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Abstract

In this thesis, motivated by the simulation of fuel cells and batteries, we develop an
adaptive discretization algorithm to reduce the computational cost for solving the coupled
parabolic/elliptic system. This system is the model for the electrochemical processes within
the cathode of a solid oxide fuel cell (SOFC). First, the coupled system is discretized in
time and in space by the Finite Element Method. Then, it is split into parabolic and
elliptic sub-problems through an operator splitting method. These two equations are solved
sequentially by the multirate iterative solving method that allows for different time step
sizes for the temporal discretizations.

The main focus of this work is to derive goal-oriented, a posteriori error estimators based
on the Dual Weighted Residual method that are computable and separately assess the
temporal discretization error, the spatial discretization error and the splitting error for each
sub-problem. Instead of natural norms, the errors are measured in an arbitrary quantity of
interest, as is often used in practical applications.

The sub-problems are solved in temporal discretizations with different step lengths. If
the ratio between the two step lengths is too large, this can result in the divergence of
the coupling iteration within the multirate scheme. In this case, the algorithm uses the
information from the splitting error estimator to control the convergence behavior. The
error contributions of both discretizations and splitting method are balanced at the end of
the refinement cycle that halts when the error estimators reach a desired accuracy.

The described methods are validated on a simplified model that simulates the cathode of
a SOFC. In this application, the parabolic part consists of a reaction-diffusion equation
describing the concentration distribution of ions, and the elliptic part describes electrical
potential. For a given accuracy, the adaptive algorithm finds the least required number of
degrees of freedom of the parabolic and the elliptic parts of the system. Since the electrical
potential equation has the faster time scale, we use the multirate method and see that
the elliptic problem requires a smaller number of degrees of freedom to attain the same
desired accuracy within the system. This significantly saves the total computational cost,
since the elliptic equation in the coupled system is more expensive to solve. Therefore, this
combination of the degrees of freedoms is optimal, in that it gives the least computational
cost and the convergence within the algorithm.





Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung eines adaptiven Diskretisierungsalgorithmus,
der den Rechenaufwand zur Lösung des gekoppelten parabolisch/elliptischen Systems,
das die elektrochemischen Prozesse in der Kathode einer Festoxidbrennstoffzelle (SOFC)
beschreibt, reduziert. Zunächst wird das gekoppelte System in der Zeit und im Raum durch
die Finite-Elemente-Methode diskretisiert. Dann wird es durch ein Operator-Splitting-
Verfahren in ein parabolisches und ein elliptisches Problem aufgeteilt. Diese beiden Gleichun-
gen werden abwechselnd durch eine iterative Multirate-Methode gelöst, die verschiedene
Zeitschrittweiten für die zeitlichen Diskretisierungen erlaubt.

Der Schwerpunkt dieser Arbeit liegt in der Entwicklung von zielorientierten, a posteriori
Fehlerschätzer auf der Basis der dual-gewichteten Residuenmethode und der Aufteilung
der Schätzer in den zeitlichen und räumlichen Diskretisierungsfehler. Außerdem leiten
wir auch einen Fehlerschätzer für das Splitting-Verfahren her. Durch diese berechenbaren
Schätzer können wir den Fehler in Beiträge der zeitlichen und räumlichen Diskretisierungen
jedes Teilproblems sowie der Splitting-Methode aufteilen. Anstatt natürliche Normen zu
verwenden, werden die Fehler bezüglich beliebiger Fehlerfunktionale gemessen, die häufig
in der Praxis eingesetzt werden.

Die Teilprobleme werden mit verschiedenen Zeitschrittweiten für die Zeitdiskretisierung
gelöst. Falls das Verhältnis der Zeitschrittweiten zu groß ist, könnte das Multirate Sche-
ma divergieren. In diesem Fall verwendet der Algorithmus die Informationen aus dem
Fehlerschätzer des Splitting-Verfahrens, um das Konvergenzverhalten zu steuern, indem
die Zeitschrittweiten angepasst werden. Die Fehlerbeiträge von Diskretisierungs- und
Splitting-Verfahren werden am Ende eines Verfeinerungszyklus ausgeglichen, der bis sie
eine gewünschte Genauigkeit erreichen geht.

Die entwickelten Verfahren werden auf ein vereinfachtes Modell zur Simulation einer
SOFC-Kathode angewendet. In dieser Anwendung besteht der parabolische Teil aus einer
Reaktions-Diffusionsgleichung, die die Konzentrationsverteilung von Ionen beschreibt, wäh-
rend der elliptische Teil ein elektrisches Potential darstellt. Für eine gegebene Genauigkeit
bestimmt der adaptive Algorithmus die kleinste erforderliche Anzahl der Freiheitsgrade für
den parabolischen und elliptischen Teil des Systems. Da die elektrische Potentialgleichung
die schnellere Zeitskala hat, verwenden wir die Multirate-Methode und sehen, dass das
elliptische Problem eine geringere Anzahl von Freiheitsgrade benötigt um die gewünschte
Genauigkeit innerhalb des Systems zu erreichen. Dies spart erheblich Rechenaufwand, da
es teurer ist die elliptische Gleichung im gekoppelten System zu lösen. Diese Kombination
der Freiheitsgrade ist die optimale in einem Sinne, dass es den geringsten Rechenaufwand
und die Konvergenz innerhalb des Algorithmus gibt.
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1 Introduction

The motivation behind this thesis as well as a brief discussion of the methods to
approach the problem is presented in Section 1.1. An overview of the thesis can be
found in Section 1.2.

1.1 Motivation and Goals

We briefly introduce fuel cells and describe how they work to generate electricity.
Then, we elaborate on the goals of this thesis and methods used to achieve them.

1.1.1 Fuel cells

Fuel cells are electrochemical conversion devices that produce electricity and heat
directly from fuel through a reaction with an oxidizing agent. In most types of fuel
cells, the fuel contains hydrogen; through the electrochemical reaction of hydrogen
and oxygen, electricity is generated when the oxygen ions release the electrons to
combine with hydrogen molecules to form water.
The fuel cell consists of an electrolyte separating two electrodes: a cathode and an
anode. At the cathode, the oxygen molecules from the air are split into oxygen
ions. The oxygen ions are then transported through the electrolyte and combined
with hydrogen at the anode, releasing two electrons per hydrogen molecule. The
electrons travel an external circuit, providing electric power and producing heat as a
by-product, as seen in Figure 1.1. The described chemical reactions can be expressed
as follows:

Anode Reaction : 2H2 + 2O2− → 2H2O + 4e−

Cathode Reaction : O2 + 4e− → 2O2−

The fuel that can be used for fuel cells varies from pure hydrogen to natural gas,
methanol and methane [46]. This variety increases a cell’s flexibility because hydrogen
is not naturally available in pure form. Yet, one must remain careful in choosing the
fuel. For example, hydrocarbons, despite their availability and low production cost,

1



1 Introduction

H2O

H2

O2−

O2

e−

e−

anode

electrolyte

cathode

Figure 1.1. Schematic processes in an H2 fuel cell. This thesis will focus
on the cathode, one of the hindrances of the development of
the SOFC technology.

produce carbon dioxide at the end of the process, which is one of the main causes of
global warming [19, 20].

The fuel cells can be categorized based on the operating temperature of the electrolyte
and fuel. The low temperature is in the range of 50− 250 ◦C for proton exchange
membrane fuel cells (PEMFC), alkaline fuel cells (AFC) and phosphoric acid fuel
cells (PAFC). The high operating temperature is in the range of 650− 1000 ◦C for
molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFCs).

In this thesis we consider SOFCs that are known to be the most useful devices for
medium and large power applications due to their higher efficiency, as high as 75%
[68]; internal reforming allows hydrogen to be extracted from the fuel, and waste heat
can be recycled to make additional electricity by a cogeneration operation [32, 69].
Moreover, a SOFC can operate on many different fuels: hydrogen, methanol, ethanol,
methane, propane, coal-derived syngas, or even diesel-reformats. In 2009, Chueh
presented schemes to produce hydrogen from water using sunlight [17], which would
make SOFCs the leading technology for producing electrical power directly from
hydrogen.

Although fuel cells look promising as an efficient alternative source of clean energy,
many hindrances remain. The main objection of SOFCs is the high cost of device
construction. A fuel cell’s layout influences its performance. For example, the eco-
nomic way to structure fuel cells is in a stack. However, metal interconnections are
not strong enough to maintain structural integrity at higher temperatures. Especially
in cathodes, the metal stack’s low reactivity and degradation in high temperature
[68] exacerbates the problems.
Ongoing research has presented possible cathode materials that have excellent cat-
alytic, electrochemical and mechanical properties. Yet, such materials (e.g. platinum)
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1.1 Motivation and Goals

can be very expensive [48]. Therefore, a stronger scientific understanding of the
complex process of fuel cells is needed to discern ways of making the material more
cost-efficient with the strongest layout [45].

Running a numerical simulation is a low-cost and flexible option for testing and
development of new materials, fuels, and geometries. Moreover, it allows us to
measure internal variables which are experimentally difficult or impossible to obtain
in a real-world situation. It helps us to study the effects of various operating
parameters on efficiency, current density and temperature, with more options and
lower costs than experiments. The simulation of SOFCs involves a large number of
parameters and a complicated structure system, primarily using Partial Differential
Equations (PDEs). Therefore, a Finite Element method (FEM) is commonly used.

Due to the complexity of the model, we simplify the equations or fix the parameters
as long as we maintain the acceptable range of accuracy in the result. Note that with
regard to the development of fuel cells, the greater interest is not the distribution of
the species, but rather their effect on the performance of the device.

1.1.2 Goals of the thesis

A simplified mathematical model of a cathode of a SOFC consists of the coupled
parabolic and elliptic equations:

α1
∂u(x, t)
∂t

− α2∆u(x, t)− α3∆v(x, t) = f, (1.1a)

−∆v(x, t) + α4v(x, t)− α5u(x, t) = g, (1.1b)

where u represents the oxygen ion concentration, v the electrical potential and
f, g the external forces. The positive constant coefficients αi represent the integer
charge of the ion, its diffusivity, and its characteristic time and space scale. The
detailed physical model and the derivation of the mathematical model are given in
Chapter 2.

An operator splitting method is often used for problems that are hard to solve
numerically when restrictions on accuracy can be relaxed because this method allows
for an easier numerical treatment [39]. The idea behind the method is that it splits
the model into a set of sub-equations so that it is possible to combine pre-developed
numerical methods in a straightforward manner. In the case of an ill-conditioned
coupled system, we can split the system into sub-parts so that each part will be
well-conditioned. For the above system, the decoupling is done by splitting it into
parabolic (1.1a) and elliptic (1.1b) equations. For example, the splitting method has
been studied for coupled hyperbolic-parabolic systems in [30, 31, 39] and for coupled
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1 Introduction

multiphase flow and geomechanics in [3, 44]. This splitting method introduces an
error called the splitting error.

For a numerical simulation of (1.1), we discretize the problems; in other words,
we approximate the solution by a FEM. Taking into account that we have a non-
stationary part in the system, we discretize in time, as well as in space. This
discretization process carries along another source of the error, the discretization
error in time and in space. The computational cost of numerically solving complex
systems can be very high, especially for these non-stationary, coupled systems. Thus,
it is important to develop an adaptive method to efficiently increase the accuracy of
the approximation. For an efficient numerical adaptive scheme, we need to separate
quantitative information about the discretization errors from the splitting error in
order to gain the control over the error contributions from different sources.

Adaptive methods have been used in wide context (see Babuška and Strouboulis [8]
and Verfürth [73]), but mostly in error estimates for natural norms. For example,
Eriksson, Estep, Hansbo, and Johnson [26] developed an adaptive method based on
a posteriori error estimates in the L2-norm (see Bänsch [10], Grätsch and Bathe [36],
and Houston, Schötzau, and Wihler [40] for more examples). However, in the case of
fuel cells, the error estimation with respect to a natural norm is not very efficient. In
most of the cases, we are interested in specific functional values of the solution, the
so-called quantity of interest. For instance, this quantity can be the concentration of
species at the boundary (the surface of the cathode) where the chemical reaction
with the oxygen occurs, or it can be the concentration at the end of the reaction
process.
Such estimation is developed by a goal-oriented a posteriori error estimator that
is based on the Dual Weighted Residual (DWR) Method of Becker and Rannacher
[11]. Schmich and Vexler [64] worked for (nonlinear) parabolic partial differential
equations and separated the total discretization error into contributions due to the
discretization in time and in space. This estimator gives information on the accuracy
of the approximation and, moreover, provides a set of local error indicators that
contains information to be used for a local mesh refinement for a possible future
work.

In the context of parabolic problems, we refer to the works of Thomée [70], Meidner
and Vexler [51, 52] and the sequential work of Eriksson, Johnson, and Larson [22–
24, 27] on adaptive FEM for a linear parabolic problem and its error estimates, and
additionally, the work of Eriksson and Johnson [25] on a nonlinear parabolic problem.
Moreover, Akrivis, Makridakis, Ricardo, and Nochetto [2] derived a posteriori error
estimates for time discretization by the Crank-Nicolson method. Space-time Galerkin
methods have already been applied successfully to the simulation of incompressible
flows (see, for examples, Cockburn, Karniadakis, and Shu [18], N’dri, Garon, and
Fortin [57], and Mittal, Ratner, Hastreiter, and Tezduyar [54]). Nazarov and Hoffman
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1.1 Motivation and Goals

[56] [38] developed an adaptive algorithm for Navier-Stokes equations based on a
posteriori error estimation. Van der Vegt and Van der Ven [72], more specifically,
developed an algorithm for Euler equations. However, the temporal and spatial
discretization errors were not separated. Instead, the temporal refinement was linked
to the spatial refinement.

The present work extends the derivation of the discretization error by separating into
the temporal and spatial discretization errors for the coupled linear problems with
the additional factor of time dependency. We derive a posteriori error estimators
that are separated into the temporal and spatial discretization errors, and then
further parceled into the splitting error for each sub-problem. The development of
the adaptive mesh refinement algorithm uses the error estimators to decide which
discretization to refine in order to reduce the computational cost.

To date, the author knows of no work done on a posteriori error estimation of the
splitting method for non-stationary problems. However, for the stationary problems,
the control of these errors has been developed for various linear problems, such as:
the simple Poisson equation; the Stokes equations in fluid mechanics; and the KKT
system of linear-quadratic elliptic optimal control problems by Meidner, Rannacher,
and Vihharev [50]; a second-order elliptic model problem by Jiránek, Strakoš, and
Vohralík [42]; and linear elliptic problems by Arioli, Liesen, Miçdlar, and Strakoš
[4] and Rannacher, Westenberger, and Wollner [62]. Moreover, for nonlinear elliptic
problems the error contribution (referred as the iteration error) is developed by Ern
and Vohralík [29] and Rannacher and Vihharev [60].

The additional unique quality of this work is the development of an efficient dis-
cretization refining technique for the coupled parabolic/elliptic system solved by
a multirate iterative solving method. Since the diffusion equation of ions and the
electric potential equation have different characteristic time scales, it is natural to
consider a multirate scheme. The scheme exploits the different time step sizes for
the parabolic and elliptic equations. The development and analysis of theoretically
convergent iterative coupling algorithms have been studied in the recent works
of Almani, Dogru, Kumar, Singh, and Wheeler [3], Kim, Tchelepi, and Juanes [43]
and Mikelic and Wheeler [53]. If the ratio between the total number of time steps
between the equations is too large, the algorithm diverges.

Localized error indicators obtained by the DWR method allow the set up of a
versatile algorithm for adaptive mesh refinement and the equilibration of temporal
and spatial discretization errors with the splitting error. The discretizations are
independently refined until the corresponding error estimators reach a given tolerance.
Particularly, the derived splitting error estimate is used to ensure the convergence of
the algorithm.

5



1 Introduction

1.2 Overview

In Chapter 2, the mathematical model of a fuel cell cathode is introduced. We
discuss under which assumptions the model has been derived and simplified. Also
the boundary conditions are presented.

In Chapter 3, we set the notation used throughout the thesis.

In Chapter 4, we develop the temporal and spatial discretizations by Galerkin
methods. The spatial discretization is done by a continuous Galerkin scheme, cG(·).
For the temporal discretization, we use two time schemes: dG(0), the variant of
the implicit Euler method and cG(1), the variant of the Crank-Nicolson method.
To deal with the instabilities due to inexact initial values, we apply the damped
Crank-Nicolson time stepping scheme as proposed in the work of Luskin, Rannacher,
and Wendland [47].

