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ABSTRACT. We consider the inverse scalar curvature flow (ISCF)
(0.1) t=—-F"lv

in spacetimes N with a special future singularity and some additional
structural conditions. We prove the existence of the ISCF for all times,
and prove convergence results for the leaves of the flow. Finally, we
show that the properly rescaled flow in NV has a natural smooth exten-
sion across the singularity into a mirrored spacetime N. With respect
to that diffeomorphism we speak of a transition from big crunch to big
bang.

ZUSAMMENFASSUNG. Wir betrachten den inversen skalaren Kriimmungs-
fluss (ISCF)
(0.2) i=—F"1y

in einer Raumzeit N, welche eine spezielle Zukunftssingularitdt be-
sitzt und einige weitere Struktureigenschaften erfiillt. Wir zeigen die
Existenz des ISCFs fiir alle Zeiten und beweisen Konvergenzresultate
fir die Blatter des Flusses. Nach geeigneter Reskalierung besitzt der
Fluss in N eine natiirliche Fortsetzung tiber die Singularitdt hinweg
in eine gespiegelte Raumzeit N. Beziiglich dieses Diffeomorphismusses
sprechen wir von einem Ubergang von Big Crunch nach Big Bang.
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0. INTRODUCTION

We start this section with a short introduction into globally hyperbolic space-
times. The following definition, assumption, and facts stated in the remarks
below can be found in [11, Chapter 7.1].

0.1. Definition. A globally hyerbolic spacetime N, dim N = n-+1, is said
to be a asymptotically Robertson-Walker (ARW) with respect to the future,
if a future end of N, N, can be written as a product Ny = I x Sy, where
I =[a,b), Sy is a Riemannian space, and there exists a future directed time
function 7 = 2 such that the metric in N, can be written as

(0.1) ds* = 627[’{—(cl9n0)2 + 045(z0, 2)dz'd2? },
where Sy corresponds to z° = a, 1/; is of the form

(0.2) U(zo,2) = f(20) + (2, ),

and we assume that there exists a positive constant ¢y and a smooth Rie-
mannian metric &;; on Sp such that

(0.3) lim ¥ = ¢
T—b
(0.4) llir% 04 (T, 2) = 7;5(x)
(0.5) lim f(1) = —oc.
T—b
0.2. Remark.

(i) W.lo.g. we will assume that ¢o = 1.

(ii) The first two limits have to be understood to be uniformly in all
derivatives of arbitrary order with respect to space and time.

(iii) As a consequence of (ii) N is close to the Robertson-Walker metric
0.6 d3? = 2 {—(dz®)? + 7ii(xg, x dx'da? ,
J

which means that all derivatives of arbitrary order with respect to
space and time of the conformal metric e=2f§,4 converges uniformly
to the corresponding derivatives of the limit metric

(0.7) ds? = —(da°)? + &;;(w)dx'da’.

(iv) In our setting Robertson-Walker-metric does not mean necessarily
that the spacelike metric (&;;) is a metric of constant curvature.

Proving our main result, we have to have to impose some additional structural
conditions on f.



0.3. Assumption.

(0.8) —f >o.

(ii) There exists w € R, n+w — 2 > 0 such that
(0.9) lim |f 2e™ =2/ = m > 0.

T—b

(iii) If we set ¥ = 1(n +w — 2), then there exists the limit

(0.10) lim (£ +71/)-
T—b

(iv)
(0.11) D"+ A P < emlf " Ym 21

(v)
(0.12) DI f] < emlf ™ ¥m > 1

(vi) Proving the C3-regularity result of the transition flow, cf. Theo-
rem 13.1, we have further to impose that the following limit exists

(0.13) lim (£ + 5111 .

0.4. Remark.

(i) From Corollary 1.4 we infer that the range of 7 is finite, so that we
will assume w.l.o.g. that I = [a,0).

(ii) If Sp is compact, then we call N a normalized ARW spacetime, if

(014) / \/detarij = |Sn|
So

(iii) In the following, Sp is assumed to be compact. W.lLo.g. we will
assume that N is a normalized ARW spacetime.

We consider the scalar curvature function F' = o2 and assume My C N1 to
be a spacelike F-admissable hypersurface. W.l.o.g. we assume in this paper
that F is normalized such that F(1,...,1) = n. Then, we look at the inverse
scalar curvature flow (ISCF) given by the evolution problem

. 1
T=—=v,

(0.15) F
z(0) = o,

where x( is the embedding of an initial hypersurface My and v denotes the
past directed normal. Then, we can express the flow hypersurfaces M (t) as
graphs over Sy

(0.16) M (t) = graphu(t, -)



and the main result can be formulated as:

0.5. Theorem. Let N and F satisfy the above assumptions and let My C
N7 be a smooth, closed, spacelike and F-admissable hypersurface, where we
assume that

(0.17) Nt =[—¢0) x So,

with

(0.18) € =€¢((N, gap),supt) >0
Mo

small. Then, there holds:

(i) The inverse scalar curvature flow with initial hypersurface My exists
for all times.

(i) Set @ = ue’, where vy = %'Ny, then there exist positive constants ¢y, ca
such that

(0.19) —c Su< —e <0,

and @ converges in C*°(Sy) to a smooth function, if t goes to infinity.
(iii) Let (g;j) the induced metric of the leaves M(t), then the rescaled
metric

(0.20) g,
converges in C*(Sp) to
~ 1 2 _
(0.21) (ym)7 (=) 7 73;.

(iv) The leaves M(t) get more umbilical, if t tends to infinity. Namely,
there holds

1 )
(0.22) F Yl — —H§)| < ce™ .
n

In case n+w —4 > 0, we got even a better estimate

1

(0.23) hi — EH55| < cemm (et

In [9] resp. [19] the theorem was proved for F' = H resp. F to be a curvature
function of class (K*). In this paper we go along the lines of both papers as
far as possible, with the exception of Section 5 and Section 6, where we use
[4].

F = 05 is not of class (K™) but satisfies at least the so-called (K*)-condition,
cf. (2.20), so that almost all proofs in [19] hold in our setting either. Using
the special structure of F; , cf. (2.18), some proofs are even easier. Since
the flow hypersurfaces of the (ISCF) are not convex, we have to impose that
€ in (0.18) depends from sup,,, 9, to ensure that the Riemannian curvature
tensor fulfills the important condition (7.40).



1. NOTATION, DEFINITIONS AND PRELIMINARY RESULTS

In this section we want to introduce some general notation and basic facts
concerning with spacelike hypersurfaces in Lorentzian manifolds. We follow
the notation introduced in [8]. Confer further [10, Section 12] for a more
detailed treatment.

Let N = N™*! be a Lorentzian space and M = M™ be an embedded spacelike
hypersurface

(1.1) x: M —N

with differentiable timelike normal v.

Geometric quantities in M will be denoted by using greek indices which range
from 0 to n, i.e. we will write (g;;) resp. (R;;x) for the metric resp. the Rie-
mannian curvature tensor of M. Geometric quantities in N will be denoted
by using latin indices which range from 0 to n + 1. If there is any ambigu-
ity between quantities of M and NN possible, we will use an overbar for the
corresponding quantities of N, i.e. we have (v%) for the normal of M, and
(Gap) resp. (Rapys) for the metric resp. Riemannian curvature tensor of N. If
nothing else is stated, the summation convention is used. Local coordinates

in M resp. N will be denoted by (£%) resp. ().

Partial differentiation will be marked by a comma, while covariant differen-
tiation will be marked by a semicolon. In the later case we will commonly
leave the semicolon out if no misunderstandings are possible. Thus, to give
examples, let f: N — R be a function, then we would usually write (f,) for
the gradient and (f,g) for the Hessian of f, but for the covariant derivatives
of the Ricci tensor (Rn3) we would write Rag.y, Ragiye, etc. We further
introduce the indication R.g; = Rag;.yxz with analogue generalizations to
other quantities of N.

Now, we state four fundamental equations which describe the geometry of an
embedded hypersurface. In local coordinates we have the Gaufl formula

(1.2) JZ% = hijl/a,
the Weingarten equation
(13) v = hfag,

the Codazzi equation

(1.4) hijik = hikyj = Raprov™z) a]z,

and finally the the Gaufl equation

(1.5) Rijkl = _{hikhjl - hilhjk} + Ragwsx?xwax?.

