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KRÜMMUNGSFLUSS IN ARW-RÄUMEN
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THE INVERSE SCALAR CURVATURE FLOW IN ARW

SPACES

Abstract. We consider the inverse scalar curvature flow (ISCF)

(0.1) ẋ = −F−1ν

in spacetimes N with a special future singularity and some additional
structural conditions. We prove the existence of the ISCF for all times,

and prove convergence results for the leaves of the flow. Finally, we

show that the properly rescaled flow in N has a natural smooth exten-

sion across the singularity into a mirrored spacetime N̂ . With respect

to that diffeomorphism we speak of a transition from big crunch to big
bang.

ZUSAMMENFASSUNG. Wir betrachten den inversen skalaren Krümmungs-

fluss (ISCF)

(0.2) ẋ = −F−1ν

in einer Raumzeit N , welche eine spezielle Zukunftssingularität be-

sitzt und einige weitere Struktureigenschaften erfüllt. Wir zeigen die
Existenz des ISCFs für alle Zeiten und beweisen Konvergenzresultate

für die Blätter des Flusses. Nach geeigneter Reskalierung besitzt der

Fluss in N eine natürliche Fortsetzung über die Singularität hinweg

in eine gespiegelte Raumzeit N̂ . Bezüglich dieses Diffeomorphismusses

sprechen wir von einem Übergang von Big Crunch nach Big Bang.
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12. Convergence of ũ and the behaviour of derivatives in t 38
13. Transition from big crunch to big bang 38
References 40

1



2

0. Introduction

We start this section with a short introduction into globally hyperbolic space-
times. The following definition, assumption, and facts stated in the remarks
below can be found in [11, Chapter 7.1].

0.1. Definition. A globally hyerbolic spacetime N , dimN = n+1, is said
to be a asymptotically Robertson-Walker (ARW) with respect to the future,
if a future end of N , N+ can be written as a product N+ = I × S0, where
I = [a, b), S0 is a Riemannian space, and there exists a future directed time
function τ = x0 such that the metric in N+ can be written as

(0.1) ds̆2 = e2ψ̃{−(dx0)2 + σij(x0, x)dxidxj},

where S0 corresponds to x0 = a, ψ̃ is of the form

(0.2) ψ̃(x0, x) = f(x0) + ψ(x0, x),

and we assume that there exists a positive constant c0 and a smooth Rie-
mannian metric σ̄ij on S0 such that

lim
τ→b

eψ = c0(0.3)

lim
τ→b

σij(τ, x) = σ̄ij(x)(0.4)

lim
τ→b

f(τ) = −∞.(0.5)

0.2. Remark.

(i) W.l.o.g. we will assume that c0 = 1.

(ii) The first two limits have to be understood to be uniformly in all
derivatives of arbitrary order with respect to space and time.

(iii) As a consequence of (ii) N is close to the Robertson-Walker metric

(0.6) ds̃2 = e2f{−(dx0)2 + σ̄ij(x0, x)dxidxj},
which means that all derivatives of arbitrary order with respect to
space and time of the conformal metric e−2f ğαβ converges uniformly
to the corresponding derivatives of the limit metric

(0.7) dŝ2 = −(dx0)2 + σ̄ij(x)dxidxj .

(iv) In our setting Robertson-Walker-metric does not mean necessarily
that the spacelike metric (σ̄ij) is a metric of constant curvature.

Proving our main result, we have to have to impose some additional structural
conditions on f .
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0.3. Assumption.

(i)

(0.8) − f
′
> 0.

(ii) There exists ω ∈ R, n+ w − 2 > 0 such that

(0.9) lim
τ→b
|f
′
|2e(n+w−2)f = m > 0.

(iii) If we set γ̃ = 1
2 (n+ w − 2), then there exists the limit

(0.10) lim
τ→b

(f
′′

+ γ̃|f
′
|2).

(iv)

(0.11) |Dm
τ (f

′′
+ γ̃|f

′
|2)| ≤ cm|f

′
|m ∀m ≥ 1

(v)

(0.12) |Dm
τ f | ≤ cm|f

′
|m ∀m ≥ 1

(vi) Proving the C3-regularity result of the transition flow, cf. Theo-
rem 13.1, we have further to impose that the following limit exists

(0.13) lim
τ→0

(f
′′

+ γ̃|f
′
|2)
′
τ.

0.4. Remark.

(i) From Corollary 1.4 we infer that the range of τ is finite, so that we
will assume w.l.o.g. that I = [a, 0).

(ii) If S0 is compact, then we call N a normalized ARW spacetime, if

(0.14)

∫
S0

√
det σ̄ij = |Sn|.

(iii) In the following, S0 is assumed to be compact. W.l.o.g. we will
assume that N is a normalized ARW spacetime.

We consider the scalar curvature function F = σ2 and assume M0 ⊂ N+ to
be a spacelike F -admissable hypersurface. W.l.o.g. we assume in this paper
that F is normalized such that F (1, . . . , 1) = n. Then, we look at the inverse
scalar curvature flow (ISCF) given by the evolution problem

(0.15)
ẋ = − 1

F
ν,

x(0) = x0,

where x0 is the embedding of an initial hypersurface M0 and ν denotes the
past directed normal. Then, we can express the flow hypersurfaces M(t) as
graphs over S0

(0.16) M(t) = graphu(t, ·)
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and the main result can be formulated as:

0.5. Theorem. Let N and F satisfy the above assumptions and let M0 ⊂
N+ be a smooth, closed, spacelike and F -admissable hypersurface, where we
assume that

(0.17) N+ = [−ε, 0)× S0,

with

(0.18) ε = ε((N, ğαβ), sup
M0

ṽ) > 0

small. Then, there holds:

(i) The inverse scalar curvature flow with initial hypersurface M0 exists
for all times.

(ii) Set ũ = ueγt, where γ = 1
n γ̃, then there exist positive constants c1, c2

such that

(0.19) − c1 ≤ ũ ≤ −c2 < 0,

and ũ converges in C∞(S0) to a smooth function, if t goes to infinity.
(iii) Let (gij) the induced metric of the leaves M(t), then the rescaled

metric

(0.20) e
2
n tgij

converges in C∞(S0) to

(0.21) (γ̃m)
1
γ̃ (−ũ)

2
γ̃ σ̄ij .

(iv) The leaves M(t) get more umbilical, if t tends to infinity. Namely,
there holds

(0.22) F−1|hji −
1

n
Hδji | ≤ ce

−2γt.

In case n+ ω − 4 > 0, we got even a better estimate

(0.23) |hji −
1

n
Hδji | ≤ ce

− 1
2n (n+ω−4)t.

In [9] resp. [19] the theorem was proved for F = H resp. F to be a curvature
function of class (K∗). In this paper we go along the lines of both papers as
far as possible, with the exception of Section 5 and Section 6, where we use
[4].
F = σ2 is not of class (K∗) but satisfies at least the so-called (K∗)-condition,
cf. (2.20), so that almost all proofs in [19] hold in our setting either. Using
the special structure of Fi , cf. (2.18), some proofs are even easier. Since
the flow hypersurfaces of the (ISCF) are not convex, we have to impose that
ε in (0.18) depends from supM0

ṽ, to ensure that the Riemannian curvature
tensor fulfills the important condition (7.40).
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1. Notation, definitions and preliminary results

In this section we want to introduce some general notation and basic facts
concerning with spacelike hypersurfaces in Lorentzian manifolds. We follow
the notation introduced in [8]. Confer further [10, Section 12] for a more
detailed treatment.

Let N = Nn+1 be a Lorentzian space and M = Mn be an embedded spacelike
hypersurface

(1.1) x : M ↪→ N

with differentiable timelike normal ν.

Geometric quantities in M will be denoted by using greek indices which range
from 0 to n, i.e. we will write (gij) resp. (Rijkl) for the metric resp. the Rie-
mannian curvature tensor of M . Geometric quantities in N will be denoted
by using latin indices which range from 0 to n + 1. If there is any ambigu-
ity between quantities of M and N possible, we will use an overbar for the
corresponding quantities of N , i.e. we have (να) for the normal of M , and
(ḡαβ) resp. (R̄αβγδ) for the metric resp. Riemannian curvature tensor of N . If
nothing else is stated, the summation convention is used. Local coordinates
in M resp. N will be denoted by (ξi) resp. (xα).

Partial differentiation will be marked by a comma, while covariant differen-
tiation will be marked by a semicolon. In the later case we will commonly
leave the semicolon out if no misunderstandings are possible. Thus, to give
examples, let f : N → R be a function, then we would usually write (fα) for
the gradient and (fαβ) for the Hessian of f , but for the covariant derivatives
of the Ricci tensor (Rαβ) we would write Rαβ;γ , Rαβ;γδ, etc. We further
introduce the indication Rαβ;i = Rαβ;γx

γ
i with analogue generalizations to

other quantities of N .

Now, we state four fundamental equations which describe the geometry of an
embedded hypersurface. In local coordinates we have the Gauß formula

(1.2) xαij = hijν
α,

the Weingarten equation

(1.3) ναi = hki x
α
k ,

the Codazzi equation

(1.4) hij;k − hik;j = R̄αβγδν
αxβi x

γ
j x

δ
k,

and finally the the Gauß equation

(1.5) Rijkl = −{hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l .

The Gauß formula can be understood as an implicit definition of the second
fundamental form (hij) of a hypersurface, where the sign of (hij) depends
from the direction of the normal ν. In this paper we will always choose the
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past directed normal. We emphasize that xαij , ν
α
i , etc. are full tensors, i.e.

we have

(1.6) xαij = xα,ij − Γ kijxαk + Γ̄αβγx
β
i x

γ
j ,

where Γ kij resp. Γ̄αβγ represent the Christoffel symbols of M resp. N .