The multirate iterative method is presented in detail in Chapter 5. The system is
split into two sub-parts: parabolic and elliptic equations; these are solved on different
time scales. The discrete equations are stated for the multirate scheme, and the
coupling iteration is performed in order to increase the accuracy of solutions. A
complication of working with different time scales will be addressed: approximated
coupling terms.

In Chapter 6, the performance in the quantity of interest is evaluated by the a
posteriori error estimation based on the Dual Weighted Residual (DWR) method,
using the solutions of dual problems. Then, the estimates separately assess the error
due to the discretization in time and space of each sub-problem. Additionally, we
explain how using the splitting method causes the Galerkin perturbation and derive
the error estimate of the perturbation method. By using these estimates, we develop
an adaptive algorithm for the combination of temporal and spatial discretizations
with the least computational cost while ensuring the convergence of the coupling
iteration within the splitting method.

In Chapter 7, we apply the developed adaptive refinement technique and present
numerical results. The error estimates are validated by comparing them with the
error functionals.

The thesis is concluded in Chapter 8, where we summarize and discuss the possible
extensions of this research in the future.

6



2 Modeling a Fuel Cell Cathode

In this chapter, we first present the equations describing the electrochemical process
in the cathode. Then, under a few assumptions and linearization, we obtain the
simplified mathematical model and its boundary conditions that we consider in this
thesis. The simplified model can be found in Section 2.4.

2.1 Basic Equations

A set of three fundamental equations governs charge transport in solids: transport
equation, continuity equation and total charge in the electric potential system. The
first fundamental equation is the generalized transport equation that relates the
driving force (electrochemical potential) to the mass flux

Jmassi (x, t) = −σi(x, t)(zie)2
∂µ̃i(x, t)
∂x

, (2.1)

where x is position and t is time and i is the species of charge carrier, i = eon, ion.
Also zi is the integer charge of species, e is the elementary charge of an electron,
Jmassi (x, t) is the carrier mass flux, µ̃i(x, t) is the electrochemical potential and σi(x, t)
is the electrical conductivity defined by

σi(x, t) = Di(zie)2

kBT
ci(x, t) (2.2)

by the Nernst-Einstein relation. We assume that the diffusivity Di are independent of
position and concentration. ci(x, t) is the carrier concentration, kB is the Boltzmann
constant and T is the absolute temperature.
The reduced electrochemical potential µ̃∗i (x, t) is

µ̃∗i (x, t) = µ̃i(x, t)
zie

= (µ̃∗i )o + kBT

zie
ln
(
ci(x, t)
coi

)
+ φ(x, t),

7



2 Modeling a Fuel Cell Cathode

where φ is the electric potential. Then, its derivative is

∂µ̃∗i (x, t)
∂x

= kBT

zi e

∇ci(x, t)
ci(x, t)

+∇φ(x, t). (2.3)

With the carrier charge flux

Jchargei (x, t) = zi eJmassi (x, t), (2.4)

we write (2.1) in terms of charge flux and reduced potential:

Jchargei (x, t) = −σi(x, t)
∂µ̃∗i (x, t)
∂x

. (2.5)

The second fundamental equation describes the continuity. In the case where there
are no internal sources or sinks of mass, its continuity requires that the variation in
mass flux with respect to position balances with the variation in concentration with
respect to time, i.e., in terms of the charge flux:

zie
∂ci(x, t)
∂t

+ ∂

∂x
Jchargei (x, t) = 0.

The last fundamental equation relates the sum of the charges in the system to the
electric potential:

− εoεr∆φ(x, t) = e
∑
i

zici(x, t) ,

where εo is the vacuum permittivity and εr is the relative permittivity.

2.2 Approximation

Assume that σeon is large and Jchargeeon is sufficiently small from (2.5), which hold true
for the cathode materials with the good electrical conductivity. Then, µ̃∗eon becomes
constant and the approximation is

1. µ̃∗eon is constant, (2.6)
2. ∂tcion(x, t) +∇(−σion(x, t)∇µ̃∗ion(x, t)) = 0, (2.7)
3. −εoεr∆φ = e(zioncion(x, t) + zeonceon(x, t)). (2.8)

8



2.2 Approximation

2.2.1 Dimensionless

To transform into the dimensionless form, we apply the transformations (x, t)→ (x̃, t̃)
such that x = lc x̃ and t = τ t̃ for some scaling factors lc, τ . This implies that

∇x(·) = 1
lc
∇x̃(·) and ∂t(·) = 1

τ
∂t̃ (·) .

Next, define new parameters in the table below.

Vth kBT/e

φ̃ φ/Vth

τeon l2c/D̄eon

τion l2c/D̄ion

τ min (τion, τeon)

c̃i ci/c̄i

D̃i Di/D̄i

First, recall Equation (2.3). Then, for constant µ̃∗eon (2.6), we can say that a small
perturbation δµ̃∗eon is zero, i.e.,

Vth
zeon

δceon(x, t)
c̄eon

+ δφ = 0.

In the dimensionless form, it is written as
δceon = −zeonδφ. (2.9)

Secondly, substitute (2.2) and (2.3) into (2.7) for i = ion and obtain

zione ∂tcion = ∇ ·
Dion(zione)2

kBT
cion(x, t)

(
Vth

zioncion

∇cion(x, t)
cion(x, t) +∇φ

) .
Simplifying it further, we obtain

∂tcion = Dion∆cion(x, t) + Dionzion
Vth

∇(cion(x, t)∇φ(x, t)),

whose dimensionless form is
τion
τ
∂t̃c̃ion = D̃ion∇x̃ ·

(
∇x̃c̃ion(x, t) + zionc̃ion(x, t)∇x̃φ̃

)
. (2.10)

Lastly, the dimensionless form of (2.8) is

∆x̃φ̃ = − l2c
εoεr

e

Vth
(zionc̄ionc̃ion + zeonc̄eonc̃eon). (2.11)

9



2 Modeling a Fuel Cell Cathode

2.2.2 Linearization

Consider the situation upon application of a small perturbation such as a sinusoidal
signal, a square-wave signal or other periodic or aperiodic form. For a sufficiently
small perturbation, it is possible to write the quantities as the sum of their steady
state values and the time-dependent perturbations:

c̃(x, t) = c̄(x) + δc(x, t), (2.12a)
φ̃(x, t) = φ̄(x) + δφ(x, t). (2.12b)

Substitute (2.12) into (2.10) and we obtain:
τion
τ
∂t̃δcion(x, t) = D̃ion∇x̃ · (∇x̃δcion + zion∇x̃δφ) . (2.13)

Also linearize (2.11) with Debye length λ2
D = εoεrVth/e:

∆x̃δφ = −
(
lc
λD

)2

(zionc̄ionδcion + zeonc̄eonδceon) .

We perform the Fourier transformation on (2.13) after the substitution of (2.9), and
we obtain the equations in terms of δcion and δφ:

τion
τ
δcion(x, t) = D̃ion∆x̃δcion + zionc̄ionD̃ionc̄ion∆x̃δφ (2.14a)

∆x̃δφ = −
(
lc
λD

)2 (
zionc̄ionδcion − z2

eonc̄eonδφ
)
. (2.14b)

2.3 Boundary Conditions

The boundary conditions are as follows after linearizing in dimensionless form.
For Γ1,

δcion = 0,
δφ = 0.

For Γ2 and Γ3,

∂nδcion = 0,
∂nδφ = 0.

For Γ4,

∂nδcion = −∂nφ,

δφ = 1.

10



2.4 Simplified Mathematical Model

Lastly, for Γ5,

∂nδcion = −δcion,
∂nδφ = −δcion.

Figure 2.1 shows how the boundaries are divided on ∂Ω. Setting both sides of
the cathode, Γ2, Γ3, with the homogeneous Neumann boundary condition, indicates
the relative-thin structure of the cathode. Moreover, the dotted line in the figure
indicates e.g., a metal collector. Thus, the upper boundaries Γ4 and Γ5 have different
boundary conditions. The triple phase boundary (TPB) is indicated where gas phase,
oxide and metal meet and electrochemical conversion occurs.

�
��+

Γ1

TPB

Γ2

Γ4 Γ5

Γ3Ω

Figure 2.1. Sketch of the boundaries as indicated.

2.4 Simplified Mathematical Model

We divide (2.14a) by τion

τ
and write the coefficient in (2.14) as αi, i = 1, · · · , 5 and

denote u := δt̃cion and v := δφ:

α1
∂u(x, t)
∂t

− α2∆u(x, t)− α3∆v(x, t) = f,

−∆v(x, t) + α4v(x, t)− α5u(x, t) = g,

where α1 = 1 is omitted to write from this point on.

Remark 2.1. Note that the functions on the right-hand side f, g are zero in this
derivation. In our calculations, however, we choose an arbitrary f, g to calculate the
exact solutions to use them to test the solution behaviors such as their convergence
rate.
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3 Notations and Variational
Formulation

Throughout this thesis, let Ω be a bounded domain with the boundary denoted as
∂Ω. In general, we can assume the boundary to be the Lipschitz boundary. For
an introduction into Sobolev space, we refer to standard text books, e.g. Adams
and Fourier [1], Grisvard[37] or Wloka[75] where a precise definition of the Lipschitz
boundary is presented.

For a variational formulation, introduce the Hilbert spaces V := H1
0 (Ω) and H :=

L2(Ω). Let V ∗ denote the topological dual of V , then V ↪→ H ↪→ V ∗ constitutes a
Gelfand triple. For all t ∈ I := (0, T ), we define the biliear form ā1 : (V ×V )×V → IR
and ā2 : (V × V )× V → IR by

ā1(u(t), v(t))(φ(t)) := α2(∇u(t), φ(t)) + α3(∇v(t), φ(t)),
ā2(u(t), v(t))(ψ(t)) := (∇v(t),∇ψ(t)) + α4(v(t), ψ(t))− α5(u(t), ψ(t)),

where u(t) and v(t) live in the function space

X(0, T ) :=
{
x(t) ∈ L2(I, V ) and ∂tx ∈ L2(I, V ∗); t ∈ I

}
.

This space X is embedded in the respective space of continuous functions, i.e.,
X ↪→ C(Ī , V ) [55, 75]. Moreover, the operators a1 : (X × X) × X → IR and
a2 : (X ×X)×X → IR are the integrations of ā1 and ā2 over time:

a1(u, v)(φ) :=
∫
I

ā1(u(t), v(t))(φ(t)) dt,

a2(u, v)(ψ) :=
∫
I

ā2(u(t), v(t))(ψ(t)) dt,

for φ(t) and ψ(t) ∈ X. With the simplified notations:

((u(t), v(t))) :=
∫
Ω

∫
I

u(t) v(t) dt dx,

(u(t), v(t)) := (u(t), v(t))H ,
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3 Notations and Variational Formulation

write the system (1.1) for all t > 0 in the following weak formulation for a solution
u(t), v(t) ∈ X:(

(∂tu(t), φ(t))
)

+ a1(u(t), v(t))(φ(t)) =
(
f(t), φ(t)

)
∀φ(t) ∈ X, (3.1a)

(u(0), φ(0)) = (u0, φ(0)),
a2(u(t), v(t))(ψ(t)) = (g(t), ψ(t)) ∀ψ(t) ∈ X, (3.1b)

(v(0), ψ(0)) = (v0, ψ(0)),

where f, g ∈ L2(I, V ∗) and u0, v0 ∈ H is the initial values. Note that initial value v0
must satisfy Equation (3.1b):

a2(u(0), v0)(ψ(t)) = (g(t), ψ(t)) ∀ψ(t) ∈ X .

Moreover, we define

A(u, v)(ϕ, ψ) =
(
f(t), φ(t)

)
−
(
(∂tu(t), φ(t))

)
− a1(u(t), v(t))(φ(t)) (3.2)

+(g(t), ψ(t))− a2(u(t), v(t))(ψ(t)) .
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4 Discretization

In this chapter, we describe the space-time finite element discretization of the weak
formulation of the system (3.1). Here, we present the semi-discrete problem in
time. The time discretization is offered as two types of discretization: discontinuous
Galerkin dG and continuous Galerkin cG; and the space discretization is based on
usual H1-conforming finite elements.

4.1 Discretization in Time

The first type of the time discretization used in this thesis is the discontinuous
Galerkin method of degree r or simply dG(r) method. This method uses discontinuous
trial and test functions, which are piecewise polynomials of degree r. The second
method is the continuous Galerkin method of degree r or cG(r) method. This
method uses continuous trial functions of piecewise polynomials of degree r and
the discontinuous test functions. In cases where the method uses the test and trial
functions from different function spaces, we specify it as Petrov-Galerkin method.
For the semi-discretization in time, we partition the time interval Ī = [0, T ] into

Ī = {0} ∪ I1 ∪ · · · ∪ IM ,

where subintervals Im := (tm−1, tm] of length km := tm − tm−1 with given time
points

0 = t0 < · · · < tm < · · · < tM = T.

The discretization parameter km is given as a piecewise constant function by setting
k |Im

:= km for m = 1, . . . ,M . On the subintervals Im, we define the following
semi-discrete space Xr

k , which we use for a trial space in the continuous Galerkin
method for r ∈ N as

Xr
k :=

{
xk ∈ C(Ī , H)

∣∣∣xk|Im ∈ Pr(Īm, V ), m = 1, . . . ,M
}
.

where H = L2(Ω) and V = H1
0 (Ω). Pr(Im, V ) denotes the space of polynomials up

to degree r on Im with values in V . Moreover, let us define another semi-discrete
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4 Discretization

space X̃r
k used for the trial and test space in the discontinuous Galerkin method and

the test space in the continuous Galerkin method as

X̃r
k :=

{
xk ∈ L2(I, V )

∣∣∣xk|Im ∈ Pr(Im, V ) and xk(0) ∈ H, m = 1, . . . ,M
}
.

To account for the possible discontinuity of a function xk ∈ X̃r
k at time point tm, we

introduce the standard notations for the limits from the right xmk +, the limits from
the left xmk − and the jumps [xk]m of x at time point tm:

xmk
± := lim

ε→0
xk(tm ± ε), [xk]m := xmk

+ − xmk
−. (4.1)

Discontinuous Galerkin methods

The dG(r) semi-discretization of the system reads:
Find uk, vk ∈ X̃r

k satisfying

M∑
m=1

∫
Im

(∂tuk, ϕ)dt+ a1(uk, vk)(ϕ) +
M−1∑
m=0

([uk]m, ϕ+) + (uk(0)−, ϕ(0)−)

=
∫
I

(f, ϕ) + (u0, ϕ(0)−),

a2(uk, vk)(ψ) =
∫
I

(g, ψ),

∀u, v, ϕ, ψ ∈ X̃r
k .

Remark 4.1. Note that the initial value for the second component v0 does not appear
for dG because the value v(t0 = 0) is not needed to calculate v(t1) .

Continuous Galerkin methods

The cG(r) formulation with the semi-discrete spaces reads:
Find uk, vk ∈ Xr

k satisfying∫
I

(∂tuk, ϕ)dt+ a1(uk, vk)(ϕ) + (uk,0, ϕ(0)−) =
∫
I

(f, ϕ) dt+ (u0, ϕ(0)−),

a2(uk, vk)(ψ) =
∫
I

(g, ψ) dt,

(uk(0)−, ϕ(0)−) = (u0, ϕ(0)−) ,
(vk(0)−, ψ(0)−) = (v0, ψ(0)−) ,
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4.2 Discretization in Space

∀u, v ∈ Xr
k and ∀ϕ, ψ ∈ X̃r

k . As explained in the last chapter, v0 is not chosen
arbitrarily. It should satisfy that

a2(uk(0), v0)(ψ) =
∫
I

(g, ψ) dt,

Remark 4.2. Due to the discontinuity of the test functions, the dG(0) decouples into
a time-stepping scheme. Thus, the dG(0) discretization is a variant of the implicit
(backward) Euler scheme. And cG(1) is a variant of the Crank-Nicolson scheme.

4.2 Discretization in Space

In this section, we describe the discretization in space of the semi-discrete problem in
time derived in the previous section. So far we have considered the function spaces
Xr
k and X̃r

k . These spaces contain the continuous spatial space V := H1
0 . Now we

derive the fully discrete problems for the cG(s)dG(r) and cG(s)cG(r) discretizations.
Following the notations defined in [28], cG(s)dG(r) denotes a space-time finite ele-
ment discretization with continuous piecewise polynomials of degree s in space and
discontinuous piecewise polynomials of degree r in time. Consequently, cG(s)cG(r)
denotes a space-time finite element discretization with continuous piecewise poly-
nomials of degree s in space and continuous piecewise polynomials of degree r in
time.

