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ABSTRACT

The knowledge of Software Features (SFs) is vital for software devel-
opers and requirements specialists during all software engineering
phases: to understand and derive software requirements, to plan and
prioritize implementation tasks, to update documentation, or to test
whether the final product correctly implements the requested SF. In
most software projects, SFs are managed in conjunction with other
information such as bug reports, programming tasks, or refactoring
tasks with the aid of Issue Tracking Systems (ITSs). Hence ITSs con-
tains a variety of information that is only partly related to SFs.

In practice, however, the usage of ITSs to store SFs comes with two
major problems: (1) ITSs are neither designed nor used as documenta-
tion systems. Therefore, the data inside an ITS is often uncategorized
and SF descriptions are concealed in rather lengthy. (2) Although an
SF is often requested in a single sentence, related information can be
scattered among many issues. E.g. implementation tasks related to
an SF are often reported in additional issues. Hence, the detection of
SFs in ITSs is complicated: a manual search for the SFs implies reading,
understanding and exploiting the Natural Language (NL) in many is-
sues in detail. This is cumbersome and labor intensive, especially if
related information is spread over more than one issue.

This thesis investigates whether SF detection can be supported auto-
matically. First the problem is analyzed: (i) An empirical study shows
that requests for important SFs reside in ITSs, making ITSs a good tar-
get for SF detection. (ii) A second study identifies characteristics of
the information and related NL in issues. These characteristics repre-
sent opportunities as well as challenges for the automatic detection
of SFs.

Based on these problem studies, the Issue Tracking Software Fea-
ture Detection Method (ITSoFD), is proposed. The method has two
main components and includes an approach to preprocess issues.
Both components address one of the problems associated with stor-
ing SFs in ITSs. ITSoFD is validated in three solution studies: (I) An
empirical study researches how NL that describes SFs can be detected
with techniques from Natural Language Processing (NLP) and Ma-
chine Learning. Issues are parsed and different characteristics of the
issue and its NL are extracted. These characteristics are used to clas-
sify the issue’s content and identify SF description candidates, thereby
approaching problem (1). (II) An empirical study researches how is-
sues that carry information potentially related to an SF can be de-
tected with techniques from NLP and Information Retrieval. Charac-
teristics of the issue’s NL are utilized to create a traceability network
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of related issues, thereby approaching problem (2). (III) An empirical
study researches how NL data in issues can be preprocessed using
heuristics and hierarchical clustering. Code, stack traces, and other
technical information is separated from NL. Heuristics are used to
identify candidates for technical information and clustering improves
the heuristic’s results. The technique can be applied to support com-
ponents, 1. and II.
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ZUSAMMENFASSUNG

Software Features (SFs) sind zentrale Artefakte fiir die Softwareent-

wicklung und das Anforderungsmanagement. SFs werden beispiels-

weise genutzt, um Anforderungen zu verstehen, abzuleiten oder zu

dokumentieren. Oft stiitzt sich auch die Planung der Entwicklungsar-

beiten und die Dokumentation auf SFs. In der Praxis werden SFs meist

in Verbindung mit anderen Informationen, wie Fehlerbeschreibun-

gen, Entwicklungs- und Refactoring-Aufgaben in einem Issue Tracking
System (ITS) verwaltet. Demnach beinhalten ITSe meist eine Vielzahl

von Informationen, die jedoch nur teilweise mit SFs in Zusammen-

hang stehen.

Die Verwaltung von SFs in ITSen bringt in der Praxis jedoch zwei
grofie Probleme mit sich: (1) ITSe wurden zur Unterstiitzung der Soft-
wareentwicklung, nicht aber fiir die Dokumentation erstellt. Daher
sind die Daten in ITSen oft falsch kategorisiert und SFs verbergen sich
in ausschweifenden Beschreibungen oder Kommentaren. (2) Auch
wenn SFs meist mit nur einem Satz beschrieben werden, so befin-
den sich verwandte Informationen tiberall im ITS. Beispielsweise wer-
den zugehorige Implementierungsaufgaben oft in einem neuen Issue
festgehalten. Somit ist die Erkennung von SFs eine schwierige Aufga-
be: Um SFs manuell zu finden, miissen mehrere Issues inklusive der
Kommentare im Detail gelesen und bewertet werden. Dies ist sehr
aufwindig, insbesondere wenn dariiberhinaus noch verwandte Infor-
mationen aus mehreren Issues zusammengetragen werden miissen.

Die vorliegende Arbeit untersucht, inwiefern SFs automatisch er-
kannt werden konnen und analysiert zundchst das Problem: (i) Eine
empirische Studie zeigt, dass wichtige SFs in ITSen gefunden werden
konnen und ITSen dadurch ein gutes Ziel fiir die automatische Erken-
nung darstellen. (ii) Eine weitere Studie identifiziert Charakteristiken
der Informationen und natiirlichsprachlichen Formulierungen in Is-
sues. Diese Charakteristiken wiederum stellen Herausforderungen,
aber auch Chancen, fiir eine automatische Detektion von SFs dar.

Basierend auf der Problem-Analyse wird die Issue Tracking Soft-
ware Feature Detection Method (ITSoFD), eine Methode zur Detektion
von SFs in ITSen, vorgestellt. ITSoFD hat zwei Hauptkomponenten und
adressiert die beiden Probleme, die sich durch die Verwaltung von SFs
in ITSen ergeben. ITSoFD wird in drei Studien validiert: (I) In einer ers-
tem empirischen Studie wird untersucht, inwiefern SFs mit Techniken
aus dem Natural Language Processing (NLP) und dem Machine Lear-
ning erkannt werden konnen. Hierbei werden verschiedene Charak-
teristiken der Issues und der natiirlichen Sprache extrahiert und zur
Klassifizierung von Issues genutzt. Diese Studie untersucht Problem
(1). (I) In einer zweiten empirischen Studie wird untersucht, inwie-
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fern in Beziehung stehende Informationen in verschiedenen Issues
durch Techniken des NLP und Information Retrieval zusammenge-
fiihrt werden konnen. Es werden verschiedene Charakteristiken der
natiirlichen Sprache genutzt, um verwandte Issues miteinander zu
verlinken. Diese Studie untersucht Problem (2). (II) In einer dritten
empirischen Studie wird untersucht, inwiefern technische Informatio-
nen wie Code und Stack Traces in Issues von natiirlicher Sprache ge-
trennt werden konnen. Heuristiken werden genutzt, um Kandidaten
fiir technische Informationen zu bestimmen und diese Kandidaten
werden durch Clustering zusammengefasst um Falscherkennungen
durch die Heuristiken auszugleichen. Diese Technik wird als Vorver-
arbeitung fiir obige Komponenten eingesetzt.
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Part I

PRELIMINARIES

In this part software feature detection is introduced. A mo-
tivation for software feature detection is laid out and the
three main problems that are investigated in this thesis are
described. For these problems four overall research ques-
tions are derived to guide the problem investigation sys-
tematically. The research questions are further refined and
answered throughout the thesis. Finally, an overview of
the thesis is given and previous publications of the author
containing relevant ideas and concepts are outlined.






INTRODUCTION

1.1 MOTIVATION

Software Features (SFs) are heavily used in Requirements Engineer-
ing (RE) and the whole Software Engineering (SE) process. Hence the
knowledge of SFs is helpful for many SE tasks, such as understanding
and deriving Requirements Artifacts (RAs), checking which SFs are
considered during implementation, updating documentation, release
planning in software product management (Fricker and Schumacher,
2012), or software product line engineering (Kang et al., 1990).

Approaches that support these SE tasks typically assume a dedi-
cated representation of SFs. However, in industrial and Open Source
Software (0OSS) projects SFs are often managed implicitly with the
aid of an Issue Tracking System (ITS)'. Moreover, many development
projects typically do not have explicit or up to date requirement doc-
uments or SF descriptions (Alspaugh and Scacchi, 2013), especially if
RE is practiced ad hoc (Ernst and Murphy, 2012).

Advantageously, most SE projects employ ITSs to aid their software
development efforts (Skerrett and The Eclipse Foundation, 2011). The
ITS is usually the most critical tool to capture development tasks
(Ernst and Murphy, 2012) and to describe and discuss SFs. Moreover,
the ITS usually includes a broad range of SFs information on differ-
ent abstraction levels (Paech, Hiibner, and Merten, 2014) and it is
the place where the views of users and developers are tied together
(Bertram et al., 2010; Nguyen Duc et al., 2011) and where knowledge
about SFs is build (Hemetsberger, 2006). However, ITS are neither used
nor designed as documentation systems and the SFs are typically un-
structured and thus hard to find. Although feature and bug related
issues are usually categorized by metadata, this metadata is often
inaccurate (Herzig, Just, and Zeller, 2013) or missing (Merten et al.,
2015) and cannot be used to detect SFs descriptions reliably. In addi-
tion, related information with respect to an SF is generally not found
in the same issue. E.g. if a bug connected to a certain SF is found, the
bug is usually reported in a new issue (Merten et al., 2016a). Hence,
the information about an SF in a single issue is not necessarily com-
plete.

Overall, SFs are vastly important for SE, but detecting SF descrip-
tions in ITS is a manual, labor intensive, and tedious task. Further-

ITSs are also known as bug trackers, ticket systems, help desk systems, or project
management systems. In the following “Issue Tracking System” (ITS) is used as an
umbrella term for all these systems.



INTRODUCTION

more, this task is supported by rather basic search functionalities of
the ITS only (Tran et al., 2009). Hence, this thesis researches a method
to detect SFs related information automatically ITSs.

One driver for this thesis was my investigation into an industrial
software development project. In the project environment about 100
issues are collected every week. Usually, these issues are categorized
as “SF” or “bug report” respectively®. However, in the comments to
some of the bug reports SFs descriptions could be found. Often these
SFs emerged during a discussion of the customer representative and
developers and the developers implemented them during bug reso-
lution. Such “hidden” requests for SFs were a major problem for two
reasons:

1. the company could not update the software documentation ac-
cordingly, as only issues categorized as SFs were picked up by
the documentation team and

2. the company could not bill their customers accordingly, as is-
sues categorized as “bug report” could not be billed.

Although the outcome of this thesis cannot be applied directly to
their environment, the thesis represents a first step towards a reliable
SF detection within ITSs.

1.2 DESCRIPTION OF THE PROBLEMS

To detect SFs in ITSs this thesis addresses the following three problems
r1 to P3:

P1 UNDERSTANDING SFS IN ITS DATA  Although researchers an-
alyze the contents, especially the Natural Language (NL) data of ITSs
(Bertram, 2009; Herzig, Just, and Zeller, 2013), research does not fo-
cus on SFs descriptions and their structure. This results in a limited
understanding of many aspects, e.g. whether project relevant SFs are
actually recorded in the ITS and if so, how those SFs are described.
Little is also known on how SFs are complemented by metadata, or
which information besides the SFs resides in an ITS3. However, no em-
pirical assessment of these aspects has been made.

P2 DETECTING SF RELATED INFORMATION A manual search
for SF descriptions in the ITS is no trivial task in most software projects.
Automation is needed to ease this task. Research has shown that SFs

Among other categories that are not relevant for this example.

Whereas some aspects of NL in ITSs have been researched. E.g. Bertram, 2009 de-
scribes social aspects of issue tracking, Ko and Chilana, 2011 research discussions in
issues and Zimmermann et al., 2009 and Lotufo, Passos, and Czarnecki, 2012 suggest
to improve ITSs from different points of view.



1.3 RESEARCH QUESTIONS

can be detected from requirement documentation or product descrip-
tions (Bakar, Kasirun, and Salleh, 2015) or in many cases from source
code (Dit et al., 2013). However, no means to detect SF descriptions in
ITSs exist.

P3 IDENTIFYING INFORMATION RELATED TO SFS SFs are of-
ten accompanied by other information like related software bugs
(Bertram et al., 2010). Traceability research has shown that such re-
lated information can be revealed for structured RAs (Borg, Runeson,
and Ardo, 2014; Gotel et al., 2012). However, it is unclear whether
such relations can be found in ITSs*.

1.3 RESEARCH QUESTIONS

The following overall Research Questions (RQs) are defined to investi-
gate P1 to 3, where RQ 1 and RQ 2 are related to r1, RQ 3 is related
to P2, and RQ 4 is related to P3:

RQ 1 What information about SFs can be found in an ITS of a software
product, and how well is this information suited to derive a
feature representation of the software?

RQ 2 How is NL information categorized, described, and distributed
in an ITS?

RQ 3 Can SFs descriptions be detected automatically in ITS NL data?

RQ 4 Do trace retrieval algorithms perform effectively on ITS data?

These RQs are further refined in respective studies: rRQ 1 is refined
in three detailed questions in Chapter 10, RQ 2 is refined in three
detailed questions in Chapter 11, RQ 3 is refined in three detailed
questions in Chapter 15, and finally rQ 4 is refined in four detailed
questions in Chapter 16. An overview of the studies and the RQs is
given in Table 1.1.

1.4 SCIENTIFIC CONTRIBUTIONS
1.4.1 Empirical Findings on SFs in ITSs

Part iv studies the challenges related to SF detection. Chapters 10

and 11 present two empirical studies on ITS data showing that (1) many

important SFs can be found in an ITS, hence an ITS is a good target for
SF detection, and (2) how these SF are formulated and which related
information can be found in issues. Both studies tackle problem r1
defined above.

4 Although promising results for duplicate issue detection have been published, e.g.
by Kaushik and Tahvildari, 2012, Tian, Sun, and Lo, 2012, or Borg et al., 2014.

5



INTRODUCTION

1.4.2 A Method to Detect Software Features in ITSs

Part v presents solutions related to SF detection. Based on the find-
ings of the empirical studies describes in the previous sections, the
challenges in SF detection are derived and implications for technical
solutions are introduced. Then, the Issue Tracking Software Feature
Detection Method (ITSoFD) is introduced. ITSoFD is an overall solution
design for SF detection. All major components of ITSoFD are validated
in three empirical studies, outlined in the following Sections 1.4.3,

1.4.4, and 1.4.5.
1.4.3 An Approach to Separate Technical Data from Natural Language

In Chapter 14 an approach to separate technical data form NL is pre-
sented and empirically evaluated. In contrast to related work, this
approach is based on simple heuristics and clustering and can be ap-
plied without an explicit training phase. The approach represents a
data preprocessing step to tackle the problems r2 and r3.

1.4.4 An Approach to Detect SF descriptions in ITSs

In Chapter 15 an approach to detect SFs descriptions in issues based
on Machine Learning (ML) techniques is presented and empirically
evaluated. As to the author’s knowledge this is the first publication
that evaluates ML techniques for SFs detection in ITS data. The ap-
proach tackles problem r2.

1.4.5 Empirical Findings on Trace Recovery in ITSs

In Chapter 16 an empirical evaluation of Information Retrieval (IR)
techniques to detect links between issues is presented. Although re-
lated work shows promising results for link detection between dupli-
cated issues or structured and well written RAs, this thesis shows that
these approaches cannot be transferred to most ITS data. However,
Chapter 16 presents promising enhancements to previous research
that can improve IR techniques on ITS data. The empirical evaluation
investigates problem r3.

1.5 STRUCTURE OF THE THESIS

In general this thesis is based on two pillars. The first pillar in Part iv
investigates in the problems that come with software feature detec-
tion and the second pillar in Part v describes solution studies that
tackle the identified problems.
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Beforehand, Part ii defines important terms and gives background
information on SFs and SF requests, ML, and IR.

Part iii describes the data acquisition, the applied research method-
ologies, and the tools that were used to implement the experiments
presented in Chapters 8, 7, and 9, respectively.

The first pillar in Part iv includes two studies investigating whether
SFs can be found in ITSs (Chapter 10) and how issues are structured
(Chapter 11). Finally, Chapter 12 discusses the overall results of the
problem investigation.

The second pillar in Part v includes two approaches investigating
whether ITS data can be processed for an automatic SF detection. The
preprocessing method in Chapter 14 is an approach to separate tech-
nical data from NL and is evaluated in an empirical study. Chapter 15
describes an approach to detect SFs descriptions based on ML tech-
niques and Chapter 16 describes ITS specific advances for trace re-
trieval techniques to find related issues in ITSs. Both, the approach
and the advances are evaluated in an empirical study.

In Part vi the results and findings of the thesis are discussed (Chap-
ter 17), summarized (Chapter 18), and finally implications of the the-
sis for future work are presented (Chapter 19).

Table 1.1 shows the structure of the thesis, summarizes the con-
ducted experiments, and names the results of every experiment. In
addition, Table 1.1 attributes the conducted experiments to the prob-
lems described in Section 1.2 and to the RQs stated in Section 1.3.

1.6 PREVIOUS PUBLICATIONS

Parts of the ideas, concepts, algorithms, and evaluation results pre-
sented in this thesis have already been published in scientific proceed-
ings. I took the role of the main author in the publications presented
below, conducted most of the research, and authored the papers>. An
exception is (Paech, Hiibner, and Merten, 2014): here the second au-
thor analyzed SFs in software user documentation and I analyzed SFs
in ITSs. All three authors shared the responsibilities for cross-cutting
aspects and writing. Altogether, the following publications preceded
this thesis:

First ideas with respect to ITS analysis were published as short paper
and poster. Due to feedback in the poster presentation, an initially
broad range of ideas was focused on SFs detection during the prepa-
ration of this thesis.

Thorsten Merten and Barbara Paech (2013). “Research Pre-
view: Automatic Data Categorization in Issue Tracking

As a matter of course, corrections and smaller text passages as provided by my co-
authors were incorporated in the publications. Furthermore, my research was often
build on initial implementations by my students, who are listed as co-authors.

“Knowledge sharing
and collaboration are
a key foundation of
research and
development.” —
Jonathan Spira.
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DISCUSSES
CONTENTS AND RESULTS PROBLEMS RQS

Part i Introduction

Sec. 1.2 Description of the Problems P1, P2, P3

Sec. 1.3 Definition of the Overall RQs RQ1-4
Part ii Fundamentals
Part iii Methodologies & Tools
Part iv Problem Investigation

Ch. 10 On Understanding SFs in ITSs P1 RQ1
Result: empirical findings on SFs in ITSs

Ch. 11 On Understanding the Structure of Is- P1 RQ2
sues, the Information in ITSs, and the NL
Usage in ITSs
Result: empirical findings on issue contents

Ch. 12 Overall Results: problem Investigation P1

Part v SF request Detection

Ch. 14  On Preprocessing Issues [RQ 3, RQ 4]
Results: a clustering-based method to preprocess issues™ and an empirical
evaluation of this method

Ch. 15  On Detecting SFs requests P2 RQ 3
Results: MLF sets to detect SFs descriptions and an empirical evaluation of
seven ML algorithms using these MLFs sets.

Ch. 16  On Finding Related Issues P3 RQ 4
Results: enhancements to IR-based methods to retrieve traces in ITSs and
an empirical evluation of five IR-based methods used with and without
these enhancements.

Part vi Conclusion & Future Work P1, P2, P3

* Results can be applied as preprocessing step in the following studies.

Table 1.1: Structure and Contributions of this Thesis.
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Systems.” In: 43. Jahrestagung der Gesellschaft fiir Informatik
e.V. (INFORMATIK 2013). Koblenz, Germany: Lecture Notes
in Informatics, pp. 128-130

Empirical findings about SFs, abstraction levels of SFs descriptions and
findings on ITS NL contents were published in:

Barbara Paech, Paul Hiibner, and Thorsten Merten (2014).
“What are the Features of this Software?” In: gth Interna-
tional Conference on Software Engineering Advances (ICSEA
2014). Nice, France: IARIA XPS Press, pp. 97-106

ITS NL contents were then analyzed in depth. Empirical findings how
issues of different types (e.g. feature requests and bug reports) and
especially the NL is composed, were published in:

Thorsten Merten et al. (2015). “Requirements Communica-
tion in Issue Tracking Systems in Four Open-Source Projects.”
In: 6th Workshop on Requirements Prioritization and Commu-
nication (RePriCo 2015). Essen, Germany: CEUR Workshop
Proceedings, pp. 114-125

An approach to automatically separate NL and technical information,
was published in:

Thorsten Merten et al. (2014). “Classifying Unstructured
Data into Natural Language Text and Technical Informa-
tion.” In: 11th Working Conference on Mining Software Repos-
itories (MSR 2014). Hyderabad, India: ACM Press, pp. 300

303

An empirical evaluation of IR algorithms for automatic trace retrieval
in ITSs and improvements with respect to data preprocessing and
weighting was published in:

Thorsten Merten et al. (2016a). “Do Information Retrieval
Algorithms for Automated Traceability Perform Effectively
on Issue Tracking System Data?” In: 22nd International Work-
ing Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2016). Vol. 9619. Gothenburg, Swe-
den: Springer, pp. 45-62

An ML based approach to automatically detect software feature de-
scriptions in ITSs on different levels of detail was published in:

Thorsten Merten et al. (2016b). “Software Feature Request
Detection in Issue Tracking Systems.” In: 24th IEEE Inter-
national Requirements Engineering Conference (RE 2016). Bei-
jing, China: IEEE, pp. 166-175






Part II

BACKGROUND AND DEFINITIONS

In this part relevant background knowledge is introduced.
First, software features and important concepts related to
issue tracking systems are defined. Then an overview of
the technologies and techniques used in the thesis is given;
including text preprocessing, information retrieval, and
machine learning. Finally, measures used in experiment
validation are described and a new measure to evaluate
software feature detection is introduced.






SOFTWARE FEATURE FUNDAMENTALS

This paragraph gives a brief overview on the way data in is organized
in ITSs. With this background different types of ITS data are defined as
they are referred to throughout the thesis. Then, Section 2.2 discusses
how ITSs are used to manage SFs in detail.

Figure 2.1 shows the typical structure of an ITS. The ITS is repre-
sented by the gray area in figure Figure 2.1. Every solid box in the
ITS represents an issue i, and the dotted and dashed boxes shown
in issue ip are examples for the typical data fields of an issue. A de-
scription of the data fields is shown on the left hand side and related
example data is given on the right hand side. An issue is usually
comprised of a title, a description, comments, and meta-data. Meta-
data includes but is not limited to information such as the user who
created the issue, the date and time of issue creation, or users who
commented on the issue. For this thesis the most important data is
the NL text in an issue’s title, description and its comments?.

Data Field E Example Data
|
ITS i Radiant CMS using GitHub ITS
Issue (i0) . https://github.com/radiant/
5 radiant/issues/25
Metadata 1 ID, time, date, reporter, # of com-
| ments, issue type, ...
Title . >Internationalization<
Description . >Provide support for internationaliza-
E tion of the admin interface for Radiant
! and extensions<
' Comment (co € 1) H !
| | Metadata E time, date, user name, ... |
| : !
| Description 1 >come on! a cms in version 0.9 with- i
! ! out any internationalization its just i
l i\ useless...no?< !
I + I

‘ Issue (1)

‘ Issue (im) 320 ‘

Figure 2.1: Typical ITS and Issue Structure and Example Data.

1 Some ITSs allow to add additional data fields. However, none of the projects that
were researched in this thesis structures issues on this level.
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SOFTWARE FEATURE FUNDAMENTALS

2.1 DEFINITIONS
2.1.1 ITS Data

The data and metadata in an ITS is referred to as follows:

DEFINITION: ITS DATA FIELD

An ITS data field an collective term for an issues title, description
and its comment(s).

DEFINITION: ITS METADATA

ITS metadata is an collective term for structured metadata related
to an issue. An example is the author of the issue.

DEFINITION: DATA FIELD METADATA

Data field metadata is an collective term for structured metadata
related to an ITS data field. An example is the author of a comment.

2.1.2  Software Feature Request

The Shorter Oxford English Dictionary (Trumble, 2007) defines

SOFTWARE as “the programs and other operating information used
by a computer]|...]” and

FEATURE as “a distinctive or characteristic part of a thing [software];
a part that arrests attention by its prominence etc. [...]">.

The Institute of Electrical and Electronics Engineers (IEEE) consequently
merges these definitions and adds examples for such characteristics.
IEEE specifies that a

SOFTWARE FEATURE is a “distinguishing characteristic of a software
item (e.g., performance, portability, or functionality)” (ANSI/IEEE,

1998).

However, the above definition does not explain how an SF can be
described; e.g. in terms of size or in terms of abstraction. Gorschek
and Wohlin define SFs via their abstraction level

The term “feature” is also used in the Data Mining, Text Mining, and Machine Learn-
ing contexts (Domingos, 2012; Han, Kamber, and Pei, 2012; Hausser, 1999; Manning,
Raghavan, and Schiitze, 2008; Manning and Schiitze, 1999; Witten, Frank, and Hall,
2011). It denotes “an individual measurable property of a phenomenon being ob-
served” (Bishop, 2009). This thesis uses the term Software Feature (SF) to distinguish
software functionality from such a measurable property.
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FEATURE LEVEL REQUIREMENTS “should not offer details as to what
functions are needed in order for the product to support a [soft-
ware] feature; rather the requirements should be an abstract de-
scription of the [software] feature itself.” (Gorschek and Wohlin,
2006)

In contrast the International Requirements Engineering Board e.V.
(IREB) defines an SF with a higher level of abstraction: they say that a

SOFTWARE FEATURE is “a delimitable characteristic of a system that
provides value for stakeholders. Normally comprises several re-
quirements and is used for communicating with stakeholders
on a higher level of abstraction and for expressing variable or
optional characteristics.” (Glinz, 2012)

It is noteworthy that the IREB definition adds the fact that an SF should
provide value for stakeholders in contrast to the other definitions
above.

In Part v, this thesis focuses on the detection of Software Feature
Requests (SFRs). At the same time the different SF definitions above
allow a broad range of formulations to request an SF with respect to
abstraction level, wording and size. In the thesis a definition that does
not restrict the size or abstraction level of an SFR is used, since mul-
tiple stakeholders tend to use different approaches to describe or re-
quest an SF3. Thus no restrictions with respect to size and abstraction
level apply in the following definition of an SFR as in the definition of
the IEEE. However, the value aspect of the IREB definition is added to
distinguish an SFR from other requests that add value mainly to the
developers. Examples for requests that do not provide a direct value
for users of the software are refactoring or technical documentation
tasks. Overall an SFR is defined as follows.

DEFINITION: SOFTWARE FEATURE REQUEST

A Software Feature Request (SFR) is text that requests for a distin-
guishing characteristic of a software item (e.g. a quality or function-
ality) that provides value for users of the software.

It should be noted, that SFs are often described implicitly as collec-
tion of software requirements or RA. Hence, many other well known
publications do not explicitly define SFs. Examples are the popular
textbook “Software Engineering” by Sommerville or the 2000 pages
comprising “Encyclopedia of Software Engineering” by Marciniak from
2001.

3 This is discussed in detail in Part iv of this thesis.



16

SOFTWARE FEATURE FUNDAMENTALS

2.2 MANAGEMENT WITH ISSUE TRACKING SYSTEMS

ITSs were invented to report and manage software bugs historically.
However, issues can be used to track all kinds of work through infor-
mation systems (Kunz and Rittel, 1970). Thus the functionality of ITSs
increased early and they were used to manage and discuss multiple
software development tasks.

Modern ITSs are known as project management systems. They al-
low to track additional data such as work time and they can be
customized according to complex development workflows. A stake-
holder authors an issue and categorizes whether this issue is a bug
report, describes an SFR or another software development task (e.g.
documentation or refactoring). This category is subsequently referred
to as issue type.

DEFINITION: ISSUE TYPE

An issue type is an attribute that relate an issue to a disjoint set of

issues. Examples for issue types are “feature”, “bug”, “refactoring”,
or “documentation”.

The definition explicitly states a disjoint set of issues, since ITSs his-
torically enforce assigning exactly one issue type per issue. Another
approach is to tag issues with multiple issue types. This technique is
referred to as issue tags.

DEFINITION: ISSUE TAGS

Issue tags are attributes that relate an issue to one or many (pos-
sibly intersecting) sets of issues. Examples for issue tags are “fea-
ture”, “bug”, “frontend”, “database”, or user names of users that
are involved in solving the issue.

When the issue is submitted, the ITS automatically adds related ITS
metadata. It assigns a unique ID, stores the author (or reporter) of
the issue, and records the creation time. Then the issue is usually as-
signed to a software developer and is either implemented right away
or further discussed (e.g. to elicit more information).

If the SFR is discussed further and users or developers add com-
ments to the issue, the ITS records related data field metadata, such
as the authors of the comments or the creation time of the comments.
Finally, the issue is marked as “closed”, which means that no more
work with regard to the issue needs to be done. Occasionally, an issue
is reopened in case it was closed before the work was completed.

Such an ITS workflow can be arbitrarily complex. An issue can be
assigned to different groups like requirements engineers, or testers. It
can have additional states like “rejected”, if it will never be scheduled
for development, or “duplicate”, if it was already reported before.
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Figure 2.2 shows a typical ITS workflow that is representative for the
projects researched in this thesis*.

create feature, bug, ... issue
new
assign
; not to be
assigned to
_________ worked on
developer reopen !
start work '
1

. finish work
in progress

resolve, implement,
discuss, ...

Figure 2.2: Typical Issue Tracking System Workflow.

ITS DATA FIELD

ISSUE #1910

ISSUE #12700

Title Delete/close created fo- Let messages have a
rum entry “solved” flag
Description I suggest a feature un- It would be easier to go
der the forums where the through the messages in
user can close or delete the forums if there was a
the topic he/she started. “solved” flag users could
This way, other users will set to show that their
not get confused if the questions have been an-
problem is already re- swered.
solved. o A filter could then be
used to only show “open”
messages. |[...]
Comments [none] [none]

Figure 2.3: Excerpts of Two Issues From the Redmine Project.

Figure 2.3 shows the NL content of two example issues. Often, this
NL text suffers from inconsistencies like typos or ambiguity (Ko and
Chilana, 2011). Scacchi, 2009 note that SE artifacts in OSS projects are
written in an informal way, which they call software informalisms:
“in 0SS development projects, software informalisms are the preferred

4 See Chapter 8 for the studied projects. Furthermore, the Jira ITS documentation pro-
vides additional examples for typical workflows: https://confluence.atlassian.
com/jira.
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scheme for describing or representing OSS requirements. There is no
explicit objective or effort to treat these informalisms as “informal soft-
ware requirements’ that should be refined into formal requirements
within any of these communities”. Thus SFRs are seldom refined or re-
structured in contrast to other RAs, which are often subject to specific
quality assurances®. In addition the NL in ITSs carries a multitude of
noise®. E.g. a bug report may contain:

1) NL to describe the bug,

2) a log file excerpt to support the bug description,

3) an NL question that asks when exactly the bug occurs,

4) an NL response from the user that includes,

5) a stack trace to show the actual impact on the code,

6) multiple NL comments to discuss a bug-fix including and/or

7) a code snippet (a patch) that fixes the bug.

In addition, two or more issues are often interconnected. Links be-
tween issues can usually be established by a simple domain-specific
language. E.g. the text #42 creates a trace link to an issue with ID 42
when written in an ITS data field. In some ITSs the semantic of such
links can be specified (e.g. to distinguish duplicated from otherwise
related issues). These semantically enriched links will be referred to
as trace types.

DEFINITION: TRACE TYPE

A trace type is a link between two issues with a particular semantic
meaning.

The issues in Figure 2.3 are marked as related issues in the according
ITS of the Redmine project but they can be interpreted as duplicated
issues judging from their content, too. Besides expressing a general
relation or marking duplicated issues, there are more reasons to cre-
ate links between issues. These reasons include but are not limited
to:

* Expressing that a bug is related to a feature issue.

e Dividing (larger) issues in child-issues (e.g. for organizational
purposes).

* Expressing that a certain issue blocks the resolution of another
issue.

5 Natt och Dag and Gervasi, 2005 surveyed automated approaches to improve the NL
quality of RAs.
6 NL and noise in issues is investigated in Part iv of this thesis.
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Most ITS implementations store the same information in slightly dif-
ferent ways. Table 2.1 summarizes the data fields of four modern is-
sue tracking systems. The information in Table 2.1 was derived from
the data structures and user interfaces of the Bugzilla, Jira, Redmine,
and GitHub ITSs7, which are among the most commonly used ITSs ac-
cording to the The Eclipse Community Survey 2011 (Skerrett and The
Eclipse Foundation, 2011). Italic text denotes that the data field con-
tains user defined text. Besides different naming conventions, each of
the data fields is employed in the default installation of all five ITSs.
The first column of the table represents the naming conventions used

in this thesis.

ITS DATA FIELD NAME IN

ITS DATA FIELD BUGZILLA JIRA REDMINE GITHUB
ID bug ID project-ID, ID ID
ID
title summary summary subject title
description description ~ description  description = comment
start timestamp  reported created start date commented
close timestamp  closed resolved closed closed
version software software milestone milestone
version version
reporter reported reporter added by opened
assignee assigned to  assignee assignee assignee
comments’ additional comment comment comment
comment
status changes'  modified updated updated by  various
file attachments'  attachment  attachment files embedded
or as link

issue type
issue status
scheduling

timestamps1

usernames1

custom fields'

trace types]

is handled via custom values, e.g. bug, feature, defect, enhance-
ment ...

is handled via custom values, e.g. new, accepted, assigned,
closed ...

is handled via priority or severity fields in combination with
milestones

are recorded implicitly with each new entry, e.g. status change
or comment creation

are recorded implicitly with each new entry, e.g. status change
or comment creation

all ITS include options to add custom fields

are stored in a database or plain text (e.g. the text “#7” references
the issue with ID 7)

! The plural form denotes that multiple instances can be associated to one issue.

Table 2.1: ITS Data Fields in Several ITSs.

7 See

https://www.bugzilla.org,

https://github.com, and http://redmine.org

https://www.atlassian.com/software/jira,


https://www.bugzilla.org
https://www.atlassian.com/software/jira
https://github.com
http://redmine.org
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To work with raw text occurring in ITS data fields, proper preprocess-
ing is important for IR as well as ML techniques, since “real-world
databases are highly susceptible to noisy, missing, and inconsistent
data” (Han, Kamber, and Pei, 2012, p. 83). Furthermore, “text mining
[ML and IR] is arguably so dependent on the various preprocessing
techniques [...] that one might even say text mining is to a degree
defined by these elaborate preparatory techniques” (Feldman and
Sanger, 2006, p. 57). At the same preprocessing techniques need to be
chosen carefully: “[...] the appropriate preprocessing combinations
depending on the domain and language may improve the accuracy
considerably. In the meantime, inappropriate preprocessing combi-
nations may degrade the accuracy significantly as well.” (Uysal and
Gunal, 2014)

Finally, preprocessing can largely reduce the processing time of
most algorithms if the preprocessing technique comprises a data re-
duction (Manning, Raghavan, and Schiitze, 2008).

3.1 DEFINITIONS
3.1.1 Language Processing and Language Engineering

In his paper “A definition and short history of Language Engineer-
ing” Cunningham, 1999 amply discusses the relatedness of three fields:
(1) Natural Language Processing (NLP), (2) Language Engineering

(LE), and (3) Computational Linguistics (CL). His discussion is based

on a multitude of dictionaries and scientific publications. Cunning-
ham states that:

COMPUTATIONAL LINGUISTICS is “that part of the science of hu-
man language that uses computers to aid observation of, or ex-
periment with, language.”

NATURAL LANGUAGE PROCESSING is “a term used in a variety of
ways in different contexts [...] NLP is a branch of computer sci-
ence that studies computer systems for processing natural lan-
guages. It includes the development of algorithms for parsing,
generation, and acquisition of linguistic knowledge; the inves-
tigation of the time and space complexity of such algorithms;
the design of computationally useful formal languages [...] for
encoding linguistic knowledge [...]” and so on. Finally,

21
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LANGUAGE ENGINEERING is “the discipline or act of engineering
software systems that perform tasks involving processing hu-
man language. Both the construction process and its outputs
are measurable and predictable. The literature of the field re-
lates to both application of relevant scientific results and a body
of practice.”

From these statements it can be concluded that CL focuses on un-
derstanding language with the aid of computers, NLP focuses on the
study of computers and algorithms with respect to the processing of
languages, and LE focuses on the engineering part: e.g. the applica-
tion of (NLP based) methods to achieve a certain goal. In this thesis
only LE methods based on rules are discussed. To distinguish these
from ML and IR based methods as used in Part v, LE is defined as
follows:

DEFINITION: LANUGAGE ENGINEERING

Language Engineering is the creation of rule based methods to pro-
cess or classify natural language.

Rule-based methods are used regularly in LE or as preprocessing
methods for NLP tasks. For example to tag parts of speech (Brill,
1992)*, to extract information such as names or places (Cunningham
et al., 2016, pp. 113), or, to a certain extend, even to detect software
requirements (Vlas and Robinson, 2013).

3.1.2  Documents and Corpora

Feldman and Sanger, 2006 state that “a document can be very infor-
mally defined as a unit of discrete textual data within a collection
that usually, but not necessarily, correlates with some real-world doc-
ument such as a business report, legal memorandum, e-mail, research
paper, manuscript, article, press release, or news story”. They use the
term “document collection”, which is often called a corpus, too. Docu-
ments considered in this thesis are either issues extracted form ITSs or
emails extracted from development mailing lists. Hence, corpus and
document is referred to as follows.

DEFINITION: CORPUS

A corpus is a dataset of issues extracted from one or more ITSs or a
dataset of emails extracted from one or more mailing list archives.

1 Part of speech tagging is introduced in detail in the paragraph “Grammatical Tag-
ging”.
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DEFINITION: DOCUMENT

A document is a unit of discrete textual data including metadata
within a corpus (e.g. an issue or an email).

3.1.3 Preprocessing

Data preprocessing is often defined by its goals (Han, Kamber, and
Pei, 2012, p. 83):

DATA CLEANING can be applied to remove noise and correct incon-
sistencies in data.