In our setting N is a topological product R × S0, where S0 is a compact
Riemannian space, and there exists a Gaussian coordinate system

(1.7) ds2 = e2ψ̃{−(dx0)2 + σij(x
0, x)dxidxj},

see [1, Lemma 2.2], and [2, Theorem 1.1] for a proof. Here, σij is a Riemann-

ian metric, ψ̃ a function on N , the (xi) are local coordinates for S0, and x0 is
the future oriented time coordinate, which means that x0 increases on future
directed curves.

Next, we will cite a result which shows that in our situation spacelike hy-
persurfaces M can be written as a graph over S0, cf. [18, Lemma 3.1] for a
proof.

1.1. Proposition. Let N be globally hyperbolic, S0 ⊂ N a compact, con-
nected Cauchy hypersurface, and M ⊂ N a compact, connected spacelike
hypersurface of class Cm,m ≥ 1. Then, M = graphu|S0 with u ∈ Cm(S0).

Thus, let M = graphu|S0 be a spacelike hypersurface.

(1.8) M = { (x0, x) : x0 = u(x), x ∈ S0 },
then the induced metric (gij) is given by

(1.9) gij = e2ψ̃{−uiuj + σij},
while its inverse (gij) = (gij)

−1 has the form

(1.10) gij = e−2ψ̃{σij +
ui

v

uj

v
},

where we used the following notation

(1.11)

(σij) = (σij)
−1

ui = σijuj

v2 = 1− σijuiuj = 1− |Du|2.

We emphasize that a hypersurface M is spacelike iff v2 > 0.

The covariant resp. contravariant versions of the past directed normal vector
of a graph have the form

(1.12) (να) = ṽeψ̃(1,−ui),
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resp.

(1.13) (να) = −ṽe−ψ̃(1, ui),

where we used the notation ṽ = v−1.

Thus, considering the component α = 0 in the Gauß formula we obtain

(1.14) e−ψ̃ ṽhij = −u;ij − Γ̄ 0
00uiuj − Γ̄ 0

0jui − Γ̄ 0
0iuj − Γ̄ 0

ij ,

where all derivatives are taken with respect to gij . For the second fundamen-
tal form h̄ij of the slices {x0 = const.} we obtain

(1.15)
−Γ̄ 0

ij =e−ψ̃h̄ij ,

=− 1
2 σ̇ij −

˙̃
ψσij ,

Here, differentiation with respect to the time coordinate x0 is marked with a
dot.

For later purpose we define a Riemannian reference metric
+
gαβ , which is for

a given Lorentzian metric gαβ , cf. (1.7), defined by

(1.16)
+
gαβ dx

αdxβ = e2ψ̃{dx02
+ σijdx

idxj}.
For the corresponding norm of a vectorfield η we will write

(1.17) |||η||| = (
+
gαβ η

αηβ)1/2,

and the corresponding induced metric will be denoted by
+
g ij .

An easy calculation leads to the following result, which will be used later, cf.
[8, Lemma 2.7] for a proof.

1.2. Lemma. Let M = graphu be a spacelike hypersurface in N , p ∈M ,
and ξ ∈ Tp(M) a unit vector, then

(1.18) |||xβi ξ
i||| ≤ c(1 + |uiξi|) ≤ cṽ.

Finally, we draw a few immediate conclusions from our assumptions on f .
The proofs can be found in [11, Section 7.3].

1.3. Lemma. Let f ∈ C2([a, b)) satisfies the conditions

(1.19) lim
τ→b

f(τ) = −∞

and

(1.20) lim
τ→b
|f
′
|2e2γ̃f = m,

where γ̃ and m are positive, then b is finite.



8

1.4. Corollary. We may and shall therefore assume that b = 0, i.e., the
time interval I is given by I = [a, 0).

1.5. Remark. A simple application of L’Hospital’s rule yields

(1.21) lim
τ→0

eγ̃ϕ

τ
= −γ̃

√
m.

1.6. Lemma. There holds

(1.22) f
′
eγ̃ϕ +

√
m ∼ cτ2,

where c is a constant and where the relation

(1.23) ϕ ∼ cτ2

means

(1.24) lim
τ→0

ϕ(t)

τ2
= c.

1.7. Lemma. The asymptotic relation

(1.25) γ̃f
′
τ − 1 ∼ cτ2

is valid.

2. Curvature functions

In this section we firstly give a short introduction to general curvature func-
tions. We follow the description in [8]. A more detailed treatment can be
found in [11, Section 2.1]. Let Γ ∈ Rn be an open, convex and symmetric
cone which contains the positive cone Γ+ = {(κi) : κi > 0} and f ∈ C2,α(Γ )
a positive, symmetric and strictly monotone function.
Let SΓ be the space of symmetric matrices the eigenvalues of which belong
to Γ . Then, we define define a function F on SΓ by setting

(2.1) F (hij) := f(κ),

where the κi, 1 ≤ i ≤ n, are the eigenvalues of (hij) ∈ Γ+. F is well defined
and evidently continuous and even of class Cm,α if f has this property, cf.
[11, 2.1.10 Theorem].

In our setting F resp. f will be evaluated at the mixed tensor hij = gikhkj
resp. the principal curvatures (κi) of a spacelike hypersurface M . This
approach presumes that M is admissible, i.e. the eigenvalues of hij belong in
every point x ∈M to the cone Γ .
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It is also possible to consider F depending on the covariant tensors (hij) and
(gij)

(2.2) F (hij) = F (hij , gij).

In the rest of the paper we will write always write F independently of the
considered argument, but we use different notations for the derivatives of F
We define

(2.3) F ij :=
∂F

∂hij
,

(2.4) F ji :=
∂F

∂hij
,

and

(2.5) Fi :=
∂f

∂κi
.

Then, F ij ia a contravariant tensor of order two, while F ji is a mixed tensor.
Choosing a special coordinate system such that hij is diagonal, then, F ij is
diagonal either and we have

(2.6) F ii =
∂f

∂κi
.

cf. [11, 2.1.9 Lemma]. Differentiating F covariantly will be marked with a
comma

(2.7) F,k := Fijh
ij

;k.

For the second derivative of F we write

(2.8) F ij,kl :=
∂ 2F

∂hij ∂hkl
,

and there holds

(2.9) F ij,klηijηkl =
∑
i,j

∂ 2F

∂ki ∂kj
ηiiηjj +

∑
i6=j

Fi − Fj
κi − κj

(ηij)
2 ≤ 0 ∀η ∈ S,

where S is the space of all symmetric matrices. If F = F (κi) is concave, the
second summand is non-positive and hence F = F (hij) is concave either, cf.
[11, 2.1.23 Proposition].

We state now a well-known and very useful property of general curvature
functions, cf. [11, 2.2.19 Lemma].

2.1. Lemma. Let F ∈ C2(Γ ) ∩ C0(Γ̄ ) be a strictly monotone, concave
curvature function, positively homogeneous of degree 1, then

(2.10)
n∑
i=1

Fi(κ) ≥ F (1, . . . , 1),

where the convex cone Γ is supposed to contain Γ+.
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Now, we turn to more special curvature functions and define as very impor-
tant examples the elementary symmetric polynomials.

2.2. Definition. For 1 ≤ k ≤ n define

(2.11) Hk(κi) :=
∑

i1<···<ik

κi1 . . . κik .

Hk is said to be the elementary symmetric polynomial of order k. The Hk

are defined in Rn, however, they are in general not strictly monotone in all
of Rn. Therefore, we define

2.3. Definition. For fixed 1 ≤ k ≤ n let Γk be the connected component
of

(2.12) {(κi) ∈ Rn : Hk(κi) > 0}

containing the positive cone.

2.4. Lemma. The Γk are convex cones and an equivalent characterization
of the Γk is given by

(2.13) Γk = {(κi) ∈ Rn : H1(κi) > 0, H2(κi) > 0, . . . ,Hk(κi) > 0}.

Proof. A proof can be found in [16, Section 2]. �

2.5. Lemma. The Hk are strictly monotone in Γk and the k-th roots

(2.14) σk = H
1
k

k

are also concave.

Proof. Confer [16, Lemma 2.4] for the monotony and [20] for the concavity.
�

In this paper we consider the scalar curvature function F = σ2. As shown
above, F = σ2, defined in Γ2 , is strictly monotone, concave and positively
homogeneous of degree one. We list now some more properties of Γ2 and
F = σ2. We emphasize that σ2 is not normalized in the following lemma in
opposite to the assumptions in this paper.
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2.6. Lemma. For (κi) ∈ Γ2 and F = σ2 there holds

(2.15) H > 0,

(2.16) |A|2 ≤ H2,

(2.17) F ≤ 1√
2
H,

(2.18) Fi =
1

F
(H − κi) > 0,

(2.19) Fi ≥
F

H
,

and,

(2.20)
n∑
i=1

Fiκ
2
i ≥

1

n
FH.

Proof. We start with

(2.21) Hκi ≤
1

2
H2 +

1

2
|A|2,

which is obviously valid and equivalent to (2.19). The proof of (2.20) uses
(2.19) and

(2.22)
1

n
H2 ≤ |A|2.