The computation domain Ω consists of line, quadrilateral or hexahedral cells K for
d = 1, 2 or 3, respectively. For the sake of simplicity, let us for the moment assume
that the boundary ∂Ω is polygon. The cells K conform a non-overlapping cover of
Ω forming the mesh denoted as Th. The discretization parameter h is a cell-wise
constant function that can be defined as h |K := hK , where hK is the diameter of
the cell K ∈ Th. Following the descriptions in Bangerth and Rannacher [9], Braess
[14], Brenner and Scott [15], we formulate the definition of regularity:

Definition 4.1. A mesh Th is called regular if the following conditions are satisfied:

i. Ω̄ = ∪k∈Th
K̄.

ii. K ∩K ′ = ∅ for all cells K,K ′ ∈ Th with K 6= K
′.

iii. Any face of any K is either a subset of the boundary ∂Ω or a face of another
cell.

The condition (iii) can be relaxed to allow hanging nodes (shown in Figure 4.1) for
case of using a local mesh refinement and also to allow non-polygonal boundary ∂Ω
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4 Discretization

hanging nodes

Figure 4.1. Two dimensional meshes with hanging nodes as indicated.

Figure 4.2. Examples of the domain with non-polygonal boundary.

T2h Th

coarsening

refining

Figure 4.3. Two-dimensional mesh T2h and corresponding finer mesh Th
produced in a patch-wise manner.
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4.3 Formulation with Time-Stepping Schemes

(see Figure 4.2). Note that hanging nodes do not carry any degrees of freedom, and
usually only up to one hanging node per each cell is allowed.

The mesh refinement is executed in a patch-wise manner, i.e., the next mesh Th
is obtained by the refining, uniformly or adaptively, of a coarser mesh T2h, e.g.
Figure 4.3.

Another important condition on the geometry of the cell is the uniformity which is
defined as: there is κ such that h

ρK
≤ κ for all K ∈ Th, where ρK is the radius of the

biggest inscribed circle of K [14]. In plain terms, it does not allow any cells that are
too long, narrow or pointy. Each refined mesh must meet this condition in order to
ensure approximation properties of the finite element spaces.
On the mesh Th, a conforming finite element space V s

h ⊂ V is defined as

V s
h :=

{
v ∈ V | v|K ∈ Qs(K) forK ∈ Th

}
where Qs(K) is obtained by using the inverse transformations σ−1 : K → K̂ by

Qs(K) :=
{
vh : K → IR | vh(σ(·)) ∈ Q̂s(K̂)

}
where Q̂s(K̂) is the space of tensor product polynomials up to degree s on the
reference cell K̂ = (0, 1)d. The lowest order s = 1 results in the space of bi-linear
functions (d = 2)

Q̂s(K̂) = span {1, x̂1, x̂2, x̂1x̂2}.

Although the concepts for the hanging nodes, mesh uniformity and its refinement
and boundary conditions are explained in this section for possible extension to the
cases for d = 2, 3, in this thesis, calculations are done for d = 1, so the concepts are
greatly simplified.

4.3 Formulation with Time-Stepping Schemes

In this section, we explicitly present the formulation of our system as time-stepping
schemes of the space-time Galerkin finite element discretization. Now let us define the
fully discrete space-time finite element spaces that we will use in the rest of the thesis:

Xr,s
kh :=

{
xkh ∈ C(Ī , H)

∣∣∣xkh|Im ∈ V s
h , m = 1, . . . ,M

}
(4.3)

X̃r,s
kh :=

{
xkh ∈ L2(I, V )

∣∣∣xkh|Im ∈ Pr(Im, V s
h ), xkh(0) ∈ V s

h , m = 1, . . . ,M
}

(4.4)
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4 Discretization

Note that we have Xr,s
kh ⊂ Xr

k and X̃r,s
kh ⊂ X̃r

k .
In the following sections, we use the notations

u0
kh = ukh(0) ∈ V s

h and umkh = ukh(tm) ∈ V s
h , vmkh = vkh(tm) ∈ V s

h ,

for m = 1, · · · ,M .

4.3.1 cG(s)dG(0) discretization

Consider the case of the cG(s)dG(0) discretization.

and obtain the following discrete equations:
For m = 0,

(u0
kh, ϕ) = (u0, ϕ) ∀ϕ ∈ V s

h ,

and for m = 1, · · · ,M ,

(umkh, ϕ) + kmā1(umkh, vmkh)(ϕ) = (um−1
kh , ϕ) +

∫
Im

(f(t), ϕ) dt ∀ϕ ∈ V s
h ,

ā2(umkh, vmkh)(ψ) =
∫
Im

(g(t), ψ) dt ∀ψ ∈ V s
h .

The temporal integral is approximated by using the box rule:∫
Im

(f(t), ϕ) dt ≈ km(f(tm), ϕ) =: km(fm, ϕ)

and the formulation is written explicitly as

(umkh − um−1
kh , ϕ) + α2km(∇umkh,∇ϕ) + α3km(∇vmkh,∇ϕ) = km(fm, ϕ) (4.5a)

(∇vmkh,∇ψ) + α4(vmkh, ψ)− α5(umkh, ψ) = (gm, ψ) (4.5b)

∀ϕ, ψ ∈ V s
h and for 1 = 1, · · · ,M .

Remark 4.3. We take the test functions ϕ, ψ ∈ X̃0,1
kh , i.e., piecewise constant over

the time interval. Then, by taking the end time value on Im, we can choose test
functions independent of time. Therefore, use ϕ, ψ ∈ V s

h for the cG(s)dG(0) scheme
as above. This applies in the same way for the cG(s)cG(1) scheme.

Remark 4.4. Based on how we have defined the time interval Im, we approximate the
time integrals by the box rule; this is then equivalent to the implicit Euler method,
which is known to be of first order and strongly A-stable [16].
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4.3 Formulation with Time-Stepping Schemes

4.3.2 cG(s)cG(1) discretization

For m = 0,
(u0

kh, ϕ) = (u0, ϕ) ∀ϕ ∈ V s
h ,

and for m = 1, · · · ,M ,

(umkh, ϕ) +
∫
Im

ā1

(
1
km

(t− tm−1)umkh − (t− tm)um−1
kh

)
(ϕ) dt

= (um−1
kh , ϕ) +

∫
Im

(f(t), ϕ) dt ∀ϕ ∈ V s
h ,

∫
Im

ā2

(
1
km

(t− tm−1) vmkh − (t− tm) vm−1
kh

)
(ϕ)dt =

∫
Im

(g(t), ψ) dt ∀ψ ∈ V s
h .

The time integrals can be approximated by the trapezoidal rule or by the Gaussian
quadrature rule. Using the trapezoidal rule, we obtain the usual Crank-Nicolson
method:
For m = 0,

(u0
kh, ϕ) = (u0, ϕ) ∀ϕ ∈ V s

h ,

and for m = 1, · · · ,M ,

(umkh, ϕ) + 1
2kmā1(umkh, vmkh)(ϕ)

= (um−1
kh , ϕ)− 1

2kmā1(um−1
kh , vm−1

kh )(ϕ) +
∫
Im

(f(t), ϕ) dt ∀ϕ,∈ V s
h ,

1
2kmā2(umkh, vmkh)(ψ) =− 1

2kmā2(um−1
kh , vm−1

kh )(ψ) +
∫
Im

(g(t), ψ) dt ∀ψ,∈ V s
h .

And the explicit formulations are

(umkh, ϕ) + km
2
[
α2 (∇umkh,∇ϕ) + α3 (∇vmkh,∇ϕ)

]
= (um−1

kh , ϕ) + km
2 (fm + fm−1, ϕ) + km

2
[
α2
(
∇um−1

kh ,∇ϕ
)

+ α3
(
∇vm−1

kh ,∇ϕ
) ]
,

[
(∇vmkh,∇ψ) + α4 (vmkh, ψ)− α5 (umkh, ψ)

]
= (gm + gm−1, ϕ) +

[ (
∇vm−1

kh ,∇ψ
)

+ α4
(
vm−1
kh , ψ

)
− α5

(
um−1
kh , ψ

) ]
.

for all ϕ, ψ ∈ V s
h .

Remark 4.5. The Crank-Nicolson scheme is known to be of second order and only
A-stable, not strongly A-stable.
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4 Discretization

4.4 The Damped Crank-Nicolson Scheme

In certain cases using the multirate solving method that will be introduced in
Chapter 5, we observe the divergence of the adaptive algorithm we aim to develop.
Although the Crank-Nicolson scheme gives second-order convergence, it is not guar-
anteed to achive convergence, due to possible irregularities of initial conditions.
Thus, we introduce the damped Crank-Nicolson scheme, which is the Crank-Nicolson
method with a certain amount of damping, as proposed by Luskin, Rannacher, and
Wendland [47][61]. They proved that the number of damping steps needed depends
on the lack of regularity in the initial conditions.
We can ensure the convergence by replacing one or more steps of the Crank-Nicolson
method with that of the implicit Euler scheme. Applying this idea for the time-
stepping scheme, we restate the time intervals for the damped Crank-Nicolson
scheme.

Choose the number of damping steps L, 0 ≤ L ≤ M such that it ensures the
convergence under the given initial conditions. Let JL be the corresponding set of
indices, JL = {`1, . . . , `L} ⊂ 1, . . . ,M . For ` ∈ JL, the interval is split into two equal
intervals: define t`−1/2 := t`− 1

2k` for kl = |l|. Now define the interval J0 where steps
by the implicit Euler method are applied and J1 for the Crank-Nicolson method
by

J0 = {`, `− 1
2 | ` ∈ JL} and J1 = J \ J0

where J = J0 ∪ {n ∈ IN | 1 ≤ n ≤ M}.

Then we can redefine the intervals Im as

Im =
(tm−1, tm], m ∈ J1,

(tm− 1
2
, tm], m ∈ J0.

Therefore, the damped Crank-Nicolson method is as follows:
Given uo, for m = 0,

(u0
kh, ϕ) = (u0, ϕ) ∀ϕ ∈ L2(Ω),

for m ∈ J0,

(umkh, ϕ) + kmā1(umkh, vmkh)(ϕ) = (um− 1
2 , ϕ) +

∫
Im

(f(t), ϕ) dt ∀ϕ ∈ V s
h ,

ā2(umkh, vmkh)(ψ) =
∫
Im

(g(t), ψ) dt ∀ψ ∈ V s
h ,
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4.4 The Damped Crank-Nicolson Scheme

and for m ∈ J1,

(umkh, ϕ) + 1
2kmā1(umkh, vmkh)(ϕ)

= (um−1
kh , ϕ)− 1

2kmā1(um−1
kh , vm−1

kh )(ϕ) +
∫
Im

(f(t), ϕ) dt ∀ϕ ∈ V s
h ,

1
2kmā2(umkh, vmkh)(ψ) = −1

2kmā2(um−1
kh , vm−1

kh )(ψ) +
∫
Im

(g(t), ψ) dt ∀ψ ∈ V s
h .
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5 Splitting Method and Multirate
Iterative Coupling Scheme

We consider an operator splitting method for the coupled parabolic/elliptic system.
The method decouples the system by splitting it into two sub-parts: parabolic and
elliptic equations. We adapt the multirate iterative coupling scheme that employs the
different time step length for the equations as follows: take multiple finer time steps
for the parabolic equation within one coarser time step of the elliptic equation. We
present a fully discrete scheme using the implicit Euler time discretization scheme.

5.1 Operator Splitting Method

Due to the high computational cost of solving complex coupled systems, various
coupling methods have been developed and applied, for example, to describe the
interactions between flow and geomechanis (Fredrich, Arguello, Deitrick, De Rouf-
fignac, et al. [33], Jha and Juanes [41], Tran, et al. [71], Zhai and Chen [76], and
Dean, et al. [21]). Coupling methods are typically classified into three types: fully
(implicit) coupling, iterative (sequential), and loosely (weak) coupled methods.

The fully coupled approach solves the two coupled equations simultaneously and
obtains so-called “simultaneous solutions”. These solutions are unconditionally stable
and make the method robust. However, the method is, in general, computationally
expensive and might create other computational difficulties for the linear solvers for
coupled systems.

The iterative (sequential) method solves, for example in this system, the parabolic, or
the elliptic, problem first, and then the other problem is solved using the intermediate
solution information. The stability and the convergence of the sequential method
for a coupled geomechanical and reservoir model have been studied by Prevost
[59], Settari and Walters [65], Wheeler and Gai [74], and Sattari, et al. [66]. The
sequential procedure is iterated at each time step until an adequate degree of accuracy
is obtained. Ideally, the solutions converge to the simultaneous solutions at the end
of this coupling iteration. For its advantages, instead of requiring to develop solvers
designed for given coupled systems, the iterative approach has the freedom to use
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5 Splitting Method and Multirate Iterative Coupling Scheme

standard solvers. The iterative method has also been used as a pre-conditioner for the
fully coupled method. In their works, Gai, et al. [34] applied it as a pre-conditioning
to a Richardson fixed point iteration.

Lastly, the loosely coupled method is a special case of the sequential method with
one iteration. The computational cost is least of the three, but solutions can be
inexact and only conditionally stable (refer the work of Armero and Simo [5], [6]).
By decoupling the system, the latter two methods need less computational storage
space. However, compared to the fully coupling method that guarantees the same-
order convergence with the order of the chosen time scheme, the convergence of the
sequential method depends on the splitting strategy [43].

The operator splitting of the coupled parabolic/elliptic system for the implicit Euler
time scheme is as follows:

(umkh − um−1
kh , ϕ) + α2km(∇umkh,∇ϕ) + α3km(∇vmkh,∇ϕ) = km(fm, ϕ) ∀ϕ ∈ X̃0,1

kh ,

(∇vmkh,∇ψ) + α4(vmkh, ψ)− α5(umkh, ψ) = (gm, ψ) ∀ψ ∈ X̃0,1
kh .

The system can be also written in the matrix form,

(Mu + α2kmAu)umkh + α3kmAuvv
m
kh = Muu

m−1
kh + km fm,

(Av + α4Mv) vmkh − α5Muvu
m
kh = gm,

where fm := (fm, ϕ) and gm := (gm, ψ), and the matrices are defined as

(Mu)ji = (ϕmi , ϕmj ), (Mv)ji = (ψmi , ψmj ),
(Au)ji = (∇ϕmi ,∇ϕmj ), (Av)ji = (∇ψmi ,∇ψmj ),

(Auv)ji = (∇ψmi ,∇ϕmj ) (Muv)ji = (ψmi , ϕmj )
.

For the h-refinement, the condition number of the stiffness matrix A is estimated
by O(h−2), and the condition number of the mass matrix M is uniformly bounded,
O(1) [7, 15]. Thus, the most expensive part of the computational cost is to invert
the stiffness matrix. However, since the diffusion equation is time dependent, we
consider the matrix (Mu + α2kmAu) whose condition number is O(km h−2). Then,
its condition number decreases as the time discretization is refined. For example, if
O(km) ≈ O(h), the condition number of the diffusion equation decreases to O(h−1).
Therefore, with regard to saving on the computational cost, we must find a way to
save the cost from the electric potential equation. One of the methods is to solve the
potential equation until it is just good enough for the entire system not to diverge,
rather than waiting until it converges to the simultaneous solution. This idea is
explained later in more detail via diagrams and the algorithm.
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5.2 Discrete Multirate Iterative Scheme

As the diffusion equation of ions and the electric potential equation have different
characteristic time scales, it is natural to consider the multirate scheme. Since
the electric potential equation has the faster time scale [63], we expect to see that
the discretization for the elliptic equation remains coarser than for the parabolic
equation.
Here, we provide a multirate formulation for the sequential coupling method in-
troduced in the previous section. We choose different temporal discretizations for
the parabolic and elliptic equations. We use the simplified notation for the fully
discretized system in space and time:

un := unkh and vn := vnkh.

