
10!/(n!(10� n)!), n¼ [1,10], and the pangenome size was modelled using the
power law regression y¼AxBþC (refs 10,60). The core genome size was modelled
using exponential regression y¼AeBxþC. The model was fitted using means.

TE annotation. TE elements were discovered using RepeatMasker61 using a
B. oleracea repeat database. TE density surrounding genes was calculated as a
proportion of base pairs annotated as TE in the 2,000 bp window preceding the
start and following the end of gene.

SNP discovery. Mappings used for contig placement were also used for SNP
discovery. Duplicates were marked using Picard tools MarkDuplicates. SNPs were
discovered using Platypus62 v0.7.9.1 (--minMapQual¼ 30 --minBaseQual¼ 20).
The SNP discovery model was diploid. The samples used were doubled haploids or
highly inbred. Although a low percentage of SNPs are expected to be heterozygous,
the vast majority of the SNPs are expected to be homozygous. Heterozygous SNPs
were considered potential artefacts and removed. SNPs were categorized as coding,
synonymous, nonsynonymous and nonsense using R package VariantAnnotation63

v1.13.46.

Comparison of core and variable genes. Core and variable genes were compared
with respect to gene length, exon number, coding SNP density, synonymous
(not resulting in amino-acid change), nonsynonymous (resulting in amino-acid
change), nonsense (introducing premature stop codon) SNP numbers and
nonsynonymous/synonymous SNP ratio. All the pangenome genes were split into
two groups corresponding to core and variable genes. The data did not meet
parametric test assumptions and the groups were compared using Mann–Whitney
U-test as implemented in R function wilcox.test (two-tailed test). No assumptions
about similarity of shapes of distributions were made.

Phylogenetic analysis. Phylogenetic trees were constructed using RAxML64

v8.1.22 (-V -m ASC_GTRCAT --asc-corr¼ lewis -o Macrocarpa -p 12345 -# 20).
Bootstrapping was performed using 100 replicates.

Placement of genes on the phylogenetic tree. All the possible combinations of
lines were analysed and for each combination lists of genes uniquely present and
absent in these lines was obtained. For example combination Broccoli–
Cauliflower1–Cauliflower2 will have two corresponding lists of genes: (1) genes
found only in those three lines; the genes are present in all three lines, but absent in
all the others; (2) genes absent only in those lines; the genes are absent in all three
lines, but present in the others. The number of present and absent genes was then
placed on the phylogenetic tree, so that the branch leading to a node was labelled
with all the genes uniquely present and absent in all lines below the node.

Gene ontology annotation. The pangenome was functionally annotated using
Blast2GO (ref. 65) command line v2.5. All the pangenome genes were compared
with A. thaliana proteins pre-formatted to comply with Blast2GO naming
requirements (ftp://ftp.arabidopsis.org/Sequences/blast_datasets/other_datasets/
CURRENT/At_GB_refseq_prot.gz). Comparisons were made using BLAST
v2.2.30. Enrichment was performed using Fisher exact test as implemented in
topGO66 package with method ‘elim’ used to adjust for multiple comparisons.

Detection of clusters enriched in variable genes. Clusters were constructed
using OrthoMCL as described above. Clusters significantly enriched in variable
genes were identified using Fisher exact test (P value o0.001). Functional anno-
tation of clusters was performed by assigning functions of A. thaliana genes to the
whole cluster.

Annotation of phylogeny-specific variable genes. Annotation of phylogeny-
specific variable genes was done by counting the abundance of gene ontology terms
for genes assigned to each node/branch.

Pathway annotation. The pathways involved in glucosinolate, carotenoid,
ascorbate, tocopherol and anthocyanin biosynthesis and metabolism were
identified from the A. thaliana metabolic pathway database (ftp://ftp.plantcyc.org/
Pathways/Data_dumps/PMN9_September2014/aracyc_pathways.20140902,
version downloaded on 24.02.2015). The pathways and corresponding genes were
extracted. Genes associated with flowering time listed in ref. 24 were downloaded.
All the genes belonging to the pathways of interest and the flowering time genes
were compared with the orthologous gene clusters. B. oleracea genes associated
with pathways/processes were identified as follows: if a cluster contained an
A. thaliana gene belonging to the pathway all the B. oleracea genes belonging to
this cluster were extracted and assigned to the pathway. Subsequently, it was
determined if the B. oleracea gene’s best A. thaliana BLAST hit is directly involved
in the pathway, if that was the case, the B. oleracea gene was deemed to be involved.
The four B. oleracea FLC paralogues were taken from Chalhoub et al.21

Analysis of FLC and AOP genes. The B. rapa and B. oleracea FLC gene accessions
were obtained from Schranz et al.27 The B. rapa and B. oleracea AOP genes were
obtained from Liu et al. 1 and Wang et al.67 A. thaliana AOP proteins were
obtained from Swiss-Prot. The sequences were aligned using Clustal Omega68 and
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a maximum likelihood tree with 500 bootstraps was constructed using MEGA6
(ref. 69).

Data availability. The code used for presence/absence detection have been made
available at http://www.appliedbioinformatics.com.au/index.php/SGSGeneLoss. All
sequencing data that support the findings of this study have been deposited in the
National Center for Biotechnology Information Sequence Read Archive and are
accessible through the SRA accession numbers PRJNA301390, PRJNA248388 and
SRR074124. Additional data used in the study are available at http://www.
appliedbioinformatics.com.au/index.php/BOLPANGENOME. All other data sup-
porting the findings of this study are available in the article and its Supplementary
Information files or are available from the corresponding author on request.
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