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Gauge Fluxes in F-theory Compactifications

In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications
to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic
model building scenarios, we develop methods for a systematic analysis of primary vertical G4-
fluxes on torus-fibred Calabi–Yau fourfolds.

In particular, we extend the well-known description of fluxes on elliptic fibrations with sections
to the more general set-up of genus-one fibrations with multi-sections. The latter are known to
give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes
in such geometries on an explicit model with SU(5) × Z2 symmetry, which is connected to an
ordinary elliptically fibration with SU(5) × U(1) symmetry by a conifold transition. With our
methods we systematically verify anomaly cancellation and tadpole matching in both models.
Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in
purely geometric terms. This observation is further strengthened by a similar analysis of an
SU(3)× SU(2)× U(1)2 model.

The obvious connection of this particular model with the Standard Model is then investigated
in a more phenomenologically motivated survey. There, we will first provide possible matchings
of the geometric spectrum with the Standard Model states, which highlights the role of the
additional U(1) factor as a selection rule. In a second step, we then utilise our novel methods on
flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard-
Model-like fibrations over specific base manifolds B. As a demonstration, we scan over three
choices P3, Bl1P3 and Bl2P3 for the base. As a result we find a consistent flux that gives the
chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs
mechanism.

Eichflüsse in F-Theorie Kompaktifizierungen

In dieser Arbeit beschäftigen wir uns mit der Geometrie und Physik von Eichflüssen in F-Theorie
Kompaktifizierungen nach vier Dimensionen. Um phänomenologisch realistische Modelle mit
chiraler Materie zu konsturieren, entwickeln wir Methoden für eine systematische Analyse von
vertikalen G4-Flüssen auf Torus-gefaserten Calabi–Yau Vierfalten.

Insbesondere erweitern wir die vertraute Beschreibung von Flüssen in elliptischen Faserungen
mit Schnitten auf allgemeinere Torus-Faserungen mit Multi-Schnitten, welche bekanntermaßen zu
diskreten abelschen Symmetrien in F-Theorie führen. Darauf basierend konstruieren wir Flüsse
in einem expliziten Multi-Schnitt-Beispiel mit einer SU(5) × Z2 Symmetrie, welche über eine
sog. Conifold-Transition in Verbindung zu einer elliptischen Faserung mit SU(5)×U(1) Symmetrie
steht. Mit unseren Berechnungsmethoden verifizieren wir systematisch Tadpole-Bedingungen und
die Kürzung von Anomalien in beiden Modellen. In dieser Analyse finden wir einen neuartigen,
rein geometrischen Zugang zur Anomalie-Kürzung in 4D F-Theorie, die wir auf ähnliche Weise
auch in der Analyse von einem Modell mit SU(3)× SU(2)× U(1)2 beobachten.

Die offensichtliche Verbindung von diesem Modell zum Standardmodell der Teilchenphysik
ist dann der Startpunkt für eine phänomenologische Analyse. Darin untersuchen wir zunächst,
wie das geometrische Spektrum mit den Standardmodell-Teilchen identifiziert werden kann und
wie die zusätzliche U(1) die Rolle einer Auswahlregel übernimmt. Im zweiten Schritt benutzen
wir dann die zuvor entwickelten Methoden für Fluss-Berechnungen, um einen Such-Algorithmus
aufzustellen, der semi-realistische chirale Spektren in unseren Standardmodell-ähnlichen Faser-
ungen über konkrete Basen B identifiziert. Als eine Demonstration führen wir eine Suche für
drei verschiedene Basen, P3, Bl1P3 and Bl2P3, durch. Damit finden wir unter anderem eine
konsistente Fluss-Konfiguration, die das chirale Standardmodell Spektrum mit einem exotischen
vektorartigen Triplet realisiert, welcher prinzipiell mit einem Higgs Mechanismus geliftet werden
kann.





Contents

I Motivation 1

II Basics of F-theory 7

1 String Theory in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Dynamics of quantum strings . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 M-theory and string dualities . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Type IIB string theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Introduction to F-theory Compactifications . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Geometrising the SL(2,Z) invariance of type IIB . . . . . . . . . . . . . . . 16

2.2 Torus fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Defining F-theory via M-theory . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 F-theory on singular torus fibrations . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Abelian symmetries in F-theory . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Constructions with toric geometry . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Summary — an F-theory dictionary . . . . . . . . . . . . . . . . . . . . . . 41

IIIGauge Fluxes in F-theory 43

1 G4-Fluxes in F-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.1 Mathematical description of G4-flux . . . . . . . . . . . . . . . . . . . . . . 44

1.2 Physical implications of G4-fluxes . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Vertical Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1 Vertical cohomology as intersection theory of divisors . . . . . . . . . . . . 49

2.2 Vertical cohomology forms on toric hypersurfaces . . . . . . . . . . . . . . . 51

3 Tools from Commutative Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Why do we need this? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 On polynomials and varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Application to F-theory: matter surfaces and singlet curves . . . . . . . . . 61

4 Summary of Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV Anomalies in 4D Compactifications 65

1 Gauge and Gravitational Anomalies in 4D . . . . . . . . . . . . . . . . . . . . . . . 65

1.1 Field theoretic description of anomalies . . . . . . . . . . . . . . . . . . . . 65

1.2 Gauge and gravitational anomalies in F-theory . . . . . . . . . . . . . . . . 66

2 F-theory with SU(5)× U(1) and SU(5)× Z2 Gauge Group . . . . . . . . . . . . . 67

2.1 Elliptic fibrations with SU(5)× U(1) gauge group . . . . . . . . . . . . . . 68

2.2 Fluxes and anomalies in the SU(5)× U(1) model . . . . . . . . . . . . . . . 71

2.3 Anomalies in the SU(5)× Z2 model . . . . . . . . . . . . . . . . . . . . . . 79

2.4 Comparing fluxes in the conifold transition . . . . . . . . . . . . . . . . . . 91

3 Models with SU(3)× SU(2)× U(1)2 Symmetry . . . . . . . . . . . . . . . . . . . . 94

vii



CONTENTS

3.1 Geometries realising an (extended) Standard Model . . . . . . . . . . . . . 95
3.2 Cancellation of gauge and gravitational anomalies . . . . . . . . . . . . . . 99
3.3 Flux quantisation and the Witten anomaly . . . . . . . . . . . . . . . . . . 105

4 Summary of Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

V Towards the Standard Model in F-theory 109
1 Yukawa Couplings in the SU(3)× SU(2)× U(1)2 Geometry . . . . . . . . . . . . . 109

1.1 F-theory with U(1)× U(1) gauge group . . . . . . . . . . . . . . . . . . . . 110
1.2 Toric fibrations with additional SU(2) symmetry . . . . . . . . . . . . . . . 113
1.3 Toric fibrations with additional SU(3) symmetry . . . . . . . . . . . . . . . 120
1.4 Toric SU(3)× SU(2)× U(1)1 × U(1)2 realisations . . . . . . . . . . . . . . 123

2 Standard Model Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2.1 Criteria for Standard Model Embeddings . . . . . . . . . . . . . . . . . . . 129
2.2 Search for models with realistic chiral spectrum . . . . . . . . . . . . . . . . 133

3 Summary of Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

VI Conclusion and Outlook 143

A Intersection Theory of algebraic Cycles 149

B Details on the Construction of the SU(3)× SU(2)× U(1)2 Gauge Group 151
1 Details on the Toric Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2 Details on SU(2)-II and -III Tops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

2.1 SU(2)-II Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.2 SU(2)-III Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3 Details on SU(3)-B and -C Tops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.1 SU(3)-B Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.2 SU(3)-C Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C Matching the MSSM-Spectrum 161

D All realistic chiral Models 177

viii



Chapter I

Motivation

The theoretical foundation of contemporary physics can be roughly divided into two realms. On
large scales, the gravitational dynamics of satellites and planets, all the way to galaxy clusters
and the universe, can be effectively described by the theory of general relativity (GR). At the
microscopic level, the framework of quantum field theories (QFTs) covers phenomena ranging
from superconducting materials to particle scattering at the LHC. While both theories have
proven to be tremendously successful on their own, they are mutually incompatible at the most
fundamental level: When applying the techniques of QFT to GR, physical quantities turn out
to be divergent in an uncontrollable manner [1]. While many physical systems can be well-
approximated by either of the two theories alone, phenomena like black holes or the big bang
bear intrinsically quantum and gravitational characteristics. For a complete understanding –
at least at the conceptual level – of our physical reality, we therefore require a fully consistent
quantum theory of gravity.

One of the arguably most promising candidates is string theory. In the most basic approach
to it, string theory can be seen as a quantum theory of one-dimensional objects (a.k.a. strings)
which replace the traditional idea of point-like elementary particles. In such a description, our
ignorance of the extended nature of strings is a consequence of their extremely small size, which
need energies beyond our reach to be resolved. Accordingly, we perceive different excitation states
of strings as different point-like particles.

Originally proposed as an ill-fated attempt to describe the strong force, string theory was
nearly forgotten with the rise of QCD. Luckily, it was brought back to life when in the 1970s
people stumbled across two striking features of string theory. The first observation was the
appearance of massless physical excitations with spin 2 – the characteristics of the graviton [2].
The second was that scattering amplitudes of string states exhibit a UV-finite behaviour [3], as
opposed to divergent amplitudes that are omnipresent in QFTs with point-like particle states.
Thus, with the natural appearance of gravity in a UV-finite quantum description, string theory
possesses two pivotal elements of quantum gravity.

Despite these remarkable properties, string theory in its early days was plagued by many
conceptual and phenomenological issues. It took the combined work of numerous brilliant minds
to resolve problems, which in turn would often lead to further new insights and provide novel
links between previously unrelated aspects. E.g. the necessity of fermionic excitations of the string
led to the utilisation and subsequent rise to prominence of supersymmetry in string-related and
-unrelated theories. Likewise, it was realised that a consistent theory of strings must necessarily
include higher-dimensional objects, so-called p-branes. Being of non-perturbative nature, branes
have not only extended our conceptual understanding of string theory, but also vastly increased
its phenomenological capabilities, with numerous applications to particle physics or cosmological
model building.

One of the most puzzling revelations in the first two decades of string theory was the existence
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CHAPTER I. MOTIVATION

of five possible supersymmetric formulations of string theory, which seemed to be independent
of each other. It was not until the mid 1990s when it was realised that these five string theories
are perturbative limits of one big underlying M(ysterious)-theory, and related to each other by
so-called dualities (cf. figure I.1). While we do not have a fundamental description, the dualities
provide a powerful way to study many aspects of M-theory through the better understood string
theories.

11D SUGRA

heterotic E8 × E8

heterotic SO(32)

type I type IIB

type IIA

M-theory

Figure I.1: The ‘M-theory star’: A schematic visualisation of the relationship amongst M-theory
and its perturbative limits. The grey area represents possible physical configurations of M-theory
(also known as its ‘moduli space’). In certain corners, the description is equivalent to one of the
five perturbative string theories, or to 11D supergravity (SUGRA). These limits are connected
to each other via duality relations indicated by the arrows.

One critical consistency condition of string and M-theory is that they all require spacetime to
have extra dimensions going beyond the four we observe in our everyday life (all string theories live
in ten dimensions, while M-theory and its low energy limit, 11D SUGRA are eleven-dimensional).
One might think that this criterion alone already discards string theory as a viable description
of our physical reality. However, salvation comes in form of an idea by Kaluza and Klein dating
back to the times of Einstein, which nowadays goes by the name of compactification.

Historically, the theory of Kaluza–Klein was an extension of GR, by generalising Einstein’s
formulation of gravity to a five-dimensional spacetime with a periodic spatial dimension, i.e. a
(compact) circle. It turns out that the field equations of 5D can be re-interpreted in terms of
physics in the four non-compact dimensions as ‘ordinary’ GR coupled to an electromagnetic gauge
field. Furthermore, the coupling strength can be related to the size of the circle (i.e. the geometry
of the extra dimension). It is therefore not exaggerated to say that (parts of the) physics in
4D is dictated by the geometry of the compact dimensions. Even though the original Kaluza–
Klein theory is physically flawed (e.g. it predicts an unrealistic electron mass), this idea prevails
throughout string theory.

Unlike the original Kaluza–Klein theory, compactification of string or M-theory employs higher
dimensional spaces in order to make contact to 4D physics. These spaces necessarily have much
more structure than a simple circle. Consequently, the variety of possible physical theories in the

2



CHAPTER I. MOTIVATION

non-compact dimensions is enormous. In the literature, this huge set of possible physical models
is usually called the ‘string landscape’. In particular, it is an outstanding problem to identify
amongst all models in the landscape of 4D (four non-compact dimensions) models those which
could approximate or even exactly describe our real world. Indeed, most of today’s research in
string phenomenology is concerned with this problem.

The difficulties of this program can be summarised very concisely as follows: Geometry of
higher dimensional compact manifolds is complicated. As a consequence, many computations
yielding physically important quantities can only be carried out in very restrictive set-ups.1 Some-
what paradoxically, this issue turns out to be one of the main reasons string theory became so
popular: Mathematicians became interested in string compactifications. Unlike many physical
theories before, where physicists could usually fall back onto known mathematics, the mathem-
atics required to describe string and M-theory compactifications has largely to be invented yet.2

On the other hand, physical intuition can often serve as a guideline in case rigorous mathem-
atics are lacking, and in turn explain mathematics. For example, the mathematical theory of
knots can be understood from studying physics of certain conformal field theories obtained from
compactifications to 6D. This principle of ‘physicalisation’ sparked many novel developments in
pure mathematics based on research in string compactifications. Mirror symmetry, topological
quantum field theories, geometric Langlands correspondence, and moonshine theory are only a
few of the salient topics inspired by string theory. At the same time, physicists have also profited
extensively from the involvement of mathematicians. Especially the utilisation of algebraic geo-
metry and topology has vastly increased the model building power of string compactifications.
Over the last two decades, these novel mathematical methods have helped considerably in the
advances through the string landscape.

In particular, people began to push beyond the perturbative limits of M-theory and explore
more and more the interior of the M-theory star. Consistent compactifications constructed in this
part of the moduli space inherently take certain non-perturbative corrections into account, thus
extending the classes of perturbative string models. One of the most prominent non-perturbative
frameworks of constructing string compactifications is F-theory.

Enter F-theory

Introduced by Vafa in 1996 [4], F-theory naturally extends the model building powers of the
popular type IIB strings by geometrising parts of the physical data. Concretely, Vafa realised
that the physical quantity governing the coupling strength between strings3 exhibit the same
characteristics as the modulus τ of a torus, which in algebraic geometry is also referred to as an
elliptic curve. To formalise this, F-theory introduces an auxiliary elliptic curve attached to every
point of the ten-dimensional spacetime of type IIB string theory, whose modulus τ encodes the
value of the string coupling. By allowing τ to vary over spacetime non-trivially, i.e. fibring elliptic
curves over spacetime, one can describe type IIB string theory with non-perturbative values of
the string coupling. If the total space (fibre plus spacetime) of these so-called elliptic fibrations is
globally consistent, then the mathematical formulation automatically takes care of all corrections
stemming from non-perturbative back-reactions.

However, this is not the only way to understand F-theory. In fact, as we will see in chapter
II, the most accurate definition of F-theory originates from M-theory directly. In this definition,

1E.g. the scattering amplitude of strings, even at tree level, requires the knowledge of the compact space’s
metric, which can be explicitly written down only for a very limited subset of all possibilities.

2The only comparable situations was when Newton invented calculus for mechanics and when von Neumann
set the foundations of functional analysis in order to understand quantum mechanics. None of the two however
compare to the complexity and far-reaching range of the geometric innovations that arose from the study of string
theory.

3To be precise: It is the complexified string coupling, also called the axio-dilaton. We will discuss the mathem-
atical details in chapter II.

3



CHAPTER I. MOTIVATION

the auxiliary torus becomes part of the eleven-dimensional spacetime of M-theory, and a certain
limit process recovers non-perturbative type IIB string theory. Likewise, through an alternative
limit, one can actually relate F-theory with heterotic E8 × E8 string theory. Even though this
duality will not be of relevance to the content of this thesis, it should be said that much of our
understanding of F-theory is derived from the heterotic/F-theory duality [4–9].

Through these dualities, F-theory combines features of heterotic and type IIB strings. One
of the most fruitful outcomes is the appearance of exceptional gauge symmetry localised on 7-
branes, which proved to be invaluable for model building of Grand Unified Theories (GUTs).
Especially, the appearance of E6 immensely raised the phenomenological interest in F-theory, as
the realisation of the top-quark Yukawa coupling in SU(5) GUTs are tied to E6. Indeed, with the
development of systematic tools to geometrically engineer gauge symmetries in F-theory [10–12],
GUT model building were predominant in the most recent era of F-theory particle phenomenology.

While GUTs certainly have phenomenologically appealing features, their existence and neces-
sity are still open for debate. In particular, one of the main motivations for postulating a unifying
gauge group was the apparent unification of the Standard Model couplings at high energies. This
unification however is only convincing if one considers the minimal supersymmetric extension of
the Standard Model (MSSM), and even then is achieved numerically only if the scale of SUSY
breaking is in the TeV range. As the LHC has yet to find any significant signs of SUSY after its
first 14TeV run, the scenario of low scale SUSY, and consequently the idea of unification, is under
severe tension. Thus, it seems well-motivated to study parts of the string landscape – especially
within the F-theory framework – which realise the Stand Model directly, without an underlying
GUT structure.

This route has only been accessible recently with a complete understanding of abelian sym-
metries in F-theory. While U(1)s are omni-present in type IIB brane-models, their geometric
description in F-theory were much harder to identify. However, the pay off for these technical
analyses are the phenomenological possibilities that comes with abelian symmetries. Not only can
we now construct the hypercharge U(1)Y in non-GUT realisations of the Standard Model, but
we can also include abelian factors as additional selection rules in various GUT and non-GUT
models. Despite the phenomenological advances, abelian symmetries remain an active field of
formal investigation, and we will encounter both aspects throughout this thesis.

One key ingredient in F-theory model building is the inclusion of so-called gauge or G4-
fluxes. These are physical data specifying the low energy, i.e. vacuum configurations of certain
background fields in the M-theory description, similar to the Higgs vacuum expectation value
(vev) in the Standard Model. From the duality to type IIB, we know that G4-fluxes in F-theory
have immense impact on phenomenology. They are required by various consistency conditions,
e.g. cancelling certain non-perturbative anomalies or stabilising the compactification configura-
tion. For particle phenomenology in 4D, G4-fluxes are in particular needed to construct a chiral
spectrum. Since the Standard Model is a chiral theory, any realistic F-theory model building must
necessarily include gauge fluxes. For the phenomenological investigations in this work, fluxes will
thus play a central role.

However, in order for these models to be fully consistent, the flux configurations have to pass
the test of anomaly cancellation. Like any chiral QFT, also the 4D field theories obtained from F-
theory compactifications have potential chiral anomalies. While these anomalies are shown to be
cancelled in very explicit examples, there is until now no argument from first principles, why these
cancellations are expected for more generic models. In this thesis, we will attempt to establish
such a general argument. As we will see in chapter IV, this will be based on a purely geometric
analysis, that in principle can be formalised for generic compactification spaces in F-theory.

Outline of the thesis

As F-theory is part of the string and M-theory family, we will first give a short review of string
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CHAPTER I. MOTIVATION

theory in section 1 of chapter II, focusing on compactifications and string dualities. In particular,
as F-theory is naturally tied to type IIB strings, we will have a closer look at this theory. In
section 2, we will then discuss in detail the mathematical description together with the most
important physical aspects of F-theory compactifications.

As gauge fluxes are the central object of interest, we will devote chapter III to them. Most
importantly, we will present two sets of mathematical tools that was developed for a systematic
treatment of fluxes in F-theory. These tools are heavily utilised in chapter IV, where we focus on
chiral anomalies and their cancellation in F-theory. In particular, we will look at three classes of
F-theory models with SU(5)× U(1), SU(5)× Z2, and SU(3)× SU(2)× U(1)2 gauge symmetry,
on which we test our hypothesis of F-theory anomaly cancellation. Along the lines, we will
also investigate the role of fluxes in the conifold or Higgsing-transition, which relates the SU(5)
models.

Finally, we will attempt a direct construction of the Standard Model in F-theory based on
the SU(3)×SU(2)×U(1)2 models. In chapter V, we will carefully examine the Yukawa coupling
structure of matter in these models and discuss how the extra U(1) factor may be utilised as a
phenomenologically interesting selection rule. Utilising the results from chapter IV, we will then
proceed to search for explicit models in our landscape of F-theory Standard Models, that have a
realistic chiral spectrum.

The results of chapters IV and V have been presented in the publications [13–15].

5





Chapter II

Basics of F-theory

In this chapter we will review the physical and mathematical foundations of F-theory. Starting
with a brief introduction to string and M-theory, we will focus on the emergence of F-theory as
a non-perturbative extension of type IIB string theory and as a decompactification limit of M-
theory compactifications. We will explain how these two pictures are related by dualities. With
these ingredients we will then thoroughly discuss the appearance of gauge symmetries, matter
states and Yukawa couplings in 4D F-theory compactifications.

1 String Theory in a Nutshell

In this section, we will give a short overview of aspects of string theory that is tied to the
discussions of this thesis. By now this content is standard textbook material. For detailed string
theory introductions, we refer to [3, 16–19].

1.1 Dynamics of quantum strings

String theory replaces our naive picture of point-like elementary particles with one-dimensional
strings as the fundamental objects of nature. Classically, a string propagating in a d-dimensional
spacetime Md sweeps out a two-dimensional timelike surface Σ ⊂Md called the string-worldsheet.
Denoting the local coordinates of this surface by σa = (σ0, σ1) ≡ (τ, σ), the evolution of the string
is fully specified by an embedding Xµ(σa) of the worldsheet into spacetime Md, which is also called
the target space, with coordinates Xµ. With this embedding, the metric of the worldsheet induced
by the metric Gµν of Md is given by

γab =
∂Xµ

∂σa
∂Xν

∂σb
Gµν .

The dynamics of the string, i.e. the dependence of the target space coordinates Xµ on σa, can be
then determined via the so-called Nambu–Goto action

SNG = −T
∫

Σ
dτdσ

√
−det γ , (II.1)

which is nothing but the area of the string worldsheet in Md.
1 The pre-factor T has mass-

dimension 2 and can be interpreted as the tension of the string. It is common to re-write T =
2π/α′, where 2π

√
α′ = `s is the typical length of strings, also known as the string scale. Since

there is until now no direct evidence of strings in nature, the string scale must be far beyond our

1This is an obvious generalisation of the action for a relativistic point-like particle. In that case the trajectory
of the particle is a worldline in Md, whose length as a functional of the trajectory is the relativistic action.

7



CHAPTER II. BASICS OF F-THEORY

current energy scales, most likely only a few orders of magnitude below the Planck scale. Note
that in principle, this is the only fundamental scale of string theory.

In the formulation (II.1), string theory can be regarded as a field theory on the worldsheet
with fields Xµ.2 These fields are bosonic fields, and consequently, one usually refers to (II.1) as
the bosonic string. However, in order to have fermionic string excitations in the target space,
one needs to introduce supersymmetric partners ψµ to the fields Xµ. In contrast to the bosonic
string, these ‘super-strings’ have a further advantage of being free of unstable (tachyonic) ground
states.

One important feature of the (super-)string worldsheet is its invariance under conformal trans-
formations. While this symmetry is hidden in the Nambu–Goto description of the action, there
exists an alternative version, called the Polyakov action, which makes this symmetry manifest.
Both actions are equivalent at the level of equations of motions, however, the Polyakov action is
much better suited for the quantisation of strings. The conformal symmetry of the worldsheet is
the single reason we can fully solve the quantum string (at least for flat target space). Irrespective
of the quantisation procedure – either using operators or the path integral – one has to make
sure that the conformal symmetry persists at the quantum level. Remarkably, this condition
restricts the dimension of the target space Md. For the bosonic string, d must be 26, while in the
case of super-strings we have d = 10. As we are ultimately interested in spacetime theories with
fermions, we will restrict ourselves to super-string theories in the following. For convenience, we
will also drop the prefix ‘super’.

The result of the quantisation process is an infinite spectrum of excitation states of the string,
which from the target space perspective may be perceived as different elementary particles with
different quantum numbers (e.g. mass and spin in flat target space). Interactions, i.e. scatterings
between different states, can be literally pictured as the joining and splitting of strings. The
likelihood of this process – in other words the coupling between strings – is measured by the
string coupling constant gs. In contrast to the scattering of point-like particles, the interaction of
strings cannot be localised at one point of spacetime (cf. figure II.1). Indeed, one may attribute
the UV-finiteness of string scatterings to this ‘smearing’ [3].

Figure II.1: A schematic visualisation of a string scattering. By replacing point-particles with
strings, the extended nature of the latter ‘smears’ out the point of interaction; the resulting
worldsheet has no singularity, as opposed to the vertex of the ‘Feynman-diagram’.

2The metric Gµν is a priori a fixed background field in the worldsheet formulation. However, it is possible to
constrain the metric using consistency conditions of the worldsheet theory. In particular, field theory computations
(to first order in perturbation theory) on the worldsheet actually impose Gµν to be Ricci-flat, i.e. vacuum solutions
of Einstein’s equations. For details see e.g. [20].
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In addition to the massless excitations, which contain a spin 2 state, there is an infinite
tower of massive states. However, the masses of these excitations are proportional to the string
scale Ms = `−1

s , and hence are way too massive to be observed in our current experiments.
Consequently, if we are interested in the low energy (compared to the string scale) physics, the
contributions of these massive states will be highly suppressed and can thus be neglected safely.
Meanwhile, the massless excitations and their interactions can be consistently described by a field
theory with an effective Lagrangian description. The resulting effective field theories with only
massless excitations take the form of a supergravity (SUGRA) theory. The ‘super’ refers to the
fact that these theories exhibit a certain amount of spacetime supersymmetry in their massless
spectrum, while the ‘gravity’ part comes from the spin-2 excitations which can be interpreted
metric perturbations, i.e. gravitons.

The spectrum of string theories is subject to severe consistency conditions arising from the
worldsheet formulation of strings. It turns out that there are five inequivalent super-string theories
in flat Minkowski spacetime, which fulfil these conditions. They are referred to as type I, type
IIA or IIB, and heterotic E8 × E8 or SO(32) string theories. Each of the five string theories
has a corresponding consistent description as an effective supergravity theory at the massless
level. These effective field theories in turn can be treated with standard field theory techniques
to simplify the more complicated stringy computations for at least the massless excitations.

Branes

Strings can come in two configurations: either they have two ends, in which case they are called
‘open strings’, or they form a closed loop, i.e. a ‘closed string’. While closed strings can move
around freely in spacetime, the equations of motion forces the ends of open strings to lie on
certain (p + 1)-dimensional (i.e. p spatial and one time dimension) submanifolds of M10. These
submanifolds are the world-volume of so-called Dp-branes.3 In particular, as we will see in section
1.4, there are other type of strings arising as D1-branes, which differ from the fundamental strings,
which are referred to as F1-strings.

In type II string theories, an important aspect of branes is that they realise gauge symmetry
on their world-volume. In a semi-classical picture, the gauge fields can be understood as the
perturbations of the brane longitudinal to its world-volume. These perturbations may also be
pictured as open strings, with ending on the brane, ‘pulling and pushing’ the brane parallel to its
world-volume. The quantised version of these perturbations give rise to gauge bosons propagating
along the brane. In this naive picture it is hard to explain the appearance of massless matter
charged under the gauge symmetry. However, it can be shown rigorously (see e.g. [19]) that
these states arise at the intersection of branes and can be visualised as excitations of open strings
stretched between the intersecting branes.

The intuitive picture of brane perturbations suggests that branes are themselves dynamical
objects. Indeed, it is possible to generalise the Nambu–Goto action (II.1) to higher dimensional
objects, leading to the so-called Dirac–Born–Infeld (DBI) action. From this action, one can,
at least classically, derive the existence of a Yang–Mills theory, i.e. gauge fields, on the brane.
However, a similar quantisation as that of strings is not possible, because for branes there is no
comparable symmetry like conformal symmetry on the string worldsheet. The lack of a clear
description of branes can be seen as a result of their non-perturbative nature. To be precise,
their dynamics decouples in the limit of vanishing string coupling, gs → 0. Indeed, one can

heuristically argue that the tension of Dp-branes behaves like `
−(p+1)
s g−1

s , implying that their

typical mass scale is `−1
s g

−1/(p+1)
s . For small values of the string coupling gs, the lowest mass

scale is set by branes with the lowest p. Conversely, away from the perturbative limit, we expect

3The ‘D’ denotes the fact these branes arise from Dirichlet-boundary conditions imposed on the ends of open
strings. In the context of F-theory, we will see that other types of branes.
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all branes to appear on equal footing.
In the supergravity limit of string theories, branes appear as so-called BPS objects, i.e. massive

states whose stability is guaranteed by supersymmetry. Importantly, this stability statement is
not tied to any perturbative results, i.e. they hold also in non-perturbative regimes. Indeed,
branes appeared prior to their rediscovery in string theory as extremal black hole (or rather black
brane), which are known to be stable solutions of supergravity. For example, in type II and
heterotic string theories, the fundamental string as a 1-brane are BPS states in the supergravity
description, whereas type I string theory contains no BPS strings. Heuristically, this can be
understood as the fact that all theories except type I only have closed fundamental strings which
are stable. Type I on the other hand has also open fundamental strings, into which closed and
open strings can break up into; thus they are not stable and hence not BPS.

1.2 Compactifications

Because all string theories and also M-theory are only well-defined in higher dimensions, it takes
some further modifications to relate them to the four-dimensional world we see. One of the
simplest approaches is called the brane-world scenario, in which one basically assumes that our
world is the world-volume of a 3-brane, to which all forces but gravity are constrained. However,
the prospect of six large extra dimensions is phenomenologically unfavoured, because this would
imply that gravity falls off at large distances much stronger than the behaviour we observe. Thus,
it is physically motivated to further employ the mechanism of compactification.

The principle of compactification is fairly simple: One factors the d-dimensional spacetime
into a compact M c and a non compact Mnc part:

Md = Mnc
n ×M c

d−n . (II.2)

The physical theory in d dimensions then descends to a theory in the n-dimensional non-compact
spacetime Mnc

n , whose precise properties depend heavily on the geometry of M c
d−n.

1.2.1 Five-dimensional examples

To gain some intuition about the process, let us consider a lower dimensional simple example.
Concretely, suppose we have a free massless scalar field φ in a five-dimensional spacetime M5

with the standard action

S ∼
∫
M5

d5x

(
−1

2
∂Aφ∂

Aφ

)
. (II.3)

Now we would like to compactify this theory on a circle, i.e. M5 = M4 × S1, where M4 is flat
Minikowski spacetime with coordinates xµ and S1 the compactification circle with coordinate y.
To obtain an effective description in 4D, we can perform a Fourier-expansion, i.e. an expansion
into eigenfunctions of the Laplace operator, along the circle:

φ(xµ, y) =
∑
k∈Z

φk(x
µ) ei k y/R , (II.4)

with R denoting the radius of the circle. This allows us to perform the y-coordinate integration
in (II.3) explicitly, yielding

S4d ∼
∫
M4

d4x

[
−1

2
∂µφ0 ∂

µφ0 −
∞∑
k=1

(
∂µφk ∂

µφ∗ +
k2

R2
φk φ

∗
k

)]
,

with φ∗k = φ−k. Thus, we see that the compactification of a 5D scalar field on a circle leads to
a 4D theory with a massless scalar φ0 and an infinite tower of massive scalars φk with masses

10
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m2
k = k2/R2. In particular, observers at energies much below the so-called Kaluza–Klein (KK)

scale 1/R will only be able to see an effective field theory in 4D with a massless scalar and be
completely ignorant about the fifth dimension.

However, the structure of compactified models can be far richer than than just the appearance
of an infinite tower of massive fields. Indeed, the original Kaluza–Klein theory shows that through
compactification one can also enrich the types of fields in the effective theory. To this end, we again
consider a five-dimensional spacetime, but we replace the simple scalar field theory by Einstein’s
general relativity. The fundamental field is the metric GAB, whose dynamics is governed by
the Einstein–Hilbert action

∫
d5x
√
−det GR5d, where R5d is the five-dimensional Ricci-scalar.

Omitting the details, we can readily anticipate the result of the compactification on a circle by
a so-called dimensional reduction of the 5D metric, where we express the components into 4D
quantities:

gµν := Gµν , Aµ := Gµ4 = G4µ , φ := G44 , for µ, ν = 0, ..., 3 .

Thus we see that the five-dimensional metric G contains the same degrees of freedom as a four-
dimensional metric g, a vector field A and a scalar φ. By going through the computations,
one indeed finds – in addition to the massive KK modes – that the massless fields in 4D describe
Einstein gravity coupled to a U(1) gauge field Aµ and an additional scalar. The gauge symmetry is
a remnant of the diffeomorphism invariance of the full 5D theory. The scalar field is a prototypical
example of a (geometric) modulus field, whose vev parametrises the radius of the compactification
circle.

1.2.2 Compactification of string theory

One immediate question arises, when we try to realise our real world as the result of a compacti-
fication of string theory: which compact space does the job? An ideal scenario would be if there
is a first principle, which predicts the compact space, and it could be due to our still very limited
understanding of string theory that we are ignorant about such a principle. However, there is a
popular and controversial idea that perhaps there is no such principle at all. Instead, all math-
ematically consistent compactifications are also physically possible. Our observed universe would
then just be one out of many (predictions range between 10500 and 102700) within the so-called
string landscape. Whether our world is the result of a random (or anthropic) selection, or is
part of a bigger ‘multi-verse’ containing all possibilities is more of a philosophical debate, which
we will not entertain here. In any case, a better understanding of either side requires to study
individual (classes of) compactification models in detail and try to single out those which give
rise to viable physics in 4D.

But even so, we are still confronted with the difficulties of translating the geometry of a
general compactification space into physics of the effective theory. E.g. to perform the analogue
of a Fourier-expansion for a higher dimensional space, one needs to know the Laplacian which in
turn depends on the metric of the space. Even if we restrict ourselves to Ricci-flat metrics (in order
to solve Einstein’s equations in vacuum), we know the explicit form only in a handful of cases.
This difficulty in some sense reflects the equally hard problem of explicitly solving all physical
models in 4D. However, physical intuition tells us that symmetry principles can often simply life
significantly. Given the fact that all string theories have a certain amount of supersymmetry, it is
therefore tempting to restrict ourselves to compactifications preserving (part of the) SUSY. After
all, despite the growing tension of finding SUSY at the LHC, there are still phenomenological
reasons (dark matter, unification) and formal interests (only extension of spacetime symmetry,
new types of QFTs) for spacetime supersymmetry, which might be broken at scales higher than
we are currently probing.

Demanding SUSY in the non-compact dimensions turns out to be restrictive enough to give
us sufficient computational power over the compact space. Mathematically, the condition forces
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the compact space to have special holonomy.4 In particular, a specific class of spaces preserving
at least N = 1 SUSY in 4D has become one of the central objects of interest in string compacti-
fications. These are the so-called Calabi–Yau manifolds.

Calabi–Yau manifolds

In order to preserve minimal supersymmetry after compactification on a (real) 2N -dimensional
compact manifold X, the holonomy of X must be SU(N) ⊂ SO(2N). It can be shown math-
ematically that this statement is equivalent to X being a compact Kähler manifold of complex
dimension N with vanishing first Chern class. Originally conjectured by Calabi, it was not proved
until 1978 – around the same time string theory was first developed – by Yau that such a manifold
always admits a Ricci-flat metric. Therefore, these Calabi–Yau manifolds naturally solve Ein-
stein’s vacuum equations. However, one should point out that there are until now only numerical
results for the explicit form of such a metric (see e.g. [22, 23]).

Similar to compactifications on a circle, there will also be massive towers of modes coming
from the generalisation of a Fourier-expansion when compactifying on a Calabi–Yau manifold.
Analogously, they are also referred to as KK-modes, and their ‘typical’ mass mKK is the KK-
scale.5 Furthermore, we will also encounter massless modulus fields (or simply moduli), which
parametrise different geometric and topological properties of the Calabi–Yau. Typically, their
number is in the hundreds. If we want to make contact with our physical reality, where we only
expect a handful of light scalar fields (e.g. Higgs, QCD axion, inflaton), then there must be a
dynamical mechanism that gives these fields a high enough mass. Such mechanisms for ‘moduli
stabilisation’ have been studied extensively in the literature, see e.g. [21, 24–26] for an overview.

The success of Calabi–Yau manifolds and complex geometry in general come with the com-
putational power of algebraic geometry. Essentially, a large portion of the geometry of complex
manifolds is encoded in polynomials, which are far simpler than the whole set of differentiable
or holomorphic functions. For example, a theorem by Chow states that in any complex project-
ive manifold, complex submanifolds can be generally described by vanishing loci of polynomials.
Moreover, there are very simple methods – basically combinatorics – to explicitly construct a
subclass of complex projective manifolds and Calabi–Yau spaces as subspaces thereof. These
so-called toric geometry methods allows us furthermore to calculate many physically relevant
quantities (e.g. charges, chiral indices) by hand or with computer algebra systems. In this thesis,
we will exploit both toric geometry methods and polynomial algebra to construct and study
compactifications with Calabi–Yau manifolds.

Branes in compactifications

As branes are extended objects singling out certain directions, their presence would break the iso-
metry of spacetime. Therefore, in order to maintain e.g. Poincaré invariance when we compactify
to Minkowski space, the branes must either extend fully into the non-compact directions or not
at all. The latter are known as instantons, whose effects we will largely ignore throughout this
thesis. The first scenario however will be of great interest to us, as we can realise gauge theories
in spacetime (i.e. non-compact dimensions) with branes. In particular, while all branes coincide
in spacetime, they will in general have different positions in the compact dimensions. In string
theory jargon, we say that the branes wrap certain submanifolds within the compact space. It is
no surprise that the geometry of these submanifolds will play a crucial role in determining the
physics of the gauge theory on their world-volume.

4Strictly speaking, this is only valid for string compactifications without background fluxes. Including these
leads to manifolds with G-structures, see e.g. [21] for a review.

5For compactifications of the supergravity limit of string theories, we expect the KK-scale to be much lower
than the string scale. In addition, if we want to make contact to our physical reality, then we also have to break
SUSY at a scale lower than mKK.
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If we are intersted in supersymmetric compactifications, then branes cannot be located arbit-
rarily in the compact space. In type IIA, branes must wrap so-called co-isotropic submanifolds,
where as in IIB they must wrap holomorphic submanifolds. Because we have more mathemat-
ical tools for controlling and constructing holomorphic than for co-isotropic submanifolds, model
building in type IIB has been more successful in the recent years. In particular, this advantage
is enlarged further with the development of F-theory as an extension of type IIB. Note that in
general, including the back-reaction of branes will lead to non-Calabi–Yau spaces as compact
manifolds. E.g in type II models, where Calabi–Yau compactification actually leads to N = 2
SUSY in 4D, the inclusion of so-called orientifold-planes (O-planes) reduce spacetime SUSY to
N = 1. Consequently, the compact space will no longer be Calabi–Yau (but it must still be a
Kähler manifold).

1.3 M-theory and string dualities

In their 10D formulation, the five string theories appear to be independent. However, with the
tools of compactification, we can relate them by dualities. In fact, they can be seen as different
limits of a putative 11D theory. Its existence is conjectured by the observation that in eleven
dimensions, there is a unique supergravity theory.6 When compactifying this effective theory in
various ways, one can relate it to the supergravity limits of the five string theories. Similarly
to these, it is therefore believed that there must be a UV-completion of 11D SUGRA, which is
M-theory.

However, because there is no microscopic description of M-theory to date, we have to rely on
the SUGRA description. In 11D, the field content fills out complete multiplets of N = 1 SUSY.
The bosonic part consists of the metric G and an anti-symmetric 3-tensor, i.e. 3-form C3, which
is also referred to as the M-theory 3-form. Their dynamics is described by the action

S11D =
M9

11D

2

∫
M11

(
d11x

√
−detGR− 1

2
G4 ∧ ∗G4 −

1

6
C3 ∧G4 ∧G4

)
,

where G4 = dC3, and ∗ is the Hodge star operator in 11D and M11D the eleven dimensional Planck
mass. Further more, G is the determinant of the metric Gµν and R the Ricci-scalar constructed
out of it. Note that this action is invariant under C3 → C3 + dΛ2, i.e. C3 can be interpreted as a
gauge potential, with G4 its field strength. The BPS states of this supergravity theory are (2+1)-
and (5+1)-dimensional objects, dubbed M2- and M5-branes, respectively. They are in fact the
objects that are charged electrically and magnetically, respectively, under the gauge field C3.7

The relation to the five string theories comes by studying compactifications of M-theory. In
fact, it is straightforward to show that type IIA supergravity can be recovered simply from com-
pactifying 11D SUGRA on an S1. Moreover, we can also recover the BPS spectrum of type IIA,
e.g. the strings in 10D are M2-branes wrapping the circle, whereas D2-branes of type IIA origin-
ate from M2-branes not wrapping the circle. Importantly, the radius R of the compactification
circle is related to the type IIA string coupling as gs ∼ R/`s. This has a nice interpretation:
The decompactification limit R → ∞ is equivalent to the strong coupling regime of type IIA
string theory. Similar, a compactification of M-theory on an interval I ∼= S1/Z2 can be shown to
be equivalent to heterotic E8 × E8, where again the perturbative limit is achieved for vanishing
length of the interval. The relationship to the remaining three string theories (type I, IIB and
het. SO(32)) cannot established by simply considering compactifications of M-theory alone. In-

6To be precise, the uniqueness is only given with the assumption that there are no fields with spin higher than
2. Without this assumption, one would have to include massless fields of arbitrarily high spins for the theory to be
consistent.

7Explicitly, an object with world-volume W is charged electrically under a form-field ω if
∫
W
ω 6= 0, and

magnetically if
∫
W
∗ω 6= 0, where ∗ is the Hodge-star operator.
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stead we also need further properties of the string theories themselves. These are summarised in
the so-called S- and T-dualities.

The concept of S-duality can be understood purely field-theoretically as an equivalence of a
strongly and a weakly coupled theory. A famous example is the so-called Seiberg-duality between
two non-identical 4D N = 1 supersymmetric gauge theories; there the physics of one theory at
weak coupling turn out to be the same as the strong coupling physics of the dual theory. In string
theory, we find that type I string theory at coupling gI

s is S-dual to heterotic SO(32) theory at

coupling g
(32)
s = 1/gI

s. Furthermore, type IIB turns out to be self-dual under S-duality.
The other duality relation, called T-duality, is an inherently stringy relation that could not

arise for theories with simple point-like degrees of freedom. Concretely, it arises when we consider
closed strings in a compactification involving an S1 as part of the compact space (e.g. if the
compact space is a torus). To give a heuristic explanation of T-duality, imagine closed strings
wrapped non-trivially w-times around this circle with radius R. Since the string has tension
T ∼ 1/α′, the ‘ground state energy’ of the wrapped string will be shifted by wR/α′. At the same
time, the string can also carry momentum in the circle direction, which due to the finite size of
the circle is quantised as k/R. Their combined contribution wR/α′ + k/R is clearly invariant
under

R←→ α′

R
, k ←→ w . (II.5)

In other words, closed strings on a large/small circle are identical, if one replaces the circle by a
small/large one and simultaneously exchange winding modes and momentum modes.

As it turns out, type IIA and IIB string theories are T-dual to each other, i.e. a IIA com-
pactification on a circle of radius R is equivalent to a IIB compactification on a circle of radius
α′/R, and this equivalence proceeds via identifying states arising from excited strings wrapping
the circle with excited strings carrying momentum along the circle and vice versa. Similarly, the
two heterotic theories compactified to on a circle are T-dual to each. These relations complete
our duality web of string and M-theory, which we summarise in figure II.2.

type IIA type IIB

M-theory 11D SUGRA

het. E8 × E8 het. SO(32) type I

T-dual
S-dual

low energy

limit

on S1

on S1/Z2

T-dual S-dual

Figure II.2: String dualities relating the five string theories and M-theory/11D SUGRA.

1.4 Type IIB string theory

In this section, we will have a closer look at type IIB string theory. Its low energy description in
flat 10D space, type IIB supergravity, has N = (2, 0) supersymmetry. Its bosonic field content is
summarised in table II.1. These are of course supplemented by their supersymmetric partners.
Amongst these fields, the dilaton φ plays a special role in the perturbative description of type
IIB strings, as its vev 〈φ〉 encodes the string coupling, gs = e〈φ〉. The BPS objects of type
IIB are charged electrically and magnetically under the form fields. Note in particular that the
fundamental (F1-) and the D1-string differ by their charges.

In anticipation of the discussions below, we introduce the axio-dilaton τ := C0+i e−φ. Further
it is customary to define the field strength tensors Fn+1 := dCn for the form fields Cn and
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field (name) type electric BPS state magnetic BPS state

φ (dilaton) scalar – –
Gµν (metric) symmetric 2-tensor – –
B2 (B-field) 2-form F1-string NS5-brane
C0 (RR 0-form) 0-form D(−1) instanton D7-brane
C2 (RR 2-form) 2-form D1-string D5-brane
C4 (RR 4-form) 4-form D3-brane D3-brane

Table II.1: Bosonic field content of 10D type IIB SUGRA.

H3 := dB2. Finally, the abbreviations G3 := F3− τH3 and F̃5 := F5− 1
2C2 ∧H3 + 1

2 B2 ∧F3 allow
us to write the bosonic part of the type IIB SUGRA action compactly as [3]

2π

`8s

∫ (
d10x
√
−GR− 1

2 (Im τ)2
dτ ∧ ∗dτ +

1

Im τ
dG3 ∧ ∗dG3 +

1

2
F̃5 ∧ F̃5 + C4 ∧H3 ∧ F3

)
,

where G is the determinant of the metric Gµν and R the Ricci-scalar constructed out of it.

One crucial property of this action is an SL(2,R) symmetry. Concretely, this symmetry acts
on the fields in table II.1 as(
C4

G

)
7→
(
C4

G

)
, τ 7→ a τ + b

c τ + d
,

(
C2

B2

)
7→
(
a b
c d

)(
C2

B2

)
, with

(
a b
c d

)
∈ SL(2,R) . (II.6)

While only the discrete subgroup SL(2,Z) survives as a symmetry upon quantisation8, it is
believed that this remnant group persists as a symmetry of the full type IIB string theory. Note
that the special transformation τ 7→ −1/τ exchanges strong and weak coupling, gs 7→ 1/gs, in case
C0 = 0. Therefore the SL(2,Z) symmetry contains the invariance of type IIB under S-duality.

Another curious consequence of the SL(2,Z) invariance is the notion of strings. Since the
fields B2 and C2 are mixed up by a transformation, the charges of strings are not invariant
under SL(2,Z) transformations. In particular, strings that appear to be fundamental in one
SL(2,Z) frame can be a D1-string in another frame. Consequently, in the full type IIB theory,
D1-string should appear on equal footing with the ‘fundamental’ string. In general, strings will
carry (quantised) charges under both B2 and C2 and are labelled by their charges as (p, q)-strings.
They are stable, i.e. BPS if p and q are coprime [27]. In this language, fundamental strings are
(1, 0)-strings, and (0, 1)-strings represent D1-strings.

1.4.1 7-Branes in type IIB

Since branes carry electric and magnetic charges and the form fields, their presence will induce a
non-trivial profile for the these fields in a similar way an electric or magnetic charge backreacts
onto the electromagnetic field. Heuristically, the effects are described by Poisson-like equations.
Likewise, the supergravity description of branes also predicts gravitational back-reaction. One can
show that for p-branes with p < 7, these effects all fall off with r7−p, where r is the distance from
the brane in the normal directions, and can thus be neglected sufficiently far from the branes. For
7-branes however, when there are only two normal spatial directions, the solution of the Poisson
equation is proportional to log(r) and hence do not fall off asymptotically. Consequently, we
cannot simply ignore their back-reaction.

In particular, since 7-branes carry magnetic charges under C0, the back-reaction is also re-
flected in the behaviour of the axio-dilaton under SL(2,Z) transformations. Concretely, the

8The breaking is induced by D(−1) instantons, which contribute a factor of exp(2πiτ) to the partition function;
this factor is only invariant under SL(2,Z) transformations of τ .
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equations of motion for τ force it to have a profile

τ(z) =
1

2πi
log

z − z0

λ
+ . . .

in the vicinity of a D7-brane, where z ∈ C parametrises the plane orthogonal to the brane at z0,
and λ is some constant. Note that at z = z0, the value of τ diverges. The apparent issue arising
from the monodromy of the logarithm, i.e. τ 7→ τ + 1 when we move around z0 in a circle, is
remedied by realising that this is just an SL(2,Z) transformation (II.6) given by the matrix ( 1 1

0 1 ),
i.e. a symmetry of the theory. This suggests that one can identify D7-branes by their monodromy
effect on the axio-dilaton profile τ .

Note that we can use this effect for an alternative description of gauge symmetries along 7-
branes in type IIB. Recall from section 1.1 that the spectrum of open strings ending on branes gives
rise to gauge theories on their world-volume. In perturbative type IIB, there are in addition to
D7-branes also another type of 7-branes called O7-planes.9 Depending on the brane-configuration,
different gauge groups can be realised. SU(n) gauge theories, for example, live on a so-called stack
of n coincident D7-branes (i.e. n D7-branes sharing the same world-volume), whereas SO(2(n+4))
theories are realised on n + 4 D7-branes on top of an O7−-plane. Studying the back-reacted τ
profile in the presence of these configurations, we find the following monodromy effects induced
by each of them:

SU(n)←→
(

1 n
0 1

)
, SO(2(n+ 4))←→ −

(
1 n
0 1

)
. (II.7)

Conversely, this means that we can identify loci, around which τ exhibits some non-trivial mono-
dromy, with brane configurations and the gauge symmetries associated with them. As in the
example above with a single D7-brane, τ will diverge at the brane loci. Note that in order to
cancel the local brane tadpoles, the SO(2n) configuration is only stable with at least 4 D7-branes.
This is an other consistency condition from the back-reactions of 7-branes.

Moreover, we can generalise the perturbative definition of a D7-brane being the ending locus
of open fundamental strings in an obvious way: A (p, q)-brane is the locus where (p, q)-strings
can end on. A D7-brane is thus a (1, 0)-brane. For the O7-plane, the situation is slightly more
tricky. It was shown in [28] that it is actually a bound state of a (3,−1)- and a (1,−1)-brane.

One way of describing non-perturbative type IIB is to study general (p, q)-strings and -branes
utilising so-called string junctions [29–31]. However, the methods of this approach are technical
and less geometric. Instead, the above results suggests an alternative, unified description of
7-branes and (p, q)-strings ending on them by exploiting the SL(2,Z) transformations of the
axio-dilaton and its monodromies. This description is provided by F-theory.

2 Introduction to F-theory Compactifications

In this section, we will collect some of the foundations of F-theory. For this, we will necessarily
have to introduce some technical definitions and assume some working knowledge of complex
geometry, line bundles and divisors. Most of the material are covered in reviews as [26,32].

2.1 Geometrising the SL(2,Z) invariance of type IIB

The success of F-theory as a unified description of type IIB comes from the geometrisation of
the SL(2,Z) invariance. The crucial observation is that by identifying the axio-dilaton τ with

9Recall that O-planes have been introduced to further the spacetime SUSY in Calabi–Yau compactifications
from N = 2 to N = 1. In these constructions they arise as fix loci of a geometric involution on the Calabi–Yau.
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the modular parameter of an auxiliary torus, the SL(2,Z) invariance can be seen as simply the
symmetry transformation of that torus.

Recall that a (two-dimensional) torus can be defined as the quotient C/Λ, where Λ is a lattice
in C. The lattice Λ can be defined by two vectors ~a,~b ∈ C = R2, such that the torus is given by
identifying ~x ∼ ~x + ~a ∼ ~x +~b. The area of the torus is given by the area of the parallelogram
spanned by ~a and ~b, while the ‘shape’ is determined by the angle and the relative length between
the two vectors. In complex geometry, the area is known as the Kähler parameter of the torus, and
the shape is the complex structure. These are formally two independent parameters, meaning we
can separately encode the area of the torus by the Kähler parameter and the complex structure
by the angle and relative length of the two vectors ~a and ~b.

It is useful to use these freedoms to fix one of the vectors defining Λ to be 1 ∈ C. Then, the
complex structure of the torus is completely determined by the other vector, which we call τ . In
this form, it can be easily shown that the transformations τ 7→ τ + 1 and τ 7→ −1/τ leave the
lattice Λ invariant. In fact, these transformations generate the full group of SL(2,Z), which is
thus the symmetry group of the torus. In other words, any two complex structure parameters
τ, τ ′ related by a transformation τ ′ = a τ+b

c τ+d with
(
a b
c d

)
∈ SL(2,Z) define the same torus. By

applying SL(2,Z) transformations, one can map any τ into the so-called fundamental region

F =

{
τ ∈ C

∣∣∣∣ |τ | ≥ 1, −1

2
≤ Re(τ) ≤ 1

2

}
, (II.8)

which is the set of complex structures of inequivalent tori.

1

τ τ + 1

(a) Lattice defining the torus. (b) Torus embedded in R3.

Figure II.3: A lattice (a) defining a torus (b). The lattice vectors define corresponding cycles
on the torus, indicated as coloured circles in (b).

Furthermore, by representing the torus in the usual way as in figure II.3(b), the lattice vectors
spanning Λ can be related to the two non-trivial cycles on the torus, as the colour-coding in figure
II.3 suggests. In particular, the ratio of the length of the two cycles can be related to the value
of τ . With this relationship, an infinite value for τ has a very geometric interpretation, namely
one of the cycles shrinking to zero size, i.e. the torus becomes singular.

In algebraic geometry, tori are also known as elliptic curves. These have been studied system-
atically first by Weierstrass. Some of his beautiful results are the foundations of F-theory. In the
following, we will briefly review these.
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Tori as elliptic curves

An elliptic curve can be defined as the loci {[x : y : z]} inside the weighted projective space P231
10

satisfying the so-called Weierstrass equation

y2 = x3 + f x z4 + g z6 ⇔ PT := y2 − x3 − f x z4 − g z6 = 0 . (II.9)

Weierstrass showed that any such curve can be identified with a torus defined by a lattice Λ, as
discussed above. In his studies of elliptic curves, Weierstrass introduced the famous P-function
(also known as the Weierstrass elliptic function), which has been honoured with its own designated
symbol in LATEX. Concretely, for a lattice Λ ⊂ C generated by 1 and τ , we define

℘(ζ; τ) :=
1

ζ2
+

∑
n,m∈Z,

(n,m)6=(0,0)

(
1

(ζ +m+ n τ)2
− 1

(m+ n τ)2

)
. (II.10)

This function has a double pole at every lattice point, and is doubly periodic, ℘(ζ; τ) = ℘(ζ +
1; τ) = ℘(ζ + τ ; τ). Therefore, this is a well-defined meromorphic function on the torus C/Λ.
Furthermore, the P-function satisfies the functional equation(

d

dζ
℘(ζ; τ)

)2

≡
(
℘′(ζ; τ)

)2
= 4℘3(ζ; τ)− g2(τ)℘(ζ; τ)− g3(τ) ,

where g2,3 are the so-called Eisenstein series:

g2(τ) = 60
∑

n,m∈Z,
(n,m)6=(0,0)

(m+ n τ)−4 , g3(τ) = 140
∑

n,m∈Z,
(n,m)6=(0,0)

(m+ n τ)−6 .

With this functional equation, it is now obvious that the map

C→ P231, ζ 7→

{
[42/3 ℘(ζ; τ) : 2℘′(ζ; τ) : 1] , if ζ /∈ Λ

[1 : 1 : 0] , if ζ ∈ Λ
(II.11)

identifies every point on the torus defined by τ with a point of an elliptic curve in the form (II.9),
with the coefficients given as f(τ) = −41/3 g2(τ), g(τ) = −4 g3(τ).

Conversely, given an elliptic curve defined by f and g, it is possible to extract the complex
structure τ defining the lattice Λ. The connection requires the so-called Klein’s j-invariant or
simply j-function,

j(τ) =
4 · 243 f3(τ)

4f3(τ) + 27 g2(τ)
, (II.12)

which is an isomorphic SL(2,Z)-invariant mapping of the fundamental region (II.8) onto C∪{∞}.
The expansion of the j-function, j(τ) = exp(−2πiτ) + 744 + 196884 exp(2πiτ) + ..., signals that
for τ → i∞, the j-function diverges. Indeed, the vanishing of the numerator,

∆ := 4 f3 + 27 g2 , (II.13)

is tied to the degeneration of the elliptic curve (II.9), which is precisely the case when the derivat-
ives ∂x,y,zPT vanishes together with PT . Therefore, by describing a torus through the Weierstrass
equation (II.9), the degeneration of the torus, i.e. the divergence of τ , is equivalent to the vanishing
of the discriminant ∆ (II.13).

A way to visualise an elliptic curve defined by a Weierstrass equation is by going to inhomo-
genous coordinates [x : y : 1] in P231, such that the point [1 : 1 : 0] lies at infinity. Then one can
plot the real parts of the solution. Compared to visualisations of the torus, this depiction can
easily differentiate between different types of singularities, cf. figure II.4.