DATA REDUCTION can reduce data size by, for instance, aggregating
or clustering.

DATA TRANSFORMATIONS (e.g., normalization) may be applied, where

data are scaled to fall within a smaller range like 0.0 to 1.0.

DATA INTEGRATION merges data from multiple sources into a co-
herent data store such as a data warehouse.

The task of data integration is necessary whenever data is processed
form different sources such as different ITSs and /or mailing list. The
data integration process is described whenever data is extracted from
more than one source. However, in this thesis the term preprocessing
is not used for data integration, since the data integration part does
not influence the experiment results as much as other preprocessing
techniques. The preprocessing steps that have the highest impact on
the experiments are data cleaning and data reduction®. Hence prepro-
cessing will be used as follows.

DEFINITION: PREPROCESSING

Preprocessing is the uniform transformation of all documents in
a corpus to remove noise (clean the data) or to reduce the overall
amount of data.

DEFINITION: NOISE

Noise is any unwanted data within a corpus with respect to a par-
ticular data processing task.

Intentionally, this definition does not denominate “unwanted” as it
depends on the data processing task. For example in Part v non-NL
artifacts are removed in a preprocessing step. However, this does not
always have positive impacts on the results and thus non-NL artifacts
are cannot be considered noise per se.

Data transformation is an important step since IR and ML algorithms usually work
with numerical data. However, this transformation is handled implicitly by the ap-
plied approaches and will not be elaborated.
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3.2 PREPROCESSING TECHNIQUES

The following preprocessing techniques are suggested by text books
(Feldman and Sanger, 2006, pp. 57; Han, Kamber, and Pei, 2012, pp.
84; Manning and Schiitze, 1999, pp. 124; Witten, Frank, and Hall, 2011,
pp- 349) as well as by related tool documentation (Bird, Klein, and
Loper, 2009, pp. 87; Cunningham et al., 2016, pp. 119) and are intro-
duced in order of their usual processing sequence.

LEXICAL ANALYSIS AND LOWERCASING To make text computer
processable, the first step is to divide the text into smaller units called
tokens. This process is known as lexical analysis or tokenization. A
token can either be a word, a sentence, a punctuation sign, a number,
or any unit of text. In the following sentence and word segmentation
are distinguished. It is, however, notable that “the question of what
counts as a word [or a sentence] is a vexed one in linguistics, and
often linguists end up suggesting that there are words [or sentences]
at various levels [...] which need not to be the same” (Manning and
Schiitze, 1999, p. 125). In contrast to tokenization, lowercasing is a
simple process. It equalizes different words by converting every char-
acter to lowercase.

Example text before tokenization:

This is an example for text preprocessing.

It is very basic. See http://www.nltk.org for implementations.
Example sentences after sentence tokenization:

This is an example for text preprocessing.

It is very basic. See http://www.nltk.org for implementations.

Example sentences after word tokenization and lowercasing;:
this is an example for text preprocessing . \n

It is very basic. . see http://www.nltk.org for

implementations

Figure 3.1: Sentence and Word Tokenization Examples.

Figure 3.1 shows an example for sentence and word tokenization
and lowercasing, as it is applied in the experiments in Parts iv and v.
Sentence tokenization delimits text in sentences whenever it finds
dots followed by a whitespace character, dots followed by a line break,
or multiple line breaks. Word tokenization creates a new token at ev-
ery occurrence of whitespace. It also separates interpunctuation char-
acters followed by a whitespace character (colored O in Figure 3.1).
This way information such as an Uniform Resource Locator (URL) is
preserved as one token, but other interpunctuation is separated. On
the contrary, this procedure has the disadvantage that sentences or
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words separated by interpunctuation without a whitespace character
are not divided correctly3. The latter exemplifies the statement of a
“vexed question” by Manning and Schiitze.

GRAMMATICAL TAGGING AND PARSING Grammatical Tagging,
also called part of speech tagging, is the process of determining which
grammatical form a token has. Usually the grammatical form of each
word in a sentence is represented by the annotation system of the
Penn Treebank Project (Santorini, 1990). Penn Treebank tags are a
two or three letter encodings, each of which represents a grammat-
ical form. Many different techniques for grammatical tagging exist.
Basic techniques use a rules or a grammar to determine the gram-
matical form of a word (Brill, 1992). More advanced techniques use
knowledge derived from statistical models*. One of the most popular
approaches is the Stanford Tagger (Toutanova et al., 2003).

This is an example for text preprocessing
Opr Ovez Opr ONN O ONN ONN

DT = Determiner; VBZ = Verb, third person singular present

NN = Noun, singular or mass; IN = Preposition or subordinating conjunction

Figure 3.2: Grammatical Tagging Example.

The approach by Chen and Manning, 2014 detects the references be-
tween words in addition to grammatical tagging. This is called gram-
matical parsing. Besides an implementation of the approach itself,
Chen and Manning provide a trained instance of this implementa-
tion, that can be used on English texts. The output of this trained
instance is shown in Figure 3.3. Both the implementation and the
trained instance are utilized in this thesis.

STEMMING AND LEMMATIZATION Stemming as well as lemmati-
zation are techniques to reduce words to a common form. Stemming
reduces words to their word stem (Hull, 1996): e.g. the words “de-
veloper”, “developing”, and “development” are all reduced to “de-
velop”. Although stemming is appropriate to equalize most word
forms in the English language, it cannot equalize all forms. E.g. the
words “be”, “was” and “were” do not have the same stem although
they originate from the irregular verb “to be”. Lemmatization em-
ploys various techniques to find the infinitive form of a verb (Hausser,

1999, pp- 258). However, in this thesis stemming is applied as (1) the

3 More advanced tokenization methods use statistical models, e.g. NLTK’s Punkt Sen-
tence Tokenizer (see http://www.nltk.org). However, such techniques need to be
trained on a large number of similar documents to work efficiently.

4 E.g. by Hidden Markow Models, Maximum Entropy or Conditional Markow Models,
Chapter 5 describes the operating mode of such statistical models in more detail.
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nmod
cop
This is an example for text preprocessing
det compound
nsubj case
case The case relation is used for any preposition in English.

compound  The compound relation is used for noun compounds.

cop A copula is the relation between the complement of a copular
verb and the copular verb. Copular heads are avoided when
possible.

det A determiner is the relation between the head of an noun

phrase and its determiner.

nmod The nmod relation is used for nominal modifiers of nouns or
clausal predicates.

nsubj The nsubj relation is used for a nominal subject. This is a noun
phrase which is the syntactic subject of a clause.

Abbreviations and descriptions as in Nivre et al., 2015.

Figure 3.3: Grammatical Parsing Example.

computational overhead of lemmatization techniques is significant
and (2) different times are seldom used in SFRs (Merten et al., 2015).
In this thesis a slightly enhanced implementation of the Porter algo-
rithm (Porter, 1980) is used as provided by the NLTK (Bird, Klein, and
Loper, 2009). After stemming the example from Figure 3.1 yields

this is an exampl for text preprocessing. it is veri basic. see
http:/ /www.nltk.org for detail.

STOP WORD REMOVAL According to Feldman and Sanger, 2006, p.
68 stopwords are “the function words and in general the common
words of the language that usually do not contribute to the semantics
of the documents and have no real added value”. However, there is
no definition or agreed upon list of English stop words. Hence, the
stopword list from the Natural Language Toolkit (NLTK) (Bird, Klein,
and Loper, 2009) is employed in this thesis as it has proven service-
able in many applications. After stopword removal the example from
Figure 3.1 yields

example text preprocessing. basic. See http://www.nltk.org
implementations.>

As stop word removal destroys the sentence structure, it is important not to apply
stop word removal before grammatical tagging or parsing.
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GENERAL CLEANUP In addition to the techniques presented above,
other cleanup tasks are often applied. For example hyperlinks or
other non-NL artifacts can be removed, as they are often considered
noise. Words that are expressed in CamelCase or named according to
the under_score convention are often separated in the context of ITS
data (Borg, Runeson, and Ardo, 2014). Finally, issues often contain
a mix of technical data like source code, log files, and stack traces
and NL. Chapter 14 presents a preprocessing technique to separate NL
from technical information. The details of cleanup tasks are described
whenever they were applied in this thesis. In general, preprocessing
tasks largely depend on the input corpora and the data processing
tasks and can therefore not be considered beneficial per se. Hence
most experiments in this thesis are conducted with different prepro-
cessing techniques to show the influence of the techniques on the data
processing task. Finally, multiple preprocessing techniques are often
concatenated in order to improve the data or reduce the dataset. E.g.
Gervasi and Zowghi, 2014 consider only nouns, adjectives, adverbs,
and verbs after grammatical tagging for further processing in their
experiment.
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The goal of IR is “to retrieve all the documents that are relevant
to a user query while retrieving as few non-relevant documents as
possible” (Baeza-Yates and Ribeiro-Neto, 2011, p. 4). Usually this is
achieved by computing the textual similarity of a query q to a docu-
ment d in the corpus:

similarity(q, d) — R, with R = {r e R0 < v < 1}. (4.1)

If, however, q is replaced by another document d’ IR techniques com-
pute the similarity between the two documents d and d’, which is the
way IR is applied in this thesis.

4.1 DEFINITIONS
4.1.1  Term Frequencies

DEFINITION: TERM FREQUENCY

If wis a word and d is a document, then the number of occurrences
of win d is

TermFreq(w, d), (4-2)

or the term frequency of w in d.

To normalize the term frequency within a corpus, the Term Frequency
- Inverse Document Frequency (TF-IDF) can be computed.

DEFINITION: TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

TE-IDF is defined as

n
TF-IDF(w, d) = TermFreq(w, d) - 109(W), (4.3)

where n is the number of documents and DocFreq(w) the number
of documents that contain the word w.
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4.1.2  Traceability Matrix

A link between two software artifacts® is also called a trace link. Trace-
ability is the field of creating and maintaining such trace links. Usu-
ally one differentiates between horizontal and vertical traceability
(Pohl, 2010) as well as pre- and post-traceability (Gotel and Finkel-
stein, 1994). In this thesis the focus is on horizontal and vertical post-
traceability: e.g. the trace links between different issues (horizontal
post-traceability) during all SE phases (vertical post-traceability) with-
out focusing on why and by whom these issues were created (pre-
traceability).

I5 v -

Table 4.1: Example Traceability Matrix.

Trace links between issues can be expressed in a so called traceabil-
ity matrix. A traceability matrix represents all trace links between a
set of issues. Table 4.1 shows an example for a traceability matrix. It
is read from column to rows and shows trace links from issue 17 to
I4, Ir to I, and I3 to I5. The matrix in Table 4.1 is directed (from
issue I, to Iy, but not necessarily from Iy, to I4). An undirected trace-
ability matrix is simply mirrored at its diagonal (indicated by “-” in
Table 4.1).

4.1.3  Trace Retrieval

Whenever trace links are not created explicitly, it is often desired to
retrieve trace links automatically or semi-automatically from given
artifacts. This process is called trace retrieval®. In the context of this
thesis, automatically retrieved trace links by IR algorithms without
human intervention are considered3. Trace retrieval is defined as fol-
lows.

A “software artifact is any piece of information, a final or intermediate work product,
which is produced and maintained during software development” (Kruchten, 2003).
Sometimes referred to as trace recovery.

However, other approaches exist, e.g. to find duplicate crash reports (Dang et al.,
2012). Such approaches make use of specific structured data, which is not present in
the context of the researched projects.
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DEFINITION: TRACE RETRIEVAL

Trace retrieval is the automatic generation of trace links between
issues.

4.2 INFORMATION RETRIEVAL TECHNIQUES

Equation 4.1 on page 29 can be used to retrieve trace links when
combined with a threshold: if I is the set of all issues, the similarity
(S) of two issues is computed by

similarity: Ix I — R, with R= {r e RI0 < r < 1}. (4.4)

A trace link has only two states: it is either present or it is not. In
contrast, S is a real number. Hence, a trace link is created only if
the similarity exceeds a certain threshold t, so that trace; : I x1 —
{true, false} with

true :similarity(i,i’) >t

tracey(i,i') = (4.5)

false :similarity(i,i’) <t

defines whether a trace between issue i and i’ exists. A traceability
matrix of size |I| x [I| with elements a;; = trace((i,j) can now be
created by computing the similarity between all issues in the corpus.
For a corpus with n issues this is computed in O(n?). The threshold t,
is usually derived empirically by comparing the results of trace; with
different t to a ground truth.

As IR algorithms compute the text similarity between documents,
spelling errors, hastily written notes that leave out information, or
noise have a negative impact on the algorithm performance. In addi-
tion, the performance is influenced by source code as well as stack
traces, which often contain a considerable amount of the same terms
(e.g. Java package names). Therefore, an algorithm might compute a
high similarity between two issues that refer to different topics if they
both contain a similar stack trace.

In this thesis the following IR algorithms were used to calculate a
traceability using Equation 4.5 with different thresholds t:

VECTOR SPACE MODEL (vsM) The VSM maps the tokens of a doc-
ument to vectors. By using a distance metric such as TF-IDF, the sim-
ilarity of two document can be computed. One of the main prob-
lems in VSM is exactly this dependency on each term and each term’s
spelling. For example VSM does not consider synonyms in its compu-
tation. Therefore, the VSM approach may compute a high similarity
between issues with equal terms that may have different meanings
due to their context (Salton, Wong, and Yang, 1975).
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LATENT SEMANTIC ANALYSIS (LsA) The LSA copes with the men-
tioned problems of VSM. Instead of computing S between terms, LSA
computes S between concepts of documents. Concepts are an abstrac-
tion of multiple terms and represent the “topics” of a document. LSA
creates those concepts using singular value decomposition (Baeza-
Yates and Ribeiro-Neto, 2011, p. 101) which also reduces the search
space. In this thesis LSA is applied using the cosine measure as a dis-
tance measure (Furnas et al., 1988).

OKAPI BEST MATCH 25 (BM25) In contrast to the above, BM25 is
a probabilistic approach to calculate S. It relies on the assumption
that an ideal set of related documents can be found and computes
the probability of each other document to be in this set. The BMz25
extensions BM25L. and BM25+ both try to compensate problematic
behavior of BM25 on long documents (Lv and Zhai, 2011b). In this
thesis the acronym BMz5 is used for all three algorithms: the original
BMz25 (Robertson et al., 1992) as well as its variants BM25L (Lv and
Zhai, 2011b), and BM25+ (Lv and Zhai, 2011a).

In summary all approaches depend on the following properties of
an issue 1 in the corpus of issues I:

e the actual terms in i compared to another issue i/,
¢ the number of terms (term frequency) in i, and

* the number of terms in i that and how often they occur in I
(TE-IDF).

These properties are influenced by text preprocessing (as presented
in Section 3.2) and due to this influence it cannot be determined how
well algorithms perform on a certain corpus without experimenting.
However, BMz;5 is often used as a baseline to evaluate the performance
of new algorithms for classic IR applications such as search engines
(Baeza-Yates and Ribeiro-Neto, 2011, p. 107). More information and
details on algorithms, their advantages, and their disadvantages can
be found in the IR literature (Baeza-Yates and Ribeiro-Neto, 2011;
Manning, Raghavan, and Schiitze, 2008).
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In general “data mining is the process of discovering interesting pat-
terns and knowledge from large amounts of data” (Han, Kamber, and
Pei, 2012, p. 8). Implicitly, this statement assumes that those large
amounts of data are structured, e.g. in data bases or data warehouses.
In the context of this thesis the discovery of patterns that represent
an SFRs is of interest. In ITSs SFRs are described using NL and the only
structured information can be found in the ITS metadata. Hence, the
ITS metadata alone is not sufficient to discover patterns that represent
an SFR. Instead the ITS data fields need to be considered to search for
patterns, which is where text mining comes into play. “In a manner
analogous to data mining, text mining seeks to extract useful infor-
mation [...]. In the case of text mining, however, the data sources
are document collections, and interesting patterns are found [...] in
the unstructured textual data in the documents in these collections”
(Feldman and Sanger, 2006, p.1).

The border between data and text mining is very thin. In this thesis
text mining is applied in general, but the ITS meta data is considered
too, shifting towards the more general area of data mining. However,
data mining and text mining share the same workflow (Feldman and
Sanger, 2006; Han, Kamber, and Pei, 2012, cf.):

* Data needs to be integrated and selected (e.g. where to look for
patterns).

* Data needs to be cleaned (e.g. data preprocessing).

 Patterns need to be found (e.g. the actual process of data or text
mining).

¢ Results need to be represented.

5.1 DEFINITIONS

In terms of the application of data- and text mining, this thesis is
about data classification. To be exact, a piece of data (e.g. an ITS data
field) is classified whether is represents an SFR or not. Such a clas-
sification is implemented by supervised ML algorithms in both data
and text mining. Supervised means that the ML algorithm needs to
learn before it can be applied (Han, Kamber, and Pei, 2012; Witten,
Frank, and Hall, 2011). Similar to human learning, a ML algorithm
learns from examples (also called the training data), but in contrast
to human intuition an ML algorithm calculates a statistical model that
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classifies a piece of data. This statistical model is also called a predic-
tion model, or simply ‘model” in Data Mining (DM) literature (Han,
Kamber, and Pei, 2012; Witten, Frank, and Hall, 2011).

DEFINITION: MACHINE LEARNING ALGORITHM

A ML algorithm refers to the implementation of a supervised method
to generate a prediction model for classification.

DEFINITION: CLASS

A class is a category that should be predicted by an ML algorithm,
e.g. whether an issue is a “Feature” or “Bug”.

DEFINITION: TRAINING DATA

Training data are the example documents in a corpus T € C that
are used to train an ML algorithm.

DEFINITION: TEST DATA

Test data are all other documents d € C,d ¢ T that are used to
evaluate an ML model.

DEFINITION: CLASSIFIER / MODEL

A classifier, also known as a prediction model, ML model, or sim-
ply model is a synonym for the statistical prediction model that is
generated by training an ML algorithm. In other words a classifier
is a trained ML algorithm that can assign classes to documents.

DEFINITION: MACHINE LEARNING FEATURE

An MLF is a property derived from the ITS meta-data or the NL text
in an ITS data field that is used for ML.

In general, a prediction model is more precise, the more training data
is provided. In addition to the amount of training data, the selection
of appropriate MLFs' is very important (Domingos, 2012; Guyon and
Elisseeff, 2003). For example, an ML algorithm can be trained to pre-
dict whether an issue should be classified as feature or bug using all
the words that occur in the issue as MLF. In this case feature and bug are
the classes and all the words that occur in the issue is the MLF. This par-

In ML objects are usually represented with n-dimensional vectors of numerical val-
ues, called feature vectors. A single value within these feature vectors is called a
feature. Since this thesis heavily relies on the distinction of Software Feature (SF)
and Machine Learning Feature (MLF) the term MLF is used for Machine Learning
Feature (MLF).
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ticular MLF is also called Bag of Words (BOW)*>. Now assume that the
ML algorithm from the example above is not trained with the BOW,
but with the number of comments of each issue. It would be difficult
for the ML algorithm to compute a precise prediction model (unless
every bug issue has more comments than a feature issue or vice versa).
However, the combination of both BOW and number of comments
may improve the results.

In the above examples two types of MLFs are discussed. Namely,
binary and ordinal MLFs. The BOW is a binary MLF as a word has
only two states: It can be present in the bag or not. The number of
comments of an issue is an ordinal MLF as the number is represented
within an ordered series (i.e. the number of comments). Finally, there
are nominal features with no inherent order or sequence. An example
for the latter is the issue type. An issue type can be bug, feature, or
refactoring but the order is undefined. Nominal features can be trans-
formed into binary or ordinal features by discretization. For example
one can divide the number of comments in an issue in three classes:
issues with short, medium, or long discussions. The classifiers used
in this thesis are trained with binary and ordinal features, only. Ac-
cordingly, discretization is applied to nominal features.

5.2 TEXT AND DATA MINING TECHNIQUES

Different algorithms can be employed for classification tasks. In this
thesis the following seven algorithms are used to detect SFRs, being
among the most heavily used algorithms in classification tasks (Han,
Kamber, and Pei, 2012; Pedregosa et al., 2011; Witten, Frank, and Hall,
2011):

NAIVE BAYES CLASSIFIER (NB) Studies that compare classification
algorithms have found the naive bayes classifier to be compara-
ble in performance with most of the classifiers described next
as well as selected neural network classifiers (Han, Kamber, and
Pei, 2012, p. 350). Also, Bayesian classifiers are known to be ac-
curately and fast when applied to large databases. NB is tradi-
tionally used to distinguish desired emails from spam emails.

MULTINOMIAL NAIVE BAYES CLASSIFIER (MNB) MNB is, similar to
NB, very popular for text classification tasks, especially to learn
models based on the frequencies of words (Witten, Frank, and
Hall, 2011, p. 97).

LINEAR SUPPORT VECTOR CLASSIFIER (svM) Linear support vec-
tor classifiers, also called SVMs, are known to be highly accurate.
In contrast to the above, SVM select boundary instances of each

2 More MLFs are introduced in Chapter 15.
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class called support vectors. Then they build a linear discrim-
inant function that separates those support vectors and transi-
tively the classes. As SVMs are often used with higher-ordered
MLF sets, this function is usually a hyperplane in an appropriate
space. Hence training an SVM is usually processing intensive.

LOGISTIC REGRESSION (LR) The LR model is used in many text clas-
sification tasks, too. LR is a modified regression technique so
that it can better be applied to classification tasks and produces
a proper output for the classified instances to either belong to
the class (1) or not (0). Usually regression techniques deliver
continuous values3. However, as LR needs to perform probabil-
ity estimations to predict the class labels, it is an computation-
ally intense approach.

STOCHASTIC GRADIENT DESCENT (SGD) The SGD learner uses a lin-
ear model to classify. SGD has been around in the ML community
for quite a while, but it had a revival in 2004 when it was used
for large scale classification tasks (Zhang, 2004). As text clas-
sification with many different words can become a large scale
problem rather quickly, SGD is very popular for text classifica-
tion, too.

DECISION TREE (DT) The DT can be defined as “a flowchart-like tree
structure, where each internal node (non-leaf node) denotes a
test on an attribute, each branch represents an outcome of the
test, and each leaf node (or terminal node) holds a class label.”
(Han, Kamber, and Pei, 2012, p. 330) Hence the classification de-
cisions made by a DT are comprehensible and, most importantly,
traceable. This makes DTs very popular in classification tasks.

RANDOM FOREST (RF) The RF classifier learns multiple DTs from ran-
domized sub-samples of the dataset and averages* the results.

In all experiments the default settings for the above classifiers, as pro-
vided by the NLTK (Bird, Klein, and Loper, 2009) and the Scikit-learn
(Pedregosa et al., 2011) Application Programming Interfaces (APIs),
are used. More details on ML algorithms can be found in Bird, Klein,
and Loper, 2009; Bishop, 2009; Han, Kamber, and Pei, 2012; Witten,
Frank, and Hall, 2011.

5.3 MACHINE LEARNING TECHNIQUES AND ITS DATA

Issues contain data fields, data fields contain NL text, and NL text
is composed of sentences’>. Hence, the detection of SFRs can be ap-

Witten, Frank, and Hall, 2011, pp. 125 give a detailed explanation of the advantages
and disadvantages of using regression techniques in classification tasks.

4 Some RF implementations use another DT for their final decision.

5

Sentence is used as synonym for phrases, bullet points, and so on.
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proached on different levels of detail. Detection on issue level reveals,
whether the issue contains at least one SFR. Detection on data field level
reveals, whether the title, the description, or a certain comment to
the issue contains at least one SFs. Detection on sentence level reveals,
whether a certain sentence in the NL describes an SFR. In figures and
tables, these levels will be referred to as I, DF, and Se.

The level of detail influences the SFR detection rate. In general
terms, the higher the level of detail, the harder is a detection due
to the following circumstances:

* On a lower level, more MLFs can be employed to train the model.
E.g. on issue level, the words in the title, description and com-
ments can be used to create the BOW MLEF. In contrast, on sen-
tence level only the words of that sentence form the BOW.

* More objects need to be classified on a higher level with the
same amount of training data. E.g. if a dataset includes > 200
SFR annotations. These are used for a detection within a low
number of issues and a high number of sentences, respectively®.

For every level, some MLFs can be derived directly (e.g. issue meta-
data MLFs on issue level) without the need for further transformation.
To gather the MLFs from other levels, the concepts of inheritance and
aggregation are employed. E.g. if the detection is done on sentence
level, every sentence can inherit the meta-data MLFs from the com-
prising data field and issue. If the detection is done on issue level,
every issue accumulates the MLFs from its embedded data fields and,
transitively, the MLFs derived from their textual contents. On data
field level both concepts are used. This allows to compare the same
combinations of MLFs on different levels and thus to evaluate which
detection level yields the best results.

6 E.g. 599 issues compared to 11149 sentences in the evaluation in Chapter 15.
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For IR and classification tasks the performance of an approach needs
to be evaluated. In IR the goal is to measure whether relevant docu-
ments were retrieved and in classification the task is to evaluate how
good the classification is done.

For both tasks the measures of precision and recall can be used.
However, the exact definition of those measures depends on their
context of use. This leads to slightly different definitions in IR and
ML.

6.1 PRECISION AND RECALL IN INFORMATION RETRIEVAL

In IR, automated approaches are evaluated with respect to a ground
truth, which often needs to be created manually. In the context of
trace retrieval, automated approaches create a trace matrix. The re-
sults are evaluated with respect to a reference trace matrix. Recall (R)
measures the retrieved relevant links and Precision (P) the correctly
retrieved links:

Recall — Correct Links N Retrieved Links 6.1)
ccall = Correct Links ’

Precision — Correct Links N Retrieved Links 6.2)
easion = Retrieved Links '

Huffman Hayes, Dekhtyar, and Sundaram, 2006 define acceptable, good
and excellent P and R ranges for the task of trace retrieval as shown in
Table 6.1.

ACCEPTABLE GOOD EXCELLENT
0.6 <R<07 07<R<038 R>0.38
02<P<03 03<P<04 P>04

Table 6.1: Trace Retrieval Evaluation Measures as in Huffman Hayes, Dekht-
yar, and Sundaram, 2006.

6.2 PRECISION AND RECALL IN CLASSIFICATION

As in IR, ML performance is typically measured by comparing the
results of a classifier to a manually created ground truth.
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In the case of SFR detection the algorithm determines whether a
piece of data (e.g. an ITS data field) corresponds a class or not (e.g.
either the 1TS data field contains an SFR or not). Such a classification
can either be correct or not. Thus, classification results end up in four
different measures of relevance:

1. The piece of data is correctly classified to belong to the class. It
is a True Positive (TP).

2. The piece of data is correctly identified not to belong to the class.
It is True Negative (TN).

3. The piece of data is wrongly classified to belong to the class. It
is a False Positive (FP).

4. The piece of data is wrongly identified not to belong to the class.
It is a False Negative (FN).

Based on these four measures of relevance, R and P are defined as:

Recall — True Positives 6.3)
~ True Positives + False Negatives 3

Precision — True Positives (6.4)
~ True Positives + False Positives 4

In simple terms, it can be summarized that R measures how many
relevant SFRs are found and P measures how many relevant SFRs are
found correctly in the context of SFR detection.

6.3 THE F MEASURE

The following problem is inherent to the precision and recall mea-
sures: R can be maximized by retrieving all documents in IR or by
classifying all documents as the desired class in ML. This results in
a low P in both cases. On the other hand P can be maximized by re-
trieving only one correct document in IR or by classifying only one
document correctly in ML, which results in a low R in both cases. This
problem is picked up by the Fg-Measure, as the harmonic mean of P
and R. The Fg-Measure balances P and R so that both, a low precision
or a low recall, results in a lower Fg-Measure. The 3 weights preci-
sion and recall, where 3 < 1 favors precision and 3 > 1 favors recall.
Hence a general range of good or bad Fg-Measures cannot be given
and depends largely on the use case’.

1 The importance of recall in favor of precision is discussed in the next section.
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In the thesis P, R and the F; and F, measures are reported. The F;
measure balances P and R equally and the F, measure gives a higher
emphasis on recall.

2
(1+B7) x P xR where[%zzﬂ (6.5)

(B2 xP)+R ~’ o

Fp =

with & € [0, 1] and thus B € [0, o] (adapted from Manning, Raghavan,
and Schiitze, 2008, p. 156).

6.4 THE MAXRP MEASURE

In addition to the above another measure is defined for this thesis.

DEFINITION: MAXRP MEASURE

MAX(R), P>p, with0 < p <1 (6.6)

is the best achievable recall with a precision higher than p%.

It is often desired to maximize recall in favor of precision as argued
e.g. by Berry et al., 2012. The MAX(R), P>, measure satisfies this by
defining the minimum viable precision to be at least p and measures
the best achievable recall, which should ideally be close to 1.

The following example illustrates the break even point of the pre-
cision in the MAX(R), P>, measure with respect to manual classifica-
tion. It uses a dataset size as in the related study in Chapter 15: with
76 true positives in a dataset, a MAX(R), P> .05 yields 76 x 20 = 1,444
hits assuming the worst allowed precision of 5%. This implies that
1,444 —76 = 1,364 false positives have to be winnowed manually, to
correctly identify the true positives excluding any false positives. Or
differently put: this is the same as boosting the precision to 1 manu-
ally. The additional manual work is amortized, as soon as the number
of objects to be classified is > 1,364 for 76 true positives.

In the dataset in Chapter 15 this is the case on the data field level,
which consists of 599 titles +-599 descriptions 43519 comments = 4717
data fields, or on the sentence level, which consists of 11149 sentences,
but not on the issue level, which consists of 599 issues. MAX(R), P,
will be reported for p = 0.05 on the sentence and data field levels, and
p = 0.2 on the issue level. With these settings for p sound values for
R can be achieved in Chapter 15. If p, is e.g. doubled (p € {10,20}),
the results for R become significantly worse.
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Part III

GENERAL STUDY SETUP

In this part the overall study setup is described. First, the
data used in the experiments and how it was acquired is
explained. Then the overall research methodology used in
all experiments is presented. Finally, the tools and soft-

ware support that represent the foundation of the experi-
ments are introduced.
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RESEARCH METHODOLOGY

To select a research method the types of RQs should be understood
(Easterbrook et al., 2008). At this point the overall RQs for this thesis
as stated in Section 1.3 are revised by their type to identify appro-
priate research methods. According to Easterbrook et al., 2008 those
research questions can be categorized as follows:

RQ1 is a mixture of an existence questions of the form, “Does X ex-
ist?” as well as an descriptive-comparative questions of the form,
“How does X differ from Y?”:

What information about SFs can be found in an ITS of a software prod-
uct, and how well is this information suited to derive a feature repre-
sentation of the software?

RQ2 is an description and classification questions such as, “What is
X like?”:
How is NL information categorized, described, and distributed in an

ITS?

RQ3 is a design questions of the form, “What is an effective way to
achieve X?”:

Can SFs descriptions be detected automatically in ITS NL data?

RQ4 is a mixture of a causality question of the form, “What effect
does X have on Y?” and a design question™:
Do trace retrieval algorithms perform effectively on ITS data?

All of these questions can be investigated using case study research.
It has often been argued that case studies are a dominant and effec-
tive tool in software engineering research (Demeyer, 2011). A case
study is defined as “an empirical inquiry that investigates a contem-
porary phenomenon within its real-life context, especially when the
boundaries between the phenomenon and context are not clearly ev-
ident” (Yin, 2013, p. 13). Research distinguishes between exploratory
and confirmatory case studies where the former is an initial investi-
gation of some phenomena to derive new hypotheses, and the latter
is used to test existing theories (Easterbrook et al., 2008; Kitchenham
et al., 2002; Wohlin et al., 2012). Wieringa, 2014 too stresses that there
are two types of research problems in his work on design science.
He names these problems knowledge problems and design problems
respectively.

In addition to an empirical evaluation of existing IR methods on issues, improve-
ments (e.g. new designs) to these methods are evaluated.
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In this thesis five studies are presented. Two of these studies, pre-
sented in Part iv, are exploratory case studies that will be referred
to as investigation studies as they investigate different parts of the SFR
detection problem. In Part v ITSoFD, a solution design for SF detection,
is presented and then validated in three studies. These studies will
be referred to as solution studies. In summary this thesis distinguishes
between:

INVESTIGATION STUDIES Investigation studies manually investigate
the data and derive an answer to predefined RQs. These studies
are implemented in the thesis as empirical case studies on writ-
ten artifacts of OSS SE projects. The thesis contains two investi-
gation studies in Chapters 10 and 11.

SOLUTION STUDIES Solution studies implement and validate a so-
lution that fits a previously defined goal (e.g. a design). In this
thesis designs are automated approaches that solve problems
on OSS ITS data and every design is validated by measuring the
automatically created results with respect to a manually created
ground truth. The thesis evaluates the three main components
of the ITSoFD solution design, which is described in Chapter 13
and in the three solution studies in Chapters 14, 15, and 16.

As for any empirical research, the work presented in this thesis
has limitations to its internal and external validity. Although known
threats were considered and mitigated throughout the experiments,
a perfect validity can never be guaranteed. Threats to validity are
discussed as proposed by Runeson and Host, 2009, Wohlin et al., 2012,
or Yin, 2013:

CONSTRUCT VALIDITY Construct validity discusses whether used
measurements reflect, whatever is investigated in the RQs. In
solution studies for example, the F; Score can be used to mea-
sure experiment results. It might, however, be more appropriate
to discuss the results with another measure that better reflects
the actual impact on the SE task (Berry et al., 2012).

INTERNAL VALIDITY Internal validity discusses whether different
assumptions have been made between the individuals involved
in the study. An important example for this thesis is that when-
ever a ground truth is manually created, humans tend to in-
terpret the data differently or can simply make errors during
creation.

EXTERNAL VALIDITY External validity discusses to what extent re-
sults can be generalized or applied to another case. Even though
a single case study usually cannot draw a sample that is statis-
tically representative, “the intention is to enable analytical gen-
eralization where the results are extended to cases which have
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common characteristics and hence for which the findings are
relevant, i.e. defining a theory.” (Runeson and Host, 2009)

RELIABILITY Reliability discusses whether the study can be repli-
cated reliably, e.g. with the same results.

Whenever threats of validity are discussed in Parts iv and v, the focus
is on internal and external validity. Concerning the internal validity,
there is always the risk of human errors when data is coded (e.g. an-
notated, or labeled). If such errors lead to a wrong ground truth of
the experiment, results are rendered essentially worthless. Concern-
ing the external validity, experiments can almost never be generalized
without limitations. It is discussed to what extend experiments can be
applied to other data or different areas and which constraints need to
be considered.

Construct validity is addressed using the standard measures applied
in the field in every experiment of this thesis. However, even those
standard measures are criticized (Berry et al., 2012), and their appli-
cability is discussed wherever appropriate. To ensure Reliablility, the
data that is considered ground truth, the source code, and the results
are distributed along with this thesis. It can be downloaded via the
following DOI from heiDATA Dataverse Network3:

http://dx.doi.org/10.11588/data/10089.

2 Especially for the solution studies in Section 15.4 and Section 16.4.
3 http://heidata.uni-heidelberg.de/dvn.
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DATA ACQUISITION

The data for the studies described in Parts iv and v was acquired
from ITSs and mailing list archives of 0SS projects. This kind of data
is freely available, archived, and accessible. Usually large volumes of
data and communication activities are stored in ITSs if people work
in a distributed manner (Fitzgerald, Letier, and Finkelstein, 2012),
which is the case in most 0SS projects. Furthermore, ITSs and mail-
ing lists foster communication between project members as well as
users in distributed OSS projects (Bertram, 2009; Ernst and Murphy,
2012). Thus little offline communication takes place, which in turn
allows to sample comprehensive datasets.

8.1 RESEARCHED PROJECTS

C:GEO c:geo is an Android application that supports playing the
real world treasure hunting game geocaching. Users of g:geo use the
app to search for the location of geocaches, e.g. “small treasures”, that
are revealed by finding the correct geographic coordinates. c:geo has
between 1,000,000 and 5, 000, 000 million downloads according to the
Google Play Store, which indicates that it is widely used.

LIGHTTPD lighttpd is a lightweight from server that promises a
small memory footprint compared to other HTTP server implemen-
tations. In general users of lighttpd configure the product so that is
can serve dynamically generated web pages for their environment.
lighttpd is packaged with all major Linux and Unix distributions,
which indicates that it is widely used.

MIXxX Mixxx is a music player intended to be used by disk jockeys.
Users of Mixxx play sequences of musical tracks that are typically
mixed together in a way that they appear to be one continuous track.
Although Mixxx is intended for a very specific user group, it is starred
over 500 times and forked over 300 times on GitHub, which indicates
a wide user and developer range.

oFB1z Apache OFBiz (Apache Open For Business) is a software
product to automate enterprise processes. It integrates enterprise re-
source planning, customer relationship management, supply chain
management and other business applications. Users of OFBiz auto-
mate various parts of their enterprise processes, typically by config-
uring OFBiz to reflect their business processes. OFBiz features success
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stories from major companies on its website, which indicates multiple
installations in complex environments.

Due to the size and complexity of OFBiz, only the manufacturing
component is studied in this thesis.

RADIANT Radiantis a modular content management system. Users
of Radiant manage the content of dynamic web pages’, such as blogs,
company profiles, or eCommerce platforms. Radiant is starred over
1,600 times on GitHub, which indicates a large number of installa-
tions and users.

REDMINE Redmine is a project management application and in its
core an ITS. Users of Redmine manage software development projects
and track and discuss SFRs, bugs, or other implementation tasks. Be-
sides this, Redmine features a wiki, a forum, and other additional
components. Redmine is used by major companies as well as other
major 0SS projects such as the Ruby programming language. This and
the fact that Redmine is starred over 2000 times in GitHub indicates
a wide range of installations and users.