Suppose the parabolic problem is solved on the finer time mesh with total M time
steps and the elliptic equation on the coarser time mesh with M/q time steps. Thus,
within one coarser time step, there are q finer corresponding local time steps for each
sequential coupling iteration. By using the finite element method in space and the
implicit Euler method in time, the weak formulation of a multirate scheme reads as
follows:
Find um+n ∈ X̃0,1

kh for 1 ≤ n ≤ q satisfying(
um+n − um+n−1

km+n
, ϕ

)
+ α2(∇um+n,∇ϕ) + α3(∇vm̃+1,∇ϕ) = (fm+n, ϕ) (5.1a)

and find vm̃+1
i ∈ X̃0,1

kh satisfying

(∇vm̃+1,∇ψ) + α4(vm̃+1, ψ)− α5(ūm, ψ) = (gm̃+1, ψ) (5.1b)

for ϕ, ψ ∈ X̃0,1
kh . The set X̃0,1

kh is as defined in (4.4).
The time index m increases as the multiple of q:

m = 1, q, 2q, · · · ,M. (5.2)

The time index for v on the coarser temporal discretization is denoted as m̃ := m
q
,

and the average value over the local time steps as

ūm := 1
q

q∑
n=1

um+n. (5.3)

The results, on each iteration, obtain q intermediate solutions um+n (n = 1, · · · , q) of
the parabolic equation and one intermediate solution vm̃+1 for the elliptic equation.
This process is iterated within one coarser time step until the solutions are obtained
with an acceptable tolerance.
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As an example, in a case where the parabolic equation (5.1a) is solved first, the
coupling value vm̃+1 is not available. We can use a general guessing value denoted as
ṽm̃+1, and this leads to inexact solutions ũm+n for n = 1, · · · , q. Consequently, the
solution of (5.1b) will be also inexact. Using these inexact intermediate solutions as
coupling values introduces the splitting error.
Here, we provide a multirate iterative coupling scheme for the fully discrete multirate
scheme in (5.1). Within a coarser time step m̃, we perform the coupling (fixed point)
iteration whose index is denoted as i. For the unknown coupling value vm̃+1

i at
the i-th iteration, we make an educated guess; we use the value from the previous
iteration for v:

vm̃+1
i = vm̃+1

i−1 .

In case of i = 0, use the value from the previous time step:

vm̃+1
0 = vm̃.

Then, Equation (5.1) at i-th iteration is written as:um+n
i − um+n−1

i

km+n
, ϕ

+ α2(∇um+n
i ,∇ϕ) + α3(∇vm̃+1

i−1 ,∇ϕ) = (fm+n, ϕ), (5.6a)

(∇vm̃+1
i ,∇ψ) + α4(vm̃+1

i , ψ)− α5(ūmi , ψ) = (gm̃+1, ψ) (5.6b)

∀ϕ, ψ ∈ X̃0,1
kh . Note that in (5.6a), we take the coupling value vi−1 from the previous

iteration since it is solved first. On the other hand, in Equation (5.6b), we use the
coupling values ūi at the i-th iteration. With a number of iterations, we expect the
intermediate solutions to converge to the simultaneous solutions, i.e., umi → um and
vmi → vm as i → ∞. See the diagram below to understand the iterative process
within one coarser time step.

. . . . . .
At tm: tq tq+1 tq+2 . . . tq+n . . . t2q

Solve u: uq+1
i uq+2

i
. . . uq+ni

. . . u2q
i

then solve v: vqi (u
q+1
i , uq+2

i , . . . , u2q
i )

Figure 5.1. Two different time discretizations. There are q finer time
steps for each coarser time step.

Notation clarification are as follows: i denotes the coupling iteration index, which
shows the number of iterations on a coarser time step until convergence or until it
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reaches the maximum number of iterations; m is the finer time step index; q is a
fixed number of finer time steps per coarser time step; n is the local time step index
for finer mesh on each coarser time step, 1 ≤ n ≤ q.

Remark 5.1. We anticipate that the error depends on the parameter q, which is the
same as the ratio between the total number of time steps of two meshes. We observe
in a later chapter that there are some restrictions on the ratio and, thus, we develop
an adaptive refinement algorithm that provides a way to search for an optimal ratio
to solve the system accurately and efficiently.

5.3 Algorithms

In this section, we present three algorithms to compare the fully coupled (non
iterative) method, the single rate iterative method, and the multirate iterative
method for the fully discretized system. The first algorithm shows the fully implicit
approach, where both components are solved simultaneously with no multirate
method applied.

Algorithm 1 Fully Implicit Algorithm
1: procedure Given u0, solve v0.
2: for m = 1, 2, . . . ,M do
3: solve the fully discretized um and vm satisfying for all ϕ, ψ ∈ X̃0,1

kh :(
um − um−1

km
, ϕ

)
+ α2 (∇um,∇ϕ) + α3 (∇vm,∇ϕ) = (fm, ϕ)

(∇vm,∇ψ) + α4 (vm, ψ)− α5 (um, ψ) = (gm, ψ)

4: end for
5: end procedure
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The second algorithm is for the single rate iterative method. Here, the system is
decoupled and solved sequentially. The coupling terms are fed into the other equation
as a force term. Since it is the single rate method, both components are solved on a
same time discretization. The iteration continues until the intermediate solution umi
converges to the simultaneous solution umi.e.,

|umi − um| < TOL (5.7)

for a given tolerance TOL.

Algorithm 2 Single Rate Iterative Coupling Algorithm
1: procedure Given u0, solve v0.
2: for m = 1, 2, . . . ,M do
3: for i = 1, 2, . . . do
4: if i = 1 then
5: set vmi−1 = vm−1

6: end if
7: Solve for the fully discretized umi (vmi−1) satisfying for all ϕ, ψ ∈ X̃0,1

kh :(
umi − um−1

km
, ϕ

)
+ α2 (∇umi ,∇ϕ) = (fm, ϕ)− α3

(
∇vmi−1,∇ϕ

)
8: Given umi , solve for vmi satisfying:

(∇vmi ,∇ψ) + α4 (vmi , ψ) = (gm, ψ) + α5 (umi , ψ)

9: if |umi − um < TOL| then
10: end the loop i
11: end if
12: end for
13: end for
14: end procedure
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Lastly, we present the algorithm for the multirate iterative scheme for the coupled
system.

Algorithm 3 Multirate Iterative Coupling Algorithm
1: procedure Given u0, solve v0.
2: for m = 0, q, 2q, . . . ,M do
3: for i = 1, 2, . . . do
4: if i = 1 then
5: set vm̃+1

i−1 = vm̃

6: end if
7: for n = 1, 2, . . . , q do
8: Solve for the fully discretized um+n

i (vm̃+1
i−1 ) satisfying for all ϕ, ψ ∈

X̃0,1
kh :um+n

i − um+n−1
i

km+n
, ϕ

+ α2
(
∇um+n

i ,∇ϕ
)

= (fm+n, ϕ)− α3

(
∇vm̃+1

i−1 ,∇ϕ
)

9: end for
10: Given um+1

i , um+2
i , . . . , um+q

i , solve for vm̃+1
i satisfying:(

∇vm̃+1
i ,∇ψ

)
+ α4

(
vm̃+1
i , ψ

)
=

(
gm̃+1, ψ

)
+ α5 (ūm, ψ)

11: end for
12: if |umi − um < TOL| then
13: end the loop i
14: end if
15: end for
16: end procedure
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6 A Posteriori Error Estimation

In an adaptive finite element method, a posteriori error estimation in natural norms,
such as the energy norm or the L2 norm, is used for mesh refinement in order to
equilibrate the local error indicators. However, the natural norms cannot provide
information on local quantities. Thus, the error in the approximation of a quantity
of interest is estimated in terms of local residuals of the computed solution, which is
multiplied by weight factors. In the DWR method, these weights are the correspond-
ing dual solutions.
In this thesis, the error estimator is separated into contributions from the discretiza-
tion in time and in space for each sub-part of the system. In addition, the splitting
error estimator is derived and balanced with the discretization errors within the
refinement cycle. To the best of our knowledge, this is the first analysis of a posteriori
error estimation for the splitting error by the multirate iterative solving method.

In this chapter, we derive the residuals using the DWR method for the coupled
system. In Section 6.4, we present the explicit form of the localized residuals. In
Section 6.5, we introduce the Galerkin perturbation and derive its error estimator.
Lastly and most importantly, in Section 6.6, we present the main achievement of
this thesis, the adaptive refinement algorithm.

6.1 Derivation of the A Posteriori Error Estimator

Recall the following result for the general situation of the Galerkin approximation of
stationary points of functionals (Bangerth and Rannacher [9]).

Proposition 6.1. Let L(·) be a three-times differentiable functional defined on a
(real or complex) vector space Y which has a stationary point x ∈ Y , i.e.,

L
′(x)(y) = 0 ∀y ∈ Y. (6.1)

Suppose that on a finite dimensional subspace Yh ⊂ Y , the corresponding Galerkin
approximation has a discrete solution xh ∈ Yh satisfying

L
′(xh)(yh) = 0 ∀yh ∈ Yh. (6.2)
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6 A Posteriori Error Estimation

Then, the error representation for arbitrary yh ∈ Yh is

L(x)− L(xh) = 1
2L

′(xh)(x− yh) +Rh, (6.3)

where the remainder Rh is cubic in the error e := x− xh,

Rh := 1
2

1∫
0

L
′′′(xh + se)(e, e, e)s(s− 1)ds.

Its proof can be found in [9].

Based on a posteriori error estimation by Schmich and Vexler [64] and Becker,
Kapp, and Rannacher [12], we derive a posteriori error estimates that measure the
discretization errors in a functional J(·) and separate the total discretization error
into contributions due to temporal and spatial discretization of each sub-part such
as

J(u, v)− J(ukh, vkh) = (J(u, v)− J(uk, vk)) + (J(uk, vk)− J(ukh, vkh)) (6.4)
≈ (ηuk + ηvk) + (ηuh + ηvh)
=: ηu+v

k + ηu+v
h .

In this coupled system, in addition to the refinement process keeping the temporal
discretization error ηu+v

k and spatial discretization error ηu+v
h balanced, we also

want to consider the balance between the sub-parts within a discretization: the
balance between ηuk and ηvk and the balance between ηuh and ηvh. This enables more
computational saving, as we will show in the later section.
In this thesis, we choose the error functional J(·) to be a continuous linear functional
in form of

J(u, v) :=
∫
I

J1(u(t), v(t)) dt+ J2(u(T ), v(T )),

where J1 : V → R or J2 : H → R may be zero.

Define the product spaces:
sX := (X ×X)× (X ×X), (6.5a)

sXr
k := (X̃r

k × X̃r
k)× (X̃r

k × X̃r
k), (6.5b)

sXr,s
kh := (X̃r,s

kh × X̃
r,s
kh )× (X̃r,s

kh × X̃
r,s
kh ). (6.5c)

We introduce the Lagrangian functional of the given system L : sX → IR, defined
by

L(u, v; z1, z2) := J(u, v) + (f − ∂tu, z1)− α2(∇u,∇z1)− α3(∇v,∇z1)
+(g, z2)− (∇v,∇z2)− α4(v, z2) + α5(u, z2) (6.6)
−(u(0)− u0, z1(0))

=: J(u, v)− A1(u, v)(z1)− A2(u, v)(z2),
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6.1 Derivation of the A Posteriori Error Estimator

where

A1(u, v)(z1) = (∂tu, z1) + α2(∇u,∇z1) + α3(∇v,∇z1)− (f, z1)
+(u(0)− u0, z1(0)),

A2(u, v)(z2) = (∇v,∇z2) + α4(v, z2)− α5(u, z2)− (g, z2).

u, v, uk, vk, ukh, vkh are called “primal variables” and z1, z2, z1,k, z2,k, z1,kh, z2,kh “dual
variables”.

The time-discrete Lagrangian functional for the case of dG(r) discretization L̃ :
sXr
k → IR is defined by

L̃(uk, vk; z1,k, z2,k) := J(uk, vk) + (f, z1,k)−
M∑
m=1

∫
Im

(∂tuk, z1.k) dt− α2(∇uk,∇z1,k)

−α3(∇vk,∇z1,k)−
M−1∑
m=0

([uk]m, zm,+1,k )

+(g, z2,k)− (∇vk,∇z2,k)− α4(vk, z2,k) + α5(uk, z2,k)
−(uk(0)− u0, z1,k(0)),

and for the case of cG(r) discretization L̃ : sXr
k → IR as

L̃(uk, vk; z1,k, z2,k) := J(uk) + (f, z1,k)−
M∑
m=1

∫
Im

(∂tuk, z1,k) dt− α2(∇uk,∇z1,k)

− α3(∇vk,∇z1,k) + (g, z2,k)− (∇vk,∇z2,k)− α4(vk, z2,k)
+ α5(uk, z2,k)− (uk(0)− u0, z1(0)).

Let (u, v; z1, z2) ∈ sX, (uk, vk; z1,k, z2,k) ∈ sXr
k , and (ukh, vkh; z1,kh, z2,kh) ∈ sXr,s

kh be
stationary points of L and L̃, respectively, i.e.,

L′(u, v; z1, z2)(ϕ, ψ;χ, ξ) = 0 ∀(ϕ, ψ;χ, ξ) ∈ sX, (6.7a)
L̃′(uk, vk; z1,k, z2,k)(ϕk, ψk;χk, ξk) = 0 ∀(ϕk, ψk;χk, ξk) ∈ sXr

k , (6.7b)
L̃′(ukh, vkh; z1,kh, z2,kh)(ϕkh, ψkh;χkh, ξkh) = 0 ∀(ϕkh, ψkh;χkh, ξkh) ∈ sXr,s

kh . (6.7c)

The case of the continuous problem (6.7a) implies that the primal solutions u, v are
determined by the variational equations

L′z1(u, v; z1, z2)(χ) = −A1(u, v)(χ) = 0 ∀χ ∈ X,
L′z2(u, v; z1, z2)(ξ) = −A2(u, v)(ξ) = 0 ∀ξ ∈ X,
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which involve the directional derivatives of the Lagrangian with respect to the dual
variables. Correspondingly, the dual solutions z1, z2 are determined by

L′u(u, v; z1, z2)(ϕ) = J
′

u(u, v)(ϕ)− A′1,u(u, v)(ϕ, z1)− A′2,u(u, v)(ϕ, z2) = 0 ∀ϕ ∈ X,
L′v(u, v; z1, z2)(ψ) = J

′

v(u, v)(ψ)− A′1,v(u, v)(ψ, z1)− A′2,v(u, v)(ψ, z2) = 0 ∀ψ ∈ X,

which, this time, involve the directional derivatives of the Lagrangian, with respect
to the primal variables. Similarly, the stationary points uk, vk, z1,k, z2,k ∈ X̃r

k and
ukh, vkh, z1,kh, z2,kh ∈ X̃r,s

kh are solutions of the derivative of the semi-discrete in
time (6.7b) and fully discrete Lagrangian (6.7c), respectively (not shown here). Then
for arbitrary (z1, z2) ∈ X×X, (z1,k, z2,k) ∈ X̃r

k×X̃r
k , and (z1,kh, z2,kh) ∈ X̃r,s

kh ×X̃
r,s
kh ,

J(u, v)− J(uk, vk) = L(u, v; z1, z2)− L̃(uk, vk; z1,k, z2,k)
= L̃(u, v; z1, z2)− L̃(uk, vk; z1,k, z2,k), (6.8)

J(uk, vk)− J(ukh, vkh) = L̃(uk, vk; z1,k, z2,k)− L̃(ukh, vkh; z1,kh, z2,kh). (6.9)

It holds that L(u, v; z1, z2) = L̃(u, v; z1, z2) since the jump terms in L̃ vanish because
the solutions are continuous in time. Now note that X̃r

k 6⊂ X. Thus, in order to
apply Proposition 6.1, we define the continuous space Y and the product spaces sY
and sYk as:
Let

sY := (Y × Y )× (Y × Y ) for Y := (X ∪ X̃r
k), (6.10a)

sYk := (X̃r
k × X̃r

k)× (X̃r
k × X̃r

k), (6.10b)

for Equation (6.8).
Since X̃r

k ⊂ X̃r,s
kh , for Equation (6.9), let

sY := (X̃r
k × X̃r

k)× (X̃r
k × X̃r

k),
sYk := (X̃r,s

kh × X̃
r,s
kh )× (X̃r,s

kh × X̃
r,s
kh ).