The Gauf} formula can be understood as an implicit definition of the second
fundamental form (h;;) of a hypersurface, where the sign of (h;;) depends
from the direction of the normal v. In this paper we will always choose the



past directed normal. We emphasize that z¢, v

ijs Vi, ete. are full tensors, ie.

we have
i _
(1.6) af = 2%, — Ihag + Ig )],
where I 113 resp. I 55 represent the Christoffel symbols of M resp. N.

In our setting IV is a topological product R x Sy, where Sy is a compact
Riemannian space, and there exists a Gaussian coordinate system

(1.7) ds* = 627[’{—(cl9n0)2 + 0ij(2°, z)dz" dz},

see [1, Lemma 2.2], and [2, Theorem 1.1] for a proof. Here, o;; is a Riemann-
ian metric, ¢ a function on N, the (z*) are local coordinates for Sy, and ¥ is

the future oriented time coordinate, which means that z° increases on future
directed curves.

Next, we will cite a result which shows that in our situation spacelike hy-
persurfaces M can be written as a graph over S, cf. [18, Lemma 3.1] for a
proof.

1.1. Proposition. Let N be globally hyperbolic, So C N a compact, con-
nected Cauchy hypersurface, and M C N a compact, connected spacelike
hypersurface of class C™,m > 1. Then, M = graph u|s, with u € C™(Sp).

Thus, let M = graphu, s be a spacelike hypersurface.
(1.8) M ={(2°2): 2° =u(z), €Sy},
then the induced metric (g;;) is given by

(1.9) gij = € {—uju; + 0y},
while its inverse (¢*/) = (g;;) ! has the form

. i
1.10 2y g LWy
(1.10) g = e+ L

where we used the following notation
(0") = (035)"
(1.11) u' = ou;
v? =1—oYuu; =1 —|Dul?.

We emphasize that a hypersurface M is spacelike iff v2 > 0.

The covariant resp. contravariant versions of the past directed normal vector
of a graph have the form

(1.12) (Va) = 5e (1, —uy),



resp.

(1.13) V) = —ve (1, u'),
where we used the notation & = v—!.

Thus, considering the component « = 0 in the Gaufl formula we obtain
~5 770 70 0 0

(1.14) e w’ljhij = Uy — Foouiuj — Fojui — FOiuj — Fz‘j7

where all derivatives are taken with respect to g;;. For the second fundamen-

tal form h;; of the slices {2° = const.} we obtain

.

(1.15) K A

= — 304 — Yoij,

Here, differentiation with respect to the time coordinate 20 is marked with a

dot.

+
For later purpose we define a Riemannian reference metric 9,4, which is for
a given Lorentzian metric gog, cf. (1.7), defined by

+ 7 . .

(1.16) Gop dz®dzP = 62’1’{(131002 + ojjdz’da’ }.

For the corresponding norm of a vectorfield n we will write
Jr

(1.17) Il = (9ap n*n”)*2,

+
and the corresponding induced metric will be denoted by 9;;.

An easy calculation leads to the following result, which will be used later, cf.
[8, Lemma 2.7] for a proof.

1.2. Lemma. Let M = graphu be a spacelike hypersurface in N, p € M,
and & € T,(M) a unit vector, then

(1.18) €'l < e(1+ we’]) < cb.

Finally, we draw a few immediate conclusions from our assumptions on f.
The proofs can be found in [11, Section 7.3].

1.3. Lemma. Let f € C?([a,b)) satisfies the conditions

(1.19) lim f(1) = —oc0
T—b
and
(1.20) lim|f |?e2" =m,
T—b

where ¥ and m are positive, then b is finite.



1.4. Corollary. We may and shall therefore assume that b = 0, i.e., the
time interval I is given by I = [a,0).

1.5. Remark. A simple application of L’Hospital’s rule yields

eve

(1.21) lim — = —y/m.

T—=0 T

1.6. Lemma. There holds
(1.22) f/eﬁ‘PJr\/ENCTz,
where ¢ is a constant and where the relation
(1.23) ¢ ~cr?
means
t
(1.24) lim £0) _
T—0 T

1.7. Lemma. The asymptotic relation
(1.25) f'r—1~er?

1s valid.

2. CURVATURE FUNCTIONS

In this section we firstly give a short introduction to general curvature func-
tions. We follow the description in [8]. A more detailed treatment can be
found in [11, Section 2.1]. Let I' € R™ be an open, convex and symmetric
cone which contains the positive cone I'y = {(k;) : k; > 0} and f € C>(I)
a positive, symmetric and strictly monotone function.

Let Sr be the space of symmetric matrices the eigenvalues of which belong
to I'. Then, we define define a function ' on Sy by setting

(2.1) F(h) = f(k),

where the x;, 1 <1¢ < n, are the eigenvalues of (h;) € I'y. F is well defined
and evidently continuous and even of class C™® if f has this property, cf.
[11, 2.1.10 Theorem).

In our setting F' resp. f will be evaluated at the mixed tensor h; = g"*hy;
resp. the principal curvatures (k;) of a spacelike hypersurface M. This
approach presumes that M is admissible, i.e. the eigenvalues of h; belong in
every point x € M to the cone I'.



It is also possible to consider F' depending on the covariant tensors (h;;) and
(9i)

(2.2) EF(h}) = F(hij, gij)-

In the rest of the paper we will write always write F' independently of the

considered argument, but we use different notations for the derivatives of F’
We define

. oOF

ij .
(2.3) FY . ahij7

; oF
2.4 Fl o=
(2.4) ! g
and

_of

(2.5) F; = oy’

Then, F% ia a contravariant tensor of order two, while F f is a mixed tensor.
Choosing a special coordinate system such that h;; is diagonal, then, F**/ is
diagonal either and we have

_9f

n 8/@‘.

cf. [11, 2.1.9 Lemma]. Differentiating F' covariantly will be marked with a
comma

(2.6) F

(2.7) Fy. := Fjh" .
For the second derivative of F we write

y 9°F
2.8 PR = —
(2:8) Oh;j Ohyy’

and there holds
ij,kl 0°F
(2.9)  F“"niinu = Z S A il + Z
o Ok; Ok; oy

where S is the space of all symmetric matrices. If F' = F(k;) is concave, the
second summand is non-positive and hence F' = F'(h;;) is concave either, cf.
[11, 2.1.23 Proposition].

F

L —
R —

F,
L(ni)? <0 VneSs,
Kj

We state now a well-known and very useful property of general curvature
functions, cf. [11, 2.2.19 Lemma)].

2.1. Lemma. Let F € C*(I") N C%(I") be a strictly monotone, concave
curvature function, positively homogeneous of degree 1, then

(2.10) Zn:Fi(ﬁ) > F(1,...,1),

where the convex cone I' is supposed to contain I .
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Now, we turn to more special curvature functions and define as very impor-
tant examples the elementary symmetric polynomials.

2.2. Definition. For 1 < k < n define

(2.11) Hy(k;) := Z Kiy -« Ky -

11 < <ig

Hy, is said to be the elementary symmetric polynomial of order k. The Hj
are defined in R™, however, they are in general not strictly monotone in all
of R™. Therefore, we define

2.3. Definition. For fixed 1 < k < n let I'; be the connected component
of

(212) {(Hl) cR": Hk(lii) > 0}

containing the positive cone.

2.4. Lemma. The I, are convex cones and an equivalent characterization
of the Iy, is given by

(213) I, = {(Kii) ceR": Hl(lﬂli) > O,HQ(I%) >0,.. ,Hk(lﬁ?l) > 0}
Proof. A proof can be found in [16, Section 2]. O

2.5. Lemma. The Hy are strictly monotone in Iy, and the k-th roots
1
(2.14) op = H}

are also concave.