10The usual definition of this weighted projective space is as a quotient (C3 − {0})/ ', where the equivalence
relation is the scaling (x, y, z) ' (λ2 x, λ3 y, λ z) with any λ ∈ C− {0}.
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(a) Smooth elliptic curve (b) Singular elliptic curve with self-
intersection

(c) Singular elliptic curve with cusp

(d) Smooth torus (e) Singular torus

Figure II.4: A smooth elliptic curve (a) corresponding to a smooth torus (d). Different singu-
larity types of elliptic curves (b) and (c) correspond to singular tori (e) with different severity of
‘pinching’ (i.e. the shrinking of a cycle).

2.2 Torus fibrations

Given the above analysis, it seems tantalising to identify the axio-dilaton in type IIB compacti-
fications with the complex structure of a torus that varies over the compact space, which we shall
call B here.11 In mathematics, such a structure is known as a fibration. Concretely, a fibration is
a collection of spaces (Y,B, f) with a projection map π : Y → B, such that for any point b of the
base B, the pre-image π−1(b) is ‘equivalent’12 to f, the fibre. To each base point b we can assign
the complex structure τ(b) of the torus fibre π−1(b). Clearly τ(b) is a function on B, called the
τ -function. Such a structure can be summarised in a diagram as

f Y

B

π (II.14)

For our type IIB set-up, where the fibre f is a torus, the total space Y is called a torus fibration
(or said to be torus-fibred). While the generic fibre is a smooth torus, the fibres can be singular
in special loci on B. For these loci, we necessarily have ∆ = 0. In some extreme cases, we can
even have that the fibre π−1(b0) over certain points b0 ∈ B no longer a curve (complex dimension
one), but a higher dimensional objects. A fibration with such fibres are called non-flat. Since
many mathematical results rely on a flat fibration structure, F-theory has been studied so far
almost exclusively on flat fibrations only, while disregarding any non-flat fibration encountered in

11Recall that τ is constant (in fact divergent) in the non-compact spacetime directions, as these are filled with
7-branes in compactification models.

12The equivalence is essentially given by homotopy equivalence. For some intuition, simply replace ‘equivalent’
with ‘isomorphic’, in which case one obtains a fibre bundle. As we will see soon, we have to allow for some
degeneracy of certain fibres, which requires the generalised notion of fibration.
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explicit constructions. We will also follow this route throughout the thesis and implicitly assume
all fibrations to be flat. However, there is some work in progress that attempts to understand the
physics of non-flat fibres in F-theory [33].

2.2.1 The Weierstrass model

With the results from the previous section, a prototype – in fact the prototype – of a torus
fibration is given by promoting the coefficients of the Weierstrass equation (II.9) to be functions
of B. While heuristically, it is obvious that this prescription describes a torus embedded into P231

with varying shape, we would like to set up the mathematically correct description here.

To this end, we first consider a fibration X of the ambient space P231 over B. This amounts to
identify the coordinates with suitable functions of the base. To be precise, they have to transform
as sections of certain line bundles defined over B under projective rescalings of the base.13 In
anticipation of the Weierstrass equation, we fix a line bundle L and pick x to be a section of L2

and y to be a section of L3; z will be section of the trivial bundle O. In order for the Weierstrass
polynomial PT = y2−x3− f x z4− g z6 to have the correct scaling, f therefore must be a section
of L4 and g a section of L6. For every point b ∈ B, the vanishing of the Weierstrass polynomial
PT defines a torus T 2 as a fibre, which is embedded into the fibre ambient space P231:

T 2 P231 X

Y B

πX

πY

(II.15)

In this representation, the torus fibration Y can also be seen as a hypersurface defined by the
vanishing of the Weierstrass polynomial inside X:

Y = {y2 − x3 − f x z4 − g z6 = 0} ⊂ X . (II.16)

Such a torus fibration is known as a Weierstrass model. A key property of the Weierstrass
model is the existence of a special point on every fibre given by the intersection Y ∩ {z = 0} =
{y2 − x3 = z = 0}. Note first that on this intersection, neither x nor y can vanish, because then
all three fibre coordinates would be zero, which is forbidden for the homogeneous coordinates of
P231 (see footnote 10). Thus, we can use the scaling relation of P231 to set y to 1, implying that
also x must be 1. Therefore, we can associate to base point b ∈ B the [1 : 1 : 0] in the fibre over
b:

Sec0(b) := [1 : 1 : 0] ∈ π−1
Y (b) ∼= T 2 ⊂ P231 . (II.17)

Such a map Sec : B → Y is known as a section of the fibration: It satisfies the condition πY ◦Sec =
idB. Torus fibrations with sections are known as elliptic fibrations. Historically, F-theory was
studied first on elliptic fibrations, as for these, there are much more rigorous mathematical results
than for general torus fibrations without sections. For a Weierstrass model, we can use the
discriminant formula (II.13) to find the locus {∆ = 0} ≡ {∆} ⊂ B over which the torus fibre
degenerates. For more general types of torus fibrations, there is an analogous locus {∆} of singular
fibres. In all examples, where the fibration is given as the vanishing locus of a polynomial P ,
similar to (II.16), one can determine an expression for ∆ in terms of the coefficients of P by
finding the loci where all partial derivatives of P vanishes.

13Recall that for SUSY preservation, B has to be a Kähler manifold. In simple terms, all our Kähler manifolds
can be embedded into a projective space; the sections must therefore transform appropriately under the scaling
relations of the embedding space.
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2.2.2 Torus fibrations as hypersurfaces

The classes of fibrations we consider follow the structure of the Weierstrass model: We embed
the torus fibre as an elliptic curve E in some complex two-dimensional projective fibre ambient
space A with homogeneous coordinates xi , which itself is a fibration X over B:

E A X

Y B

πX

πY

(II.18)

Again, the torus fibration Y is given as a hypersurface in X, i.e. the vanishing of a homogeneous
polynomial P with variables xi. The coefficients of P are sections of line bundles over B, such
that for any point q ∈ B, the solutions of P |q = 0 give rise to an elliptic curve in A. Given
an ambient space A, the generic polynomial that cuts out an elliptic curve is easily determined:
Since the torus is a compact Ricci-flat Kähler manifold, it is actually a Calabi–Yau space of
complex dimension one. In fact, tori are the only dimension one Calabi–Yau manifolds. Since
Calabi–Yau manifolds must have vanishing first Chern class, this gives an algebraic criterion on
the polynomial P . Concretely, via the adjunction formula one can explicitly compute the first
Chern class of the curve E cut out by P inside A. The Calabi–Yau condition then restricts only
the presence of certain monomials in P .

For a weighted projective space, this condition is very simple: The sum of the weights of
any monomial must be equal to the combined weight of all homogeneous coordinates of A. For
example, in the fibre ambient space of the Weierstrass model (II.15), the coordinates x, y and z
have weights 2, 3, and 1, respectively, under the scaling (x, y, z) ' (λ2 x, λ3 y, λ z). The sum is
therefore 6, which is the same weight the Weierstrass polynomial PW (II.9) has. Thus, the curve
defined by {PW = 0} ⊂ P231 is a torus/elliptic curve. In this thesis, we will encounter fibrations
defined by tori embedded into three other fibre ambient spaces: P112, Bl1P112 and Bl2P2. Note
that out of these, the fibration with A = P112 does not have a section, i.e. is not an elliptic
fibration. Nevertheless, since it is given by a polynomial, we can determine the discriminant
locus as explained above.

2.2.3 Connection to type IIB

Before we continue with technical details, let us pause briefly to fully appreciate the consequences
for our understanding of type IIB compactifications. The advantage of the mathematical descrip-
tion using torus fibrations is that a globally consistent fibration automatically takes care of all
back-reactions originating from 7-branes. Physically it means that conditions like local (7-brane)
tadpole cancellation, which in previous type IIB models had to be ensured ‘by hand’, are now
naturally satisfied thanks to the geometric description. In turn, the back-reaction effects – which
can be seen as non-perturbative effects stemming from the finite value of gs – will in general lead
to the splitting of perturbative D7-branes and O7-planes into (p, q)-branes, which localise along
complicated loci in the compact space B. Thanks to the mathematical tools, we can nevertheless
determine their position by examining the discriminant ∆. As we will discuss in section 2.4.2,
the types of branes and the gauge symmetries on their world-volume can be inferred from the
monodromy behaviour of τ around the components of {∆ = 0}.

While these connections between type IIB compactifications and torus fibrations are quite
intuitive, the description so far lacks rigorous tools for extracting physical data from the geometry.
These tools are provided by the duality between type IIB and M-theory. In fact, a proper way of
defining F-theory is through its M-theory description.
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2.3 Defining F-theory via M-theory

Recall from figure II.2 that M-theory is connected to type IIB string theory via duality relations
to type IIA. To understand the connection to F-theory, we need to briefly outline this duality
chain. We will work on the level of supergravity theories, where the dualities are explicitly given
in terms of the field content and the effective actions. All statements are believed to hold beyond
the low energy limit.

First, we consider 11D SUGRA compactified on a torus T 2 = S1
A×S1

B. Suppose the remaining
nine dimension are flat Minkowski space R1,8, then the duality relations implies that in the
low energy limit we have type IIA SUGRA on R1,8 × S1

B. By performing a T-duality (II.5),
i.e. replacing S1

B, which has radius RB, with an other circle S̃1
B of radius R̃B = α′/RB, we obtain

a T-dual type IIB SUGRA on R1,8× S̃1
B. In particular, in the decompactification limit R̃B →∞,

or equivalently RB → 0, the circle S̃1
B becomes a flat line of infinite length, thus we recover

type IIB in R1,9. From the 11D perspective, we can perform this limit by keeping the complex
structure τ ∼ RA/RB of the torus fixed and shrink its area (i.e. Kähler parameter) which is
proportional to RARB ∼ R2

B.

By carefully reducing the 11D SUGRA fields along the compactification torus à la Kaluza–
Klein and tracing the result through the duality chain, it turns out that the axio-dilaton of
type IIB is precisely given by the complex structure parameter τ of the compactification torus.
Meanwhile, the area or Kähler parameter of the torus controls the KK mass scale in the compac-
tification of type IIB to R1,8 × S̃1

B. By taking this scale to 0, all KK modes become light again
and re-arrange themselves into the massless modes of the 10D theory, thus effectively describing
the decompactification limit in terms of the matter spectrum. Therefore, we end up with the
equivalent description of type IIB string theory in R1,9 as M-theory on R1,8 × T 2, where we take
the limit of vanishing torus area while keeping its complex structure fixed.

This duality extends directly to compactifications R1,9−d×B of type IIB on a compact manifold
B of (real) dimension d with varying axio-dilaton τ . In this case, the dual M-theory description is
a compactification on R1,8−d×Y , where Y is a torus fibration over B. The above limit of shrinking
the torus area (also referred to as torus volume) to 0 has now to be performed fibre-wise. By
doing so, one direction of Y ‘grows’ into a non-compact spatial dimension, which combines with
the other non-compact dimension into the type IIB spacetime R1,9−d. This can be now seen as
the definition of F-theory:

F-theory on a torus fibration π : Y → B is defined to be the type IIB compactification

on B dual to M-theory compactified on Y in the limit of zero fibre volume.
(II.19)

In contrast to the type IIB description, in which it was merely a book-keeping device, the torus
has become a part of the physical space in the M-theory definition of F-theory. Via M-theory, we
now have much more rigorous methods to extract physical data from the torus fibration Y than
in the type IIB picture. In particular, there is an additional element in the duality chain that
turns out to be extremely helpful in our understanding of F-theory compactifications to R1,n. If
we compactify M-theory on Y without taking the limit of zero fibre volume, then we obtain a
theory in one dimension lower. This theory on R1,n−1 is connected to the F-theory model on
R1,n via a further compactification on a circle. With this element, we can study many aspects of
F-theory by analysing the theory in R1,n−1. Taking the limit of zero fibre volume is often also
referred to as the F-theory limit (of M-theory compactified on Y ).

One particularly important question that can be answered by this approach is how much
spacetime supersymmetry is preserved in F-theory compactifications. For example, it is known
that 4D N = 1 SUSY is equivalent to N = 2 in 3D. Therefore, if we want to obtain an N = 1
in 4D from F-theory compactification on Y , the corresponding M-theory compactification on Y
must preserve at least N = 2 SUSY in 3D. This constrains the geometry of Y to be a Calabi–Yau
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manifold of complex dimension four. Similarly, by studying theories in 5D, we know that F-
theory compactified on an Calabi–Yau threefold gives rise to an N = 1 theory in 6D. Generically,
the base B needs not to be Calabi–Yau, but has to still be Kähler. Note that this is not in
contradiction to type IIB, since also there, the presence of 7-branes on B will render the space
non-Calabi–Yau.

In terms of torus fibrations defined as hypersurfaces in an ambient space (II.18), the Calabi–
Yau condition can be translated into the choice of line bundles for the coefficients of the hypersur-
face. E.g. in the Weierstrass model with hypersurface (II.16), we have seen that the coefficients
f, g are sections of powers of an a priori arbitrary line bundle L. In order for the resulting fibration
Y to be Calabi–Yau, the line bundle must be the anti-canonical bundle c1(B) ≡ K.

Equipped with the M-theory description, we can now give a (physically) rigorous description
of F-theory compactifications with gauge symmetries and matter states.

Massless states in M-theory

Massless states in R1,n will in general reduce upon circle reduction to massless states in R1,n−1

accompanied by a tower of massive KK modes. Therefore, we should find to each massless state
of F-theory compactified on Y a corresponding massless state in M-theory compactified on Y .

In M-theory compactifications on R1,10−2d × Yd ≡ M × Yd, with d = dimC Yd, one source for
such massless states is the dimensional reduction of the 3-form C3. Concretely, for a basis of
2-forms ωi and a basis ηj of 3-forms, C3 can be expanded as

C3 =
∑
i

Ai ∧ ωi +
∑
j

αj ηj , (II.20)

where the Ai are 1-forms, i.e. vector fields on M , and αj are scalars. The vectors and scalars will
only be massless if they are zero eigenfunctions of the Laplace operator �. With the compactific-
ation ansatz M ×Yd, the Laplacian simply splits into the sum �M +�Y of the Laplacian for each
factor. For �(Ai ∧ ωi + αj ηj) = �M (Ai + αj) + �Y (ωi + ηj) = 0, ωi and αj must therefore be
harmonic forms, i.e. �Y ωi = 0 = �Y ηj .14 These harmonic forms are of course precisely counted
by the de Rham cohomology. In the following, when we speak of (p-)forms on Yd, we will always
mean the cohomology class represented by this form, unless otherwise stated.

The scalars αj fall into two categories. Those that arise from 3-forms ηj which are pull-backs

of 3-forms η
(B)
j from the base of the fibration correspond to so-called bulk U(1)s, which in the

type IIB picture arise from the reduction of the 4-form C4 (see table II.1) along η
(B)
j [34]. The

other 3-forms that are not pull-backs of the base give rise to axionic chiral multiplets in the
effective theory on M [35]. As neither of them give rise to non-abelian gauge symmetries and
matter charged under those, we will focus our attention on the vectors Ai coming from 2-forms
ωi.

On a Calabi–Yau manifold, the geometry only allows for non-trivial 2-forms of Hodge type
(1, 1). These in turn are Poincaré-dual to divisors. Therefore, for any independent divisor class,
we have an associated massless vector field in the M-theory compactification on Yd. However,
not all of them lift to vector fields in the F-theory limit. In fact, in the for us most relevant case
of F-theory on a fourfold Y4, it can be shown [34] that for so-called vertical divisors D(B) of Y4,
which are the pre-image of divisors of the base B15, the associated vectors Ai are Hodge dual

14Note that we have assumed that none of the fields in the non-compact directions is tachyonic, i.e. have negative
eigenvalue under the Laplace operator �M . For a compact Riemannian manifold, as Yd is, all eigenvalues of the
Laplacian are non-negative.

15 A vertical divisor is of the form π−1(D(B)) with D(B) a divisor of the base B; it is common to use to abusive
notation D(B) ≡ π−1(D(B)). From the perspective of Yd, one can also define vertical divisors D(B) as a divisor of
Yd satisfying π−1(π(D(B))) = D(B).
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(in R1,2) to scalars, which lift to Kähler moduli fields in R1,3, i.e. fields whose value parametrise
the Kähler structure (e.g. the volume) of D(B). We are interested in genuinely 4D vectors that
belong to a vector multiplet and therefore can be associated with a gauge field. These can only
arise from divisors of Y4, which do not originate from the base. Since such divisors are necessarily
associated with the fibration structure, they are usually referred to as fibral divisors.

In addition to the C3 field, M-theory also has BPS states in form of M2- and M5-branes.
These can be wrapped on submanifolds Z of Yd of various dimensions. In particular, wrapping
M2-branes on holomorphic curves, i.e. complex submanifolds Z of (complex) dimension one,
give rise to states in the effective theory in R1,10−2d preserving spacetime SUSY. Note that in
particular, the reduction of the two spatial dimensions of the M2-brane along the internal manifold
leaves only a time-like direction of the M2-brane’s world-volume in R1,10−2d, so these states are
point-like in the classical limit. In particular, they are charged under 1-form fields, i.e. gauge
symmetries, in R1,10−2d. Since M2-branes have a finite tension, these states will only be massless
if the curve Z they wrap have zero volume. As we will see now, such shrunken curves appear
naturally in singular torus fibrations.

2.4 F-theory on singular torus fibrations

In the type IIB description, we have seen that the axio-dilaton τ diverges at the position of 7-
branes. If we interpret τ as the fibre’s complex structure in a torus fibration, then the torus fibre
must necessarily degenerate over 7-brane loci. As we have argued earlier, the position of these
loci is given by the vanishing of the discriminant (II.13). This condition determines a (real) four-
dimensional – or (complex) codimension one – submanifold of B (in particular these are divisors of
B). Away from this locus, the generic fibre over B must be a smooth torus.16 The singular fibres
over {∆ = 0} ≡ {∆} will in general lead to a singular total space Y4. Typically, while singularities
are crucial for certain physical aspects, we have to perform geometric modifications in order to
study them, which in the process resolve the singularities. In the F-theory context, there are
two approaches studied in the literature, the deformation and the blow-up picture. In this thesis
we will work exclusively in the blow-up picture. For F-theory with deformation resolution, we
refer to [36, 37]. As we will see in the following, the resolution of codimension one singularities,
i.e. singularities of Y4 stemming from the generic (singular) fibre over the codimension one locus
{∆}, allows for a direct description of non-abelian symmetries in F-theory.

2.4.1 Resolution by blow-ups

For simplicity, let us assume that the discriminant locus {∆ = 0} is irreducible, i.e. it is divisor
Θ = {θ} given by vanishing of a meromorphic function θ of the base B. If {∆} is reducible,
i.e. a collection of divisors Θi, then one has to perform the resolution process for each component
individually.

The idea of a blow-up resolution is to introduce a set of so-called exceptional divisors Exi
in a new total space Ŷ4, which under the projection π : Ŷ4 → B map to the divisor Θ of the
base. In other words, these divisors are themselves fibrations π̃i : Exi → Θ, where the fibre over
a generic point of Θ is isomorphic to a P1, possibly with a non-trivial multiplicity mi. Over a
generic t ∈ Θ, the fibre P1s are ‘inserted’ at the singular point of the torus fibre of Y4 over t.
In the schematic figure II.4(e), the singular point is marked red. Note that in particular, the
singular torus has the topology of a 2-sphere, i.e. a P1, if we disregard the singular point. Thus,
after the introduction of the exceptional divisors, the full fibre is now a collection of P1s pasted
together in points (cf. picture II.5; the original torus is marked in red). Depending on the severity
of Y4’s singularity over Θ, the (finite) number of divisors Exi and how their fibre P1s are pasted

16In the context of spaces carrying a natural measure (e.g. induced by the metric on a Riemannian manifold and
its submanifolds), ‘non-generic’ points can be understood as subsets with zero measure.
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together will vary. After the process, the resulting total space Ŷ4 is now smooth. Note that does
not mean that the fibres over Θ are now smooth! In general they are still singular. After all,
they are a collection of P1s which intersect amongst themselves. For these fibres, the individual
P1s are referred to as the (irreducible) components of the fibre. The full (reducible) fibre is
usually referred to as a singular fibre. Despite the fibres having these so-called normal crossing
singularities, they are mild enough such that the total space is smooth. Crucially, the exceptional
divisors are not vertical divisors of Ŷ4

π→ B, because π(Exj) = Θ, but π−1(Θ) contains all P1s
from the other Exi.

The P1s introduced in the resolution process can be regarded as being present already in the
singular geometry Y4, however with zero size. The resolution process then amounts for ‘blowing
up’ these P1s like balloons, explaining the name of this resolution method. In mathematical
terms, the singular fibration Y4 is obtained as a limit of the smooth Ŷ4 by taking the Kähler
parameters that control the sizes of the exceptional P1s to zero. Being the inverse to the blow-up
process, this limit is usually called the blow-down. In general, there are multiple resolutions Ŷ4

which blow-down to the same singular limit Y4. Consequently, the physics of F-theory on the
singular fibration Y4 is independent of the chosen resolution Ŷ4.

Note that not all resolutions Ŷ4 are physically allowed. In order for the compactification on
Ŷ4 to still give an supersymmetric theory, we must maintain the Calabi–Yau condition. This
condition constraints the types of singularities one can have. In particular, while through the
above resolution process we have generally taken care of codimension one singularities, the total
space might still be singular as a result from unresolved singularities in higher codimension. In
general, resolution of all higher codimension singularities is a difficult task on a purely mathem-
atical level. In addition, these might violate the Calabi–Yau condition or render the fibration
non-flat – two undesired outcomes. Luckily, there is a subclass of singular Y4 which can be fully
resolved by blowing up all codimension one singularities. The resolutions Ŷ4 are determined with
so-called tops in the framework of toric geometry (see section 2.6 for a short overview). This
framework gives a simple combinatorical description of the geometry after the resolution process.
In particular, it can be algorithmitised with computer algebra programs like Sage. Since all our
examples will be constructed in this framework, we will for the sake of simplicity assume in the
following that the resolution of all codimension one singularities with exceptional divisors will lead
to a fully smooth, flat torus-fibred Calabi–Yau Ŷ4. A resolution that preserves the Calabi–Yau
condition, or more general preserves the first Chern-class is called a crepant resolution. Finally,
note that in all situations relevant to us, the resolved fourfold Ŷ4 is still a fibration over B, i.e. the
resolution process leaves the base unchanged. However, it should be stressed that in certain situ-
ations, where the full resolution of the total space requires modifications of the base B. In fact,
these types resolutions have been studied and understood mainly for F-theory compactifications
to 6D [38–41].

2.4.2 Kodaira’s classification of codimension one singularities

The systematics behind codimension one singular fibres of elliptic fibrations have a beautiful math-
ematical description. Although usually referred to as Kodaira’s classification [42,43], it should be
noted that Néron independently obtained the same results [44]. The original works classified the
singular fibres of elliptic surfaces, i.e. elliptic fibrations over a (complex) one-dimensional base
B. We will first present the results for this case, before explaining how it generalises to higher
dimensional bases and in particular for torus fibrations that are not elliptic fibrations.

For an elliptic surface Y2, the discriminant locus {∆} just consists of isolated points, so all
singularities are of codimension one. The exceptional divisors resolving the singularities are simply
P1s in the fibre over the points of {∆} with certain multiplicities. Kodaira and Néron showed that
in the resolved surface Ŷ2, the fibres over b ∈ {∆} are now chains of P1s intersecting each other in
the form of the affine ADE Dynkin diagrams – the same diagrams used to classify semi-simple Lie
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groups (see figure II.5).17 In particular, the number of the exceptional P1s correspond to the rank
of the corresponding Lie group G, and the multiplicities of each of the P1 components match the
Dynkin label of the corresponding node in the Dynkin diagram. Furthermore, the intersection
number P1

i · P1
j form the Cartan matrix of G. The original analysis of Kodaira also includes an

explicit criterion of determining the explicit Dynkin diagram in terms of the vanishing orders of
the Weierstrass coefficients f, g and the discriminant {∆} at b.

For a physicist, this is a remarkable result! By geometrising the axio-dilaton of type IIB
through torus fibrations, we are led purely by mathematics to the core objects of gauge sym-
metries, which we expected to find on 7-branes. Indeed, the identification goes further. For
each singular fibre over a base point b with a particular Dynkin diagram, there is an associated
gauge group. Kodaira’s classification results tell us that the SL(2,Z) monodromy of τ around
b precisely matches the monodromy behaviour of the axio-dilaton around 7-brane configurations
realising the same gauge group. While from a type IIB perspective, this seems to be enough evid-
ence to ‘believe’ Kodaira’s classification, we want to explicitly see how these non-abelian gauge
groups arise from the definition (II.19) of F-theory through M-theory. Before presenting this
analysis in the following section, let us briefly comment on the situation for higher dimensional
elliptic and general torus fibrations

The original Kodaira classification shows that for elliptic surfaces, the associated gauge groups
are only of ADE type, i.e. SU(n+ 1) (An-type), SO(2n) (Dn-type for n ≥ 4) and E6,7,8 (E-type).
However, for higher dimensions, i.e. when dimC B ≥ 2, we recover all other semi-simple Lie groups
from codimension one singularities:

• the Bn-types corresponding to SO(2n+ 1) with n ≥ 2,

• the Cn-types corresponding to Sp(n) with n ≥ 3 (group of unitary 2n × 2n matrices pre-
serving a symplectic bilinear form),

• the exceptional groups F4 and G2.

The reason that these are only present in higher dimensions can be traced back to certain mono-
dromy effects on the fibre components over the discriminant locus {∆}18, which is now of at least
complex dimension one [46]. These monodromies map one P1 component of a generic fibre at
t ∈ {∆} onto an other component by transporting them along a non-trivial path within {∆},
thus effectively identifying them as the fibres of the same exceptional divisor. In a way, the iden-
tification of fibre components via monodromy is analogous to the folding of Dynkin diagrams of
ADE type to obtain the diagrams for the above types [47]. The algebraic conditions in explicit
fibrations to determine whether such monodromies exist are concisely presented in [41] within
the F-theory literature.

In summary, by blowing up the singularities over an irreducible codimension one component
Θ of the discriminant locus {∆}, we introduce a set of exceptional divisors Exi ⊂ Ŷ4. These are
themselves fibrations over Θ, whose generic fibre is a P1 with multiplicity mi. Over a generic point
of Θ, the intersection structure of these P1s is encoded by the Dynkin diagram and the Cartan
matrix of a semi-simple Lie group, such that the number of exceptional divisors Exi equals the
rank of the gauge group and the multiplicities mi match the Dynkin labels of the corresponding
diagram. The explicit Lie group is determined by the vanishing orders of (f, g,∆) along Θ and
certain monodromy conditions. Furthermore, the SL(2,Z) monodromy of τ around Θ matches
the monodromy behaviour of the axio-dilaton around 7-branes realising the same symmetry group

17For simplicity, we will not differentiate between the gauge algebra, which can be read off from the singular
fibres, and the actual gauge group. There can in general be several possibilities of the latter for a given gauge
algebra, which differ in their global structure. The description of the global structure of gauge groups in F-theory
have been thoroughly investigated in [45].

18Note that these are not the SL(2,Z) monodromies of τ !
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in non-perturbative type IIB. In table II.2, we have collected all possible cases of codimension
one singular fibres and their corresponding Lie group.

While these results are only proven for elliptic fibred complex manifolds of dimension less than
four, it is believed that they also hold in higher dimensions. In practise, the countless number of
explicit fourfold constructions have only reproduced, but never exceeded the possibilities in table
II.2. Similar observations were made in explicit models of non-elliptic torus fibrations, though in
the literature there are much fewer such examples than for elliptic fibrations. In the following,
we will therefore assume that Kodaira’s classification extends to a general torus-fibred fourfold
Y4.

1

1 1 1 1

(a) An fibre

1 111

(b) Cn fibre

1

1

2 2

1

1

(c) Dn fibre

1

1

2 2 1

(d) Bn fibre

1 2 3 2 1

2

1

(e) E6 fibre

2 3 4 3 2

2

1 1

(f) E7 fibre

4 5 6 4 2

3

321

(g) E8 fibre

2 2 131

(h) F4 fibre

2 11

(i) G2 fibre

Figure II.5: The affine Dynkin diagrams corresponding to the codimension one singular fibres
in torus fibrations. Each node represents a P1 component, with the multiplicity indicated by the
number. Each line is a intersection point between the attached P1s; multiple lines correspond to
higher intersection numbers. The node in red marks the so-called affine node. This component
of the fibre is the original pinched torus in the singular limit. Note that for the diagrams (a) –
(d), the number n corresponds to the number of non-affine nodes. This is also the rank of the
gauge group.

2.4.3 Non-abelian gauge symmetries in F-theory

To understand the origin of non-abelian gauge symmetries in F-theory, we consider M-theory
compactified on a resolved fourfold Ŷ4, which has the singular limit Y4. Let us assume that
resolution process has introduced exceptional divisors Exi ⊂ Ŷ4, i = 1, ..., r, over an irreducible
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name Dynkin type Lie group ord(f) ord(g) ord(∆) comments

I0 − − ≥ 0 ≥ 0 0 smooth fibre

I1 − − 0 0 1
‘mild’ sing.
no ex. div’s

I2 A1 SU(2) 0 0 2

In, n ≥ 3 An−1 or Cbn/2c
SU(n) or

0 0 n
possible

Sp (bn/2c) monodromy

II − − ≥ 1 1 2 ‘mild’ sing.

III A1 SU(2) 1 ≥ 2 3

IV A2 SU(3) ≥ 2 2 4

I∗0 D4, B3 or G2
SO(8), SO(7) ≥ 2 ≥ 3 6 possible

or G2 monodromies

I∗2n−5, n ≥ 3 D2n−1 or B2n−2
SO(4n− 2)

2 3 2n+ 1
possible

or SO(4n− 3) monodromy

I∗2n−4, n ≥ 3 D2n or B2n−1
SO(4n) or

2 3 2n+ 2
possible

SO(4n− 1) monodromy

IV ∗ E6 or F4 ≥ 3 4 8
possible

monodromy

III∗ E7 3 ≥ 5 9

II∗ E8 ≥ 4 5 10

non-min. − − ≥ 4 ≥ 6 ≥ 12

Table II.2: Kodaira’s classification of codimension one singularities of elliptic fibrations Y , sup-
plemented with monodromy reduced cases for dimC Y ≥ 3. In case there are multiple possibilities
due to monodromies, the bold entry indicates the original Kodaira result for elliptic surfaces.
The explicit conditions determining which of the entries is realised geometrically can be found
in [41]. Note that the last entry are so-called non-minimal singularities, which can not be resolved
crepantly and in a flat manner.
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component Θ of the discriminant locus. Let G denote the Lie group with rankG = r that the
classification result of table II.2 associates with the singular fibres over Θ. We would like to
argue in the following that in the singular limit, we obtain massless states filling the full adjoint
representation of G, in which all gauge bosons of a G-gauge theory must sit.

By reducing the M-theory 3-form as in (II.20), with ωi the (1, 1)-form Poincaré-dual to Exi,
we obtain a set of vector fields Ai in R1,2. These vector fields enjoy a symmetry Ai → Ai + dλ,
which originates from the analogous symmetry of C3 in M-theory (cf. section 1.3). Thus the
Ai constitute rankG massless U(1) gauge fields. These U(1)s can be identified with the Cartan
(maximal connected abelian) subgroup of G. The other degrees of freedom fo a gauge field with
gauge group G do not arise from C3 in the M-theory description. Instead, they originate from
M2-branes, which upon compactification of M-theory on Ŷ4 can be wrapped on the P1 components
of the singular fibres over Θ. The excitations of these wrapped M2-branes look like point-particle
excitations of the effective theory in the non-compact dimensions. Recall from section 1.3 that
M2-branes are charged electrically under C3 by simply integrating C3 over the M2-world-volume.
In particular, if C3 =

∑
iAi ∧ ωi, then the coupling between C3 and M2-branes wrapped on a

fibre P1
j of Exj leads to a charge of the M2-states under the U(1) field Ai in the effective theory.

The charge is explicitly given as qj;i =
∫
P1j
ωi.

To compute this integral, we use Poincaré-duality between cohomology forms and homology
cycles and re-interpret the charge as an intersection number (cf. appendix A). Concretely, since
ωi is Poincaré-dual to the exceptional divisor Exi, the charge is simply the intersection number of
the fibre P1

j and this divisor. Now P1
j is just a fibral curve of Exj over a generic point b ∈ Θ ⊂ B.

Therefore, the intersection with Exi must be also localised in the fibre over b, and is given as the
intersection of P1

j with the fibral curve P1
i of Exi. But by Kodaira’s classification, their intersection

numbers corresponds to the Cartan matrix Cij of G:∫
P1j
ωi = P1

i · P1
j = P1

j · P1
i = −Cij .

From basic representation theory it is known that the columns/rows of the Cartan matrix rep-
resent the Cartan charges of the simple roots of G, which are in particular weights of the adjoint
representation of G. Thus, states from M2-branes wrapped on P1

j correspond to a weight vector
wi = −Cij of the adjoint rep. In field theory terms, these states are the W-bosons of G. Since
the simple roots generate the full adjoint rep, we therefore obtain all states of the adjoint repres-
entation of G by wrapping M2-branes on P1

j s and suitable chains Γ of P1
j s with both orientations

(M2-branes wrapping with the opposite orientation differ by a minus-sign in their weight vec-
tors).19 Clearly, not arbitrary combinations of P1

i s can be allowed to be wrapped by M2-branes,
as this would give rise to infinitely many weight states. Somewhat surprisingly, there is no pro-
posal for a first principle argument on how to restrict the possible linear combinations of fibral
P1s to those chains Γ that can be wrapped by M2-branes to give the desired states. Until now,
there are only some ad hoc conditions [40]. However, there is some work in progress [48] trying
to understand these conditions from a more fundamental point of view.

In any case, let us assume that M2-branes are allowed to wrap precisely those fibre P1 com-
binations that give rise to the full adjoint representation. In the resolved geometry Ŷ4, the P1s
have finite size, thus states from M2-branes wrapped on these will have finite mass due to the
non-zero tension of M2s. However, taking the singular limit precisely amounts to sending the
size of those P1s to 0, i.e. all the adjoint states become massless. Thus, in the singular limit of
M-theory on Ŷ4, i.e. M-theory on Y4, the massless spectrum contains a full adjoint representation
of G. Finally, we have to perform the F-theory limit and lift everything to 4D. In this process,

19Strictly speaking, we only obtain all weights with non-zero entries. However, the adjoint of G generally has
rankG weights that have only zeroes as entries. These weights of course correspond to the Cartan subgroup, which,
as we have seen, arise in the M-theory compactification from reduction of C3.
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we have to make sure that these adjoint states lift to a vector multiplet representation of 4D
N = 1 SUSY. Such an analysis is highly non-trivial and involves the study of so-called twisted
super Yang–Mills theories defined along the locus Θ. The results [10,11,49] however show that we
indeed end up with massless vector multiplets filling out the adjoint representation of G, i.e. there
is a G gauge theory in the 4D F-theory compactification on Y4 associated with the divisor Θ.

Note that so far we have only considered gauge symmetries arising from a single component Θ
of the discriminant locus. As a result, we find that we always end up with a single semi-simple Lie
group. In order to realise a gauge theory with a product group, e.g. the Standard Model, we have
to consider singular fibrations that have two independent components of the discriminant locus
with the appropriate singularity structure. As we will see in chapter V, the resolution process
can be performed independently for each component in certain classes of models that we will use
for our F-theory realisations of the Standard Model.

Before continuing with the origin of matter in F-theory, let us briefly compare the above results
to perturbative type IIB compactifications. There, the gauge groups that can be constructed with
D7-branes and O7-planes are only SU(n), SO(2n) and Sp(n). All other groups are truly of non-
perturbative nature. While it is possible to also construct these groups via string junctions [29,31],
they somehow arise much more natural (from a mathematician’s perspective) in the F-theory
description of non-perturbative type IIB.

2.4.4 Matter in F-theory

From the type IIB intuition, we expect matter states to arise along intersections of two (stacks
of) 7-branes, which wrap divisors Θ1,2 on B. In the F-theory description on the singular torus
fibration Y , the discriminant ∆ vanishes to certain orders n1,2 ≥ 1 along Θ1,2, therefore the
vanishing order of ∆ increases at the intersection C = Θ1 ∩ Θ2 to n1 + n2. Typically, this
indicates that the singularity type of the fibre over the intersection ‘enhances’ compared to the
generic fibres over Θ1,2. The description ‘enhancement’ can be taken quite literally if we look at
the resolved fibration Ŷ . Comparing the generic singular fibre fb over b ∈ Θi with a fibre f∗ over
the intersection C, we find that f∗ has more fibre components than fb. These new components
can be seen as the splitting of some P1

s in fb as we move b to the intersection.

Specifically, if we have a non-abelian gauge symmetry with group G associated with Θ1,
then P1

s corresponds to a weight wad
s of the adjoint rep of G. The splitting of P1

s →
⋃
k P1

k ⊂ f∗

corresponds to a decomposition of the adjoint weight wad
s →

∑
k wk, where wk is the charge vector

of P1
k under the Cartan U(1)s. In general, these weights lie in a representation Rk of G other than

the adjoint rep. By the same logic as for the W-bosons, M2-branes wrapped on P1
k therefore gives

rise to a state in Rk which becomes massless in the singular limit. Furthermore, [10, 11] showed
that states from M2-branes wrapping fibral curves, which are only present over codimension two
loci on B, lift to a chiral and anti-chiral multiplet in the F-theory limit to 4D.20 In the 4D field
theory language, this means that the appearance of the new P1

k as components of codimension
two singular fibres f∗ gives rise to matter states.

In order for the gauge symmetry to be unbroken by these matter states, it is crucial that
we obtain from the splitting process of fibre components full representations Rk, i.e. we need
enough fibral curves to generate all weights in Rk. This has been systematically shown to be true
in [50,51]. Essentially, it is because we can also associate a Kodaira fibre type listed in table II.2
to singular fibres along a codimension two locus C ⊂ B. For a fibration Y with an equivalent
Weierstrass model, this association is simply given by the vanishing orders of (f, g,∆). In any
case, the explicit inspection of the fibre structure of f∗ reveals that in almost all cases, we recover

20The number of chiral and anti-chiral multiplets will be modified in the presence of flux, as discussed in the
chapter III.
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the affine Dynkin diagram of an higher rank group H containing G as a subgroup.21 If these
fibres were localised over a codimension one locus, then the result from the previous chapter would
imply that M2-branes wrapped on linear combinations of fibre components give rise to the full
adjoint adH of H. By restricting them to codimension two, the 4D nature of the states change,
but their representation theory does not, i.e. we still expect M2-brane states filling all of adH .
However, these states now rearrange themselves into full representations Rk of G determined by
the branching rule adH →

∑
kRk.

In general, such a branching will be of the form

adH → adG +
∑
i

1i +
∑
k

(
Rk +Rk

)
.

The adjoint adG of G is obviously given by those fibral curves in f∗ which are fibral curves of a
generic fibre fb over b ∈ Θ1 in the limit b → C. The singlets 1i are actually the group theoretic
remnants of the Cartans of H that are not Cartans of G. These would arise from exceptional
divisors if H as associated to a codimension one singularity (see footnote 19), hence they are
not present in the actual spectrum. Other non-trivial representations Rk always come with their
conjugate Rk. In most explicit examples, the rank of H exceeds that of G by only one; in
these cases, there will be generically only one pair (Rk + Rk) of non-trivial representation. In
some extreme scenarios, one might be able to tune the singularities such that the rank difference
between H and G is higher, and consequently, there might be different representations present.

Either way, the states of these representations are associated to the singular fibres over the
codimension two locus C. In the literature, the locus C is often referred to as a H-locus or
locus of H-enhancement. However, as H is not actually realised physically, a perhaps more
precise nomenclature would be to label C by the representation(s) Rk that are associated to it.
Moreover, on a three dimensional base, C is a complex curve. Consequently, such curves are
usually called matter curves in F-theory compactifications to 4D.

For example, we will examine models with SU(5) symmetries in chapter IV. There, we en-
counter codimension two enhancements to SU(6) and SO(10). Their adjoints decompose as
35→ 24 + 1 + 5 + 5 for SU(6) and 45→ 24 + 1 + 10 + 10 for SO(10). Consequently, the SU(6)
enhancement loci are 5-curves, whereas the SO(10) loci correspond to 10 curves.

Finally note that if there is a non-trivial gauge group G̃ on Θ2, then the putative group H on
C = Θ1 ∩Θ2 will contain the product G× G̃. Accordingly, the matter representations on C will
be given by the branching of adH into irreducible representations of G× G̃. In our realisations of
the Standard Model, studied extensively in chapter V, we realise SU(3) and SU(2) along divisors
W3 and W2, respectively. At their intersection, we find an SU(5) enhancement, corresponding to
the branching 24 → (8,1) + (1,3) + (1,1) + (3,2) + (3,2) well-known in GUTs. Consistently,
we find bifundamental states SU(3) × SU(2) at the intersection curve W3 ∩W2, which for our
phenomenological discussions will be identified with left-handed quarks.

Matter surfaces

As a somewhat trivial observation, we note the collection of all fibral curves Γw over C giving
rise to one weight state w of a representation R defines a fibration γw over C:

Γw γw

C

21The exceptions are situations where some nodes of the diagram of H are missing. Such models have been
studied in [40].
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On a fourfold Ŷ4, these fibrations have a (complex) two-dimensional total space, as the base C
and the fibres are both curves. It is also customary to count their real dimensions, in which case
γw is a 4-cycle. These 4-cycles are referred to as matter surfaces. As it turns out, their physical
impact are anything but trivial. Indeed, their structure affects the chiral index of the matter
states w, as we will discuss in the next chapter. In particular, the results of chapter IV will show
that the geometry of matter surfaces actually gives a new approach to chiral anomaly cancellation
in 4D F-theory.

2.4.5 Yukawa couplings

While codimension one singular fibres give rise to gauge bosons, codimension two singular fibres
are associated with matter states. For a torus-fibred fourfold Y4 → B, we can have further
singularity enhancement over codimension three loci, i.e. points, on the base B. One might wonder
if there are again new states arising from these singularities. However, as shown in [10,11], this is
not the case. Instead, codimension three singularities are related to the presence of (perturbative)
Yukawa couplings. Here, we will sketch how this comes about.

In general, codimension three singularities lie on top of common points p of several matter
curves Ci. Over p, the fibre structure enhances compared to the generic fibres on Ci. However,
in contrast to the situation in codimension two, no P1s with novel Cartan charges arise. Instead,
the P1s that are ‘new’ compare to the fibres on Ca have already been present on one of the other
curves Cb. Thus, we do not expect any new states to arise from these singularity enhancements.
The unusual phenomenon now is that over p, there are non-trivial chains Γ (i.e. neither empty
nor the full fibre) of fibral P1s that have zero charge under any Cartan U(1). In particular, such
a chain Γ can be decomposed into precisely three subchains Γ1,2,3 in a way that each of them
correspond to a weight w1,2,3 of a representation that was already present on one of the Ci’s. In
other words, there is a gauge invariant combination of three weights:

w1 + w2 + w3 = 0 ⇔ w1 + w2 = −w3 .

Heuristically, the second equation can be regarded as a ‘Feynman diagram’, which describes how
a state w1 and a state w2 can interact to form a state −w3.

Indeed, this heuristic picture underlies the analysis of [10, 11], which showed that a coupling
arises between the three states w1,2,3 as a result of the chains Γ1,2,3 meeting over a point in B.
Crucially, the analysis shows that it is a coupling between one scalar and two fermions that each
sits in one of the chiral multiplets coming from M2-branes wrapped on Γ1,2,3. Thus it is really a
Yukawa type coupling.

Note that such a Yukawa coupling can only arise, if amongst the representations Ri on Ci,
there is gauge invariant triple product, i.e. a product Ri1 ⊗Ri2 ⊗Ri3 that in its decomposition
of irreducible representations contains a singlet. This is of course the equivalent statement as the
existence of chains Γ with the decomposition property mentioned above. In general, we find that
only matter curves Ci with this property will meet at all in a common point p. Such a point is
often referred to as a Yukawa point.

Finally note that in principle there can be fibral chains Γ1,2,3 over different matter curves,
whose associated weights add to 0, but the curves do not come together at a Yukawa point. In
this case, there is now a (real) three-dimensional submanifold Γ̃ of Y4 having Γ1,2,3 as boundaries.
As argued in [52], M2-branes wrapped on Γ̃ now corresponds to an instanton in the effective
field theory, which still generates a Yukawa coupling between the states. However, these (non-
perturbative) couplings will be exponentially suppressed by the (non-zero) volume of Γ̃ compared
to the couplings localised over points.

Fibre structure over Yukawa points
Similar to codimension two singularities, we also find that in general, the fibres over Yukawa
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points p also fall into Kodaira’s classification. However, unlike in codimension two, we now find
much more frequently that, compared to the full Dynkin diagrams, some nodes are missing in
the fibre structure [40]. Nevertheless, there is an unambiguous assignment of a Lie group H ′ to
p, even if the fibre structure is incomplete. Therefore, it is consistent to also refer to a Yukawa
point as a locus of H ′ enhancement.

While in perturbative type IIB, Yukawa couplings appear in a similar manner when three D7-
branes meet in one point, the possible couplings are restricted. In particular, one major draw-back
of those constructions were that in SU(5)-GUTs, it is not possible to realise a coupling of the type
10 10 5, which however is needed phenomenologically to realise the Yukawa coupling between up-
type quarks and the Higgs. From the F-theory perspective, a 10 10 5 coupling originates from
a Yukawa point of E6 enhancement. Since the exceptional group E6 is not realisable perturb-
atively in type IIB, this shows that F-theory is a genuine extension of perturbative type IIB of
phenomenological interest.

To give some further example, we note that in F-theory models with SU(5), we also have the
(perturbatively realised) 10 5 5 coupling at an SU(7) enhancement point. Note that by tuning the
fibration (see e.g. [53]), we can actually ‘bring together’ points of E6 and SU(7) enhancements,
resulting in an E7 enhancement. In the fibre structure, both couplings are now realised. In
chapter V, where we examine Standard Model like F-theory models, we will study in detail how
the matter curves meet in order to give rise to a Yukawa coupling. It turns out that often, if a
coupling of type R1R1R2 occurs, the Yukawa point actually lies on the self-intersection of the
R1-matter curve, consistent with the R1-states appearing twice in the coupling structure.

2.5 Abelian symmetries in F-theory

We now turn our attention to abelian symmetries in F-theory. Unlike non-abelian symmetries
which arise from singularities localised in codimension one loci of B, abelian symmetries are tied
to global structures (i.e. not localised to special subsets of B). One such global structure are
given by section sections, which we have already encountered in section 2.2.1 in the context of
Weierstrass models. These assign to each point of the base a point in the fibre over it. A related
concept is a so-called multi-section, which in contrast to a section assigns multiple points in the
fibre to each base point. As we will see in this section, their presence will give rise to U(1) and
Zn symmetries, respectively, in F-theory.

2.5.1 Sections and the Mordell–Weil group

Recall from section 2.2.1 that a (holomorphic) section Sec of a fibration πY : Y → B is simply a
(holomorphic) map Sec : B → Y satisfying the condition πY ◦ Sec = idB. The intuitive picture
is that a section marks a single point in the fibre over each point of the base, cf. figure II.6. A
section therefore can also be seen as defining an embedding of the base B into the total space
Y . By doing so, it also defines a divisor, i.e. a complex codimension one submanifold, of Y with
homology class [Sec]. In the class of torus fibrations (II.18), where the fibre of Y is given as the
vanishing of a polynomial P in a fibre ambient space A with coordinates xi, there is a particular
easy way of realising sections. Namely, a section may arise by fibring the intersection point
{xj} ∩ {P} ∈ A over B. In such a case it is customary to identify the section with the divisor
defined by {xi = 0} ≡ {xi}, and often also their classes [Sec] = [{xi}]. In the generic Weierstrass
model the only section is given by II.17 as the intersection of the Weierstrass polynomial (II.9)
with {z} ⊂ P231. However, there are examples of fibrations which exhibit more sections.

In anticipation of the models in chapter IV, we take a closer look at the Bl1P112 model. There
the fibre ambient space A = Bl1P112 is a quotient of C4 \ ({u = w = 0} ∪ {v = s = 0}), where
(u, v, w, s) denote the coordinates of C4. The equivalence relation we quotient by are the two
independent scaling relations (u, v, w, s) ' (λu, λ v, λ2w, s) ' (u, µ v, µw, µ s), thus reducing the
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π

π π

B

Figure II.6: A section (marked in red) of a torus fibration intersects the fibre (here represented
as a curve) in one point. In contrast, a bi-section (blue), that will be introduced in section 2.5.4,
marks two points in the fibre. Globally, these two points are exchanged by a monodromy.

four independent variables of C4 to only two degrees of freedom, i.e. dimC Bl1P112 = 2. Note
that the total weight of all coordinates under the scaling with λ is 4, and 3 under scaling with
µ. Therefore, a polynomial describing a Calabi–Yau curve, i.e. a torus, in A must have the
same weights under the corresponding scalings. A general such polynomial22 describing a torus
fibration is

P ′ = sw2 + b0 s
2 u2w + b1 s u v w + b2 v

2w + c0 s
3 u4 + c1 s

2 u3 v + c2 s u
2 v2 + c3 u v

3 . (II.21)

This fibration has two independent sections. One is given by the intersection

{u = 0} ∩ {P ′ = 0} = {u = 0} ∩ {sw2 + b2 v
2w︸ ︷︷ ︸

≡Q′

= 0} . (II.22)

Note that because u and w cannot vanish simultaneously in Bl1P112, we can exploit the scaling
relation (u, v, w, s) ' (λu, λ v, λ2w, s) to rescale w → 1 in Q′: Q′ ' s + b2v

2. Furthermore,
because s and v cannot vanish together, neither of them can vanish for Q′ = 0, hence we can
also use the second scaling (u, v, w, s) ' (u, µ v, µw, µ s) to rescale v → 1, so Q′ ' s+ b2. Thus,
for any value of b2, i.e. over any point q in the base B, the intersection {u = 0} ∩ {P ′ = 0}
corresponds precisely to one point of the torus fibre π−1

Y (q) ≡ Eq:

∀ q ∈ B : Sec0(q) := [0 : 1 : 1 : −b2(q)] ∈ Eq ⊂ Bl1P112 . (II.23)

In addition to this, there is another section given by {s} ∩ {P ′}:

{s} ∩ {P ′} = {s} ∩ {b2 v2w + c3 u v
3} v→1' {s} ∩ {b2w + c3 u︸ ︷︷ ︸

Q′s

} u→1' {s} ∩ {b2w + c3}

⇒ Sec1(q) :=

[
1 : 1 : −c3(q)

b2(q)
: 0

] (II.24)

22Note that we have chosen the coefficient in front of sw2 to be 1. In the most general set-up, this need not to
be the case. The consequences for F-theory have been studied most recently in [54].
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Note that this section is strictly speaking only well-defined for c3 6= 0 6= b2; over the locus
{b2}∩{c3} ⊂ B, the polynomial Q′s vanishes identically, such that the coordinates (u,w) together
with the remaining scaling relation parametrise a full P1.23 This type of sections – known as
rational sections – is still ‘well-behaved’ enough for us, as they still mark a point on the generic
fibre.

The set of all rational sections on an elliptic fibration turns out to form an abelian group,
the so-called Mordell–Weil (MW) group. The group structure comes from the addition of points
on the elliptic fibre, which is most easily seen when we go back to the description of elliptic
curves/tori as quotients C/Λ. On this quotient, points of the torus are simply represented by
complex numbers with the natural addition as an abelian group action. It can be shown that this
structure carries over to the elliptic curve via the map (II.11) into a well-defined manner: We
can geometrically construct the sum of two points p, p′ on the elliptic curve by constructing the
straight line passing through p and p′; this line will intersect the curve at a third point (possibly
at infinity) corresponding to p + p′ (see e.g. [55] for more details). The addition of sections in
an elliptic fibration can be thus fibre-wise defined as the addition of the points marked by the
section on each fibre. Being an abelian group, there is a zero-element, which in our context is
also called the zero-section. The zero-section is not a priori specified. In fact, one can make an
arbitrary choice of identifying any section [Sec0] with the zero-section. The Mordell–Weil theorem
states that the group of sections is a finitely generated abelian group, i.e. its group structure is
isomorphic to Zr ⊕ Zk1 ⊕ ... ⊕ Zkn . For the purpose of our thesis, the so-called torsional part
Zk1 ⊕ ... ⊕ Zkn is not relevant. However, their meaning in F-theory have been clarified recently
in [45]. The so-called rank r of the MW group is determined by the free part, Zr. Any elliptic
fibration with rank r MW group has r+1 independent sections (i.e. they have independent divisor
classes), since one of them constitutes the zero-section, which does not contribute to the rank.
E.g. the generic Weierstrass model has a rank 0 MW group with only the zero-section {z}, while
the Bl1P112 model has Mordell–Weil rank 1. The zero-section is given by (II.23), while the other
independent generator is (II.24).

2.5.2 U(1)s from sections

Since every section Sec gives rise to a divisor [Sec] on Y , the reduction (II.20) of the M-theory
3-form C3 will readily give rise to a massless U(1) associated to Sec when we compactify M-theory
on Y . As the divisors [Sec] are not vertical divisors, one might think that these simply lifts to
U(1)s in the F-theory limit. However, there is an important caveat to it.

The KK U(1)

As we have elaborated in section 2.3, the effective theory in R1,n−1 of M-theory compactified on
Y is a circle reduction of a theory in R1,n, which is F-theory on Y . In particular, the translation
invariance of R1,n along the direction which is compactified to a circle manifests itself as a U(1)
symmetry in R1,n−1. This U(1) is referred to as the KK U(1), because it distinguishes the KK-
modes φk in the Fourier-expansion (II.4). Put differently, the charge of φk under this KK U(1) is
precisely k. In elliptic fibrations, this KK U(1) can be identified with the vector field from the C3

expansion with any section [Sec]. To see this, note that the modes φk in the circle compactification
from F-theory to M-theory on Y arise from states which wrap the circle k-times. In terms of the
M-theory compactification on Y , these states arise from M2-branes that wrap the full torus fibre
k-times. Since a section intersects the generic torus fibre precisely once, it will have intersection
number k with those states. The choice of the KK U(1) corresponds to the choice of zero-section.
In the following we will assume that we have made such a choice.

23From our discussions about matter curves in section 2.4.4, we can already anticipate that the appearance of
this fibral P1 over the codimension two locus {b2} ∩ {c3} ⊂ B is a signal for matter states.
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Gauge U(1)s from the Shioda map
The remaining independent generators of the MW-group give rise to honest, gauge U(1)s in the
F-theory limit. Concretely, the give rise to (1, 1)-forms ωi on Y which are called the ‘generators’
for the U(1) fields Ai in the expansion C3 = Ai ∧ ωi. In order for the gauge field to be massless
in the F-theory limit and not mix with the KK U(1), the generators ωi must have ‘one leg along
the fibre and one leg along the base’. For a fourfold Y4 with a threefold base B, these words mean
explicitly that ∫

Y4

ωi ∧D(B)
a ∧D(B)

b ∧D(B)
c = 0 =

∫
Y4

ωi ∧ [Sec0] ∧D(B)
a ∧D(B)

b (II.25)

for any vertical divisor D
(B)
(·) . Note that we have introduced a common laziness of not distinguish-

ing divisors and their Poincaré-dual (1, 1)-forms. In this context, there is no ambiguity, as the
integral only makes sense for forms. If there is in addition any non-abelian gauge group G, the
U(1)s should also not mix with the Cartan U(1)s of G. This is captured by the condition∫

Y4

ωi ∧ Ex ∧D(B)
a ∧D(B)

b = 0 , (II.26)

where Ex is any exceptional divisor associated with G.
It was shown in [56] that there is a mathematical result that ensures the existence of such a

(1, 1)-form ωi – which is Poincaré-dual to a divisor, denoted abusively by ωi as well – for every
generator [Seci] of the MW-group. The explicit identification of the divisor class ωi with the
section is given by the so-called Shioda map. In practise, one can determine the form of ωi up
to a overall numerical factor by explicitly solve the conditions (II.25) and (II.26). The numerical
factor simply corresponds to the normalisation of charges, which has no physical meaning.

As a result, we find that for any elliptic fibration Y with a rank r MW group and generators
[Sec]i, i = 0, ..., r, we have a U(1)r gauge symmetry when we compactify F-theory on Y . Each
U(1) factor has a corresponding divisor class ωi generating the symmetry of the form

ωi ∝ [Seci]− [Sec0] +
∑
k

µkD
(B)
k +

∑
l

λl Exl , (II.27)

where D
(B)
k is a basis for the set of all vertical divisors. The coefficients µ and λ are uniquely

determined by the Shioda map, or equivalently, by the conditions (II.25) and (II.26).
For example, in the Bl1P112 model (II.21) we discussed above, the only U(1) generator is given

by ω ∝ [{s}] − [{u}] − K − [b2], where K = π−1(c1(B)) is the anti-canonical bundle of the base
and [b2] is the line bundle class of which b2 is a section.