Then, by Proposition 6.1, we have the following error representation:

J(u, v)− J(uk, vk) = 1
2L̃

′(uk, vk; z1,k, z2,k)(euk , evk; ez1
k , e

z2
k ) +Rk (6.11)

J(uk, vk)− J(ukh, vkh) = 1
2L̃

′(ukh, vkh; z1,kh, z2,kh)(eukh, evkh; ez1
kh, e

z2
kh) +Rh (6.12)

where Rk and Rh are the remainder terms as in Proposition 6.1 and

euk := u− ũk, evk := v − ṽk, ez1
k := z1 − z̃1,k, ez2

k := z2 − z̃2,k,

eukh := uk − ũkh, evkh := vk − ṽkh, ez1
kh := z1,k − z̃1,kh, ez2

kh := z2,k − z̃2,kh.
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6.1 Derivation of the A Posteriori Error Estimator

Next, we split (6.11) and (6.12) into primal and dual residuals, where the remainder
terms are neglected:

J(u, v)− J(uk, vk) ≈
1
2
(
ρu(uk, vk)(z1 − z̃1,k) + ρu

∗(uk, vk; z1,k, z2,k)(u− ũk)
)
(6.13)

+ 1
2
(
ρv(uk, vk)(z2 − z̃2,k) + ρv

∗(uk, vk; z1,k, z2,k)(v − ṽk)
)
,

J(uk, vk)− J(ukh, vkh) ≈
1
2
(
ρu(ukh, vkh)(z1,k − z̃1,kh) + ρu

∗(ukh, vkh, z1,kh)(uk − ũkh)
)

(6.14)

+1
2
(
ρv(ukh, vkh)(z2,k − z̃2,kh) + ρv

∗(ukh, vkh; z1,kh, z2,kh)(vk − ṽkh)
)
,

The primal and dual residuals are defined as:

ρu(u, v)(χ) := L̃′z1(u, v; z1, z2)(χ), ρ∗u(u, v; z1, z2)(ϕ) := L̃′u(u, v; z1, z2)(ϕ), (6.15a)
ρv(u, v)(ξ) := L̃′z2(u, v; z1, z2)(ξ), ρ∗v(u, v; z1, z2)(ψ) := L̃′v(u, v; z1, z2)(ψ) (6.15b)

where ũk, ṽk, z̃1,k, z̃2,k ∈ X̃r
k and ũkh, ṽkh, z̃1,kh, z̃2,kh ∈ X̃s,r

kh can be chosen arbitrarily
due to the Galerkin Orthogonality.

6.1.1 Dual equations

The explicit formulation for primal equations has been presented in (4.5). Here, we
present the corresponding dual equations. We define the notation for the sum of the
bilinear forms

a(u, v)(ϕ, psi) := a1(u, v)(ϕ) + a2(u, v)(ψ) .

The continuous dual solutions z1, z2 are the solutions of

J
′(u, v)(ϕ, ψ) = (∂tϕ, z1) + a

′

1(u)(ϕ, z1, z2) + a
′

2(v)(ψ, z1, z2) + (ϕ(0), z1(0)), (6.17)

where the explicit forms are

((∂tϕ, z1)) = −((∂tz1, ϕ)) + (z1(T ), ϕ(T ))− (ϕ(0), z1(0)), (6.18)
a
′

1(u)(ϕ, z1, z2) = α2((∇z1,∇ϕ))− α5((z2, ϕ)),
a
′

2(v)(ψ, z1, z2) = ((∇z2,∇ψ)) + α4((z2, ψ)) + α3((∇z1,∇ψ)).
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6 A Posteriori Error Estimation

For (6.18), we have integrated by parts, see, for instance, Wloka [75]. The fully
discrete dual solutions z1,kh, z2,kh ∈ X̃s,r

kh satisfy the equations

M∑
m=1

∫
Im

(−∂tzk, ϕ) + a
′

1(ukh)(ϕ, z1, z2) dt+ (zM1,kh, ϕM) +
M−1∑
m=0

([z1,k]m, ϕ−)

+ a
′

2(vkh)(ψ, z1, z2) dt =
∫
I

J
′

1(ukh, vkh)(ϕ, ψ) + J
′

2(uMkh, vMkh)(ϕM , ψM) .

6.2 Evaluation of the Error Estimators

The equations (6.13) and (6.14) are not yet useful since they contain the unknown
continuous solutions u, v, z1, z2 and unknown semi-discrete solutions uk, vk, z1,k, z2,k.
Based on the work of Schmich and Vexler[64], we further approximate these un-
known solutions. Let w stand for u or v and z for z1 or z2. Because the quantities
w̃k, z̃k, w̃kh, z̃kh used in the weight factors can be chosen arbitrarily in the correspond-
ing spaces, the weight factors (w− w̃k), (z− z̃k), (wk− w̃kh), (zk− z̃kh) in (6.13), (6.14)
can be chosen as interpolation errors. In order to approximate the weights, we use a
higher order interpolation for the continuous variables (see Bangerth and Rannacher
[9] for its theoretical justification and for other possible interpolation methods). In
this work, the following linear operators are chosen for the approximation error in
time:

z − z̃k ≈ Πkzk,

w − w̃k ≈ Πkwk,

and in space:

zk − z̃kh ≈ Πhzkh,

wk − w̃kh ≈ Πhwkh.

In the case of the cG(1)dG(0) scheme,

Πk : X̃0,1
kh → X1,1

kh , Πk := i
(1)
k − id,

and

Πh : X̃0,1
kh → X̃0,2

kh , Πh := i
(2)
2h − id.

And in the case of the cG(1)cG(1) scheme, the linear operators Πk and Πh are
defined by

Πk : X1,1
kh → X2,1

kh ∩ C0(I, V ), Πk := i
(2)
2k − id,

(6.19)
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and

Πh : X1,1
kh → X1,2

kh , Πh := i
(2)
2h − id

where “id” is the identity function, and the piecewise linear operators, i(1)
k and i(2)

2k ,
are defined as

i
(1)
k v(t) := tm − t

km
v(tm−1) + t− tm−1

km
v(tm), t ∈ (tm−1, tm], (6.20)

i
(2)
2k v(t) := (tm − t)(tm+1 − t)

km(km + km+1) v(tm−1) + (t− tm−1)(tm+1 − t)
kmkm+1

v(tm) (6.21)

+(t− tm−1)(t− tm)
km(km + km+1) v(tm+1), t ∈ (tm−1, tm+1],

as seen in Figure 6.1.

w

i
(1)
k w i

(2)
2k w

w

tm−1 tm tm+1 tm−1 tm tm+1

Figure 6.1. Piecewise linear interpolation(left) and piecewise quadratic
interpolation(right) in dotted line.

For the case of the damped Crank-Nicolson scheme, for one or more first damping
steps, the implicit Euler scheme is applied to ensure the convergence. An example
of the interpolation for the damped scheme is found in Figure 6.2 where only one
implicit Euler step is applied.

The next step of approximation is to replace all the unknown semi-discrete terms
wk, zk in the residual equations (6.13), (6.14) with the fully discrete solutions wkh, zkh.
We derive the residuals,

J(u, v)− J(ukh, vkh) ≈ ηuk + ηvk + ηuh + ηvh (6.22)
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t1t0 t2t 1
2

w

i
(1)
k w

i
(2)
2k w

Figure 6.2. An example of the interpolation for the damped Crank-
Nicolson scheme, where the first step is taken by the implicit
Euler scheme.

where each error estimator is written as

ηuk := 1
2
(
ρu(ukh, vkh)(Πkz1,kh) + ρ∗u(ukh, vkh; z1,kh, z2,kh)(Πkukh)

)
, (6.23a)

ηvk := 1
2
(
ρv(ukh, vkh)(Πkz2,kh) + ρ∗v(ukh, vkh; z1,kh, z2,kh)(Πkvkh)

)
, (6.23b)

ηuh := 1
2
(
ρu(ukh, vkh)(Πhz1,kh) + ρ∗u(ukh, vkh; z1,kh, z2,kh)(Πhukh)

)
, (6.23c)

ηvh := 1
2
(
ρv(ukh, vkh)(Πhz2,kh) + ρ∗v(ukh, vkh; z1,kh, z2,kh)(Πhvkh)

)
. (6.23d)

Remark 6.1. It is crucial for an efficient adaptive algorithm that ηk and ηh are
completely independent of each other, i.e., refinement of spatial discretization is
not influenced by ηk and vice versa. This independence is important, otherwise the
spatial error indicator would decrease on refining the temporal discretization, even if
the spatial discretization is fixed.

Remark 6.2. Instead of approximating the unknown semi-discrete solutions by fully
discrete solutions, one can use a higher-order interpolation in space , as done for the
weight factors. For the details, refer Meidner [49], Schmich and Vexler [64].
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6.3 Localization of the Error Estimators

One of the main purposes of the a posteriori error estimators developed in the
previous section is to assess the discretization error so that we can adaptively adjust
the discretizations in order to efficiently improve the accuracy. Therefore, we further
localize the error estimators to cell-wise contributions. These localized quantities are
then called local error indicators. Thus, the overall error estimators are split into
their contributions on each subinterval Im,

ηk =
M∑
m=1

ηmk and ηh =
M∑
m=0

ηmh . (6.24)

The contribution ηmk can be used for an adaptive refinement of the temporal dis-
cretizations.

The spatial contributions can be localized further on each cell of the mesh. The
resulting local error contains the strong residual of the equation, as well as jumps
of the discrete solution over the faces of the cells (as shown explicitly in the next
section).
Let K be a cell in a mesh Th, then we can further localize the error indicator for
each time step ηmh into each cell,

ηmh =
∑
K∈Th

ηmh|K .

In the DWR method, the residual is integrated by parts to attain the oscillatory
behavior of the residuals such that the cell-wise contributions of the residuals are
evaluated by the corresponding cell and its surrounding edges. The edge shared by
two cells, K and its neighboring cell K ′ is denoted as Γ = K ∩K ′ . Also, the jump
of the normal derivative of u from a cell K to K ′ over Γ is

[∂nu] = [n · ∇u] := n · (∇uh|K∩Γ −∇uh|K′∩Γ ), (6.25)

where n is the outer unit normal vector. Then we replace the term ((∇um,∇ϕ)) in
local and dual residual with

((∇um,∇ϕ)) =
∑
K∈Th

∫
Im

(−∆um, ϕ)K + 1
2
(
[n · ∇um], ϕ

)
∂K\∂Ω

where the homogeneous Dirichlet boundary condition is applied on the boundary. 1
2

on the right-hand side is derived by the jump between two cells, which occurs once
from both neighboring cells.
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6.4 Error Estimators for the System

In this section, we present the explicit formulations of the approximated error
estimators. These are separated into eight parts, for primal and dual residuals in
time and space discretizations for the two sub-parts of the system. We present the
estimators for the implicit Euler scheme and for the Crank-Nicolson scheme. Note
that we use the homogeneous Dirichlet boundary condition on the boundary. Here,
for the fully discrete solutions, we use the notation for the simplicity as follows:

u := ukh, v := vkh, z1 := z1,kh, z2 := z2,kh

6.4.1 Error estimators for cG(1)dG(0)

For the implicit Euler method, the temporal integrals involving the fully discrete
solutions, u, v, z1 and z2 are approximated by the box rule, whereas those involving
i
(1)
k and the right-hand-side terms with f, g, are evaluated by the trapezoidal rule.
The residuals are as follows:

For the estimate in time for the parabolic equation ηuk , we use the piecewise linear
interpolation (6.20), and localize into each subintervals in time Im. Then, the primal
residual is:

ρu(u, v)(Πkz1) = ((f,Πkz1))−
M∑
m=1

∫
Im

(
∂tu

m, Πkz1(t)
)
dt− a1(um, vm)(Πkz1(t))

−
M−1∑
m=0

([u]m, Πkz
m,+
1 )− (u(0)− − u0, z1(0)−) .

Using the interpolation defined in (6.20), we know that

Πkz1(t) = t− tm
km

(zm1 − zm−1
1 )

on the interval Im. Also Πkz
m,+
1 = zm1 − zm+1

1 and [u]m = um+1 − um. After
re-indexing on the summations to merge under one summation, we have

ρu(u, v)(Πkz1) =
M∑
m=1

[ (
um − um−1, zm1 − zm−1

1

)
+
∫
Im

t− tm
km

(
f, zm1 − zm−1

1

)
dt

+ km
2

(
α2∇um + α3∇vm,∇

(
zm1 − zm−1

1

)) ]
− (u0 − u0, z

1
1 − z0

1).

42



6.4 Error Estimators for the System

Note that ∂tu = 0 because ukh is constant on each interval Im for the implicit Euler
method. Also, the linear interpolations are integrated over time by the trapezoidal
rule and produce the term km

2 . To discretize further into cell-wise, we use the
integration by parts and apply the homogeneous Dirichlet boundary condition, from
which we obtain:

ρu(u, v)(Πkz1) =
M∑
m=1

[ ∑
K∈Th

{(
um − um−1, zm1 − zm−1

1

)
K
− km

2
(
fm−1, zm1 − zm−1

1

)
K

− km
2
(
α3∆v

m + α2∆u
m, zm1 − zm−1

1

)
K

+ km
4
(
α2[∂num] + α3[∂nvm], zm1 − zm−1

1

)
∂K\∂Ω

}]
− (u0 − u0, z

1
1 − z0

1).

Here, [∂num] is the jump term between cells K as defined as in (6.25) (do not confuse
with the jump term [u]m in (4.1)). Note that z1

1 = z0
1 because the dual equation is

solved backward in time. Next, the dual residual in time for the parabolic equation
derived from L′z1(u, z1)(Πkz1) is:

ρ∗u(u, v; z1, z2)(Πku) = J
′

u(u)(Πku) +
M∑
m=1

∫
Im

(Πku(t), ∂tzm1 ) dt− (Πku
M , zM1 )

+ (Πku
0, z0

1)− a′1(um, vm)(Πku(t), zm1 )−
M−1∑
m=0

(Πku(tm)−, [z1]m)

− (Πku(0)−, z1(0)−)

=
M∑
m=1

[
α2km

2

(
∇
(
um − um−1

)
,∇zm1

)
− α5km

2
(
um − um−1, zm2

)
− km

2 J ′1,u(um)(um − um−1)
]

+ J
′

2,u(uM)((i(1)
k − id)uM︸ ︷︷ ︸

=0

)

− ((i(1)
k − id)uM︸ ︷︷ ︸

=0

, zM1 ).

Here, ∂tzm1 = 0 and (Πku(tm)−) = 0. Now we split it further into the contribution
from each cell and include the terms for interfaces between cells and boundary. (The

43



6 A Posteriori Error Estimation

terms with zero boundary condition applied are not shown.)

ρ∗u(u, v; z1, z2)(Πku) =
M∑
m=1

[ ∑
K∈Th

{
α2km

2

((
um − um−1

)
,−∆zm1

)
K

+ α2km
4

(
um − um−1, [∂nzm1 ]

)
∂K\∂Ω

− α5km
2 (um − um−1, zm2 )K −

km
2 J ′1,u(um)(um − um−1)K

}]

Analogously, for the estimate for the elliptic equation ηvk, we derive the primal residual
in time as:

ρv(u, v)(Πkz2) =
M∑
m=1

[ ∑
K∈Th

{
− km

2
(
∆vm, zm2 − zm−1

2

)
K
− km

2
(
gm−1, zm2 − zm−1

2

)
K

+ km
4
(
[∂nvm], zm2 − zm−1

2

)
∂K\∂Ω

+ km
2

(
α4v

m − α5u
m, zm2 − zm−1

2

)
K

}]
,

and the dual residual in time as:

ρ∗v(u, v; z1, z2)(Πkv) =
M∑
m=1

[ ∑
K∈Th

{
α3km

2

(
∇
(
vm − vm−1

)
,∇zm1

)
K

+ km
2
(
vm − vm−1,−∆zm2

)
K

+ km
4
(
vm − vm−1, [∂nzm2 ]

)
∂K\∂Ω

+ α4km
2 (vm − vm−1, zm2 )K −

km
2 J ′1,v(vm)(vm − vm−1)K

}]
+ J

′

2,v(vM)(Πkv
M).