OTHER PROJECTS In addition to the above, the evaluation in Chap-
ter 14 is based on issues and archived emails from nine 0SS projects.
The dataset contains issues and emails that mix NL and many dif-
ferent programming languages as well as other technical data. The
details on these projects are not relevant at this point and will be
presented in the according chapter.

partiv, partiv, partiv, partv, partyv,

PROJECT ch.10 ch 11 ch.14 ch. .15 ch 16
c:geo v v v
lighttpd v v v
Radiant v v v v
Redmine 4 v v
Mixxx v

OfBiz v

Other projects v

Table 8.1: Mapping Projects to Studies.

MAPPING PROJECTS TO STUDIES Table 8.1 relates the projects to
the empirical studies described in Part iv and v. A red tickmark (v)
is used if the project is studied to understand the problem of SF de-
tection better and a green tickmark (/) is used if the data of the

1 Served by a web server such as lighttpd.
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project is employed to validate the design of a solution. It can be seen
from Table 8.1 that Mixxx and OfBiz are only used to understand the
problem. Investigating in these projects showed that both projects use
various means to discuss SFs besides the ITS. This in turn makes them
a weak candidate for SFR detection from ITS data.

Finally, the data of the ‘other projects’ is used in one experiment,
only. This experiment is about data preprocessing and a dataset that
consists of a mixture of multiple programming languages and natural
language is necessary for validation and to ensure generalizability.
Such a dataset could not be derived from the other projects.

8.2 PROJECT CHARACTERISTICS

Table 8.2 gives an overview of the characteristics of the projects from
the previous section. These characteristics differ with respect to soft-
ware type, intended audience, programming languages, project size,
as well as the used ITS, to ensure that the sample includes realistic
data from various project types. In addition, projects that use their
ITS very systematically as well as projects that use their ITS in an ad-
hoc fashion are included. It is important to include poorly structured
or unstructured data to test whether our methods and improvements
can be applied to real life ITSs. E.g. it has been shown that searching
in ITSs can be improved if the systems are very well structured (Tran
et al., 2009). However, many real life projects use only the predeter-
mined structure in the ITS and we cannot assume a better structure
when we design our methods.

Besides a broad range of project characteristics, the following ra-
tionals were relevant for selection: c:geo was chosen because the ITS
contains more consumer requests than the other projects. Further-
more the software needs to integrate tightly with Android sensors
on a technical level so that various levels of abstraction are needed to
describe SFRs. lighttpd was chosen because its technical audience in-
cludes much technical data, such as excerpts from configuration files,
in the ITS and SFRs are usually described on a very low abstraction
level. Radiant was chosen because none of its issues are categorized
as SFR or bug and the ITS contains fewer issues than the ITSs of the
other projects. Redmine was chosen because the ITS is assumably used
in a very structured way in comparison to the other projects as it is
itself an ITS. Mixxx was chosen since it employs so called blueprints>.,
which are comparable to traditional requirement artifacts, in addition
to standard issues. Apache OfBiz was chosen because it is rather large
in comparison to the other projects in terms of its code base. Further-
more, OFBiz is often employed in mission critical environments such
as manufacturing. Both factors might impact the ITS usage and how
SFRs are formulated.

2 Offered by the Launchpad ITS: http://www.launchpad.net
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C:GEO LIGHTTPD MIXXX OFBIZ RADIANT REDMINE

Software Type Android app HTTP server DJ SW ERP CMS ITS various
Audience consumer technician consumer consumer consumer developer consumer

developer developer
Programming Java C Java Ruby Ruby various
Language
ITS GitHub Redmine Launchpad Jira GitHub Redmine mostly Jira
ITS Usage ad-hoc structured structured structured ad-hoc structured mixed
Categorizes tagging bug, feature bug, blueprint six classes, i.a. tagging bug, feature, not relevant
Issues by bug and fea- patch

ture

ITS Size 3,850 2,900 2,200 120* 320 19,000 n/a
(in # of issues)
Open Issues 450 500 1,100 20* 50 4,500 n/a
Closed Issues 3,400 2,400 1,100 100* 270 14,500 n/a
Project Size 130,000 41,000 94,117 n/a* 33,000 150, 000 n/a

(in LOC)

* With respect to the manufacturing component.

T Issues and emails from g different projects. Details are presented in Chapter 14.

Table 8.2: Project Characteristics.
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83 CONTENT ANALYSIS AND GOLD STANDARD CREATION

To perform the problem investigation studies, datasets and corpora
need to be understood in order to describe results clearly and to de-
rive statistical data with respect to the projects. To evaluate the so-
lution designs, a gold standard (a ground truth) is necessary. In this
thesis thematic coding (Robson and McCartan, 2015) is applied to
annotate the data for the problem studies and to create the gold stan-
dards. Essentially, thematic coding can be seen as the assignment of
topics to data.

Both, the annotations for the investigation and the ground truth
should be as error free as possible and thus it is often suggested
that at least two people should agree on a coded dataset (Neuendorf,
2002). However, this involves at least twice the work, which is ar-
guably not feasible for every case study. This section describes how
gold standards are developed in the thesis and argues, that the effort
to create a gold standard should be determined according to (1) the
complexity of the task and (2) the type of evaluation for which the
gold standard is used.

For the study in Chapter 10 the ITSs and User Documentation (UD)
of three OSS projects was annotated by two coder, respectively. The
selected issues and the sections of the UD were read and text that
describes or mentions SFs was annotated. During annotation the two
coders synchronized the used labels at the end of every coding, so
that related software features can easily be identified.

For the study in Chapter 11 four annotators coded every sentence
of the drawn issues manually. During this process, every coder devel-
oped his own coding schema. Then the four schemata were consoli-
dated into one large schema and all synonyms were merged. Finally,
consolidated schema was discussed again, to ensure that every coder
was satisfied and all annotations are represented.

For the study in Chapter 14, the gold standard comprises docu-
ments with NL, code, stack traces and log file excerpts. Arguably it
is possible for a trained human experts to distinguish NL from tech-
nical artifacts without the need for another expert to check the gold
standard. Nevertheless, more than 10% of the documents in the gold
standard were checked at random and none of the checks revealed
any error.

For the study in Chapter 15 the gold standard are annotations on
the sentence level on an issue corpus. These annotations were also
used for the problem study in Chapter 11. As the corpus was used
in two studies and the annotation on a sentence level cannot be con-
sidered a simple task, we applied best practices for content annota-
tion (Neuendorf, 2002) to create the gold standard: (1) to generate
a common understanding of the content and the potential annota-
tions, a coding guidebook was created, (2) to validate the common
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understanding, all coders coded a smaller test-corpus of five issues
and discussed the results. During discussion, the coding guidebook
was revised as appropriate, (3) to ensure the common understanding,
two coders annotated each document and the agreement was mea-
sured. (4) Finally, the inter-coder agreement was measured. The four
annotators agreed on average with a Cohens kappa (Cohen, 1960)
of 0.91 on the labels for issue titles and 0.88 on the labels for issue
descriptions, which is a rather high agreement. Due to limitations
in the used annotation tool, the exact kappa for the issue comments
cannot be reported. However, compared to title and description, a
significantly lower agreement was observed in random samples of
comments. Assumably, this happened due to increasing tiredness or
even inadvertence, since annotating up to 50 comments in a single
issue is an arduous task.

For the study in Chapter 16 the gold standard is a manually created
traceability matrix. It has been shown that even professional human
analysts do not achieve perfect results in this task (Cuddeback, Dekht-
yar, and Hayes, 2010). Furthermore, it is often a subjective decision,
whether two issues are actually duplicates or whether they include
related content. Due to the high amount of manual effort necessary
for gold standard creation3, the gold standards for each project in this
experiment are created by a different person. However, it is necessary
that every coder has the same understanding of a trace. To limit the
effects of subjectiveness, the creators first discussed the meanings of
each trace type and agreed upon when a trace should be created.
Then borderline cases were were discussed, whenever a trace was
unclear.

3 (n xn)/2 manual comparisons for n issues.



TOOL SUPPORT

In this section the high level tools and frameworks used to implement
the experiments in Parts iv and v are introduced.

9.1 GENERAL ARCHITECTURE FOR TEXT ENGINEERING

General Architecture for Text Engineering (GATE) (Cunningham et al.,
2016) is used to implement the experiments described in Chapters 14
and 16". GATE is a Java-based LE framework using the pipes and filters
architecture pattern (Hohpe and Woolf, 2003, pp. 70). GATE offers
many features for text processing such as lexical analysis, stemming,
grammatical tagging and so forth. Most features are assembled in
GATE by interfacing to other Java implementations such as the pop-
ular Stanford Parser (Chen and Manning, 2014). This makes GATE a
flexible tool to analyze and exploit text.

S & ik @ &4

G GATE 7 [ 4] & redmine 1.006x.. & redmine | 005x... | & redmine_| 004.x... & redmine_| 001.x... 4% TokenTagger |
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Figure 9.1: Data Annotation with GATE.

For interaction, GATE provides a Graphical User Interface (GUI) that
gives immediate feedback and allows to create text processing pipelines.
In addition, this interface can be used for manual text annotation as
shown in Figure 9.1. In this thesis GATE is used to get a better under-
standing of the data and to create experimental solutions as well as

1 Together with OpenTrace, see Section 9.2.
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to create the annotations for the study in Chapter 11 and the gold
standards for the experiments in Chapters 14 and 15.

Furthermore, GATE provides the ‘GATE embedded” API. Therewith
GATE can be used programmatically without interfering with a GUL
This is especially useful to implement a larger experiment setup in an
reproducible manner. E.g. the final experiment setup in Chapter 16 is
implemented with GATE embedded due to the experiment size.

9.2 THE OPENTRACE WORKBENCH

The OpenTrace workbench (Angius and Witte, 2012) and the Corpus-
Tools, an extension to OpenTrace for easier experiment conduction
(Krdamer, 2014), is used to implement the experiments in Chapter 16.
OpenTrace is a Java-based tool designed for trace retrieval between
NL RAs and includes means to evaluate results with respect to a refer-
ence matrix.

To calculate a traceability matrix OpenTrace utilizes IR implemen-
tations from the Apache Lucene3 project, which provides Java-based
indexing and search technologies. OpenTrace is implemented as an
extension to the GATE framework and it utilizes GATE’s features for
basic text preprocessing and processing tasks, e.g. for lexical analysis
or stemming. For the experiments in this thesis some changes and
enhancements were made to OpenTrace:

1. OpenTrace was refactored to be compatible with the current
GATE version#,

2. OpenTrace was enhanced in order to process ITS data, and
3. OpenTrace was enhanced in order to support different variants

of the BM25 algorithm.

9.3 NATURAL LANGUAGE TOOLKIT AND SCIKIT-LEARN

The Natural Language Toolkit (NLTK) (Bird, Klein, and Loper, 2009)
and the Scikit-learn (Pedregosa et al., 2011) ML tools are used to imple-
ment the experiments presented in Chapter 15°. These Python-based
packages support implementing NLP and ML applications.

Cleland-Huang, Czauderna, and Hayes, 2013 presented another tool to conduct trace
retrieval experiments. This was not used for two reasons: (1) In contrast to Trace-
Lab (Cleland-Huang, Czauderna, and Hayes, 2013) OpenTrace could be put to work
rather quickly and (2) OpenTrace is based on GATE, which the author of this thesis
was already familiar with, thus speeding up the development.
https://lucene.apache.org.

At the time of writing, the current GATE version is 8.1.

Both tools make extensive use of the famous NumPy (http://www.numpy.org) and
SciPy (https://www.scipy.org) packages. However, introducing these packages is
out of the scope of this thesis.


https://lucene.apache.org
http://www.numpy.org
https://www.scipy.org

9.3 NATURAL LANGUAGE TOOLKIT AND SCIKIT-LEARN

NLIK offers a variety of preprocessing methods like stemming, stop-
word-removal, and so on. It includes many language processing algo-
rithms, such as grammatical tagging, n-gram extraction, clustering,
or ML. In addition to its own functionality, NLTK interfaces with other
applications, such as the Stanford Parse (Chen and Manning, 2014) or
Scikit-learn for extended ML functionality.

Scikit-learn includes ML tools for classification, clustering, dimen-
sionality reduction, preprocessing, or regression tasks. In this thesis
Scikit-learn’s ML algorithms® are used for classification tasks.

6 Related ML algorithms are introduced in Section 5.2.

57






Part IV

PROBLEM INVESTIGATION

In this part the problem of software feature detection is
analyzed in depth. First, a study compares software fea-
tures found in an issue tracking system to software fea-
tures from user documentation and to feature lists. The
study proofs that issue tracking systems are a good target
for software feature detection. Thereupon another study
dives deeper into the language used to describe software
feature requests. This study shows how issues are com-
posed and identifies challenges for an automatic software
feature detection. Finally, the outcome of all studies is re-
capitulated and discussed.
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SOFTWARE FEATURES IN ISSUE TRACKING
SYSTEMS - AN EMPIRICAL STUDY

This chapter describes and discusses an empirical study investigating
the first of four RQs defined in Section 1.3:

RQ 1: What information about SFs can be found in an ITS
of a software product, and how well is this information
suited to derive a feature representation of the software?

In other words, this research question investigates whether ITSs are ac-
tually a fruitful source to retrieve SFs. The study compares the ITS to
another source for SFs: the UD. The UD has already been recommended
as a substitute for a Software Requirements Specification (SRS) by
Berry et al., 2004. It has often been argued that good UD should be
complete and that it should contain all important features. Parnas,
2010 stresses the importance of good documentation in SE and argues
that documentation, such as UD, should be developed during soft-
ware design to gain a higher completeness and make the act of docu-
menting less tedious for the software developers. However, it will be
shown in this study that UD is not always as complete or up-to-date
as it should be and especially the transition from one documentation
system to another’ can deteriorate the UD significantly. Thus UD can-
not be seen as a good source for SFs per se.

Additionally, the study investigates different aspects of SFs in ITSs
such as the levels of abstraction that are used to formulate SFs. Parts of
this study were previously published in (Paech, Hiibner, and Merten,
2014).

In the next section the study setup is described and RrQ 1, as stated
above, is refined in three fine grained RQs. Thereafter Section 10.2
presents the results for each RQ split by the studied projects. Sec-
tion 10.3 discusses the treats to validity of the study and Section 10.4
shows related work with respect to the investigation in this chapter.
Finally, Section 10.5 discusses the implications of SF information in
ITSs and UDs for the proposed solution presented and evaluated in
Part v.

10.1 STUDY DESIGN

Case study research is applied, as this is an exploratory study try-
ing to understand real-world phenomena. In particular the ITSs, UD,

In case of this study, the transition from a single document to a documentation wiki
in Apache OFBiz.
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and SF lists of tree OSS software projects are analyzed to answer the
research questions stated in the next section.

10.1.1  Research Questions

The main question stated in the beginning of this chapter is refined
in the following three research questions:

RQ 1.1 What feature information can manually be derived from the
ITS and the UD?

RQ 1.2 What are the commonalities and differences of feature infor-
mation from UD and ITS and how well does the information fit
to the feature list provided by the developers themselves?

RQ 1.3 How could this information be derived semi-automatically?

RQ 1.1 and RQ 1.2 try to understand whether the ITS is a good source
for SFs compared to another promising candidate, the UD. In prospect
of Part v, RQ 1.3 then asks for first indications how SFs could be de-
rived semi-automatically.

10.1.2 Data

The study was conducted on the ITS data from the Mixxx, OFBiz, and
Radiant projects as introduced in Section 8.1. Details of the projects
and the ITS data are summarized in Table 8.2 on page 52.

As this particular study compares the UD and the ITS, Table 10.1
additionally compiles quantitative information on the ITS and the UD
for every researched project. The Mixxx project employs the concept
of blueprints in addition to issues. Blueprints integrate or abstract
a number of issues and are usually higher level requirements. Thus
for Mixxx all 113 available blueprints and randomly sampled issues
(to identify the quality of links between issues and blueprints) were
analyzed. For Radiant all 348 available issues were analyzed. In Ra-
diant it was manually identified whether the feature-relevant issues
are implemented, since the ITS does not provide according informa-
tion. Finally, for OFBiz only the manufacturing component and one
feature was studied due to the size of the project. The OFBiz ITS con-
tains 5567 issues, 120 of these issues are related to the manufacturing
component, which was determined by filtering the ITS. Those issues
were studied in depth.

The data sources were analyzed in February 2014 and stored locally
to ensure a reliable reproduction of the results.

10.1.3 Analysis Procedures
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ITS AND UD INFORMATION MIXXX OFBIZ RADIANT
# features in list 22 1 10
Size (in LOC) 94117 n/a 33887
Programming language CH++ Java Ruby
# issues 2211 + 113 blueprints + 120 348
138 user questions
# issues implemented 1239 + 59 blueprints 94 See text
# issues analyzed 50 + 113 blueprints all all
# analyzed issues with SF in- 22 + 53 blueprints 19 50
formation
# issues implemented and an- 22 + 53 blueprints 16 43
alyzed with SF info.
# subdivisions UD 14 chapters consisting of 343 120 pages
69 sections
# subdivisions UD analyzed all 36 all
# subdivisions with feature in- 62 34 64
formation
# provided features identified 21 7 12
in ITS
# provided features identified 24 12 12
in UD

Table 10.1: Issues and User Documentation.

FEATURE INDICATORS Issues that describe a new SF or a Software
Quality (SQ) potentially include features. Those issues that containing
already implemented features that mention an SF, an SQ or a compo-
nent of an SF or an SQ are included in the analysis. It is not always easy
to determine the implementation status of an issue. E.g. in the Ra-
diant ITS, the implementation status is not managed explicitly. Thus,
the implementation status needs to be revealed by analyzing the com-
ments of an issue and the associated commits. For Mixxx and OFBiz
the issues with the status Implemented, or Patch Available are taken into
consideration. During data analysis no indication could be found that
the implementation status was assigned wrongly.

In the UD those section and page titles that contain SF and SQ infor-
mation were analyzed, similar to the issues in the ITS. In case of the
UD, however, it can be assumed that the SEs and SQs described in the
UD are actually implemented. This assumption was affirmed during
data analysis.

To derive the SF related information systematically, the indicators
in Table 10.2 were used. Below the feature indicators, the table shows
relevant examples.

FEATURE ABSTRACTION LEVELS After SF identification, the infor-
mation was classified according to its abstraction levels. It is well-
known that requirements and features are typically described on dif-
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ITS

UD

The issue is implemented AND mentions functional-
ity or quality X AND is not related to a bug AND
is not only related to refactoring AND the term X or
a component Xy of X is explicitly or implicitly men-
tioned.

The item describes functionality
or quality X AND not opera-
tion (such as installing or get-
ting help) AND the term X or a
component X of X is explicitly
or implicitly mentioned.

j Radiant (Quality Performance, Compo-
nent “Radius DParser” of “Radius Tem-
plate Language”): “Speed up Radius parser”

Radiant
“Integrate

(Functionality Asset Management):
an asset management  solution”

Radiant
ment:
this

Implementation Status by com-
“Seeing as  there’s a  setting  for
now, this issue can be closed?”

Mixxx
tionality  Vinyl
the overall vinyl

(Quality  User
Control):
control

Experience, Func-
“Improvements  to
user experience”

Crates
does
and

Mixxx  (Functionality, = Component
and  Playlist): “Currently ~ Mixxx
not  support  hierarchies  for  crates

playlists. ~ This,  however, is  possible”

OFBiz: (Functionality Production Machines)
“cover the case in which many machines are used to
complete a production task”

Radiant Page Titles (Qual-

ity Performance and
Caching) “Disable caching
in a radiant  system”

Radiant Page Title (Function-
ality Admin UI) “Altering

Tabs in the Admin UI”
Mixxx (Quality was
not mentioned)

Mixxx Section (Function-
ality Broadcast): “Live

Broadcasting  Preferences”

OFBiz (Functionality Rout-
ing Task): “Find Routing
Task”

Table 10.2: Rules to Identify Feature Relevant Information.
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ferent abstraction levels. Based on the work by Gorschek and Wohlin,
2006, three abstraction levels of features are distinguished:

REQUIREMENTS LEVEL The mentioned SF comprises several func-
tions or the sQ affects several functions?.

FUNCTION LEVEL SF or SQ refer to a single function, which a user
can perform. Implementation details are not mentioned.

CODE LEVEL SF or SQ refer to a single function, which a user can
perform. Implementation details are mentioned (similar to the
component level used in Gorschek and Wohlin, 2006, it focuses
on “how something is implemented”).

Table 10.3 exemplifies issue texts written in different levels of abstrac-
tion. Those levels can be mapped to the UD structure: page or section
titles usually refer to requirements and sub-pages and subsections
usually refer to functions. Code details were only mentioned in the
UD of Radiant, as the user is required to change classes to set certain
functionalities in this content management system up.

In addition to the abstraction levels, the distinction by Berry et al.,
2004 for typical section types of an UD is incorporated: the abstrac-
tions of the domain, also called the Domain Objects (Os) and the Use
Cases (UCs). O is used when the feature is an object that can be iden-
tified as a direct part of the GUI or the software. UC is used when
the feature requires some kind of dialogue between the user and the
system similar to the UCs described by Cockburn, 2001.

Finally, the relations between features were identified. The relations
are reflected particularly in visualizations, such as Figure 10.2 and
Figure 10.5. Figure 10.1 introduces a legend how relations are visu-
alized particularly. Based on the information available, the following
relations between the identified features could be determined.

IDENTICAL features of different sources
PART OF features of different and same sources

OVERLAPPING features of different source)

As this chapter is based on (Paech, Hiibner, and Merten, 2014), the
second author of this publication researched the UD, the thesis” author
and third author of the publication researched the ITS, and first author
acted as a reviewer.

RQ 1.1 was answered using thematic coding. The UD pages, UD
sections, and the ITS issues were coded manually. Then a set of codes
characterizing the features was derived. Each coding resulted in one
feature set. Those feature sets were compared to feature lists provided

2 Also called feature level in (Gorschek and Wohlin, 2006)

65



66

SOFTWARE FEATURES IN ISSUE TRACKING SYSTEMS — AN EMPIRICAL STUDY

overlap

Feature from list 1 -————--: Feature from UD 1

Group of identical features

Feature from list 2

Figure 10.1: Feature Graph Definition.

FUNCTION QUALITY

Requi-  Radiant:  “Break  Radiant into Radiant: Internationalization

rements several different extensions”
OFBiz: cf. Table 102, example
bottom left.

Func- Radiant:  “Errors when changing Radiant: “Make it so that pages

tion your password should be shown” are only cached for GETs”
Mixxx: “Implementation of a trak- Mixxx: “Smooth Wave-forms”
tor library feature to allow profes- (relates to a less stuttering dis-
sional DJs the smooth migration [...].” play for track visualization).
OFBiz: “Improve mrp to support OFBiz: “There is a need to be
to products which have no orders able to block viewing info ex-
against them” cept that info that may pertain

to that login”

Code Radiant: ~ “Javascript  to  stop Radiant: “[Add] Ruby
you from  navigating away 1.9.X compatibility”
from a page with changes” pfixxx: “Distribute Launch-

Mixxx: “It would be nice to be able
to specify multiple <option>s for
MIDI controls in XML mapping files.”

OFBiz: “[...] accepts the partyld as a
parameter, but has been commented
[...] [however, the] functionality is vi-
tal for determining which employees
are responsible for rejects”

pad translations with Mixxx
Releases”

Table 10.3: Examples for Abstraction Levels in Issues.
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on the project’s website and with each other. As these feature lists are
placed prominently on the websites, it can be stipulated that they are
most marketing relevant for the project members.

RQ 1.2 was answered by comparing the two feature sets from UD
and ITS in depth and the answer of rRQ 1.3 is based on the experience
of the two coders.

10.2 RESULTS

In the following, the research questions are answered for each project
individually. The last section summarizes the insights over all projects.

10.2.1  Results for Project Radiant CMS

PROVIDED FEATURE LIST The feature overview3 on the Radiant
website depicts ten SFs using a name and a short one- or two-sentence
description. Table 10.4 shows these features and our classification as
SF or SQ and O or UC. The table points out whether the feature was
identified in the ITS or UD. Brackets indicate that the related ITS or UD
features are formulated slightly different from the feature list.

PROVIDED FEATURE LIST IDENTIFIED IN

Built with Ruby on Rails (SQ,0) ITS

Custom Text Filters (SF,UC)
Flexible Site Structure (SQ,0)

Intelligent Page Caching (SQ,0) ITS, UD
Layouts (SF,0) (UD)
Licensed under the MIT License (SQ,0) -

Pages (SF,0) ITS
Radius Template Language™ (SF,0) ITS, UD
Simple Admin Interface (SF,UC) ITS, UD
Snippets (SF,0) (ITS, UD)

* a special macro language (similar to HTML and Ruby).

Table 10.4: Radiant Features.

RQ1: FEATURE INFORMATION FROM UD AND ITS The UD is or-
ganized in a wiki. The starting page of this wiki is a global table
of contents and the table of contents is divided into eleven chapters.
Eight of which deal with administrative issues.

Three chapters could be identified as primarily relevant for further
analysis: The Basics, How Tos, and Extensions.

3 http://radiantcms.org/overview, accessed on August 8, 2014.
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The Basics contains seven links to top level UD pages. Except for the
links to FAQs and Getting Started, the links point to pages describing
Radiant features as mentioned in the feature list (Pages, Layouts, Snip-
pets, Radius Tags, Customizing the Admin GUI). In addition, there are
six links to details of the Radius Tag feature and two links to details
of the admin GUI feature. Each top level UD page contains the intent
and summary of the feature, a screenshot of the GUI, and descriptions
how to use the feature.

The How Tos chapter contains 29 links to top level UD pages. As
visible by the titles, those links point to tutorials describing advanced
features. The tutorials include usage examples and reference the ba-
sic feature pages. The Radius Template Language is referenced from
almost all pages.

The Extensions chapter starts with six pages describing the concept
and usage of Radiant extensions, followed by a list of 27 common
extensions, and 11 pages that describe how to develop an extension
for Radiant. According to the indicators of Table 10.2 64 pages are
relevant to SFs in total.

Figure 10.2 shows the relations between the radiant features at
a glance and brackets indicate the different abstraction levels. The
boxes marked with UD on the right side show the 13 features identi-
fied from the UD. Content delivery refers to different content represen-
tation methods such as HTML or RSS. Content location refers to the
search functionality. Most pages are on the function level and many
describe layout and the pages count a feature is described with does
not signify the importance of that feature.

Radiant uses GitHub for different aspects such as SFRs, bug reports,
discussions of the development process, discussions about refactor-
ings, user problems, or discussions about documentation. However,
GitHubs optional issue tags are rarely used, so that issues related
to features, bugs, or other aspects of SE are not categorized by any
means. Therefore, all of the 348 issues were manually analyzed and
their category was derived from the descriptions and comments.

The boxes marked as ITS on the left side in Figure 10.2 refer to
the eleven SFs identified from the ITS. Asset management refers to con-
tent such as image or PDF files. Development comprises support for
website developers. Frontend refers to usability. A lot of issues deal
with the Simple Admin User Interface (Ul). Although the admin UI is
an important Radiant feature, the number of issues does not signify
the importance of the feature in general. In addition some issues con-
tain many comments, but at the same time they have a very short
implementation in terms of LOC.

RQ2: COMMONALITIES AND DIFFERENCES OF UD, ITS AND PRO-
VIDED FEATURE LIST Figure 10.3 shows the abstraction levels of
the identified features. As it could be expected, the feature descrip-
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Figure 10.2: Radiant Feature Graph (No Transitive Relations Shown).

tions in the ITS are quite often on the code level, while the UD features
are described on all three levels. Almost a third is on the code level
which is rather unusual for an UD. However, website developers are
the users of Radiant and thus special domain specific languages are
employed for some functionalities in Radiant.

Figure 10.4 shows commonalities as well as differences between
the different feature sources. Almost half of the ITS features (45%) are
identical to the provided feature list, while only a third of the UD
features (31%) is identical.

The 18% provided features not identified from the ITS may be due
to the fact that the ITS was not used from the beginning of the devel-
opment. The basic functionality of Radiant was implemented before
the ITS was used. For ITS features not in the provided list (31%), the
content could be a reason. While Internalization and Extensibility seem
relevant as prominent features, some website Development features
might be too low-level. Interestingly all ITS features that do not have
a relation to either the list or the UD are quality-related. So in the case
of Radiant the ITS is the best source for quality related SFs.

All features identified from the UD seem relevant, although 31% of
them are not in the feature list. The part-of relations between Pages,
Layouts and more fine-grained features, such as Blog or Comments in
Figure 10.2 show that granularity is a challenge since only UD features
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Figure 10.3: Radiant: Feature Abstraction Levels.

are organized using part-of relations. Finally, UD features are more
closely related to ITS features (45% are identical) than to the feature
list.
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Figure 10.4: Radiant: Feature Relations.

RQ3: AUTOMATIC IDENTIFICATION OF FEATURE INFORMATION
Most feature-related information can be identified in older issues. 34
SFs could be found in issues #1 to #68. 16 SFs in #71 to #202 and no
SFs was found in #203-#384. This suggests that a) older issues should
be available for automatic feature extraction and b) it might be best
if the ITS is used from the beginning of the development (e.g., design
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and prototyping phases). In Radiant however, the ITS was used after
a prototype of the software had already been built.

27 of the 43 issues with SF related information contain the text
“*should*be*’, *add*’, *would*be*” and “*allow*user*” in the issue ti-
tle or description. However searching for these terms includes about
same amount of refactoring- and bug-related issues. Hence, the preci-
sion of a keyword based approach is relatively low. However, depend-
ing on the usage of an ITS, it might be possible to extract more precise
search terms. A pitfall in automatic analysis are the tags of the Radi-
ant ITS. Although tags like bug, design, or javascript are introduced in
Radiant, they are not used consistently. Since tags are optional, most
issues are not tagged at all. The bug tag is used for only a single issue,
which is not reliable for any automatic approach. Further efforts, for
example using ML models, are necessary to identify feature labels.

For the automatic identification of SFs from the UD, the relevant
pages need to be identified in a first step. In the Radiant UD the rel-
evant pages can be found in three chapters. These chapters can be
identified more efficiently manually than automatically as the seman-
tic structure of the UD needs to be understood. Some pages are only
related to system operation and do not contain any SFs. To a certain
extent, these pages could be identified by searching for operation-
related terms such as ‘installation” in order to discard non-feature-
relevant pages. Another input for the identification of relevant pages
is the linkage structure of the wiki. Basically, the most frequently ref-
erenced pages most likely are feature-relevant. Thus a high in-degree
in degree with respect to hyperlinks is an indicator for an important
SF.

10.2.2  Results for Project Mixxx

PROVIDED FEATURE LISsT Similarly to Radiant, the list of provided
features including short marketing descriptions was taken from the
websitet. The feature list contained 20 functional features as shown in
Table 10.5. The table lists SFs which are part of a more general feature
(such as Powerful Library or Decks) in one row.

RQ1: FEATURE INFORMATION FROM UD AND ITS The Mixxx UD
is part of a general documentation wiki. The wiki combined devel-
oper documentation and documentation for Mixxx users. This study
focuses on the user manual. The manual contains 14 chapters, nine
of which are feature relevant. These nine chapters contain 69 sections.
According to the introductory text of the chapters requirements level
SFs could found in eight of them. The 54 sections which satisfied the
feature indicators of Table 10.2 are all on the function level. Finally
the UD describes no SFs on the code level.

4 http://mixxx.org, accessed on August 8, 2014.
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Figure 10.5: Mixxx Feature Graph (No Identical, Unrelated Features, or Tran-
sitive Relations Shown).



10.2 RESULTS

PROVIDED FEATURES IDENTIFIED IN

Advanced Controls (F,U), Dual Decks (F,O) ITS,UD

Decks: Beat Looping. Broad Format Support, (ITS, UD)
Hotcues, Intuitive Pitchbends, EQ and Crossfader
Control, Time Stretch and Vinyl Emulation (FO)

Designer Skins (FO) ITS
Free Timecode Vinyl Control (FU) ITS,UD
Microphone Input (FU) ITS,UD
MIDI Controller Support (FU) (ITS,UD)

Powerful Library: Auto DJ, BPM Detection and Sync, ITS,UD
Crates and Playlists, Disk Browsing, iTunes Integra-

tion (F,U)
Quad Sampler Decks (FO) UD
Recording (EU) ITS,UD

ReplayGain Normalization (E,U) -
Shoutcast Broadcasting (F,U) (ITS,UD)

Table 10.5: Mixxx Features.

The boxes marked with UD on the right side in Figure 10.5 show
20 of the 24 identified features and their classification (the features
DJing (SF,UC), Microphone (SF,UC), Recording (SF, UC) and Vinyl Control
(SF, UC) are not linked to the provided features and thus have been
omitted in the Figure). The feature Analysis refers to the preparation
of harmonic mixing5, Controlling Mixxx allows setting device specific
options, and Vinyl control allows to use records to control the digital
playback from the computer with special time-code vinyl or CDs. All
of the identified features describe a functionality. The number of sec-
tions or chapters corresponds to the complexity of the features. Music
Management is the only feature described in detail, which is not di-
rectly related to a UD chapter.

The Mixxx ITS contains 2211 issues (including bugs and feature
requests), 113 blueprints and 138 user questions. The issue classifica-
tion in bugs and features as made by the developers is very reliable
for the issues that were analyzed. The blueprints describe refactor-
ings and higher level requirements for features. Blueprints and issues
are often linked together and issues are often linked with the code.
However, cases could be identified where a link to to code would be
appropriate but not existent. Since blueprints contain more feature-
relevant information than issues in the way the ITS is used in the
project, all 113 blueprints were analyzed for SF information. 59 of the
113 blueprints were already implemented.

Mixing songs together that have the same or a harmonically compatible minor or
major key.
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The boxes marked with ITS on the left side in Figure 10.5 refer to
15 of the 21 features identified from the ITS (Development (SQ,0), In-
ternationalization (SF,0), Microphone Usage (SF, UC), Playback (SF, Uc),
Recording (SF, uc) and Vinyl Control (SF,UC) are not linked to the pro-
vided features and thus have been omitted in Figure 10.5). All of the
identified features describe functionality. Beat Detection analyzes the
speed of a track. Beat looping repeats a short part of the track. Codecs
allow the use of different digital formats. As for Radiant, Development
describes support for the developers. Skinning refers to different GUI
looks that can be applied in Mixxx. Syncing automatically matches
the speed of different songs for the mix. The blueprints are generally
very organized and use higher abstraction levels. Only few blueprints
are described on the code level as shown in Figure 10.6.
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Figure 10.6: Mixxx: Feature Abstraction Levels.

RQ2: COMMONALITIES AND DIFFERENCES OF UD, ITS AND PRO-
VIDED FEATURE LIST  Figure 10.7 illustrates the commonalities and
differences of the UD, ITS, and the provided feature lists.

There are fewer provided features compared to Radiant which can-
not be found in the UD or the ITS. This was expected from the fact that
the ITS blueprints and the UD seem to be well maintained. Similar to
Radiant, more features from the provided list were directly identi-
fied from the ITS (40%) compared to the 30% of the provided features
identified from the UD.

Furthermore, there are more ITS features (24%) which are not re-
lated to the feature list and many identical features between ITS and
UD (between 30 and 40%) can be found. However, there are also many
part-of relations between ITS features and either UD (48%) or the pro-
vided features (38%). And there are even more part-of relations from
UD features to either the ITS (58%) or the provided features (63%).
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Figure 10.7: Mixxx: Feature Relations.

This indicates that the granularity and abstraction level in the differ-
ent sources is different and multiple sources complement each other.
The distinction between SF und SQ is not relevant as no SQ features
were found.

RQ3: AUTOMATIC IDENTIFICATION OF FEATURE INFORMATION
As the Mixxx ITS is maintained very systematically, the possibilities
to categorize the status (e.g. implemented, draft, in progress) as well
as the issue (e.g. bug, wishlist, blueprint) can be used to find feature
relevant information. The identification of the feature description re-
mains a problem though as the categorized are not available on the
level of data fields or even paragraphs.

The Mixxx UD is a well-structured document separated into chap-
ters and two section levels. Nine of the 14 chapters are feature-relevant,
compared to three out of 11 for Radiant. Often the chapter and sec-
tion titles directly contain feature-relevant terms. As for Radiant the
relevant chapters can be identified just by manually looking at the
chapter titles. For the identification of features on the requirement ab-
straction level, the chapter titles can be used. The section titles on the
first section level can be used for feature identification on the func-
tion abstraction level. Overall the Mixxx UD structure can decently be
mapped to SFs and their abstraction levels and such a mapping would
not yield many errors.

10.2.3 Results for Project Apache OFBiz
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PROVIDED FEATURE LIST The OFBiz project was studied only par-
tially. Because the project is very large, a complete analysis was not
feasible and it was decided to research the Manufacturing Management
feature with the related UD and issues. The manufacturing compo-
nent can be found on the OFBiz feature page®, which lists all the SFs
on a requirements level.

RQ1: IDENTIFICATION OF FEATURE INFORMATION FROM UD AND
1Ts The UD for OFBiz is organized as a wiki. However, the wiki
contains only more or less empty pages and basic structures without
content (e.g. sections for role specific documentation). Because of this
the wiki could not be analyzed. Instead the outdated Manager Refer-
ence was used for the UD analysis (last updated in 2004, uploaded
to the wiki as PDF attachment between Dezember 2006 and January
2007). Based on the experience gained from the previously analyzed
projects, the chapter and the section headings were analyzed in depth.