2.5.3 U(1) charges and singlets

In general, an F-theory compactification with U(1) symmetries will also have charged singlets,
i.e. matter states that are charged under the U(1)s, but not under any non-abelian gauge groups.
Like non-abelian matter, they must be localised along codimension two loci C1i of the base B.
For charged singlets, the singular fibres f over C1 are of Kodaira type I2, i.e. they have the fibre
structure of an affine SU(2) Dynkin diagram (cf. table II.2). As first examined in [56] for the
Bl1P112 model, one can systematically make an ansatz for the factorisation of the fibre into two
components, whose codimension two solution set is precisely the collection of all singlet loci C1i .
Similar analysis have also been performed in [57,58] for the Bl2P2 model. It is in general not easy
to extract the individual loci C1i . Indeed, as first presented in [57], and which we will review in
chapter V, it requires some tools for computations with polynomials to determine the singlet loci
in general. Irrespective of these difficulties, the U(1) charge of the singlet 1i over C1i is computed
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analogously to the Cartan charges of non-abelian states, namely as
∫
P1i
ωi . Of course, the two

P1s in the fibre f correspond just to the singlet state 1i and its charge conjugate 1i.
Similarly, one can associate U(1) charges to non-abelian matter in an representation R over

CR = Θ ∩D(B)
1 , where D

(B)
1 is a divisor on the base. However, one apparent issue arises, namely

that for gauge invariance all states in R must have the same U(1) charge. To see how this issue is
resolved, recall that the fibres of the exceptional divisors Exk correspond to the simple roots of the
gauge group G on Θ. From basic representation theory, we therefore know that different P1 chains
in the fibre fR over CR, which give rise to states R, must differ by a linear combinations of fibres
of Exk over CR. Suppose for definiteness, we are over a threefold base B. Then a generic point

b ∈ CR can be written as the intersection with another divisor, i.e. b = CR∩D(B)
2 = Θ∩D(B)

1 ∩D
(B)
2 .

Since Exk is a fibration over Θ, its fibres over b is then given by

Γk = Exk ∩ π−1(D
(B)
1 ) ∩ π−1(D

(B)
2 ) ≡ Exk ∩D

(B)
1 ∩D(B)

2 ⊂ Y4 ,

where by a common abusive notation we have identified the vertical divisors π−1(D
(B)
i ) with their

pre-image D
(B)
i in the base. Note that by the compatibility of Poincaré-duality with intersection

and wedge products (cf. appendix A), the curve Γk is dual to the (3, 3)-form Exk ∧D
(B)
1 ∧D(B)

2 .
Now the U(1) charges associated with these fibres are given simply by∫

Γk

ωi =

∫
Y4

ωi ∧ Exk ∧D
(B)
1 ∧D(B)

2

which due to the condition (II.26) on the U(1) generators must vanish. Therefore, we see that
the U(1) charge differences between weights of the same representation R is 0, i.e. all states of R
have the same U(1) charge.

Finally, note that charged singlets can participate in Yukawa couplings as well. In the presence
of additional U(1) gauge symmetries, it means that gauge invariant couplings must involve states
whose U(1) charges add up to 0.

In the example fibration (II.21), we have already encountered the appearance of singlet matter.
Concretely, we say that over the locus b2 = c3 = 0, the section (II.24) given by {s} wraps a whole
P1. This P1 is of course nothing other than a fibral curve giving rise to states by wrapping
M2-branes on it. These states have charge −2 under the U(1) generator [{s}]− [{u}]−K− [b2].
Furthermore, there is a locus of charge 1 states in this model. For more details we refer to chapter
IV.

2.5.4 Multi-sections and discrete abelian symmetries

The appearance of sections in a torus fibration is quite a special property of the fibration. Given
our class of fibrations of the type (II.18), these sections appear as fibring the intersection points
of certain hyperplanes with the elliptic fibre {P} in A over the base B.24 Due to the special form
of the fibration, these hyperplanes will always intersect the generic elliptic fibre in precisely one
point when one moves around in B. However, in the most general scenario, any hyperplane in A
will intersect {P} in multiple (say n) points, if the polynomial P is not of degree 1 (cf. figure II.6).
By fibring these set of points over B, one obtains a so-called multi- or n-section. In contrast to a
section, such an n-section now defines an n-fold cover of the base B inside the torus fibration Y .
Similar to elliptic fibrations, these n-fold covers of B inside Y still are a (complex) codimension
one submanifold of Y , hence they have an associated divisor class N in Y . In order to distinguish
them from elliptic fibrations, torus fibrations with only multi-sections and no sections are referred
to as genus-one fibrations in the F-theory literature. In general, there can be several n-sections in

24Note that while this type of sections is the simplest to write down, it is quite restrictive. Other types of section
have been constructed in e.g. [59, 60].
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a genus-one fibration with possibly different n’s. However, their divisor classes might be linearly
dependent. It has been proposed in [61] that the set of independent multi-sections is encoded in
the so-called Tate–Shafarevich group.25 In principle one can also have both independent sections
and n-sections in a single torus fibration. Technically, this would also be an elliptic fibration
according to the usual definition. Such examples will not be considered in this thesis, however,
they have appeared in F-theory models [54].

An example of a genus-one fibration which we will studied extensively in chapter IV is given by
the P112 model. The weighted projective space P112 can be described by the quotient of C3 \ {0}
with coordinates (u, v, w) by the scaling (u, v, w) ' (λu, λ v, λ2w). A polynomial defining an
elliptic curve therefore must be of weight 4. In general, we can write it as

P = w2 + b0 u
2w + b1 u v w + b2 v

2w + c0 u
4 + c1 u

3 v + c2 u
2 v2 + c3 u v

3 + c4 v
4 , (II.28)

where the coefficients bi, cj are promoted to sections of the base B in order to describe a fibration
Y → B. Note that this model is very similar to the Bl1P112 model (II.21). There, one of the
sections (II.23) was given by the intersection of the hypersurface with {u}. If we inspect the
corresponding locus in the P112 model, we find

{u = 0} ∩ {P = 0} = {u = 0} ∩ {w2 + b2 v
2w + c4 v

4︸ ︷︷ ︸
≡Q

= 0}. (II.29)

Again, because neither w nor v cannot vanish for u = Q = 0 (since u, v, w are not allowed to
be 0 simultaneously in P112), we can use the scaling (u, v, w) ' (λu, λ v, λ2w) to scale v → 1.
However, with this scaling we see that Q′ ' w2 + b2w + c4 = 0 has generically two solutions,
meaning that the intersection {u = 0} ∩ {P ′ = 0} marks two points on the torus fibre:

∀ q ∈ B : BiSec(q) :=

{[
0 : 1 :

−b2 ±
√
b22 − 4 c4

2

]}
⊂ Eq ⊂ P112 . (II.30)

Note that due to the square root, the two points are actually exchanged by a monodromy26 around
the branching locus b22− 4 c4 = 0. One therefore cannot separate the two points globally into two
independent objects. Only the collection of both points gives a globally well-defined entity. The
map (II.30) is precisely a 2- or bi-section. As we will see momentarily, F-theory compactified on
the P112 model will lead to an Z2 symmetry.

The origin of discrete symmetries in F-theory

Let us for simplicity restrict to the case where we have a single independent n-section on a genus-
one fibration Y , i.e. there is one independent divisor class N associated with multi-sections. On
this divisor class, we can still expand the M-theory 3-form, yielding a massless U(1)N in the
M-theory compactification on Y to R1,n−1. Similar to the situation with only a zero-section, this
U(1) has to be identified with the remnant of the translation symmetry of the circle reduction of
the theory in R1,n, i.e. it is a KK U(1).

Recall that in this circle reduction of F-theory compactified on Y , we expect to find an infinite
tower of massive states φk for any field φ in R1,n. If the excitations of φ originate from M2-branes
wrapping certain fibral curves Γ ⊂ T 2 of the full torus fibre, then in the M-theory compactification
to R1,n−1 the states φk correspond to M2-branes wrapping the curve Γ + k · T 2. However, since
the n-section intersects every fibre in n points (including multiplicity), the states φk actually have
charge nk under U(1)N . Conversely, from the perspective of R1,n−1, it appears that the circle

25However, there were claims made recently [62] that this is not correct in the most general case, and that one
should rather study objects called elliptic Calabi–Yau torsors.

26This is of course not the SL(2,Z) monodromy of the complex structure τ of the torus!

38



CHAPTER II. BASICS OF F-THEORY

reduction of the theory in R1,n led to KK-states with levels separated by multiples of n. So it
seems that there is an effective Zn symmetry in R1,n that reduce the KK-tower.

The result of this admittedly quite heuristic argument can be made precise in various ways
[54,61,63–67]. One important insight of these works were that one can understand any genus-one
fibration with an n-section as a deformation of an elliptic fibration with non-trivial MW-group.
More precisely, the theory on the elliptic fibration has at least one U(1) gauge factor and a singlet
1n with charge n under this U(1). The deformation then has the field theoretic interpretation as
the Higgsing of the theory by giving 1n a vev, which breaks the U(1) to its Zn subgroup. In this
process, all other matter representations still remain present. However, some might have had the
same U(1) charge mod n. If there was no symmetry differentiating these representations other
than their U(1) charge, then they will be indistinguishable after the Higgsing. In the geometry, we
see the manifestation of this as a ‘merging’ of the corresponding matter curves, i.e. matter states
will the same U(1) charges mod n will be localised over the same curve after the Higgsing. The Zn
charges of states w can be computed as intersection numbers of the corresponding fibral chains
Γw with the n-section class N (see section 2.3.1 of chapter IV for more details). Furthermore,
after the Higgsing, the Yukawa couplings realised in the geometry are such that the remnant U(1)
charges of the participating states add up to 0 mod n, consistent with the interpretation of a
Zn symmetry. Importantly, it was shown that the multi-section still gives rise to a KK U(1) as
illustrated above.

Indeed, our example models in Bl1P112 (II.21) and P112 (II.28) are precisely related to each
other by such a deformation/Higgsing process. This has been studied in detail in [63]. Here we
note that the deformation is quite obvious from the hypersurface polynomials. Concretely, by
first blowing-down the P1s wrapped by the divisor {s} over C2 = {b2} ∩ {c3} (in the equation
(II.21), this amounts for setting s to 1), we create singularities along C2 in the total space of the
fibration. Note that these P1s were precisely those giving rise to charge 2 states in the Bl1P112

model. These singularities are deformed away by adding the term c4 v
2 to the polynomial, which

yields the hypersurface equation (II.28) of the P112 model. The singularity type that are created
by the shrinking of the P1s is known as a conifold, hence this deformation process is also called
a conifold transition. Note the change of ambient space; indeed, the coordinate s of Bl1P112

precisely corresponds to a blow-up (hence the ‘Bl’) of P112 which resolves the singularities of the
elliptic fibration with hypersurface equation given by (II.28) without the c4 term. However, the
transition does not affect the base, i.e. the physical compactification space B from the type IIB
perspective remains the same. In chapter IV, we will see how this Higgsing affects the matter
spectrum and the Yukawa coupling.

Note that the existence of a model with U(1) which is Higgsed to a model with Zn is expected
from the quantum gravity folklore that any discrete symmetry must ultimately be gauged in the
UV. While we only have a handful of explicit examples in F-theory, they are all compatible with
this folklore, suggesting further that F-theory, or rather string theory, incorporates properties of
a quantum theory of gravity at its core.

2.6 Constructions with toric geometry

As all our explicit fibration models are constructed and resolved within the framework of toric
geometry, we would like to give a working definition of the tools. The power of toric geometry is
that it encodes the data of divisors in terms of simple combinatorics. These data can be handled
with a computer algebra program, most notably Sage [68]. In our fibration models (II.18), both
the fibre ambient spaces A and the full ambient space X have (partly) toric descriptions. In most
of our discussions, we keep the base B generic, i.e. it can be non-toric, and study the physical
phenomena of F-theory that are independent of the choice of B. For explicit examples though,
e.g. those in chapter V, we also restrict ourselves to toric bases for simplicity.

Toric spaces X generalises the notion of weighted projective spaces. They can be written as
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Cr \ Υ modulo a set of scaling relations. Both Υ and the scaling relations are encoded using a
so-called toric diagram, which is a collection of r lattice vectors ~xi in Zn, where dimCX = n.
Certain conditions on these vectors ensure that the space X is Kähler, compact etc. The vectors
~xi are also known as the vertices of the toric diagram. Importantly, each vertex ~xi corresponds to
a coordinate xi of Cr. The scaling relations are easily obtained from linear combinations of the
vectors that yield zero. Explicitly, we have the scaling relation (x1, ..., xr) ∼ (λa11 x1, ..., λ

ar
r xr) if∑

k ak ~xk = 0. By simple counting of dimensions, there must be r − n such independent relation
R. The set of independent divisor classes in X and the set of independent relations are in 1-to-1
correspondence. These data can be summarised in a table of the following form:

x1 x2 ... xr

[R] λ1 λ2 ... λr
[R̃] λ̃1 λ̃2 ... λ̃r
...

...
...

...
...

(II.31)

where one fixes a choice of the r − n independent scalings R and with them the basis of divisor
classes [R]. From this table, one can read off the divisor classes of the vanishing loci of the
coordinates xi as [{xi}] = λi [R]+ λ̃i [R̃]+ ... These divisors are called toric divisors. Since divisor
classes are equivalent to line bundle classes, one can also read the columns of such a table as
‘x1 transforms as a section of the bundle [R]λ1 ⊗ [R̃]λ2 ⊗ ...’ For this reason, we often include in
such tables the fibration data, i.e. the assignment of line bundles L of B to the fibral coordinates.
Since these line bundles are equivalently interpreted as divisor classes, they can be also regarded as
vertical divisors in the fibration. The columns of the table form the so-called linear equivalence
ideal (LIN), because it relates the toric divisors linearly to the divisors defined by the scaling
relations.

For example, for the Weierstrass model (II.15), the ambient space X can be partly described
by the following table:

x y z

Z 2 3 1

K 2 3 ·
(II.32)

where · represents 0. Note that the scaling relation of the fibre ambient space P231 gives rise to
a divisor class Z which can be identified with the toric divisor {z} – the zero-section. The fact

that x transforms as a section of K2
is reflected now by the contribution 2K to the divisor class

of {x}. This shows that we have a fibration of P231 over B and not just a simple direct product.
Note that since we want to keep the base generic, we cannot include any coordinates of the base.
All the data of the base we need in this table is how certain bundles – in this case K – enter the
fibration structure.

The information about the set Υ is harder to explain. For details, we refer to the standard
textbooks, e.g. [69]. The technical procedure is known as a triangulation of the toric diagram
of X. From such a triangulation, one obtains a representation of Υ as the union of mutual
vanishing loci of coordinates xi. E.g. for our example Bl1P112 the set was given just above (II.21)
as {u = w = 0} ∩ {v = s = 0}. In the context of toric geometry, Υ is encoded in the so-called
Stanley–Reisner (SR) ideal, and is given as the collection of products of those coordinates that
mutually vanish on Υ. In the example, the SR-ideal would be said to be generated by uw and
v s. Note that for a single toric diagram, there can be in general multiple triangulations (in
dimensions higher than 2). Each triangulation strictly speaking gives rise to a different toric
space. It turns out that in our constructions of F-theory fibrations, the physical results depend
only on the triangulation of possible toric data encoding the base B. In simple words, when
we consider fibrations over generic bases, we have no data about B anyways; in these cases, the
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choice of triangulations have no impact on the physics of F-theory. These triangulations can be
computed using Sage.

Given a choice of triangulation, i.e. a choice of SR-ideal, the toric diagram can compute
intersection numbers of toric divisors. First, note that because the dimension of X is r, more
than r divisors do not generically meet in one point. In terms of intersection number, this
means that the intersection product of more than r divisors always vanishes on X. Further, if
xi1 xi2 ... xir is a generator of the SR-ideal, then it means their toric divisors do not intersect,
i.e. the intersection number [{xi1}] · ... · [{xir}] = 0. Now if we have toric divisors appearing more
than once in a product [{xi1}] · ... · [{xir}], then we can always use the n − r linear equivalence
relations to rearrange the terms such that we end up with (possibly) several products where
each factor appears only once. In this case, the intersection number [{xi1}] · ... · [{xir}] can be
simply read off from the toric diagram as 1/Vol, where Vol is the lattice volume spanned by the
vectors ~xi1 , ..., ~xir . Finally, by Poincaré-duality, we can re-interpret these intersection numbers
as integrals

∫
X ωi1 ∧ ... ∧ ωir , where ωik is the (1, 1)-form dual to the divisor class [{xik}].

Toric resolution via tops

The construction of tops, developed in [70] and systematised in [71] is a particularly handy way of
engineering and resolving singularities on a torus fibration Y that lead to a desired gauge group
when compactifying F-theory on Y . Essentially, the top construction describe the exceptional
divisors Exi as toric divisors of the ambient space X of Y . Therefore, one associates to them
some coordinates exi of X.

In our class of fibrations (II.18), codimension one singularities over a divisor Θ = {θ} ⊂ B
arises if the coefficients ci of the polynomial P – which themselves are sections over the base B –
vanish to certain orders along Θ, i.e. ci = ci,j θ

j . The top construction now gives a new polynomial
defined in the ambient space X with divisors {exi} by replacing ci = ci,j θ

j with ci,j exi00 exi11 ...
The non-negative exponents ik are uniquely determined by the so-called dual top, which ensures
that the new, resolved hypersurface is a Calabi–Yau space. By an abusive notation, one often
denotes the toric divisors {exi} by Exi as well.

2.7 Summary — an F-theory dictionary

To end this chapter, we briefly summarise the geometry and physics of F-theory compactifications.
F-theory is a non-perturbative description of type IIB compactifications on B, by geometrising
the axio-dilaton τ into the complex structure of the torus fibre in a Calabi–Yau fibration Y → B.
In a dual description, we recover the same type IIB physics by compactifying M-theory on Y
with a subsequent T-duality along a circle of the torus fibre which then decompactifies. Via this
M-theory definition of F-theory, we can translate geometric data into physics as follows:

• U(1)r gauge symmetries arise from a non-trivial rank r Mordell–Weil group, whose gener-
ators map to divisor classes ωi under the Shioda-map.

• Zn symmetries arise from an independent n-section class N .

• Non-abelian gauge groups G arise from singularities over codimension one loci on the base.
The resolution of these singularities gives rise to exceptional divisors Exi which correspond
to the Cartan U(1)s of G. The fibre over these codimension one loci splits into P1s that
give rise to the W-bosons of G.

• Matter states arise from codimension two singularities. Over curves C in the base, the fibre
splits into P1s, whose intersection numbers with ωi, N and Exi give the charges under the
corresponding U(1), Zn and G gauge symmetry.
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• The structure of codimension three singularities encode the perturbative Yukawa interac-
tions among matter states.

For the construction of explicit models, we rely on tools from toric geometric and the concept of
tops.

One crucial entry is still missing in this dictionary, namely the geometry of fluxes and their
physics. The next chapter will be devoted to set up this entry together with the necessary
mathematical and computational tools for a systematic study of fluxes in F-theory.
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Chapter III

Gauge Fluxes in F-theory

In this chapter we will explain the role of gauge fluxes or, more precisely, G4-fluxes in F-theory
compactification to 4D. After a short survey of the general properties, we will focus on a particular
subclass of G4-fluxes, namely those lying in the so-called primary vertical cohomology, or vertical
cohomology in short. As a main result, we will present a computational set-up that simplifies
cohomological calculations and in particular allows for a systematic treatment of the vertical
cohomology in a broad class of torus fibrations over a generic base.

1 G4-Fluxes in F-theory

In general, fluxes refer to a non-trivial background of the field strength F of a gauge potential.
In type IIB, fluxes have been studied in great detail. Notably, so-called bulk fluxes originating
from the 2-form potentials B2 and C2 (see table II.1) are of interest for moduli stabilisations (see
e.g. [24, 25] for an overview). Another type of fluxes arise in the presence of 7-branes. These are
the background values of the field strength of the non-abelian gauge field on the 7-branes.

The brane fluxes are responsible for chiral matter in type IIB compactifications. Given a
non-trivial flux configuration on the brane, the flux is described by a line bundle L over the brane
with first Chern class F . Matter states arise at curve C on the brane (which is the intersection
with other branes). In [72] it was shown that the cohomology groups

H i(C,L|C ⊗
√
KC)

count the chiral (i = 0) and anti-chiral (i = 1) multiplets over C (here
√
KC denotes the spin

bundle over C). The chiral index is then given by the Hirzebruch–Riemann–Roch theorem as

χ = #(chiral)−#(anti− chiral)

= dimH0(C,L|C ⊗
√
KC)− dimH1(C,L|C ⊗

√
KC) =

∫
C
F .

(III.1)

In the F-theory description, both type of fluxes unified into one object known as the G4-
flux. Since it incorporates the bulk fluxes from type IIB, G4-fluxes can also be used for moduli
stabilisation mechanisms in F-theory compactifications (see [26] for a review).1 In this thesis, we
will be concerned with the other aspect, namely the chiralitiy inducing feature of G4-fluxes. To
this end, we will first introduce a rigorous description of G4 in terms of cohomology forms.

In the following, we will work under the assumption that all our fibration spaces are smooth
Calabi–Yau spaces, i.e. any possible singularities are resolved in a consistent way. It is then

1Note that it is in this context that the popularly cited ‘10500’ for the number of string vacua arose. To be
precise, this is the ‘typical’ number of flux configurations allowed for a given compactification manifold. However,
by now there are further analyses which have pushed this number up to 10272,000 [73].
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implied that all physical properties, unless otherwise stated, are considered in the singular limit.
In particular, gauge symmetries and matter states always refer to massless fields. Under this
assumption, the notation X̂ for a resolution of X becomes obsolete.

1.1 Mathematical description of G4-flux

Since F-theory is defined via its duality to M-theory, let us briefly discuss G4-fluxes in M-theory.
There, G4 = dC3 is the field strength associated to the M-theory 3-form C3. When compactified
on a torus-fibred Calabi–Yau fourfold Y4, the resulting 3D theory has N = 2 supersymmetry
(which lifts in F-theory to 4D N = 1). To preserve this supersymmetry in non-trivial gauge
background (i.e. G4 6= 0), the flux must be a (2, 2)-form. For details we refer to numerous
reviews, e.g. [26]. Furthermore, G4-fluxes are subject to the quantisation condition [74]

G4 +
c2(Y4)

2
∈ H4(Y4,Z) . (III.2)

Because the second Chern class c2(Y4) is an integer class, G4 must lie in

H4(Y4,Q) =
⊕
p+q=4

H(p,q)(Y4,Q) ⊃ H(2,2)(Y4,Q) .

Related to the quantisation condition is the cancellation of brane charges from spacetime
filling M2-branes. These lift to spacetime filling 3-branes in F-theory; in analogy to type IIB the
cancellation is usually referred to as the cancellation of D3-tadpole. The number of M2/D3-branes
depends on the flux via [75]

n3 =
χ(Y4)

24
− 1

2

∫
Y4

G4 ∧G4 , (III.3)

with χ(Y4) being the Euler number of the Calabi–Yau fourfold. Clearly n3 needs to be an integer.
It is typically assumed that an appropriately quantised flux will also lead to an integer D3-
tadpole n3. To avoid anti-branes, which would destabilise the compactification, we must require
that n3 ≥ 0.

In the context of F-theory compactifications, which by the M-/F-theory duality (cf. chapter
II) is the decompactification limit of an M-theory configuration, there are further consistency
conditions, the so-called transversality conditions. To understand their origin, let us see how
G4-fluxes behave in the decompactification limit of M-theory on a torus-fibred fourfold. Recall
from section 2.3 of the previous chapter that this F-theory limit amounts to sending the fibre
volume to zero. Denoting the radii of the two one-cycles of the torus by RA and RB, the limit is
taken in two steps. First, the A-cycle is identified with the M-theory circle, and the limit RA → 0
is the weakly coupled type IIA limit of M-theory. The second step is a T-duality transformation
along the B-cycle, which gives type IIB on a circle of radius R̃B = α′

RB
. In the limit RB → 0

the dual circle decompactifies and one ends up with a (generically strongly coupled) type IIB
theory in four dimensions. Importantly, one of the four large dimensions has its origin in one of
the fibre directions of the fourfold. One immediate consequence is that care must be taken when
introducing fluxes [75, 76]: Four-dimensional Lorentz invariance forbids fluxes with non-trivial
VEV along the circle along which the T-dualisation is performed [77]. More precisely, the G4

flux must have one leg in the fibre to meet this requirement. Indeed, in [77] it was shown that a
flux with zero or two legs along the fibre maps to the self-dual 5-form flux F5 in type IIB string
theory. In this case the vacuum expectation value extends along the non-compact directions and
breaks Lorentz invariance. The remaining possibility is a flux with one leg in the fibre. These
solutions do not lie completely in the base, nor do they fill the two fibre directions.
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1.1.1 Transversality conditions in elliptic fibrations

This transversality condition [77] is usually expressed in slightly more formal terms as follows.
Let us first consider the standard case of an elliptically fibred fourfold

π : Y4 → B . (III.4)

By definition, an elliptic fibration has a zero section Sec0 : B → Y4 which defines an embedding
of the base B as a divisor Sec0(B) into Y4,

ισ : Sec0(B) ↪→ Y4. (III.5)

In the presence of several independent sections, i.e. for an elliptic fibration with a Mordell–Weil
group of non-zero rank, the choice of zero-section is not unique [78, 79], but the different choices
all asymptote to the same effective theory in the F-theory limit.

Let us therefore assume that we have singled out one particular section as our zero-section
and denote by [Sec0] ≡ S0 its homology class. For simplicity we assume the zero-section to be
holomorphic, but this is not necessary [78,80]. From the perspective of the 3-dimensional M-theory
effective action, S0 generates a U(1) gauge group which is to be identified with the Kaluza–Klein
U(1) obtained by reducing the 4-dimensional F-theory compactification along a circle S1 (see [34]
for a recent discussion in the language of 3-dimensional supergravity). In the effective action,
charged matter states arise from M2-branes wrapping suitable fibral curves [39, 81–83]. This
includes both the non-Cartan vector bosons and related matter states and extra charged localised
matter. More precisely, each component field Ψ(x, z) of an N = 1 multiplet of the 4-dimensional
F-theory action decomposes, upon circle reduction to three dimensions, to a zero mode plus
a full tower of Kaluza–Klein excitations Ψ(x, z) =

∑
n∈Z ψn(x)einz. Here x denotes external

coordinates in the 3-dimensional M-theory vacuum and z is the KK-circle coordinate. The higher
KK states have KK U(1) charge n =

∫
Cn
S0, where Cn is the fibral curve wrapped by the M2-

brane associated with state ψn(x). Since S0 is the class of a section, it has intersection number
+1 with a generic non-degenerate fibre. This is still true for split fibres in higher codimension,
but not all components of the fibre will intersect S0. Thus, the zero mode ψ0 is due to M2-branes
wrapping a fibral curve C0 with vanishing intersection with the zero-section S0. The KK partner
of KK charge n is then created by an M2-brane wrapping in addition the full elliptic fibre f
n-times such that its associated fibral curve can be written as Cn = C0 + n f.

At the cohomological level, the transversality conditions of [77] on gauge fluxes is that (e.g. [10,
84–87])

0 =

∫
Y4

G4 ∧ S0 ∧ π−1(D(B)
a ) , (III.6)

0 =

∫
Y4

G4 ∧ π−1(D(B)
a ) ∧ π−1(D

(B)
b ) =

∫
π−1(D

(B)
a )∩π−1(D

(B)
b )

G4 , (III.7)

for any divisor classes D
(B)
a , D

(B)
b ∈ H(1,1)(B) in the base.2 The first condition guarantees that

G4 does not lie completely in the base because it requires that∫
Y4

G4 ∧ S0 ∧ π−1(D(B)
a ) =

∫
Sec0(B)

ι∗σ

(
G4 ∧ π−1(D(B)

a )
)

!
= 0, (III.8)

i.e. the net flux through any divisor D
(B)
a on the base vanishes. The second condition expresses

that the solution cannot have two (real) legs along the fibre. This condition can be rephrased as

2Note that here and in the following, our notation will not differentiate between (1, 1)-forms and their Poincaré-
dual divisors.
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the constraint that the chiral index of all KK partners equals that of the zero mode. Indeed the

intersection π−1(D
(B)
a )∩ π−1(D

(B)
b ) is a 4-cycle3 on Y4 extending along the full fibre over a curve

D
(B)
a ∩D(B)

b in the base and
∫
π−1Da∩π−1Db

G4 computes the chiral index of states associated with
M2-branes wrapping the full fibre over Da ∩Db. If the integral over any four-cycle of this type
vanishes, this guarantees in particular that the multiplicities of the fields ψn are the same for all
n. This is the field theoretic way of stating the requirement of Lorentz invariance. A discussion
along these lines can also be found e.g. in [57,88].

In models with non-abelian gauge symmetries the Cartan generators correspond to the ex-
ceptional divisor classes rmExi from the resolution of the singularity. In order to leave the
non-abelian gauge group unbroken in the F-theory limit, we must in addition demand that∫

Y4

G4 ∧ Exi ∧ π−1(D(B)
a ) = 0 ∀D(B)

a ∈ H(1,1)(B). (III.9)

Indeed, M2-branes wrapping combinations of the rational fibres P1
i of the resolution divisors Exi

give rise to non-abelian massless vector bosons in the F-theory limit [81]. The condition (III.9)
guarantees that the flux induces no chiral index for the associated gauginos. If one of these
conditions fails, the F-theory gauge group will be broken to the commutant of the associated
Cartan generator.

1.1.2 Transversality conditions in genus-one fibrations

We are now in a position to generalise these criteria to F-theory compactifications on non-elliptic
genus-one fibrations Y4. The main distinction from elliptic fibations is that no section exists, but
only one or several multi-sections. Recall that an n-section is a multi-valued map assigning to
each point in the base locally n-points in the fibre which are globally exchanged by monodromies.
This defines an n-fold branched cover µn(B) of the base B inside Y4 together with an embedding

ιµ : µn(B) ↪→ Y4. (III.10)

Let us denote the homology class of the n-section as N . For the purpose of relating the M-
theory reduction to F-theory it is necessary to specify a notion of KK U(1). As pointed out
several times by now [64–67], it is still true that a multi-section defines such a KK U(1) similarly
to the case of an elliptic fibration because it is possible to expand the M-theory 3-form C3 as
C3 = AKK∧N+. . .. We therefore need to choose an n-section as the substitute for the zero-section
and define transversality with respect to the associated KK frame.

In terms of this embedding multi-section then∫
Y4

G4 ∧N ∧ π−1(D(B)
a ) =

∫
µn(B)

ι∗n

(
G4 ∧ π−1(D(B)

a )
)
. (III.11)

Therefore the analogue of the first condition (III.6) is∫
Y4

G4 ∧N ∧ π−1(D(B)
a )

!
= 0, (III.12)

which guarantees that the net flux vanishes through every base 4-cycle. Second, since the multi-
section still defines the notion of a KK U(1), the condition that all elements of the KK tower
should have the same chiral index implies that the analogue of (III.7) must still hold.

In principle, this condition suffices in order for the flux to lift properly in the F-theory limit.
However, there is one type of fluxes that does not satisfy this condition, which however are

3Following the standard convention, n-cycles are submanifolds of real dimension n.
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expected from a type IIB perspective. These are the so-called Cartan fluxes of the form G4 =
Exi ∧ π−1(F ), with F ∈ H(1,1)(B). In the type IIB limit, they can be seen as the brane fluxes
associated with a background for the gauge field along the branes. In general the n-section
intersects more than one of the P1s of the exceptional divisors Exi. This implies that the Cartan
fluxes do not satisfy (III.12) in general. However, as we will see in chapter IV, one may construct
a divisor class

N̂ = N +
∑
i

ai Exi (III.13)

and choose the coefficients ai such that the modified condition∫
Y4

G4 ∧ N̂ ∧ π−1(D(B)
a ) = 0 (III.14)

is satisfied for Cartan fluxes. The choice of N̂ amounts to a redefinition of the KK U(1) symmetry
such that it does not mix with the Cartan U(1) generators Exi. A similar redefinition has been
discussed in a different context in [79]. In chapter IV, we will put this proposed form of the
transversality condition on genus-one fibrations to test in an explicit example.

1.2 Physical implications of G4-fluxes

The inclusion of fluxes broadens the variety of F-theory compactifications considerably. As we
have mentioned earlier, fluxes are key players in moduli stabilisation scenarios. This is especially
important for cosmological model building with F-theory (see [26] for a review). As we are
interested in particle physics phenomenology, we will focus on the chirality inducing feature of
G4-fluxes.

1.2.1 Chiral charged matter in 4D F-theory

As G4-fluxes incorporate brane fluxes from type IIB, they should give rise to chiral matter in F-
theory as well. Let us take as an example the Cartan fluxes G4 = Exi∧π−1(F ) with F ∈ H(1,1)(B).
They satisfy the transversality conditions, but not in general the gauge symmetry condition
(III.9). Therefore, they will in general break the gauge group G to a subgroup H. Note that this
aspect is very attractive for GUT-models in order to re-create the Standard Model [12, 89]. In
any case, the matter states over a curve C ⊂ B will decompose accordingly into representations
of H, such that all states in one representation R have the same charge q under the Cartan U(1)
associated with Exi. Based on the type IIB intuition, the net chirality of these states is expected
to be q

∫
C F (see [90] and references therein).

Recall from section 2.4.4 in chapter II that a charged matter state w corresponds to a chain
Γw of fibral P1s into which the torus-fibre splits over C. Fibring these chains over C form 4-cycles
γw ⊂ Y4,

Γw γw

C

which are the matter surfaces. It has been proposed in [10, 84–86, 91] that the chiral index of w
is given by integrating the flux over the corresponding matter surface:

χ(w) =

∫
γw

G4 =

∫
Y4

G4 ∧ [γw] . (III.15)

Here and in the following, we use the notation [γ] to denote the homology class of the 4-cycle γ. By
Poincaré-duality, [γ] can be regarded as 4-form on Y4 as well. For the Cartan fluxes, this formula
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indeed produces the desired chirality: By reinterpreting the flux integral
∫
Y4

Exi ∧ π−1(F ) ∧ [γw]

as the intersection number Exi ·π−1(F ) · [γw] on the fourfold, we see that the chirality is given as
the intersection of the Cartan divisor Exi with the fibral curve Γw of γw over the point C ∩ F in
the base. Clearly, this intersection number is just the Cartan charge q of the weight w under Exi,
multiplied by the number of points in which C and F meet on the base: χ = q

∫
B[C]∧F = q

∫
C F .

It should be stressed that (III.15) is still a proposal, i.e. not proven rigorously. However, it
can also be argued from the duality to M-theory. Since F-theory is defined via M-theory, let us
briefly present the logic behind this argument [87]. By compactifying M-theory on the smooth
torus fibration Y4, we obtain a 3D field theory with massive states. This is of course because the
fibre P1s, which M2-branes wrap to give those states, have finite size in the smooth geometry.
In this field theory, there are only massless vector fields Ai arising from the reduction of C3 over
divisors ωi ∈ H(1,1)(Y4). In a non-trivial G4-flux background, there is in addition a Chern–Simons
coupling

∫
11DC3 ∧G4 ∧G4 in 11D, which upon compactification induce 3D Chern–Simons terms

Ai∧Fj , where Fj is the field strength of Aj . Crucially, it was argued in [87] that the 3D coupling
constants of these terms, Θij =

∫
Y4
G4 ∧ ωi ∧ ωj , can be re-interpreted as a 1-loop quantum

corrections generated by the massive states, which originate from the massless states in 4D from
F-theory compactified on the singular limit of Y4. In [87] a precise formula was derived that
matches Θij with the chiralities and charges of the massless 4D states. In explicit models, one
knows both Θij as well as the charges of all massless states. Therefore one can use the results
of [87] to ‘test’ any proposal for chirality in 4D F-theory. Indeed, (III.15) satisfies this matching
in all explicit examples [57,87,88]. This motivates us to also trust (III.15) to be the correct way
to compute the chirality.

Note that the notion of chirality only makes sense if all states w of the same matter rep-
resentation have the same chiral index. For singlet matter, this is clear since there is only one
matter surface associated with the singlet state. In models with a non-abelian gauge group over
a divisor W = [{w}] ⊂ B, all states of a non-trivial representation R are localised over a curve
of the form CR = {w} ∩ {p}. Here p is a polynomial (or section to be more precise) on the base,
i.e. [p] ∈ H(1,1)(B). Different weight states w ∈ R differ by linear combinations of simple roots,
which themselves are the fibres of the exceptional divisors Exi that resolve the singularities over
W . In homology, the difference [γw]− [γw′ ] for two different weights is therefore a linear combin-
ation

∑
n δn Exn ∧ [p], where the numerical coefficients δn are dictated by representation theory.

The condition (III.9) then ensures that for a valid flux G4, the chirality within one representation
is well-defined, ∫

Y4

G4 ∧ [γw]−
∫
Y4

G4 ∧ [γw′ ] =
∑
n

δn

∫
Y4

G4 ∧ Exn ∧ [p] = 0,

i.e. the flux does not break the non-abelian gauge symmetry in the F-theory limit:

∀w,w′ ∈ R :

∫
γw

G4 =

∫
γw′

G4 =: χ(R) (III.16)

To keep things simple, we will therefore – unless otherwise stated – only refer to the matter
surface γR of a representation R, by which we mean the one (irreducible) surface whose fibre is
the P1 into which a root splits over CR; this P1 carries the weight charges of a state in R (which
need not to be the highest weight).

Before we continue, let us briefly remark that the G4-flux can only provide us with the net
chirality, but not the actual number of chiral and anti-chiral matter multiplets. These data
also depend on the flat parts of the gauge potential C3, i.e. those for which G4 vanishes. As
argued in [92, 93] and further developed in [94, 95], it requires the study of the so-called Déligne
cohomology to describe these data geometrically. The tools for such a analysis are still lacking
for explicit models, therefore, we will not pursue this route in this thesis.
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1.2.2 G4-flux as a topological quantity

Part of our analysis in chapter IV will be a comparison the fluxes in the Bl1P112 model with a
U(1) symmetry and in the related P112 with a Z2 symmetry. These two models are related by a
conifold transition. The role of fluxes in such a transition have been studied [84, 94, 96] in more
general settings and in [64] in the context of discrete symmetries. The key observation is that
G4-flux is a topological quantity in the following sense.

By a conifold transition Y4 → Y4, the topology of the space changes. In particular, the Euler
numbers χ(Y4) and χ(Y4) will differ. In an F-theory compactification however, the number n3 of
spacetime filling D3-branes does not change, simply because these D3-branes are not geometrised
in the F-theory description of type IIB. Therefore, for the D3-tadpole (III.3) cancellation to be
satisfied for both theories, i.e. compactification on Y4 and Y4, fluxes must be taken into account.
In addition, our physical intuition tells us that the conifold transition, which corresponds to a
Higgsing, must preserve the net chiralities of un-Higgsed states. Thus, for a consistent geometric
description of the F-theory physics, we expect a matching of flux configurations on Y4 and Y4

such that the D3-tadpole n3 and the net chiral indices are conserved.
Indeed, as we will show in chapter IV, we can establish such a map for the conifold transition

between the Bl1P112 and the P112 model for a certain class of fluxes. This class of fluxes, so-
called primary vertical or simply vertical fluxes, have a particularly easy description in terms of
geometry, and can be systematically computed with the tools we will develop in this chapter.

2 Vertical Fluxes

It is generally known that the middle cohomology of a fourfold splits into

H(2,2)(Y4) = H
(2,2)
hor (Y4)⊕H(2,2)

vert (Y4)⊕H(2,2)
rem (Y4). (III.17)

The primary horizontal component H
(2,2)
hor (Y4) has been introduced in [97] as the subspace which

can be reached from H(4,0)(Y4) by two successive variations of Hodge structure. Its elements are
Poincaré-dual to those 4-cycles which are algebraic only on a subset of the complex structure
moduli space. The part which is computationally accessible in the most straightforward way is

the primary vertical subspace, H
(2,2)
vert (Y4), which is generated by products of divisors. The dual

4-cycles are thus algebraic for every choice of complex structure moduli. The horizontal and the
vertical subspaces are mapped onto each other by mirror symmetry [97–99] and are orthogonal
with respect to the intersection pairing. The remainder H(2,2)

rem (Y4) was introduced in [100] as the

orthogonal complement of H
(2,2)
hor (Y4)⊕H(2,2)

vert (Y4). In what follows, we will focus on the class of

G4-fluxes inside H
(2,2)
vert (Y4). The aim of this section is to provide the necessary background, which

underlies the algorithmic approach to vertical fluxes. The key feature of the vertical cohomology
is that, by Poincaré-duality, we can translate everything into the intersection theory of divisors,
which for all our toric models boils down to simple combinatorics.

2.1 Vertical cohomology as intersection theory of divisors

In appendix A we give a short overview of intersection theory on a general complex projective
manifold X with dimCX = N . The key result is the isomorphism

N⊕
k=0

H(k,k)(X,Q) ∼=
N⊕
k=0

Halg
2(N−k)(X,Q) (III.18)

provided by Poincaré-duality, where on the right hand side the elements of Halg
2(N−k)(X,Q) are

rational linear combinations of homology classes of (real) dimension 2(N − k) sub-manifolds,
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which are also called 2(N − k)-cycles. E.g. a (2, 2)-form is Poincaré-dual to a 4-cycle on a
complex fourfold. The superscript ‘alg’ denotes the fact4 that these cycles are algebraic, i.e. they
are describable as vanishing loci of polynomials; by a theorem of Chow, these are in 1-to-1
correspondence with complex sub-manifolds of X. It is also customary to count the codimension
of (algebraic) cycles, which is usually given as complex codimension. E.g. in a fourfold, a complex
6-cycle is also referred to as of codimension one, a 4-cycle is of codimension two etc.

The wedge product of forms is translated into the intersection product · of homology classes,
which roughly speaking is a formalised way of appropriately counting the set-theoretic inter-
section. In particular, because H0(X) ∼= H(N,N)(X) ∼= Q, an integral

∫
X ω ∧ η with ω ∧ η ∈

H(N,N)(X) can be interpreted as an appropriate counting of intersection points – the intersection
number – of the homology classes Poincaré-dual to ω and η:∫

X
ω ∧ η = PD(ω) · PD(η) ≡ ω · η . (III.19)

Note again that we use the common abusive notation of not differentiating between (co-)homology
classes and their Poincaré-duals. Similarly, an integral of a (k, k)-form ω over a 2k-cycle γ can
be evaluated as

∫
γ ω =

∫
X ω ∧ [γ] = ω · [γ].

The vertical cohomology H
(k,k)
vert is the linear span of

(
H(1,1)

)k
in H(k,k), i.e. linear combinations

of k-fold products of (1, 1)-forms. By (III.18), (1, 1)-forms are Poincaré-dual to codimension one
cycles. In complex geometry, these cycles are known as divisors, and can be shown to be a
collection of zeroes and poles (with appropriate counting) of a meromorphic function. Hence,
vertical (k, k)-forms can be understood by analysing divisors.

In general, formally different intersection products of k divisors of a generic space X can be
the same as elements of Halg

2(N−k)(Z). The reason is that there are certain relations amongst the
divisors and their intersections. One can divide these relations into two types:

1. The first type are linear equivalence relations amongst divisors. For our purposes it suffices
to understand these as the homological equivalence. E.g. on X = Pn with homogeneous
coordinates [z0 : ... : zn], all hyperplane divisors [{zi}] are linearly equivalent. This can be
formally phrased as [{zi}]− [{zj}] = 0.
We will use ‘LIN’ to denote the set of all such expressions which are linearly equivalent to 0,
and call it the ‘linear equivalence ideal’. Note that any sum/difference of such expressions
will again be linearly equivalent to 0, and also products with any other homology class will
also yield an expression which is (rationally) equivalent to 0.

2. The second type involves intersection relations amongst divisors. Under the consideration of
the linear relations, the intersection relations are fully specified by identifying all intersection
products which are rationally equivalent to 0. The underlying geometric statement is that
divisors which intersect to 0 in homology do not generically intersect as sub-manifolds. By
the analogy to toric spaces (where these relations come from the Stanley–Reisner ideal), we
will call them SR-relations, and the set containing all vanishing product expressions is the
‘SR-ideal’ or ‘SRI’.
For X = Pn, such a relation is [{z0}]n+1 = 0. Note that together with the linear relations
[{zi}] − [{zj}] = 0, this also implies that any (n + 1)-fold

∏n+1
k=1 [{zik}] = 0, reflecting

the intuition that in n dimensions, n + 1 generic hyperplanes will not meet. Again, any
sum/difference of SRI elements and product of SRI with any other homology class are
equivalent to 0 in homology.

4It requires the assumption of the Hodge conjecture, which is proven for toric spaces, complex threefolds and
for 2-cycles, i.e. divisors in general. Since vertical forms are products of divisors, the Hodge conjecture also holds
for them.
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A convenient way to encode these informations systematically, such that a computer algebra
system like Sage or Singular can handle it, is to construct a quotient polynomial ring as follows.
First, notice that formal linear combinations of (arbitrary products of) divisors Di with complex
coefficients can be regarded as a polynomial P ∈ Q[Di] with the divisors as formal variables.
Secondly, implementing the linear and SR-relations amounts to forming equivalence classes of
polynomials differing by elements of LIN and/or SRI, which in the language of polynomial algebra
is given by a quotient ring. Combining these ideas with Poincaré-duality, we arrive at the following
identification

N⊕
k=0

H
(k,k)
vert (X) ∼=

Q[Di]

LIN + SRI
, (III.20)

where the analogon of the grading of cohomology on the right hand side simply comes from the
grading of polynomials.5 The wedge product of vertical forms translates under this duality to
simply the polynomial multiplication in the quotient ring.

In explicit F-theory models on a torus fibration Y , where one usually knows all divisors Di,

one needs to work out the relations LIN and SRI in order to fully describe H
(·,·)
vert(Y ). While this is

in principle possible, this can be a non-trivial task. E.g. when divisors are only given in terms of
complicated loci of the fibration (as in [54,60]) one would need to infer the linear and intersection
relations from computing geometric intersections of generic hypersurfaces with the corresponding
divisor classes. For cases where the loci are given in terms of vanishing of polynomials, one might
hope to use the techniques of section 3. However, as we will now see, the situation simplifies
considerably for our class of toric constructions.

2.2 Vertical cohomology forms on toric hypersurfaces

Originally proven for threefolds, the Shioda–Tate–Wazir theorem [101] states that on an elliptic

fibration Y → B, all divisors are either pullbacks of divisors D
(B)
i in the base (‘vertical divisors’)6,

exceptional (blow-up) divisors, or sections of the fibration. It is widely believed, although not
explicitly shown, that this also holds for fourfolds. In addition, it was argued in [61] that the
theorem should also hold, by replacing sections with multi-sections, if Y is a genus-one fibrations
without sections.

Recall that in the construction via tops, Y is a hypersurface {PT = 0} ≡ {PT } in an ambient
space X → B of complex dimension d + 1, which is the fibration of a toric variety – the fibre
ambient space – over the same base B. In particular, the hypersurface is itself a divisor, i.e. has
an associated element (a homology class) in Halg

2d (X), which we will denote by [Y ] ≡ [{PT }]. Spe-
cifically in our class of models, (multi-)sections and exceptional divisors of Y arise as intersections

{PT } ∩D(T )
i of the hypersurface with divisors D

(T )
i ⊂ X defined by the top. Since X and Y also

share the same base, they share the same vertical divisors, hence all divisors of Y come from X by

restriction, i.e. D
(Y )
i
∼= Di∩{PT } for some divisor Di of X. Note that we use ‘∼=’ due the fact that

D
(Y )
i is a priori defined on Y . However, the natural embedding of Y

i
↪−→ X defines a push-forward

map i∗ in homology. With that, one can identify a divisor on Y by D
(Y )
i ≡ i∗(D(Y )

i ) = Di ∩{PT }
with a 4-cycle in the ambient space. We will now pass from geometric intersections of divisors
to the intersection product (cf. appendix A.), and in doing so abuse the notation by using the

5Note that the construction of quotient rings, both formally and as required by computer algebra systems like
Singular, requires the ‘denominator’ to be an ideal of the ring in the ‘numerator’. While ideals in rings will be
discussed within a different context in section 3, we note here that LIN and SRI are in fact ideals of Q[Di], and
the ‘+’ in the denominator is really the sum of two ideals.

6By an abuse of notation we will here and in the following use the same variable to denote divisors D(B) of the
base and the corresponding vertical divisors π−1(D(B)) in the ambient space.
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same variable denoting the divisor as a sub-manifold and as a class. Then the identification can
be phrased as i∗ : Halg

2(d−1)(Y )
∼−→ Halg

2d (X) · [Y ] ⊂ Halg
2(d−1)(X).

Furthermore, any intersection product
∏
iD

(Y )
i = ω ∈ Halg

2(d−k)(Y ) can be calculated on X as∏
iDi · [Y ] ≡ ω̃ · [Y ] ∈ Halg

2(d−k)(X), with i∗(D
(Y )
i ) = Di. For a given ω ∈ Halg

2(d−k)(Y ), there can be

in general be several ω̃ ∈ Halg
2(d+1−k)(X) such that i∗(ω) = ω̃ · [Y ]. In fact, the ambiguity precisely

stems from the linear equivalence relations (LIN) and intersection properties (SRI) among divisors
of the ambient space. To be more precise, due to these relations, two independent vertical (k, k)-
forms ω̃1 and ω̃2 need not be independent upon intersecting with the hypersurface, i.e. we might
have ω̃1 · [Y ] = ω̃2 · [Y ] ∈ Halg

2(d−k)(X).
Our considerations from the previous section of course apply to the ambient space, i.e.

H
(·,·)
vert (X,Q) ∼=

Q[Di]

SRI + LIN
. (III.21)

From the above discussion, it also immediately follows that we can represent the vertical cohomo-
logy of the hypersurface as

H
(k,k)
vert (Y,Q) ∼=

Q[Di]
(k) · [Y ]

SRI + LIN
⊂ H(k+1,k+1)

vert (X,Q) . (III.22)

To compute the intersection product of ω, η ∈ H(·,·)
vert(Y ) ∼= Halg

(·) (Y ), we first find ω̃, η̃ ∈ Halg
(·) (X)

such that i∗(ω) = ω̃ · [Y ] and i∗(η) = η̃ · [Y ], and then compute ω̃ · η̃ · [Y ] = i∗(ω ·η). The ambiguity
in the choice of representatives ω̃ and η̃ is taken care of by taking the quotient by LIN + SRI
after intersecting with [Y ].

This now effectively allows us to carry out all relevant computations in H
(k,k)
vert (Y,Q) in the

ambient space homology. With this understanding, we will – unless otherwise stated – omit the
differentiation between co- and homology, and always use · to indicate that calculations are based
on intersection theory of homology classes. Only in expressions with integrals, e.g. in explicit
flux computations, we will use the more consistent notation of the wedge product, indicating
the presence of cohomology forms. For explicit computation we implement the quotient ring
structure (III.22) into Singular [102], which is designed for calculations within polynomial rings.
The results of chapter IV are all computed in this set-up, we also refer to there for explicit
examples of the above method. Furthermore, Singular can also readily compute the minimal
generating set of vector spaces. Applied to the space Q[Di]

(2) · [Y ]/(SRI+LIN), this in particular

gives vector space basis {ti = Dai ·Dbi} of H
(2,2)
vert (Y,Q), which is the starting point of determining

a basis of G4-fluxes.

Fibrations with generic Base

By a fibration over a generic base we mean a set-up in which different vertical divisors are
treated as linearly independent, and on which intersection products are always non-zero unless
the codimension of the intersection exceeds the dimension of the base. The vertical cohomology
of a fibration over such a base can be mimicked with a quotient ring of the form

H
(·,·)
vert(X5,Q) ∼=

Q[D
(T )
i , D

(B)
j ]

SRI(T ) + SRI(B) + LIN(T )
, (III.23)

where we split the set of divisors into those that come from the top (D
(T )
i ) and the vertical

divisors from the base (D(B)). Since the tops we use to define the fibration fully specifies the
fibre ambient space and parts of the fibration data, it relates fibral divisors amongst themselves
and to certain vertical divisors, forming the ideal LIN(T ). The genericness of B is implemented
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by assuming no further linear relations amongst the vertical divisors (i.e. no contributions to the
ideal LIN involving only base divisors). The ideal SRI will have a part SRI(T ) coming from the
Stanley–Reisner ideal of the top, as well as a part SRI(B) encoding intersection properties of the
base. Since any intersection with the allowed codimension is non-zero for a generic base, we only
have to ensure that any intersection product with more than ‘three legs on the base’ vanishes, as
it should with a threefold base B. This is realised if we define the ideal SRI(B) to be generated by

D
(B)
1 ·D(B)

2 ·


D

(B)
3 ·D(B)

4

D
(B)
3 · Exi

ExG1
j · ExG2

j


for any vertical divisor D

(B)
k and any exceptional divisor Exi. Note that the last entry is included

for situations, where we have two independent gauge groups G1,2 localised over two different
divisors in the base, e.g. in our ‘Standard Models’.

Aside from the vertical divisors that have non-trivial linear relations with fibral divisors (these
are divisor classes associated to the coefficients of the hypersurface), any other vertical divisor
will appear on equal footing for a generic base. These can be mimicked by introducing a further
‘dummy’ vertical divisor D as the formal variables of the polynomial ring (III.23) which is not
related to any of the divisors D(T ) by linear relations. We stress that the resulting quotient ring is
not truly a cohomology ring, e.g. it does not satisfy Poincaré-duality, dimHk,k

vert = dimH5−k,5−k
vert .

However it captures the essential features that we will need for the study of chiral indices and
anomaly cancellation.

It is worth noting that it is generally possible to reduce intersections of five divisors in the
ambient space to a sum of intersection numbers of three divisors on the base if the fibre ambient
space is fully specified. In our implementation of (III.23) into Singular, this is reflected as

follows: Any degree five polynomial P (5) ∈ H(5,5)
vert (X5) will be reduced into an expression of the

form

(
∑

D(B)
a D

(B)
b D(B)

c ) · (
∑

D
(T )
i D

(T )
j ) ≡ # ·

∫
B

(
∑

D(B)
a D

(B)
b D(B)

c ) , (III.24)

with a specific quadratic term (
∑
D

(T )
i D

(T )
j ), which is the same for any polynomial P (5).7 The

numerical prefactor represented by the quadratic term is dictated by the toric geometry of the
top, as explained in section 2.6 of chapter II. Usually, it is easier to infer the numerical prefactor
by reducing an universally known intersection number of the fibration: E.g. in a fibration Y4

with a section S0 one reduces the expression S0 · [Y4] · (
∑
D

(B)
a D

(B)
b D

(B)
c ), which we know is

equal to 1 ·
∫
B(
∑
D

(B)
a D

(B)
b D

(B)
c ). Analogously for a model with a bisection U , we compare to

U · [Y4] · (
∑
D

(B)
a D

(B)
b D

(B)
c ) = 2 ·

∫
B(
∑
D

(B)
a D

(B)
b D

(B)
c ). For an explicit fibration, where the base

is fully specified, these steps become obsolete, as Sage can readily reduce the expression P (5) to
the intersection number that P (5) represents in the full ambient space X5.

3 Tools from Commutative Algebra

With the construction of F-theory geometries becoming more and more sophisticated, it also
became evident that the necessary computational tools needed improvements. One such tool,
which has been dubbed ‘prime ideal technique’ in [57], is extremely useful in the analysis of

7For this to be the case, the polynomial ring (III.23) has to be defined in Singular with the appropriate
monomial ordering. We always used ‘degree reverse lexicographical ordering’ (‘dp’), in which case the variables for
the divisors have to be put in such a order that the base divisors are listed after the top divisors.
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subspaces of the compactification space defined by the vanishing of polynomials. While the F-
theory community has only recently begun to utilise this technique, it is well-established in the
mathematical literature and is in fact at the heart of classic algebraic geometry.

3.1 Why do we need this?

Before we dive into technical definitions, let us first illustrate the problem we are facing. Suppose,
for simplicity, we have a hypothetical hypersurface given by the vanishing of the polynomial
F = (a + b)x y + c x2 + d y2. In analogy to our fibrations, assume that the variables x, y are
coordinates of some fibre ambient space, and {a, b, c, d} are generic sections of some line bundles
over a base of the fibrations. For generic values of {a, b, c, d}, F will not factor, meaning that the
locus {F = 0} in the (x, y)-plane is one single connected curve. However, for C = a b − c d = 0,
this is no longer the case. One way to see this is to solve C = 0 for a and insert the result into
F , yielding 1

b (b x+ d y)(c x+ b y). Therefore, over the special locus C = 0 in the base, the curve
{F} in the (x, y)-plane is actually two straight lines, A = {b x+ d y} and B = {c x+ b y}.

However, because of b being in the denominator, we cannot extend the above factorisation
directly to the situation where in addition to C = 0 we also have b = 0. In other words, the
factorisation is not globally valid. Yet such a globally well-defined expression is necessary e.g. for
the computation of homology classes, which in turn we need for the discussion of fluxes. In
anticipation of the tools we are about to develop, let us regard the restriction of F to C as the
intersection {F} ∩ {C} in the total ambient space. Then the factorisation of the fibre curve over
C can be realised as

{F} ∩ {C} =


b x+ d y = 0
c x+ a y = 0
a b− c d = 0

 ∪


c x+ b y = 0
a x+ d y = 0
a b− c d = 0

 ≡ A ∪B . (III.25)

To see that this indeed reduces to the above factorisation in the case of b 6= 0, simply note
that for a = c d/b, the conditions b x+ d y = 0 and c x+ a y = 0 in A are equivalent as equations
for x and y and are in fact the same as the earlier expression for A (similarly for B). Furthermore
we can extend these expressions straightforwardly to b = 0. It is not hard to see that in this
case, a b − c d = 0 has two solutions c = 0 or d = 0. Correspondingly, A splits into two sets
Ac,d, with Ac = {b = c = y = 0} and Ad = {b = d = c x + a y = 0}; likewise B splits into
Bc = {b = c = a x + d y = 0} and Bd = {b = d = x = 0}. Note that we could have arrived at
these special cases if we had directly evaluated F at b = c = 0 and b = d = 0. The advantage of
the new approach is that we obtain expressions which cover all these cases, because they contain
in some sense the global information.