For the estimate in space ηuh, we use the piecewise quadratic interpolation defined
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previously (6.21). The primal residual in space of the parabolic equation is:

ρu(u, v)(Πhz1) =
M∑
m=1

[ ∑
K∈Th

{ ∫
Im

(
f(t), i(2)

2h z1(t)− zm1
)
K
dt

+ km

(
α2∆u

m + α3∆v
m, i

(2)
2h z1(t)− zm1

)
K

−
(
um − um−1, i

(2)
2h z1(t)− zm1

)
K

− km
2

(
α2[∂num] + α3[∂nvm], i(2)

2h z1(t)− zm1
)
∂K\∂Ω

}
−
(
u0 − u0, i

(2)
2h z

0
1 − z0

1

)
,

and the dual residual in space is:

ρ∗u(u, v; z1, z2)(Πhu) =
M∑
m=1

[ ∑
K∈Th

{
kmJ

′
1,u(um)(i(2)

2h u(t)− um)K

+ α2km

(
i
(2)
2h u(t)− um, ∆zm1

)
K

+ α5km

(
i
(2)
2h u(t)− um, zm2

)
K

− α2km
2

(
i
(2)
2h u(t)− um, [∂nzm1 ]

)
∂K\∂Ω

+ (i(2)
2h u(t) |m−1 −um−1, zm1 − zm−1

1 )K
}]

+ J ′2,u(uM)(i(2)
2h u

M − uM)− (i(2)
2h u

M − uM , zM1 ).

Note that the quadratic interpolations are not explicitly calculated out as they are
for the linear interpolations.
Finally, the primal and dual residuals for the elliptic equations for ηvh are:

ρv(u, v)(Πhz2) =
M∑
m=1

[ ∑
K∈Th

{
km

(
∆vm, i

(2)
2h z2(t)− zm2

)
K

+
∫
Im

(
g(t), i(2)

2h z2(t)− zm2
)
K
dt− km

2

(
[∂nvm], i(2)

2h z2(t)− zm2
)
∂K\∂Ω

+ km

(
α5u

m − α4v
m, i

(2)
2h z2(t)− zm2

)
K
dt
}]
,
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and

ρ∗v(u, v; z1, z2)(Πhv) =
M∑
m=1

[ ∑
K∈Th

{
kmJ

′
1,v(vm)(i(2)

2h v(t)− vm)K

− km
(
i
(2)
2h v(t)− vm,−∆zm2

)
K

− α3km

(
∇(i(2)

2h v(t)− vm),∇zm1
)
K

− km
2

(
i
(2)
2h v(t)− vm, [∂nzm2 ]

)
∂K\∂Ω

− α4km

(
i
(2)
2h v(t)− vm, zm2

)
K

}]
+ J ′2,v(vM)(i(2)

2h v
M − vM).

6.4.2 Error estimators for cG(1)cG(1)

Since we have right-hand sides that are time-dependent trigonometric functions, we
use the Gaussian quadrature for the integration method for more accurate integration
than that which we would derive from the trapezoidal rule.
We present here the primal residual of the parabolic equation:

ρu(u, v)(Πkz1) =
M∑
m=1

∫
Im

(f(t), Πkz1(t))︸ ︷︷ ︸
(1)

− (∂tum, Πkz1(t))︸ ︷︷ ︸
(2)

−α2 (∇um,∇Πkz1(t))︸ ︷︷ ︸
(3)

− α3 (∇vm,∇Πkz1(t))︸ ︷︷ ︸
(4)

dt− (u(0)− u0, z1(0)) .

Let
x1 := km

2
√

3
+ tm + tm−1

2 , x2 := − km

2
√

3
+ tm + tm−1

2 . (6.28)

The approximation by Gaussian Quadrature of the four terms in (6.28) is:

(1)
∫
Im

(f,Πkz1) dt =
∫
Im

(
f(t), tm − t

km
zm−1

1 + t− tm−1

km
zm1 − zm1

)
dt

≈ km
2

(
f(x1), tm − x1

km
zm−1

1 + x1 − tm−1

km
zm1 − zm1

)

+km2

(
f(x2), tm − x2

km
zm−1

1 + x2 − tm−1

km
zm1 − zm1

)
,
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Note the right-hand side is also time dependent.

(2)
∫
Im

(∂tu,Πkz1) dt =
∫
Im

(
um − um−1

km
,
tm − t
km

zm−1
1 + t− tm−1

km
zm1 − zm1

)
dt

≈ km
2

(
um − um−1

km
,
tm − x1

km
zm−1

1 + x1 − tm−1

km
zm1 − zm1

)

+km2

(
um − um−1

km
,
tm − x2

km
zm−1

1 + x2 − tm−1

km
zm1 − zm1

)
,

(3)
∫
Im

(∇u(t), Πk∇z1) dt =
∫
Im

(
tm − t
km
∇um−1 + t− tm−1

km
∇um,

tm − t
km
∇zm−1

1 + t− tm−1

km
∇zm1 −∇zm1

)
dt.

In this term (3), we use the distribution property for the product within the integral
and obtain:

∫
Im

(∇um, Πk∇zm1 ) dt =
∫
Im

(
tm − t
km

)2

(∇um−1,∇zm−1
1 ) dt

+
∫
Im

(
tm − t
km

)(
t− tm−1

km

)(
∇um−1,∇zm1

)
dt

+
∫
Im

(
tm − t
km

)(
t− tm−1

km

)(
∇um,∇zm−1

1

)
dt

−
∫
Im

(
tm − t
km

)
(∇um−1,∇zm) +

(
t− tm−1

km

)2

(∇um,∇zm1 ) dt

−
∫
Im

(
t− tm−1

km

)
(∇um,∇zm1 ) dt =:

tm∫
tm−1

h(t) dt .

The integral over [tm−1, tm] must be changed into an integral over [−1, 1] before
applying the Gaussian quadrature rule. This change of interval can be done and the
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term (3) is written as:

∫
Im

(∇u(t), Πk∇zm1 ) dt = km
2

1∫
−1

h

(
km
2 x+ tm + tm−1

2

)
dx

=:
1∫
−1

g(x)dx ≈ g

(
1√
3

)
+ g

(
−1√

3

)

= km
2
[
h (x1) + h (x2)

]
,

Similarly,

(4)
∫
Im

(
∇v(t), Πk∇z1

)
dt =

∫
Im

(
tm − t
km

)2 (
∇vm−1,∇zm−1

1

)
dt

+
∫
Im

(
tm − t
km

)(
t− tm−1

km

)(
∇vm−1,∇zm1

)
dt

+
∫
Im

(
tm − t
km

)(
t− tm−1

km

)(
∇vm,∇zm−1

1

)
dt

−
∫
Im

(
tm − t
km

)(
∇vm−1,∇zm

)

+
(
t− tm−1

km

)2

(∇vm,∇zm1 ) dt

−
∫
Im

(
t− tm−1

km

)
(∇vm,∇zm1 ) dt .
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6.5 Estimation of Galerkin Perturbation Error

The computed a posteriori error estimators in the previous sections are effective
criteria for developing the refinement algorithm. However, these estimators are
generated for the “exact” discrete solutions. In our case, due to the splitting method,
we use inexact intermediate solutions. Thus, we must consider an additional error
from the multirate iterative coupling scheme introduced in Chapter 5.

6.5.1 Splitting error estimation

The weak formulation (3.1) can be stated using (3.2) as:
Find u, v ∈ X such that

A(u, v)(ϕ, ψ) = 0, ∀ϕ, ψ ∈ X. (6.29)

We discretize the problem by a standard finite element method in time and space
and write the fully discrete problem:
Find ukh, vkh ∈ X̃r,s

kh such that

A(ukh, vkh)(ϕ, ψ) = 0, ∀ϕ, ψ ∈ X̃r,s
kh . (6.30)

Assuming the Equation (6.30) is solved exactly, the a posteriori error estimates for
(u− ukh) and (v − vkh) are derived as in the previous section.
However, due to the inexact intermediate solutions ũkh,ṽkh from the splitting method,
we violate the Galerkin orthogonality. This violation is called the Galerkin pertur-
bation. Let us denote the estimate of the error due to this Galerkin perturbation
as ηpert. We define the function spaces sXr,s

kh , sY and Y as defined in (6.5) and (6.10),
respectively, so that they satisfy that sXr,s

kh ⊂ sY . Then, there holds the following
proposition:

Proposition 6.2. Let (ũkh, ṽkh; z̃1,kh, z̃2,kh) ∈ sXr,s
kh be the approximated primal and

dual solutions (u, v; z1, z2) ∈ sY of (3.1) and (6.17). Then the error representation
holds:

J(u, v)− J(ũkh, ṽkh) = ηu+v
k (ũkh, ṽkh; z̃1,kh, z̃2,kh) + ηu+v

h (ũkh, ṽkh; z̃1,kh, z̃2,kh)
+ ηpert +R(3),

where

ηpert = ηupert + ηvpert
:= ρu(ũkh, ṽkh)(z̃1,kh) + ρv(ũkh, ṽkh)(z̃2,kh) (6.31)

and R(3) is cubic in the primal and dual errors.
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Proof. We define ω := {u, v; z1, z2} and ω̃kh := {ũkh, ṽkh; z̃1,kh, z̃2,kh}. By applying
the mean value theorem and the fundamental theorem of calculus, followed by a
change of variables on the Lagrangian (6.6), there holds

L(ω)− L(ω̃kh) =
1∫

0

L′(ω̃kh + s(e))(e) ds,

where e = ω − ω̃kh. With the general error representation for the trapezoidal rule

1∫
0

f(s) ds = 1
2
(
f(0) + f(1)

)
+ 1

2

1∫
0

f
′′(s)s(s− 1) ds,

we use the fact that L′(ω) = 0 and derive that

L(ω)− L(ω̃kh) = 1
2L

′(ω̃kh)(e) +R(3), (6.34)

where R(3) is cubic in the primal and dual errors as in [60]. Then, we recall (6.29)
and write the error functional as

J(u, v)− J(ũkh, ṽkh) = L(ω) +A(u, v)(z1, z2)− L(ω̃kh)−A(ũkh, ṽkh)(z̃1,kh, z̃2,kh)
= L(ω)− L(ω̃kh)−A(ũkh, ṽkh)(z̃1,kh, z̃2,kh)

= 1
2L

′(ω̃kh)(e) +R(3) −A(ũkh, ṽkh)(z̃1,kh, z̃2,kh)

The proof is completed by recalling (6.15) and (6.23).

This proof is adapted from the work of Rannacher and Vihharev [60] for the space-
discrete equations for the nonlinear elliptic problems. They assess the error due to
an inexact solution. This error is commonly called iteration error for stationary
problems [58, 62].

6.5.2 Quadrature error

In his work, Strang [67] explained four sources of error contributions in ηpert due to
the variational crime. Since the time integral in the variational formulation of the
system (6.30) is not computed exactly, ηpert contains another error, in addition to
the splitting error. In our calculation, we observe that this second error occurs if the
residuals are evaluated by numerical quadrature, rather than exact integration; we
call this additional error the quadrature error.
We begin this subsection with a focus on deriving the quadrature error through
considering it with the exact solutions ukh, vkh, z1,kh, z2,kh.
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We consider the perturbed bilinear form Ah, where the integrals are integrated by a
quadrature rule. From this, we know that

Ah(ukh, vkh)(ϕ, ψ) = 0 ∀ϕ, ψ ∈ X̃r,s
kh . (6.35)

By the First Lemma of Strang [14], with the notation x := {u, v} ∈ Y × Y ,
xkh := {ukh, vkh} ∈ Xr,s

kh ×X
r,s
kh := S,

||x− xkh|| ≤ c

 inf
Ψ∈S

{
||x− Ψ ||+ sup

Φ∈S

|A(ukh, vkh)(Φ)−Ah(ukh, vkh)(Φ)|
||Φ||

}
for some constant c independent of discretizations. Then we know that the second
term on the right-hand side is non zero and describes the quadrature error.
We consider the residuals defined as:

ρu(u, v)(z1) = ((f, z1))−
M∑
m=1

∫
Im

(∂tu, z1) dt− a1(u)(z1),

ρv(u, v)(z2) = ((g, z2))− a2(v)(z2).

We compute these residuals for the fully discrete solutions by using a Gaussian
quadrature with a sufficiently high order to integrate the trigonometric functions
f, g more precisely, and denote them as

ρG.Qu (ukh, vkh)(z1,kh) and ρG.Qv (ukh, vkh)(z2,kh).

Then,

ηupert = ρG.Qu (ukh, vkh)(z1,kh), (6.36a)
ηvpert = ρG.Qv (ukh, vkh)(z2,kh). (6.36b)

On the other hand, since ukh, vkh are the solutions of the perturbed problem with
Ah (6.35), the perturbed residuals are integrated by the trapezoidal rule:

ρtrapzu (ukh, vkh)(z1,kh) =
M∑
m=1

[
km
2
(
fm + fm−1, zm1,kh

)
+
(
umkh − um−1

kh , zm1,kh
)

− km
2
(
α2∇umkh + α3∇vmkh,∇zm1,kh

)
− km

2
(
α2∇um−1

kh + α3∇vm−1
kh ,∇zm1,kh

) ]
− (u0

kh − u0, z
m
1,kh),

ρtrapzv (ukh, vkh)(z2,kh) =
M∑
m=1

[ (
gm + gm−1, zm2,kh

)
−
(
∇vmkh +∇vm−1

kh ,∇zm2,kh
)

−
(
α4v

m
kh − α5u

m
kh, z

m
2,kh

)
−
(
α4v

m−1
kh − α5u

m−1
kh , zm2,kh

) ]
,
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where fm := f(tm) and gm := g(tm).

Now we combine the results from the previous subsection 6.5.1, where we de-
rive the Galerkin perturbation error due to using the approximated solutions
ũkh, ṽkh, z̃1,kh, z̃2,kh in the splitting method. We would like to separate the per-
turbation error estimate into the error contribution from the splitting error ηsplit,
and the quadrature error ηquad:

ηpert = ηquad + ηsplit. (6.37)

We denote these estimates as

ηuquad := ρG.Qu (ũkh, ṽkh)(z̃1,kh)− ρtrapzu (ũkh, ṽkh)(z̃1,kh), (6.38a)
ηvquad := ρG.Qv (ũkh, ṽkh)(z̃2,kh)− ρtrapzv (ũkh, ṽkh)(z̃2,kh). (6.38b)

The splitting error is nothing but ρtrapz because for the exact fully discrete solutions
solved by using the Crank-Nicolson time scheme, it holds that

ρtrapzu (ukh, vkh)(z1,kh) = 0.

Therefore, we can denote the splitting error as:

ηusplit := ρtrapzu (ũkh, ṽkh)(z̃1,kh), (6.40a)
ηvsplit := ρtrapzv (ũkh, ṽkh)(z̃2,kh). (6.40b)

However, for instance, for the approximated solutions

ρtrapzu (ũkh, ṽkh)(z̃1,kh) 6= 0 ,

implies that this error catches the splitting error.
In this thesis, we have the time-dependent trigonometric functions f, g on the right-
hand side of Equation (3.1). We use the Gaussian quadrature method to integrate
them more accurately. Since they are not evaluated by exact integration for the
Crank-Nicolson scheme, we observe a quadrature error. Therefore, for the case using
the Gaussian quadrature, we add zeros in (6.36) and write (6.31) as:

ηpert = ηupert + ηvpert

=
(
ρG.Qu (ũkh, ṽkh)(z̃1,kh)− ρtrapzu (ũkh, ṽkh)(z̃1,kh)

)
+
(
ρG.Qv (ũkh, ṽkh)(z̃2,kh)− ρtrapzv (ũkh, ṽkh)(z̃2,kh)

)
+ρtrapzu (ũkh, ṽkh)(z̃1,kh) + ρtrapzv (ũkh, ṽkh)(z̃2,kh)
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We use the notations in (6.38) and (6.40), and write as:

ηpert = ηuquad + ηvquad + ηusplit + ηvsplit
=: ηquad + ηsplit.

Finally, we achieve the separation of the error in (6.37),

6.6 Refinement Algorithm

In this section, we present the adaptive mesh refinement algorithm for space-time
adaptivity based on the a posteriori error estimates introduced in the previous
sections. We want to estimate the error functional J(u, v)− J(ukh, vkh) in terms of
error estimators such that

J(u, v)− J(ukh, vkh) = |ηuk + ηvk + ηuh + ηvk + ηpert| < TOL, (6.42)

In order to bring the total error under the tolerance TOL as shown above, we ensure
that each estimator is under TOL:

ηuk < TOL, ηvk < TOL, ηuh < TOL, ηvk < TOL, ηpert < TOLi (6.43)

where TOL is the given accuracy for the discretization error and TOLi for the
perturbation error. Usually they are in the same order, unless specified for special
cases. For the simplicity, we write the sum of estimators of two sub-parts as
η := ηu+v.