�

3. The evolution problem

We consider the inverse scalar curvature flow

(3.1)
ẋ = − 1

F
ν,

x(0) = x0,

where F = σ2, ν is the past directed normal, x(t) is an embedding and x0 is
an embedding of an admissible initial hypersurface M0.
This is a parabolic problem, so that short time existence, and hence existence
on a maximal time interval [0, T ∗), 0 < T ∗ ≤ ∞, is guaranteed.
In the following three chapters we will prove uniform a priori estimates in
C2, so that uniform estimates in C2,α and therefore long-time existence will
follow automatically.
Before we can prove the a priori estimates, we need the evolution equations
for some important geometric quantities. The proofs can be found in [11,
Section 2.3, Section 2.4].
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3.1. Lemma. The metric, the normal vector and the second fundamental
form of M(t) satisfy the evolution equations

ġij = − 2

F
hij ,(3.2)

ν̇ = gij
1

F 2
Fixj ,(3.3)

ḣji = (− 1

F
)ji +

1

F
hki h

j
k +

1

F
R̄αβγδν

αxβi ν
γxδkg

kj ,(3.4)

ḣij = (− 1

F
)ij −

1

F
hki hkj +

1

F
R̄αβγδν

αxβi ν
γxδj .(3.5)

3.2. Lemma. The Term 1
F satisfies the equation

(3.6)

(
1

F

)′
− 1

F 2
F ij

(
1

F

)
ij

= − 1

F 3
F ijhikh

k
j −

1

F 3
F ijR̄αβγδν

αxβi ν
γxδj .

3.3. Lemma. The Term ṽ satisfies the evolution equation

(3.7)

˙̃v − 1

F 2
F ij ṽij =− 1

F 2
F ijhikh

k
j ṽ −

2

F
ηαβν

ανβ

− 2

F 2
F ijhkjx

α
i x

β
kηαβ −

1

F 2
F ijηαβγx

β
i x

γ
j ν

α

− 1

F 2
F ijR̄αβγδν

αxβi x
γ
kx

δ
jηεx

ε
lg
kl,

where η is the covariant vector field (ηα) = eψ̃(−1, 0, . . . , 0).

3.4. Lemma. The mixed tensor hji satisfies the parabolic equation
(3.8)

ḣji−
1

F 2
F klhji;kl

= − 1

F 2
F klhrkh

r
l h
j
i +

2

F
hki h

j
k +

1

F 2
F kl,rshkl;ih

j
rs;

+
2

F 2
F klR̄αβγδx

α
mx

β
i x

γ
kx

δ
rh
m
l g

rj +
1

F 2
F kl,rshkl;ihrs;

j

− 1

F 2
F klR̄αβγδx

α
mx

β
kx

γ
rx

δ
l h
m
i g

rj − 1

F 2
F klR̄αβγδx

α
mx

β
kx

γ
i x

δ
l h
mj

− 1

F 2
F klR̄αβγδν

αxβkν
γxδl h

j
i +

2

F
R̄αβγδν

αxβi ν
γxδmg

mj − 2

F 3
FiF

j

− 1

F 2
F klR̄αβγδ;ε{ναxβkx

γ
l x

δ
ix
ε
mg

mj + ναxβi x
γ
kx

δ
mx

ε
lg
mj}.
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3.5. Lemma. Let M(t) = graphu(t) be the flow hypersurfaces, then we
have
(3.9)

u̇− 1

F 2
F ijuij =

2

F
e−ψ̃ ṽ +

1

F 2
Γ̄ 0

00 F
ijuiuj +

2

F 2
F ijΓ̄ 0

0i uj +
1

F 2
F ijΓ̄ 0

ij .

4. C0-estimates

In this chapter we show on the one hand that the flow stays in a precompact
region of N for finite time, but on the other hand that the flow leaves any
precompact region of N if the flow exists for all time. The following results
are from [19], where ideas from [11, Section 6] were used.

4.1. Lemma. Let Mτ = {x0 = τ} denote the coordinate slices. Then,
there exists τ0 such that Mτ is convex for all τ ≥ τ0.

Proof. The second fundamental form h̄ij of the Mτ is given by

(4.1) h̄ij = −e−ψ̃( 1
2σ

ikσ̇kj +
˙̃
ψδij),

cf. (1.15).
From the properties (0.3), (0.4), (0.5), and the uniform convergence of the
metric, cf. (0.6) et seq., we deduce that

(4.2) lim
τ→0
−e−ψ̃ = −∞ ∧ lim

τ→0

1

2
σikσ̇kj = 0 ∧ lim

τ→0

˙̃
ψδij = −∞,

where we also used for the last convergence that f
′ −→ −∞ for t −→ 0, in

view of (0.8) and (0.9). Using these relations we get the claim.

�

In order to prove the main result of this chapter we have to show the existence
of a special time function.

4.2. Lemma. There exists a time function x̃0 = x̃0(x0) and τ1 such that
for all τ ≥ τ1 holds

(4.3) e
˜̃
ψF |Mτ ≥ 1,

where e
˜̃
ψ is the conformal factor of the metric in N with respect to coordinates

(x̃0, xi), i.e.

(4.4) ds̆ = e2
˜̃
ψ{−(dx̃0)2 + σ̃ij(x̃

0, x)dxidxj}.
The time function x̃0 is strictly increasing, and we have

(4.5) x̃0({τ1 ≤ x0 < 0}) = [0,∞).
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Proof. Using the arguments of the previous lemma we conclude that there
exists τ1 such that

(4.6) eψ̃F |Mτ = F (eψ̃h̄ij) = F (−1

2
σikσ̇kj − ˙̃

ψδij) ≥ −δ0f
′
∀τ ≥ τ1,

where δ0 > 0 is a constant. With these relations, we infer that there exists
τ1 such that Mτ is convex for all τ ≥ τ1. Choosing τ1 if necessary large, we
conclude

(4.7) eψ̃F|Mτ = eψ̃F (h̄ij) = F (−1

2
σikσ̇kj − ˙̃

ψδij) ≥ −δ0f
′
∀τ ≥ τ1,

where δ0 > 0 is a constant. Now we define a function ϕ and a new time
function x̃0 by

(4.8) ϕ(τ) := −δ0f
′
> 0,

and

(4.9) x̃0(τ) :=

∫ τ

τ0

ϕ(s)ds.

Using (0.5) we receive

(4.10) x̃0(τ) = −δ0(f(τ)− f(τ0)) −→ ∞, τ −→ 0.

The relation of the conformal factors is given by

(4.11) e2
˜̃
ψ = e2ψ̃ ∂x

0

∂x̃0

∂x0

∂x̃0
= e2ψ̃ϕ−2.

Thus, we get

(4.12) e
˜̃
ψF|Mτ = eψ̃F|Mτ ϕ

−1 ≥ 1,

due to (4.8). �

4.3. Lemma.

(i) For any finite 0 < T ≤ T ∗ the flow stays in a precompact set ΩT for
0 ≤ t < T .

(ii) The flow runs into the future singularity if it exists for all time, i.e.
with the respect to the above chosen coordinates (x̃0, xi) we have

(4.13) lim
t→∞

inf
S0

u(t, ·) =∞.

Proof. We choose coordinates (x̃0, xi), where (x̃0) is the time function the
existence of which was shown in the previous lemma. Now, let M(t) =
graphu(t, ·) be the flow hypersurfaces and define

(4.14) ϕ(t) = sup
S0

u(t, ·).
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It is a well-known fact that ϕ(t) is Lipschitz continuous and for a.e. 0 ≤ t < T
differentiable by Rademacher’s theorem, cf. [11, 6.3.2 Lemma],

(4.15) ϕ̇(t) =
∂

∂t
u(t, xt),

where xt is the point where the supremum is attained, i.e.

(4.16) sup
S0

u(t, ·) = u(t, xt).

Applying the maximum principle we deduce that in xt holds

(4.17) h̄ij ≤ hij ,

and thus we have in view of the monotony of F in xt

(4.18) F|Mτ ≤ F|M .

Now, we look at the component α = 0 of the flow equation, cf. (3.1),

(4.19) u̇ =
ṽ

eψ̃F|M
,

here, u̇ is a a total derivative, i.e.

(4.20) u̇ =
∂u

∂t
+ uiẋ

i,

and we get for the partial derivative the relation

(4.21)
∂u

∂t
=

v

eψ̃F|M

Inserting (4.12) and (4.18) we get in xt

(4.22)
∂u

∂t
≤ 1,

and using (4.15) we deduce further

(4.23) ϕ ≤ ϕ(0) + t ∀0 ≤ t ≤ T ∗,

and hence the claim of (i). The claim of (ii) can be proven similarly by
defining ϕ by

(4.24) ϕ(t) = inf
S0

u(t, ·).

�
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5. C1-estimates

In this chapter we want to prove the C1-estimates for the (ISCF). With the
exception of some smaller modifications we are able to apply the arguments
of the corresponding result for the (SCF) in [4]. But, we want to emphasize
that the main achievement for the C1-estimates was done by Gerhardt in [8,
Proposition 4.8]. For the convenience of the reader we will present the modi-
fied proof of [8, Proposition 4.8] without mentioning modifications explicitly.
We start with four lemmas, cf. [8, Section 4] for a proof.

5.1. Lemma. The composite function

(5.1) ϕ = eµe
λu

,

where µ, λ are constants, satisfies the equation

(5.2)

ϕ̇− 1

F 2
F ijϕij =

2

F
e−ψ̃ ṽµλeλu ϕ+

1

F 2
F ijuiuj Γ̄

0
00 µλ e

λuϕ

+ 2
1

F 2
F ijuiΓ̄

0
0j µλe

λu ϕ+
1

F 2
F ijΓ̄ 0

ij µλe
λu ϕ

− [1 + µeλu]
1

F 2
F ijuiuj µλ

2 eλu ϕ.