Proof. Confer [16, Lemma 2.4] for the monotony and [20] for the concavity.
(Il

In this paper we consider the scalar curvature function F' = o5. As shown
above, F' = o9, defined in I3 , is strictly monotone, concave and positively
homogeneous of degree one. We list now some more properties of I's and
F = 05. We emphasize that o5 is not normalized in the following lemma in
opposite to the assumptions in this paper.
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2.6. Lemma. For (k;) € Iy and F = o9 there holds

(2.15) H >0,
(2.16) |A]? < H?,
(2.17) F<tp
: < 5
1
(218) Fz = *(H - :‘{7;) > 0,
F
F
2.1 F,>—,
(2.19) 7
and,
= 1
2.20 Fik?> ~FH.
(220) LUES

Proof. We start with
1 1
(2.21) Hek; < §H2 + §\A|2,

which is obviously valid and equivalent to (2.19). The proof of (2.20) uses
(2.19) and

(2.22) L <|AP
n

3. THE EVOLUTION PROBLEM
We consider the inverse scalar curvature flow

(3.1) F
x(0) = o,

where F' = o9, v is the past directed normal, z(t) is an embedding and zg is
an embedding of an admissible initial hypersurface M.

This is a parabolic problem, so that short time existence, and hence existence
on a maximal time interval [0, 7*), 0 < T* < 0o, is guaranteed.

In the following three chapters we will prove uniform a priori estimates in
C?, so that uniform estimates in C*“ and therefore long-time existence will
follow automatically.

Before we can prove the a priori estimates, we need the evolution equations
for some important geometric quantities. The proofs can be found in [11,
Section 2.3, Section 2.4].
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3.1. Lemma. The metric, the normal vector and the second fundamental
form of M(t) satisfy the evolution equations

. 2
(3.2) 9ij = _Fhija
. ij 1
(3.3) v=g ﬁFixj7
hJ 1 J 1 kpJ 1 - a B y,..8 kj
(3.4) h] = (_F)’ + Fhl hy, + FRQ;W;V x; v xy g™,
. 1 1 1. .
(3.5) hij = (=5 )ij — fh?hkj + Flapysr"; V7).

3.2. Lemma. The Term % satisfies the equation

N 1 /1 1 1
(36) (F) - ﬁF” <F> B = 7ﬁF2]hikh§: — ﬁF”Raﬁ—ygl/axi V’yIE‘(;.
19

3.3. Lemma. The Term ¥ satisfies the evolution equation

R T 1 2
v — ﬁF”’Uij = — ﬁFUhikh?’U — F’ﬂaﬁl/al/ﬁ
2 1 ..
(3.7) - ﬁF”hﬁx?xf%ﬁ - ﬁF”ﬁamx%?l’a

1
- ﬁF”Ragwsuo‘xfox?nemfgkl,

where 1 is the covariant vector field (1) = elz’(—l, 0,...,0).

3.4. Lemma. The mized tensor hf satisfies the parabolic equation
(3.8)

5 FklRagwg;e{Vamfw;’wfwingmj + v%2?

A
hi‘ﬁF h’g;kl
1 kl ryJ 2 k17 1 kl,rs j
- —ﬁF h’!‘khl hl + Fhl h’k: + ﬁF ? hkl;ih,,.s;
2 = | 4
+ ﬁFklRaﬁ,ﬂ;:cf‘nxfoxfh?g” + ﬁFkl’”hkl;,-hm;]
1 _ . 1 _ .
— ﬁFklRagngfnxfox?hzng” — ﬁFklRag,ﬂ;xfnxngx?hmJ
1 _ ; 2 - . 2 .
— ﬁFklRamguaxgu”x?hf + fRag»ygl/aIi zﬂxfngmj - ﬁFiFJ
1

Y0 €, mj
Jxpxy xrg™ .

F
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3.5. Lemma. Let M(t) = graphu(t) be the flow hypersurfaces, then we
have
(3.9)

. 2 ~ 1 - .. 2 -
U — — Fu;; = Fe—% - ﬁrgo Fiduuj + ﬁF”F& wj +

1

ij 70
P

4. CO-ESTIMATES

In this chapter we show on the one hand that the flow stays in a precompact
region of N for finite time, but on the other hand that the flow leaves any
precompact region of IV if the flow exists for all time. The following results
are from [19], where ideas from [11, Section 6] were used.

4.1. Lemma. Let M, = {z° = 7} denote the coordinate slices. Then,
there exists 79 such that M, is convex for all T > 19.

Proof. The second fundamental form h;; of the M, is given by

(4.1) R = —e P (L™ + o),
of. (1.15).

From the properties (0.3), (0.4), (0.5), and the uniform convergence of the
metric, cf. (0.6) et seq., we deduce that

_ 1 . L
. o . Lok . i
(4.2) Thl)% e oo A 111)% 50" Ok 0 A ll_r% Yo 00,

where we also used for the last convergence that f —s —oo for ¢ — 0, in
view of (0.8) and (0.9). Using these relations we get the claim.

O

In order to prove the main result of this chapter we have to show the existence
of a special time function.

4.2. Lemma. There erists a time function 2° = 7°(2°) and 7 such that
for all T > 7 holds

(4.3) e"F,, =1,

where_e‘z’ 1s the conformal factor of the metric in N with respect to coordinates
(20, 2%), i.e.

(4.4) d5 = 2 {—(di%)? + 5,;(°, x)da’ da’ }.

The time function 20 is strictly increasing, and we have

(4.5) #F({r <2° < 0}) = [0,00).
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Proof. Using the arguments of the previous lemma we conclude that there
exists 71 such that

7 e 1 . . ~ i ’
(4.6) eV Fla, = F(ewh;) = F(—§Ulkakj —d;) > —dof VT >,

where §g > 0 is a constant. With these relations, we infer that there exists
71 such that M, is convex for all 7 > 7. Choosing 77 if necessary large, we
conclude

7 - 1 . < ’
@7) VR, =e"F(h)) = F(—50" a5 —985) > —dof V7>,

where §p > 0 is a constant. Now we define a function ¢ and a new time
function z° by

(4.8) p(r) = —50f/ >0,

and
(4.9) (1) = /T p(s)ds.

Using (0.5) we receive

(4.10) i) = =0o(f(r) — f(r0)) — oo, T —0.
The relation of the conformal factors is given by
- _ 9.0 5.,.0 .
(4.11) o2V — 29 ggo % =2,
Thus, we get
(4.12) VR, =R, o7 > 1,
due to (4.8). O

4.3. Lemma.

(i) For any finite 0 <T < T* the flow stays in a precompact set Qr for
0<t<T.

(ii) The flow runs into the future singularity if it exists for all time, i.e.
with the respect to the above chosen coordinates (3°, %) we have
(4.13) lim infu(t,-) = co.

t—oo So

Proof. We choose coordinates (2°,z%), where (2°) is the time function the
existence of which was shown in the previous lemma. Now, let M(t) =
graphu(t, -) be the flow hypersurfaces and define

(4.14) p(t) = supu(t,-).

So



Tt is a well-known fact that ¢(t) is Lipschitz continuous and for a.e. 0 <t < T
differentiable by Rademacher’s theorem, cf. [11, 6.3.2 Lemmal],

0
where z; is the point where the supremum is attained, i.e.

(4.16) supu(t,-) = u(t, x¢).
So

Applying the maximum principle we deduce that in z; holds

(4.17) hij < hij,

and thus we have in view of the monotony of F' in x

(4.18) A, <F,.

Now, we look at the component o = 0 of the flow equation, cf. (3.1),

v
U= — s
e’/’F|M

(4.19)

here, u is a a total derivative, i.e.

0 .
(4.20) i = 8—1; +wgit,

and we get for the partial derivative the relation

(4.21) gu _ v
ot eV F,,

Inserting (4.12) and (4.18) we get in x;

8u<1

(4.22) = <

)

and using (4.15) we deduce further
(4.23) <0+t YO<t<T,

and hence the claim of (i). The claim of (ii) can be proven similarly by
defining ¢ by

(4.24) o(t) = infu(t, ).

So
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5. Cl-ESTIMATES

In this chapter we want to prove the C''-estimates for the (ISCF). With the
exception of some smaller modifications we are able to apply the arguments
of the corresponding result for the (SCF) in [4]. But, we want to emphasize
that the main achievement for the Cl-estimates was done by Gerhardt in [8,
Proposition 4.8]. For the convenience of the reader we will present the modi-
fied proof of [8, Proposition 4.8] without mentioning modifications explicitly.
We start with four lemmas, cf. [8, Section 4] for a proof.