The goal of the algorithm is to find a combination of four discretizations that
is the coarsest possible through refining the discretizations separately and in the
equilibrating reduction, until each derived estimator reaches the desired accuracy.
The algorithm avoids unnecessary refinement of the discretization by assessing for
each component and thus minimizes the computational cost. In order to obtain the
optimal combination of the four discretizations on each refinement cycle, we must use
the precise quantitative assessment of the error estimations derived in the previous
section.

To this end, we introduce equilibrium constants κ1 and κ2 (see Line 14 and Line 7
in Algorithm 4.) Based on the mesh refinement algorithm by Goll, Rannacher, and
Wollner [35], Schmich and Vexler [64], and Besier and Rannacher [13], choosing
optimal κi, i = 1, 2 is done through a trial-and-error process. If κi is too small, then
the refinement process slows down because the algorithm refines only one of the
temporal or spatial discretization, even if the error estimators of the temporal and
spatial discretizations are very close. On the other hand, if κi is too big, it refines
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both temporal and spatial discretizations, even if the dominating error is from only
one discretization.

Therefore, we develop an algorithm that prevents such drawbacks. Using the sepa-
rated error estimates, the algorithm checks whether a temporal or spatial estimator
of each sub-part has reached the desired accuracy before refining the discretization.
For instance, if κi was too big, it would fall into the case to refine both discretizations
in time and space. The algorithm goes through each estimator and refines only
those that generate a discretization error estimate that is greater than the given
tolerance. It then proceeds as described in Algorithm 4. Since we want to maintain
the equilibrating reduction of the temporal and spatial discretization error, we use
equilibration constants κ1 = 4 and κ2 = 2. These constants reflect the convergence
rate of space and time discretizations for the implicit Euler method, and κ1 = 4 and
κ2 = 4 for the Crank-Nicolson method.

As explained in the beginning of this chapter, another aspect that is refined in a
balanced manner is between the two problems. Within the equilibrium between the
error contributions from the temporal and spatial discretizations, we balance the
error estimates for each sub-part: balance ηuk and ηvk in the temporal discretization,
and balance ηuh and ηvh in the spatial discretization. This helps to avoid discretizations
that are overly refined, as over-refinement results in extra computational cost or it
remains too coarse, which might lead to the divergence of the algorithm.

Although the solutions of the system are solved in a split manner, they remain coupled
within the system. Therefore, we must be very careful in choosing the discretization
to maintain the accuracy of the solutions. For example, solving the parabolic problem
on a very fine mesh does not guarantee convergence to the simultaneous solution
or the convergence of the algorithm, if the error of the coupling term from the
elliptic problem is too large. We have observed that a ratio that is too large between
time step length of two temporal discretizations causes divergence. Therefore, the
algorithm is designed to give the optimal combination of discretizations with the
least computational cost, while maintaining the convergence and the error estimators
under a given tolerance. See Line 16 of Algorithm 4, where divergence due to the
splitting error is checked and thereby the temporal discretization of the elliptic
problem is refined to reduce the ratio. The refinement cycle stops when all error
contributions reach a desired accuracy. The diagram 6.3 shows the flow chart of the
algorithm.

Remark 6.3. The initial discretization can be coarse as long as we obtain the con-
vergence of the algorithm. In a case where an initial combination of discretizations
does not give a converging iteration, one can apply the damped Crank-Nicolson, as
explained in Section 4.4
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6.6 Refinement Algorithm

Algorithm 4 Adaptive refinement algorithm
1: procedure
2: Choose an initial space and time discretizations
3: Set n = 0.
4: repeat
5: Calculate the primal and dual solutions following Algorithm 3
6: Evaluate a posteriori error estimators ηk and ηh
7: if |ηh| > κ2|ηk| then
8: if |ηuh| > TOL then
9: Adapt the spatial discretization of u
10: end if
11: if |ηvh| > TOL then
12: Adapt the spatial discretization of v
13: end if
14: else if |ηk| > κ1|ηh| then
15: if |ηpert| > TOLi then
16: Adapt the temporal discretization of v
17: else
18: if |ηuk | > TOL then
19: Adapt the temporal discretization of u
20: end if
21: if |ηvk| > TOL then
22: Adapt the temporal discretization of v
23: end if
24: end if
25: else
26: if |ηuk | > TOL then
27: Adapt the temporal discretization of u
28: end if
29: if |ηvk| > TOL then
30: Adapt the temporal discretization of v
31: end if
32: if |ηuh| > TOL then
33: Adapt the spatial discretization of u
34: end if
35: if |ηvh| > TOL then
36: Adapt the spatial discretization of v
37: end if
38: end if
39: Increase n.
40: until there is no more refinement
41: end procedure

55



6 A Posteriori Error Estimation
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Figure 6.3. Flowchart for the iterative algorithm using multirate time
stepping for the coupled system.
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7 Numerical Results

In this chapter, we apply the adaptive mesh refinement algorithm and a posteriori
error estimates developed in Chapter 6. We present the numerical results achieved
by applying the adaptive algorithm in the coupled parabolic/elliptic system. We
show the good quantitative assessment of the temporal and spatial discretization
error estimators and the splitting error estimator that are validated by measuring
their overestimation. First, we apply some constraints, such as fixing the spatial
discretizations or fixing the ratio of time step lengths of the temporal discretizations.
This helps us to see more clearly the independent behavior of discretization error
estimators. Then, we present the tables and the graphs for the fully adaptive algo-
rithm (no constraint). The errors computed with respect to the different functionals
are compared.

To this end, we recall the model of the coupled parabolic/elliptic system:
Find u, v such that

∂u(x, t)
∂t

−∆u(x, t)−∆v(x, t) = f in I ×Ω ,

−∆v(x, t) + v(x, t)− u(x, t) = g in I ×Ω ,

u = u0 in 0×Ω ,

u = 0 on I × ∂Ω .

Let the force terms f, g be given in such a way that the exact solutions u, v are given
by

u(x, t) = cos(t) sin(x) ,
v(x, t) = cos(t) sin(x) .

The functional can be chosen for the interest of the physical model. In this work,
we use two functionals. The first one is the average norm value over time interval
I = [0, T ]:

Jt := ((u(x, t), u(x, t))Ω)I =
∫
I

∫
Ω

u(x, t)2 dx dt, (7.1)
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7 Numerical Results

where Ω = [0, π]. This functional shows the chemical process on the cathode over
time. Another functional is the norm value at the end-time, t = T :

JT := (u(x, T ), u(x, T ))Ω. (7.2)

This goal functional is focused on the status of the ion concentration after the process
reaches at the end of the time interval. Note that these functionals do not involve
the electric potential value. The following results in this chapter are for the case of
cG(1)cG(1) discretization in one-dimensional space.

7.1 Numerical Results of the Error Estimators

We present the numerical justification for the separation of the total discretization
error into a temporal and spatial contribution for both components of the system,
u, v, and also the independent behavior of their error estimators.
Here, and in the rest of the chapter, nh denotes the number of cells of spatial
discretization while nk denotes the number of subintervals in time. In the following
tables, there are two columns for the perturbation error indicated as the column of
ηG.Qpert and ηtrapzpert . We have seen that ηtrapzpert measures the perturbation error due to the
splitting method. Thus, by subtracting ηtrapzpert from ηG.Qpert , we obtain the estimate of
the quadrature error. In this section, we used the Gaussian quadrature integration
method with two points (n = 2). We observe that it gives the same quadratic
convergence as for the Crank-Nicolson method. The last column show the effectivity
index

Ieff :=
∣∣∣∣∣ηh + ηk + ηpert

J(e)

∣∣∣∣∣ ,
where

J(e) := J(w − wkh) = J(w)− J(wkh) , (7.4)

which holds true for those linear functionals we choose to use. This index represents
the degree of overestimation of in the resulting error estimators. Desirably, the
effective index should to be close to one, which shows a very good error estimation.
The successive rows in the tables are the uniform-refinement cycles, as clearly notable
by the doubling of the number of cells.

First, we set a constraint by fixing the spatial discretizations in order to focus solely
on the temporal discretization error estimates. Thus, in Table 7.1−Table 7.4, the
spatial discretization is fixed such that its error estimate remains under the tolerance
TOL = 10−5. Also, both the parabolic and the elliptic problems are solved on the
same temporal discretization on each cycle.
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7.1 Numerical Results of the Error Estimators

Table 7.1. For over-time functional Jt: Error estimates where the
parabolic and elliptic equations are solved on a same dis-
cretization and for the cG(1)cG(1) discretization.

Jt, Ratio=1, nh = 256
nk ηu+v

h ηuk ηvk ηu+v
k ηG.Qpert ηtrapzpert J(e) Ieff

16 3.37e-05 8.75e-03 9.91e-05 8.85e-03 1.04e-02 -2.54e-09 1.57e-02 1.22
32 3.22e-05 2.14e-03 -1.85e-05 2.12e-03 2.70e-03 -6.94e-09 3.06e-03 1.58
64 3.13e-05 5.23e-04 -4.27e-06 5.19e-04 6.86e-04 -8.15e-09 5.75e-04 2.15
128 3.07e-05 1.29e-04 -6.57e-07 1.28e-04 1.73e-04 -2.20e-08 1.46e-04 2.27

Table 7.2. Jt: Error estimates where the parabolic equation is solved
on a twice finer temporal discretization than for the elliptic
equation.

Jt, Ratio=2, nh = 256
nuk nvk ηu+v

h ηuk ηvk ηu+v
k ηG.Qpert ηtrapzpert J(e) Ieff

32 16 3.17e-05 6.60e-04 3.68e-04 1.03e-03 1.13e-03 -2.07e-09 2.40e-03 0.91
64 32 3.10e-05 1.90e-04 -1.37e-06 1.88e-04 2.48e-04 -7.78e-09 -1.97e-04 2.38
128 64 3.06e-05 4.79e-05 -3.19e-06 4.47e-05 5.77e-05 -1.42e-08 -2.24e-04 0.60
256 128 3.04e-05 1.19e-05 -5.89e-07 1.13e-05 1.39e-05 -5.37e-08 -5.09e-05 1.09

Table 7.3. For end-time functional JT : Error estimates where the
parabolic and elliptic equations are solved on a same dis-
cretization and for the cG(1)cG(1) discretization.

JT , Ratio=1, nh = 256
nk ηu+v

h ηuk ηvk ηu+v
k ηG.Qpert ηtrapzpert J(e) Ieff

16 1.71e-05 -8.34e-03 1.24e-01 1.16e-01 1.27e-02 -3.74e-09 1.22e-01 1.05
32 2.30e-05 -1.96e-03 3.15e-02 2.95e-02 2.86e-03 -7.46e-09 3.13e-02 1.04
64 2.54e-05 -4.67e-04 7.91e-03 7.44e-03 6.76e-04 -3.17e-09 7.91e-03 1.03
128 2.65e-05 -1.14e-04 1.98e-03 1.87e-03 1.64e-04 -2.00e-08 2.03e-03 1.02
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The results with the goal functional over time Jt that is defined in Equation (7.1)
are shown in Table 7.1. The first column for the spatial error estimator ηu+v

h shows
the independent behavior; the spatial error estimator remains same as the temporal
discretization is refined. By comparing the columns ηuk and ηvk, it is clear that the
total temporal discretization error ηu+v

k is dominated by the temporal discretization
error of the parabolic equation. The developed algorithm uses this information to
avoid unnecessary refinement of the discretization of the elliptic equation to minimize
the computational cost. This justifies the separation of each discretization error into
the contribution of the sub-parts.
Moreover, we observe that for temporal discretization Ieff close to one, which implies
that the error estimates are good. Looking at Table 7.2 where the set-up is as same as
in Table 7.1, except that the additional constraint is applied. The two equations are
solved on the discretizations such that the temporal discretization of the parabolic
equation is twice finer than of the elliptic equation. Simply, we say it as ratio = 2,
which is the ratio between the time step length of the temporal discretization of
the parabolic equation and of the elliptic equation. We observe similar results in
Table 7.1 and the good Ieff that converges to one.
The results in Table 7.3 and Table 7.4 are for the end-time functional JT defined
in Equation (7.2). Unlike the case of Jt, the error estimates of the elliptic equation
dominates the total temporal discretization error. In both cases, we observe the very
good quantitative estimation of the discretization error Ieff ≈ 1.

Table 7.4. JT : Error estimates where the parabolic equation is solved
on a twice finer temporal discretization than for the elliptic
equation.

JT , Ratio=2, nh = 256
nuk nvk ηu+v

h ηuk ηvk ηu+v
k ηG.Qpert ηtrapzpert J(e) Ieff

32 16 2.02e-05 -2.91e-03 1.20e-01 1.17e-01 1.67e-03 2.18e-09 1.03e-01 1.15
64 32 2.45e-05 -7.47e-04 3.05e-02 2.97e-02 3.06e-04 -5.56e-10 2.65e-02 1.13
128 64 2.62e-05 -1.86e-04 7.66e-03 7.47e-03 6.27e-05 2.94e-10 6.72e-03 1.13
256 128 2.69e-05 -4.63e-05 1.92e-03 1.87e-03 1.39e-05 -2.99e-08 1.73e-03 1.11

7.2 Comparison with Different Goal Functionals

We have validated the discretization error estimators by the effectivity index and
their independence under the constraints in the previous section. Now we are ready
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to present the case with no constraint; all four discretizations in time and space
for both parabolic and elliptic equations are independently refined until their error
estimators are under the tolerance TOL = 10−5.

Consider Table 7.5 for the case with Jt. We can choose the initial discretizations
as coarse as we observe the convergence within the algorithm. In this case, we
choose each discretization with 16 elements. Then the algorithm balances the error
estimators of the four discretization errors during the refinement process. The
effectivity index Ieff remains close to one in the beginning, then, as the ratio between
the discretizations increases, Ieff decreases. We observe that the elliptic equation
does not required as fine discretizations in space and time as the parabolic equation.
After 12 successive refinements, all the error estimators reaches under the tolerance,
and we terminate the refinement process.

One of the particular behaviors we must note is at the tenth cycle, where the total
temporal discretization error and the perturbation error estimator are explored.
Especially, the splitting error estimate ηtrapzpert is increased by 107. This shows that
the perturbation error is dominated by the splitting error, and we then know that
this error comes from someplace else, but it occurs due to the ratio of the time
step lengths of two temporal discretizations that are too far apart. This divergence
behavior is fixed by refining only the temporal discretization of the elliptic equation,
as seen in the eleventh cycle. This is the justification for the separation of the
perturbation error into the quadrature and splitting error estimates. It is easier to
see the overall pattern of the refinement cycles and the decreasing pattern of each
error in the plots in Figure 7.1 and Figure 7.2, where the error estimators in Table 7.5
and Table 7.6 are plotted over the refinement cycles.

Here, we use the following labels:

• “est error sp u”: the spatial discretization error for the parabolic equation, ηuh

• “est error sp v”: the spatial discretization error for the elliptic equation, ηvh

• “est error t u”: the temporal discretization error for the parabolic equation, ηuk

• “est error t v”: the temporal discretization error for the elliptic equation, ηvk

• “est error tol”: the sum of perturbation error for the parabolic and elliptic
equations, ηG.Qpert

Figure 7.1 shows the refinement sequence for the equations whose functional is Jt.
The spatial discretization errors for both equations are decreasing in parallel, thus
both discretizations of the sub-parts are refined until the end of the cycle. However,
for the discretization errors in time, it is clearly shown in the figure that ηvk is much
smaller than ηuk , and ηvk < TOL after four refinement cycles, while ηuk needs eleven
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cycles. Thus, the temporal discretization of the elliptic equation is able to remain
coarser than the temporal discretization of the parabolic equation.

The perturbation error (indicated by a black dashed line on the right) represents the
divergence of the splitting method. We refine only the temporal discretization for the
elliptic equation. Then we observe that the explosion of the error estimates vanishes,
and we gain back the convergence behavior on the next cycle. Therefore, the role
of the perturbation error estimate and the separation into the quadrature and the
splitting error is crucial to know how to effectively fix the divergence behavior by
knowing precisely where the abnormal increase of the error is coming from.