The above example is a demonstration of a ‘primary decomposition’ (section 3.2.4). In the
following we will discuss the necessary background, namely the theory of rings and ideals.

3.2 On polynomials and varieties

In the classical theory of varieties the key objects of interest are algebraic sets, which by definition
are common zero loci of a collection of polynomials. A famous theorem by Chow states that in
fact in a complex projective space – which applies to all of the compactifications spaces we are
considering in F-theory (with some suitable generalisation) – any closed analytic subspace is also
an algebraic subvariety and vice-versa. By virtue of this theorem, geometric problems in classic
algebraic geometry are usually translated into a question regarding polynomials, which have been
objects of intense research since the time of Euclid.

In the following, we will present a few core results which we will then apply to F-theory
constructions. For more details and rigorous proofs, we refer to the numerous textbooks, e.g. [103–
105].
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3.2.1 Ideals and varieties

Commutative rings are the central objects to the field of commutative algebra. A basic and
familiar example is the set of integers Z; even though this is not a polynomial ring, most of the
ideas discussed in the following also apply to Z, which can be used to gain some intuition about
the abstract definitions.

The commutative ring we are ultimately interested in is the polynomial ring C[X1, ..., XN ]
in N variables with complex coefficients. The defining properties, which is also shared by the
example Z, is that any commutative ring R has two associative and commutative operations, +
and ·, which are distributively compatible:

∀r1, r2, r3 ∈ R :

(r1 + r2) + r3 = r1 + (r2 + r3),
(r1 · r2) · r3 ≡ (r1 r2) r3 = r1 (r2 r3)

}
associative

r1 + r2 = r2 + r1, r1 r2 = r2 r1 commutative
r1 (r2 + r3) = r1 r2 + r1 r3 distributive

(III.26)

Inspired by the basic examples, these operation are usually called addition and multiplication.
Importantly, (R,+) must be a group, i.e. there is a zero element ‘0’ such that 0 + r = r for any
r ∈ R, and for any r there exists a unique inverse −r with r + (−r) ≡ r − r = 0. While we also
require as a definition that there is a 1 ∈ R satisfying 1 · r = r for any r, there need not be a
multiplicative inverse for all elements. These definitions are of course very familiar for R = Z or
R = C[Xi].

Ideals
One of the key concepts that will play an important role in our discussion is that of ideals. An
ideal I ⊂ R is a non-empty subset of the ring that is closed under addition amongst itself and
under multiplication with arbitrary ring elements:

∀a1, a2 ∈ I, ∀r ∈ R : a1 + a2 ∈ I and r · a1 ≡ r a1 ∈ I . (III.27)

A generating set (or set of generators) of an ideal I is a subset X ⊂ I, such that any element I
can be written as a finite linear combination of elements in X,

I = {r1 x1 + ...+ rn xn |n ∈ N, ri ∈ R, xi ∈ X} . (III.28)

Given a set X = {xi} ⊂ R, we will denote the ideal generated by it with 〈X〉 ≡ 〈x1, x2, ...〉.
Trivial examples for any rings are the zero ideal 〈0〉 = {0} ⊂ R or 〈1〉 = R. The latter example
shows in particular that any ideal containing 1 must necessarily be the whole ring.

As a first non-trivial example, let us consider the ring of integers Z. In this case it turns out
that any ideal I must be of the form 〈z〉 for a single integer z, i.e. all multiples of one number.
Other such examples are polynomial rings in one variable with real or complex coefficients: Any
ideal of these rings is always generated by one single polynomial. To show that not all rings have
this property, consider the polynomial ring in two variables, x and y. If the ideal 〈x, y〉, which
contains all polynomials with vanishing constant term, was generated by a single polynomial f ,
then x and y must both be of the form r f for some polynomial r. However, by simple degree
arguments, if r f = x, then either r ∼ x, implying f is a constant, so 〈f〉 = R 6= 〈x, y〉, or f ∼ x,
and so r̃ f 6= y for any r̃.

One can define operations amongst ideals to form new ideals. The sum of ideals, I + J :=
{i+ j | i ∈ I, j ∈ J}, is in fact equivalent to the ideal generated by the union of the generators of
I = 〈x1, ..., xm〉 and J = 〈y1, ..., yn〉: I + J = 〈x1, ..., xm, y1, ..., yn〉. In particular, the sum I + J
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contains the union I∪J as sets (the latter need not to be an ideal). The set theoretic intersection of
two ideals I∩J turns out to be an ideal itself, which contains the product I J := {i1 j1 +...+ik jk |
k ∈ N, ip ∈ I, jq ∈ J}.

Algebraic varieties

Algebraic varieties are a broad class of complex manifolds. In fact, nearly all compact complex
manifolds are algebraic varieties, and certainly all those examples we construct for string compac-
tifications fall into this category, because we have a good handle on them by means of algebraic
geometry. To keep things simple, we will stick to the affine set-up, knowing that in the end, all
our examples are actually in a projective setting. However, all results can be transferred almost
identically to the projective case.

Affine algebraic varieties are subsets V ⊂ CN which can be described as the common
vanishing locus of a set of polynomials, by regarding the variables Xi as coordinates of CN .8

Given S ⊂ C[X1, ..., XN ] = R, we call

V(S) =
{
z ∈ CN | ∀f ∈ S : f(z) = 0

}
(III.29)

the (affine) variety defined by S. The function V defined in this way is decreasing with respect of
inclusion: if S ⊂ S′, then V(S′) ⊂ V(S). Note that if f, g ∈ S and h ∈ R is any polynomial, then
both f + g and h f will vanish on V(S). Hence, if we take the ideal I = 〈S〉 defined by S, then
V(S) = V(I). Therefore, w.l.o.g. we can assume that an affine algebraic variety is always defined
by an ideal. We can immediately draw some conclusions regarding the union and intersection of
varieties. It is straightforward to prove that we have

V(I) ∪V(J) = V(I ∩ J) ,

V(I) ∩V(J) = V(I ∪ J) = V(I + J) .
(III.30)

Chow’s theorem states that in a complex projective manifold, any closed complex submanifold is
in fact a (projective) algebraic variety. So in some sense, even though varieties are naively very
restrictive, being defined by polynomials, they are still the most general subspaces we can have
in our compactification manifold.

We now define an in some sense dual operation. Suppose V ⊂ CN is some subset (not
necessarily a variety), then

I(V ) = {f ∈ C[X1, ..., XN ] | ∀z ∈ V : f(z) = 0} (III.31)

is called the ideal of V . Again it is obvious that it indeed defines an ideal in R.

Some examples of the above results are appropriate. In general, we always have V(R) = ∅
and V(〈0〉) = CN . Similarly, I(CN ) = 〈0〉 and I(∅) = CN . Suppose I = 〈x〉, J = 〈y〉 are ideals
in R = C[x, y], then V(I) = {x = 0} is the y-axis and V(J) = {y = 0} is the x-axis in C2.
The intersection V(I) ∩V(J) is clearly just the origin. Correspondingly, the ideal I + J = 〈x, y〉
precisely vanishes at the origin. Let us look at another example, I = 〈x y, x2〉. Clearly, the
vanishing of x2 requires the points of V(I) to be on the y-axis. However, x y also vanishes (in
part) on the whole y-axis, so V(I) = {x = 0} is the whole axis. However, I({x = 0}) = 〈x〉 ⊃ I.
This example shows that in general, we only have an inclusion I(V(I)) ⊃ I. To find a one-to-one
duality, we need the notion of radical ideals.

8In the mathematics literature, these vanishing loci would be referred as algebraic sets. Algebraic varieties are
a special type of algebraic sets. In the following, we will not make this differentiation.
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3.2.2 Radical ideals and Hilbert’s Nullstellensatz

Given any ideal I, the radical of I is defined as
√
I := {r ∈ R | ∃n ∈ N : rn ∈ I} . (III.32)

Clearly, I ⊂
√
I, and if I =

√
I, then I is said to be a radical ideal. Basically this means that

a radical ideal contains all the ‘roots’, and a non-radical ideal can be made radical by including
all ‘roots’. For simple examples, consider R = Z. Then

√
〈4〉 =

√
〈8〉 =

√
〈16〉 = ... = 〈2〉,√

〈6〉 = 〈6〉 =
√
〈12〉; more generally, if m = ±

∏
i p

ni
i is the prime factorisation of m, then√

〈m〉 = 〈
∏
i pi〉.

As a more involved example, we revisit the ideal I = 〈x y, x2〉 in the ring R = C[x, y]. Since
x2 ∈ I, we necessarily have 〈x〉 ⊂

√
I. Conversely, suppose we have f ∈

√
I, then there is

some n > 0 such that fn = p x y + q x2 = x (p y + q x) for some p, q ∈ R. It immediately
follows that f =

∑
i,j≥0 aij x

i yj cannot have a non-zero constant term a00, because then fn =

an00 + non-constant terms; furthermore, it cannot have any terms a0k y
k, because then fn will

have terms an0k y
k n which do not have a factor of x. Consequently, f must be of the form x f̃ ,

showing that f ∈ 〈x〉. Thus we have shown that
√
I = 〈x〉.

Combined with the earlier geometric observation of I(V(〈x y, x2〉)) = 〈x〉, this example illus-
trates what is known as Hilbert’s Nullstellensatz:

For any ideal I ⊂ C[X1, ..., XN ] : I(V(I)) =
√
I . (III.33)

This theorem furnishes the desired duality between varieties and ideals. It also shows ideals
carry more information than just the point set of the corresponding variety: Different ideals with
the same radical define identical point sets as varieties. In some sense, primary ideals describe
varieties with multiplicities. We will come back to this issue in a moment. Here we just note that
this discrepancy between point sets and polynomials in part was the motivation to define modern
algebraic geometry solely based on commutative rings.

3.2.3 Prime and primary ideals and irreducible varieties

A prime ideal, as the name suggests, generalises the idea of prime numbers. For an arbitrary
commutative ring R, a prime ideal P ⊂ R is a proper ideal (i.e. not the whole ring) such that

∀r1, r2 ∈ R : if r1 r2 ∈ P ⇒ r1 ∈ P or r2 ∈ P . (III.34)

For R = Z, it is not a surprise (and a straightforward proof using the definition of prime num-
bers) that prime ideals are precisely those ideals 〈p〉 where p is a prime number. In the case of
polynomial rings in a single variable, there is already a difference in whether we allow for real or
complex coefficients. For example, the polynomial f = x2 +1 regarded as an element of R = C[x]
can be factorised as f = (x+ i) (x− i), with i2 = −1; therefore 〈f〉 is not a prime ideal, because
it does not contain x± i (multiples of f necessarily must be polynomials of at least of degree 2),
which multiply to f . However, over R, the factorisation is invalid; in fact basic calculus9 shows
that there cannot be a factorisation f = g h into polynomials g, h /∈ 〈f〉, as these necessarily
linear polynomials must have real zeroes which would then be real zeroes of f = x2 + 1.

Closely related to prime ideals are so-called primary ideals, which as the name suggests are
quite like prime ideals. However, a primary ideal Q is a proper ideal satisfying a slightly weaker
factorisation property:

∀r1, r2 ∈ R : if r1 r2 ∈ Q⇒ r1 ∈ Q or ∃n ∈ N s.t. rn2 ∈ Q . (III.35)

9It is somewhat amusing that this fundamental theorem of algebra cannot be proven without the use of analysis,
in form e.g. of the intermediate value theorem.
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For some intuition we again look at the basic example of Z. In this case, primary ideals are of the
form 〈pk〉 for a prime p. The property of being primary can be easily understood in this context:
If r1 r2 ∈ 〈pk〉, i.e. the product r1 r2 is divisible by pk, then either r1 was already divisible by pk,
or r2 must contain p as one of its prime factors (i.e. r2 raised to some power – at most k – is
divisible by pk). The relation between primary and prime ideals is simple. Given a primary ideal
Q, the radical P =

√
Q is a prime ideal, the so-called associated prime ideal of Q. In the ring of

integers, it is obvious that the prime ideal associated to 〈pk〉 is 〈p〉. As a matter of nomenclature,
a primary ideal Q with associated prime P is called P -primary.

(Ir-)reducible and (non-)reduced varieties

A variety V is called irreducible if it cannot be written as the disjoint union of two non-empty
varieties. More precisely, for any decomposition V = W1 ∪W2, with two varieties W1,2 6= V and
W1 ∩W2 = ∅, we must have W1 = V or W2 = V in order for V to be irreducible. It is a simple
exercise to prove the following characterisation of irreducible varieties:

V is irreducible ⇔ I(V ) is a prime ideal. (III.36)

For the above example, the fact that the ideal I = 〈x2 + 1〉 ⊂ C[x] is non-prime is reflected in the
geometry as V(I) = {±i} ⊂ C being composed of two separated points, so V(I) = {i} ∪ {−i}.

Note that (ir-)reducibility defined as above is a statement about the point set V alone, in
particular, it does not differentiate between different ideals Ii with V(Ii) = V . So for a prime ideal
P , any P -primary ideal Q also defines an irreducible variety V(Q). Nevertheless, we will encounter
situations in F-theory, where the additional ‘information’ contained in a primary ideal Q, as
opposed to the prime ideal

√
Q, is essential for physical quantities. This additional information

sparks the notion of (non-)reduced varieties, which depends on the ideal defining the variety.

Concretely, we say that a variety V = V(I) defined by the ideal I is reduced, if I is radical,
i.e. I =

√
I, and otherwise we call it non-reduced. Clearly, reducedness is really a property of the

ideal I, to which the point set V is insensitive. So from now on, whenever we talk about a variety
V , what we really have in mind is an ideal I to which we can associate a point set V(I), but in
addition may have further non-reduced structures. In terms of its cycle and homology classes,
non-reduced structure of a variety is reflected precisely in the multiplicity [V(I)] = µ [V(

√
I)]

(cf. appendix A). We will later present a method to compute µ.

For a basic example, take I = 〈x2 − y, y〉 = 〈x2 − y〉 + 〈y〉 ⊂ C[x, y]. Geometrically, V(I)
is the intersection of the parabola {y = x2} and the x-axis {y = 0}, which clearly is the origin
{x = y = 0}. However, this set notation does not capture the fact that the parabola intersects
the x-axis tangentially; in fact I({x = y = 0}) = 〈x, y〉 = 〈x〉+ 〈y〉 can also be understood as the
transverse intersection of the x- and y-axis. Meanwhile, the description through the ideals 〈x, y〉
and I can distinguish between a ‘normal’ and a ‘non-transverse’ intersection point.

In our F-theory compactifications, we will regularly encounter ideals defining reducible vari-
eties, of which we need to compute the irreducible components. For this we require the concept
of primary decomposition.

3.2.4 Primary decomposition and irreducible components

An important property of the integers, going by the name of the ‘fundamental theorem of arith-
metic’, is the unique prime factorisation which we have also briefly mentioned above. There is a
generalisation to other types of rings including polynomial rings, and hence has imminent impact
on geometry.

The prime factorisation of integers, m = ±
∏
i p

ni
i , can be rephrased in terms of ideals. To

this end, suppose that m = pn1
1 pn2

2 has two distinct prime factors raised to some power, then
clearly m ∈ 〈pn1

1 〉 and m ∈ 〈pn2
2 〉, so m ∈ 〈pn1

1 〉 ∩ 〈p
n2
2 〉; conversely, if z ∈ 〈pn1

1 〉 ∩ 〈p
n2
2 〉, so z is
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a multiple of pn1
1 and of pn2

2 , then – because p1 and p2 are distinct prime numbers – z must be
multiples of pn1

1 pn2
2 = m, so z ∈ 〈m〉. It straightforwardly extends to an arbitrary number of

prime factors, so we can reformulate the prime factorisation of integers in terms of ideals as

〈m〉 =

n⋂
i=1

〈pnii 〉 . (III.37)

In other words, any ideal I in Z has a unique decomposition into primary ideals such that I lies
in the intersection of all these primary ideals. This statement can be made almost identically
for ideals in any polynomial ring over C, with uniqueness being the only property not directly
carrying over.

More specifically, if we restrict ourselves to primary decompositions with a minimal number of
components (which is always finite), then there are some components that are uniquely determined
and some which are not. The unique components of a primary decomposition I =

⋂
iQi are the

set of primary components Qk whose associated primes
√
Qk ⊃ I are ‘minimal’ over I, i.e.

√
Qk

does not properly contain any other prime ideal which itself properly contains I. To picture
it geometrically, if

√
Q is a non-minimal associated prime, then there is a prime ideal P such

that
√
Q % P % I, so V(

√
Q) is contained, or ‘embedded’, in an irreducible subset V(P ) $ V(I).

Conversely, if an associated prime
√
Q is minimal, then it defines in some sense one of the ‘largest’

irreducible components of V(I). This motivates the name ‘isolated component’ for those Qk
with minimal associated primes, and ‘embedded components’ for those Qk with

√
Qk non-

minimal. So in the context of polynomial rings10, we have the following theorem:

Any ideal I has a decomposition I =

n⋂
i=1

Qi into primary ideals Qi with a minimal n ∈ N.

If the associated primes of {Qk1 , ..., Qkm} are minimal over I, then the components

{Qk1 , ..., Qkm} are uniquely determined by I.

(III.38)

So the upshot is that even though some ambiguity exists, the primary decomposition uniquely de-
termines the ‘largest’, i.e. the isolated irreducible components, of a larger variety. The embedded
components, while not being unique, are irrelevant to us, because intuitively they are of higher
codimension and are thus not the objects we are trying to pin down by the decomposition.

To get some feeling for these abstract statements, let us once again come back to the example
R = C[x, y] and I = 〈x y, x2〉. This ideal has in fact several inequivalent primary decompositions
into two components, of which some examples are

I = 〈x〉 ∩ 〈x2, x y, y2〉 = 〈x〉 ∩ 〈x2, y〉 = 〈x〉 ∩ 〈x2, x+ y〉 . (III.39)

The first component Q1 =
√
Q1 = 〈x〉 is already prime and is in fact minimal, so by the statement

above it appears in every decomposition, hence is unique. The second part of the decomposition
differs amongst the various possibilities. However they have in common that their associated
prime,

√
〈x, y〉2 =

√
〈x2, y〉 =

√
〈x2, x+ y〉 = 〈x, y〉, is not minimal over I, because I ⊂ 〈x〉 ⊂

〈x, y〉. There are more sophisticated examples showing that not even the non-minimal associated
primes are unique. What does that mean in geometry? The ideal I = 〈x y, x2〉 = 〈x y〉+ 〈x2〉 =
(〈x〉 ∩ 〈y〉) + 〈x2〉 translates into geometry as V(I) = (V(x) ∪ V(y)) ∩ V(x2) = (V(x) ∩ V(x2)) ∪
(V(y) ∩ V(x2)). So it has two irreducible components, of which the first one is set theoretically
just the y-axis (codimension one), and the second one the origin (codimension two). Clearly, the

10More general, any so-called Noetherian ring has this property.
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origin is also contained – or embedded – in the y-axis, which reflects the non-minimality of the
prime 〈x, y〉 associated to the origin. So the highest dimension (‘largest’) component of V(I) is
just the y-axis (note that we have already obtained this result earlier when we computed

√
I).

Moreover, the ideal I also contains the information about the fact that the y-axis itself carries
some non-reduced structure from the x2 part. To extract this piece of information, we have to
introduce one final technical procedure.

3.2.5 Ideal saturation and multiplicities

For ideals I, J ⊂ R, we define the ideal quotient of I with respect to (or by) J as I : Jd :=
{g ∈ R | g Jd ⊂ I} , which is again an ideal. Here the exponential Jd is the ideal generated
by all d-fold products of J ’s generators, e.g. (〈x, y〉)2 = 〈x2, x y, y2〉. Furthermore, we define the
saturation of I by J as

I : J∞ = {g ∈ R | ∃d ∈ N : g Jd ⊂ I} . (III.40)

It can be shown that there is a finite exponent m such that for any n > m we have I : Jn = I : Jm

= I : J∞. So when computing an ideal saturation, we obtain in addition to the ideal I : J∞ also
a positive integer m, which we will, for reasons explained momentarily, call multiplicity.

Knowing that there are algorithms to compute ideal saturation, we will not attempt it by
hand and instead rely on computer algebra systems such as Singular, as we will explain in the
next section. For now, we first look at the geometric meaning of ideal quotient and saturation:

V(I : J∞) = V(I) \V(J) . (III.41)

On the right hand side, the bar denotes topological closure. E.g. 〈x y〉 : 〈x〉∞ = 〈x y〉 : 〈x〉 = 〈y〉
can be understood as removing the y-axis (〈x〉) from the union of x- and y-axis (〈x y〉); in this
process, one would also remove the origin from the x-axis (〈y〉), which is ‘recovered’ by taking
the closure. Returning to our example I = 〈x y, x2〉, we find that V(I : 〈x〉∞) = V(R) = ∅,
confirming that I contained a single isolated component 〈x〉. Furthermore, the multiplicity (as
computed by the saturation) of this component is 2. This can be understood in terms of the
homology class associated to the variety11: We would associate the class 2 [{x}] with V(I) rather
than just simply [{x}].

Recall from appendix A that for any variety V = V(I), we have, corresponding to the primary
decomposition of I, the homology class [V ] =

∑
i mi [Vi], where Vi are the isolated irreducible

components of V . For all our models, we can compute mi as the multiplicity of the ideal saturation
I : Pi, where Pi is the minimal prime ideal associated with Vi.

12

3.2.6 Computational algebraic geometry – theory of Gröbner bases

While in all of the above examples, the calculations could be performed by hand, this will turn
out to be an almost impossible task for the ideals we encounter later on. Hence, we have to rely
on computer algebra systems to carry out such calculations. The field of computational algebraic
geometry is devoted to algorithmic approaches to ideal computations, and relies on the theory of
so-called Gröbner bases.

An explanation of a Gröbner basis (see e.g. [107] for an overview) would exceed the scope of
this work, since it does not give any new insight on the geometry, but is rather just a tool to
handle polynomials. All we need to mention at this point is that all computer algebra systems for

11To be precise, this already applies to the element one associates to the variety in the cycle group, cf. appendix
A.

12The general definition of mi in terms of length of Artinian rings can be found e.g. in [106]. The formula we
give does not apply to all cases, however will suffice for the analyses we will perform.
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polynomial algebra are based on Gröbner bases. One such program is Singular [102], on which
all our computations are based.

The theory of Gröbner bases allows for an algorithmic computation of the dimension of an
ideal I ⊂ R = C[X1, ..., XN ], which is defined as the so-called Krull dimension of the quotient ring
R/I. While we omit the ring theoretic definition hereof, the geometric meaning is as one expects:
it is the (complex) dimension of V(I). If V(I) is reducible, then the dimension will be that of the
highest-dimensional irreducible component. For example, dimR = N , and dim(〈x y, x2〉) = 1 in
R = C[x, y]. For us, it will often be more advantageous to deal with codimension, which simple
is given as codim(V(I)) = dimR− dim I.

With this last ingredient from polynomial algebra, we now turn to F-theory compactifications
and see how these tools can help us extracting physically relevant data.

3.3 Application to F-theory: matter surfaces and singlet curves

In most explicit compactification models, the Calabi–Yau manifold is given in terms of vanishing
loci of polynomials in an ambient space X. Specifically in F-theory, the elliptic or genus-one
fibration Y → B is often given as a hypersurface, i.e. the vanishing of one polynomial.

Special subloci of the geometry, in particular matter curves in B and matter surfaces in Y , are
determined by the factorisation of the fibre over certain loci of B. Frequently, the condition for
the occurrence of such a factorisation is expressed in terms of the vanishing of some polynomial
expressions, which is therefore perfectly suited to be studied with the tools we presented above.

3.3.1 Fibrations with generic basis

Recall that in the class of fibrations (II.18) we consider, the ambient space X is a fibration of an
fibre ambient space over B, e.g. in the Weierstrass model, it is P231 with homogeneous coordinates
[x : y : z]. The hypersurface equation is a polynomial in the fibre ambient space coordinates,
with coefficients ai being some sections of line bundles over B. For a specific base B, all these ai
are essentialy polynomials of the base’s coordinates. On a generic base, we do not have such a
representation for the sections. In fact, for a generic fibration, in some sense the sections behave
themselves like the coordinates of B: For a generic base, n different sections ai will generically
vanish on a codimension n locus {a1}∩ ...∩{an} of B. If n is larger than dimB, then this locus is
generically empty. Oftentimes, the special loci mentioned above are given in terms of polynomial
expressions of the ai, and their vanishing loci can have non-transversal and higher multiplicity
intersections, which all can be determined using the technology presented before. This motivates
us to describe the polynomial ring of a generic base B as C[ai], and of the full ambient space as
C[ai, xi], where xi are the fibre ambient coordinates.

3.3.2 Matter surfaces

The main application of the commutative algebra tools for us is to study matter surfaces. As
explained before in section 1.2.1 these are a crucial part of the geometrical data that defines the
chiral spectrum of a 4D F-theory compactification. While the primary decomposition gives us
a way to compute the geometric locus of a matter surface, we also require the homology class
for the computation of chiral indices. To determine these in general, we have to develop further
methods, as will be presented momentarily. We will focus on non-abelian matter, and add a few
remarks at the end of this section about singlet matter.

Geometric loci

Suppose we have a non-abelian gauge group G supported on the divisor {w} in the base. In this
case, the matter states are localised over curves of the form C = {w} ∩ {p} in the base, where
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p is a polynomial in the sections ai which themselves appear as coefficients in the hypersurface
polynomial PT . Recall that in the full ambient space X5 of the resolved fourfold Y4, the non-
abelian divisor {w} is described by the vanishing of the exceptional coordinates ei with i =
0, ... , rankG = r. Over the matter curve C = {w} ∩ {p} = {e0 ... er} ∩ {p} some exceptional
divisors Ei = {ei} ∩ {PT } will split into multiple irreducible curves which, when fibred over C,
form the matter surfaces. Equivalently, the restriction of the full exceptional divisor Ei to the
curve C – which is itself a surface – splits into several ‘smaller’ surfaces. In other words, the variety
{ei} ∩ {p} ∩ {PT } ⊂ X5 is reducible, with the irreducible components being the matter surfaces
of interest. These are 4-cycles, i.e. codimension three in X5. Therefore a primary decomposition
of the ideal 〈ei, p, PT 〉 ⊂ C[al, em, xn], where the xn are the fibre coordinates other than the em’s,
will contain the matter surfaces as isolated components of codimension three. The results will be
a globally valid description of the matter surfaces as vanishing loci of some polynomials.

Homology classes of matter surfaces
In order to calculate the chiral index (III.15) we further need to determine the homology classes
of the matter surfaces. In case the matter surface is a complete intersection, i.e. its ideal has
three generators, this task is trivial. E.g. if p, the polynomial defining the matter curve, is one
of the sections al, then PT |al=ei=0 =

∏
kQk necessarily factors into irreducible polynomials Qk,

thus the resulting irreducible components are complete intersections with prime ideals of the
form 〈ei, al, Qk〉. In this simple case the homology class is just Ei · [al] · [Qk], with · denoting the
intersection product.

However, if p is a more complicated polynomial, then one cannot simply evaluate PT |p=ei=0 in
the above fashion to factorise PT . The usual procedure by solving p = 0 for one of its variables and
plugging the result into PT will generically introduce fractional or irrational expressions, which is
no longer well-defined globally. Correspondingly, the primary decomposition of 〈PT , ei, p〉 will in
general yield non-complete intersections as the matter surfaces. Obviously, the homology class of
a non-complete intersection cannot be simply the product of the classes of individual generators,
since their number exceeds three, and the class obtained in such a way does clearly not correspond
to a codimension three cycle. Instead, we have to manipulate the ideals such that we find an
alternative description of the non-complete intersection.

To this end, assume that we have the codimension d irreducible variety γ = V(〈f1, ..., fk〉) ≡
V(I) with k > d. Now consider the ideal J generated by d of the generators, w.l.o.g. J =
〈f1, f2, ..., fd〉, such that it is a complete intersection, i.e. codim(J) = d. In general, J will
not be a prime ideal, and thus we can perform a primary decomposition J =

⋂
mQ

(m), with

associated primes J (m) =
√
Q(m) of multiplicity µ(m). As we are only interested in codimension

d components (only these will affect the cycle class of γ), we may assume that all Q(m) are
isolated components, i.e. are uniquely determined. Since J ⊂ I is also of codimension d, I must
be a minimal prime associated to one of the isolated components, say Q(0). With a suitable
choice of the d generators, all the other components Q(m) in the decomposition will be complete
intersections of codimension d, i.e. the associated primes J (m) with m 6= 0 will have d generators

f
(m)
1 , ..., f

(m)
d . Since the class of a complete intersection is just the product of the classes of each

generator, we have

d∏
k=1

[fk] = [V(J)] = µ(0) [V(I)] +
∑
m 6=0

µ(m)
[
V
(
J (m)

)]
= µ(0) [γ] +

∑
m 6=0

µ(m)
d∏

k=1

[
f

(m)
k

]
.

Therefore, we can simply solve for the homology class of the variety of interest:

⇐⇒ [γ] =
1

µ(0)

 d∏
k=1

[fk]−
∑
m6=0

µ(m)
d∏

k=1

[
f

(m)
k

] . (III.42)
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For a demonstration, let us recall the starting example (III.25) of section 3.1, where we have
decomposed the ideal 〈(a + b)x y + c x2 + d y2, a b − c d〉 into A = 〈b x + d y, c x + a y, a b − c d〉
and B = 〈c x + b y, a x + d y, a b − c d〉. Both are of codimension two, hence are not complete
intersections. To obtain the homology class of V(A), we form the ideal J = 〈b x+d y, c x+a y〉 ⊂
A. This ideal decomposes as J = A ∩ 〈x, y〉, where 〈x, y〉 is clearly a prime ideal defining a
complete intersection. Hence, [V(A)] = [V(J)]− [V(x, y)] = ([b] + [x]) · ([c] + [x])− [x] · [y].

In an explicit 4D F-theory model, we proceed in the same fashion: If we have the prime
ideal of a non-complete-intersection codimension three matter surface γ, we choose three of the
generators and form a new ideal J , which we decompose into primary ideals. With a suitable
choice the associated prime ideals of the decomposition will all – except for I(γ) – have three
generators. To get their multiplicity, one has to simply compute the ideal saturation of J with
respect to the primes. We relied on Singular to perform the primary decomposition and to
compute the ideal saturation. In section 2.2.3 of chapter IV, we will present a practical example
in a ‘real’ F-theory model where we carry out the above procedure step by step.

Note that the method applies in theory also to singlet curves C1i : If the curve is given by an
ideal IC ⊂ C[al, em, xn] of codimension two, the torus fibration over this curve is then given by the
ideal IC +〈PT 〉 of codimension three. By the same logic as for the non-abelian matter, the surface
corresponding to this ideal must be reducible with two irreducible components (corresponding to
the singlets 1i and its charge conjugate). However, for complicated curves, where the ideal IC
is not a complete intersection, Singular is not able to compute the primary decomposition of
IC + 〈PT 〉,13 so that we do not have a description of the matter surface in terms of an ideal. This
also deprives us of the possibility to determine the homology class by the above procedure. At
the moment, there is no known method to circumvent this computational deficit, and thus we are
unable to provide the homology classes for this type of singlet matter.

3.3.3 Singlet curves and Yukawa points

While we are not able to compute the matter surfaces of all singlet states, we can calculate at
least the curves over which they are localised as ideals in the polynomial ring C[ai] of the base
B. This allows us to analyse in detail how different matter curves intersect each other in B.
Though not related to the chiral indices of the spectrum, the result of this analysis will affect
the phenomenology of the 4D effective field theory, since intersection points of matter curves
generically give rise to Yukawa couplings.14 Considering that most of the results in chapter V
is based on the presence of Yukawa couplings, it seems appropriate to briefly highlight the key
ideas, even though they follow straightforwardly from the concepts of the previous sections.

As we have mentioned before, the matter curves of non-abelian matter in our models will
always be given by a complete intersection {w} ∩ {p}. Calculating their intersection is therefore
usually quite simple and can be done by hand. Singlet curves on the other hand will in general
be given by a non-complete intersection. More precisely, the condition for singlet states to arise
is always tied to the appearance of a conifold singularity of the fibre in the non-resolved fourfold.
By making a general ansatz for the fibre that exhibits such a behaviour, one obtains a set of
polynomial equations involving the sections ai of the base, which can be regarded as an ideal
J ⊂ C[ai]. Since the conifold ansatz does not always distinguish among singlets with different
charges (under U(1)s or discrete Zns), V(J) will in general contain several curves hosting states
of different charges.

Equipped with our knowledge of commutative algebra, we are inclined to perform a primary
decomposition of J to obtain the different curves. In most practical examples, this will work out

13The calculations have been mostly carried out on a MacBook Pro Retina (Late 2013) model with Intel i7 (2.8
GHz) and 8GB RAM.

14Recall that the absence of such intersection points only means that these couplings are perturbatively suppressed
in the field theory. If the charges allow, the couplings can still be mediated by instantons.
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fine. However, as we will see in chapter V, there can be ideals which are beyond the computational
power of Singular. Luckily, in some of these situations, there are some obvious irreducible
components, e.g. the vanishing of two sections al1 and al2 would imply all the generators of J to
vanish. In such a situation, one can perform an ideal saturation J : 〈al1 , al2〉∞ to ‘simplify’ the
reducible locus. For our model, it turns out that a successive simplification of this kind results
in an ideal which Singular can decompose. In this way, we are able to determine the associated
prime ideals for each individual singlet curve in our models.

Having obtained the ideals in this way, it is now straightforward to check for the presence
of Yukawa points, i.e. intersection loci of the curves. If the states (now including non-abelian
matter) in representations Ra,b,c are supposed to form a Yukawa coupling RaRbRc, then the
corresponding matter curves must intersect in a point. Let Ia,b,c denote the ideal defining the
respective matter curve, then the point corresponds to a codimension three component in the
primary decomposition of Ia + Ib + Ic. Note that because we are only interested in the loci itself
without any multiplicities, we can circumvent the primary decomposition and directly compute
the minimal associated primes of Ia + Ib + Ic, which is conveniently implemented into Singular.

As a final praise of the commutative algebra approach, we point out another pleasant result
from the Gröbner basis calculations: There is an algorithmic way to compute singular loci of
a variety in terms of its ideal, which we will not attempt to explain here. However, Singular
has such a function incorporated, and with it, we are able to show for a complicated example
involving a coupling of the form RaRaRb, that the intersection locus V(Ia + Ib) is actually part
of the singular locus of V(Ia), suggesting that is a self-intersection locus of the curve V(Ia) –
consistent with the coupling structure.

4 Summary of Chapter III

Before turning to the application to concrete models, let us briefly summarise the methods we
have set up in this chapter. They are crucial for the systematic description of vertical fluxes and
chiral matter in F-theory.

The vertical cohomology H
(·,·)
vert is generated by (1, 1)-forms Poincaré-dual to divisors Di. For

a special class of torus fibrations Y4 realised as a hypersurface in a toric ambient space X5, the
vertical cohomology can be fully described by the vertical cohomology of the ambient space. This
has a particularly simple realisation as a quotient ring

H
(·,·)
vert(X5,Q) ∼=

Q[Di]

SRI + LIN

of polynomial expressions in the divisors Di of X5. These divisors can, together with the quo-
tient ideals SRI and LIN, be read off easily from the toric description. With computer-aided
algorithms, all computations within the vertical cohomology can be readily simplified as polyno-
mial multiplications in that ring.

For the computation of chiral indices in F-theory, we require in addition also the knowledge
of matter surfaces and their homology classes. In section 3, we have presented a method based
on polynomial algebra that allows us to express matter surfaces as vanishing loci of polynomials.
Because these loci are in general not complete intersections, an additional procedure needed to
be developed in section 3.3.2 to extract the homology class of these matter surfaces.
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Chapter IV

Anomalies in 4D Compactifications

Having a non-zero G4-flux in 4D F-theory compactifications will in general induce a chiral spec-
trum in the effective field theory. The purpose of this chapter is to study potential anom-
alies arising from chiral matter. In particular, we will focus on gauge and gravitational anom-
alies as well as the Witten anomaly in compactifications with SU(5) × U(1), SU(5) × Z2 and
SU(3)×SU(2)×U(1)2 gauge groups. Based on the methods developed in the previous chapters,
we will relate these anomalies to geometric properties, and show that for these models, the an-
omalies are generically cancelled.

1 Gauge and Gravitational Anomalies in 4D

Before moving to the explicit F-theory realisations of the gauge theories mentioned above, let us
briefly give a summary of how anomalies are quantified in the general field theory description,
and how they cancel in general in F-theory.

1.1 Field theoretic description of anomalies

Quantum field theories with a gauge symmetry and chiral fermions suffer from potential anom-
alies. These anomalies have been studied and understood from the field theory point of view (see.
e.g. [108] for a review). In a perturbative description, 4D anomalies are quantified by triangle
Feynman diagrams with chiral fermions running in the loop. The external legs that couple to
the fermions are gauge bosons of potentially anomalous gauge groups G or gravitons, which for
the sake of argument also constitutes a gauge symmetry. Unless the boson is a U(1) gauge boson
(or a discrete subgroup thereof), the external gauge fields carry Lie-algebra indices, which are
traced over in the computation of the triangle diagram. Because all but the U(1) gauge fields are
traceless, all diagrams with one gauge group Gi � U(1) appearing only once on the external legs
vanish. By this simple group theory argument, the combinatorics only allow for the following
non-trivial anomalies:

• G3
i (all three external legs are from a single simple group Gi � U(1))

• G2
i − U(1) (two external gauge bosons from Gi and and photon)

• U(1)a − U(1)b − U(1)c (all three external photons are from possibly different U(1)s)

• U(1)−gravitational (two external gravitons and a photon)

Going through the field theory computations, one finds that left-handed and right-handed fermi-
ons in a representation R of G contribute with opposite sign, i.e. the anomaly is only sensitive to
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the chiral index

χ(R) = #(left-handed in R)−#(right-handed in R) .

This is of course assuming that all states of each copy of a representation R have the same
chirality. If this is not the case, then the gauge symmetry is actually broken. Throughout this
thesis, we will assume that this is not case. In particular, in F-theory this is guaranteed by the
condition (III.9), as we have seen in section 1.2.1 of chapter III.

The full contributions to the above anomalies are given as

G3
i :
∑
Ri

c
(i)
3 (Ri)χ(Ri) ,

G2
i − U(1) :

∑
Ri

c
(i)
2 (Ri) q(Ri)χ(Ri) ,

U(1)a − U(1)b − U(1)c :
∑
w

qa(w) qb(w) qc(w)χ(w) =
∑
R

dim(R) qa(R) qb(R) qc(R)χ(R) ,

U(1)− gravitational :
∑
w

q(w)χ(w) =
∑
R

dim(R) q(R)χ(R) ,

(IV.1)

where the charges of the individual U(1) gauge factor are denoted by q(·)(R). Furthermore, the

coefficients c
(i)
2,3 are group theoretic constants of Gi. They are defined as the proportionality

factors relating the trace of the field strength Fi in any irreducible representation:

trR F
3
i = c3(R) trf F

3
i , trR F

2
i = c2(R) trf F

2
i . (IV.2)

The normalisation is chosen such that for the fundamental representation f of any group, these
constants are 1.

For a gauge theory to be well-defined, these anomalies have to be cancelled appropriately. In
a pure field theory description, this is usually accidental, meaning that the cancellation depends
on the chiral spectrum which is an input of the theory. For example, the anomaly cancellation in
the Standard Model is generally spoiled by ad hoc extensions of the spectrum.

In string/M-theory compactifications, the cancellation of anomalies is a consequence of the
anomaly freedom of the full string theory in 10/11D.1 In particular, the cancellation in lower
dimensions is tied to the geometry of the compact space, most notably in form of Green–Schwarz-
like mechanisms which cancel potential anomalies. In the following, we will see how these are
described in F-theory.

1.2 Gauge and gravitational anomalies in F-theory

There have been numerous works in the literature discussing anomalies in 4D F-theory. Through
the duality to M-theory, 4D chiral anomalies can be related to anomalies of 3D Chern–Simons
theory in the dual M-theory compactification, as done in the works of [57, 88]. In particular,
it was shown that while pure non-abelian anomalies must vanish on their own2, those involving
U(1)s will in general require a Green–Schwarz (GS) mechanism to be cancelled. Basically, this is
due to the presence of further matter states – axions arising from the geometric Kähler moduli

1One may argue that the 10/11D cancellation is also purely accidental. However, the prospect of only one
anomaly free 11D theory, from which the only five anomaly free 10D theories arise, may seem aesthetically more
pleasing than the vast number of anomaly free theories in 4D.

2Geometrically, the vanishing of the pure non-abelian anomalies can be traced back to the possibility of redefining
the affine node in an F-theory compactification [79].
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fields of the base – which couple to the U(1) gauge field as well. These couplings contribute to
said anomalies and are quantified by the so-called GS-counterterms.

The form of the GS-counterterms in F-theory has been worked out in [88] via M-/F-theory
duality. Essentially, they are part of the Chern–Simons terms Θαβ ∼

∫
Y4
G4 ∧Dα ∧Dβ that are

flux integrals over combinations of divisors Dα,β of the resolved fourfold Y4. In the following,
we summarise the matching conditions between the anomalies (IV.1) (left hand side) and their
potential GS-counterterm (right hand side):

G3
i :
∑
Ri

c3(Ri)χ(Ri)
!

= 0 ,

G2
i − U(1) :

∑
Ri

c2(Ri) q(Ri)χ(Ri)
!

= − 1

λi

∫
Y4

G4 ∧ ω ∧Wi ,

U(1)a − U(1)b − U(1)c :
∑
R

dim(R) qa(R) qb(R) qc(R)χ(R)
!

= 3

∫
Y4

G4 ∧ π∗(ω(a · ωb) ∧ ωc) ,

U(1)− gravitational :
∑
R

dim(R) q(R)χ(R)
!

= −6

∫
Y4

G4 ∧ K ∧ ω .

(IV.3)

Some explanation of notation is due: In general, ω(·) denotes the geometric generator of the
corresponding U(1) symmetry (i.e. the images of sections under the Shioda map). In the GS-
counterterm of the G2

i − U(1) anomalies, Wi denotes the divisor on the base B over which the
non-abelian gauge group Gi is localised; furthermore, λi is a group theoretic factor given by
the quotient 2h∗i /c3(adji), with the dual Coxeter number h∗i of the group Gi and adji being its
adjoint representation. For the scope of this thesis, it suffices to note that for Gi = SU(ni) we
have λi = 1. In the counterterm for the U(1)3 anomalies, the map π∗ is the projection of 4-cycles
in Y4 to divisors of B3; moreover the symmetrisation of the indices a, b, c comes with a factor of
1/3! = 1/6. Finally, for the U(1)−gravitational anomaly, K denotes as usual the anti-canonical
class of the base B.

Note that whenever the GS-counterterms are non-zero, the axion coupling will induce also a
flux-induced Stückelberg mass for the U(1) gauge field in play. For our analysis in chapter V,
where we would like to realise the Standard Model, the phenomenological requirement that the
hypercharge U(1)Y must remain massless implies a vanishing Stückelberg mass for the hyper-
charge gauge potential. In particular, this means that all the above anomalies vanish for U(1)Y
by themselves.

2 F-theory with SU(5)× U(1) and SU(5)× Z2 Gauge Group

In the following, we will study how the conditions (IV.3) are fulfilled in two models with an SU(5)
gauge group. They differ from each other in the abelian sector, which in one case is a U(1) gauge
group and in the other a related Z2 symmetry. These two models are precisely related to each
other by a Higgsing/conifold transition, which we have discussed in the introductory chapter II
already. In particular, we will not only investigate the impact of fluxes on the chiral spectrum
in both models, but also analyse the role G4 plays in this transition process. The results of
this part have been presented in the publication [14]. For the presentation in this thesis, we have
slightly modified some computational details and added some further comments, however without
changing the results.

3Let D
(B)
α and Σα denote a basis of divisors and curves, respectively, on the base B, such that they are orthogonal

under the intersection product on B:
∫
BD

(B)
α ∧ Σβ = δβα . Then, for any 4-cycle γ ⊂ Y4, we define π∗(γ) :=

(γ · π−1(Σα))D
(B)
α , which is a divisor in B.

67



CHAPTER IV. ANOMALIES IN 4D COMPACTIFICATIONS

2.1 Elliptic fibrations with SU(5)× U(1) gauge group

We start our discussion with the geometric realisation of the SU(5) × U(1) gauge group in F-
theory. Recall from chapter II that in order to have an abelian gauge factor, the compactification
space must be an elliptic fibration with an additional rational section. While there are several
toric realisations of these known in the literature, we will study hypersurfaces in an Bl1P112

fibration [56,109,110]. The advantage of this class of models is that they allow an easy geometric
description corresponding to a Higgsing process, which breaks the U(1) to a Z2. Such discrete
symmetries and their interaction with fluxes will be the topic of the next section. In the following
we will present the geometry along the lines of [14,64].

2.1.1 Hypersurfaces in a Bl1P112 fibration

As originally shown in [56], a broad class of elliptic fibrations with an additional section is
described by embedding the elliptic fibre into the fibre ambient space Bl1P112. This is a toric
space with homogeneous coordinates [u : v : w : s], subject to the scaling relations

(u, v, w, s) ' (λu, λ v, λ2w, s) ' (u, µ v, µw, µ s) (IV.4)

for any λ, µ ∈ C\{0}, and with the Stanley–Reisner ideal generated by {uw, v s}. The coordinates
[u : v : w] together with the scaling involving λ constitute the original P112, whereas the coordinate
s and the associated scaling with µ comes from the blow-up of P112. The elliptic curve is defined
by the zero locus of the following polynomial:

PU(1) = sw2 + b0 s
2 u2w + b1 s u v w + b2 v

2w + c0 s
3 u4 + c1 s

2 u3 v + c2 s u
2 v2 + c3 u v

3 .

(IV.5)

The toric polygon of Bl1P112 as well as the dual polygon giving P are also depicted in figure IV.1
as the grey (on the left) resp. the blue polygon (on the right).

u v w s

β · · 1 ·
β −K · 1 · ·
U 1 1 2 ·
S · 1 1 1

Table IV.1: Fibration data of the ambient space X5, which is a Bl1P112 fibration over a base B
with anti-canonical bundle K. The class β is a free parameter of this class of fibrations.

To construct an elliptically fibred Calabi–Yau over a base B, we first fibre Bl1P112 over B
by promoting w to be a section of a line bundle with class β ∈ H(1,1)(B). The total space of
this fibration is a five dimensional Kähler manifold X5 whose fibration structure is summarised
in table IV.1. The elliptic fibration is now the hypersurface defined by the zero locus of the
polynomial (IV.5) with the coefficients bi, cj promoted to sections of the base. Their classes are
chosen such that the hypersurface is Calabi–Yau:

b0 b1 b2 c0 c1 c2 c3

β K 2K − β 2β β +K 2K 3K − β
(IV.6)

The zero section is given by the intersection of the divisor U = [{u}] with the hypersurface,
while the additional rational section is given by S = [{s}]. Together they generate a rank one
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Mordell–Weil group and consequently a U(1) gauge group in the F-theory compactification. The
corresponding generator is given by the image of S under the Shioda map, which in the absence
of any further non-abelian symmetries takes the form

ω = 5 (S − U −K − [b2]) , (IV.7)

where the factor 5 is chosen to match the normalisation when including SU(5) symmetry in the
next subsection.

Note that the distinction between holomorphic and rational sections in this case gives rise to
matter charged under the U(1): While the section S intersects the generic fibre in one point, it
is no longer the case for the fibre over the codimension two locus C1 = {b2, c3}. Here the fibre
factorises into two components, as can be seen by inspecting the hypersurface polynomial:

P |b2=c3=0 = s (w2 + b0 s u
2w + b1 u v w + c0 s

2 u4 + c1 s u
3 v + c2 u

2 v2) . (IV.8)

In particular this shows that the section S wraps one of the two components. The intersection
number ±10 with ω shows that M2 branes wrapping the curve components over the locus C1 give
rise to 1±10 states.

In [56] it was shown that there is another codimension two locus over which the fibre factors.
The locus is obtained by making an ansatz for the factorisation of the hypersurface polynomial,
which describe a singularity in the fibre associated with singlet matter. This factorisation of
course also applies for the locus C1, since it also hosts singlets. Thus, the solution of the ansatz,
given by the zero locus of the two polynomials,

p1 = −c1 b
4
2 + b1 b

3
2 c2 + b0 b

3
2 c3 − b21 b22 c3 − 2 b22 c2 c3 + 3 b1 b2 c

2
3 − 2 c3

3

p2 = −c2
3 b

2
0 + b1 b2 b

2
0 c3 − b1 b22 b0 c1 + b22 c

2
1 + b21 b

2
2 c0 − 4 b1 b2 c0 c3 + 4 c0 c

2
3 ,

(IV.9)

must also contain b2 = c3 = 0 as a solution. To confirm that there is only one further codimension
two locus hosting matter states, we employ the primary decomposition techniques explained in
section 3.2 from chapter III and regard the polynomials as elements of the base’s function ring
C[bi, cj ], and the locus (IV.9) as the variety defined by the ideal 〈p1, p2〉. Saturating this ideal by
〈b2, c3〉 – which defines the locus C1 – we find that indeed there is only one irreducible component
C2 is left. The ideal defining C2 has 15 generators, whose exact forms do not lead to any new
important insights, and thus are left out here. To verify the matter states over C2, one can solve
p1,2 = 0 for two of the coefficients bi, cj , which will introduce fractional expressions. However,
away from the zero loci of the denominators and away from b2 = c3 = 0, these expressions can be
plugged into the hypersurface polynomial P , which indeed does factorise into two factors. This
analysis, as performed in [56], confirms that the fibre components give rise to 1±5 states over C2.

2.1.2 Additional SU(5) symmetry via tops

We use the technology of tops to engineer the SU(5) gauge group. There are four tops, whose
resulting matter spectra have been listed in [58]. In the enumeration established there, we will
focus on the model prescribed by top 2 (cf. figure IV.1).

To enhance the fibre structure over a divisor Θ = [{θ}] ∈ H(1,1)(B) to host an SU(5) singu-
larity, the sections gm ∈ {bi, cj} are restricted to vanish along θ to certain orders:

b0 = b0,2 θ
2 , c0 = c0,4 θ

4 , c1 = c1,2 θ
2 , c2 = c2,1 θ , c3 = c3,1 θ (IV.10)

The divisor classes of the sections change accordingly as [gm,l] = [gm]− lΘ. The singular loci of
the hypersurface can be inferred from inspecting the discriminant,

∆ ∼ θ5
[
b41 b2 (b1 c3,1 − b2 c2,1) (b21 c0,4 − b0,2 b1 c1,2 + c2

1,2) +O(θ)
]
, (IV.11)
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e0

e1 e2

e3
e4

w

vu

s

−1

−1

−1

00113

1

Figure IV.1: On the left: SU(5) top 2 (green) over polygon 6 (grey) from [71] describing the
fibre ambient space Bl1P112. On the right: the dual top with lower bounds on the height of the
vertices. This picture is taken from [64].

which indicates that there are four curves hosting matter charged under SU(5):

{θ} ∩


{b1}
{b2}
{b1 c3,1 − b2 c2,1}
{(b21 c0,4 − b0,2 b1 c1,2 + c2

1,2}

(IV.12)

The singlet matter curves C1,2 are still present. Their locus is altered by the presence of the
non-abelian divisor; the locus V(〈p1, p2〉) (IV.9) contains further components along θ = 0, which
we can eliminate using ideal saturations. The result for the curve C1 for example is now given
by C1 = {b2, c3,1}; the ideal defining the non-complete intersection C2 can be obtained similarly.

To determine the matter representations over the curves (IV.12), we first need to resolve
the singularities. This is achieved by introducing exceptional divisors Ei = [{ei}] such that
Θ ≡ π−1(Θ) =

∑4
i=0Ei, or in terms of the zero loci of the coordinates, π−1({θ}) = {e0 e1 ... e4}.

The resolved hypersurface Y4 is described by a new polynomial, which can be read off from the
top and its dual (cf. figure IV.1):

P
SU(5)
U(1) = e1 e2 sw

2 + b0,2 s
2 u2w e2

0 e
2
1 e2 e4 + b1 s u v w + b2 v

2w e2 e
2
3 e4

+ c0,4 u
4 e4

0 e
3
1 e2 e

2
4 + c1,2 u

3 v e2
0 e1 e4 + c2,1 u

2 v2 e0 e3 e4 + c3,1 u v
3 e0 e2 e

3
3 e

2
4

(IV.13)

For the chosen triangulation of the top we obtain the Stanley–Reisner ideal generators

{uw, v s, v e1, v e2, w e0, w e4, u e1, u e2, u e3, u e4, s e2, s e3, s e4, e0 e3, e1 e3, e1 e4} . (IV.14)

In table IV.2 we summarise the ambient space’s divisor classes and associated scaling relations.
In presence of the non-abelian symmetry, the Shioda map is modified to give a U(1) generator
that is orthogonal to the exceptional divisors (II.26). The result is

ωU(1) = 5(S − U −K − [b2]) + 4E1 + 3E2 + 2E3 + E4 , (IV.15)

where the normalisation is chosen such that the charges of all matter states are integer.

While we will analyse in detail the splitting of the fibre components over the curves (IV.12) in
the next section, we will collect the matter spectrum including the U(1) charges in table IV.3. The
matter curves intersect at a number of loci, giving rise to six different Yukawa couplings involving
SU(5) charged fields. These are shown in figure IV.2. In addition there is one coupling that is
localised outside the GUT divisor. This is the coupling 1−101515 together with its conjugate,
and it exists regardless of the SU(5) enhancement.
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u v w s e0 e1 e2 e3 e4

K · 1 2 · · · · · ·
[b2] · −1 −1 · · · · · ·
Θ · · · · 1 · · · ·
U 1 1 2 · · · · · ·
S · 1 1 1 · · · · ·
E1 · · −1 · −1 1 · · ·
E2 · −1 −2 · −1 · 1 · ·
E3 · −2 −2 · −1 · · 1 ·
E4 · −1 −1 · −1 · · · 1

Table IV.2: Divisor classes (first column) and associated scaling relations for the ambient
space of the top-2-model. Note that in comparison to table IV.1 we have secretly exchanged the
parameter β by the class [b2] = 2K − β.

locus in base irrep SU(5)U(1)

θ ∩ b1 10−2,102

θ ∩ b2 5−6,56

θ ∩ {b1 c3,1 − b2 c2,1} 54, 5−4

θ ∩ {b21 c0,4 − b0,2 b1 c1,2 + c2
1,2} 5−1,51

C1 = b2 ∩ c3,1 1±10
C2 1±5

Table IV.3: Matter curves in the SU(5)× U(1) model.

2.2 Fluxes and anomalies in the SU(5)× U(1) model

2.2.1 The vertical cohomology ring

In order to investigate the fluxes and their induced chiral spectrum we first need to construct

the vertical cohomology H
(·,·)
vert(Y4) ⊂ H

(·,·)
vert(X5). We will use this model to demonstrate how the

strategy outlined in section 2 of chapter III is applied in a concrete example.

First we form a polynomial ring C[D(T ), D(B)], where the variables are the ambient spaces
divisor classes. For the SU(5)× U(1) model, these are

D(T ) ∈ {[u], [v], [w], [s], [e0], ... , [e4]} ,
D(B) ∈

{
K, [b2],Θ, D

}
,

(IV.16)

where D collectively denotes any other vertical divisor unrelated to K,Θ or [b2]. The polynomials
are subject to the linear equivalence and intersection relations, which are ideals in C[D(T ), D(B)].
The generators of the linear equivalence ideal (LIN) can be read off from the columns in table
IV.2:

LIN = 〈 − [v] +K − [b2] + U + S − E2 − 2E3 − E4 ,

− [w] + 2K − [b2] + 2U + S − E1 − 2E2 − 2E3 − E4 ,

− E0 + Θ− E1 − E2 − E3 − E4〉 .
(IV.17)

Note that we have omitted those columns with only one ‘1’; these trivially identify the zero loci
of the corresponding toric coordinate with its associated divisor class, e.g. [u] = [{u}] = U . The
intersection relations (SRI) containing products which are zero in cohomology are in part given
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5−1

54

5−6

10−2

10−2 10−2 54

5−1 56 1−5

{θ}

10−2 51 51

10−2 5−4 56

54 56 1−10
54 51 1−5

Figure IV.2: The matter curves in the SU(5) divisor {θ} and the Yukawa couplings involving
the SU(5) charged matter in codimension three. The curves C1,2 hosting the singlets are not
displayed, however their intersection with {θ} mark the Yukawa points of type 5 5 1.

by the SR-ideal (IV.14) with the coordinates being replaced by their associated divisors:

SRI(T ) = 〈U [w], [v]S, [v]E1, [v]E2, [w]E0, [w]E4,

U E1, U E2, U E3, U E4, S E2, S E3, S E4, E0E3, E1E3, E1E4〉
(IV.18)

Furthermore, as the base B is a complex threefold, the following generators must be included into
SRI:

SRI(B) = 〈EiD(B)
a D

(B)
b D(B)

c , D(B)
a D

(B)
b D(B)

c D
(B)
d 〉 (IV.19)

As explained in section 2 of chapter III, the ambient space’s cohomology is then given by (III.23):

H
(·,·)
vert(X5) ∼=

C[D(T ), D(B)]

LIN + SRI(T ) + SRI(B)
. (IV.20)

2.2.2 Vertical G4-fluxes

To construct all vertical flux solutions, we first have to pick a basis for H
(2,2)
vert (Y4). Recall that this

is a minimal set {ti} ⊂ H
(2,2)
vert (X5) which generates H

(2,2)
vert (Y4) ∼= H

(2,2)
vert (X5) · [Y4] ⊂ H

(3,3)
vert (X5).