5.1. Lemma. The composite function
(5.1) Y= et

where p, A are constants, satisfies the equation

- L ij 2 —~ u 1 %] T u
P — ﬁchpij =3¢ Youre <p+ﬁFjuiuj IO uh ey

1 ij B u 1 i 7 u
(5.2) +2ﬁFJuiF(?jp)\e’\ gaJrﬁFjFZ%u)\e’\ ®

1
-1+ ueA“]ﬁF”uiuj pAZ e o,

5.2. Lemma. Let {2 C N be precompact. As long as the flow stays in (2
there exists a constant ¢ = ¢({2) such that for any positive function 0 < € =
e(z) on Sy and any hypersurface M(t) of the flow we have

(5.3) vl < e,

(5.4) g9 < o',

(5.5) F9 < F¥gu g9,

(5.6) | P9 RS ) nag] < gF”hfhkﬂ + 2—€F”gijf;3,
(5.7) |[F 0] ) v®| < c0*F gy,

5.8 FYR, 5V°‘xﬁx7x‘§» i gt < ctdFY g, ;.
By ET5NeXy J

3
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5.3. Lemma. Let {2 C N be precompact and M C {2 be a graph over Sy,
M = graphu and € = e(z) a function defined on Sy, 0 < € < 4. Let ¢ be
defined through

(5.9) p=e",
where 0 < p and X\ < 0. Then there exists ¢ = ¢(§2) such that

2|F90ipj < cF¥gijo* | AlueX o + (1 — 2€) b hyjip
(5.10)

1 3
+ mF”mwu%@e”‘“ﬁgp.

5.4. Lemma. Let {2 C N be precompact. As long as the flow stays in (2
there exists a constant ¢ = ¢(§2) such that for any positive function 0 < € =
e(z) < 1 on Sy and any hypersurface M(t) of the flow the term U satisfies an
evolution inequality of the form

A R 1o el
(511) v — ﬁF]vij S —(1 — E)Ethfhij-F gﬁF jgij’US.

Proof. To estimate the last three terms in the evolution equation of v, cf.
(3.7), we apply (5.6), (5.7) and (5.8). The second term in (3.7) which is
associated with F~! is estimated by

—Fna[guayﬁ = —ﬁF”hijnagyo‘uﬁ

e 1 .. . 1
iﬁF”hfhkjerSE 1ﬁF”gijv Y(nasrov?)?
el .. ST T S
iﬁthfhkj'U‘i’CG lﬁF]gij’Us.

(5.12)

IN

IN

Now, we are able to prove the C''-estimates.

5.5. Proposition. Let {2 C N be precompact. Then, as long as the flow
stays in {2 the term © remains uniformly bounded

(5.13) 0 < c=c(f2,sup ).
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Proof. We show that the function

(5.14) w = g,

© as in (5.1), is uniformly bounded, if we choose
(5.15) O<pu<l and << -1,

appropriately, and assume furthermore, without loss of generality, that u <
—1, for otherwise replace u by (u—c), ¢ large, in the definition of ¢. With the
help of Lemma 5.1, Lemma 5.3 and Lemma 5.4 we derive from the relation

. L oij < Lo~ : L s ~ ij
(5.16) @ — 5 FYwij = [0 — 25 FY0i5lp + [0 — 15 FYisl0 — 75 FY0ip;
the parabolic inequality

R G 1 ~ B IR
W — g Fwiy < —e g YR higp + cle ™ + N e 5 FV gisvp
(5.17) + r 1]LF”U1'U u2A2ePMug0
' 1— 2 F?2 J
1 Fij /\2 Au ~
) UiUjUA"E" VP,
where we have chosen the same function € = e(z) in Lemma 5.3 resp.

Lemma 5.4. We claim that w is uniformly bounded provided g and A are
chosen appropriately. We shall use the maximum principle, therefore let
0<T <T* and xyg = z(to, &) be such that

(5.18) sup sup w = w(to,&o).
[0,T] M (t)

To exploit the good term
1 .
(5.19) - eﬁF”h?hkjw,
we use the fact that Dw(zg) = 0, or, equivalently
—0; = u)\e’\“ﬁui

(5.20)

= ewhfuk — NV Ty,

Next, we choose a coordinate system (£%) such that in the critical point

(5.21) 9ij = 51‘3' and hf = niéf,
and the labelling of the principal curvatures corresponds to
(5.22) K < kg <o < Ky,

Then, we deduce from (5.20)
(5.23) eV riu; = ,u)\eA”f)ui + naﬁua:ﬂ?.

Assume that 9(xzo) > 2, and let i = ip be an index such that

1
(5.24) g, [* > EIIDUIIQ.
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Setting (e!) = 8?’70 and assuming without loss of generality that 0 < u;e’ in

o, we infer from Lemma 1.2
e¢niouiei = u)\e’\"@uiei + naﬁz/ax?ei
(5.25) .
< preMouget + ev?,
and we deduce further in view of (1.10), (1.11) and (5.24) that
1
(5.26) ki, < [uAeM + e < 5;1)@“176“”7

if |\ is sufficiently large, i.e. k;, is negative and of the same order as v. Next,
let us estimate the crucial term in (5.19). Using the particular coordinate
system (5.21), as well as the inequalities (5.22), together with the fact that
K4, is negative, we conclude
i() 7;0
(5.27) — FUlfhgy < =Y Fis} <= Flxj,.
i=1 i=1
F is concave, and therefore, we have in view of (5.22)
(5.28) Fl >F} > > Fp,

cf. [3, Lemma 2]. Hence, we conclude

0 . 1 .
(5.29) “Y <R <--3 F.
i=1 i—1
Using (5.26), (5.27) and (5.29) we deduce further
(5.30) —FUn¥hy; < —cFY g, u2 \2e2M 2,
A

Inserting this estimate in (5.17), with e = e~ ", we obtain
0 < —cF9 g2 N2eX 53 p + cFY g, | M| e 53

(5.31) 2 ;) -

+ 1—2 Fljuiuqu)\ze)‘“ﬁw — F”uiuju/\QeA"f)gp

where |A| is chosen so large that

1

32 A<

(5.32) e <1
Choosing p = % and |A| sufficient large, we see that the right-hand side of

the preceding inequality is negative, contradicting the maximum principle,
i.e. the maximum of w cannot occur at a point where v > 2. Thus, the
desired uniform estimate for w and hence v is proved. O

5.6. Remark. Notice that the proof of the preceding C'-estimate is valid
for any curvature function F' that is monotone, concave and homogeneous of
degree 1.
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Let us close this section with an interesting observation that is an immediate
consequence of the preceding proof, we have especially (5.27) and (5.29) in
mind.

5.7. Lemma. Suppose F = o9 is evaluated at a point (k;) and assume
that ks, is a component that is either negative or the smallest component of
that particular n-tuple, then

n 1 n
(5.33) ;Fm? >~ ;meo.

6. C2-ESTIMATES

We want to prove that the principal curvatures of the flow hypersurfaces are
uniformly bounded. Firstly, we have to show that F' is bounded from above.
Therefore, we need the following Lemma.

6.1. Lemma. The term log F' satisfies the evolution equation

, 1 .. 1 .. 1 -
6.1) (log F) — ﬁF” (log F);; :ﬁF”hikhf + ﬁRamgu‘)‘x?u”’x‘;

1,
~ = FIFF;.

6.2. Lemma. Let 2 C N be precompact and assume that the flow stays in
2 for 0 <t < T*, then there exists a constant ¢(§2) such that

(6.2) F < c(9).

Proof. We define

(6.3) p=logF
and set
(6.4) w = @+ AD.

We claim that w is bounded, if A is chosen appropriately. We shall use the
maximum principle, therefore let 0 < T < T*, and z¢ = x(to, o) be a point
in M () such that

(6.5) w(to, o) = sup sup w.
(0,77 M (%)

Applying the maximum principle we receive

A ii i
(6.6) 0<(1- §)F Thighl + c(1+ X)FY g5,
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in view of Lemma 5.4. Choosing A larger than 4, we obtain with (2.18) and
(2.20)

1
(6.7) 0<——FH+ cF~'H.