When the functional JT is taken, the discretizations for both equations are refined
together, and we do not see much of the benefit from the adaptive algorithm. However,
instead of running with all the coefficients as αi = 1, i = 1, · · · , 5, which we arbitrarily
set to simulate initially, we run with the coefficients α2 = 0.1 and α3 = 0.1. These
values are closer to the ones from the physical model. The result of the adaptive
refinement for the functional JT is found in Table 7.7 and Figure 7.3, where the
values from the table is plotted. The temporal discretization of the elliptic equation
will not be refined after the eighth cycle, since its error estimator already reached
below the tolerance TOL = 10−5. Thus, the efficiency of the adaptive method is
emphasized in the model with values that are close to the ones from the physical
model.
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Adaptive refinement in space and in time, Jt
nuh nvh nuk nvk ηuh ηvh ηu+v

h ηuk ηvk ηu+v
k ηG.Qpert ηtrapzpert J(e) Ieff

16 16 16 16 1.17e-02 -3.06e-03 8.59e-03 9.07e-03 -2.75e-04 8.79e-03 1.03e-02 3.23e-10 2.27e-02 1.22
32 32 16 16 2.93e-03 -7.68e-04 2.16e-03 9.11e-03 -2.75e-04 8.84e-03 1.03e-02 6.20e-10 1.22e-02 1.75
32 32 32 32 2.77e-03 -7.10e-04 2.06e-03 2.14e-03 -1.85e-05 2.12e-03 2.69e-03 1.07e-09 6.41e-03 1.07
64 64 32 32 6.93e-04 -1.78e-04 5.16e-04 2.16e-03 -4.22e-05 2.12e-03 2.70e-03 1.89e-10 2.40e-03 2.23
64 64 64 64 6.70e-04 -1.70e-04 5.00e-04 5.23e-04 -4.27e-06 5.19e-04 6.86e-04 -6.04e-09 1.36e-03 1.25
128 128 64 64 1.67e-04 -4.24e-05 1.25e-04 5.25e-04 -5.75e-06 5.19e-04 6.86e-04 -7.35e-09 5.12e-04 2.60
128 128 128 64 1.64e-04 -4.18e-05 1.23e-04 4.86e-05 -5.57e-06 4.30e-05 5.77e-05 -1.44e-08 -2.89e-04 0.77
256 256 256 64 4.06e-05 -1.04e-05 3.03e-05 -2.84e-05 -5.53e-06 -3.39e-05 -1.01e-04 -3.33e-08 -6.42e-04 0.16
512 512 512 64 1.01e-05 -2.58e-06 7.53e-06 -2.73e-05 -5.51e-06 -3.28e-05 -1.41e-04 -3.83e-08 -7.30e-04 0.23
512 512 1024 64 1.03e-05 -2.26e-06 8.04e-06 1.41e-03 5.01e-03 6.42e-03 1.82e-01 1.82e-01 -3.65e+14 0.00
512 512 1024 128 1.01e-05 -2.55e-06 7.53e-06 -6.82e-06 -5.68e-07 -7.39e-06 -3.60e-05 1.04e-07 -1.51e-04 0.24
1024 512 1024 128 2.52e-06 -4.99e-20 2.52e-06 -6.81e-06 -8.07e-07 -7.62e-06 -3.97e-05 -3.60e-06 -1.84e-04 0.24

Table 7.5. Adaptive refinement on the spatial and temporal discretiza-
tions for Jt and the tolerance TOL = 10−5
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Adaptive refinement in space and in time, JT
nuh nvh nuk nvk ηuh ηvh ηu+v

h ηuk ηvk ηu+v
k ηG.Qpert ηtrapzpert J(e) Ieff

8 8 16 16 3.17e-02 -1.47e-02 1.70e-02 -8.36e-03 1.25e-01 1.16e-01 1.26e-02 9.74e-10 1.82e-01 0.804
8 8 32 32 3.43e-02 -1.14e-02 2.29e-02 -1.96e-03 3.17e-02 2.97e-02 2.84e-03 1.23e-09 9.27e-02 0.598
16 16 32 32 8.72e-03 -2.77e-03 5.95e-03 -1.99e-03 7.84e-03 5.86e-03 2.85e-03 2.46e-10 2.43e-02 0.604
32 32 32 32 2.19e-03 -6.94e-04 1.50e-03 -1.99e-03 7.83e-03 5.85e-03 2.86e-03 -5.11e-10 1.26e-02 0.808
64 64 32 32 5.48e-04 -1.74e-04 3.74e-04 -1.99e-03 7.83e-03 5.85e-03 2.86e-03 -1.84e-09 9.70e-03 0.936
64 64 64 64 5.68e-04 -1.62e-04 4.06e-04 -4.67e-04 7.91e-03 7.44e-03 6.75e-04 -5.01e-09 8.82e-03 0.966
64 64 128 128 5.78e-04 -1.54e-04 4.24e-04 -1.14e-04 1.98e-03 1.87e-03 1.64e-04 -8.03e-09 2.94e-03 0.835
64 64 256 256 5.83e-04 -1.50e-04 4.32e-04 -2.80e-05 4.95e-04 4.67e-04 4.04e-05 -1.26e-09 1.47e-03 0.641
128 128 256 256 1.46e-04 -3.75e-05 1.08e-04 -2.80e-05 1.24e-04 9.57e-05 4.04e-05 -1.21e-09 3.81e-04 0.642
256 256 256 256 3.64e-05 -9.38e-06 2.70e-05 -2.80e-05 1.24e-04 9.57e-05 4.04e-05 -1.24e-09 1.98e-04 0.825
512 256 256 256 9.11e-06 -4.01e-19 9.11e-06 -2.80e-05 1.22e-04 9.36e-05 2.68e-05 -1.36e-05 1.62e-04 0.801
512 256 512 512 9.14e-06 3.09e-20 9.14e-06 -6.94e-06 1.18e-04 1.11e-04 -3.66e-06 -1.37e-05 1.42e-04 0.824
512 256 1024 1024 9.16e-06 6.85e-19 9.16e-06 -1.73e-06 1.91e-05 1.74e-05 -1.12e-05 -1.37e-05 4.48e-05 0.341
512 256 1024 1024 9.16e-06 6.85e-19 9.16e-06 -1.73e-06 -4.14e-06 -5.87e-06 -1.12e-05 -1.37e-05 2.26e-05 0.351

Table 7.6. Adaptive refinement on spatial and temporal discretizations
for JT and the tolerance TOL = 10−5
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7.2 Comparison with Different Goal Functionals

Figure 7.1. Show the adaptive algorithm mesh refinement for the func-
tional the norm value over time Jt. (left): The spatial dis-
cretization error estimate for each cycle and circles indicates
that the mesh is refined in next cycle. (right): The temporal
discretization error estimate and squares indicate the refine-
ment. The black dashed line indicates the splitting error
estimate.
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7 Numerical Results

Figure 7.2. Show the adaptive algorithm mesh refinement for the func-
tional the norm value at the end-time JT . Same as in Fig-
ure 7.1 for indicators.
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7.2
C
om

parison
w
ith

D
ifferent

G
oalFunctionals

Adaptive refinement in space and in time, JT , α2 = 0.1 and α3 = 0.1
nuh nvh nuk nvk ηuh ηvh ηu+v

h ηuk ηvk ηu+v
k ηG.Qpert ηtrapzpert J(e) Ieff

8 8 16 16 2.30e-03 -1.40e-03 9.04e-04 -5.58e-03 1.25e-02 6.92e-03 1.67e-02 1.99e-10 1.62e-01 0.152
8 8 32 32 2.22e-03 -8.86e-04 1.33e-03 -3.36e-03 3.17e-03 -1.93e-04 4.13e-03 -2.63e-09 5.80e-02 0.091
16 16 32 32 5.23e-04 -2.11e-04 3.12e-04 -3.31e-03 7.81e-04 -2.53e-03 4.14e-03 -2.58e-09 1.91e-02 0.101
16 16 64 64 5.08e-04 -1.68e-04 3.41e-04 -1.81e-03 7.92e-04 -1.02e-03 1.03e-03 7.90e-11 1.46e-02 0.024
32 32 128 64 1.23e-04 -3.63e-05 8.67e-05 -9.42e-04 1.72e-04 -7.71e-04 2.53e-04 -1.13e-09 3.17e-03 0.136
32 32 256 128 1.22e-04 -3.33e-05 8.87e-05 -4.81e-04 1.92e-04 -2.89e-04 6.28e-05 -5.63e-08 3.26e-03 0.042
64 64 512 256 3.02e-05 -7.91e-06 2.23e-05 -2.42e-04 4.80e-05 -1.94e-04 1.57e-05 -6.72e-09 8.15e-04 0.192
64 64 1024 512 3.02e-05 -7.71e-06 2.25e-05 -1.22e-04 1.20e-05 -1.10e-04 3.92e-06 3.40e-09 4.66e-04 0.179
64 64 2048 1024 3.01e-05 -7.61e-06 2.25e-05 -6.10e-05 3.00e-06 -5.80e-05 9.96e-07 1.66e-08 3.78e-04 0.091

Table 7.7. Adaptive refinement on spatial and temporal discretizations
for JT and the tolerance TOL = 10−5 with α2 = 0.1 and
α3 = 0.1

67



7 Numerical Results

Figure 7.3. Show the adaptive algorithm mesh refinement for the func-
tional the norm value at the end-time JT with the coefficients
α2 = 0.1 and α3 = 0.1. Same as in Figure 7.2 for indicators.
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8 Conclusion and Outlook

This thesis is devoted to the development of an efficient numerical adaptive mesh
refinement algorithm for solving the coupled parabolic/elliptic system. This algorithm
uses finite element discretizations in time and space. Based on the discretizations,
we derived a posteriori error estimates by means of the Dual Weighted Residual
method. These estimates determine the discretization errors measured in some
quantity of interest. First, we separated the discretization errors in time and space.
This separation enables the independent refinement of each discretization. We then
used this information for the proposed algorithm to refine the temporal and spatial
discretizations on each cycle until their errors reach the desired accuracy. This
independent refinement is realized in such a way that the error contributions of the
temporal and spatial discretizations are balanced. On each cycle, the accuracy of
the estimates are validated by the effective index.

By the operator splitting method called the iterative (sequential) method, the fully-
discretized (in time and space) system is decoupled into two sub-parts: parabolic
and elliptic problems. This decoupled sequential approach gives us the freedom
to use the standard solvers and may save some computational cost. We chose
to solve two problems by the multirate iterative solving method, i.e., solve two
equations in different time scales. Due to the coupling terms, in addition to balancing
the error contributions between the temporal and spatial discretizations, we also
balanced the discretization error contributions from the two sub-parts. Thus, an a
posteriori perturbation error estimate was derived, which was further separated into
the splitting error and the quadrature error caused by using an inexact numerical
integration method.
The perturbation error estimate was also controlled within the developed adaptive
algorithm and was balanced with the discretization error estimates. The perturbation
error estimate was used to find the optimal ratio between discretizations of the two
sub-parts for the least computational cost, while maintaining the convergence of the
iterations within the developed algorithm.

Finally, the developed numerical adaptive algorithm was applied for the simulation
of a simplified 1D cathode model. In our simulation, the parabolic part of the system
represents the concentration distribution of ions, and the elliptic part represents the
electrical potential within the cathode. We observed the savings in the computational
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8 Conclusion and Outlook

time: we found the least required degrees of freedom for both equations to obtain
the desired accuracy.
This least degrees of freedom for each equation are further enhanced by the multirate
method. For the electric potential equation living in the faster time scale than the
diffusion equation, we observe as we expected that the number of the degrees of
freedom for the elliptic equation was smaller than those in the parabolic equation to
reach the same order of accuracy. This significantly saves the total computational
cost since the elliptic equation is more expensive to solve due to its greater condition
number, as explained in Section 5.1. This combination of the least degrees of freedoms
is optimal in that it maintains the convergence of the coupling iteration with the
least computational cost for solving the system while achieving the accuracy we
wanted.

Possible Future Work

Currently, we are working on proving the contraction for the fixed-point iteration of
the developed algorithm. Also, most importantly, this work should be extended in
2D or 3D to simulate the physical model realistically. In higher dimensional spaces,
the computational cost saved by using the developed mesh refinement algorithm is
greater than in 1D. Moreover, instead of the constant coefficients, they can depend on
the solutions. The Robin boundary condition from the original model can be used for
a 2D or 3D model to consider the Triple Phase Boundary, where the electrochemical
conversion occurs, or at the boundary where the chemical reaction with oxygen
occurs. Then, instead of uniform mesh refinement, an effective choice will be the
local spatial mesh refinement via use of the cell-wise error indicators derived in
Section 6.3. Lastly, the development of the algorithm can be applied to any coupled
model. Particularly, the model can be modified for batteries that are similar to fuel
cell models.
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Nomenclature

λD Debye length

Deon Diffusivity of electrons

Dion Diffusivity of vacancies

H1
0 Sobolev space of order 2 with homogeneous Dirichlet boundary condition

I Open time interval (0, T )

Im Subinterval of time

Ieff Effectivity index describing the quantitative behavior of the error esti-
mators

J(e) True error: J(e) := J(wex − wh)

J
′ Quantity of interest (a linear and continuous functional)

L2(Ω) Lebesgue space of measurable, square integrable functions

T End time

T Temperature in Chapter 2

Th Family of quasi-uniform meshes

Vth Thermal voltage

Xr
k Semi-discrete space contains the continuous piecewise polynomials degree

up to r

Xr,s
kh Space-time finite element space contains the continuous piecewise poly-

nomials degree up to r

[·] Jump over boundary ∂K
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NOMENCLATURE

∆
∂2

∂x2
1

+ ∂2

∂x2
2
Laplacian

∆x̃
∂2

∂x̃2
1

+ ∂2

∂x̃2
2
Dimensionless Laplacian

Γj Boundaries of an element in mesh

Ω Bounded computational domain

αi Positive constant coefficients

Ī Closed time interval [0, T ]

φ̄ion Equilibrium value of electric potential

c̄ion Equilibrium value of vacancy concentration

δφion Perturbed value of electric potential

δcion Perturbed value of vacancy concentration

ε0 Local permittivity of the medium

ηuh Spatial error estimate of u

ηvh Spatial error estimate of v

ηwh Spatial discretization error indicator for w

ηu+v
h Sum of spatial error estimates of u and v

ηuk Temporal error estimate of u

ηvk Temporal error estimate of v

ηwk Temporal discretization error indicator for w

ηu+v
k Sum of temporal error estimates of u and v

η|K Local discretization error indicator for a sampling cell K ∈ Th

ηG.Qiter Sum of perturbation error estimates of u and v calculated by Gaussian
Quadrature
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NOMENCLATURE

ηtrapziter Sum of ieration error estimates of u and v calculated by Trapezolidal
Rule

K Stiffness matrix K

M Mass matrix M

L Lagrangian function

∇ ( ∂

∂x1
,
∂

∂x2
) Gradient

∇x̃ ( ∂

∂x̃1
,
∂

∂x̃2
) Dimensionless gradient

φ Electric potential

τ Characteristic timescale of diffusion

τeon Characteristic timescale of electronic diffusion

τion Characteristic timescale of vacancy diffusion

Jcharge Charge flux

Jmass Mass flux

µ̃ Electrochemical potential

µ̃∗i Normalized electrochemical potential

φ̃ Dimensionless electric potential

X̃r
k Semi-discrete space contains the discontinuous piecewise polynomials

degree up to r

X̃r,s
kh Space-time finite element space contains the discontinuous piecewise

polynomials degree up to r

a(·, ·) Bilinear form a : sX → IR

ci Carrier concentration

c0
i Reference value for carrier concentration
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NOMENCLATURE

e Elementary charge of an electron

eon Electron

f External force on u

g External force on v

hs Area of an element in mesh

i Charged species: electron or vacancy

ion Oxygen vacancy

kB Boltzmann constant

km Time step length between tm−1 and tm

lc Characteristic length scale of the sample

m time step index

nuh Number of cells in space mesh of u

nvh Number of cells in space mesh of v

nuk Number of cells in time mesh of u

nvk Number of cells in time mesh of v

t Time

u Oxygen ion concentration

v Chemical potential

wm Value at the time step tm

wk Solution of the semi-discretized problem

wkh Solution of the fully discretized problem

wo Initial value

xi (x1, x2) space coordinate
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NOMENCLATURE

zi Integer charge of species i

DWR Dual weighted residual

cG(r) Time finite element discretization with continuous piecewise polynomials
of degree s

cG(s) Space finite element discretization with continuous piecewise polynomials
of degree s

dG(r) Time finite element discretization with discontinuous piecewise polyno-
mials of degree s

id Identity matrix
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