This set is smaller than a basis of H
(2,2)
vert (X5), because of extra redundancies that arise when

multiplying with the class of the hypersurface. E.g. the (2, 2)-forms E2E4 and E4K = E4 [b1] are

linearly independent in H
(2,2)
vert (X5), however when restricted to the hypersurface, they actually

become the same due to the intersection relations. This can be seen easily in the Poincaré-dual
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picture in terms of geometric intersections:

E2E4 [Y4] =
[
{e2} ∩ {e4} ∩

{
P
SU(5)
U(1)

}]
= [{e2} ∩ {e4} ∩ {b1 s u v w}]

SR-ideal
= [{e2} ∩ {e4} ∩ {b1}]

SR-ideal
=

[
{e1 sw

2 e2} ∩ {e4} ∩ {b1}
]

=
[{
P
SU(5)
U(1)

}
∩ {e4} ∩ {b1}

]
= [Y4] E4 [b1]

(IV.21)

To eliminate this type of redundancy in the remaing discussion, when we are dealing with (2, 2)-
forms on Y4, we fix the following basis elements:

{ti} =
{
D(B)
a D

(B)
b , (U, S,E1, E2, E3, E4)D(B)

c , E3E4 , E1E2

}
, (IV.22)

where D
(B)
a,b,c ∈ {K, [b2],Θ, D}.

Valid vertical G4-fluxes are now subject to the transversality conditions (III.6), (III.7), and
the gauge symmetry condition (III.9), i.e. they are linear combinations of {ti} satisfying∫

Y4

(∑
i

λi ti

)
∧D(B)

a ∧D(B)
b =

∫
Y4

(∑
i

λi ti

)
∧ U ∧D(B)

c =

∫
Y4

(∑
i

λi ti

)
∧ Ek ∧D(B)

c = 0

(IV.23)

for k = 1, ..., 4. With the full knowledge of the fibre ambient space geometry, we can reduce
all intersection numbers on Y4 to intersection numbers on the base. Hence each of the three
equations will yield an expression of the form∑

α,β,γ

ϕαβγ(λi)

∫
B
D(B)
α ∧D(B)

β ∧D(B)
γ , (IV.24)

where the coefficients ϕαβγ(λi) are linear functions in λi. For a generic base, the intersection

numbers
∫
BD

(B)
α ∧D(B)

β ∧D
(B)
γ are a priori independent. Therefore, only those solutions where all

ϕαβγ(λi) are independently zero exist for a generic fibration. Previous classifications of vertical
gauge fluxes over generic and concrete base spaces have been obtained in [96] and [57,87,111,112],
respectively.

As always in the presence of an abelian gauge factor, we find amongst the solutions the
U(1)-flux

G0
4(F ) = ωU(1) ∧ π−1F ≡ ωU(1) ∧ F , (IV.25)

which satisfies the transversality conditions for any choice of vertical divisor class F ∈ H(1,1)(B).
Other than these fluxes, there are three independent solutions to the transversality conditions,
which when expressed in the basis (IV.22) take the form

Gu14 = − 15E1E2 + 35E3E4 − 5 Θ (4E1 + 3E2 + 2E3 − 6E4 + 2S + 2U)

− 5 [b2] (2E1 + E2 + 3E3 − 2E4 − 2 Θ) +K (36E1 + 42E2 + 28E3 − 21E4 − 10 Θ) ,

Gu24 = − 2 (5E1E2 + 5E3E4 −K (2E1 − 6E2 − 4E3 + 3E4)) + 10 [b2] (E2 + E3 −Θ)

− 10 Θ (E4 −K − S − U) ,

Gu34 = 5E1E2 + 5E3E4 + (−2E1 + 6E2 + 4E3 − 3E4)K − 5 [b2] (E2 + E3 − 2 Θ)

−Θ (4E1 + 3E2 + 2 (E3 − 2E4 + 5S)) .

(IV.26)

Note that for an explicit choice of the fibration data and base B, linear equivalences amongst
the vertical divisors might render some of the above fluxes linearly dependent. If no such linear
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dependences arise, one might wonder if new fluxes can be constructed for a special base B:
However, it turns out that the only such fluxes are of the form G0

4(F ) (for new classes of F in
addition to the generic base classes [b2],Θ,K), but no additional fluxes of the form Gui4 not related
to a U(1)-flux can occur. The general vertical flux is thus of the form

G4(F, u1, u2, u3) = G0
4(F ) + u1G

u1
4 + u2G

u2
4 + u3G

u3
4 . (IV.27)

In addition to giving rise to chirality, this general form of G4 will be crucial when we analyse the
Higgsing process to the SU(5)× Z2 model.

2.2.3 Matter surfaces

Fluxes are only half of the input to the chiral spectrum. The other half are the details on the
homology classes γ of matter surfaces. In this part we will present the matter surfaces of the
states listed in table IV.3 based on the techniques developed in section 3.2 of chapter III. This
section also has the purpose of demonstrating these techniques in an explicit example.

An important observation is that, in the homology of X5, we can always find a ‘factorisation’
[γ] = [Y4] · [γ̃], where the class [γ̃] is a quadratic expression in the divisors. This means that on the
hypersurface Y4, the homology of γ is a vertical class (represented by the restriction of the cycle
γ̃ to the hypersurface). The chiral index can then be re-expressed as χ =

∫
X5

G4 ∧ [PT ] ∧ [γ̃] ≡∫
Y4
G4 ∧ [γ].

The 102 surface
Matter in the 102 representation is localised over {θ} ∩ {b1}. Over this locus, the fibre of the
divisor E2 splits into several components:

P
SU(5)
U(1) |b1=e2=0 = e0 (c1,2 e0 e1 + c2,1 e3) e4 (IV.28)

Let us focus on the component given by e0 = 0 = e2 in the fibre. One can verify by computing
the intersection numbers of this curve with the exception divisors Ei (yielding the weight vector
(1,−1, 0, 1)) and the U(1)-generator (IV.15) (giving the charge 2) that M2-branes wrapped on it
gives rise to a state of 102. Therefore, a matter surface of 102, given by fibring this P1 over the
curve in the base, is described by the ideal 〈e2, e0, b1〉. Further note that setting e0 and e2 to zero
in the hypersurface polynomial (IV.13) only leaves the term b1 s u v w, which due to the SR-ideal
(IV.14) only vanishes if b1 = 0. This means that the homology class of the matter surface can be
written as [

C102

]
≡
[
102

]
= E2E0 [b1] = [Y4] · E2E0 , (IV.29)

which in particular shows that the surface gives rise to the vertical (2, 2)-form E2E0 on the
hypersurface Y4.

The 5−6 surface
To study the second locus {θ}∩ {b2}, we set b2 = 0 in the hypersurface polynomial. By doing so,
one finds that the affine Dynkin node, i.e. the fibre of the divisor E0, splits into two curves. One
of these is given by e0 = s = 0, carrying a weight of 5−6. The associated matter surface 〈b2, e0, s〉
has the homology class

[5−6] = E0 S [b2] = E0 S [Y4] , (IV.30)

where we have again used the SR-ideal (IV.14) after realising that the only non-zero term in the
hypersurface polynomial is b2 v

2w e2 e
2
3 e4 when setting e0 and s to zero. Again, we find that the

matter surface has a vertical class in the hypersurface’s cohomology.
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The 5−4 surface
Over the third locus {θ} ∩ {b1 c3,1 − b2 c2,1} the factorisation of the fibre can be identified by
making a local ansatz c3,1 6= 0, such that the locus can be written as b1 = b2 c2,1/c3,1. Evaluating
the hypersurface polynomial with this constraint leads to a factorisation of E1:

P
SU(5)
U(1) (e1 = 0, b1 = b2 c2,1/c3,1) =

(c3,1 e2 + c2,1 s) (c3,1 e0 + b2w)

c3,1
(IV.31)

However this is not a globally well-defined expression. To obtain it, we need to describe the matter
surface by an ideal. Since from the local analysis we know that the splitting occurs for the surface
to which the divisor E1 restrict to the matter curve, we compute the primary decomposition of
its ideal

〈PSU(5)
U(1) , e1 , b1 c3,1 − b2 c2,1〉 ,

which yields three components, which are in fact prime ideal themselves:

〈b1 c3,1 − b2 c2,1, e1, c3,1 e2 e
2
3 e4 v + c2,1 u s, b2 e2 e

2
3 e4 v + b1 u s〉 =: I ,

〈b1 c3,1 − b2 c2,1, e1, c3,1 e0 e3 e4 u v + b2w, c2,1 e0 e3 e4 u v + b1w〉 ,
〈b1 c3,1 − b2 c2,1, e1, v〉

(IV.32)

The third component describes an empty set (or zero in homology), because e1 v is one of the
generators of the SR-ideal (IV.14). The other two are the components of the 5 and the 5 states.

Let us for definiteness focus on the first component I. It is a globally well-defined description
of the matter surface as a non-complete intersection. To obtain its homology class, we need to
find a complete intersection J which is contained in I it as an isolated component. The easiest
such complete intersection is described by the ideal which itself is generated by three of the four
generators of I, say

J = 〈b1 c3,1 − b2 c2,1, e1, c3,1 e2 e
2
3 e4 v + c2,1 u s〉 . (IV.33)

A primary decomposition of this ideal reveals it is not itself prime, and indeed has I as one of
its primary components (which is already prime); the only other component is another complete
intersection, J (1) = 〈e1, c2,1, c3,1〉 with multiplicity 1, as the saturation J :

(
J (1)

)∞
reveals. This

means that as varieties we have V(I) = V(J) \V(J (1)), or in terms of homology:

[V(I)] = [V(J)]− [V(J (1))] = ([b1] + [c3,1])E1 ([c2,1 + U + S)− E1 [c2,1] [c3,1] . (IV.34)

Calculating the Cartan charges shows that the matter state on this surface is in fact in the 5−4

representation. To find a possible vertical (2, 2)-form on Y4 representing this class, we expand

the expression [V(I)] − (λi ti) [Y4], with ti the chosen basis (IV.22) of H
(2,2)
vert (Y4), in a basis of

H
(3,3)
vert (X5). If there is a solution of λi such that the expression is 0, it means we can identify

[V(I)] as the vertical class λi ti on the hypersurface. In the concrete example, we indeed find a
unique solution:

[V(I)] ≡[
5−4

]
= [Y4] ·

(
−E3E4 + (E1 + E4)K + [b2] (E1 + E2 + E3 −Θ) + (S − E4) Θ

) (IV.35)

The 51 surface
By the same methods analyse the fibre structure over the curve {θ} ∩ {b21 c0,4 − b0,2 b1 c1,2 +
c2

1,2}. The factorisation process is somewhat more evolved, since the curve is now described by a
quadratic equation, and thus the ideals have more generators. To reduce the cluttering, we will
not display each step of the calculation.
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The local analysis (e.g. by solving b21 c0,4 − b0,2 b1 c1,2 + c2
1,2 = 0 for b0,2) reveals the splitting

of E3, which can be confirmed by the two non-trivial components resulting from the primary

decomposition of 〈b21 c0,4− b0,2 b1 c1,2 + c2
1,2, e3, P

(SU(5)
U(1) 〉. One of which – that turns out to be the

surface of 51 states – can be obtained as a prime component of the ideal 〈b21 c0,4 − b0,2 b1 c1,2 +
c2

1,2, e3, c1,2 e
2
0 e1 e4 u

2 s + b1w〉, which in addition contains the complete intersection 〈c1,2 b1 e3〉
with multiplicity 2. Thus the matter surface has homology class[

51

]
= (2 [b1] + [c0,4]) E3 ([b1] + [w])− 2 [c1,2] [b1]E3

= [Y4] ·
(
2E3 (E4 + 2K −Θ) + [b2] (Θ− 2E3) + Θ (E2 + E4 −K − S − U)

)
.

Again we can convince ourselves that the surface has a vertical class.

The 1−10 surface

As we have already discussed section 2.1.1, states of 1−10 arise by M2-branes wrapping the curve
s = 0 in the fibre over b2 = c3,1 = 0. The associated matter surface is therefore given by
〈s, b2, c3,1〉. The homology class is again vertical on the hypersurface and given by

[1−10] = S [b2] [c3,1] = [Y4] ·
(
E1 (E2 −K)− SΘ + [b2] (E1 + S − U)

)
(IV.36)

The 15 surface

In theory the matter surface of 15 states must also be described by a prime ideal, which is

a component of the surface with ideal 〈generators of C2, P
SU(5)
U(1) 〉 = C2 + 〈PSU(5)

U(1) 〉. However,
because of the complexity of C2, Singular cannot compute the primary decomposition of the
above ideal, denying us the possibility of computing the homology class [15].

It also means that we cannot study the U(1)3 and U(1)-gravitational anomalies directly. How-
ever, as we will see in section 2.2.5, both anomalies are consistent if we compute the contributions
from all the other matter states, of which we know the surfaces.

R [γR] ≡ [R] ≡ [Y4] · [R̃]

102 [Y4] · E2E0

5−6 [Y4] · E0 S

5−4 [Y4] ·
(
−E3E4 + (E1 + E4)K + [b2] (E1 + E2 + E3 −Θ) + (S − E4) Θ

)
51 [Y4] ·

(
2E3 (E4 + 2K −Θ) + [b2] (Θ− 2E3) + Θ (E2 + E4 −K − S − U)

)
1−10 [Y4] ·

(
E1 (E2 −K)− SΘ + [b2] (E1 + S − U)

)
Table IV.4: Known homology classes of matter surfaces in the SU(5)× U(1) model.

Fluxes from matter surfaces

As an interlude, we would like to relate the vertical fluxes we computed by systematically im-
plementing the transversality conditions with the matter surfaces. Conceptually we expect such
a relation since the G4 data can be equivalently encoded in rational equivalence classes of 4-
cycles [95], which by Poincaré-duality can be viewed as elements of H(2,2)(Y4). Because the
matter surfaces naturally give building blocks of algebraic 4-cycles, we would like to see how they
can be modified to give rise to fluxes.
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In practise the approach is simple: The vertical class representing the matter surface on Y4

will generally not satisfy the transversality conditions. However we may add vertical correction
terms to it such that their contribution to the intersection numbers in the transversality conditions
precisely cancel the contribution of the matter surface. By construction this yields a valid vertical
G4-flux.

For example the matter surface
[
102

]
violates the condition

∫
G4 ∧Ei ∧D(B) = 0; explicitly:∫ [

102

]
∧ Ei ∧D(B) = (1,−1, 0, 1)i

∫
B
K ∧Θ ∧D(B) .

To cancel this contribution, we have to add a suitable linear combination λjEj∧K. One can easily
convince oneself that such a correction term does not spoil the other two transversality conditions,
simply because the exceptional divisors Ei do not intersect the zero section U (preserve (III.7))
and are localised in codimension one on the base (preserve (III.6)). It is straightforward to
determine the coefficients λj : Because we know

∫
Y4
Ej ∧ K ∧ Ei ∧ D(B) = −Cji

∫
B KΘD(B),

where Cji = Cij is the Cartan matrix of SU(5), the coefficients are simply (C−1)ji(1,−1, 0, 1)i =
(2/5,−1/5, 1/5, 3/5)j . Hence the flux associated to the matter surface

[
102

]
is

G4(102) =E2E0 +
1

5
(2,−1, 1, 3)j Ej K

= − E1E2 − E3E4 +
1

5
K (2E1 − 6E2 − 4E3 + 3E4) + [b2] (E2 + E3 −Θ)

−Θ (E4 −K − S − U)

(IV.37)

Comparing to (IV.26), we see that this flux is precisely 1/10Gu24 .

By analogous computations, we can easily find similar relations for the other matter surfaces:

G4(102) =
1

10
Gu24 ,

G4(5−6) =
1

50
(Gu14 + 6Gu24 + 5Gu34 ) ,

G4(5−4) =
1

50
(−Gu14 − 6Gu24 − 15Gu34 )− 1

5
G0

4(Θ),

G4(51) =
1

50
(2Gu14 − 3Gu24 ),

G4(1−10) =
1

50
(−Gu14 −G

u2
4 + 5Gu34 ) +

1

5
G0

4([b2]) .

(IV.38)

This confirms that indeed matter surfaces as algebraic 4-cycles contain the generic vertical fluxes
(IV.26) in their geometric data.

2.2.4 Chiralities and non-abelian anomalies

We finally turn to the anomalies. After the prelude in the previous sections, we only have to
put all the necessary ingredients together. Recall that the chiralities induced by a flux G4 is
computed with the general formula

χ(R) =

∫
CR
G4 =

∫
X5

[R] ∧G4 , (IV.39)

with the matter surface’s dual cohomology class [R] is given in table IV.4. Note that we can com-
pute the chirality of the conjugate representation R as χ(R) = −χ(R), which we will implicitly
use in the following.
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With the above formula, we obtain the following chiral indices for the non-abelian matter in
the presence of the general vertical flux solution

∑
i uiG

ui
4 +G0

4(F ) (IV.27):

χ(102) =
(

(−42u1 + 12u2 − 6u3)K2
+ 20u1K [b2] + (25u1 − 20u2 + 3u3)KΘ + 2KF

)
Θ ,

χ(56) =
(
(−36u1 − 4u2 + 2u3)K [b2] + 10u1 [b2]2 + (20u1 − 6u3) [b2] Θ + 6 [b2]F

)
Θ ,

χ(5−4) =
(

(−42u1 + 12u2 − 6u3)K2
+ (−16u1 − 4u2 + 2u3)K [b2] + 10u1 [b2]2

+ (61u1 − 12u2 + 11u3)KΘ + (10u1 + 4u3) [b2] Θ + (−20u1 − 4u3) Θ2

− 8KF − 4 [b2]F + 4 ΘF
)

Θ ,

χ(51) =
(

(84u1 − 24u2 + 12u3)K2
+ (32u1 + 8u2 − 4u3)K [b2]− 20u1 [b2]2

+ (−86u1 + 16u2 − 14u3)KΘ + (−30u1 + 2u3) [b2] Θ + (20u1 + 4u3) Θ2

+ 6KF − 2 [b2]F − 4 ΘF
)

Θ ,

χ(1−10) = 10u3

(
K [b2] + [b2]2 − [b2] Θ

)
Θ− 10

(
K [b2] + [b2]2 − [b2] Θ

)
F ,

(IV.40)
where every term is understood to be an intersection number of three divisors on the base B.
With these expressions, one can directly verify that the SU(5) anomalies are explicitly cancelled,
as prescribed in (IV.3). However, we would like to use a different approach by studying the matter
surfaces in table IV.4. To this end, we note that in the general anomaly matching formulae (IV.3),
both side can be expressed as integrals of G4 over certain 4-cycles. On the left hand side, this
4-cycle is a linear combination of the matter surfaces; on the right hand side the 4-cycle is given
by the geometric contribution to the corresponding GS-counterterm. Therefore, our strategy is
to show that these two 4-cycles agree – at least up to irrelevant terms.

SU(5)3 anomaly
Let us first verify the SU(5)3 anomaly cancellation

χ(102) + χ(51) + χ(5−4) + χ(56) = 0 . (IV.41)

Based on the fluxes
In fact, we can directly see the SU(5) anomaly cancellation in the geometry of the matter

surfaces, without computing any integration of fluxes explicitly. Instead we only look at the 4-
cycle [102] + [51] + [5−4] + [56] which yields the anomaly (IV.41) if one integrates a flux G4 over
it. With the data in table IV.4, it is easily computed to be

[102] + [51] + [5−4] + [56] =

[Y4] ·
(
2[b2] (E1 + E2) +K (−E2 + 3E3 + E4) + Θ (−[b2] + E2 − E3 − E4)

)
.

(IV.42)

Obviously, on the hypersurface this 4-cycle is of the schematic form EiD
(B)
a + D

(B)
b D

(B)
c . By

the transversality conditions, we can now argue directly that any valid flux (not even necessarily
vertical) will integrate to 0 over this 4-cycle, thus giving no SU(5)3 anomaly.

SU(5)2 − U(1) anomaly
The mixed anomaly is in general not zero, but will require a Green–Schwarz mechanism to be
cancelled, which in the process will render the U(1) massive. The cancellation is guaranteed if

q(102) c2(10)χ(102) +
∑
q

q · c2(5)χ(5q) =

2 · 3 · χ(102) + χ(51)− 4χ(5−4) + 6χ(56)
!

= −
∫
Y4

G4 ∧ ωU(1) ∧Θ ,

(IV.43)
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with ωU(1) given in (IV.15). Explicit computation shows that the match indeed is given for the
generic flux G4 =

∑
i uiG

ui
4 +G0

4(F ).
Again, this anomaly cancellation can be seen directly from the matter surfaces. To show it,

we calculate the 4-cycle responsible for the anomaly on the left hand side of (IV.43),

6 [102] + [51]− 4 [5−4] + 6 [56] = (−5S + 5U) Θ

+ [b2] (2E1 + 2E2) +K (−10E1 − 6E2 − 2E3 − 4E4 + 5 Θ) + Θ (−[b2] + E2 − 2E3 − E4) .

(IV.44)

Note that the only term that gives any non-trivial contribution upon integrating with G4 is −5SΘ

in the first line, as the remaining terms are of the schematic form U∧D(B)+Ei∧D(B)
a +D

(B)
b ∧D

(B)
c

and thus irrelevant by the transversality conditions. Similarly, the GS-counterterm on the right
hand side of (IV.43) comes from integrating a flux over the 4-cycle −ωU(1) ∧Θ = −(5S − 5U −
5K − 5 [b2] + 4E1 + 3E2 + 2E3 + E4) ∧ Θ, where also only the term −5SΘ matters, precisely
matching the term from the matter surfaces.

Thus, we can again conclude that the SU(5)2−U(1) anomaly is cancelled by the appropriate
GS-counterterm, without having to compute any fluxes explicitly.

2.2.5 Abelian and gravitational anomalies

Abelian and mixed abelian-gravitational anomalies receive contributions from all matter states.
Since we are lacking the homology class of 15’s matter surface, we cannot verify the cancellation
explicitly. However, since we have two distinct anomaly matching equations (U(1)3 and U(1)-
gravitational), we can at least check if they are consistent with the data we acquired.

To this end, we first use the gravitational anomaly matching (IV.3) to write∑
R

dim(R) q(R)χ(R) = −6

∫
Y4

G4 ∧ K ∧ ω

⇐⇒ 5χ(15) = −
∑
R6=15

dim(R) q(R)χ(R)− 6

∫
Y4

G4 ∧ K ∧ ω .
(IV.45)

Assuming that the U(1)-gravitational anomaly is cancelled by the GS-counterterm, we can use
this expression to compute the chiral index χ(15) for any given G4. For the fluxes basis (IV.26)
we obtain:

χ(15) = 50u1

(
2 [b2]K − 6K2 − [b2] Θ + 7KΘ− 2,Θ2

)
Θ

+ 10 (u3 Θ− F )
(

2 [b2]2 − 4 [b2]K − 6K2
+ 3 [b2] Θ + 7KΘ− 2 Θ2

) (IV.46)

As a test of consistency, these chiralities should now lead to a matching of the U(1)3 anomaly,∑
R

dim(R) q(R)3 χ(R) = −6

∫
Y4

G4 ∧ π∗(ω ∧ ω) ∧ ω

= −6

∫
Y4

G4 ∧ (−50K − 50 [b2] + 20 Θ) ∧ ω ,
(IV.47)

which is indeed satisfied with the chiralities (IV.40) for the other representations.

2.3 Anomalies in the SU(5)× Z2 model

We now turn to a related fibration that realises a discrete abelian Z2 symmetry instead of a
continuous U(1). As explained in section 2.5.4 of chapter II, the two models are related by a
conifold transition that physically corresponds to a Higgsing. Here we will briefly summarise the
underlying geometric and physical picture along the lines of [64,65], before discussing how fluxes
enter the whole story.
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2.3.1 A genus-one fibration with gauge group SU(5)× Z2

Let us first establish the connection of the Z2-model with the U(1)-model in the absence of
any non-abelian symmetries. In this situation, the hypersurface is the vanishing locus of the
polynomial

PZ2 = w2 + b0 u
2w + b1 u v w + b2 v

2w + c0 u
4 + c1 u

3 v + c2 u
2 v2 + c3 u v

3 + c4 v
4 , (IV.48)

inside a P112-fibration over a base B. Note that P112 is a toric space described by polygon 4 in [71],
see also figure IV.3. The link between this model and the U(1)-model (IV.5) is precisely a conifold
transition of first blowing down s and then deforming the resulting singularity by adding the c4

term. As explained in section 2.5.4 of chapter II, this hypersurface defines genus-one fibration,
because it exhibits no globally well-defined sections.

Instead it has a bi-section, given by U = {u}. This bi-section marks two points on the
hypersurface give by the zero locus of

PZ2 |u=0 = w2 + b2 v
2w + c4 v

4 =

(
w +

b2 +
√
b22 − 4 c4

2
v2

)(
w +

b2 −
√
b22 − 4 c4

2
v2

)
.

(IV.49)

Away from the branching locus b22 = 4 c4 of the square root, each factor marks a point in the fibre,
however one cannot holomorphically extend these points over the branching locus. Monodromy
effects will interchange both points, such that only the collection of both is a globally well-defined
object – the bi-section U . Note that in the case c4 = 0, the two marked points, w = 0 and
w + b2 v

2 = 0 are well-defined globally and generate the rank 1 Mordell–Weil group in the U(1)-
model.4

e0

e1 e2

e3
e4

w

vu

−1

−1

−1

00 0113

1

Figure IV.3: On the left: SU(5) top (green) over polygon 4 (grey) from [71] describing the fibre
ambient space P112. On the right: the dual top with lower bounds on the height of the vertices.
This picture is taken from [64].

Analogous to the U(1)-model, we can construct SU(5) gauge symmetry via tops. It turns out
that there is a top that leads to the same restrictions of the coefficients bi, cj as in the U(1)-model
(except for c4, which was absent). This top together with its dual are shown in figure IV.3. This
finding is not unexpected, since after all, the physical intuition behind the conifold transition
is a Higgsing process by giving the singlet 110 a vev. While this vev will change the massless
spectrum, which we will also discuss in the following, it should not affect the gauge symmetry.
In table IV.5 we have collected the fibration data in terms of the divisor classes and associated
scaling relations.

4Note that after the blow-up by s in the U(1)-model, the point with w = −b2 v2 is replaced by the intersection
of s = 0 with the hypersurface.
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u v w e0 e1 e2 e3 e4

K · 1 2 · · · · ·
[b2] · −1 −1 · · · · ·
Θ · · · 1 · · · ·
U 1 1 2 · · · · ·
E1 · · −1 −1 1 · · ·
E2 · −1 −2 −1 · 1 · ·
E3 · −2 −2 −1 · · 1 ·
E4 · −1 −1 −1 · · · 1

Table IV.5: Divisor classes and associated scaling relations for the ambient space X5 of the
Z2-model.

The hypersurface of the SU(5) × Z2-model, which we will denote by Y4, is the zero locus of
the polynomial

P
SU(5)
Z2

= e1 e2w
2 + b0,2 u

2w e2
0 e

2
1 e2 e4 + b1 u v w + b2 v

2w e2 e
2
3 e4 + c0,4 u

4 e4
0 e

3
1 e2 e

2
4

+ c1,2 u
3 v e2

0 e1 e4 + c2,1 u
2 v2 e0 e3 e4 + c3,1 u v

3 e0 e2 e
3
3 e

2
4 + c4,1 v

4 e0 e
2
2 e

5
3 e

3
4

(IV.50)

inside the ambient space X5. As in the SU(5) × U(1) model, the fibration is parametrised by
the class [b2] and the divisor Θ =

∑4
i=0Ei over which the SU(5) gauge fields live. For Y4 to

be Calabi–Yau, the coefficients bi and cj must transform as sections of the bundles displayed in
table IV.6. Note that except for c4, which is absent it the SU(5)× U(1) model, all other classes
are the same (cf. table IV.1 and (IV.10)).

b0,2 b1 b2 c0,4 c1,2 c2,1 c3,1 c4,1

2K − b2 − 2Θ K b2 4K − 2b2 − 4Θ 3K − b2 − 2Θ 2K −Θ K + b2 −Θ 2b2 −Θ

Table IV.6: Classes of the coefficients entering (IV.50).

The Stanley-Reisner ideal for our choice of resolution phase is generated by

{v e0, v e1, v e2, w e0, w e4, u e3, e0 e3, e1 e3, u e2, e1 e4, v w u} . (IV.51)

The linear equivalence ideal, which we require for the flux computations, is given by

〈 − [v] +K − [b2] + U − E2 − 2e3 − E4,

− [w] + 2K − [b2] + 2U − E1 − 2E2 − 2E3 − E4,

− E0 + Θ− E1 − E2 − E3 − E4 〉 .
(IV.52)

Z2-generator
The intersection of the ambient divisor U = [{u}] with the hypersurface gives a representative
of the homology class of the bisection. From our previous discussion in section 1.1.2 in chapter
III, we would like to associate to U the notion of a KK U(1) in the 3-dimensional M-theory
compactification on Y4. As in the ‘normal’ U(1) case, we would like the non-abelian gauge bosons

not to carry any charges under the generator Û of this KK U(1), i.e.
∫
Y4
Û ∧Ei∧D(B)

a ∧D(B)
b = 0.

It is here that the shift (III.13) becomes important because the bisection locally intersects both
E0 and E1 in one point in the fibre. The (up to normalization) unique solution to the constraints
(IV.56) is given by

Û = U +
1

5
(4E1 + 3E2 + 2E3 + E4). (IV.53)
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If we fix the (a priori arbitrary) overall normalization to achieve integer intersections with all
fibral curves by defining

ωZ2 = 5 Û , (IV.54)

then the intersection numbers of ωZ2 with the irreducible split fiber components consistently assign
Z2 charges to the corresponding states modulo 2 in the F-theory limit. Indeed, a Z2 subgroup of
the KK U(1), normalised as in (IV.54), survives in the F-theory limit as an independent discrete
gauge group – a full explanation can be found in [64,65] (see also [54,63,66,67]).5

Matter curves

The discriminant of the singular hypersurface polynomial takes the form

∆ ∼ θ5
[
b41 (b21 c0,4 − b0 b1 c1,2 + c2

1,2) (b22 c2,1 − b1 b2 c3,1 + b41 c4,1) +O(θ)
]
, (IV.55)

which indicates three matter curves on the SU(5) divisor Θ. Away from Θ there is one more
matter locus [61], describable as an ideal which defines an irreducible curve on B [64]. This
complicated codimension-two locus C over which the fibre splits into two curves hosts singlet
states that carry Z2 charge. These states originate from the 15 states in the SU(5)×U(1) model,
which in that case were also localised over a non-complete intersection curve C2. Consistently,
the Z2 charges of these singlets are 1 ≡ 5 mod 2, as has been elaborated in [64]. The matter
spectrum and the associated Z2 charges are summarized in table IV.7.

locus in base irrep SU(5) Z2 charge

θ ∩ b1 10,10 [0]

θ ∩ {b21 c0,4 − b0 b1 c1,2 + c2
1,2} 5A,5

A
[1]

θ ∩ {b22 c2,1 − b1 b2 c3,1 + b41 c4,1} 5B,5
B

[0]
C 1 [1]

Table IV.7: Matter spectrum in the SU(5)× Z2 model.

The charges of the SU(5) matter can be computed analogously to the U(1)-model by studying
the fibre enhancement over the matter loci and compute the intersection numbers of the localised
fibral curves with the Z2-generator (IV.54). The crucial difference to the U(1)-charges is that
only the intersection numbers modulo 2 will give consistent charges for a full representation R.
The intersection structure of the matter curves along the SU(5) divisor Θ is shown in figure IV.4.
The indicated Yukawa couplings are all consistent with the Z2 charges.

2.3.2 Vertical fluxes in the SU(5)× Z2 model

Recall our proposal for the transversality condition defining G4-fluxes in a genus-one fibration,
applied to our particular model: The Z2-generator (IV.53) satisfies the orthogonality condition∫

X4

Ei ∧ Û ∧D(B)
a ∧D(B)

b = 0 ∀D(B)
a , D

(B)
b . (IV.56)

Thus Û defines the appropriate KK U(1) for the reduction of the 4-dimensional F-theory vacuum
to three dimensions which does not mix with the Cartan generators Ei. The transversality

5Apart from an extra shift in terms of base divisors this agrees with the Z2 generator as presented in [54,64,66]).
This shift does not change the notion of fibral curves and is therefore not of importance for us.
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5A
[1]

5B
[0]

10[0]

10[0] 10[0] 5
B
[0]

{θ}

10[0] 5
A
[1] 5

A
[1]

10[0] 5
B
[0] 5

B
[0]

5B
[0] 5

A
[1] 1[1]

5B
[0] 5

A
[1] 1[1]

Figure IV.4: The matter curves on the SU(5) divisor {θ} and the Yukawa couplings involving
the SU(5) charged matter in codimension three. The singlet curve has been omitted, only its
intersection points with {θ} are displayed as the Yukawa points 5B

[0] 5
A
[1] 1[1].

conditions on the fluxes are then ∫
Y4

G4 ∧ Û ∧D(B)
a

!
= 0, (IV.57)∫

Y4

G4 ∧D(B)
a ∧D(B)

b
!

= 0. (IV.58)

If the gauge fluxes are not to break any of the non-abelian gauge symmetries, we demand in
addition ∫

Y4

G4 ∧ Ei ∧D(B)
a

!
= 0. (IV.59)

Note in particular that for fluxes satisfying this latter constraint for all Ei, the transversality
condition (IV.57) reduces to the same constraint with Û replaced by U . This simplifies the
calculations, but obscures the fact that Û is the divisor class identified with the Kaluza-Klein
U(1).

The scheme to compute all vertical fluxes proceeds analogously as in the U(1)-model, presented
in section 2.2.2. We first implement the cohomology ring of the ambient space as a quotient

polynomial ring and compute a basis for H
(2,2)
vert (Y4). In fact, because the geometry of the ambient

spaces of the U(1)- and the Z2-model are so similar, the basis (2, 2)-forms are nearly identical
(cf. (IV.22):

{ti} =
{
D(B)
a D

(B)
b , (U,E1, E2, E3, E4)D(B)

c , E3E4 , E1E2

}
, (IV.60)

with D
(B)
a,b,c ∈ {K, [b2],Θ, D}, where D again collectively denotes all other independent vertical

divisor classes of the base. With this basis, we can again systematically solve for the transversality
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conditions, this time of the form∫
Y4

G4 ∧ U ∧D(B)
a =

∫
Y4

G4 ∧D(B)
a ∧D(B)

b =

∫
Y4

G4 ∧ Ei ∧D(B)
a = 0 . (IV.61)

Going through the algebra, we find two independent fluxes satisfying the modified transvers-
ality conditions:

G4 = z1G
z1
4 + z2G

z2
4 =

z1

[
5 (E1E2 + 2E3E4) + [b2] (−E1 − 7E2 − 8E3 + E4) + Θ2 + 8 [b2] Θ

+K (E1 + 12E2 + 8E3 − 6E4 − 8 Θ) +
1

2
Θ (−4E1 − 3E2 − 2E3 + 19E4 − 15U)

]
+ z2

[
5 (E1E2 + E3E4)− 5 [b2] (E2 + E3) +K (−2E1 + 6E2 + 4E3 − 3E4 − 4 Θ)

+5 Θ ([b2] + E4 − U)

]
.

(IV.62)
Note that despite the factor 1/2 in Gz14 , the normalisations for Gz14 and Gz24 are chosen such that
they give manifestly integer chiralities when integrated over matter surfaces (cf. section 2.3.4).

2.3.3 An example of horizontal flux

Unlike vertical fluxes, we have no systematic method of determining all horizontal fluxes. Only
few explicit examples have been constructed in the literature. In the following we will present
one such flux, following [64]. The flux is associated with a special algebraic 4-cycle which appears
on the sublocus in complex structure moduli space where c4 = ρ τ factorises. This is modeled
after a similar construction in the context of a Tate model [84]. In the presence of an SU(5)
singularity the same type of fluxes exists, mutatis mutandis, on the sublocus in moduli space
where c4,1 = ρ τ . In this case the two algebraic 4-cycles described as the complete intersections

σ0 = 〈u,w, ρ〉, (IV.63)

σ1 = 〈u,w e1 + b2 v
2 e2

3 e4, ρ〉 (IV.64)

in the ambient space X5 of Y4 automatically lie on Y4. Note that the two 4-cycles each define one of
the two intersection points of the bisection U with the fibre, fibred over the divisor P = [{ρ}] ⊂ B
in the base. This can be easily seen by performing a similar factorisation as in (IV.49) for the
SU(5)-enhanced hypersurface (IV.50) at u = 0 and realising that for a factorised c4,1 = ρ τ , the
locus ρ = 0 implies c4,1 = 0. Over this locus (if present), the two marked points w = 0 and
w e1 + b2 v

2 e2
3 e4 = 0 are not affected by any monodromy actions, and hence the ideals (IV.63)

are well-defined.

The dual cohomology classes [σ0] and [σ1] clearly are vertical classes in the ambient space,
e.g. [σ0] = U [w]P . We can check that they are indeed not vertical on the hypersurface, because

we cannot find a factorisation of the form [σ0] = [Y4] · (
∑

i,j DiDj) ∈ H(3,3)
vert (X5). Still, we can

compute intersection numbers with other vertical 4-cycles D1 ∧D2 of the hypersurface by∫
σi

D1 ∧D2 =

∫
X5

[σi] ∧D1 ∧D2 , (IV.65)

because wedging with [σi] guarantees that the intersection lies on the hypersurface.
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Being algebraic 4-cycles on Y4, the classes [σi] are candidates for fluxes. However, they violate
the transversality conditions (IV.61):∫

X5

[σ0] ∧D(B)
a ∧D(B)

b =

∫
B
P ∧D(B)

a ∧D(B)
b ,∫

X5

[σ0] ∧ U ∧D(B) =

∫
B
P ∧D(B) ∧ ([b2]−K)∫

X5

[σ0] ∧ Ei ∧D(B) = (1, 0, 0, 0)i

∫
B
P ∧D(B) ∧Θ

(IV.66)

To obtain a well-defined flux we add an ansatz of correction terms [Y4] · (
∑
aiDi P ) where Di

runs over a basis of divisors and require that they cancel the right hand side of (IV.66). Solving
for the coefficients ai yields the flux solutions

Gh4(P, σ0) = 5[σ0] +
1

2
(−5U + (4E1 + 3E2 + 2E3 + E4)− 2Θ)P [Y4] ,

Gh4(P, σ1) = 5[σ1]− 1

2
(5U + (4E1 + 3E2 + 2E3 + E4)− 2Θ)P [Y4] ,

(IV.67)

where, for now, the overall normalization is chosen to give manifestly integral chiral indices as
will be discussed later. Both flux solutions are not independent, so that we can stick to, say,
Gh4(P, σ0) ≡ Gh4(P ) for definiteness. Combined with the vertical fluxes (IV.62), we have the
following four parameter flux solution,

G4 = aGh4(P ) + z1G
z1
4 + z2G

z2
4 . (IV.68)

Note that away from the complex structure moduli, where the 4-cycles σ0,1 are algebraic,
the horizontal fluxes are no longer describable by (IV.67). However, all quantities computed
with that description in the following sections (in particular chiral indices and D3-tadpole) are
of topological nature and hence are independent of the complex structure.

2.3.4 Matter surfaces

In the following we will collect the data about the matter surfaces of the spectrum in the Z2

model, cf. table IV.7. Since the methods of primary decomposition and finding suitable complete
intersections are analogous to the situation in the U(1)-model, we will keep the computational
details to a minimum.

The 10 surface
A representative of the matter surface [C10] is given by the complete intersection 〈e0, e2, b1〉 in the
ambient space. By employing the SR-ideal we find that restricting the hypersurface to 〈e0, e2〉
implies b1 = 0, and hence we have [C10] = E0E2 [Y4].

As in the U(1) case, we can compare the matter surfaces to the fluxes (IV.62) as algebraic
4-cycles. This amounts in adding correction terms to the matter surface such that the result is a
(2, 2)-form satisfying the transversality conditions. For the surface of 10, we find

G4(10) = E0E2 −
1

5
KΘ− 1

5
(−2, 1,−1,−3)iEiK

= −E1E2 − E3 + [b2] (E2 + E3)E4 +
1

5
K (2E1 − 6E2 − 4E3 + 3E4)

+
4

5
KΘ + Θ (U − [b2]− E4)

(IV.69)

where we have rewritten the first line in the chosen vertical basis (IV.60). Up to a factor of −5
the flux agrees exactly with the flux solution with coefficient z2 in (IV.62).
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The 5
A

surface

The matter surface of 5
A

is a non-complete intersection given by the ideal

C
5
A = 〈e3, b21 c0,4 − b0,2 b1 c1,2 + c2

1,2, e
2
0 e1 e4 u

2 c1,2 + w b1,

e2
0 e1 e4 u

2 b1 c0,4 + w b0,2 b1 − w c1,2, e4
0 e

2
1 e

2
4 u

4 c0,4 + e2
0 e1 e4 u

2w b0,2 + w2〉 .
(IV.70)

Applying the same trick as in the U(1)-model of finding a suitable complete intersection containing
this surface, we are able to deduce the following homology class:

[5
A

] = 2E3 [c1,2] (w + [b1])− 2E3 [b1] [c1,2]

=
(
2E3E4 − 2 [b2]E3 +K (4E3 −Θ) + Θ ([b2] + E2 − 2E3 + E4 − U)

)
[Y4]

(IV.71)

From this class we can construct the following vertical flux:

G4(5
A

) = [5
A

] + {correction terms}

= 2E3E4 −
2

5
[b2] (E1 + 2E2 + 3E3 − E4) +

2

5
K (3E1 + 6E2 + 4E3 − 3E4)

+
1

5
Θ (−8K + 2 Θ + 6 [b2]− 4E1 − 3E2 − 2E3 + 9E4 − 5U)

=
2

5
(Gz14 −G

z2
4 ).

(IV.72)

The 5
B

surface

By the same techniques, we compute the 5
B

surface and its homology class. We find

[5
B

] = E1 (2 [b2] + [c2,1]) (K + U)− 2E1K [b2]

=
(
E1E2 − E3E4 + [b2] (2E1 + E2 + E3) + E4K − ([b2] + E4) Θ

)
[Y4] .

(IV.73)

The associated flux is then

G4(5
B

) = [5
B

] + {correction terms}

= E1E2 − E3E4 +
1

5
[b2] (2E1 − E2 + E3 − 2E4) +

1

5
K (−8E1 − 6E2 − 4E3 + 3E4)

+
1

5
Θ (4E1 + 3E2 + 2E3 − 4E4 − [b2] + 4K − 2 Θ)

=
1

5
(−2Gz14 + 3Gz24 ) .

(IV.74)

The singlet surfaces

Again, we are unable to compute the prime ideal describing the matter surface 1 due to the
complexity of the curve C over which the singlet states are fibred. However, the I2-fiber over
C splits into two rational curves A and B with [A] = [B] in homology. Indeed, both curves are
exchanged by a global monodromy over C provided the intersection of the monodromy locus of
the bisection with C is non-empty, as is generically the case [64] (see [52, 113] for a discussion
of the implications of the absence of this monodromy point on C2 in non-generic models). The
states associated with an M2-brane wrapping A and B have the same quantum numbers. In order
to count the number of N = 1 chiral multiplets of the 4-dimensional F-theory vacuum with Z2

charge 1, we must therefore add the zero modes from M2-branes wrapping both fibral curves [65].
One can separately compute the overlap of G4 with the 4-cycle CA or CB given by fibering A or B
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R [R]

10 E0E2 [Y4]

5
A (

2E3E4 − 2 [b2]E3 +K (4E3 −Θ) + Θ ([b2] + E2 − 2E3 + E4 − U)
)

[Y4]

5
B (

E1E2 − E3E4 + [b2] (2E1 + E2 + E3) + E4K − ([b2] + E4) Θ
)

[Y4]

Table IV.8: Known homology classes of matter surfaces in the SU(5) × Z2 model. While we
cannot determine the class [1] of the singlet, we can argue on general ground that it must have
zero chirality.

over C2, and e.g. the flux G4(P, σ0) indeed gives a non-zero result for both individual surfaces [65].
However, in total

χ(1) =

∫
CA
G4 +

∫
CB
G4 = 0 (IV.75)

by the transversality condition (IV.58) because A and B sum up to the total fiber class. This is
the geometric manifestation of the statement that an SU(5) singlet carrying only Z2 charge does
not admit a notion of chirality, of course.

2.3.5 Chiralities and the SU(5)3 anomaly

With the the homology classes of the matter surfaces (cf table IV.8) at hand, it is straightforward
to compute the induced chiralities for all SU(5) representations. Using the explicit flux solution
(IV.68), we find the following chiralities:

χ(10) =
[
aP + z1 (2 [b2]− 12K + 9 Θ) + z2 (5 Θ− 6K)

]
KΘ ,

χ(5
A

) =
[
−aP + z1 (−2[b2]− 8K + Θ)− 4z2K

]
([b2]− 3K + 2Θ) Θ ,

χ(5
B

) =
[
aP ([b2]− 4K + 2Θ) + z1 (2[b2]2 + 3[b2] Θ− 2 (6K2 − 5KΘ + Θ2))

+ z2 (4[b2]− 6K + 3Θ)K
]

Θ ,

χ(1) = 0 ,

(IV.76)

where again the right hand sides are understood as intersection numbers on the base. It is easily
checked that the SU(5)3 anomaly condition

χ(10) + χ(5
A

) + χ(5
B

) = 0 (IV.77)

is satisfied without further restrictions on a, P, z1 and z2. In fact, this can be again argued solely

based on the geometry of the 4-cycle class [10] + [5
A

] + [5
B

]:

[10] + [5
A

] + [5
B

] =

[Y4] ·
(
2[b2] (E1 + E2) +K (−E2 + 3E3 + E4) + Θ (E2 − 2E3 − E4)−Θ [b2]

)
.

(IV.78)

In this form, it is obvious that any valid G4 yields zero upon integration over this cycle, by virtue
of the transversality conditions. Note that the modified condition (IV.57) involving the bi-section
does not enter this anomaly cancellation, which only requires the flux not breaking the gauge
symmetry and not having two legs along the fibre. The missing condition (IV.57) will become
relevant in the context of the discrete Z2 anomaly to be discussed momentarily.
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2.3.6 Flux quantisation and Z2 anomalies

All results so far have been independent of the overall normalisation of the constructed fluxes and
tested only the transversality conditions as such. The proper normalisation becomes crucial for
instance when it comes to detecting discrete anomalies such as the ones scrutinised in [74, 114].
In particular, the total number of D3-branes as determined by the tadpole equation (IV.97) must
be integer, and this is guaranteed [74] for a flux satisfying the quantisation condition (III.2).
Furthermore the chiral indices must be integer in a consistent theory and this should follow from
the quantisation condition as well. Indeed, as exemplified in previous sections, we can write the
homology classes of all matter surfaces CR in terms of complete intersections on the hypersurface
and so the [CR] are integer classes themselves. Hence∫

CR

(
G4 +

1

2
c2(M4)

)
= χ(R) +

1

2

∫
CR
c2(M4) ∈ Z (IV.79)

if the flux is appropriately quantised. Thus, as stressed in [96,115], if 1
2

∫
CR c2(M4) is integer by

itself for every matter surface, then the quantisation condition ensures integrality of the chiral
indices. To the best of our knowledge, it has not been proven from first principles in the literature
that c2(M4) automatically satisfies these constraints in any smooth Calabi-Yau elliptic or genus-
one fibration M4. In the sequel will analyse this constraint for the two fibrations M4 ∈ {Y4,Y4},
and relate it to the cancellation of Z2 anomalies. Remarkably, this cancellation not only requires
the condition (IV.79) in the Z2 model, but also in the associated U(1)-model to which the Z2-
model is related by the conifold transition.

Arithmetic constraints from the second Chern class
To compute c2(M4) for M4 either the genus-one fibration Y4 ⊂ X5 or the elliptic fibration Y4 ⊂ X5

we use the standard adjunction formula

c(M4) =
c(M5)

1 + [P ]
=

1 + c1(M5) + c2(M5) + ...

1 + [P ]
(IV.80)

with P the respective hypersurface polynomial inside the ambient space M5. Because the hyper-
surface is Calabi–Yau, i.e. c1(M4) = 0, we must have [P ] = c1(M5), and therefore

c2(M4) = c2(M5)− c1(M5) [P ] + [P ]2 = c2(M5) . (IV.81)

Since our ambient spaces M5 are fibrations of a toric fibre ambient space over a base B, their
total Chern-class can be calculated as

c(M5) = c(B)
Πi(1 +D

(T )
i )

1 + Θ
, (IV.82)

with c(B) = c1(B+c2(B)+ ... = K+c2(B)+ .... The D
(T )
i are the toric divisors of the top defining

the fibre ambient space. Because these include the exceptional divisors which sum up to Θ that
is already accounted for in c(B), one has to divide out by the denominator.

The result of this analysis for both fibrations is

c2(Y4) = 5U2 − E1E2 +
7

2
E2

2 − 6E3E4 +
1

2
(−4, 9, 20, 4)iEi [b2] +

1

2
(0,−19,−34,−3)iEiK

+ (0,−6, 4,−5)iEi Θ− 5U [b2] + 11U K + 7U Θ

− 6 [b2] Θ− 5[b2]K + 7KΘ + [b2]2 + 5K2
+ c2(B),

(IV.83)

c2(Y4) = −7U2 + E2
2 − E3E4 + (−1, 2, 5, 2)iEi [b2] + (−1,−7,−12,−4)iEiK

+ (0,−1, 4, 0)iEi Θ + U [b2]− U K + 2U Θ− S [b2] + 6SK + SΘ

− [b2] Θ− 5 [b2]K + 2KΘ + [b2]2 + 5K2
+ c2(B) .

(IV.84)
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In principle the quantization condition can now be checked by demanding that the integral of
G4 + 1

2c2(M4) over every integer 4-cycle be integer. This requires finding an integral basis of
H4(M4), which we do not attempt here.

However, we make a curious observation: For the elliptic fibration Y4, the integral of c2(Y4)
over the matter surfaces (cf table IV.4) can be evaluated as

1

2

∫
C102

c2(Y4) =
1

2

∫
B

Θ2K, (IV.85)

1

2

∫
C5−6

c2(Y4) =
1

2

∫
B

(
−K [b2] Θ + [b2]2 Θ + [b2] Θ2

)
, (IV.86)

1

2

∫
C5−4

c2(Y4) =
1

2

∫
B

(
2K2

Θ−Θ2K + 3K [b2] Θ + [b2]2 Θ− [b2] Θ2
)
, (IV.87)

1

2

∫
C1−10

c2(Y4) =
1

2

∫
B

(
2K [b2]2 + 2 [b2]3 +K [b2] Θ− [b2]2 Θ− [b2] Θ2

)
, (IV.88)

1

2

∫
C51

c2(Y4) =

∫
B

(
12K2

Θ− 10K [b2] Θ + 2[b2]2 Θ− 12KΘ2 + 5[b2] Θ2 + 3Θ3
)
. (IV.89)

Note that the first four expressions are not automatically integer. However, in this case also the
chiral indices would be non-integer as a result of (IV.79).6 Physical consistency of the spectrum
in the U(1) model therefore requires the expressions (IV.85) – (IV.88) to be integer, which is
equivalent to the following intersection numbers being even:∫

B
Θ2K ∈ 2Z and

∫
B

(
K [b2] Θ + [b2]2 Θ + [b2] Θ2

)
∈ 2Z . (IV.90)

A similar problem arises in the bisection model Y4, where the potentially non-integer pairings are

1

2

∫
C10

c2(Y4) =
1

2

∫
B

Θ2K ,

1

2

∫
C
5A

c2(Y4) =

∫
B

2[b2]2 Θ + 2K [b2] Θ− [b2] Θ2 +K2
Θ− 1

2
Θ2K ,

(IV.91)

and which would require the intersection number
∫
BΘ2K being even to satisfy (IV.79).

If we assume that the SU(5)× U(1) and the SU(5)× Z2 theories are connected by the Higg
mechanism corresponding to the conifold transition explained before, then both Y4 and Y4 share
the same fibration data B, [b2] and Θ. In particular it makes sense to compare the intersection
numbers in both models. By doing so, we notice that integrality of (IV.85) – (IV.88) of the U(1)-
model implies integrality of the other expressions including (IV.91) on the Z2 side, but integrality
of (IV.91) alone is not enough to guarantee integrality on the U(1) side. We will resolve this
puzzle momentarily.

In principle, the above observation could hint at an additional physical constraint such as
a previously unnoticed anomaly which could require this. A more likely option is that these
constraints are automatically satisfied for every smooth Calabi–Yau space Y4 or Y4 described
as the respective toric tops. In other words, integrality of the above expressions is most likely
a necessary condition for a specific base B, together with a consistent choice of Θ and [b2], to
give rise to a well-defined Calabi–Yau fibration Y4 or Y4. It would be interesting, but certainly
challenging to prove in full generality that in every geometrically consistent fibration c2(M4)
automatically satisfies these arithmetic properties.

6A related puzzle was also observed in [96] for the integral of 1
2
c2 over the 101-matter surface in the vanilla

SU(5)×U(1) restricted Tate model. Interestingly, existence of a smooth type IIB limit of the latter model implies
that this equation is integer, reproducing the known result that the Freed-Witten anomaly cancellation in Type
IIB guarantees integer chiralities [115,116].

89



CHAPTER IV. ANOMALIES IN 4D COMPACTIFICATIONS

Cancellation of Z2 anomalies

We finally turn towards the Z2 anomalies. Due to the charge assignments and the zero chirality

of the singlet, the possible Z2 anomalies [117] are solely given by the chiral index of the 5
A

states
modulo 2,

AZ3
2

=
∑
R

(
qZ2
R

)3
dim(R)χ(R) = χ(5

A
) mod 2 ,

AZ2−SU(5)2 =
∑
R
qZ2
R c(R)χ(R) = χ(5

A
) mod 2 ,

AZ2−grav. =
∑
R
qZ2
R dim(R)χ(R) = χ(5

A
) mod 2 ,

(IV.92)

with c(R) the index of the representation. In general, discrete field theoretic anomalies need not
vanish by themselves provided they are cancelled by a suitable discrete version of the Green-
Schwarz mechanism [118]. This happens when an anomalous U(1) is Higgsed to a discrete sub-
group which is also anomalous. In this case, the anomalous discrete subgroup is not preserved
at the non-perturbative level because instantons can violate it. In our case, however, the Z2

symmetry is exact at the non-perturbative level. Potential non-perturbative effects would be
M2-brane instantons or fluxed M5-instantons. Their interplay with the discrete symmetry Z2 has
been studied in detail recently [52,113], and as expected from the general formalism of [119,120]
the discrete symmetry is indeed non-perturbatively exact. Therefore the mixed Z2 anomalies
must vanish by themselves. Consistently, we can adapt the analysis of [88] of the Green–Schwarz
mechanism for (mixed) abelian anomalies. The potential Green–Schwarz counter-terms would
then be proportional to ∫

Y4

G4 ∧ Û ∧D(B) (IV.93)

As a result of the transversality condition (IV.57) this vanishes identically, confirming once more
that the Z2 anomalies must vanish by themselves.

We would like to see the manifestation of this field theoretic argument in the geometry. To
this end, we revisit the strategy applied earlier when studying the other anomalies and analyse
the 4-cycle responsible for the anomaly directly. In this case, it is the matter surface of 5A, which
we recall here from table IV.8 for convenience:

[5
A

] =
(
2E3E4 − 2 [b2]E3 +K (4E3 −Θ) + Θ ([b2] + E2 − 2E3 + E4 − U)

)
[Y4]. (IV.94)

We see that if we impose the transversality conditions (IV.57), (IV.58) and the gauge symmetry
condition (IV.59) on G4, then the only contribution to the chirality is given by

χ(5
A

) =

∫
Y4

G4 ∧ (2E3 ∧ E4) . (IV.95)

The question now is whether
∫
Y4
G4∧E3∧E4 ∈ Z, since this would imply that χ(5

A
) is even and

therefore the discrete Z2 anomalies (IV.92) vanish.

Now we apply the quantisation condition to the 4-cycle E3 ·E4: Since this cycle is manifestly
integer, an appropriately quantised flux must satisfy

∫
Y4

(G4 + 1
2c2(Y4)) ∧ E3E4 ∈ Z. Thus, the

integerness of
∫
Y4
G4∧E3E4 follows from 1/2

∫
Y4
c2(Y4)∧E3E4 ∈ Z, or

∫
Y4
c2(Y4)∧E3E4 ∈ 2Z,
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which remains to be shown. A direct calculation reveals that∫
Y4

c2(Y4) ∧ E3 ∧ E4

=

∫
B

Θ ∧
(

(c2(B)−K2
)− 2K2 − 2 Θ2

)
−
(
[b2]2 Θ− 3K [b2] Θ + 3 [b2]Θ2 − 5 Θ2K

)
≡
∫
B

Θ ∧ (c2(B)−K2
)− ([b2]2 Θ +K [b2] Θ + [b2] Θ2 + Θ2K) mod 2 .