5.2. Lemma. Let Ω ⊂ N be precompact. As long as the flow stays in Ω
there exists a constant c = c(Ω) such that for any positive function 0 < ε =
ε(x) on S0 and any hypersurface M(t) of the flow we have

|||ν||| ≤ cṽ,(5.3)

gij ≤ cṽ2σij ,(5.4)

F ij ≤ F klgklgij ,(5.5)

(5.6) |F ijhkjxαi x
β
k ηαβ | ≤

ε

2
F ijhki hkj ṽ +

c

2ε
F ijgij ṽ

3,

(5.7) |F ijηαβγxβi x
γ
j ν

α| ≤ cṽ3F ijgij ,

(5.8) |F ijR̄αβγδναxβi x
γ
kx

δ
jηεx

ε
lg
kl| ≤ cṽ3F ijgij .
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5.3. Lemma. Let Ω ⊂ N be precompact and M ⊂ Ω be a graph over S0,
M = graphu and ε = ε(x) a function defined on S0, 0 < ε < 1

2 . Let ϕ be
defined through

(5.9) ϕ = eµe
λu

,

where 0 < µ and λ < 0. Then there exists c = c(Ω) such that

(5.10)

2|F ij ṽiϕj | ≤ cF ijgij ṽ3|λ|µeλuϕ+ (1− 2ε)F ijhki hkj ṽϕ

+
1

1− 2ε
F ijuiujµ

2λ2e2λuṽϕ.

5.4. Lemma. Let Ω ⊂ N be precompact. As long as the flow stays in Ω
there exists a constant c = c(Ω) such that for any positive function 0 < ε =
ε(x) < 1 on S0 and any hypersurface M(t) of the flow the term ṽ satisfies an
evolution inequality of the form

(5.11) ˙̃v − 1

F 2
F ij ṽij ≤ −(1− ε) 1

F 2
F ijhki hkj ṽ +

c

ε

1

F 2
F ijgij ṽ

3.

Proof. To estimate the last three terms in the evolution equation of ṽ, cf.
(3.7), we apply (5.6), (5.7) and (5.8). The second term in (3.7) which is
associated with F−1 is estimated by

(5.12)

− 2

F
ηαβν

ανβ = − 2

F 2
F ijhijηαβν

ανβ

≤ ε

2

1

F 2
F ijhki hkj ṽ + 8ε−1 1

F 2
F ijgij ṽ

−1(ηαβν
ανβ)2

≤ ε

2

1

F 2
F ijhki hkj ṽ + c̃ε−1 1

F 2
F ijgij ṽ

3.

�

Now, we are able to prove the C1-estimates.

5.5. Proposition. Let Ω ⊂ N be precompact. Then, as long as the flow
stays in Ω the term ṽ remains uniformly bounded

(5.13) ṽ ≤ c = c(Ω, sup
M0

ṽ).
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Proof. We show that the function

(5.14) w = ṽϕ,

ϕ as in (5.1), is uniformly bounded, if we choose

(5.15) 0 < µ < 1 and λ << −1,

appropriately, and assume furthermore, without loss of generality, that u ≤
−1, for otherwise replace u by (u−c), c large, in the definition of ϕ. With the
help of Lemma 5.1, Lemma 5.3 and Lemma 5.4 we derive from the relation

(5.16) ẇ − 1

F 2
F ijwij = [ ˙̃v − 1

F 2
F ij ṽij ]ϕ+ [ϕ̇− 1

F 2
F ijϕij ]ṽ −

2

F 2
F ij ṽiϕj

the parabolic inequality

(5.17)

ẇ − 1

F 2
F ijwij ≤ −ε

1

F 2
F ijhki hkj ṽϕ+ c[ε−1 + |λ|µeλu]

1

F 2
F ijgij ṽ

3ϕ

+ [
1

1− 2ε
− 1]

1

F 2
F ijuiujµ

2λ2e2λuṽϕ

− 1

F 2
F ijuiujµλ

2eλuṽϕ,

where we have chosen the same function ε = ε(x) in Lemma 5.3 resp.
Lemma 5.4. We claim that w is uniformly bounded provided µ and λ are
chosen appropriately. We shall use the maximum principle, therefore let
0 < T < T ∗ and x0 = x(t0, ξ0) be such that

(5.18) sup
[0,T ]

sup
M(t)

w = w(t0, ξ0).

To exploit the good term

(5.19) − ε 1

F 2
F ijhki hkj ṽϕ,

we use the fact that Dw(x0) = 0, or, equivalently

(5.20)
−ṽi = µλeλuṽui

= eψhki uk − ηαβναx
β
i ,

Next, we choose a coordinate system (ξi) such that in the critical point

(5.21) gij = δij and hki = κiδ
k
i ,

and the labelling of the principal curvatures corresponds to

(5.22) κ1 ≤ κ2 ≤ · · · ≤ κn.

Then, we deduce from (5.20)

(5.23) eψκiui = µλeλuṽui + ηαβν
αxβi .

Assume that ṽ(x0) ≥ 2, and let i = i0 be an index such that

(5.24) |ui0 |2 ≥
1

n
‖Du‖2.
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Setting (ei) = ∂
∂ξi0

and assuming without loss of generality that 0 < uie
i in

x0, we infer from Lemma 1.2

(5.25)
eψκi0uie

i = µλeλuṽuie
i + ηαβν

αxβi e
i

≤ µλeλuṽuiei + cṽ2,

and we deduce further in view of (1.10), (1.11) and (5.24) that

(5.26) κi0 ≤ [µλeλu + c]ṽe−ψ ≤ 1

2
µλeλuṽe−ψ,

if |λ| is sufficiently large, i.e. κi0 is negative and of the same order as ṽ. Next,
let us estimate the crucial term in (5.19). Using the particular coordinate
system (5.21), as well as the inequalities (5.22), together with the fact that
κi0 is negative, we conclude

(5.27) − F ijhki hkj ≤ −
i0∑
i=1

F ii κ
2
i ≤ −

i0∑
i=1

F ii κ
2
i0 .

F is concave, and therefore, we have in view of (5.22)

(5.28) F 1
1 ≥ F 2

2 ≥ · · · ≥ Fnn ,

cf. [3, Lemma 2]. Hence, we conclude

(5.29) −
i0∑
i=1

F ii ≤ −F 1
1 ≤ −

1

n

n∑
i=1

F ii .

Using (5.26), (5.27) and (5.29) we deduce further

(5.30) −F ijhki hkj ≤ −cF ijgijµ2λ2e2λuṽ2.

Inserting this estimate in (5.17), with ε = e−λu, we obtain

(5.31)

0 ≤ −cF ijgijµ2λ2eλuṽ3ϕ+ cF ijgijµ|λ|eλuṽ3ϕ

+
2

1− 2ε
F ijuiujµ

2λ2eλuṽϕ− F ijuiujµλ2eλuṽϕ

where |λ| is chosen so large that

(5.32) e−λu ≤ 1

4
.

Choosing µ = 1
4 and |λ| sufficient large, we see that the right-hand side of

the preceding inequality is negative, contradicting the maximum principle,
i.e. the maximum of w cannot occur at a point where ṽ ≥ 2. Thus, the
desired uniform estimate for w and hence ṽ is proved. �

5.6. Remark. Notice that the proof of the preceding C1-estimate is valid
for any curvature function F that is monotone, concave and homogeneous of
degree 1.
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Let us close this section with an interesting observation that is an immediate
consequence of the preceding proof, we have especially (5.27) and (5.29) in
mind.

5.7. Lemma. Suppose F = σ2 is evaluated at a point (κi) and assume
that κi0 is a component that is either negative or the smallest component of
that particular n-tuple, then

(5.33)
n∑
i=1

Fiκ
2
i ≥

1

n

n∑
i=1

Fiκ
2
i0 .

6. C2-estimates

We want to prove that the principal curvatures of the flow hypersurfaces are
uniformly bounded. Firstly, we have to show that F is bounded from above.
Therefore, we need the following Lemma.

6.1. Lemma. The term logF satisfies the evolution equation

(6.1)
(logF )

′
− 1

F 2
F ij(logF )ij =

1

F 2
F ijhikh

k
j +

1

F 2
R̄αβγδν

αxβi ν
γxδj

− 1

F 4
F ijFiFj .

6.2. Lemma. Let Ω ⊂ N be precompact and assume that the flow stays in
Ω for 0 ≤ t < T ∗, then there exists a constant c(Ω) such that

(6.2) F ≤ c(Ω).

Proof. We define

(6.3) ϕ = logF

and set

(6.4) w = ϕ+ λṽ.

We claim that w is bounded, if λ is chosen appropriately. We shall use the
maximum principle, therefore let 0 < T < T ∗, and x0 = x(t0, ξ0) be a point
in M(t0) such that

(6.5) w(t0, x0) = sup
[0,T ]

sup
M(t)

w.

Applying the maximum principle we receive

(6.6) 0 ≤ (1− λ

2
)F ijhikh

k
j + c(1 + λ)F ijgij ,
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in view of Lemma 5.4. Choosing λ larger than 4, we obtain with (2.18) and
(2.20)

(6.7) 0 ≤ − 1

n
FH + cF−1H.

Thus, we have an a priori estimate for F . �

To prove the following proposition we have to assume, that a strictly convex
function χ exists.

6.3. Remark. Let χ be the strictly convex function. Its evolution equation
is

(6.8)
χ̇− 1

F 2
F ijχij = − 2

F 2
Fχαν

α − 1

F 2
F ijχαβx

α
i x

β
j

≤ − 2

F
χαν

α − c0
1

F 2
F ijgij ,

where c0 > 0 is independent of t.

If we are close enough to the future singularity, the existence of a strictly
convex function is automatically satisfied.

6.4. Remark. Due to [11, Lemma 1.8.3] and the convexity of the flow hy-
persurfaces, cf. (4.1) and the following lines, the existence of a strictly convex
function χ ∈ C2(Ω̄) for a relative compact subset Ω of N is guaranteed, if
Ω lies sufficiently far in the future of N , i.e. | infΩ x

0| < ε with ε > 0 chosen
sufficiently small.