FEATURE UD FEATURE ITS
Bill of Materials (SF, UC) Data Security (SQ,0)

Bill of Mat. Simulation (SF, UC) Internationalization (SF,0)

Calendar (SF, UC) Manage orders (SF, UC)

Job Shop (SF, UC) Manage Products (SF, UC)
Manufact. Resource Planning (SF, UC) Manage Production Machines (SF,0)
Manufacturing Rules (SF, UC) Manage Production Runs (SF, UC)
Production Run (SF, UC) Resource Planning (SF, UC)

Reports (SF,0)

Requirement Verification (SF, UC)
Routing (SF, UC)

Routing Task (SF, UC)

Shipment Plans (SF, UC)

Status Report (SF, UC)

Table 10.6: OFBiz: Manufacturing Component Features.

The UD 343 subdivisions organized into four hierarchy levels. The
sections on the 3rd and 4th hierarchy level could be removed since
they refer to single attributes, e.g. particular values for input forms.
Eight chapters and 28 sections remain.

From this, 13 distinct features could be identified (confer the left
column of Table 10.6). Eight of the 13 features are on the requirement
abstraction level. The other five features are mostly finer grained as-
pects of the requirement abstraction level features. As expected for a
manager reference, no code level details were mentioned. Also, qual-
ity features were not mentioned and only domain object could be
found.

6 http://0FBiz.apache.org, accessed on August 8, 2014.
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10.2 RESULTS

The OFBiz project uses the Jira ITS. All 120 issues of the manufac-
turing component were analyzed and seven features could be identi-
tied (cf. Table 10.6 right column). Security was the only SQ aspect, but
again this quality could be found only in the ITS and not in the UD.

Issue feature descriptions are generally longer than in the other
projects. Requirements, for example, are described in detail and often
include multiple solution ideas such as in the following issue excerpt:
“...this can be implemented in many ways: a) expanding the con-
cept of Fixed Asset groups ...b) (more complex) add new association
entities to link a task ...”. Although this diligence suggests a very
accurate handling of the ITS, multiple miss classifications could be
found (e.g. bugs classified as improvements).

Overall, the ITS meta data is not maintained as well as the NL de-
scriptions. In addition, some SFs are distributed over many issues. E.g.
I18N7 included multiple issues for every single language and a main
issue describing the 118N feature itself. The feature is another exam-
ple for unmaintained meta data as none of these issues were linked
together.

FEATURES ITS (7) FEATURES UD (13) MAP

Data Security (5Q,0), Internation-
alization (SF,0)

Manage Orders (SF, UC) Bill of Materials (SF, UC), Bill of Ma- (O)
terials Simulation (SF, UC), Calendar
(SF, UC). Shipment Plans (SF, UC)

Manage Products (SF, UC), Man- Manufacturing Rules (SF, UC) (0)

age Production Machines (SF, O)

Manage Production Runs (SF, UC)  Production Run (SF, UC) I

Ressource Planning (SF, UC) Manufacturing Resource Planing (SF, I
UQ)

Job Shop (SF, UC), Reports (SF, O),
Requ. Verification (SF, UC), Routing
(SF, UC), Routing Task (SF, UC) Status
Report (SF, UC)

Table 10.7: OFBiz: Commonalities and Differences of ITS and UD.

RQ2: COMMONALITIES AND DIFFERENCES OF UD, ITS AND PRO-
VIDED FEATURE LIST As the descriptions of the UD are coarse and
mainly the headings were analyzed, a full mapping could not be de-
rived for this project. Table 10.7 shows a rough mapping of the fea-
tures of UD and ITS. Two features are identical and few have overlaps.
However, almost half of the UD features were not mentioned in the
issues. This can be explained by the fact that the project switched to

7 Internationalization.
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a different ITS (e.g. to Jira) and older issues related to the UD features
were likely not transferred.

RQ3: AUTOMATIC IDENTIFICATION OF FEATURE INFORMATION
The OFBiz analysis did not reveal any new insights with respect to
automatic identification. For the UD only the chapter and section titles
could be the basis for an automatic identification. As for Radiant,
most feature related information was identified in older issues. In the
ITS, the feature to bug ratio was ten to 18% between 2006 and 2009
and only about three to five percent between 2009 and 2013.

10.2.4 Owerall Results

RQ1: IDENTIFICATION OF FEATURE INFORMATION FROM UD AND
ITs ITS as well as UD can serve to identify features. The features,
however, are described on different abstraction levels (cf. Figure 10.8).
For both, Mixxx, and OFBiz the UD does not contain features on code
level and > 75% on function level. In contrast to the other projects,
the UD of Radiant mainly contains feature information on the code
and function levels. In the ITS feature information is found on all
three levels, but, similar to the UD, there are only few features on the
requirements level, and the distribution of abstraction levels in the ITS
differs noticeably for each of the projects as shown in Figure 10.8.
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Figure 10.8: Abstraction Levels for Software Features.

Quality features are typically not mentioned in the UD. Radiant
and OFBiz UD’s mention few quality features and Mixxx’s UD none.
Most quality features were found in the ITS. Overall neither ITS nor
UD were a perfect source for SF detection in the analyzed projects.
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However, the ITSs were not used consequently from the beginning.
Hence a higher amount of SFs in the ITS is likely in other projects.
Finally, it seems likely that multiple sources, e.g. the ITS and the UD,
must be searched and combined to yield the complete feature set. Of
course other sources or other means of feature location (Dit et al.,
2013) could also be added as potential sources.

RQ2: COMMONALITIES AND DIFFERENCES OF UD, ITS AND PRO-
VIDED FEATURE LIsTS There is a noticeable overlap between the
feature information in the ITS, the UD, and the provided feature list.
In the Radiant project, roughly a third of the listed features could not
be identified by UD or ITS, in the Mixxx project only a tenth could not
be identified. Similarly, for Radiant only a third and for Mixxx only
a tenth of the features was not related between ITS and UD. This indi-
cates that, both ITS and UD can be used to record feature information
systematically.

As the ITS is mainly important for the developers and the UD is
targeted to the users, it seemed more likely that the UD records the
listed features better, as argued e.g. by Berry et al., 2004. However, it
turned out that UD and ITS record the listed features equally well. It is
interesting that in both projects 30-50% of the features were identical
(between list and UF, list and ITS, and UD and ITS). In case of Mixxx,
there is a high percentage of overlapping features, while in the case
of Radiant there are few overlapping features. Thus, even for a sys-
tematically documented project like Mixxx, a feature representation
generated from UD or ITS are different from the marketing feature list.

RQ3: AUTOMATIC IDENTIFICATION OF FEATURE INFORMATION
This study reveals preliminary insights for automatic identification.
It seems feasible to manually delimit the relevant pages of the UD
and to focus on page or section titles to identify SFs. Also for the ITS
simple keywords can be used as a first idea to categorize the relevant
issues, but recall and precision are far from perfect. Thus, the case of
ITS SF detection does require more sophisticated techniques.

Although best practices in RE suggest to describe new features as as-
is and to-be situations, only one issue could be found that mentions
both situations. Generally, the to-be situation is described and the as-
is situation is implicit. Furthermore, the quality and use of language,
the quality of descriptions as well as categories and links differ from
project to project. The NL is the most reliable source to detect SFs.
Furthermore, an automatic identification needs to be “tuned” for each
project. E.g. supervised learning could be a good choice if a model is
trained for each of the projects individually.

From the coders experience, the following hints for using ITS and
UD to record features instead of setting-up a separate feature docu-
mentation can be seen:
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¢ The Mixxx project (as many other projects) shows that feature
information can be explicitly managed within an ITS, if it is sepa-
rated from (but linked to) the usual stream of bugs and change
requests. Furthermore, it seems likely that issues in ITS could
profit from an abstraction classification or traces to more ab-
stract information.

e Berry et al.,, 2004 recommend structuring an UD into objects,
use cases and advanced features. The UDs of the projects have
some similarities to this structure but not enough for automatic
approaches.

* Blueprints and issues are much simpler to allocate to software
components as both have a technical nature. Without detailed
knowledge of the software architecture, this is almost impossi-
ble for UD. If relations between features and software compo-
nents are important, ITS should be used as SF source.

Further implications for an automatic extraction of SFs are discussed
in Section 10.5.

10.3 THREATS TO VALIDITY

CONSTRUCT VALIDITY The authors have not been involved in the
development of the sources. Thus, our view of what constitutes a
feature of the software is clearly an external one, which might be
different from what developers consider a feature of their software.
To mitigate this threat, the feature list provided by the developers
was used for comparison.

EXTERNAL VALIDITY The results are not representative for applica-
tion software in general, as only three projects were researched. How-
ever, for this exploratory study very different projects were chosen to
boost the possible insights.

RELIABILITY As only one researcher coded the ITS and, respec-
tively, the UD information, it cannot be claimed that other researchers
would reproduce the coding. However, explicit coding indicators were
used and explicitly discussed to minimize the bias of the individual
coder. Moreover, the performed approach can be adapted to any soft-
ware development project which provides the required data (e.g. ITS,
UD and feature List).

10.4 RELATED STUDIES

In this section related work that derives feature information from
diverse sources manually or semi-automatically, is discussed.
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Berry et al., 2004 suggest to use user’s manuals as the SRS. They
validate their suggestion in three case studies and find that UD can
be used to document requirements in some cases, at least if the UD is
well written. In contrast this chapter examines existing UD to search
for SFs. It was found that some UD are so outdated that they cannot
be used as a substitute for an SRS.

Ghazarian, 2012 identifies generic classes of software functionality
from 15 different requirement specifications in the domain of web-
based enterprise systems. The identified classes such as data input
or user interface navigation could potentially be useful as indicators
of feature information. He also describes that much feature-related
information could be found and categorized analyzing only a small
amount of issues, respectively only section and paragraph names in
the UD. His classification, however, is very technical and uses low
abstraction levels. In contrast, this work classifies SFs for different ab-
straction levels.

Noll and Liu, 2010 analyze an 0SS project to identify by whom and
where requirements are proposed. They select 13 given features and
then trace them. In contrast this study first looks at data sources to
manually identify features and then compares them with the given
feature list. Thus, this study gathers more data about how SFs are
described in detail.

Alspaugh and Scacchi, 2013 discuss how ongoing software develop-
ment can be done without the need for classical requirements. They
too found that SF descriptions are the most prominent requirement-
like artifacts in OSS projects. In addition they found that SFs are often
written as attributes to existing software versions, competing prod-
ucts or a prototypical implementation. In combination with this chap-
ter their findings suggest that SFs need to be analyzed further, espe-
cially with respect to the components and NL that comprise an SF.

10.5 IMPLICATIONS FOR SOFTWARE FEATURE DETECTION

The exploratory study of the 0SS projects has shown commonalities
and differences of SF information in UD and ITS and given feature lists.
The results are promising in the sense that ITS and UD both include
relevant features with respect to the projects. The results also show
that deriving a complete feature set semi-automatically will be very
difficult and as both sources are incomplete in all studied projects.

Some of the feature descriptions formed patterns (e.g. headings in
the UD often denoted features). However, most of these patterns were
not transferable to other projects.

During the research for this chapter, it could be found that feature
information is likely contained in only few issues of an ITS. Due to
an ITS’s nature, other issues, such as bugs or refactoring tasks are
also tracked. Although many ITS provide the option to categorize is-
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sues manually, the quality of such manual categories depends largely
on the project. Therefore, an analysis of the NL is needed to iden-
tify feature information. Furthermore, the feature information can be
scattered all over the issue and can be found in title, description or
even comments (although title and description are most common).
Therefore, only a very small part of the NL in an issue contains the SF
request. The rest is information like rationales, solution ideas, social
interaction, and so on. These exact contents of an ITS are studied in
the next chapter in detail.

For the UD, the starting point to detect and extract feature data
semi-automatically is the structure of the respective documents. The
analysis of the projects in this study shows that different structure
levels in UD map to different feature abstraction levels quite reliably
within every project. Moreover, certain UD parts like administrative
instructions can be omitted for feature derivation since they do not
contain feature-relevant data.

Whenever the ITS and UD are maintained systematically, the meta-
data is most helpful. However, contemporary ITSs do not provide any
means to indicate feature relevant information besides categories or
tags. They are assignable on the issue level, only and seldom used
systematically. For UD no metadata or categorization is used at all,
although some wikis provide such features. Here only manual map-
pings or LE methods can be applied to find SF related information.

Although this study finds that complete SF information can hardly
be derived from a single source the thesis still focuses on the ITS for
SF detection. Even if an UD is created for a software project, which is
not always the case, the UD is often out of date and does not provide
technical information that may be important for developers. E.g. in
this study the UD of the OFBiz project was unmaintained for years.
The wiki that is used as UD neither contains relevant content nor the
content of the old UD has been transferred. In contrast, the ITS infor-
mation is rather complete. Although incomplete information in ITSs
was found in this study, this incompleteness was related to features
implemented before the ITS was introduced in the project or because
the ITS was switched. However, it is likely that such early SFs are very
basic and well known by the developers, so that automatic means to
extract those SFs are not necessary. If the ITS is switched, both ITSs can
be analyzed or the old data can be transferred to the new system.



ISSUE TYPES AND INFORMATION TYPES - AN
EMPIRICAL STUDY

The empirical study presented in this chapter investigates the second
of four RQs defined in Section 1.3 in depth:

RQ 2: How is NL information categorized, described, and
distributed in an ITS?

The previous chapter illustrates that ITS are a fruitful and thorough
source for SFs. The previous chapter also identifies that SFs cannot
reliably be detected simply by using the issue’s category, as this cate-
gories and tags are often wrong or not assigned at all. This suggests
that the NL data in issues needs to be analyzed more thoroughly. This
chapter investigates the NL information in an ITS and how this in-
formation is distributed. In particular, the chapter explores (1) what
additional information besides SFs and SFRs reside in an ITS. This infor-
mation is necessary to distinguish information that is related to an SF
from information that is not related to an SF and it is studied (2) how
this information is actually formulated. The latter information is nec-
essary to identify potential patterns or characteristics which can be
used for an automatic detection. Fine grained RQs for both aspects
are defined in the next section.

In addition, this particular study investigates how information in
ITSs is distributed. E.g. which issue types typically contain which in-
formation or whether multiple issue categories can occur together
in a single issue. Parts of this study were previously published in
Merten et al., 2015.

In the next section the study setup is described and rQ 2 as stated
above is refined in three fine grained RQs. Section 11.2 presents the
results for every RQ. Section 11.3 discusses the treats to validity of
and Section 11.4 introduces related work with respect to the investi-
gation in this chapter. Finally, Section 11.5 discusses the implications
of categories, descriptions and the distribution of SF information for
SF detection.

11.1 STUDY DESIGN
11.1.1  Research Questions

The following research questions employ the concepts of information
type and issue type. Issue type is used in this study as introduced in
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Section 2.2. An information type describes the information that is car-
ried by one or more sentences in ITS NL data’. The term information
type, as opposed to the frequently used term knowledge type?, is used,
because “information is well-formed data with a meaning [, whereas]
knowledge resides in the mind” (Schneider, 2009, pp. 11). Hence, cat-
egorized ITS NL data should be considered information, whereas the
answers to the RQs in this chapter can be considered knowledge with
respect to this information.

An issue issue type can be considered a context or frame for one
or more information types in this particular study (see the leftmost
nodes in Figure 11.3), in addition to a concrete annotation to an issue.
E.g. the information type request can be used in different issue types,
such as feature request, request for fixing a bug or request for refactoring.

With the concepts of issue and information type, the RQ stated in
the beginning of this chapter can be refined in the following three
research questions:

RQ 2.1 What issue types and information types are captured in ITS NL
data?

RQ 2.2 What is the distribution of different issue types and information
types?

RQ 2.3 Are issue types and information types used differently in differ-
ent projects?

11.1.2 Data

The study was conducted on the ITS data from the c:geo, lighttpd,
Radiant and Redmine projects, as introduced in Section 8.1. Details
of the projects and the ITS data are summarized in Table 8.2. Those
projects were chosen for this particular study in view of RQ 2.3: every
project has different characteristics with respect to the users of the
software, the project type and so on. It will be shown in this chapter,
that such characteristics influence the NL data in the issues. E.g. in the
lighttpd ITS, issues contain more detailed and technical information
than in the c:geo ITS.

All the ITS NL data and metadata that can be retrieved from the
respective ITS APIs of every project was extracted, converted into XML,
and annotated using GATE for the investigation reported in this chap-
ter. Attachments, as the only exception, were not extracted since at-
tachments (1) are often used for technical information like code snip-
pets, log files, or stack traces and (2) typically use various formats
(e.g. JPEG images or Microsoft Word documents), which cannot be
converted to plain text easily .

See the rightmost nodes in Figure 11.3.
E.g. Maalej and Robillard, 2013 use the term “knowledge type” in their taxonomy of
APT content.
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Figure 11.1: Issue Sizes.

As suggested in Chapter 10, most requirement-related information
can be found in early issues. Thus, the datasets for this study were
extracted from the first 1000 issues of every project. Thereafter, the
datasets were divided in three sets per project: I includes all issues
with less than the median number of comments per project (one or
two), I, includes all issues with the median to the mean number of
comments (three to five), and Iy includes all issues with more than the
mean number of comments (six to 173). Most issues fall in the classes
Is and I,,,. Figure 11.1 aggregates the sizes of the extracted issues for
every project. The background shading of Figure 11.1 indicates how
many issues fall in the I /.., /| classes.

11.1.3 Analysis Procedures

This section describes the details of the analysis process. An overview
of the process is given in Figure 11.2.

A TAXONOMY OF INFORMATION TYPES: One of the major chal-
lenges in this study is to identify the issue types and information
types used in the ITS NL data. Although earlier studies analyzed ITS
NL data, the authors focused on specific information types, like dis-
cussions (Fitzgerald, Letier, and Finkelstein, 2012; Ko and Chilana,
2011) or exclusively on issue types (Herzig, Just, and Zeller, 2013).
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Figure 11.2: Research Process Overview.

In contrast, this particular study provides a broad taxonomy of issue
and information types.

To develop the taxonomy, 80 issues were drawn randomly from
the I, and I sets. Four authors of the original publication (Merten
et al., 2015) coded every sentence of these 80 issues manually using
GATE (20 issues per coder). During this process, every coder devel-
oped his own taxonomy. The only requirements for the taxonomy
development were, that

1. issue and information types should be distinguished, and

2. every sentence should be coded.

Intentionally, every coder used a two-phase schema: the first phase
represents the issue type (e.g. feature-, bug-, or software development
process-related information) and the second the information type (e.g.
functionality or quality request, clarifying question, or as-is descrip-
tions of the situation). To consolidate the individual schemata, a large
schema out of all issue and information types from every coder was
created. This schema includes 14 issue types from coders c; (5¢1 +
3¢2 +3c3 +3c4) and 127 information types (45¢1 +25¢2 + 363 +21c4).
Then, all synonyms were merged (e.g. one coder named a sentence
suggested solution, another solution, and a third potential solution). The
remaining information types were discussed. During discussions the
coders found that information types are sometimes bound to an issue
type and are sometimes neutral, e.g. they can be found in different
issue types.

An example is the as-is information type. It describes the current
status of the software and can be used for feature-related issue types
to describe the context of a new SF, or for bug-related issue types
to describe the problematic behavior as it is in a certain software
version. These neutral information types were added to all relevant
issue types. So the as-is information type is present in feature- as well
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as bug-related issues as shown in the final taxonomy in Figure 11.3
in Section 11.2.

FURTHER ANALYSIS BASED ON THE TAXONOMY After the final
taxonomy was consolidated, a coding guideline based on the final tax-
onomy was created and discussed by all authors. The coding guide-
line was tested on another 4 issues from the I, ;| sets by all coders
with an inter-rater agreement of 0.9869 (Cohen’s Kappa = 0.4630) for
bug-related and 0.8152 (Cohen’s Kappa = 0.6786) for feature-related
codes and optimal inter-rater agreement for ITS management and not
SE related codes. The results of this test run, especially differences,
were discussed again. Finally, the descriptions of the coding guideline
were updated, such that the coders had a common understanding of
every issue and information type.

For the further analysis, another 120 issues were randomly drawn,
equally over every project and every set, I, Iy, and I, to make sure
that the samples include all issue sizes and data from all projects. The
taxonomy and code book were implemented in GATE

1. to calculate inter-rater agreements,
2. to enforce the use of the taxonomy for deeper analysis, and

3. for text analysis, e.g. to retrieve statistical data or to add addi-
tional metadata to the text. Own GATE plugins were developed
for the analysis and the Stanford Parser (De Marneffe, MacCart-
ney, and Manning, 2006) was used to annotate the NL.

Overall 120 issues and 3167 sentences, as summarized in Table 11.1
have been analyzed.

1

ISSUES COMMENTS SENTENCES
PROJECT OPEN/CLOSED EXTRACTED ANALYZED  ANALYZED CODED
c:geo 425/2829 first 1000 30 322 662
lighttpd 53/272 all 30 204 748
Radiant 425/2829 first 1000 30 218 592
Redmine 4400/9244 first 1000 30 374 1160
Sum 120 1118 3167

1 Every issue has one title, one description and multiple comments, c. Therefore,
¢+ 60 ITS data fields were analyzed altogether.

Table 11.1: Population, Sample and Coding Sizes.

11.2 RESULTS

The results are presented separated by research question. Section 11.2.1
and Section 11.2.2 discuss issue types and information types sepa-
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rately, whereas the project differences in Section 11.2.3 are discussed
broadly without this separation.

11.2.1 Information Types and Issue Types

Figure 11.3 shows the final taxonomy. The taxonomy includes six issue
types and 28 information types. The information types ITS Management,
Clarification, and Rationale are split into six, four, and two subtypes
respectively. The white fields Unclear / Other / Unknown are used for
information that cannot not be classified by the coders.
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Figure 11.3: Issue Types and Information Types: A Taxonomy.

1ssUE TYPES The following issue types were discovered in the NL
of the ITS data fields:
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1. Feature-Related: information, related to a new SF or software re-
quirement.

2. Bug-Related: software failures and problems.

3. Refactoring-Related: software changes that neither affect the func-
tionalities nor the qualities of the software (besides maintain-
ability).

4. SE Process-Related: discussions about the general SE process, e.g.
if a developer notices that tests should be run more frequently
in the project or if documentation should be relocated.

5. User Problem-Related: problems that are not related to software
development, e.g. a user does not understand a configuration
file and asks for help.

6. Not SE-Related: anything, that is not related to software engineer-
ing activities, such as social interaction between developers.

Feature-Related, Bug-Related, and Refactoring-Related are relatively ob-
vious issue types for a software development project. However, it is
noticeable the ITS was used to discuss changes in the SE development
process itself, too. Especially Non SE-Related discussions were not ex-
pected before the coding started.

INFORMATION TYPES The taxonomy provides detailed informa-
tion types for the issue types Feature-Related, Bug-Related and Refacto-
ring-Related. Reoccurring information types in feature-, bug- and re-
factoring-related issues are shown using the same color in Figure 11.3.

Issues usually start with a summary (dark blue M) in the title. In gen-
eral the summary describes (certain aspects of) the issue and does not
form a whole sentence: e.g. “more flexible bandwidth limiting”. Some
bug-related issues start with an as-is clarification (light pink ) in the
title to denote what needs to be fixed and some feature-related issues
put the request in the title. For example “provide an infrastructure
for content-filtering”.

An obvious information type is the request (green I) itself. A re-
quest can be found in all software engineering-related issue types and
is sometimes accompanied with rationale arguments (brown ), em-
phasizing why the SF should be implemented. In general, however,
rationales, are given later in a comment of the issue, e.g. when a user
notices that more support is needed to get a SFR implemented, or by
other users, who express that the issue is important for them as well.
Some rationales that give arguments and other simply try to up-vote
an issue (+1). Especially in SFs the question-/answer-pairs for clarifi-
cation (old rose ) often occur after the original SFR. If this happens,
more elicitation is needed to understand and implement the feature
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request. For bug-related information, the coders named the clarifica-
tion phase cause diagnostics (light green ), since the bug descriptions
generally did not need clarification, but the actual cause of the prob-
lem had to be found, e.g. by providing reproducibility information.
The as-is status of the software is often used to describe the problem
in a bug. Sometimes even small user stories, consisting of one or two
sentences, were given to clarify or motivate a new SF. Besides un-
derstanding the request and performing the actual implementation,
implementation proposals or solution ideas (violet M) are discussed.

Another common information type is ITS management (yellow ),
which is used in bug-, feature- and refactoring-related issues. ITS man-
agement describes NL data with respect to the management of the
current issue and is therefore divided in subtypes like referencing
other information, closing the issue, mentioning duplicated issues or
changing attributes of an issue. Interestingly, this information can be
handled by the ITS itself and is therefore not really necessary in the
NL data. Some users, however, prefer not to use the ITS mechanisms
and express duplicates or references in the NL data fields. In contrast
to the ITS management information type, SE process-related issue types
the SE process of the respective project as a whole, e.g. process im-
provement.

Not much information with respect to prioritization can be found.
Generally, most scheduling (magenta ) is done in a very pragmatic
way. E.g. developers comment: “I will look into this tomorrow” or
“We should delay this feature”. On the other hand, information re-
garding the implementation status (light blue i) is often communicated,
e.g. “this was fixed in update 10” or “I already implemented part X
of this issue”.

Since RE aspects and SFs of ITS usage are the main interest of this
study, the issue types SE Process-Related, User Problem-Related and Not
SE-Related were not analyzed in detail.

11.2.2  Distribution of Issue and Information Types

Reporting in detail on every information type would go beyond the
scope of this chapter since many information types did not show
patterns in their distribution. However, mappings of all issue and
information types have been created during this study. These matri-
ces include, how issue and information types are distributed in the
NL ITS data fields (title, description and comment c; ...c,), combina-
tions of the types, and relations between information and issue types.
This data is available for download at the location given in Chapter 7.
Additional information on the distribution of issue and information
types can also be found in Appendix B. The following paragraphs
report on the findings from these mappings and focus on feature-
related information, since this is most relevant for Part v.
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ISSUE TYPES: Table 11.2 shows how issue types are distributed in
every project. The maximum numbers are printed in bold font. Ta-
ble 11.3 shows the most often occurring combinations of issue types.
Qualitatively, as expected, most issues include only bug-related, feature-
related, or refactoring-related information.

C:GEO lighttpd RADIANT REDMINE

ocCc. SENT. ocCc. SENT. OocCcC. SENT. ocCc. SENT.

Bug-Related 13 300 22 614 13 246 11 372
Feature-Related 17 267 6 58 7 141 20 674
Not SE-Related 14 29 19 53 16 58 23 82
Refactoring-Related 6 48 1 1 9 132 1 11
SE Process-Related 6 10 2 2 3 7 - -
User Problem 1 1 2 20 1 8 4 11
Unclear or Unknown 2 7 - - - - 2 10
Sum 59 662 52 748 49 592 61 1150

Occ. = Number of overall occurrences and Sent. = Number of sentences

Table 11.2: Distribution of Annotated Issue Types.

However, in some issues aspects of multiple issue types are dis-
cussed. Four issues include, bug- and feature-related information. An
example is c:geo issue #365. It first describes the as-is situation of a
bug. In this particular case, a certain color marking (similar to an icon)
is missing in the application. Then, cause diagnostics of the bug are
performed and during this discussion, implementation ideas for new
features (e.g. user configurable color markings and priority handling
for color markings) are proposed.

ISSUE TYPES OCCURRENCES
BR only 46

FR only 38

RR only 11

FR, BR 4

BR, SE process-rel. 4

user problem 3

FR, user-problem 3

BR, refactoring-rel. 2

N

SE process rel., refactoring rel.

Table 11.3: Top Combinations of Issue Types (> 2 Occurrences).

Although the SFRs are related to the original bug description, they
go beyond the original problem and describe new SFs. This combina-
tion could be found in longer issues, only (1 C I, and 3 C ), since
the discussion starts on one topic and takes some time to drift into
other topics. In four issues the SE process is discussed as a digression
of a feature-related discussion. This combination occurred, when con-
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ditions of a certain issue have enough generality to discuss the over-
all SE process. However, not a single issue explicitly discusses the SE
process, only. Another interesting combination are user problems and
feature-related information. This occurs in two ways: Firstly, when a
user has a very specific problem, that actually does not affect software
changes and then ideas for new features pop up. Secondly, if users
suggest a feature and it is already implemented. Then the feature re-
quests turns into a user problem, e.g. how to find a certain checkbox
(Redmine issue 638). In practice these combinations of issue types in
a single issue suggest that ITSs should offer better refactoring possibili-
ties, e.g. the extraction of a related issue from one or many comments.

Surprisingly, Not SE-related information occurs most often and is
at the same time very short (in terms of the number of sentences).
Mostly, because of small acts of politeness between the stakeholders.
For example, users often thank for “the great project” or for a “fast
reaction” with respect to SFRs or bugs. Although the sentiment in ITS
NL data was not explicitly analyzed, no coder found any maleficent
social interaction in the ITS. Communication is inoffensive and even
major bugs are reported in a neutral or friendly way.

INFORMATION TYPES: Table 11.4 shows the 20 most often occur-
ring information types. The full list of information types is shown
in Appendix B. Bug-, feature- and refactoring-related overviews are
used in the title only. However, in bugs sometimes the as-is situation
is used in the title to describe the bug, and in features and refactor-
ings, sometimes a request (e.g. “please add functionality ...”) is used
instead of a short overview.

Out of the 51 issues with feature-related information 18 include
clarification questions and 16 clarification explanations. These informa-
tion types are used to detail the SF or related solution ideas. For about
50% of the issues, no further clarification is added. In only six issues,
implementation or solution-related information is added. Solution ideas
are mentioned mostly before any clarification information. One expla-
nation for this is, that the solution helped to start a discussion.

In contrast, almost all bugs (58) contain cause diagnostics and 28
times technical information, like stack traces or log files, is added. For
28 bugs, explicit reproducibility information is added so that the bug
can better be resolved.

OTHER OBSERVATIONS: Some hypotheses evolved during coding,
which could partially be confirmed: Firstly, that bug-related issues con-
tained much more technical information (e.g. source code, stack traces,
and log files) than feature-related issues (H1). Secondly, that technical
information in feature-related issues is posted later than in bug-related
issues (H2). Whereas H1 seems to be true (642 sentences of techni-
cal information in bugs vs. 58 in features), H2 only partially holds.
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ISSUE TYPES OCCURRENCES SENTENCES
BR — Technical Information 28 642
BR — Cause Diagnostics — Explanation 31 218
FR — Solution Implementation 28 188
Not SE — Social Interaction 62 167
BR — Cause Diagnostics — As-Is 42 149
BR — Cause Diagnostics — Reproducibility 28 141
FR — Implementation Status 32 110
FR — Rationale — +1 17 105
FR — Rationale — Argument 25 99
FR — Request Functionality 40 21
FR — Scheduling 22 71
BR — Cause-Diagnostics — Question 19 68
FR — Clarification — Explanation 16 66
BR — Implementation-Status 29 63
FR — ITS-Management — Reference 25 63
BR — Solution-Implementation 19 59
FR — Technical Information 6 58
User Problem 9 46
FR — Clarification As-Is 17 44
FR — Clarification Question 18 42
BR — Overview 40 40
FR — Clarification — User-Story 4 35
FR — Overview 32 32
BR — ITS-Management — Reference 19 32

Table 11.4: Most Used Information Types.

Although 20 technical sentences could be found in feature descrip-
tions, none was found in the first comments c; and c¢;, and most in
comments c3 to cy1 up to ¢z, the situation for bugs was similar: 305
technical sentences in the description and another 337 in comments
c1 to c12. However, the combination of early and much technical in-
formation may be used as an indication to identify bug-related issues.

In terms of issue lengths, feature-related and bug-related issues are
roughly the same size. Another hypothesis was that bug-related issues
are shorter, since they need to be resolved quickly and they gener-
ally do not involve so many users (H3). Although more bug-related
issues (39% € Is) than feature-related issues (25% € I;) were very
short, the same medium and long issues were found (25% € In1).
However, late comments in feature-related issues are often longer and
include more discussions. Refactoring-related issues are mostly short
(none more than 9 comments). Assumably, these issues are mostly
used as a reminder for the developers and no further discussion is
necessary.
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Besides issues, that contain multiple issue types, as mentioned above,
only one wrongly classified issue was found in the researched projects
tat use the Redmine ITS. It seems that the number of correctly labeled
issues varies between different projects, since Herzig, Just, and Zeller,
2013 researched other projects than this study and found about a
third wrongly classified issues. Furthermore, Redmine itself is an ITS,
so the users may have a higher discipline to categorize issues cor-
rectly.

In the GitHub based projects, most issues are not categorized at all.
This is likely because issues do not need to be marked as bug or fea-
ture. Although a tag can be assigned, this simply is not done most of
the times. So, besides the project, the ITS’s architecture seems to influ-
ence categorization quality. In practice, the ITS should be chosen and
customized according to the needed metadata, since optional meta-
data (e.g. tags) are often omitted. Furthermore, defaults for metadata
fields should be chosen wisely (e.g. if an issue is categorized as bug
per default this may never be changed. A neutral category such as
‘undecided” could be used as default to prevent such problems. This
indicates that the actual category was not yet chosen).

KEYWORD BR FR

function 0.04 0.96
implement 0.04 0.91
feature 0.06 0.91
problem 0.87 0.06
exception  0.14 0

cause 0 0.89

Table 11.5: Top TF-IDF Scores.

TF-IDF was used to find potential keywords in the ITS NL data that
can be used to classify issues. An excerpt of promising keywords is
shown in Table 11.5. For issue types, some obvious keywords, e.g.
“bug”, “problem” or “feature” can give a strong hint on the correct
issue type, but there is still a chance of false positives. E.g. in Redmine
the keyword “bug” was found in two feature-related issues and only
one bug-related issue. Furthermore, the keywords only occur in a
minority of the issues so that the recall is also low. For information

types, no keywords could be identified.

11.2.3 Project Differences

As shown in Table 11.2, the 30 analyzed issues for each of the projects
c:geo, lighttpd, and radiant contain roughly the same amount of sen-
tences (592 — 748). The Redmine issues are significantly larger with
1160 sentences. The Redmine project is also older than the other
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projects, so one possible explanation is, that features and bugs in
Redmine are harder to describe due to the project size. Furthermore,
some issues in Redmine were significantly older than in the other
projects. Hence, another explanation is that old issues (and especially
features, see Table 11.2) get reactivated after some time and need to
be discussed again. An example can be found in issue #285 comment
#27: “Holy cow, this issue is [...] over six years old, and we’re still
asking what the feature means?”.

Besides different issue sizes, some information types were also
used differently. In the lighttpd project, 51% of all sentences are bug-
related technical information. Redmine and Radiant have around 15%
technical information. c:geo on the contrary, includes only 2% tech-
nical sentences, even though in this project, the maximum amount
of sentences (25%) was composed of bug-related cause diagnostics and
reproducibility information. Our hypothesis is, that this is due to the
audience and project type. lighttpd is a server application and bug- as
well as feature issues often include configuration snippets. Bugs are
also reported by technicians who run a server. Since stack traces and
log files are an important artifact in server administration, they are
often included in issues, too. c:geo on the other hand, is mostly for
ordinary users who want to play the geo caching game. They seem to
report bugs as well as feature requests on a higher level of abstraction
and do not want to deal with technical details. In practice this implies
that the content of a (good) feature or bug report largely depends on
the project type and audience.

In addition, scheduling activities, such as prioritization, differ in
the projects. In Radiant and c:geo, there is more talk about schedul-
ing (~ 30 sentences) than in lighttpd (7). Redmine (normalized over
all issues) is about in between. The high amount of explicit schedul-
ing mentioned in the ITS NL data is likely due to the fact that the
GitHub issue tracker does not provide the same flexible mechanisms
for scheduling as the Redmine ITS does. E.g. in the Redmine and
lighttpd projects, the Milestone- and the Roadmap-Feature of the Red-
mine ITS are extensively used and issues get prioritized and sched-
uled by assigning them to a certain milestone or software version.
In the GitHub based projects, this needs to be communicated in the
NL3. Still, it can be observed that scheduling is mentioned in the NL
of all projects, although the Redmine ITS offers extensive scheduling
features.

Please note that GitHub added a Milestone feature while this analysis was done.
Although this feature is not as flexible as in Redmine at the time of writing, more
flexibility might be added.
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11.3 THREATS TO VALIDITY

CONSTRUCT VALIDITY The taxonomy was created with a grounded
technique. To ensure the validity of the taxonomy, all coders created
and discussed a coding guidebook that was used during the rest of
the study. However, the taxonomy is not very fine-grained and may
therefore not be appropriate for other research without modification
or addition.

The content analysis was done by two coders without redundancy
and inter-rater agreement. This threat was minimized by (1) the use of
test issues (gaining a high inter-rater agreement, considering that ev-
ery possible NL sentence was coded), (2) extensive discussions on cod-
ing and (3) the use of a coding guidebook. Furthermore, the coders
worked in the same room, so that they could ask each other whenever
a sentence was unclear.

EXTERNAL VALIDITY Data from four different OSS projects was
sampled. These projects represent different characteristics of software
development projects as discussed in Section 11.1.2. The results can
be transferred to similar project settings. However, only 30 issues per
project could be annotated due to limited resources. Hence the re-
sults are not statistically significant. Other factors influencing the use
of ITSs and ITS NL data need to be investigated in depth, to make
results transferable between different projects.

11.4 RELATED STUDIES

Kunz and Rittel, 1970 first introduced the concept of issues in the
area of cooperatives. Their paper, published in 1970, already discusses
many prevalent concepts in modern ITSs, especially the possibility of
discourse, arguments and counter arguments. The information types
presented in this chapter narrow down these concepts or arguments
and counter arguments in the context of SE, making these abstract
concepts tangible.