Thus, we have an a priori estimate for F'. (I

To prove the following proposition we have to assume, that a strictly convex
function y exists.

6.3. Remark. Let x be the strictly convex function. Its evolution equation
is

. 1 i 2 a 1 i o
6.8 X = g P = = Fxar® = g5 F'xasel ]
(6.8) 2 ., L i
< —FXQV — COEF Gij»

where ¢y > 0 is independent of ¢.

If we are close enough to the future singularity, the existence of a strictly
convex function is automatically satisfied.

6.4. Remark. Due to [11, Lemma 1.8.3] and the convexity of the flow hy-
persurfaces, cf. (4.1) and the following lines, the existence of a strictly convex
function x € C2(§2) for a relative compact subset {2 of N is guaranteed, if
2 lies sufficiently far in the future of N, i.e. |inf 2°| < € with € > 0 chosen
sufficiently small.

6.5. Proposition. Let 2 C N be precompact and assume that the flow
stays in 2 for 0 <t < T™*, then there exists a constant ¢(§2) such that

(6.9) ki <c(f2), 1<i<n.

Proof. Let ¢ and w be respectively defined by
(6.10) ¢ = sup{ hygn'n’: [l =1},
(6.11) w =log{ + Ax,

where A > 0 is supposed to be large. We claim that w is bounded, if A is
chosen sufficiently large.

Let 0 < T < T*, and 29 = x¢(tg), with 0 < tg < T, be a point in M (¢o) such
that

(6.12) supw < sup{ sup w: 0 <t < T} =w(xg).
My M(t)
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We then introduce a Riemannian normal coordinate system (£°) at x¢ €
M (tp) such that at xg = x(to, &) we have

(6.13) gij =0;; and (=h.
Let 77 = (7}') be the contravariant vector field defined by
(6.14) ii=(0,...,0,1),
and set
(6.15) § = Ml
i1V

¢ is well defined in neighbourhood of (to, &o)-

Now, define @ by replacing ¢ by ¢ in (6.11); then, w assumes its maximum
at (to,&o). Moreover, at (tg,&y) we have

(6.16) C=hn,

and the spatial derivatives do also coincide; in short, at (¢g, &) f satisfies the
same differential equation (3.8) as h]'. For the sake of greater clarity, let us
therefore treat h) like a scalar and pretend that w is defined by

(6.17) w = logh; + Ax.

We assume that the section curvatures are labelled according to (5.22).
At (tg,&0) we have w > 0, and, in view of the maximum principle, we deduce
from (2.9), (3.8), (5.28) and (6.8)

0 < —3F9hpihf +2F ki, + cF9gi5 + (14 A\)cF — Ao FY gi;
2

Rp — R1

n

Z(Fn - FZ)(hnz,n>2(hZ)_17

=1

(6.18)

+ F"(log hyy)i(log hyy); +

where we have estimated bounded terms by a constant ¢, and assumed that
h and A are larger than 1. We distinguish two cases

Case 1. Suppose that

(6.19) k1] > €1hin,

where €; > 0 is small. Then, we infer from Lemma 5.7
(6.20) Fhgihk > LF9 g0k,

and

(6.21) Fiig,; > F(1,...,1),

for a proof see [11, Lemma 2.2.19)].

Since Dw = 0,

(6.22) Dloghly = —ADx,

hence

(6.23) Fii (log h"): (log h1'); < A2 F' ;.

Hence, we conclude that k,, is a priori bounded in this case.
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Case 2. Suppose that
(6.24) K1 > —€1Knp,

then the last term in inequality (6.18) is estimated from above by

n

2
F —F ‘.n 2/1,n\—2
Trg 2P = R (07)
2 - 2 2
< _ A (2 n
(6.25) < oo ;(Fn E) (B ) (R

+cler) Y (Fi = Fu)ry?,
i=1
where we used the Codazzi equation. The last sum can be easily balanced.
The terms in (6.18) containing the derivative of k]! can therefore be estimated
from above by
n
S Filhya 2 (00)

i=1

1—261
1+261

n

2 % ny—
Fn Z(hnn, )Z(hn) ?
=1

+ -
(6.26) 1426
< 2B 3 (b (H) 2

i=1

= 2)\°F, || Dx|*.
Hence, we infer
0<—iF,K2 +2Fk, + cFYg,;
+ A2cFy, + (1 + N)eF — Ao F g;;.
From (2.18) and Lemma 6.2 we deduce
(6.28) FYgij > chin,

(6.27)

with the boundness of F', we obtain an a priori estimate
(6.29) K, < const,

if A is chosen large enough. Notice that €; is only subject to the requirement
0<er <3 O

With the help of (2.15) we conclude further that there exists a positive con-
stant ¢(Q2) such that

(6.30) ki <e(Q), 1<i<n.

In the next chapter we will show independently of the following results, that
F' is bounded from below

(6.31) F >inf I > 0,
My
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cf. Corollary 7.9, as long as the flow exists. Combining (6.31) with (6.2) we
deduce that there are positive constants ¢; = ¢1(Q) and ¢o = ¢2(Q2) such that

(6.32) 0<c <F<e

as long as the flow stays in a relative compact subset 2 of N. We now look
at the scalar version of the flow as in (5.19)
ou 1

U _ oy~
(6.33) 55 =€ UE

defined in the cylinder
(634) QT* = [O,T*) X S()

with initial value u(0) € C*°(Sp). We deduced hat for T* < oo the flow stays
in a compact subset Q of N and proved uniform C?2-estimates for u. In view
of (6.30) and (6.31) we know that the principal curvatures of the flow stay
in a compact subset of I's. Hence, the differential operator on the right-hand
side of (6.33) is uniformly elliptic in v independent of ¢. Thus, we can apply
the C?*-estimates of Krylov and Safonov and conclude that a maximal T
cannot be finite.

7. RESULTS IN THE CONFORMAL SPACE

Proving the convergence results for the ISCF, we shall for technical reasons
consider the flow hypersurfaces to be embedded in (N, g), where g stands for
the conformal metric

(7.1) ds? = —(dz°)? + 0;;(2°, x)da'da? .

We will write hyj;, gi5,v, etc. for geometric quantities of hypersurfaces in
(N, g) and fLij, Gij, U, etc. for geometric quantities of hypersurfaces in (N, g),
i.e. standard notation now apply to the case when N is equipped with the
the metric in (7.1). We have

(7.2) Gap = ¢**gap

and the second fundamental forms ivﬂ and hf are related by
(7.3) 61/3]“13 = hl + P25,

cf. [11%1'1'11 Proposition|. In accordance with the introduced notation we
define F' by

(7.4) F = F(h)),
and a new function F by setting

(T5)  F(h))=e"F(b) = F(h] = 0f'6] + Yar®) = F(R]),

where ﬁg stands for

(7.6) h] = eVhl = hl — 5 f'8] + hav®d].

(3



However, we will from now on write F instead of F, so that the evolution
equation can then be written as

1
(77) I = —Fl/,
since
(7.8) v =e"Yu.

The flow exists for all time and is smooth, cf. our results in the last chapters.
We want to emphasize that the argument of F' is now h]. These notations
introduced above will be used until the end of this paper.

For further reference we state now some evolution equations, cf. [11, Section

2.3, Section 2.4] for the proofs.

7.1. Lemma. Consider the flow in (7.7), then the metric, the normal vec-
tor and the second fundamental form of M(t) satisfy the evolution equations

. 2
(7.9) 9ij = —7hij
. ij 1
(7.10) v=g ﬁFixj,
1J 1 J 1 kpJ L 5 a, B y,.8 ki
(7.11) bl = (_F)i + fhi hy, + FRQBM;V x; v xh9",
. 1 1 1 -
(7.12) hij = (— )i Fhfhkj + fRaWuaxfwx?.