6.5. Proposition. Let Ω ⊂ N be precompact and assume that the flow
stays in Ω for 0 ≤ t < T ∗, then there exists a constant c(Ω) such that

(6.9) κi ≤ c(Ω), 1 ≤ i ≤ n.

Proof. Let ζ and w be respectively defined by

ζ = sup{hijηiηj : ‖η‖ = 1 },(6.10)

w = log ζ + λχ,(6.11)

where λ > 0 is supposed to be large. We claim that w is bounded, if λ is
chosen sufficiently large.
Let 0 < T < T ∗, and x0 = x0(t0), with 0 < t0 ≤ T , be a point in M(t0) such
that

(6.12) sup
M0

w < sup{ sup
M(t)

w : 0 < t ≤ T } = w(x0).
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We then introduce a Riemannian normal coordinate system (ξi) at x0 ∈
M(t0) such that at x0 = x(t0, ξ0) we have

(6.13) gij = δij and ζ = hnn.

Let η̃ = (η̃i) be the contravariant vector field defined by

(6.14) η̃ = (0, . . . , 0, 1),

and set

(6.15) ζ̃ =
hij η̃

iη̃j

gij η̃iη̃j
.

ζ̃ is well defined in neighbourhood of (t0, ξ0).

Now, define w̃ by replacing ζ by ζ̃ in (6.11); then, w̃ assumes its maximum
at (t0, ξ0). Moreover, at (t0, ξ0) we have

(6.16)
˙̃
ζ = ḣnn,

and the spatial derivatives do also coincide; in short, at (t0, ξ0) ζ̃ satisfies the
same differential equation (3.8) as hnn. For the sake of greater clarity, let us
therefore treat hnn like a scalar and pretend that w is defined by

(6.17) w = log hnn + λχ.

We assume that the section curvatures are labelled according to (5.22).
At (t0, ξ0) we have ẇ ≥ 0, and, in view of the maximum principle, we deduce
from (2.9), (3.8), (5.28) and (6.8)

(6.18)

0 ≤ − 1
2F

ijhkih
k
j + 2Fκn + cF ijgij + (1 + λ)cF − λc0F ijgij

+ F ij(log hnn)i(log hnn)j +
2

κn − κ1

n∑
i=1

(Fn − Fi)(h n
ni; )2(hnn)−1,

where we have estimated bounded terms by a constant c, and assumed that
hnn and λ are larger than 1. We distinguish two cases

Case 1. Suppose that

(6.19) |κ1| ≥ ε1κn,
where ε1 > 0 is small. Then, we infer from Lemma 5.7

(6.20) F ijhkih
k
j ≥ 1

nF
ijgijε

2
1κ

2
n,

and

(6.21) F ijgij ≥ F (1, . . . , 1),

for a proof see [11, Lemma 2.2.19].
Since Dw = 0,

(6.22) D log hnn = −λDχ,
hence

(6.23) F ij(log hnn)i(log hnn)j ≤ λ2F ijχiχj .

Hence, we conclude that κn is a priori bounded in this case.
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Case 2. Suppose that

(6.24) κ1 ≥ −ε1κn,

then the last term in inequality (6.18) is estimated from above by

(6.25)

2

1 + ε1

n∑
i=1

(Fn − Fi)(h n
ni; )2(hnn)−2

≤ 2

1 + 2ε1

n∑
i=1

(Fn − Fi)(h i
nn; )2(hnn)−2

+ c(ε1)
n∑
i=1

(Fi − Fn)κ−2
n ,

where we used the Codazzi equation. The last sum can be easily balanced.
The terms in (6.18) containing the derivative of hnn can therefore be estimated
from above by

(6.26)

− 1− 2ε1
1 + 2ε1

n∑
i=1

Fi(h
i

nn; )2(hnn)−2

+
2

1 + 2ε1
Fn

n∑
i=1

(h i
nn; )2(hnn)−2

≤ 2Fn

n∑
i=1

(h i
nn; )2(hnn)−2

= 2λ2Fn‖Dχ‖2.

Hence, we infer

(6.27)
0 ≤− 1

2Fnκ
2
n + 2Fκn + cF ijgij

+ λ2cFn + (1 + λ)cF − λc0F ijgij .

From (2.18) and Lemma 6.2 we deduce

(6.28) F ijgij ≥ cκn,

with the boundness of F , we obtain an a priori estimate

(6.29) κn ≤ const,

if λ is chosen large enough. Notice that ε1 is only subject to the requirement
0 < ε1 <

1
2 . �

With the help of (2.15) we conclude further that there exists a positive con-
stant c(Ω) such that

(6.30) |κi| ≤ c(Ω), 1 ≤ i ≤ n.

In the next chapter we will show independently of the following results, that
F is bounded from below

(6.31) F ≥ inf
M0

F > 0,
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cf. Corollary 7.9, as long as the flow exists. Combining (6.31) with (6.2) we
deduce that there are positive constants c1 = c1(Ω) and c2 = c2(Ω) such that

(6.32) 0 < c1 ≤ F ≤ c2
as long as the flow stays in a relative compact subset Ω of N . We now look
at the scalar version of the flow as in (5.19)

(6.33)
∂u

∂t
= e−ψ̃v

1

F
,

defined in the cylinder

(6.34) QT∗ = [0, T ∗)× S0

with initial value u(0) ∈ C∞(S0). We deduced hat for T ∗ <∞ the flow stays
in a compact subset Ω of N and proved uniform C2-estimates for u. In view
of (6.30) and (6.31) we know that the principal curvatures of the flow stay
in a compact subset of Γ2. Hence, the differential operator on the right-hand
side of (6.33) is uniformly elliptic in u independent of t. Thus, we can apply
the C2,α-estimates of Krylov and Safonov and conclude that a maximal T ∗

cannot be finite.

7. Results in the conformal space

Proving the convergence results for the ISCF, we shall for technical reasons
consider the flow hypersurfaces to be embedded in (N, ḡ), where ḡ stands for
the conformal metric

(7.1) ds̄2 = −(dx0)2 + σij(x
0, x)dxidxj .

We will write hij , gij , ν, etc. for geometric quantities of hypersurfaces in

(N, ḡ) and h̆ij , ğij , ν̆, etc. for geometric quantities of hypersurfaces in (N, ğ),
i.e. standard notation now apply to the case when N is equipped with the
the metric in (7.1). We have

(7.2) ğαβ = e2ψ̃ ḡαβ

and the second fundamental forms h̆ji and hji are related by

(7.3) eψ̃h̆ji = hji + ψ̃αν
αδji ,

cf. [11, 1.1.11 Proposition]. In accordance with the introduced notation we

define F̆ by

(7.4) F̆ = F (h̆ji ),

and a new function F̌ by setting

(7.5) F̌ (hji ) = eψ̆F (h̆ji ) = F (hji − ṽf
′δji + ψαν

α) = F (ȟji ),

where ȟji stands for

(7.6) ȟji = eψ̃h̆ji = hji − ṽf
′δji + ψαν

αδji .
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However, we will from now on write F instead of F̌ , so that the evolution
equation can then be written as

(7.7) ẋ = − 1

F
ν,

since

(7.8) ν̆ = e−ψ̃ν.

The flow exists for all time and is smooth, cf. our results in the last chapters.
We want to emphasize that the argument of F is now ȟji . These notations
introduced above will be used until the end of this paper.

For further reference we state now some evolution equations, cf. [11, Section
2.3, Section 2.4] for the proofs.

7.1. Lemma. Consider the flow in (7.7), then the metric, the normal vec-
tor and the second fundamental form of M(t) satisfy the evolution equations

ġij = − 2

F
hij ,(7.9)

ν̇ = gij
1

F 2
Fixj ,(7.10)

ḣji = (− 1

F
)ji +

1

F
hki h

j
k +

1

F
R̄αβγδν

αxβi ν
γxδkg

kj ,(7.11)

ḣij = (− 1

F
)ij −

1

F
hki hkj +

1

F
R̄αβγδν

αxβi ν
γxδj .(7.12)

Looking at the component α = 0 in (7.7), we infer that the total and partial
derivate of u satisfy the equations

u̇ =
ṽ

F
,(7.13)

∂u

∂t
=

v

F
.(7.14)

7.2. Lemma. The evolution equation of u has the form

(7.15) u̇− 1

F 2
F ijuij =

2

F
ṽ+

1

F 2
ṽ2f ′F ijgij −

1

F 2
ṽψαν

αF ijgij −
1

F 2
F ij h̄ij .
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Proof. From the component α = 0 of the Gauß formula we obtain

(7.16) uij = −ṽhij + h̄ij

and from (7.6) we deduce

(7.17) − F ijhij = −F − ṽf ′F ijgij + ψαν
αF ijgij ,

where we used the homogeneity of F . Combining these two identities and
the identity in (7.13) lead to the claim. �

7.3. Lemma. The Term ṽ satisfy the evolution equation

(7.18)

˙̃v − 1

F 2
F ij ṽij =− 1

F 2
F ijhikh

k
j ṽ +

1

F 2
R̄αβγδν

αxβi x
γ
l x

δ
ju
l

− 1

F 2
F ijhijηαβν

ανβ − 1

F
ηαβν

ανβ

− 1

F 2
(F ijηαβγν

αxβi x
γ
j + 2F ijηαβx

α
kx

β
i h

k
j )

− 1

F 2
(−ṽf

′′
‖Du‖2F ijgij − ṽkukf

′
F ijgij)

+ ψαβν
αxβku

kF ijgij + ψαx
α
l h

l
ku

kF ijgij ,

where η = (ηα) = (−1, 0, ..., 0) is a covariant unit vector field.