(IV.96)

While the first term is manifestly even (in [121] it was shown that c2(B) − K2
is an even class

for smooth complex threefolds), the latter part is not guaranteed to be without any further
input. However, if we assume integrality of all chiral indices in the U(1) model, which we have
argued before to be equivalent to (IV.90), then also (IV.96) is even, and therefore the discrete
Z2 anomalies (IV.92) vanish by themselves. On the other hand, if we impose integrality of chiral
indices (IV.91) as well as the absence of anomalies in the Z2 model, the arithmetic constraints
on the fibration guarantee a consistent (i.e. integral) chiral spectrum of the U(1) model.

Tp summarise, we see that physical consistency conditions on both the U(1) and the Z2 model
pose exactly the same constraints on the geometry. Since the Z2 and the U(1) model are related
by a conifold transition, it is not surprising that cancellation of the Z2 anomalies requires not
only integrality of (IV.91), but of the corresponding expressions in the U(1) model. We know
that any consistent Z2 fibration defined by [b2] and Θ on the base B originates via Higgsing from
a U(1) model over the same base with the same fibration data [b2] and Θ. Now if the U(1)
model is consistent, the chiralities and therefore also (IV.85) – (IV.88) must be integer. These
intersection properties of B of course still hold in the Z2 model and lead to integrality of (IV.91)
as well as the vanishing of the discrete anomaly. From a field theoretic perspective, cancellation
of the discrete anomalies is tied to a consistent embedding of the discrete symmetry into a gauged
continuous symmetry at high energies. This underlying gauge symmetry is precisely the U(1)
symmetry of the model on Y4, and so the relation between consistency of the latter and discrete
anomaly cancellation is also expected from this point of view.

Finally, note that the crucial relation (IV.95) depends not only on the conditions (IV.58)
and (IV.59), as does the proof for cancellation of the non-abelian cubic anomaly, but also on
(IV.57), where the bisection appears explicitly. This serves us as another consistency check of
the proposed transversality condition for genus-one fibrations.

2.4 Comparing fluxes in the conifold transition

In this section we compare the flux solutions in the bisection fibration Y4 (cf. section 2.3.2) and
in the related elliptic fibration Y4 (cf. section 2.2.2) upon performing a topological transition
between both sides. Since the construction of fluxes in F-theory models on elliptic fibrations is
well established, as is the topology change in the conifold transition, we will interpret this as a
final test of our flux construction for the genus-one fibration. In particular, we will construct an
explicit map between the flux solutions in both models and show that all fluxes in the bisection
model are accounted for by a corresponding flux in the U(1) model upon performing the conifold
transition.7 In particular, we will see that the horizontal flux contribution in the Z2 model is
crucial.

2.4.1 Topological quantities

In order to find a map between the general flux solutions, we look for quantities that are preserved
under the conifold transition, i.e. are of topological nature. The first such quantity is the total D3-
brane charge. Recall that the number of D3-branes is related to the flux and curvature induced

7Such a map has already been established in [64] in absence of additional non-abelian gauge data.
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D3-charge

n3 =
χ(M4)

24
− 1

2

∫
M4

G4 ∧G4 , (IV.97)

with χ(M4) the Euler number of the Calabi–Yau fourfold M4. We are interested in transitions
without explicit participation of D3-branes, and for such transitions n3 must match on both sides
of the transition [122]. We therefore demand that

∆n3 ≡ n3|Y4 − n3|Y4
!

= 0 . (IV.98)

The topological transition from Y4 to Y4 proceeds by first creating a conifold singularity in the
fibre over the curve C1 ⊂ B given in table IV.3 by blowing down s, and then deforming by adding
the term with c4 to the hypersurface polynomial [54,63–67]. The resulting change [84,94,96]

∆χ = χ(Y4)− χ(Y4) = −3χ(C1) (IV.99)

of the Euler number allows us to rephrase (IV.98) in terms of the flux-induced D3 tadpoles (IV.97)
as

1

2

∫
Y4

G4 ∧G4
!

= −1

8
χ(C1) +

1

2

∫
Y4

G̃4 ∧ G̃4 . (IV.100)

Here G4 and G̃4 denote the fluxes on Y4 (IV.68) and Y4 (IV.27), respectively. Note that in
particular we need to turn on a flux G4 on the Z2 side even if we start with no flux G̃4 = 0 on the
U(1) side. We will see in a moment that this G4 has to have a contribution from the non-vertical
flux Gh4(P ) (IV.67).

To compute the Euler number χ(C1) of the singlet curve with states 1±10 first recall that
C1 = 〈b2, c3,1〉. The first Chern class of this curve can be determined with help of the adjunction
formula

c(C1) =
c(B)

1 + [〈b2, c3,1〉]
⇒ c1(C1) = c1(B)− [b2]− [c3,1] = K − [b2]− ([K + [b2]−Θ]) = −[c4,1] ,

(IV.101)

such that we obtain the Euler number contribution

− 1

8
χ(C1) = −1

8

∫
C1

c1(C1) = −1

8

∫
B

[C1] ∧ c1(C1) =
1

8

∫
B

[b2] ∧ [c3,1] ∧ [c4,1]. (IV.102)

An other set of topological quantities are the chiral indices of the U(1) spectrum (IV.40)
and the Z2 spectrum (IV.76), which therefore must also be conserved under the transition. This
applies to the notion of chirality with respect to the unbroken gauge subgroups on both sides of
the transition. In the case at hand, this is the non-abelian SU(5) factor. From the field theory
perspective this is clear because Higgsing the U(1) gauge symmetry to a Z2 subgroup does not
change the SU(5) chiralities of the states. However, the number of individual matter curves as
such is not equal. By comparing the discriminants (IV.55) for c4,1 6= 0 and (IV.11) for c4,1 = 0,
we confirm that the matter curves in the base relate as [64,66]

Y4 Y4

C10 ↔ C10−2

C5A ↔ C5−1

C5B ↔ C54 + C5−6 .

(IV.103)

Since the chiral indices are linear in the matter surface classes, we arrive at the following matching
condition for the chiral indices:

χ(10)
!

= χ(102),

χ(5
A

)
!

= χ(51),

χ(5
B

)
!

= χ(5−4) + χ(56) .

(IV.104)
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2.4.2 Mapping fluxes across the conifold transition

Going from the U(1) model to the Z2 model via the conifold transition, any existent flux G̃4 on Y4

must be mapped to a flux configuration G4 on Y4 such that (IV.100) and (IV.104) are satisfied.
To gain some intuition for such a map, let us first consider the situation in which we switch

on only U(1)-flux G0
4(F ) (IV.25) on Y4 and no further vertical flux solutions. The tadpole con-

tribution on the right hand side of (IV.100) can then be evaluated as

− 1

8
χ(C1) +

1

2

∫
Y4

G0
4(F ) ∧G0

4(F ) =
1

8

∫
B

[b2] ∧ [c3,1] ∧ [c4,1]−
∫
B
F 2 ∧

(
K + [b2]− 2

5
Θ

)
=

∫
B

[
1

8

(
2K [b2]2 + 2 [b2]3 −K [b2] Θ− 3 [b2]2 Θ + [b2] Θ2

)
− F 2 ∧

(
K + [b2]− 2

5
Θ

)]
(IV.105)

From the corresponding transition in [64] without SU(5) gauge factor, and also from the general
considerations in [94], we expect that we must allow, possibly amongst other fluxes, for non-
vanishing non-vertical flux aGh4(P ) on Y4, with the parameters a and P to be determined.

Part of the contribution of such aGh4(P ) to the left hand side of (IV.100) is given by the
square 1

2

∫
(aGh4(P ))2 (in addition to cross-terms with the other fluxes). Recalling that Gh4(P ) =

5 [σ0]+ correction terms (IV.67), this expression requires in particular the calculation of the self-
intersection of [σ0]. A practical method for that was demonstrated in [84] and also applied in [64].
For completeness we will briefly explain the procedure here. In general, the self-intersection of a
4-cycle σ inside a fourfold M4 can be computed as an integral∫

M4

[σ] ∧ [σ] =

∫
σ
c2(Nσ⊂M4)

of the second Chern class of the normal bundle Nσ⊂M4 of σ embedded into M4. If in addition
M4 ⊂M5 is a hypersurface in an ambient space M5, we can use adjunction to write

c(Nσ⊂M4) =
c(Nσ⊂M5)

c(NM4⊂M5)
,

which we can then expand in order to extract the degree 2 terms corresponding to the second
Chern class. In our case, the 4-cycle σ = σ0 is given as a complete intersection 〈u,w, ρ〉 in
M5 = X5, so c(Nσ0⊂X5) = (1 +U)(1 + [w])(1 +P ). Similarly, we have c(NY4⊂X5) = 1 + [Y4]. The
expansion and subsequent integration are then straightforward.

Having computed the self-intersection of σ0, the intersection numbers of [σ0] with the vertical
correction term of the form (

∑
iDi P ) [Y4] in (IV.67) are straightforwardly computed in the

ambient space as
∫
X5

[σ0] (
∑

iDi P ). Likewise, the self-intersection of the vertical correction term

is easily computed as
∫
X5

[Y4] (
∑

iDi P )2. After the dust has settled, we obtain the following

tadpole contribution from Gh4(P ):

1

2

∫
X4

(
aGh4(P )

)2
=

25 a2

4

∫
B

[
−P 2 ∧

(
K + [b2]− 2

5
Θ

)
+ 2K [b2]P + 2 [b2]2 P − 2 [b2] ΘP

]
(IV.106)

Let us first see if it is sufficient to only invoke aGh4(P ) in order to reproduce (IV.105) on the
Z2 side, i.e. whether we can match (IV.105) and (IV.106). As seen from (IV.105), for a general
choice of F the U(1)-tadpole has a quadratic term in Θ from the singlet curve, and a linear term
in Θ from the flux contribution. On the other hand, the class P on the Z2 side may a priori be
dependent or independent of Θ. If it carries no multiple of Θ, then the induced tadpole is only
linear in the SU(5) divisor class, which can be excluded. If P = ...+ kΘ (which we expect, since
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c4,1 = ρ τ contains terms with Θ), then the induced tadpole will have a cubic term in Θ, which has
to be cancelled in order to match the U(1)-tadpole and the singlet curve term. We thus conclude
that some other flux has to be turned on in order to satisfy the constraint. In order to see what
flux contribution is needed we make the general ansatz (IV.68) for the flux on the Z2-side. We
furthermore make an ansatz for the class P = k F + α [b2] + βK + γΘ as a multiple of F plus
a correction expanded in the base classes which are generically available for any choice of base
B. The resulting matching equations of induced tadpoles (IV.100) and chiral indices (IV.104) are
quite lengthy and we do not display them explicitly here. The result is, that in order to match
the contributions of the U(1)-flux G0

4(F ) on Y4, we need a flux G4 = aGh4(P ) + z1G
z1
4 + z2G

z2
4

on Y4 with

P = 10F +
1

2
[c4,1], a =

1

5
, z1 = − 1

10
, z2 =

1

5
. (IV.107)

This confirms that it is not enough to turn on only Gh4(P ), but that it is also required to allow
for the other vertical fluxes to find a matching configuration. This is in agreement with similar
findings in [86, 96] for a transition from an SU(5) × U(1) elliptic fibration to an SU(5) elliptic
fibration.

Computing the D3-tadpole contributions for a general linear combination of fluxes on both
sides of the conifold transition is tedious, but straightforward. We keep the general flux (IV.68)
in the bi-section model and since we are searching for the most general solution, we make the
ansatz P = k F + α [b2] + βK + γΘ. In the U(1) model we add the linear combination

G4 = G0
4(F ) +

3∑
i=1

uiG
ui
4 (IV.108)

of all vertical flux solutions (IV.26). The reduction of all intersection numbers in (IV.100)
and(IV.104) to intersection numbers of base divisors results in a system of equations for the
coefficients a, zi, ui, k, α, β and γ. The result is that both constraints (IV.100) and (IV.104) can
be solved by

P = 10F +
1

2
[c4,1]− 10u3 Θ, a =

1

5
,

z1 =
1

10
(−1 + 100u1), z2 =

1

5
(1− 65u1 − 10u2 + 5u3)

(IV.109)

and we further note the Θ-term contribution to the class P .
It is reassuring that the possible range 0 ≤ P ≤ c4,1 of the divisor class P = [ρ] with c4,1 = ρ τ

is in beautiful agreement with the observation that fluxes on the U(1) side may obstruct the
topological transition provided they induce a purely chiral spectrum of Higgs states [94, 96].
The Higgs fields of this transition are the charged singlets 1±10 localised on the curve C1. The
formalism of [95] suggests that these are counted by the cohomology groups of a line bundle

L⊗K1/2
C1

with deg(L) =
∫
C1

(10F − 10u3 Θ) =
∫
B[C1] (10F − 10u3 Θ). This is in agreement with

the direct computation of the chiral index of these states (cf. (IV.40)). A necessary condition for
the existence of vector-like pairs of Higgs fields, and thus for the existence of a flat direction for
the conifold transition, is that 1

2c1(C1) ≤ deg(L) ≤ −1
2c1(C1). With c1(C1) = −c4,1|C1 this is –

for the solution P = 10F + 1
2c4,1−10u3 Θ – in presice agreement with the inequality 0 ≤ P ≤ c4,1.

For us, this serves as an final consistency check of the whole construction.

3 Models with SU(3)× SU(2)× U(1)2 Symmetry

In this section, we will discuss anomaly cancellation in toric fibrations with an SU(3)× SU(2)×
U(1)2 gauge group. These models were introduced in [13] with the phenomenological motiva-
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tion to study direct realisations of the Standard Model gauge group in F-theory without GUT-
breaking. Compared to other constructions as in [112, 123–125], our models have in addition to
U(1)Y one further independent U(1) factor that can be utilised as a further selection rule.

While we postpone all phenomenological discussions along with the detailed geometric analysis
to chapter V, we would like to address the topic of fluxes and anomalies here. On the one hand,
it serves as a further demonstration of the techniques we have developed in chapter III for the
handling of vertical fluxes. On the other hand, the general results obtained from such an analysis
will also be valuable for phenomenological investigations in chapter V, where we will attempt to
construct Standard-Model-like fibrations with realistic chiral spectra. The results of this section
have been presented in [15].

3.1 Geometries realising an (extended) Standard Model

Since we will discuss in full detail the geometries of all possible toric realisations of the gauge
group SU(3)× SU(2)× U(1)2 in F-theory in chapter V, we will merely summarise the essential
data of the fibrations here that are relevant for the discussion of fluxes and anomalies.

We will focus on one out of the five possible toric realisations, with the understanding that
all methods used can be applied straightforwardly for all the other models.

3.1.1 Fibration data and matter spectrum of the I×A model

The elliptically fibred Calabi–Yau fourfolds Y4 → B are constructed as hypersurfaces in a Bl2P2-
fibration X5

π−→ B [57,58,80,126,127]. The non-abelian gauge symmetry is realised torically using
the technique of tops [70,71]. For the case at hand there are 5 inequivalent tops – labelled as I×A,
I× B, I× C, III× A and III× B in [13] – giving rise to the Standard Model gauge algebra with
a further U(1). The U(1)s arise from a rank two Mordell–Weil group generated by sections with
divisor classes S0 (zero-section), S1 and U . The non-abelian part of the gauge group is localised
over two vertical divisors, W2 = [{w2}] for SU(2) and W3 = [{w3}] for SU(3). The tops define
divisors Ei (i = 0, 1) and Fj (j = 0, 1, 2) with associated coordinates ei and fj , respectively, such
that

E0 + E1 = π−1(W2) ≡W2, F0 + F1 + F2 = π−1(W3) ≡W3. (IV.110)

The intersections of the divisors Ei and Fj with the hypersurface Y4 give rise to the exceptional
divisors which resolve the non-abelian singularities; they are given by P1-fibrations over W2

and W3, respectively. The rational fibres are in one-to-one correspondence with the simple roots
of SU(2) and SU(3) and can split into further P1s over matter curves and Yukawa points.

Given a base B, the geometry is specified by a choice of divisor classes W2 and W3 as well
as of two other base classes α, β which parametrise the Bl2P2-fibration. In the following we will
focus on one of the five models labelled I × A. The fibration data is given by table V.8. The
Stanley–Reisner ideal of the fibre ambient space depends on the triangulation of the top.8 As
in [13] we choose a triangulation leading to the SR-ideal generators

u v, u w,w s0, v s1, s0 s1, e0 w, e1 s0, e1 u, f0 w, f0 s1, f1 s0, f1 v, f2 s0, f2 s1, f2 u, f0 e1. (IV.111)

Furthermore one can read off the linear relations amongst the divisors from the non-trivial columns
in table V.8, e.g. [v] = β + U + S1 + F1. This leads to the following generators of the linear
equivalence ideal,

〈β + U + S1 + F1 − [v] , α+ U + S0 − E1 − F2 − [w] , W2 − E0 − E1 , W3 − F0 − F1 − F2 〉.
(IV.112)

8Of course all physical quantities in the F-theory limit are independent of the choice of triangulation.
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coordinates

u v w s0 s1 e0 e1 f0 f1 f2

base
divisor
classes

W2 · · · · · 1 · · · ·
W3 · · · · · · · 1 · ·
α · · 1 · · · · · · ·
β · 1 · · · · · · · ·

fibre &
excep.
divisors

U 1 1 1 · · · · · · ·
S0 · · 1 1 · · · · · ·
S1 · 1 · · 1 · · · · ·
E1 · · −1 · · −1 1 · · ·
F1 · 1 · · · · · −1 1 ·
F2 · · −1 · · · · −1 · 1

−1 0 1 −1 0 0 1 0 0 1

top data 1 −1 0 0 1 0 0 0 1 0

0 0 0 0 0 x x y y y

Table IV.9: Divisor classes and coordinates of the ambient space for model I×A. The last row
(‘top data’) describes (parts of) the fan of the ambient space X5; for a specific base B one has to
fix the lattice coordinates x and y as well as further toric data completing the description of B.

The polynomial

PT =

v w (c1;0,0 e1 f2 w s1 + c2;,0,1 f0 f2 v s0) + u (b0;1,1 e0 f0 v2 s2
0 + b1 v w s0 s1 + b2;0,0 e1 f1 f2 w2 s2

1)+

u2(d0;1,1 e0 f0 f1 v s2
0 s1 + d1;0,0 f1 w s0 s

2
1 + d2;1,1 e0 f0 f

2
1 u s2

0 s
2
1)

(IV.113)

cuts out the Calabi–Yau hypersurface Y4 with divisor class [Y ] ≡ [PT ] = [b1]+U+[v]+[w]+S0+S1

in X5. The coefficients are sections of specific line bundles, or – equivalently – transform as certain
divisor classes,

[b0;1,1] = α− β +K −W2 −W3 , [b1] = K , [b2;0,0] = β − α+K ,
[c1;0,0] = K − α , [c2,0,1] = K − β −W3 ,

[d0;1,1] = α+K −W2 −W3 , [d1;0,0] = β +K , [d2;1,1] = α+ β +K −W2 −W3.

(IV.114)

Here K is the anti-canonical class of the base B. In this model the U(1)-generators are

ωI×A
1 ≡ ω1 = S1 − S0 −K +

1

2
E1 +

2

3
F1 +

1

3
F2,

ωI×A
2 ≡ ω2 = U − S0 −K − [c1;0,0] +

2

3
F1 +

1

3
F2.

(IV.115)

This geometry gives rise to a rich spectrum of matter charged under the SU(3)×SU(2)×U(1)2

gauge symmetry. The various matter representations R as well as the curves CR on B over which
this matter is localised are listed in table IV.10.

3.1.2 Fluxes over generic Bases

To compute fluxes for a generic base B, we proceed analogously as in section 2.2.2: We first

determine a basis {ti} of H
(2,2)
vert (Y4) and then reduce the transversality and gauge symmetry
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R U(1)-
curve CR in base

charges

21 (1
2 ,−1) {w2} ∩ {c2;0,1}

22 (1
2 , 1) {w2} ∩ {c2

1;0,0 d1;0,0 − b1 b2;0,0 c1;0,0 + b22;0,0 c2;0,1w3}

23 (1
2 , 0)

{w2} ∩ {b20;1,1 d
2
1;0,0 + b0;1,1 (b21 d2;1,1 − b1 d0;1,1 d1;0,0 − 2 c2;0,1 d1;0,0 d2;1,1w3)

+c2;0,1w3 (d2
0;1,1 d1;0,0 − b1 d0;1,1 d2;1,1 + c2;0,1 d

2
2;1,1w3)}

31 (2
3 ,−

1
3) {w3} ∩ {b0;1,1}

32 (−1
3 ,−

4
3) {w3} ∩ {c1;0,0}

33 (−1
3 ,

2
3) {w3} ∩ {b0;1,1w2 c1;0,0 − b1 c2;0,1}

34 (2
3 ,

2
3) {w3} ∩ {b1 b2;0,0 − c1;0,0 d1;0,0}

35 (−1
3 ,−

1
3) {w3} ∩ {b0;1,1 d

2
1;0,0 − b1 d0;1,1 d1;0,0 + b21 d2;1,1}

(3,2) (1
6 ,−

1
3) {w2} ∩ {w3}

1(1) (1,−1) {b0;1,1} ∩ {c2;0,1}

1(2) (1, 0) C(2)

1(3) (1, 2) {b2;0,0} ∩ {c1;0,0}

1(4) (1, 1) C(4)

1(5) (0, 2) {c1;0,0} ∩ {c2;0,1}

1(6) (0, 1) C(6)

Table IV.10: Matter representations in the I × A model, together with the corresponding
codimension two loci in B over which they are localised. The singlet curves C(2), C(4) and C(6)

cannot be written as complete intersections (see [13] for details).

conditions for a general linear combination λi ti to a linear combination of triple intersection
numbers on B. Imposing that the coefficients for each intersection number vanish individually,
we obtain as solutions all fluxes that are present on any base B.

For the I×A fibration, we obtain the following flux basis satisfying the standard transversality
conditions (III.6) and (III.7), and the gauge symmetry condition (III.9):

Gz14 = −F1 (β +K)− (F1 + 3S1)W3 + F2 (β + 3F1 − 2K +W3) ,

Gz24 = (2F1 − 2F2)W2 + E1 (6F2 − 3W3) ,

Gz34 = 3F 2
2 + F1 (W2 − α− 2K) + F2 (3E1 + 3F1 − 2α−K −W2 − 2W3) + (2F1 + 3S1)W3 ,

Gz44 = E1 (3β + 6F2 − 3K + 6S1) + 2 (F1 − F2 − 3S1)W2 ,

Gz54 = S1 (E1 +K + S1 −W2) ,

G
(i)
4 (D) = ωi ∧ D for i = 1, 2 and D ∈ H(1,1)(B) (U(1)i-fluxes) . (IV.116)

The most general flux on a generic base B thus has the form

G4 =
∑
i

ziG
zi
4 +G

(1)
4 (D) +G

(2)
4 (D′). (IV.117)
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The numerical coefficients zi ∈ Q and the base divisor classes D and D′ are subject to the
quantisation condition (III.2). Note that for an explicit choice of the fibration data and base B,
linear equivalences amongst the vertical divisors might render some of the above fluxes linearly
dependent. If no such linear dependences arise, one might wonder if additional fluxes can be
constructed for a special base B. However, it turns out that the only such fluxes are of the form

G
(i)
4 (D) for extra classes of D which may exist in addition to the generic base classes α, β,W2,3,K.

In contrast, no additional fluxes of the form Gzi4 not related to a U(1)i-flux can occur. This is of
course under the assumption that the specific base B does not enforce further gauge enhancements,
either non-abelian or abelian in the form of non-toric sections, on the full fibration. If this is case,
the space of divisors on Y4 and consequently also H2,2

vert(Y4) increases.
For the discussion of the phenomenology of Standard-Model-like vacua, an extra restriction

comes from requiring that the hypercharge U(1)Y gauge potential does not receive a Stückelberg
mass from the D-term induced by the flux:∫

Y4

G4 ∧ ωY ∧ J (B) = 0 , (IV.118)

with J (B) ∈ H(1,1)(B) being the Kähler form of the base. This condition depends on the particular
choice of linear combination

U(1)Y = aU(1)1 + b U(1)2 ←→ ωY = aω1 + b ω2, (IV.119)

where ω1 and ω2 are the generators of the two abelian gauge group factors. For completeness,
we include here the D-terms induced by the general flux (IV.117) for the individual U(1) gauge
groups,

ξ1 '
∫
Y4

G4 ∧ ω1 ∧ J (B) =

∫
B
J (B)∧(

−2 (D +D′)K +
1

2
DW2 +

1

3
(2D −D′)W3 + 2KW3 z1 −W 2

3 z1 −W2W3 z2 − 5KW3 z3

+W2W3 z3 + 2W 2
3 z3 + α (D′ −W3 z3) + 3KW2 z4 − 4W2W3 z4 − β (D′ +W3 z1 + 3W2 z4)

+(α− β +K −W2 −W3) (β −K +W3) z5

)
,

ξ2 '
∫
Y4

G4 ∧ ω2 ∧ J (B) =

∫
B
J (B)∧ (IV.120)(

αD − βD + 2αD′ −DK − 4D′K − 1

3
DW3 +

2

3
D′W3 + 2βW3 z1 − 4KW3 z1 + 2W 2

3 z1

+ 2W2W3 z2 − αW3 z3 − 3βW3 z3 +KW3 z3 +W2W3 z3 −W 2
3 z3 + 6βW2 z4 − 6KW2 z4

+8W2W3 z4 + (β −K +W3) (−α+ β −K +W2 +W3) z5

)
.

Here J (B) is the Kähler form on the base B. For an explicit realisation of the hypercharge
generator ωY = λ1 ω1 + λ2 ω2, the corresponding D-term must vanish in a phenomenologically
viable model. Likewise, consistency will require the D3-tadpole n3 = χ(Y4)/24− 1/2

∫
Y4
G2

4 to be

integer; the expression for 1/2
∫
Y4
G2

4 is quite lengthy and its presentation is relegated to the end
of this chapter, cf. formula (IV.146).

3.1.3 Homology classes of matter surfaces

As explained in section 3.3.2 of chapter III, and also demonstrated in section 2.2.3 in the
SU(5)×U(1) model, the matter surfaces of non-abelian matter can be obtained through primary
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decomposition. For the I × A model, this method determines all homology classes but those
of 1(i) with i = 2, 4, 6 (‘missing singlets’). We have collected the results in table IV.11. Note
again that all these matter surfaces γR are vertical in homology, i.e. [γR] = [Y4] · [γ̃R], with

[γ̃R] ∈ H(2,2)
vert (Y4). With the knowledge of the matter surface classes, we can readily compute the

chiral indices induced by the fluxes (IV.117) (cf. table IV.12).

Note that we can again use the abelian anomalies to determine the chiralities of the missing
singlets, as presented in table IV.13. Furthermore, as we will demonstrate in section 3.2.2, we

can even use anomaly matching to derive homology classes [1̃(i)] for generic fibrations such that

the chiral index χ(1(i)) :=
∫
Y4
G4 ∧ [1̃(i)] will lead to an anomaly free spectrum for any valid flux

G4. These classes are also included in table IV.11.

Even though the specific flux basis (IV.116) for the fluxes and the derivation of the matter
surfaces made use of the choice of the SR-ideal (IV.111), all physical results are independent
of the choice of triangulation of the fibre. In particular the results of tables IV.12 and IV.13
for the chiral indices depend only on intersection numbers on the base. They can be applied
straightforwardly to any choice of base B provided this choice gives rise to a consistent fibration
structure in the sense specified in the paragraph after (IV.115).

3.2 Cancellation of gauge and gravitational anomalies

Just like in our previous examples with SU(5) symmetry, the 4D effective field theory is potentially
plagued by gauge anomalies. In the presence of the gauge group SU(3)×SU(2)×U(1)1×U(1)2,
the possible types of non-trivial anomalies are SU(3)3, SU(n)2 − U(1), U(1)a − U(1)b − U(1)c
and U(1)−gravitational (note that SU(2)3 anomalies are trivially 0 because SU(2) has only real
representations). Here the U(1)s can be any linear combination λ1 U(1)+λ2 U(1)2. Adapting the
general formulae (IV.3) to this set-up, we obtain the following conditions matching the anomalies
with possible GS-counterterms:

SU(3)3 : 2χ(3,2) +
∑
i

χ(3A
i ) = 0 (IV.121)

SU(3)2 − U(1) : 2 q(3,2)χ(3,2) +
∑
i

q(3A
i )χ(3A

i ) = −
∫
Y4

G4 ∧ ω ∧W3 (IV.122)

SU(2)2 − U(1) : 3 q(3,2)χ(3,2) +
∑
i

q(2I
i)χ(2I

i) = −
∫
Y4

G4 ∧ ω ∧W2 (IV.123)

U(1)a − U(1)b − U(1)c :
∑
R

dim(R) qa(R) qb(R) qc(R)χ(R) = 3

∫
Y4

G4 ∧ π∗(ω(a · ωb) ∧ ωc)

(IV.124)

U(1)− gravitational :
∑
R

dim(R) q(R)χ(R) = −6

∫
Y4

G4 ∧ K ∧ ω , (IV.125)

where on the left-hand side q(·)(R) denotes the associated charge of the representation R under

the U(1)(·) generator ω(·) = λ
(·)
1 ω1 + λ

(·)
2 ω2 (IV.115). The relevant values of the projection π∗ of

4-cycles in Y4 to divisors of the base are

π∗(ω1 · ω1) =
1

2
W2 +

2

3
W3 − 2K ,

π∗(ω1 · ω2) = π∗(ω2 · ω1) = −1

3
W3 −K + α− β ,

π∗(ω2 · ω2) =
2

3
W3 − 4K + 2α .

(IV.126)
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R homology class [γR] = [Y4] · [γ̃R]

21 c2;0,1E0 (b1 + S0 + U + v) = Y4

{
E0 (K − S1 − β −W3)

}
22

E0 [(b1 + b2;0,0 + S0 + v) (b1 + S1 + s0 + U + v)− 2 v (d1;0,0 + S0 + U)]

= Y4

{
−αE0 −W2 (F1 − 2K − S0 + S1 + U) + E1 (S1 − F2 − 2K +W3)

}
23

E1 [(2 b0;1,1 + 2 d1;0,0) (b1 + w + v + S1) + F1 (b1 + S1) + F0 (b1 + v)
− (b1 + v + S1) (d0;1,1 + d1;0,0 + S1 + 2F1) + d1;0,0 (b1 + S1)]

= Y4

{
E1 (α− β + 2F2 + 3K − 2S1 − 2W2 − 3W3) +W2 (α− F2 + S0 + U)

}
31 F1 w b0;1,1 = Y4 {F2 (F2 + E1 − α−W3) +W3 (α− E1 + S0 + U)}

32 F0 U c1;0,0 = Y4 {(F1 + F2) (α− F2) +W3 (F2 − α− S0)}

33 F1 (b1 + S1 + w) (c2;0,1 + F0) = Y4

{
S1W3 + F1 (K − F2)

}
34

F0 (b1 + U + S0) (d1;0,0 + U + S0)

= Y4

{
F1 (α− β −K) + F2 (α−K − F2) +W3 (F2 − F1 − S1 − U − α+K)

}
35

F2 [(b0;1,1 + d1;0,0 + v) (b0;1,1 + 2 v)− b0;1,1 (d0;1,1 + v)− d2;1,1 v]

= Y4

{
F2 (E1 + 2F1 + F2 + β +K −W2 −W3)

}
(3,2) E0 F2 (b1 + v) = Y4 {E0 F2}

1(1)
b0;1,1 c2;0,1 (b1 + S0 + U + v + w)

= PT
{

(K − β) (K − β + α)− S1 (S1 + E1 +K)

+ W2 (β −K + S1 +W3) +W3 (W3 − α+ 2β − 2K)
}

1(3)
b2;0,0 c1;0,0 S0

= Y4

{
S0K + S2

1 − F2 (F1 + F2) + β (S1 − U)
+α (F1 + F2 − S0 + U) +W3 (F2 + U − S0 + S1 − α)}

1(5) c1;0,0 c2;0,1 (b1 + S1 + S0 + v + w)

= Y4

{
K (K − U)− S2

1 − β (K + S1 − U)−W3 (K + S1 − U) + α (β −K +W3)
}

1̃(2)
Y4

{
S1 · (3S1 − 2α+ 3β + 2E1 − 2K + 4W3) + U · (α− β + 2K −W2 − 3W3)

−F2 · (2E1 + F1 + 2F2)}

1̃(4)
Y4

{
S1 · (2α− 3S1 − 4β − E1 − 3K +W2 − 2W3)

+U · (2β − 2α− 2K +W2 + 4W3) + F2 · (E1 + 2F1 + 3F2)
}

1̃(6) Y4

{
2S1 (S1 − α+ 2β +K +W3) + U (−2β − 2K +W2 −W3) + (E1 − F2)F2

}
Table IV.11: Homology classes of matter surfaces, given as 4-cycles in the ambient space and on
the hypersurface. For formatting reasons the square brackets indicating divisor classes of sections
are left out as well as product signs. The classes in the last three entries are not the actual matter
surfaces’, however they give rise to the correct chiral index when integrated with a valid G4 flux.
See section 3.2.2 for more details.
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R χ(R)

21
W2 (K − β −W3)

[
3β z4 + 3K z4 − 6W2 z4 +W3 (−3 z1 + 3 z2 + 3 z3 + 6 z4 − z5)

+α z5 − β z5 +K z5 −W2 z5
]
− (D − 2D′)W2 (β −K +W3)/2

22 −3W2 (β +K)
[
(β −K) z4 +W3 (z2 + 2 z4)

]
− (D + 2D′) (2α− β − 3K)W2/2

23

W2

[
(α−W2 −W3)W3 (3 z3 − z5) +K2

(−6 z4 + z5) + β2 (6 z4 + z5)

+K
(
W3 (6 z2 + 9 z3 + 12 z4 − 2 z5) + (α−W2) z5) + β ((−α− 2K +W2) z5

+W3 (6 z2 + 3 z3 + 12 z4 + 2 z5))
]
−DW2 (−α− 2K +W2 +W3)

31
W3 (W2 +W3 − α+ β −K) [W3 z1 − 2W2 z2 + α z3 −W2 z3 − 2W3 z3 − 2W2 z4

+ K (z1 − z3 − z5) +W3 z5 + β (z1 + z5)
]

+ (2D −D′) (α− β +K −W2 −W3)W3/3

32
W3 (α−K)

[
β z1 +W3 z1 − 2W2 z2 + α z3 −W2 z3 − 2W3 z3 +K (z1 + 2 z3)− 2W2 z4

]
+(D + 4D′) (α−K)W3/3

33

W3

[
βW3 (−z1 + z3 − 2 z5)− βK (z1 + z3 − 2 z5) + β2 (z1 − z5) + αK (z3 − z5)

+W 2
3 (−2 z1 + z3 − z5) + αβ (z3 + z5) + αW3 (z3 + z5)−K2

(2 z1 + z3 + z5)
+KW2 (−2 z2 − z3 + 4 z4 + z5)− βW2 (2 z2 + z3 + 8 z4 + z5)−W2W3 (2 z2 + z3 + 8 z4 + z5)

+KW3 (5 z1 − 3 z3 + 2 z5)
]

+ (D − 2D′)W3 (β − 2K +W3)/3

34

W3

[
−β2 z1 + αK z1 + αW3 (z1 − 2 z3)− βW3 (z1 − 2 z3)− 2KW3 (z1 − 2 z3)

+αβ (z1 − z3) +K2
(z1 − z3) + α2 z3 + βK z3 − αW2 (2 z2 + z3 + 2 z4)

+βW2 (2 z2 + z3 + 2 z4) + 2KW2 (2 z2 + z3 + 2 z4)
]
− 2 (D +D′) (α− β − 2K)W3/3

35

W3

[
−β2 z1 − αW3 z1 − α2 z3 − βW3 z3 − αβ (z1 + z3) + 3K2

(z1 + z3) +W 2
3 (z1 + z3)

+βK (2 z1 + z3)− αK (z1 + 2 z3)− 2KW3 (z1 + 2 z3) + 2αW2 (z2 + z3 + z4)
−W 2

2 (2 z2 + z3 + 2 z4) + βW2 (z1 + 2 z2 + z3 + 2 z4) +KW2 (z1 + 6 z2 + 2 z3 + 6 z4)

+W2W3 (z1 − 2 (z2 + z4))
]
− (D +D′) (α+ β + 3K −W2 −W3)W3/3

(3,2)
W2W3 [−α z3 − β (z1 − 3 z4) +W2 (2 z2 + z3 + 2 z4) +W3 (−z1 + 3 z2 + 2 z3 + 6 z4)

−K (z1 + 6 z2 + 2 z3 + 9 z4)
]

+ (D − 2D′)W2W3/6

1(1) (−D +D′) (α− β +K −W2 −W3) (β −K +W3) + (K − β −W3) (−α+ β −K +W2 +W3)
·
[
W2 (6 z4 + z5)− (α− 2β +K) z5 +W3 (3 z1 − 3 z3 + 2 z5)

]
1(3) (D + 2D′) (α−K) (α− β −K)

1(5) (α−K) (β −K +W3) (W3 (3 z1 − 3 z3 + z5) +W2 (6 z4 + z5)− (α− β +K) z5)
+2D′ (α−K) (β −K +W3)

Table IV.12: Chiral indices of states with known matter surfaces in terms of the general flux
(IV.117). The terms in the right column are to be understood as intersection numbers on the
base.
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Finally note that in the chosen normalisation the symmetrisation of the indices (a, b, c) on the
right-hand side of (IV.124) comes with a factor of 1/3! = 1/6.

It is straightforward, though tedious, to directly verify the matching (IV.121) – (IV.123)
of non-abelian anomalies with the chiralities in table IV.12. However, to further support the
hypothesis that anomaly cancellation in 4D F-theory can be derived solely from the matter
surfaces, we will parallel the analysis of sections 2.2.4 and 2.3.5 and present similar results for
the I×A fibration.

3.2.1 Non-abelian Anomalies

We begin with the SU(3)3 anomaly. According to the general formula (IV.39), the field theory
expression (IV.121) is calculated as

∫
X5
G4 ∧ (2 [(3,2)] +

∑
i[3

A
i ]) in F-theory, where [R] ≡ [γR]

denotes the homology class of the matter surface associated to the state R. With the homology
classes explicitly given in table IV.11, it is now straightforward using the computational tools
from section 2 in chapter III to evaluate

2 [(3,2)] +
∑
i

[3A
i ] =[Y4] ·

{
(2α− β −W3) · F1 + (α+ β +W2) · F2 − (E1 + α−K) ·W3

}
≡[Y4] · η4

=⇒
∫
X5

G4 ∧

(
2 [(3,2)] +

∑
i

[3A
i ]

)
=

∫
Y4

G4 ∧ η4 .

(IV.127)

The 4-form η4 is obviously of the schematic form D
(B)
1 ·D(B)

2 + D̃(B) ·Exi. Thus by construction,
any G4 satisfying (III.6), (III.7) and (III.9) leads to

∫
Y4
G4 ∧ η4 = 0, i.e. the SU(3)3 anomaly is

guaranteed to be cancelled for any valid fluxes.
By analogous calculations, one finds for the SU(3)2 − U(1) anomaly with U(1) = λ1 U(1)1 +

λ2 U(1)2 (cf. table IV.10 for the U(1) charges) that

2 q(3,2) [(3,2)] +
∑
i

q(3A
i ) [3A

i ] = 2 (λ1 q1 + λ2 q2) (3,2) [(3,2)] +
∑
i

(λ1 q1 + λ2 q2) (3A
i ) [3A

i ]

= [Y4] · 1

3

{
λ1

(
(α− 2β − 3K − 2W3) · F1 + (2W2 − α− β − 3K) · F2 + (α− 2E1 + 2K) ·W3

)
+ λ2

(
−2(α+ β +W3) · F1 − (α+ β + 3K +W2) · F2 + (α+ E1 + 2K) ·W3

)
+(λ1 + λ2)S0 ·W3 − (λ1 S1 + λ2 U) ·W3

}
≡ [Y4] · θ4 .

(IV.128)

Note that in θ4 the term −(λ1 S1 +λ2 U) ·W3 is the only one giving non-zero contributions when
integrated with valid G4 fluxes. Comparing with (IV.122), we see that this precisely matches the
GS-counterterm, which in this case is −

∫
G4 ∧ ω ∧W3 = −

∫
G4 ∧ (λ1 S1 + λ2 U) ∧W3.

Concerning the SU(2)2 − U(1) anomaly, we have

3q(3,2)[(3,2)] +
∑
i

q(2I
i) [2I

i]

= [Y4] ·
{
λ1

2

(
(2α−W2 −W3) · E1 + (3K − β −W2 − F1 + S0 − S1) ·W2

)
+ λ2

(
(α− β −K) · E1 + (β − α− F1 − F2 +K +W3 + S0 − U) ·W2

)
+(λ1 + λ2)S0 ·W2 − (λ1 S1 + λ2 U) ·W2

}
(IV.129)
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Again this result agrees with (IV.123) by the same argument.

3.2.2 Abelian Anomalies — Determining Chiralities of missing Singlets

The remaining types of chiral anomalies are U(1)a − U(1)b − U(1)c and U(1)−gravitational.
Unfortunately, it is not possible to analyse these as above since the homology classes of the
matter surfaces of the singlets 1(2),1(4) and 1(6), which contribute to said anomalies, are harder
to determine. As a result, we are not able to argue their cancellation directly.

But we can reverse the argumentation and use the anomaly matchings (IV.124) and (IV.125)
– which we now assume to hold – to determine the chiralities of those singlets. In fact, with the
chiralities all other states at hand (cf. table IV.12), we can explicitly solve (IV.124) and (IV.125)
for χ(1(i)), i = 2, 4, 6, yielding the chiral indices as in table IV.13. Similar analyses have been
also performed e.g. in [57].

R χ(R)

1(2)

3α2W3 z3 + 3W3

[
(β2 + βW3 +K (−3K + 2W3)) z1

+(−2β2 + 5K2 − β (K +W3) + (W2 +W3)2 −K (3W2 + 5W3)) z3

]
+6 (β + 2K)W2 (β −K +W3) z4 − α (2β + 4K −W2 −W3) (β −K +W3) z5

+(2β + 4K −W2 −W3) (β −K +W3) (β −K +W2 +W3) z5
+α

[
−3W3 (β −K +W3) z1 + 3 (β + 2K − 2W2 −W3)W3 z3 − 6W2 (β −K +W3) z4

]
+D

[
α2 − 2β2 + 5K2 − 3KW2 +W 2

2 + α (β + 2K − 2W2 −W3)

−5KW3 + 2W2W3 +W 2
3 − β (K +W3)

]

1(4)

−3W3

[
α2 − β2 + α (K −W2 −W3) + β (−3K +W2 +W3) + 2K (−2K +W2 +W3)

]
z3

+(K − α) (β −K +W3) (−α+ β −K +W2 +W3) z5
+(D +D′)

[
−2α2 + β2 + β (2K −W2 −W3)

+K (5K − 3 (W2 +W3)) + α (β −K + 2 (W2 +W3))
]

1(6)

3W3

[
(α2 + αβ) z3 + (−β2 + 5K2

+ βW2 +W3 (W2 +W3)−K (W2 + 4W3)) z1

+K (−β − 3K +W2 +W3) z3

]
+ 6W2 (β −K +W3) (−β − 3K +W2 +W3) z4

−(2β + 4K −W2 −W3) (β −K +W3) (β −K +W2 +W3) z5 + α
{
− 3W3 (β −K +W3) z1

−3W3 (−β − 2K +W2 +W3) z3 − 6W2 (β −K +W3) z4

+(2β + 4K −W2 −W3) (β −K +W3) z5
}

+D′ (−2 (α2 + β2 − αW2 +K (−5K + 2W2)) + (α− β − 7K +W2)W3 +W 2
3 )

Table IV.13: Chiral indices of the singlets with unknown homology classes induced by the flux
(IV.117), computed by imposing anomaly cancellation.

However, we would like to take further advantage of our knowledge of the matter surfaces of
the other states. As we will show now, we can actually solve the U(1)-anomaly matchings (IV.124)

and (IV.125) on the level of matter surfaces. The result will be homology classes [1̃(i)], i = 2, 4, 6

which are valid for any base B and yield anomaly-free chiral indices χ(1(i)) =
∫
Y4
G4 ∧ [1̃(i)] for

any G4.

We first consider the U(1)2
1−U(1)2 anomaly. By the charge assignments (IV.10) we see that,

out of the missing singlets, only 1(4) contributes to the left-hand side of the anomaly matching
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(IV.124). Assuming the matching to hold, we can therefore deduce that∫
Y4

G4 ∧ [1(4)] = dim(1(4)) q2
1(1(4)) q2(1(4))χ(1(4))

=

∫
Y4

G4 ∧

1

2
(4π∗(ω1 · ω2) ∧ ω1 + 2π∗(ω1 · ω1) ∧ ω2)−

∑
R6=1(4)

dim(R) q2
1(R) q2(R) [R]

 .

(IV.130)

Since this is now supposed to hold for any G4 flux satisfying the transversality and gauge sym-
metry conditions, we conclude that we can compute the chirality of 1(4) by integrating the flux
over the 4-cycle1

2
(4π∗(ω1 · ω2) ∧ ω1 + 2π∗(ω1 · ω1) ∧ ω2)−

∑
R6=1(4)

dim(R) q2
1(R) q2(R) [R]

 . (IV.131)

Inserting all the relevant 4-cycle and divisor classes one finds a lengthy expression which we omit

in the interest of readability. However, since terms of the form D
(B)
1 ·D(B)

2 +D(B) ·S0 +D′(B) ·Exi
do not contribute to any G4 integration, we can drop them for the purpose of computing chirality.
The result is now much more compact,

[̃1(4)] = S1 (2α− 3S1 − 4β − E1 − 3K +W2 − 2W3) + U (2β − 2α− 2K +W2 + 4W3)

+ F2 (E1 + 2F1 + 3F2) ,

(IV.132)

while still giving the desired result χ(1(4)) =
∫
Y4
G4 ∧ [̃1(4)]. We stress that this is not the

homology class of the actual matter surface of 1(4).9

As a first consistency check, we repeat the analogous computation for the U(1)1 − U(1)2
2

anomaly. Again, only 1(4) out of the missing singlets contributes. Due to the charge assignments,
we should now have

χ(1(4)) =∫
Y4

G4 ∧

1

2
(4π∗(ω1 · ω2) ∧ ω2 + 2π∗(ω2 · ω2) ∧ ω1)−

∑
R6=1(4)

dim(R) q1(R) q2
2(R) [R]

 .

Indeed, we find that while the 4-cycle inside the parentheses does not match the corresponding

4-cycle (IV.131) from the U(1)2
1−U(1)2 anomaly, the difference is of the form D

(B)
1 ·D(B)

2 +D(B) ·
S0 +D′(B) · Exi, i.e. does not affect the calculation of the chiral index.

Having found a systematic way to compute the chirality for 1(4), we can now use the U(1)3

anomaly to pinpoint the homology class of 1(2), since the other still unknown missing singlet 1(6)

does not contribute as it is not charged under U(1)1. We proceed as before and isolate the chiral
index to be determined from the matching condition (IV.124):

∫
Y4

G4 ∧ [1(2)] = dim(1(2)) q3
1(1(2))χ(1(2)) =

∫
Y4

G4 ∧

π∗(ω2
1) ∧ ω1 −

∑
R6=1(2)

dim(R) q3
1(R) [R]

 .

(IV.133)

9 For instance it one computed the Cartan charges of 1(4) based on this surface, one would find a non-zero result∫
Y4

Exi ∧ [̃1(4)] ∧D(B) 6= 0.
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On the right-hand side the sum now also runs over R = 1(4), for which we use the above result

[̃1(4)] as the matter surface’s homology class. By the same arguments as above, we find the
expression

[̃1(2)] =S1 (3S1 − 2α+ 3β + 2E1 − 2K + 4W3) + U (α− β + 2K −W2 − 3W3)

− F2 (2E1 + F1 + 2F2)
(IV.134)

up to terms of the form D
(B)
1 ·D(B)

2 +D(B) · S0 +D′(B) · Exi.

Similarly, we can use the U(1)3
2 anomaly to determine the corresponding 4-cycle for 1(6). The

matching condition in this case reads

∫
Y4

G4 ∧ [1(6)] = dim(1(6)) q3
2(1(6))χ(1(6)) =

∫
Y4

G4 ∧

π∗(ω2
2) ∧ ω2 −

∑
R6=1(6)

dim(R) q3
2(R) [R]

 .

(IV.135)

Using (IV.132) for R = 1(4) (1(2) does not contribute) we find

[̃1(6)] = 2S1 (S1 − α+ 2β +K +W3) + U (−2β − 2K +W2 −W3) + (E1 − F2)F2 . (IV.136)

As a further non-trivial consistency check, we consider the U(1)−gravitational anomalies

(IV.125), now using the expressions [̃1(k)] for k = 2, 4, 6 in the sum on the left-hand side. With

these we indeed find that the 4-cycle
∑
R dim(R) ql(R) [R] is, up to terms of the form D

(B)
1 ·D

(B)
2 +

D(B) · S0 +D′(B) · Exk, equal to −6S1 · K for l = 1 and −6U · K for i = 2, thus confirming that
the matching of U(1)−gravitational anomalies is consistent with the chiralities for the missing
singlets we deduced from the matching of U(1)3 anomalies. Finally, we can compute the chiralities
induced by the fluxes (IV.117), which unsurprisingly are identical to the results in table IV.13.

Note again that the classes [̃1(k)] for k = 2, 4, 6 are not the actual classes of the matter
surfaces (see footnote 9). This implies that we cannot make any statement about whether or
not the matter surfaces of these states are vertical in homology, even though this is expected. It
would require new techniques to address this issue.

3.3 Flux quantisation and the Witten anomaly

In addition to gauge anomalies analysed in the previous section, our model has a further source
of perturbative anomaly: the famous Witten anomaly haunting SU(2) gauge theories. Witten
showed in [128] that any theories with an SU(2) gauge group must have an even number of
doublets. In our model the statement can be phrased as

3χ((3,2)) +
∑
i

χ(2i) ≡ 0 mod 2 . (IV.137)

Clearly, this is another type of a ‘discrete’ anomaly similar to the Z2 anomaly in section 2.3.6, i.e. it
depends on the specific integer values of chiral indices. It is not surprising that its cancellation
in F-theory again relies on the quantisation condition. In the following we will show that the
Witten anomaly is indeed cancelled by virtue of the quantisation condition, provided that in a
consistent fibration over a smooth base an appropriately quantised flux always induces integer
chiralities.
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c2(Y4) in the I×A Model

As the quantisation condition involves the second Chern class c2(Y4) of the fourfold, we will
briefly present its computation here for completeness. As in the SU(5) case (cf. section 2.3.6),
the computation proceeds via the adjunction formula as

c(Y4) = c({PT }) =
c(X5)

1 + [PT ]
=

1 + c1(X5) + c2(X5) + ...

1 + [PT ]
Y4 Calabi–Yau

=⇒ c2(Y4) = c2(X5)− c1(X5) [PT ] + [PT ]2 = c2(X5) .

(IV.138)

For a fibration over a generic base B with two independent gauge divisors W2,3, this can be
calculated as

c(X5) = c(B)
Πi(1 +D

(T )
i )

(1 +W2) (1 +W3)
, (IV.139)

where the toric divisors D
(T )
i are listed in table IV.9. Collecting all contributions of degree 2, we

arrive at

c2(Y4) = c2(X5)

= c2(B) + F2 (2E1 + 2F1 + 3F2)− S1 (2E1 + 5S1)

−β (E1 − F1 + F2 − 2S0 + 5S1 − 3U) + α (β − E1 − 3F1 − 4F2 + 2S1 − 2U)

+K (α+ β − E1 + F1 − F2 + 2S0 + 2S1 + 3U) + (α− F2 + S0 + U)W2

+ (4α− E1 + F1 − 3F2 + 4S0 − 4S1 + 4U)W3 .

(IV.140)

Cancellation of Witten anomaly

First let us, similarly to the previous section, compute the 4-cycle contributing to the anomaly,

3 [(3,2)] +
∑
i

[2i] =[PT ] ·
(
−2E1 · F2 − 2S1 ·W2

+ terms of the form D(B)
a ·D(B)

b +D(B) · Exi +D(B) · S0

)
.

(IV.141)

For the Witten anomaly to be cancelled, we thus need to show that∫
Y4

G4 ∧ (−2E1∧F2 − 2S1 ∧W2) = 2

∫
Y4

G4 ∧ (−E1 ∧ F2 − S1 ∧W2) ≡ 0 mod 2

⇐⇒
∫
Y4

G4 ∧ (−E1 ∧ F2 − S1 ∧W2) ∈ Z .
(IV.142)

At this point we invoke the quantisation condition: Using the obvious fact that E1 · F2 + S1 ·W2

is a manifestly integer class, (III.2) implies∫
Y4

(
G4 +

1

2
c2(Y4)

)
∧ (−E1 ∧ F2 − S1 ∧W2) ∈ Z , (IV.143)

where the second Chern class c2(Y4) can be easily computed by adjunction (for the explicit
expression see (IV.140)). Thus (IV.142) follows if we can show that 1

2

∫
Y4
c2(Y4) ∧ (−E1 ∧ F2 −

S1 ∧W2) ∈ Z. By straightforward calculation,

1

2

∫
Y4

c2(Y4) ∧ (−E1 ∧ F2 − S1 ∧W2) =∫
B

(
1

2
(W2W

2
3 −W 2

2 W3 +W2W3K) +
1

2
W2 (K2 − c2(B)) + integer terms

) (IV.144)
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is not manifestly integer. However, it was shown in [121] that c2(B) − K2
is an even class for

smooth complex threefolds, thus the second summand is integer for a smooth base B. To argue
that the first term is also integer, we have to make use of our assumption that, for consistent
geometries, all chiral indices are integer. If this is true, then, again by the quantisation condition,
considering the class [(3,2)] (which is manifestly integer as a matter surface) yields the condition

χ((3,2)) +
1

2

∫
Y4

c2(Y4) ∧ [(3,2)] =

∫
Y4

(
G4 +

1

2
c2(Y4)

)
∧ [(3,2)] ∈ Z

χ((3,2))∈Z
=⇒

∫
Y4

1

2
c2(Y4) ∧ [(3,2)] =

∫
B

(
1

2
(W 2

2 W3 +W2W
2
3 −W2W3K)

)
∈ Z ,

(IV.145)

which then implies the integrality of (IV.144).
To summarise: Based on the assumption that a consistent fibration implies integral chiral

indices from a well-quantised flux, we have shown the cancellation of the Witten anomaly (IV.137)
for (consistent) fibrations over any (smooth) base B. Note that the assumption was also crucial
to show the cancellation of Z2 anomalies in section 2.3.6.

4 Summary of Chapter IV

The main topic of this chapter was to study vertical G4-fluxes in three explicit F-theory models:
a Bl1P112 fibration with SU(5) × U(1), a P112 fibration with SU(5) × Z2 and a Bl2P2 fibration
with SU(3) × SU(2) × U(1)2 gauge group. These models were constructed torically using the
concept of tops. In all discussions, we kept the base of the fibrations generic, i.e. all results we
derived are independent of the choice for B. With the tools developed in chapter III, we were
able to compute all vertical fluxes systematically. In addition, these novel tools also enabled us to
determine the matter surfaces and their homology classes of all non-abelian matter states. With
these data, we could verify the cancellation of pure and mixed non-abelian gauge anomalies for
all models.

However, based on the knowledge of the homology classes of matter surfaces, we provided a
different approach to anomalies in F-theory: By identifying appropriate 4-cycles of the fibration
that are responsible for the anomaly, we could show in our explicit models that the concrete form of
the G4-flux is not of importance as long as it satisfies the transversality conditions set up in section
1.1 of chapter III. This geometric approach to anomalies may suggest some unknown mathematical
properties common to torus fibred Calabi–Yau fourfolds. These properties, if existent, could be
regarded as a geometric proof for the absence of gauge anomalies in 4D F-theory models.

Based on similar techniques, we have also studied discrete anomalies in our models. Con-
cretely, we were concerned with the Z2 and the Witten SU(2) anomalies. Being of discrete
nature, it did not come as a surprise that the quantisation of G4 plays a crucial role. In fact, our
analysis also required the physically motivated assumption that chiral indices must be integer
in any consistent model. With this, we could prove explicitly that both discrete anomalies are
cancelled for fibrations over any (smooth) base B. Interestingly, the cancellation of Z2 anomalies
turned out to be a consequence of having integer chiralities in the U(1) model. Indeed, the Z2

symmetry arises physically from the Higgsing of the U(1). Consistency conditions (e.g. having
integer chiralities) of the latter are therefore expected to be related to the absence of Z2 anomalies.