Looking at the component o = 0 in (7.7), we infer that the total and partial
derivate of u satisfy the equations

. v
ou v
(7.14) E —_— F-

7.2. Lemma. The evolution equation of u has the form
1 . 2

. P ~ [ i
(715) u — 7F]’U,ij = F + ﬁ'UQf/F ]gij —



26

Proof. From the component o = 0 of the Gaufl formula we obtain

(716) uij = *’f}hij + }_Lij

and from (7.6) we deduce

(7.17) — FVhyj = —F —3f' FYg;; + Yav®F g,

where we used the homogeneity of F. Combining these two identities and
the identity in (7.13) lead to the claim. O

7.3. Lemma. The Term v satisfy the evolution equation

o1 1. 1
v — ﬁF”vij = — ﬁF”hikh?v + ﬁRaﬁwuo‘wfz?m?ul
1 1
— ﬁFth]na,@V v — —naguayﬁ
1

(7.18) — S (Finag 2l e) + 2F I nasafal nb)

% A

- ﬁ(—f}f | Dul|*F¥ gij — tpu f F gij)
+ YapV gt F gij + ot R Fi gy,

where n = (Ne) = (=1,0,...,0) is a covariant unit vector field.

Proof. There holds v = n,v®. Differentiating v we deduce

(7.19) By =NapT v 4+ nar?,
(7.20) V4 :naﬁyxfxzyo‘ + naﬁuj‘xf + 'r]a/j(Val/ﬁhij + %V%,
(7.21) O =Napv®i” + 0o’

Inserting the evolution equation of v, cf. (7.10), in (7.21), we receive
.1 1 .
(7.22) 0 == lapr v + o5 P
From the the definition of F' we get
Fi =F"hijoe = onf Fgi; = of urFgy
+ agr T FVgi; + baa hiFVgis.

From these relations the claim follows with the help of the Weingarten equa-
tion, the Codazzi equation and the Gauf} formula. (]

(7.23)

From now on to the end of this paper we will basically follow the descrip-
tions in [11, Section 7] and especially [19]. Now, we present some results,
namely, Lemma 7.4, Lemma 7.5, Lemma 7.6, Lemma 7.7, Lemma 7.8, and
Corollary 7.9, which can be found in [19, Section 4, Section 5]. For the con-
venience of the reader we will present some of the proofs from [19], where the
proof of Lemma 7.8 had to be modified to our situation.
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7.4. Lemma. The following estimates are valid

(7.24) [0 v?| < c0?||nas]l,

(7.25) |F9 0,02} ]| < €0 lnapy 11 F gij,

(7.26) gz < cllnag7®.

For any e > 0 we have

(7.27) |[F9napaga] bS] < ceF highf nasll + cc0*F7 gijlnas|l-
(7.28) |Finag751/aIffE7I§-ul‘ < ci*Fig,;.

In points where v; = 0, there holds

(7.29) [Yarhbul| < cf| Dy|[5®.

Considering the flow hypersurfaces embedded in (N, gag), we can easier take
advantage of the asymptotical behaviour of some quantities. This turns out
to be very useful in the next chapters, but firstly, we are able to prove an
uniform estimate for .

7.5. Lemma. v is uniformly bounded on the maximal existence interval
[0,T%), i.e. there holds

(7.30) sup 0 < ¢ = c(supd, (N, Jap))-
[0,T*) Mo

Proof. For 0 < T < T* assume that there are 0 < ty < T and zy € Sy such
that

(7.31) sup sup ¥ = 0(tg,xo) > 2.
(0,7*] M(t)

Applying the maximum principle we shall deduce that either © < 2 or that
to is a priori bounded. From Lemma 7.3, Lemma 7.4 and the monotony of F’
we deduce

0<— Fijhkjhff; + Finag.ygl/o‘xfx;’x?ul — Fijhijnagyauﬂ
— Fopr®v? — Fijnaml/“xfx] + 2Fijna5x%xfh§
(7.32) +0f | Dul|2F gij + iy f F gij — hapr®ziut Fi gy
— YaxfhiuF F g,
< S FUhg 0+ et (|| + 1) Fgs; + of | Dul?F g

If v > 2, we have

1)2

1
(7.33) |Dul > 72
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and if ¢ty would be very large, then f” would be very large. Since, the
term containing f dominates the other terms, cf. (0.10), we would have a
contradiction. Hence, ¢y and consequently v are a priori bounded. (I

Proving the exponential decay for ||[Du|| and ||A| in the next chapters, we
need a decay property for certain tensors.

7.6. Lemma. (i) Let ¢ € C*([a,0)), a <0, and assume

(7.34) lim ¥ (7) =0 Vk €N,
T—0
then for every k € N there exists a ¢, > 0 such that
(7.35) lo(7)] < exlrl”.
(i) Let T be a tensor such that for all k € N
(7.36) IDFT (20, 2)|| — 0 as 2° — 0 wuniformly in
then
(7.37) Vien Joso Veess T @)l < cla®)”

(i) For T" = (nap) the relation (7.37) is true, analogously for ([nas~l,
DY, I|Ragysn®|l, or more generally for any tensor that would vanish iden-
tically, if it would have been formed with respect to the product metric

(7.38) — (d2")? + jda’dx? .

In the next Lemma we will state how the the Riemannian curvature tensors
of the metric gos and its conformal counterpart g,z are related.

7.7. Lemma. The Riemannian curvature tensors of the metrics jog and
Jap are related by

e_QwRaﬁ'yé :Raﬂ'yé - ga’yl/;ﬂé - gﬁéqzoc'y + gaé'l/;[?'y + gﬁ'ﬂ;aé
(7'39) + ga'ﬂ/)ﬁwé + gﬁédjawv - gatﬂb[ﬂ/}v + gﬁ'ﬂ/)adjé
+ {90698y — GarGss } 1DV,

where the norms and the covariant derivatives on the right-hand side are with
respect to gogs-

Now, we are able to prove an exponentiell growth of the Riemannian curva-
ture tensor.

7.8. Lemma. There exists a constant ¢ > 0 such that for the leaves of the
ISCF in Nt = [—¢,0) x Sy the following estimate holds

(7.40) FI R gy s fﬂxg > f |PeY,

provided € = €((N, ap),supyy, 0) is chosen sufficiently small.
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Proof. Since Ff is positive homogeneous of degree 0, we have

[

(7.41) F} =F]
and hence
(7.42) Fii = 20 s

We have due to Lemma 7.7
ezlﬂpijéaﬁwgbaxfﬁwx? ZFinag,y(sZ/a.’Ei zﬂajg + Fijxfxgz/;gg
(7.43) — FY g5 V7 — Fijxiﬂx%,ﬁié
+ FY gijthathyv®vY + F9 gy || DY,
Using (5.5) we estimate the summands in (7.43)
(7.44) \Fina/g,ﬂ;V”‘x?Iﬂxﬂ < ' Fii gy,

(7.45) F"jz?:z:?d;g(; = Fijuiujf” + Fijx?xgwg(g > Fijuiujf” — cf)ZFijgij,

(7.46) — Fgiithany v > =02 Fi gy f — ct?Fi g5,
(7.47)
— Pl adss = — Flugu;(vo + ) — FIap; — 2FTujhi (o + f)
> — Flluu;(vo + f)? = ol f [°F gy,

(7.48) Fgithoyv®v? > 02 (o + )2 F 9 gi; — | f | F gy,

Figi|Dy|? = = (f +10)2F gij + o 1pip; F g
> = (f + ) Fgij — cFgy.
Using the estimate w;u; < (9% — 1)g;; we conclude
(7.50)
ezwﬁijéamgﬂaxfﬁxg > — 0174Fijgij + f”F” (uwiu; — 17Qgij)
— c?|f [Fgi; + (o + f ) F (0% gi; — iy — gij)
> — ' Figy; — [ Fligi — o f [*F gy,

(7.49)

and hence the claim if € is chosen sufficiently small. Here, we used (0.10) and
the uniform boundedness of v, cf. Lemma 7.5. O

Finally, we will prove that F is bounded from below, which is necessary for
the C? estimates in the previous section.