Proof. There holds ṽ = ηαν
α. Differentiating ṽ we deduce

ṽi =ηαβx
β
i ν

α + ηαν
α
i ,(7.19)

ṽij =ηαβγx
β
i x

γ
j ν

α + ηαβν
α
j x

β
i + ηαβν

ανβhij + ηαν
α
ij ,(7.20)

˙̃v =ηαβν
αẋβ + ηαν̇

β .(7.21)

Inserting the evolution equation of ν, cf. (7.10), in (7.21), we receive

(7.22) ˙̃v = − 1

F
ηαβν

ανβ +
1

F 2
Fkηαx

α
k .

From the the definition of F we get

(7.23)
Fk =F ijhij;k − ṽkf

′
F ijgij − ṽf

′′
ukF

ijgij

+ ψαβν
αxβkF

ijgij + ψαx
α
r h

r
kF

ijgij .

From these relations the claim follows with the help of the Weingarten equa-
tion, the Codazzi equation and the Gauß formula. �

From now on to the end of this paper we will basically follow the descrip-
tions in [11, Section 7] and especially [19]. Now, we present some results,
namely, Lemma 7.4, Lemma 7.5, Lemma 7.6, Lemma 7.7, Lemma 7.8, and
Corollary 7.9, which can be found in [19, Section 4, Section 5]. For the con-
venience of the reader we will present some of the proofs from [19], where the
proof of Lemma 7.8 had to be modified to our situation.
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7.4. Lemma. The following estimates are valid

(7.24) |ηαβνανβ | ≤ cṽ2|||ηαβ |||,

(7.25) |F ijηαβγναxβi x
γ
j | ≤ cṽ

3|||ηαβγ |||F ijgij ,

(7.26) |ηαβναxβku
k| ≤ c|||ηαβ |||ṽ3.

For any ε > 0 we have

(7.27) |F ijηαβxαkx
β
i h

k
j | ≤ cεṽF ijhkjhki |||ηαβ |||+ cεṽ

3F ijgij |||ηαβ |||.

(7.28) |F ijR̄αβγδναxβi x
γ
l x

δ
ju
l| ≤ cṽ3F ijgij .

In points where ṽi = 0, there holds

(7.29) |ψαxαkhki ui| ≤ c|||Dψ|||ṽ3.

Considering the flow hypersurfaces embedded in (N, ḡαβ), we can easier take
advantage of the asymptotical behaviour of some quantities. This turns out
to be very useful in the next chapters, but firstly, we are able to prove an
uniform estimate for ṽ.

7.5. Lemma. ṽ is uniformly bounded on the maximal existence interval
[0, T ∗), i.e. there holds

(7.30) sup
[0,T∗)

ṽ ≤ c = c(sup
M0

ṽ, (N, ğαβ)).

Proof. For 0 < T < T ∗ assume that there are 0 < t0 ≤ T and x0 ∈ S0 such
that

(7.31) sup
[0,T∗]

sup
M(t)

ṽ = ṽ(t0, x0) ≥ 2.

Applying the maximum principle we shall deduce that either ṽ ≤ 2 or that
t0 is a priori bounded. From Lemma 7.3, Lemma 7.4 and the monotony of F
we deduce

(7.32)

0 ≤− F ijhkjhki ṽ + F ijR̄αβγδν
αxβi x

γ
l x

δ
ju
l − F ijhijηαβνανβ

− Fηαβνανβ − F ijηαβγναxβi x
γ
j + 2F ijηαβx

α
kx

β
i h

k
j

+ ṽf
′′
‖Du‖2F ijgij + ṽku

kf
′
F ijgij − ψαβναxβku

kF ijgij

− ψαxαl hlkukF ijgij

≤− 1

2
F ijhkjh

k
i ṽ + cṽ3(|f

′
|+ 1)F ijgij + ṽf

′′
‖Du‖2F ijgij .

If ṽ ≥ 2, we have

(7.33) ‖Du‖ ≥ 1

4
ṽ2
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and if t0 would be very large, then f
′′

would be very large. Since, the
term containing f

′′
dominates the other terms, cf. (0.10), we would have a

contradiction. Hence, t0 and consequently ṽ are a priori bounded. �

Proving the exponential decay for ‖Du‖ and ‖A‖ in the next chapters, we
need a decay property for certain tensors.

7.6. Lemma. (i) Let ϕ ∈ C∞([a, 0)), a < 0, and assume

(7.34) lim
τ→0

ϕ(k)(τ) = 0 ∀k ∈ N,

then for every k ∈ N there exists a ck > 0 such that

(7.35) |ϕ(τ)| ≤ ck|τ |k.
(ii) Let T be a tensor such that for all k ∈ N

(7.36) |||DkT (x0, x)||| −→ 0 as x0 −→ 0 uniformly in x

then

(7.37) ∀k∈N ∃ck>0 ∀x∈S0 |||T (x0, x)||| ≤ ck|x0|k

(iii) For T = (ηαβ) the relation (7.37) is true, analogously for |||ηαβγ |||,
|||Dψ|||, |||R̄αβγδηα|||, or more generally for any tensor that would vanish iden-
tically, if it would have been formed with respect to the product metric

(7.38) − (dx0)2 + σ̄ijdx
idxj .

In the next Lemma we will state how the the Riemannian curvature tensors
of the metric ğαβ and its conformal counterpart ḡαβ are related.

7.7. Lemma. The Riemannian curvature tensors of the metrics ğαβ and
ḡαβ are related by

(7.39)

e−2ψ̃R̆αβγδ =R̄αβγδ − ḡαγψ̃βδ − ḡβδψ̃αγ + ḡαδψ̃βγ + ḡβγψ̃αδ

+ ḡαγψ̃βψ̃δ + ḡβδψ̃αψ̃γ − ḡαδψ̃βψ̃γ + ḡβγψ̃αψ̃δ

+ {ḡαδ ḡβγ − ḡαγ ḡβδ}‖Dψ̃‖2,
where the norms and the covariant derivatives on the right-hand side are with
respect to ḡαβ.

Now, we are able to prove an exponentiell growth of the Riemannian curva-
ture tensor.

7.8. Lemma. There exists a constant c > 0 such that for the leaves of the
ISCF in N+ = [−ε, 0)× S0 the following estimate holds

(7.40) F̆ ijR̆αβγδ ν̆
αxβi ν̆

γxδj ≥ c|f
′
|2e−2ψ̃,

provided ε = ε((N, ğαβ), supM0
ṽ) is chosen sufficiently small.
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Proof. Since F ji is positive homogeneous of degree 0, we have

(7.41) F ij = F̆ ij

and hence

(7.42) F ij = e2ψ̃F̆ ij

We have due to Lemma 7.7

(7.43)

e2ψ̃F̆ ijR̆αβγδ ν̆
αxβi ν̆

γxδj =F ijR̄αβγδν
αxβi ν

γxδj + F ijxβi x
δ
j ψ̃βδ

− F ijgijψ̃αγνανγ − F ijxβi x
δ
j ψ̃βψ̃δ

+ F ijgijψ̃αψ̃γν
ανγ + F ijgij‖Dψ̃‖2.

Using (5.5) we estimate the summands in (7.43)

(7.44) |F ijR̄αβγδναxβi ν
γxδj | ≤ cṽ4F ijgij ,

(7.45) F ijxβi x
δ
j ψ̃βδ = F ijuiujf

′′
+ F ijxβi x

δ
jψβδ ≥ F ijuiujf

′′
− cṽ2F ijgij ,

(7.46) − F ijgijψ̃αγνανγ ≥ −ṽ2F ijgijf
′′
− cṽ2F ijgij ,

(7.47)

−F ijxβi x
δ
j ψ̃βψ̃δ =− F ijuiuj(ψ0 + f

′
)2 − F ijψiψj − 2F ijujψi(ψ0 + f

′
)

≥− F ijuiuj(ψ0 + f
′
)2 − c|f

′
|ṽ2F ijgij ,

(7.48) F ijgijψ̃αψ̃γν
ανγ ≥ ṽ2(ψ0 + f

′
)2F ijgij − cṽ|f

′
|F ijgij ,

(7.49)
F ijgij‖Dψ̃‖2 =− (f

′
+ ψ0)2F ijgij + σijψiψjF

ijgij

≥− (f
′
+ ψ0)2F ijgij − cF ijgij .

Using the estimate uiuj ≤ (ṽ2 − 1)gij we conclude
(7.50)

e2ψ̃F̆ ijR̆αβγδ ν̆
αxβi ν̆

γxδj ≥− cṽ4F ijgij + f
′′
F ij(uiuj − ṽ2gij)

− cṽ2|f
′
|F ijgij + (ψ0 + f

′
)2F ij(ṽ2gij − uiuj − gij)

≥− cṽ4F ijgij − f
′′
F ijgij − c|f

′
|ṽ2F ijgij ,

and hence the claim if ε is chosen sufficiently small. Here, we used (0.10) and
the uniform boundedness of ṽ, cf. Lemma 7.5. �

Finally, we will prove that F̆ is bounded from below, which is necessary for
the C2 estimates in the previous section.

7.9. Corollary. We assume that (7.40) is valid for the leaves of the ISCF.
Then we have

(7.51) F̆ ≥ inf
M0

F̆ ,
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as long as the flow exists. If the flow exists for all times, then F̆ increases
exponentially fast, namely, we have

(7.52) F̆ ≥ c0e(γ+ 1
n )t,

where c0 = c(M0) > 0.

Proof. We define

(7.53) ϕ(t) = inf
M(t)

F̆

and infer from Lemma 3.2

(7.54)

d

dt
F̆ − 1

F̆ 2
F̆ ijF̆ij =

1

F̆
F̆ ij h̆ikh̆

k
j +

1

F̆
F̆ ijR̆αβγδν

αxβi ν
γxδj

− 2

F̆ 3
F̆ ijF̆iF̆j ,

hence, using Lemma 7.8 we deduce

(7.55) ϕ̇(t) ≥ c̃ |f
′ |2

F̆
e−2f ,

especially ϕ̇(t) ≥ 0 for a.e. 0 < t < T ∗. If the flow exists for all times, we
know already that the flow runs into the future singularity, i.e.