There is a related block of research that tries to improve ITSs by ob-
serving 0SS developers or the analysis of ITS data. Zimmermann et al.,
2009 discusses how bug tracking systems can be improved from an
architectural standpoint. They point out that improvements need to
be tool-, information-, user-, and process-centric. Just, Premraj, and
Zimmermann, 2008 derive recommendations for improving ITSs from
developer interviews. Lotufo and Czarnecki, 2012 focus in improving
bug reports and suggest that game mechanisms could encourage ITS
users (Lotufo, Passos, and Czarnecki, 2012). Finally, Baysal, Holmes,
and Godfrey, 2013 focus on personalizing issue tracking systems for
different roles, similar to the idea of viewpoints in software architec-
ture (Finkelstein and Sommerville, 1996).
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All this research focuses on ITS users and provides suggestions to
solve some of the problems certain user groups face in ITSs. In con-
trast this study provides insights from the information-centric view
on ITSs.

Bertram et al., 2010 study communication and collaboration of is-
sue tracking in small, collocated teams. They focus on the social na-
ture, not on the SFs themselves. They state that ITSs are not designed
as requirement documentation systems and instead focus on achiev-
ing a task (e.g. by tracking the progress of an issue) which fosters
communication in the team. The taxonomy developed in this chapter
can complement similar studies to state information types explicitly
and thus provide not only qualitative but also quantitative insights.

One of the first studies, that includes information types in SE was
provided by Kitchenham et al., 1999. They define an ontology that
includes multiple SE aspects, such as product and process information
of software maintenance. The ontology is defined on a document level
and does not dig deeper into the content of these documents. Herzig,
Just, and Zeller, 2013 present different categories for bug-related issue
types. Ko and Chilana, 2011 analyze discussions in bug reports in
depth. They provide detailed categories for the discussion elements.

No study, however, analyzed all ITS NL data on a per sentence basis.
The provided taxonomies or categories of other studies are always
very specific for a certain aspect of ITS NL data or ITS usage. The
taxonomy defined in this chapter can serve as an umbrella for a broad
range of information types and details can be added using particular
taxonomies from related work.

11.5 IMPLICATIONS FOR SOFTWARE FEATURE DETECTION

This study presents a taxonomy of issue and information types in
ITSs. In addition it analyzes the ITS NL data of 120 issues in depth.
In about 50% of the feature requests that were analyzed no further
clarification of the request was needed and also in only about 50% a
solution was described. This implies that often a single sentence or a
small description can be sufficient to implement a feature.

The study also found that the information types in ITS NL data are
influenced at least by the project type, audience, and even the tech-
nical capacities of the used ITS. However, other issues include clar-
ifications and solution ideas related to the SFRs. Thus SFR detection
should be conducted on the sentence level in the best case. If this is
not feasible, the data field level should be considered, as it still deliv-
ers precise information on the SFR location and related clarifications
or solutions.

With the analyzed data of 120 issues, it was almost impossible to
identify keywords that can be used to classify information types. Key-
words should be compiled again on a larger dataset. Although no
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clear communication patterns could be found, SFRs are often formu-
lated using a similar wording. Thus a ML algorithm might be able
to create a statistical model from these similarities. However, SFR de-
tection cannot rely on certain sequences of information types and
no order could be identified within the information types. Thus the
relatedness of clarifications or solution ideas to an SFR is almost im-
possible to judge automatically. Hence a LE (rule-based) approach is
likely insufficient to detect SFRs.

Finally, feature-related information can be found in any part of the
issue. SFRs are common in issue titles and descriptions, but they can
occur in comments, too. This implies that an SFR detection should be
carried out on all data fields. In practice issues are usually categorized
according to their title or description. Hence SFRs in issue comments
cannot be found based on the ITS meta data, even if it is available and
well maintained.



SUMMARY OF INVESTIGATION STUDIES

The previous two chapters researched SFs in ITS data. In the following
the main findings relevant for SF detection are summarized. These
main findings will be picked up in Part v of the thesis to build a
method for SF detection.

SOFTWARE FEATURES IN ISSUE TRACKING SYSTEMS The first
study found that ITS can be considered a reliable source to detect
SFs, at least compared to the UD. Most importantly, the study found
that the ITS has the most fine grained information on SFs and that
the available information is usually up-to-date in contrast to the UD.
Even if the ITS does not contain the complete feature information as
for example in the Radiant project, this had a simple reason: the ITS
was not used since the beginning of the project, hence no data could
be recorded.

Digging deeper in the feature-related information, the study in
Chapter 10 found that issues describe SFs on different abstraction
levels. Although the ITS usually has a low abstraction level this is
not guaranteed. E.g. in the Mixxx and OFBiz ITSs, no requirement
level feature descriptions could be found, but the Radiant ITS con-
tains about 35% feature descriptions on the requirement level.

Furthermore, relations between issues with feature descriptions
could be identified. Some of these relations exist since course grained
features had to be refined, others had a technical nature. Interestingly,
these relations are seldom expressed as explicit trace in the ITS. Thus
trace information on related SFs or SFRs cannot be extracted easily.

Finally, the study found two problems with issue types: (1) issue
types are only assigned if the issue type is an obligatory field in the
ITS but not if the issue type is optional, and (2) a single issue type
is not always sufficient to categorize an issue as many issues discuss
feature- and bug-related information together. This implies that the
issue type, even if assigned correctly, cannot be used to detect SFRs
automatically.

ISSUE TYPES AND INFORMATION TYPES The study in Chapter 11
created a comprehensive taxonomy of issue- and information types.
Out of these information types some are clearly related to SFs. The
most important information related to SFs are the SFR, the request for
qualities, clarifications with respect to the SF, and implementation pro-
posals and solution details. This information is closely related to the
description of an SF. However, with respect to SF detection, other in-
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formation types can be considered noise in the ITS. Examples for in-
formation types that do not describe the SF are social interaction, ITS
management related information, scheduling information, or questions
regarding the current implementation status.

Furthermore, the study confirmed another important finding from
the first investigation study: feature related information can be found
in all parts of the issue, not only title and description. This is another
reason, why an SF detection should be approached on finer grained
scopes than the issue level. Although the detection should focus on
the SFR as central artifact describing the SF, other information types
such as clarifications should also be considered for a detection.

Finally, the study did not identify clear patterns in the NL of an
issue or in the information distribution. However, many NLP-based
approaches rely on such patterns to identify information by the use
of rules. E.g. Vlas and Robinson, 2012; Vlas and Robinson, 2013 use
rules to detect requirement descriptions automatically. The studies in
this part disclosed that such an approach cannot be adopted in the
context of SF detection for ITS data. At least not for the researched
projects.



PartV

ITSOFD: THE ISSUE TRACKING SOFTWARE
FEATURE DETECTION METHOD

The Issue Tracking Software Feature Detection Method, a so-
lution design to detect software features in ITS data, is de-
scribed in this part. First, the overall method is derived by
analyzing findings from the previous part and their impli-
cations on a solution design. Together with the description
of the method, related work is presented. Thereafter, each
chapter represents a solution study validating a major part
of the method.

The first study validates a solution for separating techni-
cal artifacts from natural language. This solution can be
used to preprocess issues in the following two studies.
Second, the main study of this thesis is presented: a ma-
chine learning based method to detect expressions that are
usually used to describe software features in issues. The
evaluation includes different machine learning techniques,
data preprocessing techniques and evaluation measures.
A third study discusses how well related issues can be
detected using information retrieval techniques.






DESIGNING ITSOFD

The previous chapter summarizes many insights from the two prob-
lem analysis studies in Chapter 10 and Chapter 11 with respect to ITS
data and especially with respect to NL in issues. These findings are
now used to create an applicable method for SF detection.

The next section derives implications for a solution design. Then
Section 13.2 introduces ITSoFD and finally Section 13.3 addresses other
work related to this design.

13.1 CHALLENGES IN SOFTWARE FEATURE DETECTION

Table 13.1 summarizes the findings of the investigation studies pre-
sented in Part iv that impact the solution design. The implication on
the solution design (1n) of each finding (¥ n) is discussed on the right

hand side.

FINDINGS

IMPLICATIONS

F1 Deriving a complete SF set semi-
automatically will be very difficult and
success will depend on the project and
the quality of the ITS data.

F2 SF information is likely contained
in only few issues of an ITS and can
be found in title, description, and com-
ments.

F3 The quality of issue type informa-
tion depends largely on the project and
the way issue types are implemented
in the ITS (obligatory issue types vs. op-
tional issue tags).

F4 Issue types are implemented on the
basis of issues in modern ITSs. How-
ever, a categorization per ITS data field
is not possible (i.e. comments cannot
be categorized explicitly).

F5 Project related factors like project
type, project audience, project matu-
rity, or the ITS used in the project influ-
ence the information types that reside
in the ITS and how they are structured.

11 SF detection cannot reliably derive
a complete feature set from ITS data
due to completeness issues. That said,
recall or the F1-Score should be max-
imized depending on the users inten-
tion.

12 SF detection should be applied to all
ITS data fields including the complete
set of comments.

13 Issue types cannot be used as (the
only) indicator to detect SFs in ITS data.

14 SF categories are not available for SF
detection in ITS data fields (e.g. if an
SFR appears in a comment to the issue).

15 It is important to evaluate to
what extend SF detection needs to be
implemented/tuned per project and
whether a method can be applied to
different projects.

Table 13.1: Implications of Investigation Studies for the Solution Design

(Continued on the Next Page).
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FINDINGS

IMPLICATIONS

F6 Keywords, communication pat-
terns, or reliable rules to detect SFs
could not be identified in the problem
analysis studies.

F7 The NL in issues is not always used
perfectly. Typos, or grammatical errors
can be found rather often as the ITS
users are seldom native English speak-
ers and there is usually no need to cor-
rect issue descriptions if they are un-
derstandable by the developers.

F8 Issues consist of NL mixed with
other data such as code snippets, stack
traces, or log file excerpts. To dis-
close technical information from NL in
ITSs the user needs to apply special
XML tags oder formatting instructions
which are not always applied.

F9 On the one hand a small part of the
NL in an issue often contains the SFR.
On the other hand long sentences or
clarifications are often necessary to de-
scribe the SF.

F1o Other issues, such as bugs or re-
factoring tasks are also tracked in the
ITS and are often related to SFs.

16 A reliable SF reliable detection can-
not be implemented using rules or sim-
ple LE, only.

17 Techniques such as grammatical
parsing depend on well written NL.
Although such techniques can be ap-
plied, one cannot rely on their results.
That is another reason why LE rules
should not be used in SF detection.

18 Depending on the detection method
and dataset this technical data might
influence the detection results (e.g. if
clustering or ML algorithms are used).

19 SF detection should ideally be flexi-
ble enough to deal with this situation.
It should be applicable to other SF re-
lated information types such as clari-
fications. It should be able to find in-
formation distributed across the ITS in
multiple issues.

110 Traces to information from other
issues that are related to a specific SF
can be important.

Table 13.1: Implications of Investigation Studies for the Solution Design
(Continued).

The findings and implications from Table 13.1 are important re-
quirements for ITSoFD, described in the following. Therefore, the next
sections include references to every finding and implication.

13.2 SOLUTION DESIGN

ITSoFD basically consists of four parts. First, the data is extracted from
the respective ITS APIs and converted to the GATE XML format. Second,
the data is preprocessed depending on the technical artifacts and NL
data present in the issues. Third, NL describing an SFs is detected
using ML techniques. Fourth, issues that contain related information
to those SF components are identified using IR techniques.

In the following, the term SFR is used as a synonym for “NL de-
scribing an SF”. This NL can be a request for an SF, a clarification with
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respect to an SF, or a solution idea for implementing an SF. SFRs are
elaborated in more detail in Section 13.2.3.

The flowchart in Figures 13.1 and 13.2 gives an overview of the
ITSoFD method. Both figures are complemented by Table 13.2, which
summarizes the obligatory and optional manual activities and the de-
cisions to be made whenever ITSoFD is applied. The left hand side
of the table shows index and name of the activity or decision. These
indices and names accord with the activities’ and decisions in Fig-
ures 13.1 and 13.2. The right hand side of the table gives a longer
description of the activity or decision.

13.2.1 ITSoFD Phase 1: Issue Extraction

This section describes Phase 1 in Figure 13.1. First, the ITS data is
extracted from the respective ITS APIs. The extraction is realized as
an adapter pulling the issues from the ITS API and transforming the
extracted data in an XML format processable by GATE. This way GATE’s
annotation editor can be used in Phase 2 to annotate issues as training
data’.

During this transformation all ITS data fields, the ITS metadata and
the data field metadata as well as links to the original issues should
be preserved.

13.2.2 ITSoFD Phase 2: Issue Preprocessing

This section describes the left hand side of Phase 2 in Figure 13.1.
Now that the data is available in a standardized XML format after
Phase 1, every ITS data field needs to be preprocessed. As issues may
contain a mixture of NL and technical information (¥/18), two deci-
sions need to be made to properly configure the necessary amount of
preprocessing. First, it needs to be determined whether the ITS con-
tains technical information (see D7 in Table 13.2 and Figure 13.1). If
it does not, or if there is only a negligible amount of technical infor-
mation in the ITS, then there is no need for separating the technical
information. If a non-negligible amount of technical information re-
sides in the ITS, the technical information should be separated from
the NL for two reasons:

1. Preprocessing techniques do not work as intended on technical
data (e.g. removing English stop words in source code does not
make sense.).

1 In the flowchart notation the activities are modeled as processes.

2 And evaluation data (e.g. the gold standard) for the according experiments in Chap-
ter 15. Note that any tool can be used to annotate the training and evaluation data
and GATE was used for convenience.
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( begin ITSoFD )

D;: tech data?

.............. .

apply tech data heuristics

O;: adjust tech data
no clustering threshold

D,: mark-up used?

apply tech data clustering ‘

!

apply mark-up
tech data RegExes apply tech data clustering ‘

!

preprocess NL:
punctuation removal,
lowering, stemming,
stopword removal

|

D3: detection level?

issue level, data field level, or sentence level

D4: maximize R?

No, maximize Fl-Score
with SGD/LR classifier

yes, use NB/MNB classifier v
’ extract BOW MLF ‘ extract BOW and
ITS meta-data MLFs

, l

’ NB or MNB based detection ‘ ’ LR or SGD based detection

SFR detection done P
(ITSoFD cont. in Figure 13.2&‘

Figure 13.1: ITSoFD Overview (Part 1).
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ITSoFD
(cont. from Figure 13.1)

Phase 4: Identifying Issues With Related Information,
see Section 13.2.4.

C ITSoFD done >

D5: include re-
lated issues?

no

gather developer traces ‘

.

remove technical ar-
tifacts form issues

w O3: adjust data field
i weights for trace retrieval

‘ O4: adjust trace re-
‘ trieval threshold

apply VSM for trace retrieval
with higher weight on
title and description

¢

gather SF related issues. (e.g.
issues connected to SFRs)

I
C ITSoFD done )

D; obligatory
user decision.

Figure 13.2: ITSoFD Overview (Part 2).
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DECISION / TASK

DESCRIPTION

Dq:

Dz:

D3:

Dy:

D5Z

M]Z

O]Z

042

tech data?

mark-up used?

detection level?

maximize R?

include related

issues?

provide training data

add tech data heuris-
tics

adjust tech data clus-
tering threshold

adjust data field
weights  for trace
retrieval

adjust trace retrieval
threshold

Do issues in the ITS contain a non-negligible
amount of technical data? E.g. do issues contain
multi-line code snippets, log files, or stack traces?

If the ITS contains technical data, is this technical
data marked-up properly? Marked-up technical
data can easily be identified as it is properly for-
matted in the ITS.

The user needs to decide whether SFR compo-
nents should be detected on the issues level, data
field level or sentence level (e.g. should issues be
classified as a whole or every title, description,
and comment or every single sentence, see Sec-
tion 5.3 and Section 13.2.3).

Should ITSoFD SFR detection maximize the recall
or balance precision and recall? E.g. does the user
want a rather complete list of SFRs that might con-
tain false positives, too, or is completeness not an
issue but the reported SFRs need to be as correct
as possible (see Section 13.2.3)?

Should ITSoFD report on issues that are related to
the SFRs (see Section 13.2.4)?

The user needs to input 100 or more examples
for each SFR component that should be detected.
Components can be one of requests, clarifications,
or solution ideas (see Section 13.2.3).

The user can add project specific heuristics for the
separation of technical data or remove heuristics
that are not relevant for the project (e.g. keyword
lists for programming languages that are not used
in the project, see Section 13.2.2.1.)

The user can experiment with the clustering
threshold to improve the results for technical data
separation (see Section 13.2.2.1).

The user can override the default weights for trace
retrieval (see Section 13.2.4).

The user can adjust the threshold how similar
issues need to be, so that a trace is created
(tracet(i,1’), see Equation 4.5 in Chapter 4 and Sec-
tion 13.2.4).

Table 13.2: Summary and Descriptions of Manual Activities in ITSoFD.
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2. The following steps in ITSoFD perform better if technical data is
removed (see Section 13.2.3 and Section 13.2.4).

If the technical information is properly marked up (see D, in Ta-
ble 13.2 and Figure 13.1), regular expressions can be used to separate
the technical data form the NL3. However, if the technical informa-
tion is not properly marked-up, ITSoFD proposes to apply a mixture
of heuristics and hierarchical clustering to separate one from another.
Details of this separation method are described in the following sec-
tion and the method is validated in Chapter 14.

13.2.2.1  Separating Natural Language and Technical Data

This section describes the right hand side of Phase 2 in Figure 13.1. To
separate technical data form NL that is not properly marked-up three
steps are executed:

1. The document is segmented by white space tokenization.

2. Every token is classified as NL or technical information by mul-
tiple heuristics.

3. Accumulations of technical information and NL are united by
bottom-up hierarchical clustering* to improve the detection rate
of the heuristics.

These steps work independently of the NL in which the issue is writ-
ten, so that it can be applied to projects in any language, and the
programming language(s) that represent the technical data in the doc-
ument.

Heuristics can be considered a rather basic method to identify tech-
nical information such as code snippets, stack traces or log files within
NL documents. They usually do not retrieve good recall or precision
rates, because heuristics do make mistakes. E.g. a heuristic based
on programming language keywords such as “if, case” or “interface”
would mark those words as code even if they occur in NL texts.

HEURISTICS FOR TEXT DETECTION After a manual analysis of
multiple documents, some patterns could be found within technical
information. The detection of these patterns is implemented using
the following heuristics, which are used for the initial detection of
technical information within the NL:

1. Keyword Detection: the document is scanned for keywords that
occur in different programming languages, such as class, if,
switch, .... The list of keywords is compiled from the ten
most popular languages according to the TIOBE index>.

3 Appropriate regular expressions for the GitHub and Redmine ITSs can be found in
Appendix D.

4 Also called agglomerative hierarchical clustering.

5 http://www.tiobe.com accessed on 14th September 2014.
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2. Fuzzy Line Equality Detection: the equality of two or more lines is
calculated based on the words these lines have in common. The
words are compared as a set, i.e. independently of their position.
This way, lines with similar patterns can be found if words are
swapped or positions are shifted, which is usually the case for
log files or stack traces.

3. Fuzzy Line Equality Detection: the equality of two or more lines is
calculated, based on the words these lines have in common. The
words are compared as a set, i.e. independently of their position.
This way, lines with similar patterns can be found, even if words
are swapped or positions are shifted, which is usually the case
for log files or stack traces.

4. Regular Expression Detection: Regular expressions that search for
occurrences of special characters (e.g. parentheses or asterisks),
indentations that usually occur in source code, or words written
in a special formatting such as CamelCase, or under_score are
implemented.

Each heuristic is applied to the text and marks matching tokens as
technical information. This step can be compared to using a high-
lighter on the document. Since several heuristics are in use, text can
potentially be marked multiple times. This, however, has no influence:
i.e. no weight is added to the tokens marked by multiple heuristics.

Optionally, the heuristics can be customized according to the ana-
lyzed repository or new heuristics can be added (see Oy in Table 13.2
and Figure 13.1). For example additional regular expressions can be
added to detect certain code snippets. Similar to the regular expres-
sion detection, the Fuzzy Line Equality heuristic can compare n lines.
Tweaking this setting can be useful if a log file or a stack trace has
a similar format in general but includes different looking lines in be-
tween. Experiments using different settings for this parameter with
n € {1,...,10} showed that n = 3 is a reasonable default, which is
used in the evaluation, too.

CLUSTERING AND CLASSIFICATION Although the heuristics de-
tect parts of the technical information, they generally fail in two ways:
firstly, they mark parts of the NL as technical information as described
above. Secondly, they miss some technical information (e.g. because
a NL string occurs in the code). This is illustrated in Figure 13.3: the
heuristics detect the Java keyword “interface” and the surrounding
quotation marks erroneously as code.

To overcome the weakness of heuristics, bottom-up clustering (Man-
ning and Schiitze, 1999, pp. 500) is applied to the tokens of the text. In
simple terms it ‘fills the gaps’ that are left out by the heuristics. The
clustering presumes that smaller, differently classified clusters cgis
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Initial tokenization and heuristics:

Natural language text can contain keywords such as

" interface ". However, it should not be detected as
code.

First clustering step:
Natural language text can contain keywords such as
" interface ". However, it should not be detected as code.

Second clustering step ‘swallows’ the smaller cluster:
Natural language text can contain keywords such as
" interface ". However, it should not be detected as code.

where () marks an NL cluster and
(O marks a technical artifacts cluster.

Figure 13.3: Example for Clustering Steps.

between clusters of the same class csame have been classified wrongly
by the heuristics beforehand. The those smaller clusters cgif are ab-
sorbed when the clustering algorithm merges the clusters csame. TWo
clustering steps in Figure 13.3 illustrate how the clusters evolve.

Details of the clustering algorithm are shown in Figure 13.4. Here
the influence of different cluster similarities with respect to cluster
merging is illustrated in line seven and eight. Choosing an appro-
priate cluster similarity significantly influences precision and recall,
which is confirmed by the empirical study in Chapter 14.

Initially, every token t; in Figure 13.4 is its own cluster ¢; € C,
where C is the set of all clusters. In every iteration, two clusters in C
are merged based on their similarity sim(x):

1 if intersect(ci, ¢j) = 1
sim(ci, ¢j) = 1— % if class(ci) = class(c;) (13.1)
0 otherwise

Thus, similar clusters can be merged even if they are not close to each
other. Every time two clusters c; and cj are merged, the classifica-
tion of the newly created cluster ci; is determined by the ratio R of
characters marked as technical information. Two clusters are consid-
ered technical information for R > 0.7. This settings yields the best
results for all evaluated documents in the evaluation study presented
in Chapter 14. The class(ci) function in Equation 13.1 outputs the
classification of a cluster with respect to R. The dist(cy, ¢j) function in
Equation 13.1 returns the amount of tokens between c; and c;.

The clustering stops, if the minimum similarity smin cannot be
reached and the text is classified so that every token is either NL or
technical information.
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Given: a set X = x1,...,xn of objects and
a function sim: P(x) x P(x) — R (see Equation 13.1)

: fori:=Tton do
ci == {ti}
end for
C:={ci,...,cn}
cji=n4
while |C| > 1 do
(cn1,cn2) I=argmax(c, ¢, jecxc sim(cy, cy)
if sim (cn1,¢n2) < Smin then
stop
end if
Cj:=Cni1UcCn2
C:= C\{cn1,cn2tU{cj}
ji=j+1
14: end while
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Figure 13.4: Bottom-up Clustering, Adapted from Manning and Schiitze,
1999, pp- 500-

The empirical study in Chapter 14 shows that a spmin of 0.9 repre-
sents a safe default value for the clustering step. Nevertheless, vary-
ing this value in the range of 0.8 and 0.99 may improve precision and
recall depending on the project (see O, in Figure 13.1 and Table 13.2).
However, the empirical study also shows that values very close to 1
have a negative impact on the results®, which is why a value above
0.9 is not recommended without further experimentation.

13.2.2.2  Standard Preprocessing Techniques

This section describes “preprocessing NL” in Phase 2 of Figure 13.1.
At this point, the NL inside every issue is properly identified and
separated from technical data. To summarize, this was done because,

1. only a negligible amount of technical data was present in the
issues, so that all text can be considered NL, or because

2. the technical information was properly marked up and could
be separated using regular expressions (D), or because

3. the steps described in Section 13.2.2.1 were applied (D;).

Now the following three standard preprocessing techniques are ap-
plied on the NL data of every issue:

* Lowering

6 Confer Figure 14.2 on page 129 for a good range of values for syjp.
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¢ Stemming
e Punctuation Removal
¢ Stopword Removal

The above preprocessing techniques have the highest positive and
the least negative impact for all further steps in ITSoFD as confirmed
by the two empirical studies in Chapters 15 and 16. These studies
evaluate the influence of all preprocessing techniques mentioned in
the Background Section 3.2 on page 24.

After Phase 2, all issues, comments and ITS metadata are extracted.
Depending on D1, the NL is separated from technical data and all ITS
data fields that contain text are preprocessed. This status is summa-
rized in Figure 13.5.

13.2.3 ITSoFD Phase 3: SFR Detection

This section describes Phase 3 in Figure 13.1: the actual SF detection.

UPFRONT DESIGN DECISIONS As a first solution idea, a rule-based
LE method, similar to the one successfully applied to RAs (Vlas and
Robinson, 2012; Vlas and Robinson, 2013), was considered for SFR de-
tection. However, as no clear communication patterns (¥/16) can be
found in issues and the NL contains much flaws and grammatical er-
rors (F/17), this design could not be pursued any further: rules rely
on a precise and flawless NL and especially on the accurate use of
grammar. Therefore, the SF detection approach in ITSoFD needs a tech-
nology which can adapt to such flaws: as introduced in Section 5.2,
ML is such an adaptive technology that can learn from examples.

As discussed in F/12, the method needs to be applied to all ITS
data fields individually and should detect the sentences containing
the SFR in the best case. However, many MLFs that can be derived
from an ITS are not available on the level of data fields or sentences,
s0 ITSoFD uses two concepts to include MLFs from other levels in the
classifier models: (1) inheritance of MLFs from broader levels of de-
tail, and (2) aggregation of MLFs from narrower levels of detail. Both
concepts were introduced in detail in Section 5.3 on page 36.

DETECTABLE INFORMATION TYPES In theory any SF related in-
formation, such as the information types developed in Chapter 11,
can be detected by ITSoFD’s ML-based approach. However, to evalu-
ate ITSoFD, training and evaluation data has to be created manually
which takes time and effort”. Hence ITSoFD was evaluated with three
information types as described in Chapter 15:

7 E.g. the training and evaluation data used in Chapter 15 took about two business
days per annotator or eight business days in total.

113



114

DESIGNING ITSOFD

Trace
Traces Recov-

ered.

Preprocessed
Results of Issue
Phases 1/2: Cﬁ Q C:%
Issues Ex-
tracted and Preprocessed
Preprocessed. Comment
Results of
Phase 2:

?

SFR Compo- SFR component
nents such
as Request,
Clarification,
and Solution
Detected. Cﬁ Ci% <>Q
Results of
Phase 3: Cﬁ

&

ppel

Figure 13.5: ITSoFD Results for Each Phase.



13.2 SOLUTION DESIGN

1. the SF request itself,
2. clarifications that are related to a SF request, and

3. solution ideas that are related to a SF request.

In general, various factors influence the SFR detection. However, in-
formation types that are expressed using certain language patterns
can be detected best. For example the requesting part in an SFR often
follows a pattern: “I/we would like to have ...”, “could you please
add ...”, “you/we should add ...” or “the software should ...”. The
evaluation in Chapter 15 shows that SF requests and clarifications can
be detected best, whereas a detection of solution ideas does not work
well. This is consistent to the claim above: solution ideas are often
very long and the NL seldom follows patterns as solutions are very
individual compared to requests. Thus only a detection of SF requests
and clarifications can be recommended for ITSoFD without further ex-
perimentation. Both information types are important components to
understand an SF as discussed in Chapter 11%. See Chapter 15 for
more details with respect to the evaluation.

In the following it will not be distinguished explicitly between
these information types. The umbrella term SFR will be used substitu-
tionally for SF requests and clarifications alike.

TRAINING DATA The user needs to annotate at least 100 SFRs on
the level of sentences to train the classifiers, first (see M in Table 13.2).
As a rule of thumb: the more examples are provided, the better the
detection. However, the evaluation in Chapter 15 shows that 100 an-
notations is a reasonable minimum for SFR detection. Maalej and
Nabil, 2015 compare classifier results using different amounts of train-
ing data in a similar ML context. On the one hand the classifiers
in their experiments continuously improve up to the maximum pro-
vided amount of 300 training instances. On the other hand more than
200 training instances impede the classifier training time significantly.
Thus between 100 and 200 instances are recommended. To provide
the training data for ITSoFD, GATE’s annotation editor can be used for
convenience. Figure 13.6 shows a screenshot of annotated issues in
GATE.

Training data is a prerequisite for all ML approaches. Thus it is
preferable that a model, once trained, can be applied to another data-
set or project as well (see ¥/16). The evaluation in Chapter 15 shows
that reuse of ML models if possible. However, the projects should use
a similar wording to describe issues and models cannot be transferred
arbitrarily. Hence it is recommended to validate results whenever ML
models are reused across projects. This is discussed in more detail in
Section 15.4.

8 Refer to Figure 11.3 on page 88 for a complete overview of information types.
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Figure 13.6: Text Annotation with GATE.

DETECTION LEVEL We know that SF related information can differ
in size and that multiple information types can be considered related
to an SF (F/19). Hence ITSoFD suggests three different ways to detect
SFRs. The user should choose whether the detection should take place
on the level of issues, the level of ITS data fields or on the level of sen-
tences. On the issue level every issue is classified whether it contains
an SFR, on the data field level every data field is classified and on the
sentence level every sentence. The evaluation in Chapter 15 shows,
however, that a detection on the sentence level is not recommended
due to a low precision and recall, whereas issue and data field level
can both be recommended.

IMPORTANCE OF RECALL AND PRECISION  Once the training data
is provided, models for various classifiers can be build with this data.
The evaluation in Chapter 15 shows that different classifiers perform
differently well depending on the user goal (cf. ¥/11). Some classi-
fiers, such as NB and MNB detect almost all potential SFRs, thus hav-
ing a high recall. Others, such as SGD and LR have a lower recall but
a higher precision. Hence, the user needs to decide whether a high
recall is more important than precision or whether a lower recall can
be taken into account improving precision (see D4 in Table 13.2). De-
pending on the decision either the NB or MNB classifier or one of SGD
or LR should be used in ITSoFD.

CLASSIFICATION We know that issue categories are often wrong
or missing and thus cannot be used for a reliable detection (¥/13).
Even if categories are maintained well in a particular project they
offer a classification on the issue level, only. However, ITSs do not
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offer categories on the level of ITS data fields (F/14) and especially
not on the level of sentences. However, a good categorization on the
issue level can support the detection SFRs.

Therefore, the NL in the ITS is analyzed in addition to looking at
issue categories. ITSoFD recommends to train a ML model based on
the NL and on the ITS metadata, which is backed by the evaluation
in Chapter 15. In particular two cases are shown in the evaluation:
(1) the BOW MLF alone delivers the best results if the user aims for
a high recall. (2) If the user aims for a high F-score, ITS meta-data
should be considered together with the BOW. Hence, different sets of
MLFs should be considered for SFR detection, depending on the user
decision Dy4. This is visualized as two different paths in Figure 13.1.

Using the MLFs, the classifier decides for each issue, data field, or
sentence whether it contains an SFR. The classification level depends
on user decision D3. Chapter 15 shows a detailed evaluation of this
phase and discusses the performance of the classifiers under different
circumstances. Roughly, however, F-scores around 0.4 or a recall up
around 0.98 with a precision of about 0.15 can be expected for a de-
tection on the data field level. On the issue level F-scores are usually
slightly better and worse on the sentence level. All three levels result
in a similar maximum recall with varying precision.

Finally, all SFRs are detected after Phase 3. Depending on decision
D3 either issues, ITS data-fields or sentences are detected and depend-
ing on decision Dy4 either the F-score or MAX(R), P>, is maximized.
These intermediate results are reflected in Figure 13.5.

13.2.4 ITSoFD Phase 4: Related Issue Tracing
This section describes Phase 4 in Figure 13.2: tracing to related issues.

INTRODUCTION Detecting SFRs or other SF-related NL is a good
start to find the information describing a particular SF. However, find-
ings F/19 and F/I 10 both suggest that SF-related information can be
spread over multiple issues. Although ITSs provide means to create
traces between issues, these means are seldom used by the develop-
ers and thus the traceability between issues is usually bad.

Hence the third part of the solution improves the traceability be-
tween issues so that related issues can easily be found. ITSoFD sug-
gests to extract the traces provided by the developers in the ITS, first,
as the study in Chapter 16 finds that these traces are seldom wrong.
Then an IR based trace retrieval approach should be used to improve
the traces. With a good traceability, the information related SF can
easily be found by following those traces.

Traces created by the developers can easily be extracted by pars-
ing domain specific languages that create links between issues, as
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explained in Section 2.2. After extracting the links from the issues NL,
these links can be added to the trace matrix.

Such a trace matrix is usually sparse, thus trace retrieval should
be applied next. However, the evaluation study in Chapter 16 shows
very ambivalent results with respect to trace recovery in ITSs. How-
ever, some best practices can be suggested, well knowing that trace re-
trieval in issues is still a topic for further research. Due to this volatile
nature of ITS trace retrieval, the user should explicitly decide whether
this part should really be used (see decision Ds).

WEIGHTING ITS DATA FIELDS In general IR algorithms consider
every term in a document equally. Data fields such as issue title and
description are often focused clearer on the topic, whereas comments
can digress and even discuss unrelated problems (discussed in Part iv
or by Bertram, 2009). Thus titles and descriptions should be consid-
ered more important by the IR algorithm. This can be achieved by as-
signing higher weights on title and description. In addition, the eval-
uation described in Chapter 16 shows that not considering technical
information usually improves trace retrieval results. Overall ITSoFD
recommends weighting the title four times higher than comments
and descriptions twice as high as comments for IR. Since technical
information should not be considered at all, it should be weighted
Zero.

ALGORITHMS AND THRESHOLDS Due to the results of the evalua-
tion study in Chapter 16, the VSM IR algorithm delivers the most reli-
able results for trace retrieval between issues. However, as discussed
in the Background Chapter on page 31, Equation 4.4 shows that IR
algorithms cannot be used to define traces directly. Instead they mea-
sure the similarity between documents. This similarity value — usu-
ally a value normalized between 0 and 1 — needs to be thresholded to
create a link (cf. Equation 4.5).

Modifying the threshold can significantly improve results for a par-
ticular project (i.e. a particular set of issues) and experimentation with
the threshold is recommended (see O4 in Table 13.2). A higher thresh-
old improves the trace retrieval precision on the cost of a lower recall,
whereas a lower threshold improves recall on the cost of precision.
In the evaluation in Chapter 16 F-scores up to 0.5 are achieved in
one project, using thresholds of 0.35 for VSM. Hence this threshold
represents a good starting point.

13.3 RELATED WORK

Related work for this solution was compiled by screening the last five
years of the “IEEE International Requirements Engineering Confer-
ence (RE)”, the “International Working Conference on Requirements
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Engineering: Foundation for Software Quality Conference (REFSQ)”,
the “International Conference on Mining Software Repositories (MSR)”
and the “International Conference on Software Engineering (ICSE)”.
Forward and backward snowballing was then applied to relevant
publications. In addition, an explicit search for systematic reviews in
the respective fields of each study using the IEEE?, Springer'®, ACM",
and Sciencedirect'* databases was performed*3.

In the following sections, the related work for every part of the
solution is presented.

13.3.1 ITS and Task Specific Preprocessing

SEPARATION OF TECHNICAL INFORMATION AND NATURAL LAN-
GUAGE Various techniques have been presented to deal with the
separation of NL and technical information. This section presents
these approaches and discusses the differences with respect to the
approach described in Section 13.2.2.1 and evaluated in Chapter 14.
Bettenburg et al., 2011 presented two techniques to separate NL and
technical information. The first approach (Bettenburg et al., 2011) is
the most similar to the one described in Chapter 14 as it includes text
heuristics. First, they use a spell-checker to identify wrongly written
words and treat those words as technical information. Then, they val-
idate the findings of the spell-checker by applying additional heuris-
tics. Their second approach uses island grammars (Moonen, 2001) to
identify patches, stack traces, source code and enumerations (Betten-
burg et al., 2008). The outcome of this approach, however, is a binary
classification, since it only checks whether code, stack traces, patches
or enumerations are present in the document or not. However, the
exact location of these artifacts is not identified. In contrast ITSoFD

http://ieeexplore.ieee.org

http://link.springer.com/

http://dl.acm.org

http://wuw.sciencedirect.com

This approach was used in favor of a complete systematic database search as sug-
gested e.g. in (Kitchenham and Charters, 2007) due to the circumstance that most
relevant search terms with respect to ITSoFD deliver extremely broad results that can
hardly be curtailed further. Although systematic literature reviews were proven very
reliable, a broad search term usually deteriorates results (MacDonell et al., 2010) and
the thesis’ topics adhere many broad search terms. A systematic database search was
approached and although some relevant items could be identified, this review could
not be conducted thoroughly. Examples for problematic terms in the context of this
thesis are: “issues”, as issues are addressed in every scientific paper; “feature”, a
term that occurs in many publications describing a software implementation; “track-
ing”, a well-known technique the robotic and computer vision fields; or “natural
language”, which is relevant and used as a term in publications from almost any
scientific field. However, any relevant intermediate results from the database search
are included in the related literature. Finally, this thesis is based on the findings of
five peer reviewed publications. Any related work mentioned by the referees of the
respective publications was included if appropriate.
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classifies the specific part of the document, i.e. the line or word that
contains the technical data.