7.9. Corollary. We assume that (7.40) is valid for the leaves of the ISCF.
Then we have

(7.51) F>infF,
My
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as long as the flow exists. If the flow exists for all times, then F increases
exponentially fast, namely, we have

(7.52) F > cpertnt,
where cg = ¢(My) > 0.

Proof. We define

7.53 t) = inf F
(7.53) o(t) nf

and infer from Lemma 3.2
d 1

2 g Losijy vk ij B @ s
(7 54) aF — F‘QFJFij :Ethikhj + EF]RCVB'Y‘SV Z; l/’yl'j
’ 2 v v
—— FYEF;,
3
hence, using Lemma 7.8 we deduce
oy > sl P o
(7.55) ¢(t) > ¢ ¢

especially ¢(t) > 0 for a.e. 0 < ¢ < T*. If the flow exists for all times, we
know already that the flow runs into the future singularity, i.e.

(7.56) lim infu(t,-) = 0.

t—oo So

Using Theorem 8.2, which is proven independently of all previous results,
(0.9) and (1.25) we infer

d
dt
for a.e. t > 0 and a positive constant ¢ > 0. Integration yields the claim. [

(7.57) (¢%) > ce2rtt

8. DECAY OF THE C°-NORM

We want to prove the optimal decay of u. We show that there are positive
constants c1, co such that

(81) 701§ﬂ§762 VtGR_i_,
where 4 is defined by
(8.2) o = uet.

and wu is the solution of the scalar version of the ISCF, that means, u is the
solution of (7.13). The next three results and the corresponding proofs can
be found in [19, Section 6].

8.1. Lemma. For any 0 < X < v, there exists a constant c()\) sucht that
(8.3) luer| < c(\) VteR,.
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With the help of the previous result it is possible to prove the optimal decay.

8.2. Theorem. We define @ = ue?t. Then, there are positive constants
c1,co such that

(8.4) —cp <u< —cy.

8.3. Corollary. For any k € N* there exists i, such that
(8.5) [FO] < exe™

where f) is evaluated at .

Proof. In view of (0.12) there holds
(8.6) PO < el f 1" = exl f[Fubaet.
Then use (1.25) and the preceding theorem. O

9. DECcAY OF THE Cl-NORM

Our final goal is to show that ||Dal| is uniformly bounded, where we recall
that

(9.1) o = ue,

but this estimate has to be deferred to the next section. At the moment we
only prove that ||Dul||e*, with 0 < A < 7, is uniformly bounded.

9.1. Lemma. There holds
(9.2) |Fi R} 2l | < clul® + | Dul®)Fig;.

Proof. We start with the identity

FYR BV IﬁIl ;z:‘sul = f/Fin(,B,y(;nax z; z5ul
(©:3) — OF" JerguT:vfxl T} u
where n = (7o) = (=1,0,...,0) is a covariant vectorfield. With the help of
Lemma 7.5 and Lemma 7.6 we estimate the first term

(9.4) — OFY Rypysna? Pa)adul < cuFi gy
and for the second term we receive
(9.5) — ﬁFinngﬂTxin?x?ul < c||Du||*F" g;,

where we used Lemma 1.2. O
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The following two lemmas and the corresponding proofs can be found in [19,
Section 7], but we will give exemplarily a proof of the next lemma.

9.2. Lemma. There exists € > 0 and a constant c. such that

(9.6) | Dulle < c.

Proof. We employ the relation
(9.7) 7* =1+ || Dul]?

and the fact that ¢ is uniformly bounded to conclude that there exists a
positive constant ¢, such that

(9.8) c||Dul* < 2log® = log 9* < || Dul|?,

i.e. we can equivalently prove that log ve is uniformly bounded. Let € be
small and set

(9.9) ¢ = log ve??,
then ¢ satisfies
. 1 . 1 | . 1 1 s
(9.10) @ — Vi = ;(U - ﬁFJ i)’ + ol 0% + 2ep.

and we get with the evolution equation of o, cf. Lemma 7.3,
(9.11)

1 1
Fle2¢(p — 77 —F¢i;) =— Fihyhk + F”Raﬂwél/afcﬁxz aju!

1 1
— jF”hijnagyo‘l/ — anaBVanﬁ

1 0B

2
— fF Jﬂaﬁny zyx! — <F Jnaﬁxkxﬁhk
v

+f ||DU|| Fg;; + lf)kukf/Fijgij
— Y S Fiigy — i hd Filg,
+ Fijmjﬁ% + 2eF? log

Now, let T, 0 < T < 00, assume that

(9.12) sup sup ¢ = ¢(to, o),

[0,T] M (t)
where 0 < tg < T large and zg € Sy. Applying the maximum principle, we
infer with the help equation (9.11), Lemma 7.4, Lemma 7.5, Lemma 7.6 and
Lemma 9.1, after multiplying by F2e~2¢, that

1 g
O<77F”h hY + cc(u® + || Dul|?)F g5
(9.13) kj ( [ Dul|*)E* gi;

+celf P Dul*F9 gi; + || Dul*F¥ gy,
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where we estimated the term |2eF? log ©| with the help of (2.17), (2.18), (7.6)
and (9.8) in the following way

12¢F2 log ©] < V2eFH log ©
< \/ineFijﬁkiﬁf log v
< ce(F7hyih} + B2 f PFYg;; + (o)’ F¥ g;;) log®
< ce(F7hy;hy + |Dul?|f PFgij + [u]2F g;5),

(9.14)

and the term |1 Fnosv°n”| is estimated by

1
|= Fjapr®n®| < clul®F
(9.15) v g
< elul*F% 4 e teultFi gy,
where we used Lemma 2.1. Using

(9.16) lim fu=

t—o0

2| =
3
2

we conclude
oamy IS el (bt 1S PR+ o) )
' < ce(F7hyhk + [u]*F gy;).

If we now choose 0 < € < « sufficient small and ¢y large enough, then we
receive from (9.13), that

2
(9.18) |Dul? < 2
171
Hence, we have in (to, xo)
1o Fe2et 2 2et o CU o
(9.19) © =logve“" < ¢||Dul|*e*" < We <ec.

After having established the exponential decay of ||Dul|, we can improve the
decay rate.

9.3. Lemma. For any 0 < X <~y there exists a constant cy such that

(9.20) | Dulle* < ey.
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10. DECAY OF THE C2-NORM

Our final goal in this chapter is to show that ||A||e?? is uniformly bounded.
We start with some preliminary results. Firstly, we prove that F' grows
exponentially fast.

10.1. Theorem. We have the estimate
(10.1) F > ce,

where ¢ > 0 depends on M.

Proof. From Corollary 7.9 we deduce
(10.2) F=e"F>cel F>cet
Here we used the relation

(10.3) el ~cemwt

due to (0.9) and

/ 1
(10.4) Ifu— =] < cu?.
Y

Now, we state the evolution equations for hf and F'.



10.2. Lemma. The second fundamental h¥ form satisfies the evolution
equation

(10.5)
7 2 1 T 1 5 o T
hk — ﬁF ]hl = ﬁFkFl + —hk hei + fRaﬂwSV ajflﬂ ‘sg k
1 1 ..
- ﬁF”h hERF + ﬁF”hijhalhak

9 o 1
+ ﬁgka”Ragwsxfxgx?x?hg - ﬁF”Ramazgxfxzxihak

o 1 .
pk pij Rag.ygx?z?x;’x?hlr — ﬁF”Ra[g.ygl/o‘fo”’x?hf

,ﬁg
1 ka”R @ B9 1 Pk pij p B.,.7 .6
+ = 2 aBysV Tpr'T UJrF—g ag,ﬂ;el/ €T :cla:lx

+ ;2 ka”Ramg eyo‘xlﬁx]x xy + Figka” Tsh” phml

* ﬁFijgij(—ulukﬁfm + " bapy v wpa] + asy VP hy

+ gpki/}ag:ro‘ 5hf + Yaprrx ﬁhrk + vy hF + dJa:L'?hrk;l

— P F g B T) — P gt aP Y — f sy b

—f nagxrxlﬁh’k — Rk o+ f urhlr + f/UT.gkpRany(SVafE'B g
= " @+ o) + £ R+ [ Onagaielg™).