(7.56) lim
t→∞

inf
S0
u(t, ·) = 0.

Using Theorem 8.2, which is proven independently of all previous results,
(0.9) and (1.25) we infer

(7.57)
d

dt
(ϕ2) ≥ ce2(γ+ 1

n )t

for a.e. t > 0 and a positive constant c > 0. Integration yields the claim. �

8. Decay of the C0-norm

We want to prove the optimal decay of u. We show that there are positive
constants c1, c2 such that

(8.1) − c1 ≤ ũ ≤ −c2 ∀t ∈ R+,

where ũ is defined by

(8.2) ũ = ueγt.

and u is the solution of the scalar version of the ISCF, that means, u is the
solution of (7.13). The next three results and the corresponding proofs can
be found in [19, Section 6].

8.1. Lemma. For any 0 < λ < γ, there exists a constant c(λ) sucht that

(8.3) |ueλt| ≤ c(λ) ∀t ∈ R+.
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With the help of the previous result it is possible to prove the optimal decay.

8.2. Theorem. We define ũ = ueγt. Then, there are positive constants
c1, c2 such that

(8.4) − c1 ≤ ũ ≤ −c2.

8.3. Corollary. For any k ∈ N∗ there exists ck such that

(8.5) |f (k)| ≤ ckekγt,
where f (k) is evaluated at u.

Proof. In view of (0.12) there holds

(8.6) |f (k)| ≤ ck|f
′
|k = ck|f

′
|kukũ−kekγt.

Then use (1.25) and the preceding theorem. �

9. Decay of the C1-norm

Our final goal is to show that ||Dũ|| is uniformly bounded, where we recall
that

(9.1) ũ = ueγt,

but this estimate has to be deferred to the next section. At the moment we
only prove that ||Du||eλt, with 0 < λ < γ, is uniformly bounded.

9.1. Lemma. There holds

(9.2) |F ijR̄αβγδναxβi x
γ
l x

δ
ju
l| ≤ c(|u|2 + ‖Du‖2)F ijgij .

Proof. We start with the identity

(9.3)
F ijR̄αβγδν

αxβi x
γ
l x

δ
ju
l =− ṽF ijR̄αβγδηαxβi x

γ
l x

δ
ju
l

− ṽF ijR̄rβγδǔrxβi x
γ
l x

δ
ju
l,

where η = (ηα) = (−1, 0, . . . , 0) is a covariant vectorfield. With the help of
Lemma 7.5 and Lemma 7.6 we estimate the first term

(9.4) − ṽF ijR̄αβγδηαxβi x
γ
l x

δ
ju
l ≤ cu2F ijgij

and for the second term we receive

(9.5) − ṽF ijR̄rβγδǔrxβi x
γ
l x

δ
ju
l ≤ c‖Du‖2F ijgij ,

where we used Lemma 1.2. �
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The following two lemmas and the corresponding proofs can be found in [19,
Section 7], but we will give exemplarily a proof of the next lemma.

9.2. Lemma. There exists ε > 0 and a constant cε such that

(9.6) ‖Du‖eεt ≤ cε

Proof. We employ the relation

(9.7) ṽ2 = 1 + ‖Du‖2

and the fact that ṽ is uniformly bounded to conclude that there exists a
positive constant c, such that

(9.8) c‖Du‖2 ≤ 2 log ṽ = log ṽ2 ≤ ‖Du‖2,

i.e. we can equivalently prove that log ṽeεt is uniformly bounded. Let ε be
small and set

(9.9) ϕ = log ṽe2εt,

then ϕ satisfies

(9.10) ϕ̇− 1

F 2
F ijϕij =

1

ṽ
( ˙̃v − 1

F 2
F ij ṽij)e

2εt +
1

F 2

1

ṽ2
F ij ṽiṽje

2εt + 2εϕ.

and we get with the evolution equation of ṽ, cf. Lemma 7.3,
(9.11)

F 2e−2εt(ϕ̇− 1

F 2
F ijϕij) =− F ijhkihkj +

1

ṽ
F ijR̄αβγδν

αxβi x
γ
l x

δ
ju
l

− 1

ṽ
F ijhijηαβν

ανβ − 1

ṽ
Fηαβν

αnβ

− 1

ṽ
F ijηαβγν

αxβi x
γ
j −

2

ṽ
F ijηαβx

α
kx

β
i h

k
j

+ f
′′
‖Du‖2F ijgij +

1

ṽ
ṽku

kf
′
F ijgij

− ψαβναxβku
k 1

ṽ
F ijgij −

1

ṽ
ψαx

α
l h

l
ku

kF ijgij

+ F ij ṽiṽj
1

ṽ2
+ 2εF 2 log ṽ

Now, let T , 0 < T <∞, assume that

(9.12) sup
[0,T ]

sup
M(t)

ϕ = ϕ(t0, x0),

where 0 < t0 ≤ T large and x0 ∈ S0. Applying the maximum principle, we
infer with the help equation (9.11), Lemma 7.4, Lemma 7.5, Lemma 7.6 and
Lemma 9.1, after multiplying by F 2e−2εt, that

(9.13)
0 ≤− 1

2
F ijhkjh

k
i + cε(u

2 + ‖Du‖2)F ijgij

+ cε|f
′
|2‖Du‖2F ijgij + f

′′
‖Du‖2F ijgij ,
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where we estimated the term |2εF 2 log ṽ| with the help of (2.17), (2.18), (7.6)
and (9.8) in the following way

(9.14)

|2εF 2 log ṽ| ≤
√

2εFȞ log ṽ

≤
√

2nεF ij ȟkiȟ
k
j log ṽ

≤ cε
(
F ijhkih

k
j + ṽ2|f

′
|2F ijgij + (ψαν

α)2F ijgij
)

log ṽ

≤ cε
(
F ijhkih

k
j + ‖Du‖2|f

′
|2F ijgij + |u|2F ijgij

)
,

and the term | 1ṽFηαβν
αnβ | is estimated by

(9.15)
|1
ṽ
Fηαβν

αnβ | ≤ c|u|3F

≤ ε|u|4F 2 + ε−1c̃|u|2F ijgij ,

where we used Lemma 2.1. Using

(9.16) lim
t→∞

f
′
u =

1

γ̃
=

1

nγ
,

we conclude

(9.17)
ε|u|4F 2 ≤ cε|u|4

(
F ijhkih

k
j + ṽ2|f

′
|2F ijgij + (ψαν

α)2F ijgij
)

≤ cε
(
F ijhkih

k
j + |u|2F ijgij

)
.

If we now choose 0 < ε < γ sufficient small and t0 large enough, then we
receive from (9.13), that

(9.18) ‖Du‖2 ≤ cu2

|f ′′ |
.

Hence, we have in (t0, x0)

(9.19) ϕ = log ṽe2εt ≤ c‖Du‖2e2εt ≤ cu2

|f ′′ |
e2εt ≤ c.

�

After having established the exponential decay of ‖Du‖, we can improve the
decay rate.

9.3. Lemma. For any 0 < λ < γ there exists a constant cλ such that

(9.20) ‖Du‖eλt ≤ cλ.
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10. Decay of the C2-Norm

Our final goal in this chapter is to show that ‖A‖eγt is uniformly bounded.
We start with some preliminary results. Firstly, we prove that F grows
exponentially fast.

10.1. Theorem. We have the estimate

(10.1) F ≥ ceγt,

where c > 0 depends on M0.

Proof. From Corollary 7.9 we deduce

(10.2) F = eψ̃F̆ ≥ cef F̆ ≥ ceγt

Here we used the relation

(10.3) ef ∼ ce− 1
n t,

due to (0.9) and

(10.4) |f
′
u− 1

γ̃
| ≤ cu2.

�

Now, we state the evolution equations for hkl and F .
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10.2. Lemma. The second fundamental hkl form satisfies the evolution
equation
(10.5)

ḣkl −
1

F 2
F ijhkl;ij =− 2

F 3
F kFl +

1

F
hkrhrl +

1

F
R̄αβγδν

αxβl ν
γxδrg

rk

− 1

F 2
F ijhajh

a
i h

k
l +

1

F 2
F ijhijhalh

ak

+
2

F 2
gpkF ijR̄αβγδx

α
r x

β
px

γ
i x

δ
l h
r
j −

1

F 2
F ijR̄αβγδx

α
ax

β
i x

γ
l x

δ
jh
ak

− 1

F 2
gpkF ijR̄αβγδx

α
r x

β
i x

γ
px

δ
jh
r
l −

1

F 2
F ijR̄αβγδν

αxβi ν
γxδjh

k
l

+
1

F 2
gpkF ijR̄αβγδν

αxβpν
γxδl hij +

1

F 2
gpkF ijR̄αβγδ;εν

αxβpx
γ
i x

δ
l x
ε
j

+
1

F 2
gpkF ijR̄αβγδ;εν

αxβi x
γ
j x

δ
px
ε
l +

1

F 2
gpkF ij;rsh̆ij;ph̆rs;l

+
1

F 2
F ijgij(−ulukṽf

′′′
+ gpkψαβγν

αxβpx
γ
l + ψαβν

ανβhkl

+ gpkψαβx
α
r x

β
ph

r
l + ψαβx

α
r x

β
l h

rk + ψαν
αhlrh

rk + ψαx
α
r h

rk
;l

− gpkf
′
ηαβγν

αxβpx
γ
l − g

pkf
′
ηαβx

α
r x

β
ph

r
l − f

′
ηαβν

ανβhkl

− f
′
ηαβx

α
r x

β
l h

rk − f
′
hrlh

rkṽ + f
′
urhkl;r + f

′
urgkpR̄αβγδν

αxβpx
γ
rx

δ
l

− f
′′
(ṽkul + ṽlu

k) + f
′′
ṽ2hkl + f

′′
ṽηαβx

α
l x

β
r g
rk).