Bacchelli et al., 2012 introduced an approach that combines parser-
based techniques with an NB classifier as a term-based technique to
classify documents in NL, stack traces, patches, code and a class they
call junk™. The approach performs very well, but it relies on a manu-
ally annotated training dataset for the NB classifier. Their approach is
based on earlier work published in Bacchelli, D’Ambros, and Lanza,
2010; Bacchelli et al., 2009 and Bacchelli et al., 2011. In contrast, the
approach described in Chapter 14 does not need manually annotated
training data.

Cerulo et al., 2013 address the problem using Hidden Markov Mod-
els, which train from the data. Their approach does not require any
manual tuning or the definition of regular expressions. Similar to
the approach by Bacchelli et al., 2012 it tries to learn from the data
in a supervised manner. Thus both approaches rely on a training
dataset. In contrast ITSoFD performs well on different datasets with-
out project specific tuning. It can, however, be further improved by
adding project specific heuristics or regular expressions.

13.3.2 SFR Detection

This section presents approaches related to SFR detection and dis-
cusses the differences with respect to the solution described in Sec-
tion 13.2.3 and evaluated in Chapter 15.

Ryan, 1993 discussed the role of NL RE. He states that “although the
computing professional will not be replaced by a super-intelligent
NL, there are still a number of realistic uses for NLP in the RE pro-
cess”. This statement is still valid over 20 years later. SFR detection is
one possibility to support the computing professional in modern ITS
driven environments.

To the knowledge of the thesis” author, no published work tries to
detect SFRs in ITSs using ML techniques. Hence, the related work with
respect to this solution component is limited.

First of all, there is the field of feature extraction. Recently, Bakar,
Kasirun, and Salleh, 2015 performed a systematic literature review on
feature extraction approaches from NL requirements in the context
of software product lines. Their review includes multiple methods
to summarize, cluster, or abstract from software requirements and
to generate representations of SFs. In contrast to the approaches re-
viewed by Bakar, Kasirun, and Salleh, 2015 ITSoFD uses ITS data as in-
put, whereas the reviewed approaches utilize requirement documents
or product descriptions. However, in contrast to ITS data, such require-

Junk is “text that does not add valuable information, such as auto-generated dis-
claimers ... .” (Bacchelli et al., 2012).
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ment documents or product descriptions are usually better structured
and less error prone.

In addition to feature extraction, the detection quality requirements,
also called non-functional requirements, is an issue for automated
classification tasks. Cleland-Huang et al., 2006 detect and classify
quality requirements. Rahimi, Mirakhorli, and Cleland-Huang, 2014
extract and visualize quality concerns from SRS. Both approaches,
however, rely on a structured and well written SRS. In addition, both
approaches use mainly keywords, or hierarchies of keywords to do
the classification. In contrast, ITSoFD uses ML to achieve the classifica-
tion and incorporates many text-based MLFs, not only keywords.

Another branch of related work with respect to RAs is automatic
RA classification. Ott, 2013 and Knauss and Ott, 2014 classify large
volumes of NL requirements with multi class NB classifiers. The clas-
sification of large volumes of RA data has one advantage, however: it
provides a large amount of well-written training data, which usually
improves prediction rates.

Furthermore, some mining techniques have been proposed on the
side of software architecture and structured RAs. Casamayor, Godoy,
and Campo, 2012 presented a comprehensive review on mining tex-
tual requirements to assist architectural software design. Most of the
reviewed approaches use structured RAs as basis for these mining
tasks. Boutkova and Houdek, 2011 proposed a semi-automatic identi-
fication of features in SRSs. Their approach too relies on the document
structure of the SRS and manual work to align structural information
with the identification algorithm.

Much work has been done to automate the classification of issues:

1. The classification of bugs vs. software features (Antoniol et al.,
2008; Chawla and Singh, 2015; Neelofar, Javed, and Hufsa, 2012;
Zhang and Lee, 2011).

2. The problem of issue triagingr, e.g. assigning a suitable devel-
oper to resolve the issue (Ahsan, Ferzund, and Wotawa, 2009;
Duan et al., 2009; Kagdi et al., 2012; Matter, Kuhn, and Nier-
strasz, 2009; Nagwani and Verma, 2012; Shokripour and Anvik,
2013; Zhang and Lee, 2013; Zou et al., 2011).

3. The priority or severity prediction for bugs (Duan et al., 2009;
Lamkanfi et al., 2011; Mukherjee and Garg, 2013; Tian, Lo, and
Sun, 2012).

Such classification tasks show improving results over the years and
are an ongoing topic in the MSR community (Hemmati et al., 2013).
The SFR detection in ITSoFD builds on this knowledge with respect to
preprocessing techniques and MLFs that have been applied in issue
classification tasks and it extends the body of knowledge by combin-
ing existing with additional preprocessing techniques. The evaluation
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study in Chapter 15 contains the most complete set of classifiers and
presents a combined evaluation of MLFs that performed well in previ-
ous work. All of the studies shown above classify either the issue as a
whole, the title, and/or the description of an issue. The SFR detection
in ITSoFD is complementary, as it identifies SFRs in ITSs on different lev-
els of detail (in other words ITSoFD classifies data fields or sentences).

It should be noted, that some ITS related classification methods are
validated by comparing the classifier results to given ITS meta-data.
However, Herzig, Just, and Zeller, 2013 showed that ITS meta-data is
often assigned wrongly and that this course of action can introduce
evaluation errors. Hence the evaluation of all studies in this thesis
relies on manually created gold standards.

Maalej and Nabil, 2015 presented similar work to the SFR detection
method in ITSoFD: they classify the reviews in app stores as bug report
or SFR using ML. Similar to the findings presented in the beginning
of this chapter, they too face problems with respect to badly written
NL and incomplete sentences. Preprocessing and evaluation of ITSoFD
builds on this knowledge and complements their work. In particular
ITSoFD includes ITS meta-data as MLFs in the classification task.

Vlas and Robinson, 2012 and Vlas and Robinson, 2013 present a
bottom-up approach for requirements detection. Their definition of
requirements includes SFRs. They use heuristics, keywords, and an LE
based approach. However, they assume that a software requirement
is formulated using a single sentence, which in is not always the case
as discussed in Section 13.1. Hence, SFR detection in ITSoFD uses super-
vised ML algorithms to overcome the limitation of classifying single
sentences, only.

So far the discussed approaches use NL or structured NL as input.
However, many automation techniques in RE are based on formal
or semi-formal language. Such methods are not included in related
work, since they rely on different techniques (e.g. mostly parsers rely-
ing on the formalism in combination with finite state machines) than
the ones applicable for ITSoFD. Even though methods came up re-
cently that derive models and formal language from NL (Ghosh et al.,
2016), such methods are still applied to semi-formal NL that cannot
be found in issues.

Finally, it is important not to confuse the detection of SFRs with the
research field of feature location. Feature location methods discover
the source code implementing SFs. Taxonomies and surveys on fea-
ture location methods were compiled by Dit et al., 2013 and Rubin
and Chechik, 2013.
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13.3.3 Trace Recovery in ITS Data

This section presents trace retrieval approaches and discusses differ-
ences with respect to the solution described in Section 13.2.4 and eval-
uated in Chapter 16.

One of the first studies in trace retrieval was conducted by Lucia
et al., 2007. They found that the performance of trace retrieval meth-
ods depends largely of the type of RAs that should be traced and, of
course, on the data quality.

Borg, Runeson, and Ardo, 2014 conducted a systematic mapping
study of trace retrieval approaches. Their paper reveals that much
work has been done in trace retrieval between RAs, but only few stud-
ies use ITS data. Only one of the reviewed approaches in (Borg, Rune-
son, and Ardo, 2014) uses the BM25 algorithm, but VSM and LSA are
used extensively. The study that evaluates ITSoFD trace retrieval in
Chapter 16 fills both gaps by comparing VSM, LSA, and three variants
of BM25 on unstructured ITS data. Borg, Runeson, and Ardo, 2014 too
report on preprocessing methods saying that stop word removal and
stemming are most often used. The evaluation of ITSoFD focuses on
the influence of ITS-specific preprocessing and ITS data field-specific
term weighting beyond removing stop words and stemming.

Gotel et al., 2012, too, summarize the results of many approaches
for automated trace retrieval in their roadmap paper. They recognize
that results vary largely: “[some] methods retrieved almost all of the
true links (in the 9o% range for recall) and yet also retrieved many
false positives (with precision in the low 10-20% range, with occa-
sional exceptions).” The evaluation in Chapter 16 shows that the re-
sults on ITS data are comparable or worse depending on the project,
although ITS specific improvements are included.

A field largely worked on in MSR is the detection of duplicated is-
sues, using IR techniques (Amoui et al., 2013; Borg et al., 2014; Dang et
al., 2012; Kaushik and Tahvildari, 2012; Runeson, Alexandersson, and
Nyholm, 2007; Sureka and Jalote, 2010; Tian, Sun, and Lo, 2012; Wang
et al., 2008). Heck and Zaidman, 2014 performed experiments with ITS
data for duplicate detection with good recall rates. They found that
extensive stop word removal can be counter-beneficial for ITS data.
The ITSoFD trace retrieval study in Chapter 16 complements this work
and shows how well duplicates can be detected on ITS data if results
are compared to a manually created gold standard®>. Furthermore,
the experiments presented in Chapter 16 are performed with and
without stop word removal, thus showing the impact of this prepro-
cessing technique.

Both, Borg, Runeson, and Ardo, 2014 and Gotel et al., 2012, men-
tion a considerable amount of related work that uses IR techniques

Considering the findings by Herzig, Just, and Zeller, 2013 discussed in the previous
section.
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for trace recovery, mostly on structured RAs. In the experiments for
ITSoFD trace retrieval is restricted to standard IR methods, only. In
the following extended approaches are summarized that could also
be applied to ITS data and/or combined with the contribution from
ITSoFD’s trace retrieval component:

¢ Nguyen Duc et al., 2011; Nguyen et al., 2012 combine multiple
properties, like the connection to a version control system to
relate issues.

* Guo, Cleland-Huang, and Berenbach, 2013 use an expert sys-
tem to calculate traces automatically. Although their approach
is very promising, it requires a significant amount of manual
work to build up the expert system and a complete automation
of the approach is not yet feasible.

¢ Sultanov and Hayes, 2013 use reinforcement learning, which
shows superior results compared to the VSM in their experi-
ments.

¢ Gervasi and Zowghi, 2014 use affinity mining, e.g. a measure for
sets of nouns, adjectives, adverbs, and verbs that re-occur in pre-
viously traced high-level and low-level requirements. Their ap-
proach is build on previous work (Gervasi and Zowghi, 2011).

* Niu and Mahmoud, 2012 use clustering to group links in high-
quality and low-quality clusters respectively to improve accu-
racy. This way they can filter out low-quality clusters from their
trace retrieval results.

¢ Comparing multiple techniques for trace retrieval, Oliveto et
al., 2010 found that no technique considerably outperformed
the others. Due to this finding, they combine LSA with other
techniques, which improves the result in many cases.

Finally, it should be noted that even human experts are no guarantee
for perfect traces. Cuddeback, Dekhtyar, and Hayes, 2010 studied the
performance of human analysts in trace retrieval tasks and they found
that even experts cannot fulfill this task perfectly, especially not on
larger datasets.



SEPARATING NATURAL LANGUAGE AND
TECHNICAL DATA - AN EMPIRICAL STUDY

The ITSoFD method presented in the previous chapter proposes differ-
ent preprocessing techniques on the text data in issues. Most of these
techniques overlap with what is considered standard in NLP. How-
ever, the separation of technical data from NL is a complex task on its
own.

This chapter presents an empirical study evaluating the separation
of technical data and NL introduced in Section 13.2.2.1. Although this
is not directly related to the RQs defined in Section 1.3, the separation
of code and NL is an important data preparation step in ITSoFD and is
thus necessary to answer RQ 3 and RQ 4 stated on page 5.

14.1 STUDY DESIGN

First, 225 documents are extracted from nine OSS projects. These docu-
ments are converted into XML to be processed in GATE. Second, GATE
is used to create a gold standard, i.e. the technical information in
every issue is manually annotated. As this Chapter is based on the
publication (Merten et al., 2014), the first and second author of this
paper created the gold standard. Finally, the algorithm proposed in
Section 13.2.2.1 is run and results are reported with and without
applying hierarchical clustering. Figure 14.1 summarizes the study
setup.

Separation of Tech-
nical Data from NL
(cf. Section 13.2.2.1)
‘ Data Extraction ‘ Tokenization
225 issues from 9 ITSs Line or word tokenization
L T
{ Data Preparation Heuristics Application

Data Extraction

E.g. conversion to GATE
XML format

Keywords, line equality,
regular expressions
1
[ Hierarchical Clustering

Evaluation

Gold Standard Experiment Results vs.

Gold Standard Creation Gold Standard
(2 coders, 225 documents) With and without
clustering

Figure 14.1: Study Setup.
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Every document was manually annotated based on white space
tokenization to create the gold standard. Then the method described
in Section 13.2.2.1 is applied and its outcome is compared to the gold
standard.

As introduced in Section 13.2 a regular expression can be introduced
to detect marked-up technical information. However, such a mark-
up arguably structures the documents. In contrast the goal of this
study is to evaluate the approach on unstructured documents. Thus,
no regular expression that matches marked-up technical information
is used in this particular study *.

14.1.1 Research Question

How well can technical data be separated from NL using
‘simple” heuristics and hierarchical clustering?

Expected is that the separation can be done well without addi-
tional clustering for line tokenization. However, for word tok-
enization heuristics often make mistakes and clustering should
improve the results.

14.1.2 Data

To evaluate the approach, 225 documents were randomly sampled
from issue trackers and mailing list of nine OSS projects (i.e. 25 docu-
ments per project) as introduced in Section 8.1. On average the docu-
ments are 1698 characters long.

The most important rationale for this data set is that the projects
employ multiple programming languages and the evaluation should
show that the approach can be applied to different ITSs. Table 14.1
provides information on the sources of the evaluated documents: it
includes the programming languages that are used in the projects
and whether the documents were retrieved from ITSs or mailing lists.
In addition, Table 14.1 shows how many documents contain NL, only,
a mixture of NL and code (C), a mixture of NL and log files or stack
traces (L/S), and a mixture of NL and patches (p) as annotated in the
gold standard.

14.1.3 Evaluation Procedures

True positives, true negatives, false positives and false negatives are
calculated by comparing the output of the algorithm to the gold stan-
dard. Experiment results are evaluated for both, white space and line

1 Note that mark-up detection boosts the separation of technical data to to an F; score
close to 1.0 for the data used in the following two studies. Mark-up detection is used
for the separation of technical data in the following studies presented in Chapter 15
and Chapter 16.
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PROJECT LANGUAGE SOURCE # OF DOCUMENTS WITH

NL ONLY c L1/s P

Apache Multiple* ITS 1 13 14 1
ActiveMQ

Linux Kernel C ITS o 12 9 11
Mozilla C++, Java ITS 1 13 2 13
Core + JSS

Apache C++ ITS o 23 2 o
OpenOffice

Apache Jmeter Java ITS 2 13 7 3
Apache OFBiz ~ Multiple* ITS 2 19 o
Apache Avro Multiple* Mail 2 19 2
Apache Camel  Multiple* Mail 1 19 12 1
Apache Thrift ~ Multiple* Mail 1 19 6 1

With ¢ number of documents that contain NL and code;
L/s: number of documents that contain NL and log files or stack traces;
p:  number of documents that contain NL and patches.

* More than 4 programming languages are used in the project, i.a. ActionScript, C,
C++, C#, D, Delphi, Erlang, Groovy, Java, JavaScript, Perl, PHP, Ruby, Python ...

Table 14.1: Corpora for NL and Technical Separation.

tokenization. For line tokenization, the lines in the gold standard that
contain more NL than technical information were considered NL and
vice versa. In the evaluated documents, however, such mixed lines
generally contained < 5% of technical information.

The same parameters and settings are used for all documents, to
show that the approach provides reasonable results with a default
setting. Note that this implies that results can be improved whenever
special heuristics or parameters are introduced for a particular cor-
pus.

14.2 RESULTS

Table 14.2 shows the results using line segmentation and Table 14.3
shows the results using white space tokenization. Overall, the results
are comparable for both tokenization techniques. Although line to-
kenization performs somewhat better on most projects, white space
tokenization provides far more accurate results. Since results vary
only < 3% in both, precision and recall between the two tokenization
techniques there is no need to fall back to line tokenization. In gen-
eral, the results are always > 80% except for the Apache Avro and
Apache Thrift projects.
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PROJECT Smin P R Fq

Apache ActiveMQ 0.8 091 091 0.91
Apache Avro 085 0.65 0.83 073
Apache Camel 095 074 090 0.81
Apache JMeter 0.85 088 089 0389
Apache OFBiz 095 082 088 084
Apache OpenOffice 1.0 080 091 086
Apache Thrift 0.9 0.58 0.83 0.68
Linux Kernel 085 087 094 091
Mozilla Core + JSS 075 078 086 0.82
Average 0.9 0.77 0.88 0.82
Average (no clustering) n/a 069 088 0.77

Table 14.2: Results for Line Tokenization.

PROJECT Smin P R F

Apache ActiveMQ 085 093 08?2 0.91
Apache Avro 095 0.74 087 0.79
Apache Camel 09 076 086 0.81
Apache JMeter 095 091 083 087
Apache OFBiz 095 080 0.84 0.82
OpenOffice 095 087 089 0388
Apache Thrift 095 071 086 0.78
Linux Kernel 0.9 096 092 0.94
Mozilla Core + JSS 095 080 0.82 0.81
Average 0.9 0.84 0.85 0.84
Average (without clustering) n/a 067 084 0.74

Table 14.3: Results for White Space Tokenization.
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Figure 14.2: Precision and Recall for Different Cluster Similarities.

Experiments are performed with with varying values for spin, vary-
ing from 0.5 to 1.0 in 0.05 steps. Figure 14.2 shows precision and re-
call for the different cluster similarities. Solid curves represent line
tokenization and dotted curves white space tokenization. For line
tokenization, the best results over all projects are generated with
Smin= 0.9. This results in a precision of 0.77 and a recall of 0.88
(F1 = 0.82). Without clustering, the heuristics classified the docu-
ments with P = 0.69 and R = 0.88. Hence the clustering improved
the precision by about 8%. For white space tokenization, the best re-
sults are generated with 0.9 <spin< 0.95. This results in P = 0.84 and
R = 0.85 (F; = 0.84). Without clustering the precision is significantly
lower with P = 0.67 and R = 0.84. Hence the precision increased by
over 17% and the recall by 1%.

14.3 DISCUSSION

This section first discusses the implication of the above results for
ITSoFD in practice. Then it discusses the main implications of this
study for future research on separating technical data from NL.

PRACTICAL IMPLICATIONS For an adoption of ITSoFD into prac-
tice, the results of this study are satisfying.

However, even with a maximum F; score of 0.94 and an average F;
score of > 0.82 a non-negligible amount of text is classified wrongly.
Thus the approach should not be used blindly. Especially, if ITSoFD
is applied to an ITS with very few technical information false posi-
tives could worsen the results. On the other hand it should be con-
sidered that (1) the approach was not tailored to any of the datasets
and (2) regular expressions to detect explicitly marked-up technical
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information were intentionally not used. Whenever the approach is
tailored to a specific project, better results can be expected.

Furthermore, the approach cannot only be used as a preprocessing
step as intended for ITSoFD. It can also be applied on its own. If for
example code snippets or excerpts of log files should be extracted
from a developer mailing list, the separation of technical data from
NL provides the classification for such an extraction.

INFERIOR RESULTS FOR TWO PROJECTS Due to the inferior re-
sults for the Apache Avro and Thrift projects, the documents from
these projects were inspected manually. The inspection yields that
developers of both projects tend to communicate using a mixture of
NL and code. E.g. Figure 14.3 shows a document extracted from the
Apache Thrift mailing list. In this project NL and code are intermin-
gled word-wise and line-wise. Hence, both, the heuristics and the
clustering algorithm can hardly detect an associated block of NL or
code, respectively. For this kind of data specific heuristics need to be
designed or other approaches, as e.g. in Section 13.3, might be appli-
cable. If this approach is used in such documents, a detection on the
level of lines instead of words is recommended.

[...]
struct_v TMVBase «— struct_v tell the generator to created the
TBase class with a factory ("v" for virtual)
service USB {
void martin(1:TMVBase base);

}
This is then generated into someting like this:
uint32_t USB_martin_args::read(::apache::thrift[...]

Figure 14.3: Example of Intermingled Code and NL from Apache Thrift.

DEFAULT VALUES FOR Sy;y In the experiments for all projects, the
clustering algorithm reaches maximum performance with s, from
0.8 to 0.95. Thus it is likely that no tuning or further experimenta-
tion below or above these values for smin is necessary. The best per-
formance can be expected around 0.9 as shown in Figure 14.2. Fur-
thermore, the values for sy, are increased in 0.05 steps in this em-
pirical study. Additional experiments with a finer scale might yield
marginally better results.

14.4 THREATS TO VALIDITY

INTERNAL VALIDITY Results were evaluated using a manually an-
notated gold standard. The gold standard was annotated by two re-
searchers and some documents were double-checked. However, it is



14.5 CONCLUSION

an assumably simple task for a trained software engineer and soft-
ware engineering researcher to tell technical information apart from
NL. Hence, I argue that a dual coding is not necessary in this case in
contrast to more complex annotation tasks.

EXTERNAL VALIDITY To ensure generalizability, 225 documents
were sampled out of 9 projects for evaluation. In addition, the same
configuration was used for all projects, so that the results should rep-
resent a lower bound. This lower bound can be improved by tailoring
the approach to a certain setting. For example regular expressions
to detect mark-up in ITSs can be added or keywords from unused
programming languages can be removed.

14.5 CONCLUSION

In this chapter an approach for separating technical data and NL is
evaluated. The results show that good heuristics already deliver rea-
sonable results for this task. However, at some point heuristics fail, as
they can never be specific enough for all cases. It is shown that clus-
tering helps to eliminate some of the ‘mistakes” that heuristics make,
especially on the level of word tokenization.
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DETECTING SOFTWARE FEATURE REQUESTS IN
ISSUES - AN EMPIRICAL STUDY

The empirical study presented in this chapter investigates Research
Question 3 defined in Section 1.3:

RQ 3 Can SFs descriptions be detected automatically in ITS
NL data?

The study evaluates the SFR detection of ITSoFD described in Sec-
tion 13.2.3. The main goal of this chapter is to study whether particu-
lar expressions to formulate an SFRs can be detected automatically. To
achieve this goal multiple ML algorithms, different text preprocessing
techniques, and MLFs are evaluated and the following three parts of
an SF are detected:

REQUESTS (or SFRs) Text that requests for a distinguishing charac-
teristic of a software item (e.g. a quality or functionality) that
provides value for users of the software.

CLARIFICATIONS Text that explains an request, e.g. because the func-
tionality needs further context.

SOLUTION PROPOSALS Text that describes implementation ideas for
an request.

In the next section the study design is presented. Then the above RQ is
systematically refined in three fine grained RQs in Section 15.1.1. The
experiment setup is described thereafter in Section 15.1. The results
are presented in detail in Section 15.2 and discussed in Section 15.3.
Finally, Section 15.4 discusses related threats to validity and the final
section concludes this chapter.

15.1 STUDY DESIGN

The study is composed of four steps:
1. The extraction and preparation of the data,
2. the creation of a gold standard,
3. the engineering of MLFs, and

4. the evaluation of different ML algorithms, MLFs, and preprocess-
ing techniques.

Details of this process are described in the following sections and an
overview is given in Figure 15.1.
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Application of ML
techniques and MLFs

Data Extraction (cf. Section 13.2.3)
Data Extraction Naive MLFs
600 issues from 4 ITSs e.g. BOW, Keyword Lists
U
Data Preparation MLFs Derived from
e.g. conversion to XML Related Literature
format e.g. bigrams, trigrams, SAO
Gold Standard Evaluation
Coding Guidebook Data Splitting i
Creation (Train- and test sets) -
1 T %
Gold Standard Creation Experiment Conduction §
(4 coders, 2 per dataset, 1 e.g. preprocessing, MLF O’:-Q"
600 issues 11149 creation 5
sentences) L : =
Measuring 5
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Figure 15.1: Study Setup.

15.1.1 Research Questions

The overall research question of this chapter, whether software fea-
ture requests can be detected automatically in ITS NL data, is divided
in the following three fine grained RQs:

RQ 3.1 How should text be preprocessed for SFR detection?
Expected is that standard preprocessing techniques and the separation
of technical data from NL improve the results for SFR detection. How-
ever, stop-word removal may worsen the results as stopwords such as
“should”, “could”, or “would” are often used in SFRs.

RQ 3.2 Which combinations of MLFs derived from the NL and ITS
meta-data should be used for SFR detection on different levels
of detail?

Expected is that ITS meta-data improves the results in comparison to
text based MLFs. Meta-data such as the issue type should help detect-
ing SFRs.

RQ 3.3 How well can trained prediction models be reused?
Expected is that reusing prediction models does not work well across
different projects. Especially because the projects used in this study
have different characteristics’.

Section 2.2 states some of the problems with ML and ITS data, that can
often be mitigated with the preprocessing techniques introduced in

1 Confer Section 8.2 on page Section 8.2.
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Patch #641 Edit v Watch [) Copy

(Add done_ratio to the right-click context menuj SFR

Added by Dov Murik almost 8 years ago. Updated almost 8 years ago.

Status: Closed Start date: 2008-02-12
Priority: Normal Due date:

Assignee: - % Done: 100%
Category: Issues

Target version: 0.7 ITS meta-data

Description 2 Quote
This patch allows modifying the issue's done_ratio field from the right-click context menu.

# patch_add_done_ratio_to_context_menu.diff -y (1.01 KB) Dov Murik, 2008-02-12 18:39

History
Updated by John Goerzen almost 8 years ago #1

e Status changed from New to Closed

* % Done changed from 0 to 100 addmona| meta_data
Applied in changeset r1277. ol and

Updated by John Goerzen almost 8 yearsago ~ #2 | comments (truncated)

o Status changed from Closed to Reopened

Figure 15.2: Redmine Issue Example.

Section 3.2. RQ 3.1 discusses which combination of such techniques
should be used. rRQ 3.2 contrasts rather traditional MLFs with ideas
building upon related work and takes MLFs based on issue and data
field meta-data into account. Furthermore, it investigates whether the
very sentence that contains the SFR can be extracted or if more data
(e.g. from the comprising data field or issues) is needed. rRQ 3.3 asks
whether models have to be trained for every project or if trained mod-
els can be applied to other projects, different from the projects used
for training.

15.1.2 Data

All projects researched in this thesis are described in detail in Sec-
tion 8.1. In this study the data of the same four projects as in the
study on issue and information types (confer Chapter 11) is utilized:

* c:geo

¢ lighttpd

¢ Radiant

¢ Redmine

An example issue from the data set given in Figure 15.2. The fig-
ure shows a screenshot of the issue as it originally appears in the
Redmine ITS and depicts the SFR, ITS data fields, and ITS meta-data in
red.
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A gold standard was manually created based on the taxonomy de-
veloped in Chapter 11 and shown in Figure 11.3. Relevant parts of the
related coding guidebook, developed for the study in Chapter 11 and
shown in Appendix A, were re-used to code the 599 issues for this
study. Every sentence of every issue (including all comments) was an-
notated — if relevant — by two coders independently. The coders used
the following labels?:

REQUEST FUNCTIONALITY to denote functional SFRs.
REQUEST QUALITY to denote quality SFRs.

SOLUTION to denote technical solutions for an SFR.
CLARIFICATION to denote additional explanations to an SFR.

In the following the umbrella term “SFR detection” will be used for
all above labels. An exception is Request Quality, as too little data was
found by the coders to train a model for requests for software quality.

The above labels represent an SFR relevant subset of the complete
taxonomy of issue and information types3. The above selection in-
cludes the information types that are directly related to an SFR. Obvi-
ously, all issues can be coded using the complete taxonomy to evalu-
ate the algorithms. However, a selection was necessary because of the
following two reasons: (1) dual coding of all sentences using the com-
plete taxonomy would have taken too much resources and (2) man-
ual coding is usually more error prone, the more codes/coders are
involved Neuendorf, 2002.

Due to the dual coding two datasets are created composed of the
very same issues:

1. The sentences that were annotated identically by two annota-
tors. This dataset will be referred to as the agreed upon cases.

2. The sentences that were only labeled by a single annotator. This
dataset will be referred to as the uncertain cases.

On average, the annotators agreed with a rather high Cohens kappa (Co-
hen, 1960) of 0.91 on the labels for issue titles and 0.88 on the labels
for issue descriptions. Due to limitations in GATE, the exact kappa
for the issue comments cannot be reported. However, a significantly
lower agreement was observed in random samples from comments
in comparison to title and description. This can be seen in Table 15.1,
which shows a disparity of labels for the two datasets. The full inter-
rater agreements can be found in Appendix A expressed as Fy scores
and Cohens kappa, respectively. The differences in agreement imply
that even human experts have a tendency not to agree whether a sen-
tence contains an SFR , a request for quality , an clarification, or a solution.
The influence of agreement factors is discussed in Section 15.4.

2 More exhaustive descriptions can be found in Section A.2.
3 Refer to Chapter 11 for the full taxonomy.
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ANNOTATIONS AGREED UPON BY TWO CODERS

LABEL C:GEO LIGHTTPD RADIANT REDMINE ALL
Request Func- 23 /1.08 2/1.0 10/10 34/112  76/1.05
tionality

Request Qual- 4/1.0 0 0 0 4/1.0
ity

Solution 18/ 1.0 2/1.0 6/1.16 10/ 1.0 36/ 1.04
Clarification 46 / 1.04 17 /112 11 /127 26/123 100/ 1.7

UNCERTAIN CASES

Request Func- 70/ 1.17 28/1.0 43/1.07 155/121 29/ 1.11
tionality

Request Qual- 8/1.0 1/1.0 4/1.0 4/1.0 17/ 1.0
ity
Solution 72/ 1.36 14/15 28/136 148/141 262/141

Clarification 223 / 1.50 77 /144 110/1.21 234 /138 644 /1.38

# Annotations / Avg. # of Sentences per Annotation

Table 15.1: Extracted Data and Annotations.

During the annotation phase, the annotators collected keywords
for the Request Functionality label. New keywords were added to the
keyword list whenever a word was noticed repeatedly by the annota-
tor, whereas “repeatedly” was generally as “more often than 5 — 15
times”. Examples from this collection are modal verbs such as should,
would and could as in “we should implement [...]” or “could you please
add [...]”. The full keyword list is used as one MLF in the detection.
A complete list of MLFs is given in the following section.

Finally, both datasets, the agreed upon cases and the uncertain cases
are used to train the ML models and to evaluate the SFR detection.
Table 15.1 shows the number of annotations and the average number
of sentences for every label in both datasets.

15.1.3 Algorithms and Settings

MLFS TO IDENTIFY SOFTWARE FEATURES This paragraph sum-
marizes those parts of the ITSoFD related work presented in Section 13.3
that adds MLF ideas to the SFR detection and describes how these MLFs
are used in this study. Then, a summary of all MLFs is given.

Guzman and Maalej, 2014 use collocations to denote fine grained
SFs in app store reviews. Their idea is evaluated SFR detection in this
study. However, in contrast to the original study, tri-grams are eval-
uated, too. Tri-grams are useful whenever word triples such as “we
should add” are used in SFRs, as discussed in Chapter 11.
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Fitzgerald, Letier, and Finkelstein, 2012 use a mixture of ITS meta-
data MLFs and linguistic MLFs for early failure prediction in ITS. Maalej
and Nabil, 2015 show that meta-data such as star ratings in app stores
can improve SE-related classification tasks. Based on these ideas MLFs
are derived from the ITS meta-data and the data field meta-data in
this chapter.

Besides other heuristics, the approach by Vlas and Robinson, 2012
uses a subject-action-object pattern based on the work of Fantechi and
Spinicci, 2005 for their heuristics. The action is actually the main verb
of the sentence filtered by different heuristics and keyword lists, e.g.
“need” in “The software needs logging”. Though a replication of all
their heuristics is unfeasible in the ML context, their idea is applied
in this study and MLFs are derived from subject-verb-object triplets
based on grammatical parsing.

In summary, the following MLFs were used to conduct the exper-
iments. All MLFs are modeled as binary features. MLFs that are not
binary by nature, such as the number of comments of an issue, are
quantized accordingly.

BOW: As reference for other MLFs in the experiment, the BOW# is
employed.

Bi- and Tri-Grams: The BOW is expanded with bi-grams and tri-
grams in the measurements. Both, bi- and tri-grams, denote words
that occur together in tuples or triplets. Due to the fact that a huge
amount of bi- and tri-grams can occur in the textual content of a sin-
gle issue, the number of extracted bi- and tri-grams is restricted to
200, as rated by a chi-square-test (Bird, Klein, and Loper, 2009). This
restriction, however, takes effect on the issue level only. Data fields
and sentences usually contain less bi- and tri-grams.

SAO: To replicate the SAO pattern from (Vlas and Robinson, 2012),
the Stanford Dependency Parser (Chen and Manning, 2014) is em-
ployed. As described for grammatical tagging in Figure 3.2 on page 25,
the Stanford Dependency Parser outputs a directed acyclic graph of
all words in a sentence. If a sentence contains a main verb, a check is
performed for every subject and object whether a path between sub-
ject, main verb, and object exists. If and only if (1) a sentence contains
a main verb, and (2) at least one subject and object, and (3) the sub-
ject(s) and object(s) are indirectly connected to the verb, these triplets
are used as MLFs.

Keywords: The keyword list gathered during data annotation is used
to check whether a simple gathering technique improves the ML model.
In addition, a keyword list containing positive words, is employed
since SFRs tend to be written gently and politely as discussed in Chap-
ter 11.

Issue Meta-Data: In addition to the linguistic MLFs described above,
MLFs derived from issue meta-data are considered in the experiments:

4 BOW is described in detail in Chapter 5.
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1. the issue type (or, if appropriate, the issue tags),

2. the users that participated in the issue (the author and all users
that commented or changed the issue),

3. the author of the issue,
4. the duration of the issue?,
6

5. the number of comments to the issue®,

6. all possible former states of the issue (e.g. open, closed, in de-
velopment, in test, ...), and

7. the current status (open, in progress, closed, etc.).

Data Field Meta-Data: The following meta-data was extracted from
ITS data fields: (1) the data field author, (2) whether the issue status
changed while the data field was updated, and (3) the duration since
the previous comment”

MACHINE LEARNING ALGORITHMS The following classifiers, all
of which are fully introduced in Section 5.2, are used in this study.
The selection represents the most prominent classifiers for text analy-
sis tasks:

* Naive Bayes (NB)

* Multinomial Naive Bayes (MNB)

¢ Linear Support Vector Machine (SVM)
¢ Logistic Regression (LR)

e Stochastic Gradient Descent (SGD)

e Decision Tree (DT)

e Random Forrest (RF)

TEXT PREPROCESSING  Five techniques, as introduced in Section 3.1.3
are employed to preprocess NL in the experiments:

1. Lowercasing
2. Stemming
3. Punctuation removal

4. Stop-word removal

5 Quantized as < 4 hours, < 8 hours, < 1 day, < 10 days or > 10 days.

6 Quantized as < 1, < 2, < 4, < 6, > 6; quantization made on the basis of Figure 11.1
on page 85.

7 Quantized as < Th, < 2h, < 4h, < 8h, < 1d, < 10d.
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5. Separation of technical noise. However, in contrast to the study
presented in Chapter 14, an additional heuristic to detect the
code mark-up for Redmine and Github was employed. This re-
sulted in a nearly complete and error free detection of technical
noise according to random samples®.

15.1.4 Evaluation Procedures

Every experiment run applies all classifiers and combines them with
different preprocessing settings and different sets of MLFs.

To evaluate the classifiers, a classical ten-fold-cross validation is
employed. First, the issues are randomized and divided into 10 equal
groups. Every experimental run then uses the issues of 9 groups for
training. The issues of the remaining group serve as evaluation data.
Every experiment runs 10 times, thus utilizing every issue 9 times as
training data and one time as evaluation data.

For rRQ 3.3 a different setup is necessary. The selected issues of
three projects are used for training and the issues of the fourth project

are used for evaluation. This results in a Zgzz split.

15.2 RESULTS

To answer RrQ 3.1, the performance among different ML algorithms
with different preprocessing settings on linguistic MLFs is compared.
Then, the best performing preprocessing setting is used in further
evaluations to answer rRQ 3.2 and RQ 3.3°.

15.2.1 Best Preprocessing Techniques

As the combination of all preprocessing techniques results in 2° com-
binations, the reporting is constrained to the preprocessing settings
defined in Table 15.2: the first setting uses no preprocessing as a refer-
ence. Lowering and stemming are considered best practices (Feldman
and Sanger, 2006; Manning and Schiitze, 1999) and are therefore in-
cluded in all further preprocessing settings. Finally, all combinations
of punctuation removal, stop-word removal, and separation of techni-
cal data are evaluated. These preprocessing techniques influence all
the linguistic MLFs derived from the NL text, so that the preprocessing
results are reported for all linguistic MLF-sets shown in Table 15.3.
Table 15.4 summarizes average and best achieved F; scores (1) for
every of the 7 ML algorithms, (2) for every of the 3 labels, and (3) for
every of the 3 levels of detail. The results on the left hand side of Ta-

8 Related regular expressions are given in Appendix D.

9 Preprocessing settings and MLF-sets need to be fixed for further experiments: calcu-
lating all permutations of preprocessing techniques, MLFs, levels of detail, and labels
results in more than one year runtime on a standard laptop.
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PREPRO. LOWERING STEMMING PUNCTUATION SEPARATION OF STOPWORD

SETTING REMOVAL TECHNICAL DATA  REMOVAL
1 - - - - -
2 v v - - -
3 4 v - - v
4 4 v - v -
5 v v - v v
6 4 v v - -
7 v v v - v
8 v v v v -
9 v v v v 4

Table 15.2: Evaluated Preprocessing Techniques and Linguistic MLF-Sets.