Proof. We start with the equation for hf, cf. (7.11), which contains the
summand

1 1 2
(10.6) (—5) = g B — 7 FiF".
Calculating the covariant derivative Fj; we get
(10.7) Fyy = Fhj g0+ F7 hyjphes,

then we use the definition of /vzij, the Codazzi equation, the Ricci identities
and the GauB equation to express Fh;;.; through Fhy, ;5. O

10.3. Lemma. The term F' satisfies the evolution equation

(10.8)
: L 2 i L ik 1 _iis a BoN5
F— ﬁF F;=— ﬁF FF; + FF h; ]’ij + FF Raﬁ’yéy T, VT
1 y 1 5 1 i
+ fﬁa,@l/al/ﬁf FYg5 — f”Qf FYgi; + ol Fuf F9g,;

1 . 1 |
_ Fi/}aﬁVaVBF”gij + ﬁl[}aszkF”gij-
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Proof. We have
(10.9) F=Fhi.
Using (7.6) and (7.11) leads to the claim. O

The proofs of the next five results will be omitted and can be found in [19,
Chapter 8.

10.4. Theorem. The principal curvatures x; of M (t) are uniformly bounded
from above during the evolution, e.g. there exists a constant ¢ such that

(10.10) ki<e 1<i<n.

Now, we know that the biggest principle curvature is bounded from above.
In the next lemma we examine the behaviour of the absolute value of the
smallest principle curvature during the evolution.

10.5. Lemma. We have

(10.11) sup max |k;u| = 0 ¢t — oo,
M)

for1<i<n.

Now, we are able to state a decay of || A]|.

10.6. Lemma. For any 0 < A < «y there exists a positive constant c(\)
such that

(10.12) |Alle"* <e(N) VteR,.
In the next two theorems we will state the optimal decay of ||Du| and ||A]|.

10.7. Theorem. Let @ = uet, then there exists a positive constant such
that

(10.13) |Dul| <c VteR,

10.8. Theorem. The quantity w = 1||A|[?e*" is uniformly bounded dur-
ing the evolution.
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11. HIGHER ORDER ESTIMATES

After having established the exponential decay of || A||, we want to prove the
exponential decay of the higher order derivatives. Therefore, we introduce in
the following lemma a new notation, cf. [11, Section 7.6].

11.1. Definition. (i) For arbitrary tensors S, T denote by S*T any linear
combination of tensors formed by contracting .S over 1. The result can be a
tensor or a function. Using this notation we do not distinguish between SxT
and ¢S « T, where c is a constant.

(ii) The symbol A represents the second fundamental form of the hypersur-
faces M(t) in N. A = Ae is the scaled version and D™A resp. D™A
represent the covariant derivatives of order m.

(iii) For m € N denote by O,, a tensor expression defined on M(¢) that
satisfies the pointwise estimates

(11.1) 1Omll < em(1+ | Allm)"™,

where ¢, p;, are positive constants and

(11.2) 1Allm = > I1DA]|.
lor|<m

Moreover, the derivative of Oy, is of class O,,4+1 and can be estimated by
(11.3) DO < e (1 + [|A]lm)Pm (1 + || D™ A])

with constants ¢,,, Pp.-
(iv) The symbol O represents a tensor such that DO is of class Op.

11.2. Remark. We emphasize that
(11.4) D"Oy=0,, ¥YmeN.

11.3. Lemma. We have
(11.5) D(uf') = e 210,

Proof. Differentiation and adding a zero yields
(11.6) Di(uf’) = uif (1 =7f w) +uw3|f 1P + )
and hence the claim in view of (0.10), (0.11) and (0.12). O

Now, we state the main result of this section, a proof of which can be found
in [19, Chapter 9].

11.4. Theorem. The quantities %HD’”AHQ are uniformly bounded during
the evolution for all m € N*.
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12. CONVERGENCE OF % AND THE BEHAVIOUR OF DERIVATIVES IN ¢

The proofs of this chapter are identical to those in [19, Section 10] and are
omitted. Firstly, we state that @ converges when ¢ tends to infinity.

12.1. Lemma. @ converges in C™(Sy) for anym € N, if t tends to infinity,
and hence D™ A converges.

The following technical lemmas proof parts of the claim in Theorem 0.5.

12.2. Lemma. Let (g;;) be the induced metric of the leaves M(t) of the
ISCF, then the rescaled metric

(12.1) ¥y,
converges in C*(Sp) to

~ L ~\2 _
(12.2) (7*m)7 ()7 a4,

where we are slightly ambiguous by using the same symbol to denote u(t,-)
and ima(t,-).

12.3. Lemma. The leaves M (t) of the ISCF get more umbilical, if t tends
to infinity, namely

. . |
(12.3) FYR! - EH6§| < ce
In case n +w — 4 > 0 we even get a better estimate, namely

1 )
(12.4) \h] — —H§I| < ce~zantw=at,
n

13. TRANSITION FROM BIG CRUNCH TO BIG BANG

In this chapter we want to present the concept of a transition from big crunch
to big bang. The following is literally adapted from [11, Section 7.8]. Only
some formulas had to be modified.
We shall define a new spacetime N by reflection and time reversal such that
the ISCF in the old spacetime transforms to the ISCF in the new one. By
switching the light cone we obtain a new spacetime N. The flow equation in
N is independent of the time orientation. We extend F', which is defined in
the cone 'y C R™, to I'y U (—T'g) by setting
(13.1) F(ki) = —F(—k;)
for (k;) € —T'3. The flow equation can then be written as

1 1 1

(13.2) i= i = (- 5)(0) = =,
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where the normal vector 7 = —r is past directed in N and the curvature
F=_F negative. Introducmg a new time function £° = —z° and formally
new coordinates (Z%) by setting

(13.3) V= —2% ' =24,

we define a spacetime N having the same metric as NV — only expressed in
the new coordinate system — such that the flow equation has the form

(13.4) i =—F"1p
where M (t) = graph 4(t), & = —u, and
(13.5) (™) = —ve~ (1, 4")
in the new coordinates, since

50
(13.6) 0= —50% =0
and
(13.7) =

The singularity in £° = 0 is now a past singularity, and can be referred to as
a big bang singularity. The union N U N is a smooth manifold, topologically
a product (—a,a) x Sy — we are well aware that formally the singularity
{0} x Sp is not part of the union; equipped with the respective metrics and
time orientations it is a spacetime which has a (metric) singularity in 20 = 0.
The time function

29 in N
13.8 10 = ’ -
( ) * {—xo, in N

is smooth across the singularity and future directed. N U N can be regarded
as a cyclic universe with a contracting part N = {#° < 0} and an expanding
part N = {&° > 0} which are joined at the singularity {#° = 0}. We shall
show that the ISCF, properly rescaled, defines a natural C3-diffeomorphism
across the singularity and with respect to this diffeomorphism we speak of a
transition from big crunch to big bang. The inverse ISCF in N and N can
be uniformly expressed in the form

(13.9) i=—F"1p

where (13.9) represents the original flow in N, if 2° < 0, and the flow in
(13.4), if 2% > 0. Let us now introduce a new flow parameter

(13.10) 5= {716”, for the flow in N

y~le=7  for the flow in N

and define the flow y = y(s) by y(s) = &(t). y = y(s,€) is then defined in

[y~ 1,771 x Sp, smooth in {s # 0}, and satisfies the evolution equation

. d _{—Flﬁe”t, s<0

13.11 = — .
( ) Y ds” F-1pert, s> 0.
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The flow y is certainly continuous across the singularity, and also future
directed, i.e., it runs into the singularity, if s < 0, and moves away from it, if
5> 0.

As in the previous sections we again view the hypersurfaces as embeddings
with respect to the ambient metric

(13.12) ds? = —(dz°)? + 0;;(2°, x)da'da? .
The flow equation for s < 0 can therefore be written as
(13.13) y = —F luett,

13.1. Theorem. The flow y = y(s,€) is of class C3 in (—y~1,y71) x
So and defines a natural diffeomorphism across the singularity. The flow
parameter s can be used as a new time function.

A detailed proof of Theorem 13.1 can be found in [11, Section 7.8] or in [19,
Section 11].
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