Proof. We start with the equation for ḣkl , cf. (7.11), which contains the
summand

(10.6) (− 1

F
)kl =

1

F 2
F kl −

2

F 3
FlF

k.

Calculating the covariant derivative Fkl we get

(10.7) Fkl = F ij ȟij;kl + F ij,rsȟij;kȟrs;l,

then we use the definition of ȟij , the Codazzi equation, the Ricci identities

and the Gauß equation to express F ij ȟij;kl through F ijhlk,ij . �

10.3. Lemma. The term F satisfies the evolution equation
(10.8)

Ḟ − 1

F 2
F ijFij =− 2

F 3
F ijFiFj +

1

F
F ijhki hkj +

1

F
F ijR̄αβγδν

αxβi ν
γxδj

+
1

F
ηαβν

ανβf
′
F ijgij −

1

F
ṽ2f

′′
F ijgij +

1

F 2
f
′
Fku

kF ijgij

− 1

F
ψαβν

ανβF ijgij +
1

F 2
ψαx

α
kF

kF ijgij .
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Proof. We have

(10.9) Ḟ = F ij
˙̌hji .

Using (7.6) and (7.11) leads to the claim. �

The proofs of the next five results will be omitted and can be found in [19,
Chapter 8].

10.4. Theorem. The principal curvatures κi of M(t) are uniformly bounded
from above during the evolution, e.g. there exists a constant c such that

(10.10) κi ≤ c, 1 ≤ i ≤ n.

Now, we know that the biggest principle curvature is bounded from above.
In the next lemma we examine the behaviour of the absolute value of the
smallest principle curvature during the evolution.

10.5. Lemma. We have

(10.11) sup
M(t)

max
i
|κiu| → 0 t→∞,

for 1 ≤ i ≤ n.

Now, we are able to state a decay of ‖A‖.

10.6. Lemma. For any 0 < λ < γ there exists a positive constant c(λ)
such that

(10.12) ‖A‖eγt ≤ c(λ) ∀t ∈ R+.

In the next two theorems we will state the optimal decay of ‖Du‖ and ‖A‖.

10.7. Theorem. Let ũ = ueγt, then there exists a positive constant such
that

(10.13) ‖Dũ‖ ≤ c ∀t ∈ R+

10.8. Theorem. The quantity w = 1
2‖A‖

2e2γt is uniformly bounded dur-
ing the evolution.
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11. Higher order estimates

After having established the exponential decay of ‖A‖, we want to prove the
exponential decay of the higher order derivatives. Therefore, we introduce in
the following lemma a new notation, cf. [11, Section 7.6].

11.1. Definition. (i) For arbitrary tensors S, T denote by S ?T any linear
combination of tensors formed by contracting S over T . The result can be a
tensor or a function. Using this notation we do not distinguish between S ?T
and cS ? T , where c is a constant.
(ii) The symbol A represents the second fundamental form of the hypersur-

faces M(t) in N . Ã = Aeγt is the scaled version and DmA resp. DmÃ
represent the covariant derivatives of order m.
(iii) For m ∈ N denote by Om a tensor expression defined on M(t) that
satisfies the pointwise estimates

(11.1) ‖Om‖ ≤ cm(1 + ‖Ã‖m)pm ,

where cm, pm are positive constants and

(11.2) ‖Ã‖m =
∑
|α|≤m

‖DαÃ‖.

Moreover, the derivative of Om is of class Om+1 and can be estimated by

(11.3) ‖DOm‖ ≤ cm(1 + ‖Ã‖m)pm(1 + ‖Dm+1Ã‖)
with constants cm, pm.
(iv) The symbol O represents a tensor such that DO is of class O0.

11.2. Remark. We emphasize that

(11.4) DmO0 = Om ∀m ∈ N.

11.3. Lemma. We have

(11.5) D(uf
′
) = e−2γtO.

Proof. Differentiation and adding a zero yields

(11.6) Di(uf
′
) = uif

′
(1− γ̃f

′
u) + uui(γ̃|f

′
|2 + f

′′
)

and hence the claim in view of (0.10), (0.11) and (0.12). �

Now, we state the main result of this section, a proof of which can be found
in [19, Chapter 9].

11.4. Theorem. The quantities 1
2‖D

mÃ‖2 are uniformly bounded during
the evolution for all m ∈ N∗.
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12. Convergence of ũ and the behaviour of derivatives in t

The proofs of this chapter are identical to those in [19, Section 10] and are
omitted. Firstly, we state that ũ converges when t tends to infinity.

12.1. Lemma. ũ converges in Cm(S0) for any m ∈ N, if t tends to infinity,

and hence DmÃ converges.

The following technical lemmas proof parts of the claim in Theorem 0.5.

12.2. Lemma. Let (ǧij) be the induced metric of the leaves M(t) of the
ISCF, then the rescaled metric

(12.1) e
2
n tǧij

converges in C∞(S0) to

(12.2) (γ̃2m)
1
γ̃ (−ũ)

2
γ̃ σ̄ij ,

where we are slightly ambiguous by using the same symbol to denote ǔ(t, ·)
and lim ũ(t, ·).

12.3. Lemma. The leaves M(t) of the ISCF get more umbilical, if t tends
to infinity, namely

(12.3) F̌−1|ȟji −
1

n
Ȟδji | ≤ ce

−2γt.

In case n+ ω − 4 > 0 we even get a better estimate, namely

(12.4) |ȟji −
1

n
Ȟδji | ≤ ce

− 1
2n (n+w−4)t.

13. Transition from big crunch to big bang

In this chapter we want to present the concept of a transition from big crunch
to big bang. The following is literally adapted from [11, Section 7.8]. Only
some formulas had to be modified.
We shall define a new spacetime N̂ by reflection and time reversal such that
the ISCF in the old spacetime transforms to the ISCF in the new one. By
switching the light cone we obtain a new spacetime N̂ . The flow equation in
N is independent of the time orientation. We extend F , which is defined in
the cone Γ2 ⊂ Rn, to Γ2 ∪ (−Γ2) by setting

(13.1) F (κi) = −F (−κi)
for (κi) ∈ −Γ2. The flow equation can then be written as

(13.2) ẋ = − 1

F̆
ν̆ = −(− 1

F̆
)(−ν̆) =: − 1

F̂
ν̂,
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where the normal vector ν̂ = −ν̌ is past directed in N̂ and the curvature
F̂ = −F̆ negative. Introducing a new time function x̂0 = −x0 and formally
new coordinates (x̂α) by setting

(13.3) x̂0 = −x0, x̂i = xi,

we define a spacetime N̂ having the same metric as N – only expressed in
the new coordinate system – such that the flow equation has the form

(13.4) ˙̂x = −F̂−1ν̂,

where M(t) = graph û(t), û = −u, and

(13.5) (ν̂α) = −ṽe−ψ̃(1, ûi)

in the new coordinates, since

(13.6) ν̂0 = −ν̆0 ∂x̂
0

∂x0
= ν̆0

and

(13.7) ν̂i = −ν̆i.

The singularity in x̂0 = 0 is now a past singularity, and can be referred to as
a big bang singularity. The union N ∪ N̂ is a smooth manifold, topologically
a product (−a, a) × S0 – we are well aware that formally the singularity
{0} × S0 is not part of the union; equipped with the respective metrics and
time orientations it is a spacetime which has a (metric) singularity in x0 = 0.
The time function

(13.8) x̂0 =

{
x0, in N

−x0, in N̂

is smooth across the singularity and future directed. N ∪ N̂ can be regarded
as a cyclic universe with a contracting part N = {x̂0 < 0} and an expanding

part N̂ = {x̂0 > 0} which are joined at the singularity {x̂0 = 0}. We shall
show that the ISCF, properly rescaled, defines a natural C3-diffeomorphism
across the singularity and with respect to this diffeomorphism we speak of a
transition from big crunch to big bang. The inverse ISCF in N and N̂ can
be uniformly expressed in the form

(13.9) ˙̂x = −F̂−1ν̂,

where (13.9) represents the original flow in N , if x̂0 < 0, and the flow in
(13.4), if x̂0 > 0. Let us now introduce a new flow parameter

(13.10) s =

{
−γ−1e−γt, for the flow in N

γ−1e−γt, for the flow in N̂

and define the flow y = y(s) by y(s) = x̂(t). y = y(s, ξ) is then defined in
[−γ−1, γ−1]× S0, smooth in {s 6= 0}, and satisfies the evolution equation

(13.11) y
′

:=
d

ds
y =

{
−F̂−1ν̂eγt, s < 0

F̂−1ν̂eγt, s > 0.
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The flow y is certainly continuous across the singularity, and also future
directed, i.e., it runs into the singularity, if s < 0, and moves away from it, if
s > 0.
As in the previous sections we again view the hypersurfaces as embeddings
with respect to the ambient metric

(13.12) ds̄2 = −(dx0)2 + σij(x
0, x)dxidxj .

The flow equation for s < 0 can therefore be written as

(13.13) y
′

= −F−1νeγt.

13.1. Theorem. The flow y = y(s, ξ) is of class C3 in (−γ−1, γ−1) ×
S0 and defines a natural diffeomorphism across the singularity. The flow
parameter s can be used as a new time function.

A detailed proof of Theorem 13.1 can be found in [11, Section 7.8] or in [19,
Section 11].
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