MLF-SET BOW BI- & TRI-GRAMS SAO

i v - -
2 - v -
3 - - v
4 v v -
5 4 - v
6 4 v v/
7 - 4 v
8 4 - v/

Table 15.3: Evaluated Linguistic MLF-sets.
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AGREED CASES Max Fy, BOW Only Avg.  Max Fq, All Ling. MLF Sets ~ Avg.
Level Label Conf. Alg. Value F Conf. Alg. Value Fq
I ReqFunct. 6/7 LR 0495 0279 3/6 SGD 0.643 0.168
Clarification 3 /7 SGD 0401 0201 3/1 SGD 0.401 0.124
Solution 3/1 MNB 0343 0097 2/6 MNB 0492 0.062
DF Req. Funct. 7/7 MNB 0130 008 3/6 MNB 0.195 0.054
Clarification 8 /71 SGD 0.102 008 3/6 MNB 0.119 0.055
Solution 7 /1 MNB 0.104 003 &6/6 MNB 0.109 0.022
Se Req.Funct. 7/71 MNB 0.078 0048 9/6 MNB 0.106 0.030
Clarification 0/7 SVN 0055 0047 9/5 MNB 0.078 0.029
Solution 7/1 MNB 0059 002 &6/6 MNB 0.088 0.013
UNCERTAIN CASES Max Fq, BOW Only Avg.  Max Fy, All Ling. MLF Sets ~ Avg.
Level Label Conf. Alg. Value Fy Conf. Alg. Value F
I ReqFunct. 7/7 LR 0752 0501 7/4 LR 0757 0.314
Clarification 7 /71 LR 0551 0412 7/4 LR 0.556 0.304
Solution 9 /1 SVM 0498 0258 9/1 SVM 0498 0.181
DF Req. Funct. 9/7 LR 0325 0272 9/8 SGD 033 0.174
Clarification 2/1 LR 0435 0403 2/4 LR 0.435 0.298
Solution 9/1 SGD 0227 0197 9/4 SGD 0.227 0.129
SE  Req.Funct. 9/71 LR 0164 0122 9/4 1R 0.164 0.078
Clarification 2/71 LR 0249 0229 2/1 LR 0.249 0.161
Solution 9/71 LR 0117 0099 7/6 MNB 0.125 0.066

Table 15.4: Average and Maximum Fy Scores for Preprocessing.

ble 15.4 are achieved using the BOW MLF only, whereas the right hand
side shows the results for all linguistic MLF-sets. For cells marked
with a gray background in Table 15.4, additional details with respect
to the preprocessing settings can be found in Figure 15.3. Figure 15.3
utilizes a combination of a scatter and a box plots to show the influ-
ence of all preprocessing settings together with the related standard
deviation, median and mean, on four representative examples.

In comparison to other preprocessing settings, Setting 1 performed
best in a single experiment run only. This indicates that lowering and
stemming can be considered best practices in SFR detection, too. Pre-
processing settings 7 and 9 deliver the best results in nine and ten
cases respectively, covering 55% of the entire cases. Both, settings 7
an 9 employ all preprocessing techniques. Additionally, setting 7 sep-
arates technical data from NL. These results suggest that most pre-
processing techniques have a positive influence on SFR detection. In
ten out of 36 cases, or 28%, settings 2 and 3, which include only low-
ering, stemming, and stopword removal achieve the best F; scores.
This implies that SFR detection can be approached without punctu-
ation removal or the separation of technical data. However, there is
no pattern in terms of detection level, label, or dataset, and it cannot
be stated that a specific preprocessing setting should always be em-
ployed: e.g. the detailed examples in Figure 15.3 show that the two
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Figure 15.3: Detailed Examples for Preprocessing Setting Influences.

preprocessing settings that perform best on the agreed upon dataset,
2 [w] and 4 [e], perform bad on the uncertain cases and vice versa for
the settings 7 [e] and 9 [¢]. But even with this uncertainty, preprocessing
setting 9 will be employed to answer the remaining RQs for two reasons:
(1) it generally shows a reasonable performance on random samples
examined in detail, and (2) it results in the best reduction of MLF vec-
tors, which saves memory, computation time, and accounts for better
scalability.

In terms of ML models, Table 15.4 shows that MNB performs best for
the agreed upon cases whereas LR performs better on the uncertain
cases. There are two possible explanations for this:

1. LR is known, in essence, to outperform NB variants with more
training data (Ng and Jordan, 2001), and

2. more annotations are contained in the uncertain dataset and
thus more linguistic MLFs are included in the training data. MNB
assigns independent weights to repetitive MLFs that correlate
with the label and with every other due to a conditional inde-
pendence assumption. In contrast LR compensates such inter-
MLF correlations, which should improve the prediction rate.

15.2.2 MLFs and Detection Levels

The previous section includes various linguistic MLF-sets to study ap-
propriate preprocessing settings for SFR detection. These are shown
in Table 15.3. The right hand side in Table 15.4 shows that settings 6
(the combination of all linguistic MLFs), 4 (BOW combined with bi- and
tri-grams) and 1 (BOW only) gives the best results across all prepro-
cessing settings. In fact, only those preprocessing settings that include
the BOW MLF train usable models for SFR detection. E.g. on the agreed
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mir-ser {3 4 6 8 % 1o M 12 13 14 15 16 17 18

BOW V V V V V V VS S S

bi- & tri-grams - 4 v - v - v -V -/ v

SAO v v v o- v - v - v - vV -/

data field - - v V/ - - - - - Y S
issuew/otype - - - - V V - - - v/ - v /-

issue with type - - - - - - V V - - - - vV vV - - V V/

keywords - - - - - - - - vV v - - - - / Vv / /

Table 15.5: Machine Learning Feature Sets.

upon dataset, BOW results in a detection rate between 34% and 49%
on the issue level and 10% to 13% on the data field level. In contrast,
MLF-sets without BOW do not exceed 10% on any level of detail regard-
less of label, preprocessing techniques, and ML algorithms. However,
the combination of linguistic MLFs generally improves detection rates
(e.g. MLF-sets 4, 5, and 6).

Table 15.5 summarizes the MLF-sets that are used for further experi-
ments. The linguistic MLF-sets T and 2 are included in all further MLF-
combinations: MLF-set T can be derived easily and quickly, having a
competitive performance, whereas MLF-set 6 delivers the best results.
MLF-sets 3 to 10 extend the linguistic MLFs with data field meta-data,
issue meta-data, and keywords. The issue type or tag should be a very
strong indicator for a functionality request. Therefore, the issue meta-
data is split up into two separate sets: (1) excluding the issue type
or tags, and (2) including the issue type or tags. MLF-sets 11 - 18 are
combinations of linguistic MLFs, data field meta-data, issue meta-data
and keywords.

For every MLF-set, the box plots in Figure 15.4 visualizes the Fy
scores over all ML models. White boxes represent the agreed upon
cases, gray boxes the uncertain cases. In addition, a small symbol
indicates the algorithms that performed best with respect to F; scores.
The scatter plots in Figure 15.5 visualize the MAX(R), P>, scores for
the ML models that achieved the best score.

The inclusion of keywords hardly impacts the results, clearly evi-
dent in the comparison between MLF-sets 1 and 2 with ¢ and 10. The
inclusion of data fields, on the other hand, and especially ITS meta-
data do have a positive impact. However, additional combinations of
data field and ITS meta-data do not necessarily improve the results.
A slight increase can be noticed on the data field level by comparing
only the ITS meta-data MLFs (5 —10) with combined MLFs (10 — 18).

Figure 15.5 shows that linguistic MLFs are generally sufficient when-
ever recall is to be maximized. On the issue level, the SVM model im-
proves the precision by considering ITS meta-data (see 5 — §), while
leaving the recall almost unaffected. Similar improvement can be no-
ticed in the Fy scores on the left hand side for SGD and LR algorithms.
Remarkably, the issue type impacts detection results little. Thus the
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Figure 15.4: Fy Scores for Request Functionality Detection:
Comparison of MLF-sets for Different Scopes with Multiple
Classifiers.

issue type, at least in the projects researched in this thesis, is a weaker
predictor than initially assumed.

Overall, the combination of all MLF-types delivers the best perfor-
mance in terms of Fy score, whereas the linguistic MLFs on their own
are competitive in terms of MAX(R), P>, scores.

The F; and MAX(R), P>, scores on the issue level are higher com-
pared to other levels. However, the data field level delivers compet-
itive scores with respect to the MAX(R), P>, measure, especially on
the uncertain dataset. This is important for the practical application
of the approach: detecting SFRs on the data field level implies less
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Figure 15.5: MAX(R), P02 and MAX(R), P> 05 Scores
for Request Functionality Detection:
Comparison of MLF-sets for Different Scopes with Multiple
Classifiers.

manual work than a detection on the issue level. The worst results
are generated on the sentence level. For example for MAX(R), P>0.05
the recall is only slightly over 60% in the agreed upon cases as shown
in Figure 15.5. For the uncertain cases, however, a recall of 100% can
be achieved for MAX(R), P>0.05 even on the sentence level with F;
scores of about 11%.

The measurements reported on in this section are exemplary for
the other two labels. Clarifications are detected with similar P and R.
Solutions are detected with inferior detection rates compared to the
other labels, but the results show the same characteristics with re-
spect to the MLF-sets. Table 15.6 summarizes the best achieved F; and
MAX(R), P> scores with the related ML models and MLF-sets for all
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F1: AGREED Fq UNCERTAIN Fq
I RF 18 SGD 0.74 173 LR 0.87
14 SVM 0.74 $ LR 0.78
s 15 SGD 0.54 7 SVM 0.75
DF RF 13 SGD 0.25 17 LR 0.42
4  MNB 0.15 17 SVM 0.45
S %  MNB 0.09 17 SGD 0.27
Se RF 13 LR 0.13 178 SGD 0.19
C 4 MNB 0.08 4 MNB 0.25
S i MNB 0.05 4 MNB 0.13
MAX(R), P> p: AGREED P R P UNCERTAIN P R P
I RF 7 SVM 0.2 0.85 0.51 i MNB 0.2 1.0 0.29
C 7 SVM 0.2 0.84 0.66 7 NB 0.2 1.0 0.28
S 17 SvM 0.2 0.74 0.39 7 SVM 0.2 0.78 0.75
DF RF 12 DT 0.05 0.83 0.06 $ NB 0.05 0.99 0.16
C 14 NB 0.05 0.99 0.05 3 NB 0.05 0.99 0.25
S i MNB 0.05 0.29 0.07 17 NB 0.05 0.98 0.11
Se RF 3 MNB 0.05 0.62 0.06 3 NB 0.05 1.0 0.06
C 4 MNB 0.05 0.18 0.05 3 NB 0.05 0.99 0.13
S 2 MNB 0.05 0.03 0.1 i MNB 0.05 0.93 0.06

with: RF=Request Functionality, C=Clarification, S=Solution

Table 15.6: Best F1 and MAX(R), P, Scores for All Levels and Labels.

the labels on every level of detail. Appendix C includes complemen-
tary tables and figures for Clarification and Solution detection.

Finally, combining MLF-sets generally increases the standard devi-
ation for the Fy scores across all models as shown in Figure 15.4.
Hence, the algorithm choice (or an evaluation of multiple algorithms)
is important whenever features are combined otherwise results may
deteriorate.

15.2.3 Cross-training

To answer this RQ, three of the four project datasets were used for
training and the fourth project for detection. Table 15.7 shows the best
achieved F; and MAX(R), P>, scores with according MLF-sets for the
request functionality label. Again, similar to rRQ 3.2, request functionality
is representative for the other labels. Related results can be found in
Appendix C.

Comparing these results to the results with 10-fold-cross evaluation
from Table 15.6, it can be seen that cross-training delivers very similar
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g 5 i g . g 8
e g iy k= 3 = k= =
[ —= =N < > p=199) < >
AGREED Fq avg. UNCERTAIN Fq avg.
cg I 11 SGD 0.74 15 SGD 0.85
li 7 LR 0.76 072 06 LR 0.84 08y
ra 5 LR 0.67 1T sGD 0.86
re 14  SvM 0.70 17 SGD 0.91
cg DF 13 SGD 0.29 17 SGD 0.26
li 18 LR 0.42 18 LR 0.41
) 0.31 3 0.39
ra 14 SGD 0.24 15 SGD 0.36
re 14 SGD 0.29 14 SGD 0.52
cg Se 4  MNB 0.17 11 SGD 0.13
li 18 SGD 0.27 17 LR 0.16
. 0.19 . 0.19
ra 13 LR 0.16 16 SGD 0.18
re 3 MNB 0.16 4 MNB 0.27
MAX(R),P>p AGREED P R P UNCERTAIN P R P

cg 1 3 NB 02 08 022 i MNB 02 100 024

li 3 sSsGD 02 1.00 0.38 7 NB 02 1.00 0.21
ra i svM 02 080 022 i NB 0.2 1.00 0.33
re 13 NB 0.2 097 027 13 NB 0.2 1.00 0.59
cg DF i RF 005 0.71 0.06 $ NB 0.05 0.99 0.13

li 4 DT 0.05 1.00 0.06 7 NB 0.05 1.00 0.08
ra 13 SGD 0.05 053 0.14 i NB 0.05 1.00 0.10
re $ NB 0.05 1.00 0.06 7 NB 005 1.00 0.19

cg Se i MNB 005 052 005 5 NB 0.05 1.00 0.05

li 13 SGD 0.05 0.89 0.07 16 DT 0.05 0.93 0.05
ra 12 SGD 0.05 040 0.06 i MNB 005 098 0.06
re 3 SGD 005 071 0.06 7 NB 0.05 1.00 0.07

with: cg=c:geo, li=Lighttpd, ra=Radiant, re=Redmine

Table 15.7: Best Cross-Training F; and MAX(R), P>, Scores
for Request Functionality.



15.3 DISCUSSION

Fy and MAX(R), P>, scores with a variability of £5%, even though a
lower amount of training data is available for cross-training than for
ten-fold-cross validation.

15.3 DISCUSSION

This section first discusses the implication of the above results for
ITSoFD in practice. Then it discusses the main implications of the study
for future research on SFR detection in ITSs:

PRACTICAL IMPLICATIONS For an adoption of ITSoFD into prac-
tice, the results are satisfactory. On both, the level of issues and the
level of data fields, recall rates close to 100% are achieved. In addi-
tion, the amount of false positives delivered by the approach is sig-
nificantly lower than the amount of data that needs to be worked
through when the same classification is done manually. Hence the
approach saves time and money in comparison to a manual classifi-
cation.

PREPROCESSING TECHNIQUES SHOULD BE EMPLOYED The ap-
plication of preprocessing techniques improves F; and MAX(R), P>,
scores in the context of SFR detection as shown in Section 15.2.1. Even
stop-word removal improves the results although coders considered
stop-words such as should, could, or would relevant for classification.

ENOUGH ANNOTATIONS SHOULD BE AVAILABLE FOR TRAINING
AND EVALUATION Section 15.2 reports on models trained on 36 x
%, 76 % % and 100 x % annotations for the agreed upon dataset.
The F; and MAX(R),P>p scores increase relative to the amount of
training.

SIMPLE LINGUISTIC FEATURES ARE SUFFICIENT  Sets that add bi-
, tri-grams and SAO to BOW (i.e. sets with even numbers in Figure 15.4
and Figure 15.4) show almost no improvement. If computation time
or the amount of features need to be reduced, complexity can be
downsized at this point.

MLFS DERIVED FROM META-DATA IMPROVE DETECTION RATES
Sets 11-18 in Figure 15.4 show that the inclusion of MLFs derived from
meta-data improve detection rates. Further research (e.g. ML feature
selection techniques (Guyon and Elisseeff, 2003)) is needed to identify
the exact MLFs with the highest impact.

THE COMBINATION OF ML ALGORITHMS AND MLF-SETS IS IM-
PORTANT Different ML algorithms work differently. For example,
NB treats correlating MLFs independently, LR compensates such cor-
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relations (Manning and Schiitze, 1999). The lower whiskers in Fig-
ure 15.4 indicate that some ML algorithms do not profit from addi-
tional features. Hence, the combination of ML algorithms and MLF-
sets is important to consider.

ML ALGORITHMS SHOULD BE SELECTED IN ACCORDANCE TO THE
DATA MINING GOAL Comparing Figure 15.4 with Figure 15.5 re-
veals that different ML algorithms are responsible for the best F; and
the best MAX(R), P>, sores. Consequently, algorithms performing
best in order to maximize the SFR detection rate might not perform
best in order to balance detection rate and precision.

TRAINED MODELS CAN BE RE-USED FOR OTHER PROJECTS  Sec-
tion 15.2.3 reveals that cross-training works competitive to ten-fold-
cross validation for request functionality and clarification labels. How-
ever, this does not not hold true for every project and thus needs
further evaluation or replication by additional studies.

IN SOME PROJECTS SFRS ARE LIKELY COMPOSED OF NL PATTERNS
In five cases setting 9 (BOW and manually compiled keyword lists)
achieved the best F; and MAX(R), P>, scores as shown in Tables 15.6
and 15.7. This indicates that at least some request functionalities are
described with reoccurring words or certain NL patterns. As for other
requirements (Vlas and Robinson, 2012), such patterns would be a
powerful heuristic and/or ML feature for SFR detection.

USING ONLY THE AGREED UPON CASES FROM DUAL CODED DATA
CAN BE INFERIOR FOR ML In almost every case, better predictions
can be made for the uncertain cases. As already mentioned, the an-
notators did not annotate sentences they felt uncertain about so that
these sentences did not make it in the agreed upon dataset. However,
I may argue that the annotators, in general, annotated SFRs correctly.
Therefore, more presumably correct data might be found in the un-
certain dataset. Assuming that the algorithm detects most of these
uncertain cases, this leads to fewer false positives and thus a higher
precision, which is underpinned by the MAX(R), P> ¢.05 scores for the
data field level in Figure 15.5. This implication is advantageous for
the practical applicability of the approach: multiple coding is usually
not applicable in industry, or generally in practice and the algorithm
seems to replicate the ‘opinion” of a single coder even better.

EXPERIMENT RUNTIME The runtime on a standard laptop is rea-
sonable, considering that the code was only slightly optimized for
speed. For example, an experiment using BOW features, three classi-
fiers, and 599 issues takes < 10 seconds. An experimental run includ-
ing all MLFs takes < 10 minutes and a higher level of detail decreases
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15.4 THREATS TO VALIDITY

the runtime. These measures exclude the calculation of typed depen-
dencies, which takes about an additional hour and is needed only for
the SAO feature'®. However, ten-fold-cross validation and permuta-
tions of different MLF-sets quickly increase the overall runtime.
Limitations of these implications are discussed in the next section.

15.4 THREATS TO VALIDITY

INTERNAL VALIDITY Manual data annotation always involves the
risk that human coders do make mistakes. This can result in unusable
ML models and thus influence predictions and results. To mitigate
this risk best practices in content analysis (Neuendorf, 2002) were
deployed. In particular, a coding guidebook was established and an-
notations were discussed on test data before the actual coding. Al-
though the coders worked on the level of sentences, they achieved
reasonable kappa scores. Finally, one dataset with only those annota-
tions on which two coders agreed was created. However, the coders
had a lower agreement on comments. This could be due to increas-
ing tiredness or even inadvertence. Annotating up to 50 comments
in a single issue is an arduous task. A low agreement might lead to
missing training and validation data and thus to decreasing detection
rates and/or increasing false positive rates.

However, the assessment whether a sentence describes a SFR or not
is arguably subjective. Although the agreed upon dataset has a higher
scientific quality, using the data created by a single annotator is not
necessarily bad. E.g. the perception of a single analyst might be ex-
actly what an ML model should replicate when applied in an industry
project. This subject was addressed by including the uncertain cases
in the experiments.

Finally, the overall size of the gold standard is limited. Although
over 10,000 sentences in over 4500 ITS data fields were analyzed, the
gold standard contains only 76 request functionality, 36 solution and
100 clarification labels for the agreed upon cases. Although promising
results were received on the issue and data field level, other research
indicates that more than 100 labeled instances are necessary for a reli-
able classification (Maalej and Nabil, 2015). Hence, this study should
be seen as a first step in SFR detection and needs further replication
or extension studies.

EXTERNAL VALIDITY Considering the external validity, it cannot
be ensured that the results can be transferred to ITS data of other
projects'®. It is still likely that the overall approach is transferable

Typed dependencies are cached, yielding a > factor 100 speedup.

In an industrial ITS I encountered “coffee break issues”. Those issues include in-
formation similar to “As discussed during coffee break”. Needless to say, this is
insufficient for text analysis.
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since projects with a broad range of target groups, programming lan-
guages, etc. were employed intentionally. In a more consistent dataset,
even better results can be expected.

15.5 CONCLUSION

In this chapter multiple preprocessing techniques, ML algorithms, and
MLFs are evaluated to detect SFRs in ITSs. With the introduction of the
MAX(R), P>, measure, it is shown that some algorithms maximize
the Fq1 score whereas others maximize recall. Furthermore, the results
suggest that SFR detection should be approached on the level of issues
or data fields and that the exact sentences describing the SFR are hard
to find.



RECOVERING RELATED ISSUES IN ISSUE
TRACKING SYSTEMS - AN EMPIRICAL STUDY

The empirical study presented in this chapter investigates Research
Question 4 defined in Section 1.3:

RQ 4 Do trace retrieval algorithms perform effectively on
ITS data?

The study evaluates the trace retrieval component of ITSoFD de-
scribed in Section 13.2.4. Thus, the main goal of this chapter is to
study whether trace retrieval techniques and enhancements to those
techniques can be applied to ITSs.

The next section describes details of the study design and the above
research question is systematically refined in three fine grained RQs in
Section 16.1.1. The results are presented in detail in Section 16.2 and
discussed in Section 16.3. Section 16.4 discusses the threats to validity
and the final section concludes this chapter.

16.1 STUDY DESIGN

Overall, the study setup has three steps:

1. The extraction and preparation of the data,

2. the manual creation of a gold standard traceability matrix to
evaluate the experiment results, and

3. the automated trace retrieval using different algorithms, differ-
ent preprocessing techniques, and varying term weighting.

Details of this process are described in the following sections and an
overview is given in Figure 16.1.

DATA EXTRACTION

GOLD STANDARD

EVALUATION

Figure 16.1: Study Setup.

Data Extraction Guideline Creation Data preprocessing
from ITS (e.g. to cover trace type (e.g. stemming, code
semantics) extraction)
I I I 5
Data Cleaning Gold Standard Creation Weighting 2
(e.g. unified naming (3 coders, 400 issues (title, description, comment, |' | §
scheme) [= 1904100 _ 50 = 4950 code) §
T comparisons] for each data I o
Data Conversion ] sample) Evaluation
(to OpenTrace XML format) for each algorithm
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“The case study
contains no greater
bias toward
verification of the
researcher’s
preconceived notions
than other methods
of inquiry. On the
contrary, experience
indicates that the
case study contains
a greater bias toward
falsification of
preconceived notions
than toward
verification.”

- (Flyvbjerg, 2006)
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16.1.1  Research Questions

The main question of this chapter, whether IR algorithms for trace
recovery perform effectively on ITS data, is divided into the following
four RQs:

RQ 4.1 How do IR algorithms for automated traceability perform on
ITS data in comparison to related work on structured RAs?
Expected is a) a worse results in comparison to related work on RAs,
due to little structure and much noise in ITS data, and b) that BM25[+/L]
variants perform competitive since BMzs is often used as a baseline to
evaluate new IR algorithms.

RQ 4.2 How do results vary if ITS-specific preprocessing and weight-
ing is applied?
Expected is that removing ITS specific noise improves the results for
all datasets.

RQ 4.3 How do results vary for different trace and issue types?
E.g. Heck and Zaidman, 2014; Runeson, Alexandersson, and Nyholm,
2007; or Wang et al., 2008 used IR algorithms on bug report dupli-
cates. Since duplicates usually have a high similarity, good results for
duplicates can be expected.

RQ 4.4 How do results vary between different projects?
Experiments are run with the data of four projects with distinct prop-
erties. Expected is a wide range of results due to these differences.

This particular study reports on trace retrieval for the trace types du-
plicate and generic. A duplicate relation exists between two issues, if
both issues describe exactly the same SF. A generic relation exists, if
two issues refer to the same SF. Such a generic relation can for exam-
ple be used to determine the total amount of time and money that
was spent to implement an SF and fix all potential bugs that were
introduced with this SF.

16.1.2 Data

All projects researched in this thesis are described in detail in Sec-
tion 8.1. The data of following four projects is utilized in this study.
These are the same projects studied for SFR detection in the previous
chapter:

1. C:geo
2. lighttpd
3. Radiant

4. Redmine



16.1 STUDY DESIGN

All researched projects of this thesis are described in detail in Sec-
tion 8.1. An excerpt of the data researched in this particular study is
shown in Figure 16.2. The figure shows the gold standard creation
tool developed for this study. The tool is introduced in the following
paragraph.

DATA PREPARATION In contrast to the previous study from Chap-
ter 15, where early or older issues were sampled to include many SFRs
in the dataset, 100 consecutive issues per project (in total 400 issues)
were extracted in this study. It is more likely that consecutive issues
are related, e.g. because they refer to the same SF or because induced
bugs are reported promptly. Hence, the possibility to find meaning-
ful traces is higher in a consecutive set of issues than in randomly
selected samples. The extraction process followed existing links to
other issues in a breadth-first search manner to make sure that the
extracted dataset includes traces. Existing links were automatically
parsed and collected into a traceability matrix. This traceability ma-
trix is referred to as Developer Trace Matrix (DTM). Beside the NL,
data fields, and the existing traces, meta-data such as authors, date-
and time-stamps, the issue status, or issue IDs were extracted.

The selection includes features, bugs, and uncategorized issues.
However, as discussed in Chapter 11 the projects that rely on the
Redmine ITS categorize all issues, whereas the ones using the GitHub
ITS seldom employ issue categories.

GOLD STANDARD TRACE MATRICES The first, third, and fourth
author of the publication by Merten et al., 2016a created the Gold
Standard Trace Matrix (GSTM). For this task title, description, and com-
ments of each issue were manually compared to every other issue.
Since 100 issues per project were extracted, this implies 1295100 —
50 = 4950 manual comparisons'. To have semantically similar gold
standards for each project, a code of conduct was developed that
prescribed e.g. when a generic trace should be created or when an
issue should be treated as duplicate (the description of both issues
describes exactly the same bug or requirement).

Since concentration quickly declines in such monotonous tasks, the
comparisons were aided by a tool especially created for this purpose.
It supports defining related and unrelated issues by simple keyboard
shortcuts as well as saving and resuming the work. The tool is com-
patible with the OpenTrace format, so that reference trace matrices
for OpenTrace can be created and experiment outcomes or interme-
diate steps can be visualized using GATE. At large, a GSTM for one
project could be created in two and a half business days with this
tool. A screenshot of the tool is shown in Figure 16.2. On the left

Comparisons were made from issue A to B and B to A at the same time and the
trace direction was set accordingly.

155



156

RECOVERING RELATED ISSUES IN ISSUE TRACKING SYSTEMS — AN EMPIRICAL STUDY

Alv <[] D 4315 D 5084

1 Title: Add an icon to trackable representing "brand" Title: crowdin: New translations
2 Author:  kumy Assigne:  kumy Author:  rsudev Assignee:
3 Status:  closed Type: Feature Status:  closed Type: Issue

5 Created... 04.09.2014 13:29:36 UpdatedAt: 04.09.2014 13:29:36 CreatedAt: 12.07.2015 13:10:30 UpdatedAt: 12.07.2015 13:10:30

15 If GeoKrety (as of geolutins, pathtags...) are supported by downloaded 2015-07-12 13:10:17
45 c:geo, it would be good if they could be easily differentiated in

52 cache inventory.

810

1036 Comments (5) Comments (0)
2930 v [ 1. ID: 54665327 Author: Bananeweizen Created: 05.09.2014
3007 Geokretys are not available in our cache inventory listing. T
3438 pure GC trackable listings. Right now we only support geok
3515 ans of looking up their trackable code. So I can't imagine w
3819 icon would be used right now?
v [ 2.1D: 54665881 Author: kumy Created: 05.09.2014 20:51:C
9326 I'm working on implementing GK... They could be shown in
4374

4397 ‘ Tocks (5| blocked_by (6.+5) | clones (7 | cloned by (647 [<s0s4 |

Count: 100 referenced_by (£+8) | duplicate_of (6) [ duplicate_by (£+6) Unmarked: 0

Figure 16.2: Gold Standard Creation Tool.

hand side c:geo issue #4315 is shown. The right hand side presents
all other issues to the user. In this screenshot all issues are marked
as ‘not related’. Each trace type is color coded so that it can be vi-
sually distinguished in the tool. After every trace definition, the tool
automatically advances the right hand side to the next issue. Hence a
single keystroke defines a trace. In case of an erroneous trace defini-
tion, the user can scroll though the issues issues manually using the
arrow keys for a quick revision.

In general, the GSTMs contain more traces than the DTMs (see Ta-
ble 16.1). A manual analysis revealed that developers often miss (or
simply do not want to create) traces or create relations between issues
that are actually not related. The following are examples why GSTMs
and DTMs differ:

1. Eight out of the 100 issues in the c:geo dataset were created
automatically by a bot that manages translations for interna-
tionalization. Although these issues are related, they were not
automatically marked as related. There is also a comment on
how internationalization should be handled in another issue.

2. Some traces in the Redmine based projects do not follow the cor-
rect syntax and are therefore missed by a parser. E.g. in lighttpd
#2378 two issues are referenced by an URL (http://...id) and
not by # < id >, as specified by the Redmine Wiki Syntax.

3. Links are often vague and unconfirmed in developer traces. E.g.
c:geo #5063 says that the issue “could be related to #4978 [...]
but I couldn’t find a clear scenario to reproduce this”. No ev-
idence could be found that suggests marking these issues as
related in the gold standard. However, a link was placed by the
developers.

4. Issue #5035 in c:geo contains a reference to #3550 to say that
a bug occurred before the other bug was reported (the trace
semantic in this case is: “occurred likely before”). There is, how-
ever, no real relation between the bugs except the occurrence,


http://...id

16.1 STUDY DESIGN

therefore these issues were not marked as related in the gold
standard.

5. The Radiant project simply did not employ many manual traces
but traces could be found by the annotators.

PROJECTS
# OF RELATIONS C:GEO LIGHTTPD RADIANT REDMINE
DTM generic 59 11 8 60
GSTM generic 102 18 55 94
GSTM duplicates 2 3 - 5
overlapping 30 9 5 45

Table 16.1: Extracted Traces Versus Gold Standard.

16.1.3 Algorithms and Settings

In the experiment, multiple term weighting schemes for the ITS data
fields and different preprocessing methods are combined with the IR
algorithms VSM, LSA, BMz25, BM25+ and BM2sL. As preprocessing tech-
niques stop word removal, lowering, and stemming are used. These
are referred to as standard preprocessing. Due to the experience in is-
sue preprocessing from the previous chapter, standard preprocessing
is applied as is and not split and further. In addition ITS-specific prepro-
cessing is employed. For the ITS-specific preprocessing, technical noise
is removed and the regions marked as code are extracted and sepa-
rated from the NL. Thus, different term weights can be applied to each
ITS data field and to the technical data. Table 16.2 gives an overview
of all IR algorithms and preprocessing methods and Table 16.3 shows
the term weights and rationales for every weighting scheme.

ALGORITHM SETTINGS PREPROCESSING SETTINGS
BM25 Pure, +, L Standard Preprocessing

VSM TE-IDF Stemming on/ off
LSA CcOs measure Stop Word Removal on/off

ITS-specific Preprocessing
Noise Removal on/ off

Code Extraction on/off

Table 16.2: Algorithms and Preprocessing Settings.
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WEIGHT RATIONALE / HYPOTHESIS

TITLE DESCRIPTION COMMENTS CODE

Unaltered algorithm

without considering code

also without comments
Title more important

without considering code
Description more important
Code more important
Most important information first

without considering code

©C O = N = O = O O —

1 1 1
1 1 1
1 1 0
2 1 1
2 1 1
1 2 1
1 1 1
8 4 2
4 2 1
2 1 0

also without comments

Table 16.3: Data Fields Weights.

16.1.4 Evaluation Procedures

The result of the IR-based trace retrieval techniques are compared to
the GSTM. For every trace retrieval technique trace; is computed with
different thresholds t in order to maximize precision, recall, F; and
F> measure. Results are presented as F, and F; measure in general.
However, maximizing recall is often desirable in practice, because it
is simpler to remove wrong links manually than to find correct links
manually. Therefore, maximized R with the corresponding precision
is discussed, too, similarly to the MAX(R), P>, measure used in the
previous chapter.

16.2 RESULTS

As stated in Section 16.1, a comparison to the GSTM results in more au-
thentic and accurate measurements than a comparison to the DTM. It
also yields better results: F; and F, both increase about 9% in average
computed on unprocessed datasets>. A manual inspection revealed
that this increase materializes due to the flaws in the DTM as discussed
in Section 16.1.2, especially because of missing traces. Therefore, the
results in this chapter are reported in comparison to the GSTM.

16.2.1 IR Algorithm Performance on ITS Data

Figure 16.3 shows an evaluation of all algorithms with respect to the
GSTMs for all projects with and without standard preprocessing. The
differences per project are significant with 30% for Fy and 27% for
F>. It can be seen that standard preprocessing does not have a clear

2 Unprocessed means that neither preprocessing techniques are applied nor weighting
is used.
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positive impact on the results. Although if only slightly, a negative
impact on some of the project/algorithm combinations is noticeable.
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Figure 16.3: Best F; and F, Scores for Every IR Algorithm.

On a side note, the experiment supports the claim of Heck and
Zaidman, 2014 that removing stop-words is not always beneficial on
ITS data: Former experiments included different stop word lists and it
was found that a small list removing essentially only pronouns works
best.

In terms of algorithms, no variant of BM25 competed for the best
results. The best F» measures of all BM25 variants varied from 0.09 to
0.19 over all projects, independently of standard preprocessing. When
maximizing R to 1, P does not cross a 2% barrier for any algorithm.
Even for R > 0.9, P is still < 0.05. All in all, the results are not good
according to the definition from Table 6.1 in Section 6.1. This is inde-



160 RECOVERING RELATED ISSUES IN ISSUE TRACKING SYSTEMS — AN EMPIRICAL STUDY

0.5 - 0 0std. pre. i
4 0.4 U 17s pre. + std. pre.
S 03 -
P02t .
Sor i BB
0 L T T T T 3
C:Geo lighttpd Radiant Redmine
0.5 7
v 04 -
o O
ull
O L T T =

T T
C:Geo lighttpd Radiant Redmine

o BM25 m BM25L e LSA x VSM

Figure 16.4: Best Results With and Without Removing Noise.

pendently of standard preprocessing and trace retrieval on ITS data
cannot compete with related work on structured RAs.

With respect to preprocessing the results decrease only slightly in
a few cases. However, this negative impact is negligible and the re-
maining measurements are reported with the standard preprocessing
techniques enabled.

16.2.2  ITS-specific Preprocessing and Weighting

This RQ2 investigates in the influence of ITS-specific preprocessing and
ITS data field-specific term weighting in contrast to standard preprocessing.

Contrary to the expectations, ITS-specific preprocessing impacts
only c:geo clearly positive as shown in Figure 16.4. For the other
projects, a positive impact is achieved in terms of F; measure only.
Since preprocessing always removes data, it can have a negative im-
pact on recall. This involves as a slight decrease of the F, measure
for three of the projects (4% for lighttpd, 2% for Radiant, and 1%
for Redmine). Overall however, precision improves with ITS-specific
preprocessing.

Figure 16.5 shows the influence of different term weights in each of
the projects. For a better comparison the results are shown with stan-
dard and ITS-specific preprocessing enabled. The left axis represents the
term weight factors for: Title - Description - Comments - Code. In con-
trast to ITS-specific preprocessing Figure 16.5 shows that some term
weights clearly performed best. In general, the weighting schemes
that stress the title yield better results. In addition, the figure also
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Figure 16.5: Influence of Term Weighting.

shows that code should not be considered by IR algorithms for trace
retrieval: Term weights of 0 for code yield the best results.

16.2.3 Trace Types and Issue Types

1SSUE TYPES Table 16.4 shows the best achievable results for Fq, F»
and R on fully preprocessed datasets. The best results per issue type
are printed in bold font. Since the Radiant dataset does not provide
information on issue types, it is excluded in Table 16.4.

Trace retrieval from feature to bug issues works best for the lighttpd
dataset. For Redmine retrieval between features worked best and for
c:geo retrieval between bugs worked best; here, however, retrieval for
other cases is much lower. Interestingly, there was no issue type, that
worked best or worst for all projects.

TRACE TYPES Table 16.5 compares the best achievable results for

duplicat . . :
tracey : 1 x T and trace; © " : I x I. The comparison is restricted to

generic relations and duplicates, since other annotated trace types in
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the GSTM3 left too much room for interpretation by the annotators.
E.g. it is hard to define when exactly an issue “blocks” another issue,
without detailed knowledge of the project.

Table 16.5 shows that duplicate issues are detected competitively
for c:geo and Redmine and rather poorly for lighttpd. The latter con-
tradicts the expectations for this RQ. However, a manual inspection
of the data showed that duplicated issues often use different words to
express the same matter, similar to the example given in Figure 2.3 in
Section 2.2. This can only be resolved by domain knowledge and/or
knowledge of domain-dependent synonyms. Both of which cannot
be handled by standard IR algorithms without additional effort. Note,
that it cannot be reported on the Radiant dataset, since the GSTM does
not contain any duplicates.