We have also investigated the role of fluxes in this Higgsing/conifold transition from the U(1)
to the Z2 model. Under the transition, the topological quantities of D3-tadpole and chiral indices
must be preserved. Thus, the flux background before and after the transition must be correlated.
Indeed, we could provide an explicit map that identifies a unique flux background in the Z2

fibration for a given configuration of vertical fluxes on the U(1) side. Crucially, this map requires
a non-vertical flux on the Z2 side, which was identified as a 4-cycle that becomes algebraic for
certain complex structure parameters of the P112 fibration.
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D3-tadpole of the general flux in Standard Model fibrations

Here we give, for completeness, the explicit formula for the D3-brane charge 1
2

∫
Y4
G2

4 induced by

the general flux G4 =
∑

i ziG
zi
4 +G

(1)
4 (D)+G

(2)
4 (D′) as given in (IV.116). On the right hand side,

the threefold products of vertical divisor classes are to be understood as intersection numbers on
the base B:

χ(Y4)

24
− n3 =

1

2

∫
Y4

G4 ∧G4 = (IV.146)

1

2

[
(−12 z22 − 12 z2 z3 − 24 z2 z4 − 3 z23 − 12 z3 z4 + 24 z24 + 12 z4 z5 + z25)W 2

2 W3

+ (12 z1 z2 + 6 z1 z3 + 48 z1 z4 + 6 z1 z5 − 18 z22 − 24 z2 z3 − 72 z2 z4 − 3 z23 − 60 z3 z4 − 6 z3 z5 − 72 z24

+ 12 z4 z5 + 3 z25)W2W
2
3 + (6 z21 − 6 z1 z3 + 6 z1 z5 + 6 z23 − 6 z3 z5 + 2 z25)W 3

3

+ (−36 z24 − 12 z4 z5 − z25)W 2
2 K + (12 z1 z2 + 6 z1 z3 − 24 z1 z4 − 6 z1 z5 + 36 z22 + 24 z2 z3 + 108 z2 z4

+ 3 z23 + 60 z3 z4 + 6 z3 z5 + 72 z24 − 24 z4 z5 − 5 z25)W2W3K

+ (−15 z21 + 18 z1 z3 − 12 z1 z5 − 21 z23 + 12 z3 z5 − 5 z25)W 2
3 K + (18 z24 + 12 z4 z5 + 2 z25)W2K

2

+ (6 z21 + 6 z1 z3 + 6 z1 z5 + 6 z23 − 6 z3 z5 + 4 z25)W3K
2 − z25 K

3

+ (12 z2 z3 + 6 z23 + 12 z3 z4 − 12 z4 z5 − 2 z25)W2W3 α

+ (−6 z1 z3 − 6 z1 z5 + 3 z23 + 6 z3 z5 − 3 z25)W 2
3 α+ (12 z4 z5 + 2 z25)W2Kα

+ (−6 z1 z3 + 6 z1 z5 − 3 z23 − 6 z3 z5 + 5 z25)W3Kα− 2 z25 K
2
α+ (−3 z23 + z25)W3 α

2

− z25 Kα2 + (36 z24 + 12 z4 z5 + z25)W 2
2 β + (12 z1 z2 + 6 z1 z3 + 48 z1 z4 + 6 z1 z5 − 36 z2 z4

− 36 z3 z4 − 6 z3 z5 − 72 z24 + 24 z4 z5 + 6 z25)W2W3 β + (3 z21 − 6 z1 z3 + 12 z1 z5 − 12 z3 z5

+ 6 z25)W 2
3 β + (−24 z4 z5 − 5 z25)W2K β + (3 z21 + 6 z1 z3 − 12 z1 z5 + 12 z3 z5 − 10 z25)W3K β

+ 4 z25 K
2
β + (−12 z4 z5 − 2 z25)W2 αβ + (−6 z1 z3 − 6 z1 z5 + 6 z3 z5 − 6 z25)W3 αβ + 5 z25 Kαβ

+ z25 α
2 β + (−18 z24 + 12 z4 z5 + 3 z25)W2 β

2 + (−3 z21 + 6 z1 z5 − 6 z3 z5 + 6 z25)W3 β
2 − 5 z25 K β2

− 3 z25 αβ
2 + 2 z25 β

3 + (−2 z2 + 2 z3 − 8 z4 − 2 z5)W2W3D + (−2 z1 + 4 z3 − 2 z5)W 2
3 D

+ (6 z4 + 2 z5)W2KD + (4 z1 − 10 z3 + 4 z5)W3KD − 2 z5K
2D + (−2 z3 + 2 z5)W3 αD

− 2 z5KαD + (−6 z4 − 2 z5)W2 βD + (−2 z1 − 4 z5)W3 βD + 4 z5K βD + 2 z5 αβD
− 2 z5 β

2D + 1/2W2D2 + 2/3W3D2 − 2KD2 + (4 z2 + 2 z3 + 16 z4 + 2 z5)W2W3D′

+ (4 z1 − 2 z3 + 2 z5)W 2
3 D′ + (−12 z4 − 2 z5)W2KD′ + (−8 z1 + 2 z3 − 4 z5)W3KD′ + 2 z5K

2D′

+ (−2 z3 − 2 z5)W3 αD′ + 2 z5KαD′ + (12 z4 + 2 z5)W2 βD′ + (4 z1 − 6 z3 + 4 z5)W3 βD′

− 4 z5K βD′ − 2 z5 αβD′ + 2 z5 β
2D′ − 2/3W3DD′ − 2KDD′ + 2αDD′ − 2βDD′

+ 2/3W3D′2 − 4KD′2 + 2αD′2
]
.
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Chapter V

Towards the Standard Model in
F-theory

After the formal discussions of the previous chapters, we would like to argue in this part that
F-theory provides an interesting playground for model building. Specifically, we would like to
focus on the compactification with the extended Standard Model gauge group SU(3)× SU(2)×
U(1)× U(1) presented in the previous chapter and compare the phenomenology of the resulting
4D effective field theory to the Standard Model. In a second step, we also include a systematic
analysis of fluxes in these compactifications to investigate possible realisations of the correct chiral
spectrum. The results of this chapter are taken from [13,15]

1 Yukawa Couplings in the SU(3)× SU(2)× U(1)2 Geometry

An important phenomenological aspect of F-theory compactifications are the geometrically real-
ised Yukawa couplings. These will have a leading contribution to the effective coupling in 4D,
whereas in comparison other effects like instantons corrections are perturbatively suppressed. In
this section we want to explicitly determine all the geometrically realised Yukawa couplings in
our extended Standard Models. This requires a more detailed construction of the full geometry
than the presentation in the previous chapter, where for compactness we have only focused on
the matter surfaces.

The construction of the extend Standard Model gauge group can be split into several steps,
along which different sets of Yukawa couplings can be pinpointed:

1. Choose the global fibration structure with the appropriate Mordell–Weil group of rank 2
realising two U(1) generators. The global structure will determine the spectrum of singlets
and their interaction structure.

2. Construct an SU(2) gauge factor by introducing singularities along divisor W2 in the base.
This introduces matter charged under SU(2) and both U(1)s and fixes the interactions
among them and the singlets.

3. Analogously construct an SU(3) gauge factor via singularities along divisor W3. The result-
ing geometry has additional states charged under SU(3) and the U(1)s, whose interactions
amongst each other and with the singlets can be studied independent of the SU(2) gauge
factor.

4. Combine both singularity structures to obtain the full gauge group. In this step, new matter
states charged under all gauge groups arise, along with interactions of these with the SU(3)
and SU(2) matter. Other couplings involving only SU(3) or SU(2) states and/or singlets
remain unchanged.
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1.1 F-theory with U(1)× U(1) gauge group

F-theory compactifications with two abelian gauge groups are based on elliptic fibrations with
Mordell-Weil group of rank two. Such elliptic fibrations allow for a description as the vanishing
locus of the hypersurface polynomial [57,58,80,126,127]

PT =v w(c1 w s1 + c2 v s0) + u (b0 v2 s2
0 + b1 v w s0 s1 + b2 w2 s2

1)+

u2(d0 v s2
0 s1 + d1 w s0 s

2
1 + d2 u s2

0 s
2
1)

(V.1)

inside a Bl2P2-fibration. Such types of fibration had previously been considered also in [129]. The
ambient space Bl2P2 of the elliptic fibre is a toric space which has the toric diagram represented by
polygon 5 in the classification [71] (see also figure B.1 in the appendix). Here and in the sequel we
will stick to the notation of [58,126] and denote the coordinates of Bl2P2 by u, v,w, s0, s1, where
s0 and s1 correspond to two blow-up P1s inside P2 with homogeneous coordinates [u : w : v]. The
Stanley–Reisner ideal is generated by {u v, u w, s0 w, s1 v, s0 s1} and the divisor classes associated
with the fibre ambient space coordinates are given as follows:

u v w s0 s1

α · · 1 · ·
β · 1 · · ·
U 1 1 1 · ·
S0 · · 1 1 ·
S1 · 1 · · 1

(V.2)

A fibration of this toric space over a base B is parametrised by the choice of two line bundles
α, β ∈ H(1,1)(B), in which the coordinates w resp. v transform as sections. The coefficients
bi, cj , dk transform as sections of certain line bundles over B, whose class is determined by the
requirement that the hypersurface (V.1) is Calabi–Yau. These classes are collected in table V.1
(taken from [126]; see also [57,80,127]). For suitable 3-dimensional base spaces B the hypersurface

b0 b1 b2 c1 c2 d0 d1 d2

α− β +K K −α+ β +K −α+K −β +K α+K β +K α+ β +K

Table V.1: Classes of the sections appearing in (V.1), with α and β pullback of classes of B and
K = π−1(c1(B)) the anti-canonical bundle of B.

(V.1) then describes a smooth elliptically fibred Calabi–Yau 4-fold

π : Y4 → B. (V.3)

It exhibits three independent rational sections

U = {u}, S0 = {s0}, S1 = {s1}. (V.4)

One of these sections, e.g. S0, can be interpreted as the zero-section.1 The image of the remaining
two independent sections under the Shioda map [101, 130, 131] then identifies the generators of
two independent U(1) gauge groups as [57,58,80,126]

ω1 = S1 − S0 −K,
ω2 = U − S0 −K − [c1],

(V.5)

1The fact that all three independent sections are rational (as opposed to holomorphic) is an artefact of the
representation of the fibration as a hypersurface. Indeed, the fibration is birationally equivalent to a complete
intersection which does exhibit a holomorphic zero-section [126]. The pre-image of this section under the birational
map can be identified with the zero section [58, 126]. Alternatively, one can define an F-theory compactification
with a rational zero-section as in [57,78,80].
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where K = π−1KB is the anti-canonical bundle of the base B. Here and in the sequel our notation
does not distinguish between a divisor (class) and its Poincaré-dual (1, 1)-form. Also, if there
is no confusion possible, we denote the divisor and its associated codimension one locus by the
same variable.

In our analysis of the matter representations of F-theory compactified on Y4 we will also need
the form of the singular Weierstrass model which is birationally equivalent to the blow-down of
the hypersurface (V.1) (i.e. the hypersurface inside the P2-fibration over B achieved by setting
s0 = s1 = 1 in (V.1)). The explicit map of this blow-down to Weierstrass form

y2 = x3 + f x z4 + g z6 (V.6)

has been worked out in the physics literature in [57,58,80,126]. In our subsequent analysis we will
make use of the expression for the Weierstrass sections f and g in terms of the defining sections
bi, cj , dk appearing in (V.1) as given after equation (2.38) and (2.39) in [58], which we recall here
for completeness,

f = −1

3
d2 + c e and g = −f

(
1

3
d

)
−
(

1

3
d

)3

+ c2 k, (V.7)

where

d = b21 + 8 b0 b2 − 4 c1 d0 − 4 c2 d1,

c = − 4

c1
(b0 b

2
2 − b2 c1 d0 + c2

1 d2),

e =
2c1

(
b0
(
b1c1d1 − b21b2 + 2b2c1d0 + 2b2c2d1 − 2c2

1d2

))
b0b22 + c1(c1d2 − b2d0)

+

+
2c1

(
−2b20b

2
2 + c2(b1b2d0 + b1c1d2 − 2b2c2d2 − 2c1d0d1)

)
b0b22 + c1(c1d2 − b2d0)

,

k =
c2

1(b0b1b2 − b0c1d1 − b2c2d0 + c1c2d2)2(
b0b22 + c1(c1d2 − b2d0)

)2 .

(V.8)

1.1.1 Charged singlets and their Yukawa couplings

The fibration gives rise to six types of charged singlet states 1(i) localised on curves on B, which
have already been analysed in [57,58,80,126,127]. Here we continue with the analysis of [58,126]
(alternatively, see [57,80]), which derives the curves as loci in the base over which the fibre of the
blown-down version of (V.1) exhibits a conifold singularity. These loci are given as the union of
the set of solutions to each of the following three pairs of equations,

0 = d0 c
2
2 + b20 c1 − b0 b1 c2 ,

0 = d1 b0 c2 − b20 b2 − c2
2 d2 ,

(V.9)

and

0 = d0 b2 c1 − b0 b22 − c2
1 d2 ,

0 = d1 c
2
1 − b1 b2 c1 + b22 c2 ,

(V.10)

and

0 = d0 c
3
1 c

2
2 + b20 c

4
1 − b0 b1 c3

1 c2 − c3
2(b22 c2 − b1 b2 c1 + c2

1d1) ,

0 = d2 c
4
1 c

2
2 + (b0 c

2
1 + c2 (−b1 c1 + b2 c2))(b0 b2 c

2
1 + c2(−b1 b2 c1 + b22 c2 + c2

1 d1)) .
(V.11)
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In [58,126] three singlet curves were identified as complete intersections: C(1) = {b0}∩{c2} solves
both (V.9) and (V.11), C(3) = {b2}∩{c1} solves (V.10) and (V.11), and C(5) = {c1}∩{c2} solves
(V.11). If one inserts these equations into the hypersurface polynomial (V.1) one confirms that
the fibre factorises into two P1s and can identify the singlet states as M2-branes wrapping one
of the fibre components. The remaining three curves were represented in [58, 126] as (V.9) with
b0 6= 0 6= c2 (C(2)), (V.10) with b2 6= 0 6= c1 (C(4)), and (V.11) with b0 6= 0 6= b2 and c1 6= 0 6= c2

(C(6)). Plugging these more lengthy expressions into the hypersurface equation also leads to a
factorisation of the fibre, i.e. the appearance of charged singlets. Their location and charges are
summarised in table V.2.

singlet locus
(U(1)1, U(1)2)-

charges

1(1)/1
(1) {b0} ∩ {c2} (1,−1)/(−1, 1)

1(2)/1
(2)

C(2) (1, 0)/(−1, 0)

1(3)/1
(3) {b2} ∩ {c1} (1, 2)/(−1,−2)

1(4)/1
(4)

C(4) (1, 1)/(−1,−1)

1(5)/1
(5) {c1} ∩ {c2} (0, 2)/(0,−2)

1(6)/1
(6)

C(6) (0, 1)/(0,−1)

Table V.2: Singlet states in the Bl2P2-fibration.

From the charge assignment we expect six types of Yukawa couplings. Of these, the couplings

1(1) 1
(4)

1(5) over b0 = c1 = c2 = 0, 1(2) 1
(3)

1(5) over b2 = c1 = c2 = 0, and 1(2) 1
(4)

1(6)

over C(2) ∩ C(4) ∩ C(6) can in fact be directly seen [58, 80] when plugging in the corresponding
equations of the curves into the hypersurface polynomial. However the charges also allow for

couplings 1(1) 1
(2)

1(6), 1
(3)

1(4) 1(6) and 1
(5)

1(6) 1(6), which due to the form of the curves C(2),
C(4), C(6) are more complicated to analyse. The difficulty is that the set of solutions to equations
(V.9) to (V.11) consists of several irreducible components which intersect each other precisely at
the interesting Yukawa points. To find an appropriate form of the singlet curves, we employ the
commutative algebra tools described in section 3 of chapter III.

To this end, we regard (V.9) – (V.11) to each define an ideal generated by two polynomials
within the polynomial ring R = C[bi, cj , dk] of the base B, with the sections bi, cj , dk treated as
independent variables. Computing the primary decomposition for each of the three ideals yields
several isolated components, of which we are only interested in the curve components, i.e. those
of codimension two. Concretely, the decomposition of (V.9) yields a complete intersection I(1) =
〈b0, c2〉 and a curve component I(2) with six generators, corresponding to the loci of 1(1) and
1(2), respectively. Likewise, the decomposition of (V.10) yields I(3) = 〈b2, c1〉 and I(4) with six
generators, corresponding to the loci of 1(3) and 1(4). The decomposition of (V.11) is slightly more
tricky to compute, because Singular cannot compute the associated primes directly. However,
as we noted above in the definition of C(6), the locus defined by (V.11) also contains the loci I(1),
I(3) and I(5) = 〈c1, c2〉. This means that we can ‘simplify’ the ideal (V.11) by saturating with
respect to I(1), I(3) and I(5). Indeed, after this simplification, the resulting ideal has only one
irreducible associated prime I(6) generated by 39 generators, corresponding to the loci of 1(6).

With this technique we can now analyse the Yukawa couplings 1(1) 1
(2)

1(6), 1
(3)

1(4) 1(6) and

1
(5)

1(6) 1(6). To this end we first calculate the minimal associated prime ideals of the sum of the
ideals corresponding to the curves. In each case we indeed find a prime ideal corresponding to
a codimension three locus, confirming the existence of the intersection points of those triplets of
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singlet curves. All three codimension three intersection loci are in fact complete intersections,

V(I(1)) ∩V(I(2)) ∩V(I(6)) =

{b0} ∩ {c2} ∩ {b22 d2
0 − b1 b2 d0 d1 + c1 d0 d

2
1 + b21 b2 d2 − 2 b2 c1 d0 d2 − b1 c1 d1 d2 + c2

1 d
2
2} ,

(V.12)

V(I(3)) ∩V(I(4)) ∩V(I(6)) =

{b2} ∩ {c1} ∩ {b20 d2
1 − b0 b1 d0 d1 + c2 d1 d

2
0 + b0 b

2
1 d2 − b1 c2 d0 d2 − 2 b0 c2 d1 d2 + c2

2 d
2
2} ,

(V.13)

V(I(5)) ∩V(I(6)) ∩V(I(6)) =

{c1} ∩ {c2} ∩ {b1 d0 d1 − b2 d2
0 − b0 d2

1 − b21 d2 + 4 b0 b2 d2} .
(V.14)

Interestingly, the last set of Yukawa points (V.14) coincides with a singular locus of V(I(6)), which
we computed with Singular. Due to the complicated form of V(I(6)), we are unable to determine
the type of the singularity, but the form of the Yukawa coupling involving two 1(6)-states suggests
that it is a point of self-intersection of the 1(6)-curve where also the 1(5)-curve passes through.

The final proof for the existence of the Yukawa couplings comes by inspecting the fibre over

the intersection points. The couplings 1(1) 1
(2)

1(6) and 1
(3)

1(4) 1(6) have already been argued
to exist geometrically in [57] using the ‘prime ideal technique’, and independently in [126] in an
indirect manner by exploiting their formal relation to the chiral index of certain G4-fluxes. Here

we therefore focus on the remaining 1
(5)

1(6) 1(6) coupling. If we solve the last equation in (V.14)
for b1 = (d0 d1 ±

√
d2

0 − 4 b0 d2

√
d2

1 − 4 b2 d2)/(2 d2), we see that the complete intersection locus
(V.14) really consists of two sets of points defined by each sign. Note that as far as codimension
three loci are concerned the appearance of the square root of expressions involving the sections
bi, cj , dk, or of d2 in the denominator does not pose any problems, as these expressions are
just complex numbers and not affected by any monodromy issues. Plugging this together with
c1 = c2 = 0 into the hypersurface polynomial (V.1) yields, after some tedious algebra, the
factorisation

PT |c1=c2=0, b1=(d0 d1±
√
d20−4 b0 d2

√
d21−4 b2 d2)/(2 d2)

=
1

4 d2
u

×
[
2 d2 s0 s1u +

(
d0 −

√
d2

0 − 4 b0 d2

)
s0 v +

(
d1 ±

√
d2

1 − 4 b2 d2

)
s1w

]
×
[
2 d2 s0 s1u +

(
d0 +

√
d2

0 − 4 b0 d2

)
s0 v +

(
d1 ∓

√
d2

1 − 4 b2 d2

)
s1w

]
,

(V.15)

which is well-defined since no fibre coordinate appears under the square root. The fibre com-

ponent defined by the factor u corresponds to the singlet state 1
(5)

, as explicit calculation of the
intersection numbers with the U(1) generators (V.5) using the Stanley-Reissner ideal and the di-
visor table (V.2) quickly shows. The other two components are obviously in the same divisor class
of the fibre ambient space and must have the same intersection numbers; indeed their intersection
numbers with the U(1) generators reveal that both correspond to 1(6)-states. Furthermore, each
component intersects the others exactly once, giving rise to an affine SU(3) diagram. Similar
calculations also verify the analogous fibre structure enhancement over the other two Yukawa
points (V.12) and (V.13). More details may be found in [132].

Having fully analysed the abelian sector of the models, we now proceed to add non-abelian
symmetries, starting with the SU(2) factor.

1.2 Toric fibrations with additional SU(2) symmetry

In this section we analyse in detail toric realisations of gauge group SU(2) along a base divisor

W2 = [{w2 = 0}] (V.16)
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in elliptic fibrations of type (V.1). As detailed in appendix 1, the fibres of such toric models are
described by the three A1-tops over polygon 5 [71].

Recall that the top construction yields resolved fibrations, whose singular limit consists of the
restriction of the coefficients bi, cj , dk to vanish to certain powers along a divisor W = {w}. The
resolution of an SU(2) singularity over a divisor W2 requires one resolution divisor E1 = {e1}
corresponding to the single (simple) root −α of SU(2). Over a generic point on W2, the fibre
splits into two P1-components described by

P1
i = {ei} ∩ {PT } ∩D(B)

a ∩D(B)
b (V.17)

for i = 0, 1, where D
(B)
a,b are two generic divisors in the base. These two P1s intersect in the affine

SU(2) diagram and will split into further P1s over matter curves and Yukawa points.

1.2.1 SU(2)-I top

The first A1-top, depicted in figure B.2 in appendix 1, corresponds to the following restrictions
of the coefficients of the hypersurface polynomial (V.1),

b0 = b0,1 e0, b2 = b2,0 e1, c1 = c1,0 e1, d0 = d0,1 e0, d2 = d2,1 e0, (V.18)

while the other coefficients remain unrestricted. Concretely, the hypersurface describing the
resolved elliptic fibration is given by

PT =v w(c1,0 e1 w s1 + c2 v s0) + u (b0,1 e0 v2 s2
0 + b1 v w s0 s1 + b2,0 e1 w2 s2

1)+

u2(d0,1 e0 v s2
0 s1 + d1 w s0 s

2
1 + d2,1 e0 u s2

0 s
2
1).

(V.19)

This is the blow-up of a singular fibration with an A1-singular fibre over the base divisor W2 =
{w2} with π−1W2 = E0E1. The singular fibration is obtained by setting e1 = 1 and identifying
e0 with w2. One can map this blow-down to Weierstrass form (V.6) and confirm a Kodaira fibre
of (split) type I2 over {w2} from the vanishing orders (0, 0, 2) of (f, g,∆).

The top allows two different triangulations. For definiteness, we choose one of these triangu-
lations, for which the Stanley–Reisner ideal (SRI) is generated by

u v,u w,w s0, v s1, s0 s1, e0 w, e1 s0, e1 u. (V.20)

From the top one can further read off the scaling relations among the coordinates and their
corresponding divisor classes in the ambient space, which are summarised in the following table:

u v w s0 s1 e1 e0

U 1 1 1 · · · ·
S0 · · 1 1 · · ·
S1 · 1 · · 1 · ·
E1 · · −1 · · 1 −1

(V.21)

In the presence of non-abelian symmetry the U(1) generators (V.5) need to be corrected such
that the SU(2) root has zero U(1) charge. The resulting U(1) generators take the form

ωI
1 = S1 − S0 −K +

1

2
E1,

ωI
2 = U − S0 −K − [c1,0].

(V.22)

Note that the charges (V.2) of the singlets are not affected as these states are not charged under
the SU(2) root.
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1.2.2 Matter curves in the SU(2)-I model

The Kodaira type of the resolved fibre changes in codimension two, i.e. over curves along the di-
visor W2 in the base. These loci can be found by analysing the vanishing order of the discriminant
of the singular blow-down of (V.19) along with the Weierstrass sections f and g which define the
birationally equivalent Weierstrass model (V.6). One finds

∆ ' w2
2

(
c2 (c2

1,0 d1 − b1 b2,0 c1,0 + b22,0 c2) `3 (b21 − 4c2d1)2 +O(w2)
)

(V.23)

with `3 a complicated expression given in table (V.3). A straightforward analysis of the Wei-
erstrass sections f and g reveals that the fibre over the curves {w2} ∩ {c2}, {w2} ∩ {c2

1,0 d1 −
b1 b2,0 c1,0 + b22,0 c2} and {w2}∩{`3} is of split Kodaira type I3, corresponding to vanishing orders
(0, 0, 3) for (f, g,∆). This indicates an enhancement of the singularity type from A1 to A2 due
to the splitting of one of the fibre components such that the fibre over the curves forms the
affine Dynkin diagram of SU(3). The curves therefore host massless matter multiplets in SU(2)
representation 2(q1,q2) plus their conjugates, with the subscripts denoting the U(1) charges.2 We
will explicitly analyse the fibre and compute the U(1) charges momentarily. By contrast, along
{w2} ∩ {b21 − 4c2d1} the fibre is of Kodaira type III, corresponding to vanishing orders (1, 2, 3)
for (f, g,∆). Since the singularity type remains A1, no charged matter representations arise over
this curve, consistent in particular with the results of [41]. The matter curves and U(1) charges
are summarised in table V.3.

R locus = W2 ∩ . . .
splitting of fibre U(1)− highest weight

components charges states

2I
1 {c2} P1

0 → P1
0s1

+ P1
0A (1

2 ,−1) 2 : P1
0A, 2 : P1

0s1

2I
2 {c2

1,0 d1 − b1 b2,0 c1,0 + b22,0 c2} P1
0 → P1

0B + P1
0C (1

2 , 1) 2 : P1
0C , 2 : P1

0B

2I
3

{`3} := {b20,1 d2
1

+b0,1 (b21 d2,1 − b1 d0,1 d1 − 2 c2 d1 d2,1) P1
1 → P1

1A + P1
1B (1

2 , 0) 2 : P1
1B, 2 : P1

1A

+c2 (d2
0,1 d1 − b1 d0,1 d2,1 + c2 d

2
2,1)}

Table V.3: Matter states and their charges in the SU(2)-I top. Note that for legibility we have
omitted the conjugate 2-states and their charges, which simply come with the opposite sign as
the shown charges.

The splitting process in the fibre is due to the factorisation of the hypersurface polynomial
over the enhancement loci. For the first curve, the factorisation is straightforward to see after
setting c2 = e0 = 0 in (V.19),

PT |(e0=0, c2=0) = s1 w
(
c1,0 e1 v w + b1 s0 u v + b2,0 e1 s1 w u + d1 s0 s1 u2

)
. (V.24)

Since e0 w is in the SR-ideal, w cannot vanish so that the zero locus of (V.24) splits into the
zero locus of s1 and of the expression in brackets, defining the components P0s1 and P0A. One
can further calculate the intersections between these components and P1

1 (which does not split
and remains the root of SU(2)) and easily verify the structure to be an affine SU(3) diagram.
Explicit calculations identify P1

0A with the highest weight state of the 2-representation with U(1)
charges (1

2 ,−1), whose states we denote by 2I
1. Correspondingly P1

0s1
is the highest weight state

of the conjugate representation 2
I
1, whose states have U(1) charges (−1

2 , 1).

2 Note that the anti-fundamental representation of SU(2) is equivalent to the fundamental, but in the present
context it has the opposite U(1) charges and will therefore be denoted by 2.
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For the second curve defined by W2∩{c2
1,0 d1−b1 b2,0 c1,0+b22,0 c2}, one could solve the equation

for b1, c2 or d1 and plug the expressions into (V.19) to detect a factorisation. However any of
these expressions will involve division by c1,0 or b2,0, which for the analysis of Yukawa points
below turns out to be disadvantageous. Instead we factorise

c2
1,0 d1 − b1 b2,0 c1,0 + b22,0 c2 =

1

d1
C+ C− with C± = c1,0 d1 − b2,0

(
b1
2
±
√
b21
4
− c2 d1

)
,

(V.25)

corresponding to a splitting of the curve into two components W2 ∩ {C± = 0}. Note that the
square root introduces a branch cut in the base along which the two components are interchanged.
Therefore the whole locus W2 ∩ {c2

1,0 d1 − b1 b2,0 c1,0 + b22,0 c2} is still one irreducible curve. Fur-
thermore the above factorisation is valid for generic points for which d1 6= 0. Since, as it turns
out, at d1 = 0 no Yukawa points are localised, this is sufficient for our purposes.

The factorisation (V.25) now allows us to solve C± = 0 for c1,0 and substitute it into the
hypersurface polynomial. With this substitution we can see that over each part of the curve, P1

0

splits into two components,

PT |(e0=0, C±=0)

=
1

d1

[
d1 s1 u + v

(
b1
2
±
√
b21
4
− c2 d1

)]
︸ ︷︷ ︸

P10B

[
b2,0 e1 s1 + d1 s0 s1 u + s0 v

(
b1
2
∓
√
b21
4
− c2 d1

)]
︸ ︷︷ ︸

P10C

,

(V.26)

where we have set w = 1 using the SR-ideal. First note that there is no fibre coordinate appearing
under the square roots. Therefore the factorisation defines two irreducible fibre components over
each part W2 ∩ C±. At the branch cut the first/second component over one part of the curve is
identified with the first/second component over the other part so there is no monodromy acting on
the fibre components, making P1

0B and P1
0C well-defined on the whole curve. Explicit calculations

show that P1
0B, P1

0C and P1
1 (which again does not split) intersect each other in the affine SU(3)

diagram. P1
0C is the highest weight state of 2I

2 with charges (1
2 , 1), and P1

0B is that of 2
I
2 with

charges (−1
2 ,−1).

For the third curve, we apply a similar factorisation method; the defining equation can be
written as

`3 = 1/d2
1D+D− with D± = b0,1 d

2
1 −

[
c2 d1 d2,1 + (d0,1 d1 − b1 d2,1)

(
b1
2
±
√
b21
4
− c2 d1

)]
.

(V.27)

Again, there is a branch cut in the base coming from the square root which identifies the two parts
W2 ∩{D± = 0} at the branch locus. The fibre enhancement over each part can be deduced (after
some calculation) by solving D± = 0 for b0,1 and inserting the expression into the hypersurface
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polynomial (V.19). We find that P1
1 splits into two components,

PT |(e1=0,D±=0) =

1

d1

[
d1 s1 +

(
b1
2
±
√
b21
4
− c2 d1

)
v

]
︸ ︷︷ ︸

P11A

×

[
d2,1 e0 s1 +

[
d0,1 −

d2,1

d1

(
b1
2
±
√
b21
4
− c2 d1

)]
e0 v + d1 w s1 +

(
b1
2
∓
√
b21
4
− c2 d1

)
v w

]
︸ ︷︷ ︸

P11B

.

(V.28)

Analogous to the situation over the second curve, the factors are not interchanged by any mono-
dromy when passing the branch locus in the base, making the splitting P1

1 → P1
1A + P1

1B well-
defined over the whole curve. The intersection structure together with P1

0 (which remains irredu-
cible) turns out to be again the affine SU(3) diagram. P1

1B is the highest weight state of 2I
3 with

charges (1
2 , 0) and P1

1A is that of 2
I
3 with charges (−1

2 , 0).

1.2.3 Yukawa couplings in the SU(2)-I model

SU(2) matter and singlet curves intersect at codimension three loci in the base to form gauge
invariant Yukawa couplings of the form 2 2 (1/1) and 2 2 (1/1). We list all such couplings in
table V.4.

coupling locus = W2 ∩ . . . splitting of fibre components

2I
1 2I

2 1
(2) {c2} ∩ {c1,0 d1 − b1 b2,0} P1

0 → P1
0s1C

+ P1
0AB + P1

0AC

2I
1 2

I
2 1(5) {c2} ∩ {c1,0} P1

0 → P1
0s1B

+ P1
0AB′ + P

1
0AC′

2I
1 2I

3 1
(1) {c2} ∩ {b0,1} P1

0 → P1
0s1

+ P1
0A, P1

1 → P1
1A + P1

1B

2I
1 2

I
3 1(6) {c2} ∩ {b21 d2,1 − b1 d0,1 d1 + b0,1 d

2
1} P1

0 → P1
0s1

+ P1
0A, P1

1 → P1
1A + P1

1B

2I
2 2I

3 1
(4)

({C+} ∩ {D+}) ∪ ({C−} ∩ {D−}) P1
0 → P1

0B + P1
0C , P1

1 → P1
1A + P1

1B

2I
2 2

I
3 1

(6)
({C+} ∩ {D−}) ∪ ({C−} ∩ {D+}) P1

0 → P1
0B + P1

0C , P1
1 → P1

1A + P1
1B

2I
2 2I

2 1
(3) {b2,0} ∩ {c1,0} P1

0 → P1
0B + P1

0Cs0
+ P1

0C′

2I
3 2I

3 1
(2) {b0,1 d1 − c2 d2,1} ∩ {b1 d2,1 − d0,1 d1} P1

1 → P1
1A + P1

1B′ + P
1
1B′′

Table V.4: Yukawa couplings in the SU(2)-I top.

To derive these, one first checks explicitly that none of the possible Yukawa couplings lies at
d1 = 0 so that the factorisations (V.25) and (V.27) are applicable. The first two couplings arise
over the intersection locus of the 2I

1- and 2I
2-curves. This locus splits into two sets of points,

which can be identified with the intersection of {c2} with {C+} and {d1C−}, respectively. The
intersection with {C+} leads to the first set of Yukawa points, over which the fibre of the divisor
E0 splits into three components P1

0s1C
, P1

0AB and P1
0AC . The intersection structure of these three

components and P1
1 (which does not split) forms an affine SU(4) diagram. The splitting of the

fibre components (V.3) over the respective 2-curves arises as follows:
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• Approaching the Yukawa points along the 2I
1-curve, P1

0s1
→ P1

0s1C
remains irreducible while

P1
0A splits into two components, P1

0AB + P1
0AC .

• From the perspective of the 2I
2-curve the Yukawa points lie on the {C+}-part, where the

fibre components P1
0B and P1

0C are defined in (V.26) with ‘+’-sign for P1
0B and ‘−’-sign for

P1
0C . When we approach the Yukawas by setting c2 = 0, P1

0B → P1
0AB remains irreducible

while the equation for P1
0C splits off a factor s1, giving the splitting P1

0C → P1
0s1C

+ P1
0AC .

The second set of Yukawa points W2 ∩ {c2} ∩ {c1,0} can be viewed as the intersection of the
{d1C−}-part of 2I

2 with 2I
1. Again E0 splits into three components, P1

0s1B
, P1

0AB′ and P1
0AC′ (the

primes denote that these have different charges under the SU(2) root and the U(1) generators,
corresponding to the conjugate 2I

2-state and a different singlet), which together with P1
1 form the

affine SU(4) diagram. The splitting processes are as follows:

• Along 2I
1, again the component P1

0s1
remains irreducible and P1

0A → P1
0AB′ + P1

0AC′ splits.
The primes denote that the charge of the components under the SU(2) root and the U(1)
generators are different than over the first Yukawa point.

• Along 2I
2, we have to look at the fibre components P1

0B and P1
0C over {C−}, which are defined

through (V.26) with the second sign choice; setting c2 = 0 now leaves P1
0C irreducible, while

the equation for P1
0B just becomes d1 s1 u, defining the components P1

0s1B
(where s1 = 0)

and P1
0AB′ (where u = 0).

The third and fourth sets of Yukawa points are the intersection points of the 2I
1-curve over

{c2} with 2I
3 over {d1D−} and {D+}, respectively. The splitting is straightforward and gives

the same P1s with identical charges over both points. What differs, though, is the intersection
pattern. Over the third set, the pattern is P1

0s1
− P1

0A − P1
1A − P1

1B(−P1
0s1

); M2-branes can wrap

the combination P1
0s1

+P1
1B giving rise to 1

(1)
-states, but not P1

0s1
+P1

1A, which is needed for 1(6)-
states. Accordingly, the intersection pattern over the fourth set is P1

0s1
−P1

0A−P1
1B−P1

1A(−P1
0s1

),

allowing 1(6)- but not 1
(1)

-states. Of course, both patterns have the same structure as the affine
SU(4) diagram.

The fifth and sixth types of couplings arise over the intersection points between the 2I
2- and

2I
3-curve. With the factorisations (V.25) and (V.27), these points group into the four intersection

loci of {C±} and {D±}. Analogously to the situation over the previous two types of Yukawa
points, one finds for both the fifth and sixth coupling the same P1s with the same charges, but

different intersection patterns, leading to either 1
(4)

-states over {C±} ∩ {D±} or 1
(6)

-states over
{C±} ∩ {D∓}. The intersection structure is an affine SU(4) diagram in both cases.

The last two Yukawa points are self-intersection points of 2I
2 resp. 2I

3. This can again be
checked by using Singular to analyse the ideals defining the respective matter curve. However,
because we have already split the curves into two parts, C± resp. D±, the self-intersection structure
is evident. For 2I

2 it is the intersection point W2 ∩ {b2,0} ∩ {c1,0} of {C+} with {C−} which also
lies on the singlet curve 1(3).3 From the factorisation of the hypersurface polynomial (V.26) one
easily sees that, irrespective of along which part we approach the point, P1

0B remains irreducible,
while the equation of P1

0C splits off a factor s0 as we set b2,0 = 0, thus P1
0C → P1

0Cs0
+ P1

0C′ . The

last coupling is over the point of {D+}∩{D−} which lies on 1(2). The splitting process here is not
obvious from (V.28), but straightforward calculation reveals that P1

1B splits into two components.
Again, the intersection structure is an affine SU(4) diagram over both self-intersection points.

Note that, while for the discussion of the Yukawas above we have only used the loci of the
2-curves to determine the Yukawa points, we have used Singular to verify that indeed all the

3{C+} and {C−} also have the codimension three locus W2∩{b21−4 c2 d1}∩{c1 d1−1/2 b1 b2} in common, which
is just the branch locus of the square root. However this set of points does not lie on any singlet curve; consistently
there is no further enhancement in the fibre.
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Yukawa points (V.4) also lie on the corresponding singlet curve. This is consistent with the
appearance of the associated singlet states in the split fibres as discussed above.

1.2.4 SU(2)-II and -III tops

The analysis of the remaining two A1-tops as depicted in figure B.2 is very analogous and is
carried out in appendix 2, to which we refer for more details. Here we merely collect the massless
spectrum and the associated Yukawa couplings as these will be needed for our construction of
Standard-Model-like F-theory compactifications.

SU(2)-II top
The second A1-top, called SU(2)-II top in appendix 2.1, leads to an SU(2)-charged matter

spectrum of the following form:

R U(1)− charges

2II
1 (1

2 ,
3
2)

2II
2 (1

2 ,−
1
2)

2II
3 (1

2 ,
1
2)

(V.29)

All Yukawa couplings allowed by the U(1) charges are realised geometrically. More precisely the
set of Yukawas is given by

2II
1 2II

2 1
(4)
, 2II

1 2
II
2 1

(5)
, 2II

1 2II
3 1

(3)
, 2II

1 2
II
3 1

(6)
,

2II
2 2II

3 1
(2)
, 2II

2 2
II
3 1(6), 2II

2 2II
2 1

(1)
, 2II

3 2II
3 1

(4)
.

(V.30)

In fact the SU(2)-II top is equivalent to the SU(2)-I top. On way to see this is to notice that
upon identifying the U(1) charges in the two tops as

U(1)II
1 = −U(1)I

1 ,

U(1)II
2 = U(1)I

2 − U(1)I
1 ,

(V.31)

the spectrum and Yukawa structure is exactly the same if one identifies the states 2II
i ↔ 2

I
i, i =

1, 2, 3 and exchanges the singlets 1(1) ↔ 1
(3)
,1(2) ↔ 1

(4)
. One can also arrive at this identification

from the symmetries of the tops. More details can be found in appendix 1.
Although both models are the same when considering only the gauge group SU(2)×U(1)1×

U(1)2, they will give rise to different models when combining them with an SU(3)-top, as we will
discuss below in section 1.4.

SU(2)-III top
The last A1-top is the SU(2)-III top with matter content

R U(1)− charges

2III
1 (1, 0)

2III
2 (1, 1)

2III
3 (0, 1)

(V.32)

In this top, in addition to the three fundamental matter curves and a notorious type III
enhancement locus with no additional matter, one finds a change of fibre type to non-split I3

type over yet another curve. As explained in appendix 2, the non-split fibre type can either be
seen from the Weierstrass data or be explicitly confirmed by analysing the monodromies along
the curve in question. As a result of the monodromy, this locus does not carry massless matter.
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The geometrically realised Yukawa couplings

2III
1 2

III
2 1(6), 2III

1 2III
3 1

(4)
, 2III

1 2
III
3 1

(1)
,

2III
2 2III

3 1
(3)
, 2III

2 2
III
3 1

(2)
, 2III

3 2III
3 1

(5)
(V.33)

exhaust again all gauge invariant combinations.

This top is inequivalent to the first two tops. Under the transformation U(1)′1 ≡ −U(1)1,
U(1)′2 ≡ U(1)2 − U(1)1 analogous to (V.31) (with the same identification of the singlets), the

spectrum and Yukawa structure of the SU(2)-III top is mapped to itself as 2III
1 ↔ 2

III
2 and

1(1) ↔ 1
(3)
,1(2) ↔ 1

(4)
.

1.3 Toric fibrations with additional SU(3) symmetry

The construction of SU(3) gauge symmetry via tops is analogous to the SU(2) cases. The
resolution of the A2-singularity over a divisor W3 : w3 = 0 in the base introduces three toric
divisors F0, F1, F2 given by the vanishing locus of the coordinates f0, f1, f2. Each Fi is a P1-
fibration over W3, and π−1W3 = F0F1F2. Over a generic point on W3 the intersection structure
of the P1-fibres reproduces the affine SU(3) diagram. We choose the root assignment F1 ↔
−α1, F2 ↔ −α2, F0 ↔ α1 + α2. There exist three SU(3) tops, which we will now present in
detail.

1.3.1 SU(3)-A top

The first top corresponds to the following restriction of the hypersurface coefficients,

b0 = b0,1 f0, b2 = b2,0 f1 f2, c1 = c1,0 f2, c2 = c2,1 f0 f2,

d0 = d0,1 f0 f1, d1 = d1,0 f1, d2 = d2,1 f0 f
2
1 ,

(V.34)

where only b1 remains unchanged. Out of the four different triangulations we choose the one
whose SR-ideal is generated by

u v, u w,w s0, v s1, s0 s1, f0 w, f0 s1, f1 s0, f1 v, f2 s0, f2 s1, f2 u. (V.35)

The coordinates and their corresponding divisor classes are summarised in the following table:

u v w s0 s1 f1 f2 f0

U 1 1 1 · · · · ·
S0 · · 1 1 · · · ·
S1 · 1 · · 1 · · ·
F1 · 1 · · · 1 · −1
F2 · · −1 · · · 1 −1

(V.36)

The U(1) generators (V.5) need to be corrected such that the roots of SU(3) have zero U(1)
charge. The generators with this property take the form

ωA
1 = S1 − S0 −K +

2

3
F1 +

1

3
F2,

ωA
2 = U − S0 −K − [c1,0] +

2

3
F1 +

1

3
F2.

(V.37)

The charges (V.2) of the singlets are not affected as they are not charged under the roots of
SU(3).
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1.3.2 Matter curves in the SU(3)-A model

The matter curves are found by analysing the discriminant of the associated Weierstrass model

∆ ' w3
(
b0,1 c1,0 (b0,1 c1,0 − b1 c2,1) (b1 b2,0 − c1,0 d1,0) (b0,1 d

2
1,0 − b1 d0,1 d1,0 + b21 d2,1) b31 +O(w3)

)
.

As can be read off from the Weierstrass sections f and g, the fibre along the five curves associated
with the first five factors in the bracket is of split Kodaira type I4. The fibre components intersect
as in the affine SU(4) diagram, corresponding to SU(3) matter in the fundamental representation
(plus conjugate). Their U(1) charges together with the geometric data can be found in table V.5.

R locus = W3 ∩ . . .
splitting of fibre U(1)−

highest weight states of...
components charges

3A
1 {b0,1} P1

1 → P1
1w + P1

1A (2
3 ,−

1
3) 3 : P1

1w + P1
0 + P1

2, 3 : P1
1A + P1

0

3A
2 {c1,0} P1

0 → P1
0u + P1

0A (−1
3 ,−

4
3) 3 : P1

0u, 3 : P1
0A

3A
3 {b0,1 c1,0 − b1 c2,1} P1

1 → P1
1B + P1

1C (−1
3 ,

2
3) 3 : P1

1C + P1
0 + P1

2, 3 : P1
1B + P1

0

3A
4 {b1 b2,0 − c1,0 d1,0} P1

0 → P1
0B + P1

0C (2
3 ,

2
3) 3 : P1

0B, 3 : P1
0C

3A
5
{b0,1 d2

1,0 − b1 d0,1 d1,0 P1
2 → P1

2A + P1
2B (−1

3 ,−
1
3) 3 : P1

2A + P1
0, 3 : P1

2B + P1
0 + P1

1+b21 d2,1}

Table V.5: Matter states in the SU(3)-A top.

The splitting process over the first four curves can be straightforwardly verified. For the fifth
curve, we proceed as for the SU(2) tops und use expressions with square roots to split the curve
into two parts; because d2,1 6= 0 for all the Yukawa points below, we factorise the quadratic term
such that we can solve for b1 (analogously to e.g. (V.25), where c1,0 played the role of b1 here).
Inserting the resulting expressions (one for each of the two parts of the curve) for b1 into the
hypersurface polynomial, we find that P1

2 splits into two components on both parts of the curve;
similarly to the SU(2)-tops, there is no monodromy interchanging the components when passing
from one part of the curve to the other and back.

In addition, over the curve {w3}∩{b1} the Weierstrass data (f, g,∆) vanish to orders (2, 2, 4).
This indicates a Kodaira type IV fibre in which no extra P1 splits off, but rather the three fibre
components intersect in a single point, as can be checked explicitly. Over this curve, no extra
matter representation arises.

1.3.3 Yukawa couplings in the SU(3)-A model

The SU(3) matter and the singlet curves intersect at certain codimension three loci in the base to
form gauge invariant Yukawa couplings 3 3 (1/1). In this case the fibre is enhanced to the affine
SU(5)-diagram, and the realised couplings are in 1-to-1 correspondence with the gauge theoretic
selection rules. In addition one can also form gauge invariant couplings of the type 3 3 3. As
it turns out all such gauge invariant couplings are indeed realised geometrically, and the fibre
structure is the affine SO(8)-diagram, cf. table V.6.

There, in the last column, the subscripts should help to visualise P1s’ splitting process. E.g. if
we approach the second Yukawa point along the 3A

1 -curve, then we find that P1
1w remains a single

component and P1
1A splits into two, P1

1AB and P1
1AC ; P1

1AB is the component P1
1B from the 3A

3 -
curve that does not split over the Yukawa point, while P1

1C splits into two components, of which
one is identified with P1

1AC and the other one coincides with P1
1w, hence the notation P1

1wC .

Over the last three Yukawa points with the coupling type 3 3 3, two of the three divisors
F0,1,2 each split off the same P1-component, which therefore is a multiplicity 2 component; this
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coupling locus = W3 ∩ . . . splitting of fibre components

3A
1 3

A
2 1

(4) {b0,1} ∩ {c1,0} P1
0 → P1

0u + P1
0A, P1

1 → P1
1w + P1

1A

3A
1 3

A
3 1(1) {b0,1} ∩ {c2,1} P1

1 → P1
1wC + P1

1AB+ P1
1AC

3A
1 3

A
4 1(6) {b0,1} ∩ {b1 b2,0 − c1,0 d1,0} P1

0 → P1
0B + P1

0C , P1
1 → P1

1w + P1
1A

3A
1 3

A
5 1

(2) {b0,1} ∩ {b1 d2,1 − d0,1 d1,0} P1
1 → P1

1w + P1
1D, P1

2 → P1
2A + P1

2B

3A
2 3

A
3 1(5) {c1,0} ∩ {c2,0} P1

0 → P1
0u + P1

0A, P1
1 → P1

1B + P1
1C

3A
2 3

A
4 1(3) {c1,0} ∩ {b2,0} P1

0 → P1
0uA+ P1

0AB + P1
0AC

3A
2 3

A
5 1(6) {c1,0} ∩

(
3A

5 -locus
)

P1
0 → P1

0u + P1
0A, P1

2 → P1
2A + P1

2B

3A
3 3

A
4 1(2)

(
3A

3

)
∩
(
3A

4

)
\ ({c1,0} ∩ {b1}) P1

0 → P1
0B + P1

0C , P1
1 → P1

1B + P1
1C

3A
3 3

A
5 1

(6) (
3A

3

)
∩
(
3A

5

)
\
(
{b0,1} ∩ {b1}

)
P1

1 → P1
1B + P1

1C , P1
2 → P1

2A + P1
2B

3A
4 3

A
5 1

(4) (
3A

4

)
∩
(
3A

5

)
\
(
{d1,0} ∩ {b1}

)
P1

0 → P1
0B + P1

0C , P1
2 → P1

2A + P1
2B

3A
1 3A

3 3A
5 {b0,1} ∩ {b1} P1

1 → P1
1wB + P1

1AB′ + P
1
AC′ , P

1
2 → P1

2A + P1
2B,

P1
AB′ = P1

2A

3A
2 3A

3 3A
4 {c1,0} ∩ {b1} P1

0 → P1
0uC + P1

0AB′ + P
1
0AC′ , P

1
1 → P1

1B + P1
1C ,

P1
0AC = P1

1C

3A
4 3A

5 3A
5 {d1,0} ∩ {b1} P1

0 → P1
0B + P1

0C , P1
2 → P1

2A + P1
2B0 + P1

2B′ ,

P1
0B = P1

2B0

Table V.6: Yukawa couplings in the SU(3)-A top.

corresponds to the central node of the affine SO(8)-diagram with dual Coxeter label 2. Note that
the 3A

4 3A
5 3A

5 coupling is located on the self-intersection locus of the 3A
5 -curve, which can verified

either by the factorisation of the curve with square root expressions or by using Singular.

1.3.4 SU(3)-B and -C top

Let us briefly list the main results from the analysis of the remaining two SU(3) tops, with more
details relegated to appendix 3.

SU(3)-B top

The SU(3)-B top gives rise to five 3-matter curves with the following U(1) charges:

R U(1)− charges matter U(1)− charges

3B
1 (−2

3 ,−
4
3) 3B

4 (1
3 ,

2
3)

3B
2 (−2

3 ,
2
3) 3B

5 (1
3 ,−

1
3)

3B
3 (−2

3 ,−
1
3)

(V.38)
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These enjoy a rich spectrum of geometrically realised Yukawa couplings with the singlets,

3B
1 3

B
2 1(5), 3B

1 3
B
3 1(6), 3B

1 3
B
4 1(3), 3B

1 3
B
5 1(4),

3B
2 3

B
3 1

(6)
, 3B

2 3
B
4 1(2), 3B

2 3
B
5 1(1), 3B

3 3
B
4 1(4),

3B
3 3

B
5 1(2), 3B

4 3
B
5 1

(6)

(V.39)

and among one another,

3B
3 3B

4 3B
5 , 3B

1 3B
4 3B

4 , 3B
2 3B

5 3B
5 , (V.40)

which is in 1-to-1 correspondence with the gauge theoretic selection rules.
Under the transformation U(1)′1 ≡ −U(1)1, U(1)′2 ≡ U(1)2−U(1)1, the spectrum and Yukawa

couplings remains invariant with the identification 3B
1 ↔ 3

B
2 , 3B

4 ↔ 3
B
5 and 1(1) ↔ 1

(3)
, 1(2) ↔

1
(4)

.

SU(3)-C top
The third top SU(3)-C gives rise to SU(3)-charged states with the following U(1) charges:

R U(1)− charges matter U(1)− charges

3C
1 (−2

3 ,−1) 3C
4 (−2

3 , 0)

3C
2 (1

3 ,−1) 3C
5 (1

3 , 0)

3C
3 (1

3 , 1)

(V.41)

The couplings

3C
1 3

C
2 1(2), 3C

1 3
C
3 1(3), 3C

1 3
C
4 1(6), 3C

1 3
C
5 1(4),

3C
2 3

C
3 1(5), 3C

2 3
C
4 1

(1)
, 3C

2 3
C
5 1(6), 3C

3 3
C
4 1

(4)
,

3C
3 3

C
5 1

(6)
, 3C

4 3
C
5 1(2)

(V.42)

and

3C
1 3C

3 3C
5 , 3C

2 3C
3 3C

4 , 3C
4 3C

5 3C
5 (V.43)

are in agreement with gauge theoretic expectations.
Similar to the situation with the SU(2) tops, the SU(3)-C top is in fact equivalent to the

SU(3)-A top (cf. appendix 1). Analogous to the U(1) charges identification (V.31), we find with

U(1)C
1 = −U(1)A

1 ,

U(1)C
2 = U(1)A

2 − U(1)A
1

(V.44)

that the spectrum agrees by identifying the states 3A
i ↔ 3C

i , i = 1, ..., 5 and 1(1) ↔ 1
(3)
,1(2) ↔

1
(4)

. Again one needs both the SU(3)-A and -C top to construct all inequivalent toric SU(3)×
SU(2)× U(1)1 × U(1)2 models.

1.4 Toric SU(3)× SU(2)× U(1)1 × U(1)2 realisations

We are now ready to construct F-theory compactifications with gauge group SU(3) × SU(2) ×
U(1)1 × U(1)2. To this end we start with our elliptic fibration realised as the hypersurface
(V.1) within a Bl2P2-fibration over B and realise an SU(2) and an SU(3) singularity over two
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independent base divisors W2 and W3, respectively. We focus here on the torically realisable
singularities and their resolutions enforced by the tops described in the previous sections. In the
singular fourfold the base sections gm ∈ {bi, cj , dk} in (V.1) must now be of the form

gm = gm;k,l w
k
2 w

l
3 (V.45)

with {wn = 0} = Wn and gm;k,l generic sections in the class [gm] − k[w2] − l[w3]. The powers k
and l depend on which of the three SU(2) and SU(3) tops are combined. However, as we will
discuss shortly, only 5 of the 3× 3 = 9 possible tops leading to the gauge group SU(3)×SU(2)×
U(1)1 × U(1)2 are inequivalent.

The discriminant of the fibration takes the form

∆ = w2
2 w

3
3 (P +O(w2) +O(w3)) (V.46)

with P a section of the base that does not vanish identically along W2 and W3. For generic
choice of w2 and w3, the fibration over w2 and w3 then looks like the three individual SU(2)
and SU(3) fibrations with vanishing orders k and l over w2 and w3, respectively, but with an
additional enhancement over the intersection curve {w2}∩{w3} of the two non-abelian loci. Here,
the generic choice of w2 and w3 in particular means that this intersection locus is assumed not
to coincide with any of the matter curves of the individual tops.

In a toric construction, this means that the polytope for the complete five-dimensional ambient
space consists of two tops over the polygon for the fibre ambient space. The two tops extend in two
mutually orthogonal directions of a five-dimensional lattice, each introducing resolution divisors
E0/1 = {e0/1 = 0} and F0/1/2 = {f0/1/2 = 0}. If the polytope is reflexive, then toric geometry

guarantees the smoothness of the fourfold Ŷ4 that is cut out by the hypersurface polynomial inside
the five-dimensional ambient space. A triangulation of the full polytope will in particular give
rise to a triangulation of the SU(2) and SU(3) sub-tops, so the corresponding full SR-ideal will
– as sub-ideals – contain an SR-ideal of each the SU(2) and the SU(3) sub-model; in addition,
there will be further generators that involve both ei and fj . To use the results of sections 1.2
and 1.3, we choose a triangulation of the full polytope that leads to an SR-ideal which as sub-
ideals contains the SR-ideals we used when studying the corresponding SU(2) and SU(3) tops
individually.

Because the Ei and Fj are fibred over different divisors of the base, intersections of the form∫
Ŷ4

Ei ∧ Fj ∧D(B)
a ∧D(B)

b , (V.47)

with vertical divisors D
(B)
a/b, will yield zero. This just means that the roots of SU(2) are uncharged

under SU(3) and vice versa – as one would expect from a product structure SU(3) × SU(2) of
the gauge group. Because the enhancement loci over W2 away from W3 are of the same form as
in a model with only the SU(2) singularity over W2 (and similarly for the SU(3) singularity over
W3 away from W2), one will also find the same spectrum of matter charged only under SU(2) or
SU(3). In addition one will find matter charged both under SU(2) and SU(3) at the enhancement
loci W2 ∩W3. As it turns out, this matter transforms in the bifundamental representation (3,2).

The U(1) generators are now subject to the condition that the SU(2) and SU(3) roots are
uncharged under them. However, since the SU(2) and SU(3) roots are mutually uncharged, this
condition is met by setting

ω
SU(2)×SU(3)
i = ωi + Σj tj Ej + Σj t̃j Fj , (V.48)

where ωi are the generators of the form (V.5) and the correction terms tj and t̃j are the same as
for the individual Shioda maps for the SU(2) and SU(3) tops.
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Due to the equivalences amongst the SU(2) and SU(3) tops described in the previous sections,
some of the combined SU(3)× SU(2)× U(1)1 × U(1)2 models are also equivalent. In fact those
models whose spectrum and Yukawa couplings can be mapped onto each other with the U(1)
transformation U(1)′1 = −U(1)1, U(1)′2 = U(1)2 − U(1)1 are equivalent. One finds four inequi-
valent pairs of SU(2)× SU(3) top combinations, I×A ' II×C, I× B ' II× B, I×C ' II×A,
III × A ' III × C, and the invariant model III × B. A more detailed explanation based on the
tops can be found in appendix 1.