16.2.4 Results per Project

Table 16.6 summarizes the best results per project for the Fy ;> scores,
the best recall with the according precision (R(P)), and the settings
that achieve these results. A baseline is represented by the best per-
forming algorithm with standard preprocessing but without ITS-specific
preprocessing and without ITS data field-specific term weighting. Although
all results exceed this baseline, the positive impact of the ITS-specific
efforts is only significant for c:geo and Radiant datasets (F; > increase
between 10 and 12%) and it has only a small impact on the lighttpd
and Redmine datasets (F; . increase between 5 and 8%). This corre-
lates with the ITSs that the projects employ. One hypothesis is that
data cleanup and weighting have a higher influence on the Github
based projects, since the NL data looks a bit untidy in comparison
to the Redmine based projects. With an improvement of 11% for F;
the best values were achieved for c:geo and Radiant. A reason for
this might be that both ITSs contain the least technical discussions
and terms. On the contrary, the next best results are measured for
lighttpd and the project’s ITS contains most technical data. All in all,
combinations of weighting and ITS-specific preprocessing were re-
sponsible for the best obtainable results. As discussed in RQ 4.3 not
considering the code and emphasizing the title works best for each
project.

In addition, the values of the fully preprocessed datasets from Ta-
ble 16.4 were compared to the same baseline as in Table 16.6 (only
standard preprocessing). This comparison reveals that the prepro-
cessed dataset performs better for different trace and issue types
as well. Improvements can be noticed in every case. Most signifi-
cantly, improvements in both, F; and F;, of over 36% are achieved
for tracey : Ipyg X Ipyg in c:geo and over 10% for tracer : Igaure X Ipug

3 The annotation of the following trace types was defined in the gold standard creation
tool: Iy precedes, is parent of, blocks, clones I5.
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tracet : Lpature X Ifeature

RESULTS ALG. WEIGHTS
c:geo Fq 04 BM25 2,1,0,0
Fy 053 vsMm 4,2,1,0

R (P) 1(0.6) BM2s 1,1,0,0

Lighttpd Fy 0.67 VSM 1,1,0,0
Fy 0.56 VsSM 1,1,0,0

R (P) 1(0.02) BMz25 1,1,0,0

Redmine F4 0.49 VSM 2,1,0,0
Fy 055 VSM 2,1,0,0

R (P) 1(0.07) BM2s 1,1,0,0

tracey : Igpapure X Tpug

RESULTS ALG. WEIGHTS

c:geo F 046 VSM 8,4,2,1
Fy 041  vsM 84,21

R (P) 1(0.03) BMz25 1,1,0,0

Lighttpd  Fy 0.67 VSM 1,1,1,0
Fa 071  VSM 1,1,1,0

R (P) 1(0.8) BM25 1,1,0,0

Redmine F4 0.29 VsSM 4,2,1,0
Fy 030 vsMm 1,1,0,0

R (P) 1(0.03) BMz5 1,1,1,0

tracey : Ipyg X Ipyq

RESULTS ALG. WEIGHTS

c:geo Fq 0.64 VSM 1,1,1,0
Fy 0.67 VSM 1,1,1,0

R (P) 1(0.04) vsMm 1,1,0,0

Lighttpd  Fy 033 1LsA 8,4,2,1
Fy 043 VsM 84,21

R (P) 1(0.01) BM2s 4,2,1,0

Redmine Fy 0.29 VsM 4,2,1,0
Fy 038 VvsMm 4,210

R (P) 0.04 (0.01) vsMm 1,1,1,0

Table 16.4: Best Results for Different Issue Types.
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tracer : I x 1 tmcei”p licate IxI
RESULTS ALG. WEIGHTS RESULTS ALG. WEIGHTS
% Fi 058  VSM 2,1,0,0 0.67 1SA 1,1,0,0
9] ) 0.55 VSM 2,1,0,0 0.56 LsA 1,1,0,0
R(P)  0.1(0.03) BMas+ 1,111 1(0.11)  BMzs 1,1,0,0
EOR 04  VSM 42,10 0.18 1sA 1,1,0,0
E F, 0.46 VSM 4,2,1,0 0.36 VSM 2,1,0,0
" R(P) 097(0.04) BMzs 1,111 0.97 (0.3) BMzs 1,1,0,0
E Fq 0.31 VSM 1,1,0,0 0.31 LSA 1,211
2 038  VSM 2,1,0,0 036 1sA 1,2,1,1
R(P) 099 (0.03) vsM 11,11 1(001) 1SA 1,1,0,0
Table 16.5: Best Results for Different Trace Types.
BEST RESULTS tracet : I x 1 BASELINE
ITS STD. PRE. ONLY
RESULTS ALG. WEIGHTS STD. PRE. PRE. NO WEIGHTING
g R 058 VsM 21,00 true true 046 LsA
9] F2 0.55 vsMm 2,1,0,0 true true 044 LSA
R (P) 1(0.03) BMazs+ 1,1,1,1 false true 0.99 (0.03) BMas+
Ej F 04 VsSM 4,2,1,0 true true 0.32  VvsMm
E Fa 046 VSM 4,2,1,0 true true 041 VvsM
" R(P)  097(0.04) BMzs 1,1,1,1 false false 0.94 (0.03)  VsM
;2 Fi 027 vsMm 21,00 true true 017 LsA
a Fy 0.35 VSM 2,1,0,0 true true 0.24 VSM
Z R (P) 1(0.02) BM2s 2,1,0,0 false false 1(0.02) BMa2s
g Fi 031 vsM 2,1,0,0 true true 025 vSM
= K 0.38 VsM 2,1,0,0 true true 033 VvsM
R (P) 0.99 (0.3) VvsM 1,1,1,1 stopword only false 0.99 (0.03) VsM

Table 16.6: Best Results per Project (Trace and Issue Type not Distinguished).
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in c:geo. On average, F1 increased by 19.5% and F, by 13.33% for all
projects and trace types.

Since no BMz5 variants performed best, the improvements in com-
parison to the baseline from Figure 16.3 were computed. BMz; still per-
forms worse than VSM and LSI. However, the F, scores for BMz25[+,L]
improved by 23% for c:geo, 3% for lighttpd, 3% for Radiant, and 6%
for Redmine.

16.3 DISCUSSION

This section first discusses the implication of the above results for
ITSoFD in practice. Then it discusses the main implications of the study
for future research on trace retrieval in ITSs:

PRACTICAL IMPLICATIONS Overall, the results show that there is
neither the best algorithm, nor the best preprocessing for all projects.
However, removing code snippets and stack traces can be considered
a good advice (cf. the term weights forn —m —n —0, with n € {1, 2,4}
in Table 16.6). It generally improves the results, especially precision,
and has a negative impact of < 4% on the F, measure for lighttpd in
the experiments, only. Also, up-weighting title and down-weighting
comments has an overall positive impact. In general however, trace
retrieval in ITSs shows mixed results in this study and seems to de-
pend largely on the specific project. Although trace retrieval can be
used in ITSoFD to get a more complete view of issues that are related
to an SFR, the results should be validated manually.

In practice one should not rely only on IR based trace retrieval re-
sults. Issues that are manually linked by the developers should be
included, too. However, the comparison of the GSTM and the DTM
shows that even explicitly created traces by the developers can some-
times be wrong depending on the project and how links are used.

RETRIEVING TRACES VERSUS RECOMMENDING TRACES In this
study traces were retrieved retrospectively. However, the same tech-
nique can be applied to suggest traces, e.g. during issue creation. If
ranked list of similar issues is shown during issue creation, the user
can choose the ones that apply and thus improve the trace creation.
Cleland-Huang et al., 2012, for example, use IR techniques to imple-
ment trace recommendation for RE artifacts.

TRACE RETRIEVAL ALGORITHMS The best measures in Table 16.6
are computed with the ‘simplest” algorithm: VSM. Since VSM considers
every term of the text that was not removed by preprocessing, it can
be hypothesized that is an important property for trace retrieval in
ITS data. All variants of the BMz25 algorithm fell short. Thus further
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experiments with BMz5 cannot expected to be promising in ITS trace
retrieval without further modification of the algorithms.

164 THREATS TO VALIDITY

INTERNAL VALIDITY Every GSTM was created by one person only
due to limited resources and it is known that the manual definition
of trace types is a rather complex task for human experts (Cudde-
back, Dekhtyar, and Hayes, 2010). This thread was minimized in this
particular study by (1) creating and discussing guidelines how the
gold standard should be made and discussing examples of related
issues, (2) peer reviewing the created gold standards by random sam-
ples, and (3) peer reviewing decisions in the GSTM that would remove
links present in the DTM. Still, some traces were hard to decide on. In
case of doubt, no trace was inserted in the GSTM.

Another aspect with respect to internal validity is the extension of
OpenTrace. OpenTrace creates queries in Apache Lucene to calculate
similarity : 1 x 1. This involves data transformations from and to the
GATE and OpenTrace frameworks. To minimize this thread, the code
was inspected and enhanced very carefully to mitigate potential im-
plementation problems and the source code and all data is published
along with this thesis for others to inspect or improve.

EXTERNAL VALIDITY Even though a rather large GSTM of 100 x 100
traces was created, the GSTM comprises only a small part of the issues
per project. Therefore, a generalization from these results cannot be
made. However, about a third of the issues of the Radiant project is
included in the GSTM, which is a rather large sample. Overall, the
study still gives an indication of the importance of preprocessing and
term weighting and shows that ITS data cannot be handled in the
same way as structured RAs.

In addition to the facts discussed in Section 16.2.3, and due to the
low number of duplicates in the datasets (see Table 16.1) the low
results for duplicates might have occurred by chance. It is important
to note that the definitions of related and duplicate issues have a major
influence on the results. Different definitions would certainly lead to
different results since trace matrices are always use-case-dependent.

16.5 CONCLUSION

This chapter presented an evaluation of five IR algorithms for the
problem of automated trace retrieval on ITS data. Since the NL in ITSs
is not comparable to structured RAs, the results show that IR algo-
rithms that perform quite well with RAs, perform significantly weaker
with ITS data. A combination of ITS-specific preprocessing and ITS
data field-specific term weighting can positively influence the results



16.5 CONCLUSION

in many cases. However, results seem to vary due to the entirely dif-
ferent usage of NL in the different projects. Some issues use different
expressions or abstraction levels although they are actually related.
This in turn misleads IR algorithms. Overall, this study shows that
trace retrieval in ITSs is still an open issue.
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Part VI

CONCLUSION

This part summarizes the results of the thesis and dis-
cusses and concludes the Issue Tracking Software Feature
Detection Method and its overall applicability. On this ba-
sis it lays out future work in the area.






DISCUSSION

In Chapter 11 most information in issues can be annotated and cat-
egorized by human experts. A taxonomy of issue and information
types is created and others showed that task-specific categories and
taxonomies can be identified, too (Bertram et al., 2010; Ko and Chi-
lana, 2011). For computers, however, the use of NL in issues remains
a problem®. This problem seems to be inherent in the issues: (1) they
contain noise, as stakeholders tend to talk about technical solutions
and mix NL with technical data. Although this problem can be miti-
gated, as discussed in Chapter 14, spelling and orthography remain
a problem: (2) NL is used in a rather ‘sloppy” way in issues. This does
not come as a surprise since issues aid the development and are not
seen as documentation or specification artifacts. In contrast people
use glossaries, specific keywords, or templates to properly formulate
SFs and related information in traditional RAs.

One could argue that it is needless to discuss problems related to
NL in issues: ITSs offer the possibility to tag or categorize issues and
to trace related information. However, Part iv of the thesis finds that
these mechanisms are rarely used in practice and categories as well
as links are often wrong. Furthermore, all ITSs offer categorization on
the level of issues only, but sometimes it is a comment containing
the relevant information that should be tagged or categorized. Due
to all these inconveniences automated methods have to consider the
NL. The relevance of NL is shown in Chapter 15: the maximum recall
of SFR detection does not improve at all, when issue tags or categories
are added to the MLF set?.

Validating the detection of SFs in ITSs is a challenging task, too.
In both, Part iv and Part v of the thesis, ITS NL data is manually
annotated. Although human experts agree on clearly identifiable SF
related information and traceability information, even humans have
problems agreeing on the question: ‘what is an SFs?” in many cases.
The difference between the agreed upon cases and the uncertain cases
in the gold standards in Chapter 15 is an example for this agreement
problem. While the gold standard was prepared, the human analysts
usually agreed upon clearly formulated SFRs that appear in the issue
title or description. However, subtile SFRs that appear in issue com-
ments were often found by only one of two analysts.

Although this thesis is about SF detection, other automated tasks face the same prob-
lems. Whether issues should be categorized, re-structured or summarized, the NL in
issues depends very much on the people using the ITS.

To be precise, no improvement is made for the MAX(R), P, measure. Note, that
tags and categories help improving precision if a high F1 score is the detection goal.
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DISCUSSION

That said, there is no silver bullet for automatic processing of ITS
data. However, the good news is that ML can support such a task:
the ML based SFR detection approach from ITSoFD performs with high
recall, especially on the uncertain dataset. Thus, most of the SFRs can
be found automatically even if false positives need to be removed
manually.

In theory, this performance increases in a practical environment.
Consider that four coders annotated the data for SFR detection eval-
uation Chapter 15. In practice, however, it is likely that only a single
annotator annotates the training data. Due to the agreement prob-
lem discussed above, it can be assumed that the data annotation is
more consistent if a single annotator works through the issues3. Usu-
ally, classifiers create better models of more consistently annotated
sentences and finally this should yield better results.

But detecting SFRs is only one part of this thesis. The ITS analysis
in Part iv showed that SFRs detection is not enough to find all the in-
formation related to an SF. E.g. one could be interested in the overall
amount of time, work, and contributors that participated in the real-
ization of a particular SFR. To calculate this, all issues that relate to
the SF need to be considered and this can be achieved easily if all re-
lated issues are traced. The trace recovery study in Chapter 16 shows
that tracing related issues is more difficult than SFR detection itself.
Although related work reports good results on trace recovery in RAs
and finding duplicated issues, trace recovery in ITSs is a task far from
being completed.

ITSoFD is a proof of concept that shows what contemporary auto-
mated methods can achieve on ITS data in terms of SFR detection and
trace retrieval. Although this thesis did not investigate in techniques
like deep learning for these tasks, it is arguable whether automated
methods can ever be good enough to handle these tasks: the stake-
holders using the ITS need to understand that rather small efforts in
terms of consistent formulation or the consequent usage of ITS fea-
tures eases both tasks. Solution ideas that support an understanding
or support a more consequent usage of NL are discussed in Chap-
ter 19.

3 At the same time the resulting model is presumably less transferable.



SUMMARY

Overall, the thesis contributes to the body of knowledge in SE and RE
with respect to the analysis of and methods for ITS data. In Part iv
two empirical studies investigate the content of ITSs and the NL of
issues. Both studies focus on SFs, how these SFs are related, and how
they are composed. In Part v three approaches are presented. The first
prepares the data for more complex tasks by separating NL from tech-
nical artifacts, the second extracts SF related information from issues,
and the third recovers traces within ITSs. These three approaches are
the main components of the ITSoFD method.

ITSoFD tackles two major parts of SF detection in ITSs. To do so, the
study in Chapter 10 researches ITSs in comparison to UD and shows
that ITSs are a fruitful source for SF related information. Then, mean-
ingful information types are derived from ITS data and a taxonomy of
issue and information types is created and discussed in Chapter 11. A
subset of these information types describe SFs. The thesis researches
the SFR, clarifications and solution proposals in detail. The main com-
ponents of ITSoFD are:

1. An approach based on ML to detect the SF relevant subset of in-
formation types. It is evaluated in an empirical study in Chap-
ter 15. It can be shown that this approach reduces the amount
necessary work with respect to a manual inspection of issues to
detect the information.

2. An approach based on IR to recover trace links in ITSs. It is eval-
uated in an empirical study in Chapter 16. Although trace link
recovery does not work as good in ITSs compared to related
work on structured RAs, it can be shown that term weighting
and ITS specific preprocessing slightly improves results.

Overall, the five empirical studies in this thesis found that ITS data
is and will likely be hard to process automatically in the near future.
The thesis represents a first step in terms of SF detection and it elabo-
rates many empirical insights on ITS data for others to build upon.
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FUTURE WORK

During the investigations in ITS data and the evaluations of automatic
approaches, insights beyond the scope of this thesis could be gained.
Of course these insights trigger new solution ideas in the researchers
mind. In the following a selection of those ideas is presented. At this
point I would like to thank the scientific community and the review-
ers of the publications that went along with this thesis. Many ideas
were triggered by feedback at scientific conferences and statements in
reviews.

From a technical point of view, research on SFR detection can tackle
multiple challenges: MLF sets can be curtailed further to determine
which exact MLF has a high impact on SFR detection. A popular tech-
nique in the ML community is variable and feature selection (Guyon
and Elisseeff, 2003). Very recently, a method to explain classifier deci-
sions was developed by Ribeiro, Singh, and Guestrin, 2016. In Chap-
ter 15 I hypothesize about the reasons for false positives in the un-
certain cases dataset and false negatives in the certain cases dataset.
However, methods as the one by Guyon and Elisseeff, 2003 or Ribeiro,
Singh, and Guestrin, 2016 can be applied to validate or falsify such
hypothesis with higher certainty. Another way to go is to improve
classification on a sentence level. At the time when the experiments
for Chapter 15 were conducted, others used deep learning for sen-
tence classification (see, e.g. Kim, 2014). Such an technique could be
applied to the SFR detection problems of this thesis, too.

Section 13.3 already discussed the possibility of applying clustering
in the context of trace retrieval. Similar efforts exist to cluster unstruc-
tured NL documents into topics (Hindle et al., 2012). Such methods
can be incorporated into ITSoFD to cluster the detected SFRs or to check
how closely clarifications or solution ideas are related to a particular
SER.

Similar to clustering solutions, the approach by Medem, Akodje-
nou, and Teixeira, 2009 creates a hierarchy from trouble tickets using
a binary tree. Although a binary tree is a rather limited data struc-
ture to create a hierarchy, a tree or graph-like structure could largely
improve the output of ITSoFD. If detected SFRs are already structured,
the information could easily be transformed into feature trees or sim-
ilar representations that can be used in industrial applications such
as release planning. Finally, ITS such tree structures could be used to
improve ITS traceability.

As the results of this thesis clearly suggest that IR approaches do
not perform very well on the data of some 0SS projects, future work

175

“Knowledge is of no
value unless you put
it into practice.”
- Anton Chekhov



176

FUTURE WORK

in ITS traceability could focus on trace recommendation. Whenever
an issue or even a comment is authored or modified, a ranked list
of candidate issues to trace to could be offered to the user. This way
algorithm results can be combined with human knowledge and the
combination of trace suggestions offered by a machine together with
the experience of a human analyst could improve trace generation
significantly.

Another solution is to improve the ITSs themselves. Although many
ITS improvements were proposed (e.g. Just, Premraj, and Zimmer-
mann, 2008; Lotufo, Passos, and Czarnecki, 2012; Zimmermann et
al., 2009), those ideas usually focus on the bug tracking aspect of
ITSs and not the management of SFs. One particular aspect that needs
improvement in ITSs is that comments cannot be categorized by any
means. For software code, refactoring is a task that is done on a daily
basis in most development companies (Fowler et al., 2012), but there
are no means to ‘refactor” an issue. If e.g. a user suggests a new SF
in a comment to a bug, a refactoring of this comment could create a
new SFR. From a user perspective such an refactoring is only a single
click or keyboard shortcut away. As a start the content of the com-
ment could be copied in a new issue and a trace could automatically
be generated. Furthermore, the categorization or tagging on the level
of ITS data fields could improve tidiness and such metadata would
additionally support searching in ITSs.

In addition an LE based approach that comprises an extensive cata-
log of NL patterns could support the classification of comments in real
time and suggest categories to the users. Although the patterns that
were found in this thesis are not enough for SFR detection in terms of
a high precision, such patterns could be used to suggest potential cat-
egories to ITS users. Thinking this even further a ML approach could
then be applied that classifies good and bad patterns (e.g. suggestions
to the user that result in a categorization and suggestions to the user
that are ignored) so that potentially ‘bad” patterns can be refactored
or removed in the long run.

Overall, the results of this thesis are promising to pursue the path
of integrating ML and IR techniques in ITSs directly. This way, not
only precision, recall, or F-Scores can be measured, but ITS users can
directly rate the impact of these methods on their daily work. This in
turn gives valuable insights for the researcher.



Part VII

APPENDICES






CODING GUIDELINES USED FOR C:GEO,
LIGHTTPD, RADIANT AND REDMINE ITS NL DATA

The following sections show the coder distribution, agreement factors
and the coding guidelines that were used to create the data analyzed
in Chapter 11 and the gold standard for the study presented in Chap-
ter 15.

A.1 CODER DISTRIBUTION AND AGREEMENT FACTORS

Table A.1 shows which issue IDs were assigned to which coder. Ta-
ble A.2 shows the complete agreement factors for the final coding.
The coding guidelines are stated in the next section.

Cq Cs Cs Cy
c:geo * 25—-50 25-50 1-24 1-24
lighttpd 25-50 1-24 1-24 25-50
radiant T 25-50 25-50 1-24 1-24
redmine 25—-50 1—-24 25-50 1—-24

* Most discussed project, coded first.

T To validate the discussions, same coder pairing as in *.

Table A.1: Coder Distribution per Project.

A.2 CODING GUIDELINES

The following coding guidelines were extracted from a wiki employed
during the experiments’. This wiki was editable by all coders so that
discussions and decisions could be documented promptly.

HOW TO CODE

* Code only feature related information types. Each information
type is described in detail below.

* Use GATE for coding together with the
only-feature-related.xml
annotation schema. This schema reflects the information types
described in this guide.

1 The data was extracted without modification. However, the formatting was adapted
to suit this thesis.
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F1 SCORE

CODER PAIR ISSUE TITLE DESCIPTION COMMENTS
Ci1-Cy 09167 0.9167 0.9167 0.75
Ci-C3 0.8919 0.8378 0.8919 0.5135
C1-Cy4 0.8780 0.8293 0.8293 0.7317
Cy-C3 0.8000 0.8000  0.8000 0.8000
Cy-Cy 0.9091 0.8831 0.9091 0.4156
C3-Cy 0.8571 0.7714  0.8286 0.7143
Average 0.875

COHENS KAPPA
CODER PAIR ISSUE TITLE DESCIPTION COMMENTS
Ci1-Cy 1 0.9773  0.8409 n/a
C1-C3 1 0.8485 1 n/a
C1-Cy4 1 0.8889 0.8333 n/a
Cz-Cg, 1 1 1 n/a
Cy-Cy 1 0.9714  0.9143 n/a
C3-Cy4 1 0.7667  0.6667 n/a
Average 1 0.9088 0.876 n/a

Table A.2: Coder Agreement Factors.



A.2 CODING GUIDELINES

Sentence is the unit of analysis. Code whole sentences (an an-
notation may span multiple sentences, since this can be cleaned
up automatically). If a sentence happens to include two infor-
mation types, code both information types for this sentence.

Do not code citations (e.g. lines marked with >)

If multiple sentences are exactly the same, codes can be dupli-
cated automatically.

Feature related information should only be coded for the fea-
ture(s) that are topic of discussion (in most cases this is the fea-
ture where you find a request and/or a summary for). If there
is a request for another feature in a later comment both feature
related information should be coded. However, we should not
code other feature related information which is not topic of the
issue (e.g. already implemented functions in Redmine).

Rationals are not Clarifications (or Requests)! E.g. “I think this
is a great feature/Our PMs want this, too.”

If you do not understand a sentence, data field, or issue, do not
code it.

GENERAL TIPS

Modified from here:
http://cado.informatik.uni-hamburg.de/coding-guide

Do not interpret too much. Stick to the guide while evaluating

knewdedge information types!

Do not code for more that one hour at once!

Only code as true if the knewdedge information type is clear
based on the description of the guide!

Read the guide from time to time!

Do not make too long breaks (e.g. several more than one week)!

INFORMATION TYPES All information types are described in the
following form:

Name for Example Information Type:

optional An example and potential keywords (potential, since key-

words are sometimes wrong. For example in c:geo large 28:
Please provide help is not about a user problem but about a fea-
ture request. This can be noted only if the tagger skims through
the description (or the whole issue), first.
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optional An anti-example — what would be correct
Summary:

* A brief summary/overview of the feature. In general, this does

not form a complete sentence but is a single a noun phrase (e.g.
“Change maptype for Livemap in Livemap [c:geo_1_000]"). This
is not true for every summary field of the ITS. Sometimes people
do form a complete sentence which is more like a request (e.g.
“compass should point to the direction initially [c:geo_1_24]").

Request Functionality:

* A request of (new) software functionality. Expresses a feature-

related need, demand, desire. Typical keywords (which are not
always the only clear indicators for a request) are “feature”,
“should/would (be)”, “I want”, “add[ing]”, “wouldn’t [it be

7 i“

cool]”, “provide”. Generally positive words are often used in

/AT

a request, too. E.g. “nice”, “good”, ...

Request Quality:

* Asrequest functionality but mentions a software quality (or non

functional requirement (NFR)). This is a feature which typically
can be found in the -ilities type of requirements (e.g. security,
reliability, usability) or performance requirements (e.g. speed,
timing, response times, ... ).

Solution:

e Describes a (technical) solution to the feature. A solution to the

feature divided in conceptional and implementation. Concep-
tion includes solution proposals, libraries that could be used,
user interface descriptions, etc. Implementation includes descrip-
tion of class files, sentences paired with code snippets, etc.

It is important to code only those solutions that are relevant
for the feature itself not e.g. for some other refactoring problem
which is also discussed.

This can be further distinguished in “concept” and “implemen-
tation” which reflects the feature abstraction levels from Paech,
Hiibner, and Merten, 2014, whereas concept is anything with
a higher abstraction level (e.g. “But perhaps we can make the
scale for google a little shorter (it is drawn by c:geo) to avoid
that and to align it better with the mapsforge built-in scale.
[c:geo_1_001]”) and code is anything related to the real coding
(e.g. “we should extend the method XYZ” or code snippets).

Clarification: It is important to code only the sentences which clarify a
feature directly not e.g. clarifications for a certain solution or imple-
mentation proposal. Clarifications can be further distinguished:



A.2 CODING GUIDELINES

Question: Questions with respect to the feature
Answer: Only answers to the questions above

AS-IS: Describing how the software is not (as opposed to the request
how the software should be in future)

Other-App: Describing the feature by referencing how the feature is
implemented in another app (e.g. a competitor)

Explanation: Any other explanation that clarifies the feature which is
not an Answer, not AS-IS and not Other-App
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DISTRIBUTION OF ISSUE AND INFORMATION

TYPES

INFORMATION TYPE COUNT DOCUMENTS SENTENCES WORDS
Refactoring-Related — Clarification/Explanation 1 1 1 30
Feature-Related — Implementation Status 26 10 26 406
Refactoring-Related — Reference — ITS Management 2 2 2 21
SE-Process 7 4 7 91
Feature-Related — Rationale/Plus One 11 3 11 107
Feature-Related — Overview 10 10 10 43
Feature-Related — Solution/Implementation 33 10 33 689
Unclear /Unknown 1 1 1 35
Feature-Related — Rationale/Argument 26 7 26 449
Refactoring-Related — Technical Information 3 1 3 22
Bug-Related — Request Fix 1 1 1 15
Bug-Related — Cause Diagnostics/Explanation 88 8 38 1334
Not-SWE — Unknown/Other/Unclear 3 1 3 48
User Problem 7 2 7 93
Refactoring-Related — Clarification/Question 9 4 9 132
Refactoring-Related — Implementation Status 5 3 5 70
Bug-Related — Scheduling 8 4 8 92
Bug-Related — Cause Diagnostics/Question 28 5 28 342
Bug-Related — Rationale/Plus One 4 3 4 37
Feature-Related — Technical Information 13 1 13 98
Refactoring-Related — Rationale/Plus One 1 1 1 5
Feature-Related — Already-Implemented — ITS Management 1 1 1 12
Feature-Related — Unknown/Other/Unclear — ITS Management 4 2 4 50
Feature-Related — Scheduling 16 9 16 275
Refactoring-Related — Request Refactoring 3 3 3 60
Not-SE — Social Interaction 26 13 26 296
Feature-Related — Clarification/Explanation 33 5 33 518
Bug-Related — Reference — Clarification/As Is 4 1 4 35
Bug-Related — Clarification/As Is/Feature 4 1 4 64
Feature-Related — Clarification/Other App 5 5 5 132

Continued on the next page.
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Continuation from the previous page.

INFORMATION TYPE COUNT DOCUMENTS SENTENCES WORDS
Feature-Related — Clarification/Question 17 7 17 271
Bug-Related — Attribute Change — ITS Management 4 3 4 61
Refactoring-Related — Clarification/As Is/Feature 2 1 2 16
Bug-Related — Solution/Implementation 11 4 11 248
Bug-Related — Technical Information 14 2 14 126
Refactoring-Related — Solution/Implementation 8 3 8 100
SE-Process — Scheduling 1 1 1 34
Feature-Related — Unknown/ /Other 6 3 6 72
Refactoring-Related — Clarification/As Is 3 1 3 63
Refactoring-Related — Rationale/Argument 4 1 4 71
Bug-Related — Reference — ITS Management 9 4 9 102
Feature-Related — yes — Clarification/Question 2 1 2 8
Feature-Related — Cancellation — ITS Management 2 2 2 36
Feature-Related — Request Functionality 30 13 30 500
Feature-Related — Clarification/User Story 2 1 2 61
Bug-Related — Clarification/As Is 47 1 47 860
Refactoring-Related — Scheduling 3 3 3 33
Bug-Related — Cancellation — ITS Management 1 1 1 19
Bug-Related — Closing — ITS Management 5 3 5 58
SE-Process — Social Interaction 2 1 2 27
Bug-Related — Implementation Status 8 4 8 80
Feature-Related — Closing — ITS Management 2 1 2 16
Refactoring-Related — Overview 4 4 4 30
Feature-Related — Duplicate — ITS Management 1 1 1 5
Feature-Related — Reference — ITS Management 22 9 22 271
Bug-Related — Rationale-Argument 19 4 19 430
Bug-Related — Unknown/Other/Unclear 5 3 5 56
Bug-Related — Cause Diagnostics/Reproducibility 32 6 32 404
Feature-Related — Clarification/As Is 2 5 151
Bug-Related — Overview 8 62

Table B.1: Complete Information Type Count.



CLARIFICATION AND SOLUTION DETECTION

Table C.1 is a copy of Table 15.5 on page 144. It serves as a reference

to the evaluated MLF-sets in Figure C.1 to Figure C.4.

MLF-SET 2 4 6 8 0 1 12 13 14 15 16 17 18

BOW v 4 v v v v v v v v v v

bi- & tri-grams v 4 4 v v v oo -/ v o o- v
SAO v v v v v - v - v - v -

data field v - - A A O A A A A4

issue w/o type - 4 - v v - - v v - -
issue with type - v - - v/ - v/
keywords - - v - - - v/

Table C.1: Reference Machine Learning Feature Sets.
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C.1 PLOTS FOR THE CLARIFICATION LABEL

Figure C.1 shows the Fy Scores and Figure C.2 the MAX(R),P>o.2
and MAX(R), P>o.05 scores for Clarification detection. The figures are
analogous to Figure 15.4 on page 145 and Figure 15.5 on page 146.
The black lines in Figure C.2 represent the recall and the red lines the
precision.
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Figure C.1: Fy Scores for Clarification Detection: Comparison of MLF-sets for

Different Scopes with Multiple Classifiers.
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tiple Classifiers.
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ICATION AND SOLUTION DETECTION

C.2 PLOTS FOR THE SOLUTION LABEL

Figure C.3 shows the Fy Scores and Figure C.4 the MAX(R), P>, and

MAX(R

), P>0.05 scores for Solution detection. The figures are analo-

gous to Figure 15.4 on page 145 and Figure 15.5 on page 146. The
black lines in Figure C.4 represent the recall and the red lines the
precision.
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Figure C.3: Fy Scores for Solution Detection: Comparison of MLF-sets for Dif-
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C.3 CROSS TRAINING IMPACT FOR CLARIFICATION AND SOLU-
TION

Table C.2 and Table C.3 show the best achieved cross-training scores
for clarification and solution detection, complementing request function-
liaty from Table 15.6 on page 147.

y £ £

S g d E g = E g

585§ @ E 53 < E
AGREED Fq avg. UNCERTAIN Fq avg.

cg I 2 SGD 0.57 12 SGD 0.66

li I 1:1 LR 0.83 076 7 SGD 0.76 074

ra I 15 SVM 0.71 7 LR 0.75

re I 17 SVM 0.91 13 SVM 0.79

cg DF 4 MNB 0.18 4  MNB 0.48

li DF j'i MNB 0.27 01 1:8 SGD 0.48 o

ra DF 14 LR 0.17 12 SGD 0.43

re DF 13 LR 0.17 13 SGD 0.49

cg Se 4 MNB 0.09 1T MNB 0.29

i Se 1:8 MNB 0.13 01 1:6 SGD 0.24 0.26

ra Se 13 LR 0.09 16 SGD 0.24

re Se 3 MNB 0.06 16 MNB 0.26

MAX(R), P>p AGREED P R P UNCERTAIN P R P

cg I i Mul o02 06 023 3 NB o2 1.0  0.23

li I 7 Lin o2 1.0 o027 i NB o.2 1.0 0.23

ra I i Lin 02 09 o091 i NB o2 1.0 0.21

re I i Lin o2 0.8 0.08 i NB o2 1.0  0.42

cg DF 4 yes 0.05 0.9 0.06 j NB o0.05 098 o0.29

li DF 4 yes 0.05 1.0 0.06 7 NB o005 10 o017

ra DF 6 SGD o0.05 05 006 7 NB o005 1.0 0.19

re DF 3 Mul o005 0.9 o0.05 i NB o005 10 027

cg Se i Mul o0.05 0.4 o0.05 13 NB o005 10 o0.14

li Se 6  Mul o005 05 006 i NB o005 10 009

ra Se 12 Log o005 03 o023 7 NB o005 10 0.09

re Se - - 005 - - 7 NB o005 10 o0.10

with: cg=c:geo, li=Lighttpd, ra=Radiant, re=Redmine

Table C.2: Clarification: Best Cross-Training F; and MAX(R), P> Scores for all
Levels of Detail and Projects.



C3 CROSS TRAINING IMPACT FOR CLARIFICATION AND SOLUTION

. : :
L £ g - £ g
5 253 E 5% % E
AGREED Fq avg. UNCERTAIN Fq avg.
cg I 6 SGD 0.35 7 SGD 0.67
li I 7 SGD 0.5 049 1:4 LR 0.67 067
ra I 7 SGD 0.5 15 SVM 0.6
re I 14 SGD 0.63 17 SGD 0.75
cg DF 7 RF 0.12 4  MNB 0.28
li DF 1‘% RF 0.06 013 1:3 SGD 0.13 024
ra DF 3 MNB 0.18 16 SGD 0.19
re DF 4 MNB 0.17 2 MNB 0.34
cg Se i DT 0.06 5 MNB 0.12
li Se 2 RF 0.03 9 SGD 0.06
. 0.09 . 0.11
ra Se 3 MNB 0.14 4 SGD 0.09
re Se 3 MNB 0.11 3 MNB 0.18
MAX(R), P>p AGREED P R P UNCERTAIN P R P
cg I 5 SGD 02 031 027 $ SGD o2 o077 04
li I 7 SGD o2 o5 0.5 7 SVM 02 0092 o024
ra I i SGD o2 o5 o021 6 SGD 0.2 086 o0.24
re I 2 SGD o2 o7 035 7 NB o2 1.0 031
cg DF 5 DT o0.05 o052 0.06 2 NB o0.05 095 0.13
li DF - - 0.5 - - 15 RF o0.05 0.88 o0.05
ra DF i MNB o0.05 066 0.08 13 NB o0.05 1.0 0.06
re DF 14 SGD 0.05 0.57 0.05 7 NB o0.05 099 0.13
cg Se - - 0.05 - - i NB o0.05 096 0.05
i Se - - 0.05 - - - - 0.05 - -
ra Se i MNB o005 033 005 - - 0.05 - -
re Se i MNB o005 o020 006 13 NB o0.05 099 0.06

with: cg=c:geo, li=Lighttpd, ra=Radiant, re=Redmine

Table C.3: Solution: Best Cross-Training F; and MAX(R), P> Scores for all

Levels of Detail and Projects.
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REGULAR EXPRESSIONS TO DETECT TECHNICAL
INFORMATION

All regular expressions are expressed in the Python programming
language. In Python regular expressions can be extended by so called
modifiers. Two modifiers are used in the following regular expres-
sions:

e re.DOTALL means that the dot character matches the newline
character, too. Effectively this setting spans the regular expres-
sion of multiple lines.

* re MULTILINE means that the *~" character matches at the be-
ginning of the string and at the beginning of the line and the “$’
character matches at the end of the string and at the end of the
line, respectively.

This regular expression detects marked-up technical information that
spans multiple lines in the GitHub ITS:

leading_whitespace_pattern = \
re.compile(r"~( {4,}I\t( I\t)*).*?$", re.MULTILINE)
multiline_backtick_pattern = \
re.compile(r"™ "~ .*7 """  re.DOTALL)

This regular expression detects inline marked-up technical informa-
tion in the GitHub ITS:

single_line_backtick_pattern = re.compile(r"™ .*7 ")

This regular expression detects marked-up technical information that
spans multiple lines in the Redmine ITS:

code_pattern = re.compile('<pre>.*7</pre>', re.DOTALL)

This regular expression detects inline marked-up technical informa-
tion in the Redmine ITs:

at_pattern = re.compile(r"@.*7@")
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