To summarise, in order to construct toric F-theory models with SU(3)×SU(2)×U(1)1×U(1)2

gauge symmetry we take an SU(2) and an SU(3) top of the form studied in the sections 1.2 and
1.3 and combine them into one new top. Some of the tops obtained in this way are equivalent.
The previous sections readily give us the spectrum of 2- and 3-matter including their Yukawa
couplings. What we need to compute is the bifundamental matter (3,2) as well as all the Yukawa
couplings it is involved in.

The result of this analysis is shown in table V.7 for all five mutually inequivalent combinations
of tops. In all cases the geometrically realised Yukawa couplings are in 1-to-1 correspondence with
the set of gauge theoretically allowed couplings including the U(1)i selection rules.

top-combination (U(1)1, U(1)2)− additional gauge invariant Yukawas,
SU(2)× SU(3) charge of (3,2) (3,2)− . . .

I×A (1
6 ,−

1
3) 3

A
1 2I

3, 3
A
2 2

I
2, 3

A
3 2

I
1, 3

A
4 2I

2, 3
A
5 2

I
3;

(3,2) 3A
3

I× B (−1
6 ,−

1
3) 3

B
1 2

I
2, 3

B
2 2

I
1, 3

B
3 2

I
3, 3

B
4 2I

2, 3
B
5 2I

3;
(3,2) 3B

4

I× C (−1
6 , 0) 3

C
1 2

I
2, 3

C
2 2I

1, 3
C
3 2I

2, 3
C
4 2

I
3, 3

C
5 2I

3;
(3,2) 3C

5

III×A (−1
3 ,−

1
3) 3

A
1 2III

1 , 3
A
2 2

III
3 , 3

A
3 2III

3 , 3
A
4 2III

2 ;
(3,2) 3A

4

III× B (−2
3 ,−

1
3) 3

B
1 2

III
3 , 3

B
2 2III

3 , 3
B
4 2III

2 , 3
B
5 2III

1 ;
(3,2) 3B non-existent

Table V.7: U(1) charges of the bifundamental matter and additional Yukawa couplings involving
at least one (3,2), as arising in the five inequivalent combinations of the SU(2) and SU(3) tops
studied in the previous chapters.

In the following we will focus on the combination I×A as an example. Combining the SU(2)-I
and the SU(3)-A top amounts to restricting the sections appearing in (V.1) as

b0 = b0;1,1 e0 f0, b2 = b2;0,0 e1 f1 f2, c1 = c1;0,0 e1 f2, c2 = c2;0,1 f0 f2,

d0 = d0;1,1 e0 f0 f1, d1 = d1;0,0 f1, d2 = d2;1,1 e0 f0 f
2
1 ,

(V.49)

with the following associated divisor classes

[b0;1,1] = α− β +K −W2 −W3 , [b1] = K , [b2;0,0] = β − α+K ,
[c1;0,0] = K − α , [c2,0,1] = K − β −W3 ,

[d0;1,1] = α+K −W2 −W3 , [d1;0,0] = β +K , [d2;1,1] = α+ β +K −W2 −W3.

(V.50)

In table V.8 we list the divisor classes and the corresponding scaling relations among the fibre
coordinates. The last part shows the lattice vectors of the top that describes the ambient space.
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The vectors x and y should be linearly independent, but otherwise unspecified for a generic base
B. For this top there exist 16 different triangulations. We choose a triangulation for which the
SR-ideal is the union of the individual ideals (V.20) and (V.35) together with the element {f0 e1},
i.e. it is generated by

u v, u w,w s0, v s1, s0 s1, e0 w, e1 s0, e1 u, f0 w, f0 s1, f1 s0, f1 v, f2 s0, f2 s1, f2 u, f0 e1. (V.51)

u v w s0 s1 e0 e1 f0 f1 f2

[W2] · · · · · 1 · · · ·
[W3] · · · · · · · 1 · ·
α · · 1 · · · · · · ·
β · 1 · · · · · · · ·
U 1 1 1 · · · · · · ·
S0 · · 1 1 · · · · · ·
S1 · 1 · · 1 · · · · ·
E1 · · −1 · · −1 1 · · ·
F1 · 1 · · · · · −1 1 ·
F2 · · −1 · · · · −1 · 1

toric data
−1 0 1 −1 0 0 1 0 0 1
1 −1 0 0 1 0 0 0 1 0
0 0 0 0 0 x x y y y

Table V.8: Divisor classes and coordinates of the ambient space for top-combination I×A.

Irrespective of the chosen triangulation, one recovers from the discriminant the 2- and 3-
matter curves of the two individual tops, (V.3) and (V.5), where of course the base sections gm,k
defining the matter curves are modified in agreement with (V.49).4 E.g. the representation 2I

1 is
located at the intersection {w2} ∩ {c2;0,1} (because in the singular model the locus {w2} ∩ {c2}
appearing in (V.3) splits into {w2} ∩ {c2;0,1} and {w2} ∩ {w3}, but the latter contributes to
matter charged under both SU(2) and SU(3)); similarly the curve hosting 3A

3 is now given by
{w3} ∩ {b0;1,1w2 c1;0,0 − b1 c2;0,1}.

What is new is that along the curve {w2} ∩ {w3} the Kodaira type of the fibre enhances to
split type I5, corresponding to vanishing orders (0, 0, 5) of (f, g,∆) in the Weierstrass model.
Indeed, the fibre components straightforwardly split to form the affine Dynkin diagram of SU(5);
more precisely the five fibre components are given by

P1
00 ≡ PT |{e0}∩{f0} = b2;0,0 f1 f2 u + d1;0,0 f1 s0 u2 + c1;0,0 f2v + b1 s0 u v,

P1
01 ≡ PT |{e0}∩{f1} = c2;0,1 f0 f2 + c1;0,0 e1 f2 s1 + b1 s1 u,

P1
02 ≡ PT |{e0}∩{f2} = d1;0,0 f1 + b1 v,

P1
11 ≡ PT |{e1}∩{f1} = b0;1,1 e0 + c2;0,1 f2 w + b1 s1 w,

P1
12 ≡ PT |{e1}∩{f2} = d2;1,1 e0 f

2
1 + d0;1,1 e0 f1 v + b0;1,1 e0 v2 + d1;0,0 f1 w + b1 v w,

(V.52)

where we used the SR-ideal to set as many coordinates to one as possible. Note that e1 and f0

do not intersect due to the SR-ideal relations so that the locus PT |{e1}∩{f0} is absent in (V.52).
The fibre component P1

00 + P1
02 is identified with the highest weight of the bifundamental

representation (3,2); the U(1)1 and U(1)2 charges are found to be (1
6 ,−

1
3) by computing the

4In addition, the same type III and IV enhancement loci arise as before, which do not carry matter represent-
ations.
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intersection product with the generators

ωI×A
1 = S1 − S0 −K +

1

2
E1 +

2

3
F1 +

1

3
F2,

ωI×A
2 = U − S0 −K − [c1;0,0] +

2

3
F1 +

1

3
F2.

(V.53)

Finally, we have analysed the intersection of {w2} ∩ {w3} with each of the 3- and 2-curves
to identify extra fibre enhancements signalling Yukawa couplings involving the new (3,2)-state.
The fibres over the Yukawa points (3,2) − 3̄ − (2/2̄) are of split Kodaira type I6, and the
fibre components can be explicitly checked to form the affine Dynkin diagram of SU(6). The
base points are found by intersecting W3 and W2 with the five 3-curves and noting that the
intersection points also lie on top of one of the 2-curves.

A special role is played by the intersection locus {w3}∩{w2}∩{b0;1,1w2 c1;0,0−b1 c2;0,1}, where
the last term comes from the 3A

3 -curve. Using Singular, or simply by staring at it, one easily
convinces oneself that there are two separate sets of points in this intersection locus: Apart from

the point {w3}∩ {w2}∩ {c2;0,1}, where the (3,2) 3
A
3 2

I
1 Yukawa coupling is localised, there is also

the intersection {w3}∩{w2}∩{b1}, which does not lie on any of the 2-curves. At the latter point
the vanishing orders (2, 3, 7) of (f, g,∆) in the corresponding Weierstrass model points towards
a locus of SO(10)-enhancement i.e. the fibre being of Kodaira type I∗1 . Yet the fibre structure
does not reproduce the full affine SO(10) Dynkin diagram, but rather a reduced diagram where
one of the multiplicity 2 nodes is deleted, such that the adjacent three nodes intersect at one
point. Nevertheless, the remaining fibre components are sufficient to realise the Yukawa coupling
(3,2) (3,2) 3A

3 . 5

1

1

2

1

1

Figure V.1: Non-standard fibre structure at the (3,2) (3,2) 3 Yukawa point. The ‘X’ marks
the intersection point of the three adjacent P1s. Inserting an additional P1 at this point would
recreate the full affine SO(10) Dynkin diagram.

Explicit example over B = P3

We have checked the above calculations for a specific fibration over the base B = P3 with
H1,1(P3) = {n · H|n ∈ Z}, where H is the hyperplane class, and K = 4H. For simplicity
we take w2 and w3 to be two of the four homogeneous coordinates (z0 : z1 : z2 : z3), e.g. w2 = z0

and w3 = z1; then W2 = W3 = H. Recall that bi, cj , dk must transform as sections of specific
line bundles, see table V.1, where there is freedom left in choosing α and β. They are subject to
further constraints as the restricted sections (V.49) in the presence of the non-abelian symmetry
must be effective classes. Over B = P3, these constraints are met with a particular choice α = 2H,

5Similar phenomena have been observed in other geometries such as at the E6-enhancement point in SU(5)
models realising the 10105 coupling, or at the E8 point in E6 models realising the 272727 coupling.
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coupling locus = W2 ∩W3 ∩ . . . fibre type

(3,2) 3
A
1 2I

3 {b0;1,1} I6

(3,2) 3
A
2 2

I
2 {c1;0,0} I6

(3,2) 3
A
3 2

I
1 {c2;0,1} I6

(3,2) 3
A
4 2I

2 {b1 b2;0,0 − c1;0,0 d1;0,0} I6

(3,2) 3
A
5 2

I
3 {b0;1,1, d

2
1;0,0 − b1 d0;1,1 d1;0,0 + b21 d2;1,1} I6

(3,2) (3,2) 3A
3 {b1} reduced I∗1

Table V.9: Details on the additional Yukawas involving bifundamental matter in the top com-
bination I×A.

β = H, in which case the classes of the restricted sections must be

[b0;1,1] = 3H, [b1] = 4H, [b2;0,0] = 3H, [c1;0,0] = 2H,

[c2;0,1] = 2H, [d0;1,1] = 4H, [d1;0,0] = 5H, [d2;1,1] = 5H .
(V.54)

From this choice of α and β we have to impose the condition 2~w +~v + ~e0 + ~f0 + ~z2 + ~z3 = 0, where
~(·) is the (·)-coordinate’s lattice vector of the toric diagram of the full fibration (‘toric data’ in
table V.8). This condition is met by the toric ambient space X̂5, whose toric diagram has the
lattice vectors shown in table V.10. The resulting polytope is reflexive, guaranteeing that the
fourfold cut out by the hypersurface polynomial inside this toric ambient space is smooth. The
Euler characteristic of the fourfold is 1440.

~u ~v ~w ~s0 ~s1 ~e0
~f0 ~z2 ~z3 ~e1

~f1
~f2

−1 0 1 −1 0 0 0 −2 0 1 0 1
1 −1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 −1 1 0 0
0 0 0 0 0 0 1 0 −1 0 1 1
0 0 0 0 0 0 0 1 −1 0 0 0

Table V.10: Toric diagram for the ambiente space X̂5 of the model I×A over the base B = P3.

Other top combinations

The above analysis can be repeated for the remaining four inequivalent combinations of tops and
leads to the couplings listed in (V.7). Note that for the top combinations III × A and III × B

no gauge invariant coupling (3,2) 3
A
5 2 resp. (3,2) 3

B
3 2 exists. In both cases, the intersection

point of the (3,2)- and the corresponding 3-curve lies on the curve of non-split I3-enhancement
described after (B.18) in appendix 2. Were it not for a monodromy along that curve, an additional
2-representation would arise, which in fact would have the correct quantum numbers to couple

as in (3,2) 3
A
5 2 (or (3,2) 3

B
3 2). Correspondingly, the fibre over the triple intersection of these

curves does enhance to form an I6 Kodaira fibre, but due to the described monodromy no physical
Yukawa couplings result as the 2-state in question is projected out.
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More drastically, the top combination III × B exhibits a non-Kodaira enhancement in the
fibre over {w3} ∩ {w2} ∩ {b1}. 6 At this set of points, several matter curves collide and the
vanishing orders of (f, g,∆) in the Weierstrass model take the values (4, 6, 12). For such high
enhancement no flat crepant resolution can be found. To see how this manifest itself, consider
the triangulation of the III × B top leading to an SR-ideal generated by (B.11) (for the SU(2)
part), (B.20) (for the SU(3) part) and the new elements {s1 e0 f1, e1 f0 f2}: For this SR-ideal the
fibration becomes non-flat over {w3} ∩ {w2} ∩ {b1} as the hypersurface polynomial PT becomes
trivial for b1 = e0 = f1 = 0. Therefore, in order for the top combination III × B to give rise to
a well-defined F-theory compactification, the point set {w3} ∩ {w2} ∩ {b1} must be empty. Since
b1 is universally in the class K, these points cannot be turned off by a suitable choice of classes
α and β appearing in table (V.1). While it is not excluded that W2 and W3 can be found such
that no intersection points {w3} ∩ {w2} ∩ {b1} arise, we do currently not have an example of this
type.

2 Standard Model Embeddings

The toric fibrations with gauge group SU(3)×SU(2)×U(1)1×U(1)2 constructed in the previous
section are the starting point of our search for F-theory vacua with Standard Model gauge group
and matter. In this section we want to investigate how the Standard Model spectrum can be
embedded into the geometrically realised spectrum. For the moment we will not address chirality
and only base our analysis on the possible U(1) charges.

2.1 Criteria for Standard Model Embeddings

Our discussion will be phrased in the framework of the N = 1 Minimal Supersymmetric Standard
Model (MSSM), potentially extended by further singlets, with the understanding that supersym-
metry is broken at an priori unknown energy below the compactification scale in agreement with
current lower collider bounds. To fix our conventions we recall the MSSM spectrum plus right-
handed neutrinos νcR (taking all fields to be chiral N = 1 superfields) in table V.11. We also allow
for the possibility of the µ-term in the Higgs sector being generated via the VEV of an MSSM
singlet 1µ, as studied extensively in the literature in the framework of the NMSSM (see e.g [133]
and references therein).7

At the level of renormalisable couplings, the superpotential of the singlet-extended MSSM
takes the form

W =W1 +W2 +Wsinglet, (V.55)

W1 =YuQHu u
c
R + YdQHd d

c
R + Ye LHd e

c
R + Yν LHu ν

c
R + µHuHd, (V.56)

W2 =αQLdcR + β ucR d
c
R d

c
R + γ LL ecR + κLHu, (V.57)

Wsinglet = δ3,0 1µ 1µ 1µ + δ2,1 1µ 1µ ν
c
R + δ1,2 1µ ν

c
R ν

c
R + δ0,3 ν

c
R ν

c
R ν

c
R, (V.58)

where we are suppressing family indices. Here, W1 contains the Yukawa couplings that give rise
to the masses for the up-quarks, down-quarks and the charged leptons as well as potential Dirac
masses for the right-handed neutrinos. We also include here the µ-term for the Higgs sector,
with the understanding that this term might originate from a Yukawa coupling Yµ 1µHuHd if
the scalar in the superfield 1µ acquires a non-trivial VEV. For completeness we have furthermore
listed possible dimension-four singlet couplings Wsinglet. If 〈1µ〉 6= 0 the third term in Wsinglet

6In the other four top combinations this point corresponds to the (3,2) (3,2)3 coupling. For III×B, however,
there is no suitable 3 state.

7A detailed and systematic analysis of such singlet extensions of the MSSM in perturbative Type II intersecting
brane quivers has been performed in [134].
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matter representation hypercharge

left-handed quarks Q (3,2) 1
6

right-handed up-quarks ucR (3,1) ≡ 3u −2
3

right-handed down-quarks dcR (3,1) ≡ 3d
1
3

Higgs-up Hu (1,2) ≡ 2u
1
2

Higgs-down Hd (1,2) ≡ 2d −1
2

left-handed leptons L (1,2) ≡ 2L −1
2

right-handed electrons ecR (1,1) ≡ 1e 1

right-handed neutrinos νcR (1,1) ≡ 1ν 0

µ-singlet (1,1) ≡ 1µ 0

Table V.11: Matter spectrum of the MSSM.

effectively contributes to the Majorana mass term for the right-handed neutrinos, while the
first term would induce an F-term in the vacuum and is therefore of interest in the context of
supersymmetry breaking. We have not listed potential tadpole and holomorphic mass terms
involving the singlets, which are also allowed by the MSSM gauge group.

The couplings in W2 each violate R-parity (−1)2S+3(B−L) with S the spin and B, L baryon
and lepton number. The second term does in addition not conserve baryon number, while the
remaining terms are lepton-number violating. In particular, some combinations of terms within
W2 lead to rapid proton decay and are therefore severely constrained [135, 136]. Proton decay
due to dimension-four operators requires both baryon and lepton-number violating contributions.
The most severe constraints arise from tree-level induced proton decay, which is generated only
if both α and β are non-zero simultaneously. However, the precise bounds on the couplings
depend, amongst other things, on the scale of supersymmetry breaking. In models with inter-
mediate or high-scale supersymmetry breaking some of the constraints on W2 are considerably
relaxed compared to TeV-scale supersymmetric scenarios. For more details of the extremely rich
phenomenology of R-partiy violating couplings we refer in addition to [135–137] and references
therein.

At mass dimension five, the MSSM allows for the following baryon or lepton number violating
operators [137],

W3 = λ1QQQL+ λ2 u
c
R u

c
R d

c
R e

c
R + λ3QQQHd + λ4Qu

c
R e

c
RHd

+ λ5 LLHuHu + λ6 LHdHuHu,
(V.59)

K ⊃ λ7 u
c
R (dcR)∗ ecR + λ8H

∗
uHd e

c
R + λ9Qu

c
R L
∗ + λ10QQ (dcR)∗. (V.60)

Additional dimension-five terms are possible which involve the singlets νcR and 1µ. In particular,
any of the dimension-four operators present in (V.55) can in principle be dressed with such a
singlet. We do not list these couplings explicitly here.

Our attitude towards lepton and baryon number violating couplings is as follows: In order to
fully explore the parameter space of possible Standard Models within our framework we do not
insist on TeV scale supersymmetry a priori, but rather allow for the possibility of intermediate
scale supersymmetry breaking. While the viability of such a scenario will ultimately be determ-
ined experimentally, a higher supersymmetry breaking scale is in fact a natural option in direct
Standard Model constructions. After all, the exact unification of the gauge couplings at a scale
around 1016 GeV, which is one of the predictions of the TeV scale MSSM, is not immediate if
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the gauge groups SU(3), SU(2) and U(1)Y are constructed independently. More importantly
perhaps, intermediate scale supersymmetry is well-motivated by a 126 GeV Higgs as studied
in string theoretic frameworks recently in [138–142] (see also [143–146] and references therein
for other recent examples in the literature motivating an intermediate supersymmetry breaking
scale). Keeping an open mind towards the supersymmetry breaking scale, we do therefore not
require absence of all dimension-four and -five lepton and baryon number violating couplings in
our search criterion for Standard Model configurations, but will only list which of these couplings
are present. A more detailed study of the associated phenomenology, taking into account the de-
tails of supersymmetry breaking, is left for future explorations. Having said that, in many cases
the U(1) selection rules do prevent potentially dangerous such operators as we will see explicitly.

For each of the five combinations of tops with gauge group SU(3)×SU(2)×U(1)1×U(1)2 a
plethora of possibilities arises for identifying the massless representations with the MSSM fields.
This identification will in particular determine which linear combination of U(1)1 and U(1)2 cor-
responds to hypercharge U(1)Y . The orthogonal combination is then massless in absence of gauge
fluxes and will remain as a perturbative selection rule after gauge fluxes induce a Stückelberg
mass for the associated gauge potential. At the same time it must be ensured that the gauge
fluxes do not render hypercharge massive. In the sequel we classify the possible identifications
along the following lines:

• Since the fibrations under consideration contain only one type of (3,2)-curve, all three
generations of left-handed quark fields Q must reside on this single (3,2)-curve. The U(1)1×
U(1)2 charges of Q for the five possible tops are listed in table V.7.

• In a second step we identify the fields (Hu, Hd) with two of the 2i-representations or their
conjugate representations 2i, i = 1, 2, 3. A definite assignment of (Hu, Hd) together with
the U(1) charges of Q determines U(1)Y as a linear combination

U(1)Y = aU(1)1 + b U(1)2, a, b ∈ R. (V.61)

We then identify the different possible choices of 2i- or 2i-states for the left-handed leptons
L based on their hypercharge. The same value of (a, b) and identification of (Hu, Hd) may
be compatible with more than one choice for L. In this case, different generations of leptons
L may reside on different matter curves and will then be distinguished by their charge under
the linear combination of U(1)1 and U(1)2 orthogonal to U(1)Y .

• For the specific values of (a, b) in (V.61) we next check which of the six singlets 1(k),
k = 1, . . . , 6 (and their conjugates) have the correct hypercharge to be identified with the
fields νcR and ecR, and similarly which of the 3j-representations for j = 1, . . . , 5 have the
correct hypercharge to be identified with ucR and dcR. If there is no possible assignment of
ecR, ucR or dcR we discard this choice of hypercharge. However, to be as general as possible,
we do allow for configurations with no right-handed neutrinos νcR.

• There are now two types of right-handed leptons and quarks: If the Yukawa couplings
W1 in (V.55) are indeed among the geometrically realised couplings as analysed in the
previous sections, the fields acquire a perturbative mass term upon electro-weak symmetry
breaking. Those generations of MSSM matter for which this is the case will therefore
be called ‘heavy’.8 Otherwise, the Yukawas, which are now forbidden by the extra U(1)

8Note that if two or more families are localised on the same matter curve the rank of the perturbative Yukawa
coupling matrix is non-maximal, at least if there exists only one Yukawa coupling point, as studied in the F-theory
GUT literature [53, 147–149]. In this case some of the ‘heavy’ fields do not receive a perturbative mass after all.
Non-perturbative effects can solve this rank-one problem [150–153].
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selection rules, must be generated either by non-perturbative effects [154–158], here by M5-
brane instantons9, or via higher non-renormalisable couplings involving one or more extra
singlet states as these acquire a VEV. In both cases the mass terms will generically be
suppressed and the corresponding fields will be called ‘light’. Again it is understood that
different generations can be distributed over the various matter curves. In particular, if
only one of the generations enjoys a perturbative coupling, this could serve as a realisation
of the observed mass hierarchies in the MSSM.10 Note that while the generation of masses
for the ‘light’ generations by M5-instantons depends on the specific geometry of the base
B, the mechanism involving singlet fields could be analysed already at this general level by
checking for the existence of singlets with appropriate U(1)i-charges to form a dimension-5
coupling of the required type. We leave such a more advanced analysis for further studies.

• The U(1)Y charges together with the spectrum of perturbative couplings also provide can-
didates for µ-singlets 1µ with a Yukawa coupling 1µHuHd, which we list. As anticipated,
if 〈1µ〉 6= 0 this will induce a µ-term in the Higgs sector. In absence of such a VEV the µ-
term can in principle be generated via M5-instantons. Note that sometimes the same type of
singlets can also have several interpretations. We furthermore list which other couplings in
Wsinglet are allowed. Since there is only one type of 1µ, the term 13

µ term is always forbidden
perturbatively, but for νcR a cubic coupling for the neutrino involving families distributed
over different curves can exist. Note that tadpole terms in the superpotential, linear in
the singlets, can only be generated non-perturbatively. Holomorphic quadratic terms in-
volving either different families of νcR or one νcR and 1µ are allowed by gauge invariance
for vector-like pairs of such fields, even though we do not list this explicitly. Determining
their presence amounts to computing the vector-like spectrum of massless states. Otherwise
quadratic singlet terms, especially Majorana mass terms for νcR, are only generated non-
perturbatively [154,155] or as effective couplings from the cubic interactions with 〈1µ〉 6= 0.

• Based on the various assignments of fields we list the perturbative R-parity violating
dimension-four couplings W2 in (V.55) which are allowed in view of the structure of geomet-
rically realised Yukawa couplings. More precisely, we list for which of the possible choice
of (‘heavy’ or ‘light’) right-handed quark and lepton fields a coupling of type α, β, γ is
realised. The coupling κ is allowed by the U(1) section rules whenever L and Hu reside on
the same matter curve and are thus vector-like with respect to all gauge symmetries. Such
terms correspond to effective mass couplings and their presence can be read off from the
precise vector-like spectrum of the compactification, which can be computed in F-theory
once the gauge background is specified [95].

• Finally we check for which matter identifications the potentially dangerous dimension-five
couplings (V.59) are perturbatively allowed, based on the U(1)i charges of the involved
fields. Note that in principle, this does not necessarily imply that the couplings are actually
non-zero; to check this one would have to analyse in more detail how precisely the non-
renormalisable couplings arise by exchange of heavy intermediate states. Depending on
the details of the set-up the resulting couplings can be negligibly small. This is left for
a more in-depth analysis, and we take the results based purely on U(1)i selection rules
merely as a first indication. Let us also note that some of the non-perturbative effects
required to induce the Yukawa couplings for the ‘light’ generations may at the same time
induce other baryon or lepton-number violating or other undesirable operators [172–175].
We do not check for this possibility here. Furthermore we reiterate that the constraints on

9The generation of charged operators via D3/M5-branes in F-theory along the lines of [154–158] has been studied
recently in [159,159–165], and related aspects of such instantons in F-theory appear in [166–171].

10The generation of such mass hierarchies in perturbative Type II MSSM quivers has been studied systematically
in [172–174].

132



CHAPTER V. STANDARD MODEL IN F-THEORY

both dimension-four and -five couplings are relaxed in scenarios with intermediate or even
high-scale supersymmetry breaking.

The results of this scan over possible Standard-Model-like embeddings is presented in appendix
C. In configurations where the matter states can be localised at different curves, we do not list all
possible combinations separately. In particular our analysis so far does not make any statements
about whether it is possible to realise precisely the Standard Model context by inclusion of fluxes.
Irrespective of our relaxed attitude towards baryon and lepton number violation, a number of
configurations exists in which all dangerous dimension-four and in particular the dimensions-five
operators λ1 and λ2 in (V.59) are absent as a result of the U(1) selection rules.

A Specific Example

As an example consider model number 5 in the top combination I × A listed in table C.1 with
U(1)Y = U(1)1. In perhaps the simplest scenario, the Hu, Hd and all families of left-handed

leptons L are realised as the states 2
I
1, 2

I
2 and 2

I
3 respectively. In particular, U(1)2 there-

fore distinguishes these states. Perturbative lepton masses arise if we identify νcR = 1
(6)

and

ecR = 1(1). For the choice (ucR, d
c
R) = (3

A
4 ,3

A
3 ) the quark masses are also realised perturbatively

with the caveat noted in footnote 8. For the described assignment of matter all R-parity viol-
ating dimension-four couplings are perturbatively forbidden, as are the potentially problematic
dimension-five couplings λ1QQQL and λ2 u

c
R u

c
R d

c
R e

c
R.

However, more complicated assignments are possible. For instance, if one or more families of
leptons L are instead identified with the state 22, then in this family the right-handed neutrino,
which could be any of the states 1(5), 1(6) or their conjugates, does not have a perturbative Dirac
mass. In this case, the Dirac mass would have to be generated directly by non-perturbative
effects as proposed in [176], naturally explaining the smallness of the neutrino masses via the
non-perturbative suppression. If both types of matter identifications are combined for different
families, a lepton-number violating dimension-four term 23 23 12 arises, where 1(2) is now the
‘massive’ ecR which couples perturbatively to the L-family 22. This coupling is innocuous for the
proton as no baryon-lepton number violating terms are created.

2.2 Search for models with realistic chiral spectrum

Having classified all possible matchings of the geometric spectrum with the (N)MSSM, we want to
study now whether, in explicit compactifications, G4 fluxes can actually induce a realistic chiral
spectrum in our F-theory ‘Standard Models’. We will present the full analysis of the model I×A
here.

With our methods and results from chapters III and IV, we are in a position to systematically
scan over all possible vertical fluxes to search for realistic chiral indices. For convenience, we

recall from the earlier chapters, that a vertical flux is an element G4 ∈ H(2,2)
vert (Y4) satisfying the

conditions∫
Y4

G4 ∧ S0 ∧D(B)
a =

∫
Y4

G4 ∧D(B)
a ∧D(B)

b =

∫
Y4

G4 ∧ Ei ∧D(B)
a = 0 ∀D(B)

a,b ∈ H
(1,1)(B) ,

(V.62)

obeying the quantisation

G4 +
1

2
c2(Y4) ∈ H4(Y4,Z) , (V.63)

as well as the D3-tadpole cancellation condition

nD3 =
χ(Y4)

24
−
∫
Y4

G4 ∧G4 ∈ Z . (V.64)
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The chiral index of states in representation R localised on a matter surface γR is computed as

χ(R) =

∫
γR

G4 =

∫
Y4

G4 ∧ [γR] , (V.65)

which for a consistent flux must all be integer. The (co-)homology classes [γR] of the I×A model
leading to an anomaly free spectrum are summarised in table IV.11.

An important phenomenological restriction arises from the requirement that the MSSM hy-
percharge

U(1)Y = aU(1)1 + b U(1)2 (V.66)

must not receive a Stückelberg mass. This is guaranteed precisely if∫
Y4

G4 ∧ ωY ∧D(B)
a = 0 ∀Da ∈ H(1,1)(B), where ωY = aω1 + b ω2 (V.67)

is the hypercharge generator defined in terms of the generators of the two U(1)i, c.f. (V.48). This
condition ensures that no U(1)Y -D-term is induced by the flux, which is equivalent to stating
that the fluxes do not lead to a U(1)Y -dependent gauging of the axions as would be the case
if the U(1)Y boson received a Stückelberg mass. Recalling the Green–Schwarz counterterms for
U(1)-anomalies from chapter IV, this in particularly implies that these are 0 for vanishing D-
term. Note that for the model I × A there are three possibilities for the geometric U(1)1,2 to
form the hypercharge U(1)Y = aU(1)1 + b U(1)2, namely (a, b) = (1, 0), (a, b) = (0,−1/2) and
(a, b) = (−1,−1). These three possibilities will lead to different G4 solutions, as we will require
the flux to induce no D-term potential for hypercharge via (V.67).

To obtain explicit chiral indices we have to specify the full fibration data, i.e. a choice for
the base B and the classes α, β as well as W2,W3 entering (V.50). We then determine the space
of valid G4-fluxes and scan over part of it to search for configurations giving rise to realistic
chiralities. In this scan we restrict ourselves to fluxes with induced chiral spectra in the range
|χ| < 10.

There are two possible routes one can take for such a search. With the results from the
previous chapter, the obvious procedure would be to use the fluxes (IV.116) derived for a generic
base, specialise to a concrete (consistent) fibration, and make use of the chiralities in tables IV.12
and IV.13 as well as the formulae for the D-terms (IV.120) and the D3-tadpole (IV.146). This
route seems very attractive because one can impose the chirality of many states to take a desired
value and then solve for the flux parameters zi and D,D′. In particular, one could in principle
pick one’s favourite Standard Model identification from table C.1 and try to construct a suitable
flux. However, while the chiralities can often be tweaked into a more or less favourable scenario,
we found that with this approach, it is generically very hard to find an appropriately quantised
flux, e.g. such that the D3-tadpole is integer. The existence of suitably quantised flux solutions
which give rise to a given spectrum depends of course on the concrete choice of base B, and for
suitable B this approach may well lead to satisfactory results.

In the sequel, we will follow an alternative strategy and instead scan over part of the flux
landscape to investigate how closely the resulting models resemble the Standard Model. In
principle one could use the basis (IV.116) and simply specialise it to a concrete base space B.
However, the lattice spanned by the fluxes (IV.116) is usually too coarse because the vertical
divisors K, α and β are in general not prime divisors. The effect is that the resulting chiral
indices in tables IV.12 and IV.13 are generically very large for order 1 values of the coefficients
zi, and a suitable scan would require highly fractional coefficients, which in turn obscure the
quantisation of the fluxes. It is therefore more convenient to compute a basis of fluxes for each
individual fibration. This basis will still be equivalent to the generic fluxes (IV.116) (modulo
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redundancies from the specialisation of the fibration) as a Q-vector basis. However, we find that
in general, these basis elements span a finer lattice in the sense that they induce small chiral
indices even if we allow for integer coefficients. This allows in particular for a finer scan over the
flux landscape than using the fluxes (IV.116).

2.2.1 Search algorithm

We have constructed fibrations over the toric bases B ∈ {P3,Bl1P3,Bl2P3}. For simplicity we
identify each of the coordinates w2 and w3 describing the SU(2) and SU(3) brane divisors with one
of the homogeneous coordinates of B.11 Having fixed this choice, we then restrict the classes α and
β such that all the sections (V.50) have effective classes. Each allowed pair (α, β) fixes a polytope
for the toric ambient space X5. To fully define X5, we need to find a suitable triangulation
of the polytope that defines a toric fan compatible with the fibration structure, and ultimately
also determines the Stanley–Reisner-ideal. We use the Sage package Topcom to find all possible
triangulations and then pick one whose SR-ideal contains (V.51) as a subset. This allows us to
use the results on the matter surfaces as listed in table IV.11, which crucially depend on the
SR-ideal.

Note that while for the bases P3 and Bl1P3 it is always possible to find such a triangulation,
this need not generally be the case. In such a situation, one would need to repeat the analysis
of matter surfaces in section 3.1.3 of chapter IV with another suitable SR-ideal. In our search
we encounter this situation only for fibrations over the base B = Bl2P3. These particular models
would not be suitable for phenomenological applications anyway, because they are only compatible
with a fibration in which the divisors W2 and W3 of our fixed choice do not intersect on B. On
the resulting fourfold we would have no bifundamental (3,2) states.

Having fully defined the toric ambient space X5 it is straightforward to compute the co-
homology ring (III.21) using Sage. Note that for toric spaces the vertical cohomology (III.21)
constitutes in fact the full cohomology ring. This is of course not the case for the hypersurface

Y4. We then proceed to find a basis {ti} of H
(2,2)
vert (Y4). It is not necessarily the same as the

basis of H(2,2)(X5), since different (2, 2)-forms can – and in fact do – become equivalent when
restricted to the hypersurface PT .12 As explained in the section 2 of chapter IV, we use Singular
to determine the basis {ti}. The output is of the form ti = Dai ∧ Dbi , where Dai,bi are toric
divisors of the ambient space X5.

Valid G4-fluxes are linear combinations of ti that satisfy (V.62) and (V.67).13 We add one
further restriction on the fluxes, namely that the chirality of the bifundamental states (3,2) is
χ((3,2)) = 3. This has obvious phenomenological motivation as we only have one matter curve
hosting this representation, and thus all three generations of left-handed quarks must reside here.

We accommodate this constraint in our search by first determining the subspace V ⊂ H(2,2)
vert (Y4)

satisfying∫
Y4

v ∧D(B)
a ∧D(B)

b =

∫
Y4

v ∧ Z ∧D(B)
a =

∫
Y4

v ∧ ωY ∧D(B)
a = 0 =

∫
Y4

v ∧ [(3,2)] (V.68)

for any vertical divisor D
(B)
a,b and any v ∈ V . Then, for any particular flux solution p satisfying

(V.62) and (V.67), with
∫
Y4
p∧ [(3,2)] = 3, the affine space p+V clearly contains all fluxes giving

rise to a spectrum with three generations of left-handed quarks. For our scan, we determine a
basis {bi} of V , s.t. G4 = p +

∑
i λi bi, and then vary the λi discretely over a finite range. Due

11Any other more complicated identification requires working with complete-intersection fourfolds.
12The inverse phenomenon would arise e.g. when an ambient divisor splits into two independent divisors on the

hypersurface. In the fibrations under consideration in this paper this does not occur.
13Note again there are three different choices for the hypercharge that lead to three inequivalent sets of valid

G4-fluxes.
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to computational limitations, we have to restrict the range to be a subset of [−10, 10], with the
number of independent λi ranging between 3 and 7, depending on the base and fibration data.

Because of the discrete increments, we need the lattice spanned by {bi} to be not too coarse.
Furthermore, the basis vectors should have roughly equal ‘length’, so that, by varying all λi over
the same range, we cover a ‘sphere’ in V , i.e. extending equally into all independent directions of
the flux configuration space. This is accommodated by the following strategy:

• The conditions (V.68) can be rearranged into a matrix whose k-th column is defined by the

intersection numbers (V.68) with v replaced by the basis vector tk of H
(2,2)
vert (Y4). The kernel

of this matrix is V ⊂ H(2,2)
vert (Y4), written in the basis {tk}.

• Using Sage, we compute this kernel over Z, i.e. the resulting basis vectors {b̃i} are Z-linear
combinations of {tk}.

• Finally we apply the Lenstra–Lenstra–Lovász (LLL) algorithm – which is conveniently im-
plemented in Sage – to this set, yielding the basis {bi}. The scan will then vary the
coefficients λi over the interval [−10, 10] in increments of 1.

The LLL algorithm computes a ‘short’, ‘nearly’ orthogonal lattice basis of the input lattice gener-
ated by {b̃i}. Here, ‘orthogonality’ is with respect to the bilinear form ti · tj := δij , which clearly
is not the metric on H(2,2) induced by the intersection product, and therefore is irrelevant to
us. However, the attribute ‘short’ – which a priori is also with respect to the wrong metric – is
helpful to us, because the resulting flux basis {bi} is expressed with the smallest possible integer
coefficients in terms of the ti (in practise mostly 0’s and 1’s). In our models, the intersection
numbers

∫
Y4
ti tj are all of order 1 to 10, so arguably the bi are (up to factors of order 1) of the

same length with respect to the intersection product.
With this basis, we find that when we vary different λi with equal step-sizes, also the values

of the chiral indices and D3-tadpole change in roughly equal increments. We found in all our
examples that the LLL-reduced basis {bi} is much more advantageous in this respect than the
basis {b̃i}, which is obtained by Gauss elimination. We also choose the vector p =

∑
µk tk to

be as ‘short’ as possible, i.e. with smallest possible coefficients µk. These coefficients are not
necessarily integer due to the condition

∫
Y4
p ∧ [(3,2)] = 3. Having established the basis flux

vectors, we compute for each set {λi} the chiral indices by integrating the flux p+
∑

i λi bi over
the matter surfaces listed in table IV.11.

We observe here that if we were to perform a similar search with the flux basis (IV.116),
then the condition of vanishing D-term for ωY would already introduce fractional coefficients.
Furthermore, if we vary the coefficients in the basis (IV.116) in integer (or even half-integer)
increments, the values for χ(R) will change by much larger step-sizes compared to the basis {bi}.
This makes the latter more practical for a scan.

A note on the quantisation condition
Let us comment briefly on the quantisation condition, G4 + c2(Y4)/2 ∈ H4(Y4,Z). Traditionally,
it is a hard problem to systematically solve this condition for explicit geometries [115, 121]. We
make no attempt of doing so within the scope of this work. Instead, we follow the usual method
of performing a few sanity checks for explicit fluxes. Specifically we check if

χ(R) ∈ Z ∀R,
∫
Y4

(
G4 +

c2(Y4)

2

)
∧Di ∧Dj ∈ Z ,

n3 =
1

24
χ(Y4)− 1

2

∫
Y4

G4 ∧G4 ∈ Z , ,

where the second condition is evaluated for any two toric divisors Di,j . Clearly, these are necessary
conditions to be satisfied by a suitably quantised G4-flux.
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As remarked at the beginning of this section, we find that the fluxes p =
∑
µk tk are much

likelier to be well-quantised than a flux expressed as a linear combination of the basis (IV.116),
whose fractional coefficients are determined by fixing certain chiral indices.

2.2.2 Summary of Search Procedure

Here we give a short summary of the scope of the search and comment on the generic chiral
spectrum.

In general, we found that the apart from the actual scan over the parameter space of the
λi’s, the most computation time consuming procedure is performing the triangulations of the
toric polytopes defining X5. E.g. for the base choice B = Bl2P3, the triangulation of all 59
polytopes with Topcom took roughly 4 months.14 For this reason, we restricted ourselves to the
three simplest toric bases. To perform a broader scan more efficiently, one would certainly need
to find a faster algorithm for triangulations of toric polytopes, perhaps similar to the strategy
of [177] developed for threefolds.

The simplest base we considered is the standard choice B = P3, with usual homogeneous co-
ordinates [z0, z1, z2, z3]. Up to coordinate re-definition this allows for one single choice (w2, w3) =
(z0, z1) for the coordinates of the non-abelian divisors. There are then 16 consistent fibrations,
i.e. pairs of classes (α, β) entering (V.50). For each of these 16 fibrations the number of basis
vectors bi is between 3 and 5. Out of the 16 different fibrations, only one produced well-quantised
fluxes with ‘reasonable’ chiral indices (in the range |χ| < 10) within our search process.

Next, the base B = Bl1P3 is obtained by blowing-up P3 in a point. The blow-up coordinate x
and associated divisor class X corresponds to the ray (0, 0, 0,−1) in the toric description. There
are several inequivalent choices for the coordinates w2,3. We have analysed the two possibilities
(w2, w3) = (z0, x) and (w2, w3) = (x, z0), or in terms of divisor classes, (W2,W3) = (H,X) and
(W2,W3) = (X,H), with H the hyperplane class of P3. The first choice gives rise to 36 different
fibrations. Out of these we find 8 with fluxes leading to ’reasonable’ chiralities (in the range
|χ| < 10). The second choice (W2,W3) = (X,H) allows for 40 different fibrations, amongst which
there are four with ’reasonable’ flux configurations. These fibrations have 5 or 6 independent
basis vectors bi.

We have also attempted to extend our search algorithm to B = Bl2P3 with blowup coordinates
x and y corresponding to the rays (0, 0, 0,−1) and (0, 0,−1, 0). With the choice (w2, w3) =
(x, y), only one of the two inequivalent triangulations of the polytope for B is phenomenologically
interesting, namely the one for which x y is not in the SR-ideal. As we have mentioned earlier,
the reason is of course that we insist on the presence of the bifundamental states (3,2), which are
localised at the intersection. It turns out, however, that for many choices of (α, β) giving rise to
effective classes (V.50), the resulting space X5 does not exhibit a compatible fibration structure
over B (with the chosen intersection property of {x} and {y}). In addition, all these cases lead
to dimension-one singularities in X5, so they would generically induce point-like singularities on
Y4. Out of the 59 possible choices for (α, β), only 30 have compatible fibrations. Of these, none
has a properly quantised flux solution leading to chiral indices smaller than 10.

All of the ‘reasonable’ spectra we found do not reproduce the Standard Model exactly. They
all have chiral exotics, which can potentially give rise to interesting Beyond-the-Standard-Model
physics. However, in most cases, the excess is still too large to comfortably relate them with the
Standard Model. In the following we will discuss one example which is closest to the MSSM. The
remaining models are listed in appendix D.

14The computation was carried out with an Intel E6700 (3.2GHz) dual-core CPU and 4GB RAM.
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2.2.3 An almost Standard-Model-like Example

The class of fibrations over B = Bl1P3 with K = 4H + 2X is parametrised by the two divisors

α = αH H + αX X, β = βH H + βX X, (V.69)

where X and H denote the two independent divisors of B. With only one possible triangulation
of the toric polytope, B has the following independent intersection numbers:∫

B
X3 = 1 ,

∫
B
X2 ∧H = −1 ,

∫
B
X ∧H2 = 1 ,

∫
B
H3 = 0 . (V.70)

With the choice (w2, w3) = (x, z0) corresponding to (W2,W3) = (X,H), the ambient space X5

can be described by the following polytope:

u v w s0 s1 e1 f1 f2 e0 f0 z1 z2 z3

−1 0 1 −1 0 1 0 1 0 0 αX − αH 0 −αX
1 −1 0 0 1 0 1 0 0 0 βH − βX 0 βX
0 0 0 0 0 0 −1 −1 0 −1 1 0 0
0 0 0 0 0 0 −1 −1 0 −1 0 1 0
0 0 0 0 0 −1 −1 −1 −1 −1 0 0 1

(V.71)

As explained before, the coefficients α(·), β(·) must be chosen such that the classes (V.50)) are
effective, i.e. their expansion in X and H must have positive coefficients. There are 40 tuples
(αH , αX , βH , βX) satisfying this condition.

Within our scan, the flux configuration coming closest to the Standard-Model spectrum is
based on the fibration defined by α = 3H + X, β = H + X. The Euler number of the elliptic
fourfold inside X5 is χ(Y4) = 1794. The flux configuration of interest is furthermore defined for
the hypercharge identification U(1)Y = U(1)1, and takes the form

G4 =
1

2
(E1 ∧ (2H − 3F2 − S1) +X ∧ (F2 − F1 + S1))

= − 1

6
Gz24 −

1

12
Gz44 .

(V.72)

In the second line we have identified this flux with the specialisation of general fluxes (IV.116)
we derived in the generic setting to this particular fibration. Explicit checks confirm that this
flux satisfies all necessary conditions for being appropriately quantised: the intersection numbers∫
Y4

(G4 + c2(Y4)/2)∧Di ∧Dj are all integer, all the chiral indices are integer (see below), and the
number of D3-branes required to cancel the D3-tadpole is

n3 =
1

24
χ(Y4)− 1

2

∫
Y4

G2
4 = 72. (V.73)

It turns out the flux induces a vanishing D-term not only for U(1)Y , as required, but in fact for
U(1)1 and U(1)2 individually,∫

Y4

G4 ∧ ω1 ∧DBa =

∫
Y4

G4 ∧ ω2 ∧DBa = 0 ∀DBa ∈ H1,1(B). (V.74)

In particular, the flux (V.72) is not a U(1)i gauge flux. Therefore, neither of the abelian gauge
factors acquires a Stückelberg mass and the gauge symmetry is SU(3)×SU(2)×U(1)Y ×U(1)2,
with an extra massless abelian gauge group factor compared to the Standard Model.

The induced chiral spectrum is summarised in table V.12 and follows directly from the ex-
pressions in tables IV.12 and IV.13 with the help of the base intersection numbers (V.70). As one
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R 21 22 23 31 32 33 34 35

(q1, q2)
(

1
2 ,−1

) (
1
2 , 1
) (

1
2 , 0
) (

2
3 ,−

1
3

) (
−1

3 ,−
4
3

) (
−1

3 ,
2
3

) (
2
3 ,

2
3

) (
−1

3 ,−
1
3

)
χ −2 1 −2 −2 0 1 −1 −4

R (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

(q1, q2)
(

1
6 ,−

1
3

)
(1,−1) (1, 0) (1, 2) (1, 1) (0, 2) (0, 1)

χ 3 2 1 0 0 0 −4

Table V.12: The chiral spectrum induced by the flux (V.72). For completeness we have included
the U(1)1 × U(1)2 charges (q1, q2) of the states.

can see, the largest (absolute value of) chirality is 4, which is among the smallest values we have
been able to find within our search process; in particular this means that there are necessarily
chiral exotics beyond the MSSM spectrum.

To actually make contact with particle physics, we invoke our classification of possible Stand-
ard Model matchings from appendix C. Specifically, we consider the possibility no. 7 in table C.1.
This leads to the identifications listed in table V.13.

R 21 22 23 31 32 33 34 35

χ 2 1 2 2 0 −1 1 4

SM
L Hu L+Hd

light light light heavy heavy
states ucR dcR dcR ucR dcR

R (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1
(6)

χ 3 2 1 0 0 0 4

SM
Q

heavy heavy − heavy − heavy νcR,
states ecR ecR ecR µ-term

Table V.13: Possible matching of the chiral spectrum obtained from the flux (V.72) with the
(N)MSSM spectrum.

The exotics which do not fit into the MSSM are a pair of triplets residing on the curves 33 and
35, as well as the singlets on 1(6). If indeed the chirality 2 for 23 is distributed as 1 for Hd and
1 for the leptons L, then the Higgs (Hu, Hd) come as a vector-like pair. Likewise, the excess of
chiral triplets can be grouped into a vector-like pair (33)c + 35 charged like the Standard-Model
down-quarks. In light of recent events at the LHC, these exotics could possibly be of interest
(e.g. in the spirit of [178–180]), but we will not attempt any detailed phenomenological discussion
in this direction. Irrespective of the question of exotics, the model must be considered in the
context of intermediate or high scale supersymmetry breaking because the charge assignments
and resulting Yukawa couplings give rise to dimension-four proton decay operators which would
be incompatible with a TeV supersymmetry scale. This happens despite the appearance of the
extra U(1)2 selection rule. The complete list of such operators can be found in table C.1.

Finally, note that we have only computed the chiral spectrum. On top of this, extra vector-like
pairs of massless matter localised over a single curve may exist. Their computation, e.g. along
the lines of [95], is considerably more involved and beyond the scope of this work.

To arrive at the precise Standard-Model spectrum, and to remove the extra massless U(1)2

from the spectrum, one can imagine Higgsing the latter with a vector-like pair of massless singlets
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1(6) + 1
(6)

in a D-flat manner,

〈1(6)〉 = 〈1(6)〉 6= 0. (V.75)

This of course assumes that at least one such vector-like pair is available. The recombination
singlets couple to the massless matter multiplets as follows [13]:

L ⊃1(6) 32 35 + 1(6) 31 34 + 1
(6)

33 35 + 1(6) 21 23 + 1
(6)

22 23+

1(6) 1(2) 1
(4)

+ 1(6) 1(1) 1
(2)

+ 1(6) 1(4) 1
(3)

+ 1(6) 1(6) 1
(5)

+ c.c.
(V.76)

Note that the last term would induce an F-term for 1
(5)

in the background (V.75). It therefore

comes as a relief that the chiral index associated with the singlets 1(5) + 1
(5)

is indeed vanishing,
see table V.12. Absence of an F-term obstruction to the recombination then requires that in

addition no vector-like pair 1(5) +1
(5)

of massless such singlets exist. If this condition is satisfied,
the Higgsing (V.75) recombines the curves 31 and 34, the curves 33 and 35, furthermore all the
2i curves as well as the singlet curves 1(1), 1(2) and 1(3), in agreement with the couplings (V.76).
This leads to the following spectrum:

state (3,2) 31 + 34 33 + 35 21 + 22 + 23

χ 3 3 3 3

SM
Q ucR dcR L+Hu +Hdstates

state 1(1) + 1(2) + 1(4) 1(5) 1(6) 1
(6)

χ 3 0 − −
SM

ecR − vev vev
states

Note that now the Higgs-doublet is localised on the same curve, similar to the 3-chiral gener-
ation MSSM realised in [112]. Phenomenological viability therefore requires one extra massless
vectorlike pair of associated states after the recombination.

3 Summary of Chapter V

In this chapter we have presented the explicit construction of five F-theory models with a
Standard-Model-like gauge group SU(3) × SU(2) × U(1)1 × U(1)2. These models were real-
ised as hypersurfaces in a Bl2P2 fibration. Non-abelian gauge symmetries were introduced via
tops. All these models had in common that their matter spectrum consists of five 3, three 2,
six 1 and one (3,2) representations. We explicitly analysed all the Yukawa couplings realised in
these models. For the coupling amongst the singlets, we again relied on the technique of primary
decompositions developed in section 3 of chapter III. It turns out that indeed, all couplings that
are allowed by gauge invariance are realised geometrically.

For an F-theory realisation of the Standard Model with these models, the left-handed quarks
must necessarily be identified with the only available (3,2)-states. However, there are many
possibilities to match the remaining representations with the Standard Model spectrum. In
particular, any matching requires a prior identification of the hypercharge U(1)Y in terms of the
geometric U(1)s. The orthogonal U(1) can then serve as a selection rule for the possible couplings.
In section 2.1, we performed a search for all possible matchings that are compatible with the only
available (3,2)-state being the left-handed quarks. For all matchings, we also analysed what type
of dimension four and five couplings in the resulting physical model are allowed. All these data
have been collected in appendix C.
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In the next step, we included non-trivial backgrounds for G4-fluxes in order to generate a
chiral spectrum. We have restricted ourselves to the I × A fibration, although the methods and
algorithms readily apply for any of the remaining four models. For explicit chiral indices, we have
to restrict the fibration to specific bases B. In our analysis, we have considered the possibilities
B ∈ {P3,Bl1P3,Bl2P3}. For each of these bases, we have set up a search algorithm in section 2.2.1
based on the results and tools from chapters III and IV to scan over a part of the vacua of vertical
G4-fluxes in the full fibration. In the search we were only interested in chiral spectra whose largest
(absolute value of) chiral index is less than 10. It turns out that for the multitude of possible
fibrations, only a small portion of flux configurations satisfies this requirement. In addition,
none of them gives directly the MSSM spectrum. However, we could identify one configuration
presented in section 2.2.3 that gives an almost Standard-Model-like spectrum. This contains, in
addition to the full MSSM matter, a vector-like pair charged like the down-quarks under Standard
Model gauge group, and extra singlets. By Higgsing the latter, one could in principle reproduce
the exact chiral spectrum of the MSSM, however an explicit geometric description of this process
is beyond the scope of this work.
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Chapter VI

Conclusion and Outlook

F-theory has tremendously broadened our systematic understanding of the string landscape.
By geometrising the axio-dilaton of type IIB string theory, F-theory allows for a systematic
description of consistent type IIB compactifications with 7-branes at finite coupling. Through
the duality to M-theory, we have a very precise understanding of gauge symmetries, charged
matter and their interactions in terms of the geometry of torus-fibred Calabi–Yau spaces. With
the development of systematic tools for model building, F-theory has become a very vivid field
for particle phenomenology. At the same time, many formal aspects of F-theory are still not fully
understood. In fact, both formal and phenomenological aspects are closely intertwined, and either
side can benefit greatly from the study of the other. The purpose of this thesis was to investigate
these two facets for the subject of G4-fluxes in F-theory. In particular, our main interest lied in
the chirality inducing feature of G4-fluxes. From a phenomenological perspective, fluxes are of
course a crucial input in order to re-create the chiral spectrum of the Standard Model in F-theory.
On the other hand, a geometric understanding of the cancellation of chiral anomalies would also
be desirable. Given the close connection between these two challenges, it seems appropriate to
set up a more systematic analysis of fluxes that can tackle both issues.

To this end, we have first developed computational tools that are required for the systematic
treatment of fluxes. In particular, as we have seen in section 2 of chapter III, the subclass
of vertical fluxes can be modelled by a quotient polynomial ring. On torus fibrations realised
as toric hypersurfaces, this quotient ring can be described easily in terms of the intersection
theory on the ambient toric space. The description we give can be readily implemented into a
computer algebra system (we used Sage and Singular) to algorithmically simplify cohomological
computations that arise naturally in the analysis of fluxes. While similar techniques have been
proposed before, a particular upshot of our formulation is that it is independent of the fibration’s
base B, and thus can be straightforwardly applied to any (consistent) choice of B. In addition,
the base-independent formulation also allows us to study properties that are inherent to the
fibration structure, which hold irrespective of the precise structure of B. Furthermore, we have
also presented a novel method to determine the homology classes of matter surfaces in section 3 of
chapter III. This method is based on the algebraic description of complex submanifolds by ideals
of polynomials. Again we can rely on computer algebra systems like Singular and the underlying
theory of Gröbner basis to systematise this method. Originally introduced in F-theory to examine
Yukawa coupling structures, we adapted the ideas for the computation of matter surfaces. By
integrating the flux over these surfaces, we obtain the chiral indices of the corresponding matter
states. However, in these calculations, we need the homology classes of these surfaces, which
can only be extracted with a further ‘trick’, as described in section 3.3.2. The method has one
caveat however, as it fails to determine the homology classes of certain singlet matter surfaces. It
should be stressed though that this failure is due to the limitations of the computer algorithms.
Mathematically, the method is still applicable to those cases.
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Equipped with these tools, we then proceeded with the detailed analyses of fluxes and anom-
alies in three different fibrations. These fibrations give rise to an SU(5)×U(1) and an SU(5)×Z2

model, which are related by a Higgsing/conifold transition. The third fibration realises the gauge
group SU(3)× SU(2)× U(1)2. As elucidated at the beginning of chapter IV, the anomalies are
cancelled in F-theory by a generalised Green–Schwarz (GS) mechanism. The corresponding GS-
counterterms have been identified in previous works explicitly as the integral of G4 over certain
4-cycles. With the explicit expressions for vertical fluxes and matter surfaces computed from the
methods of chapter III, we were able to show that in all our F-theory models, the non-abelian
anomalies induced by vertical fluxes cancel for any base B. Due to our computational limitations
with singlet matter surfaces, we cannot verify the anomaly cancellation explicitly for pure U(1)
and mixed U(1)-gravitational anomalies. However, we could reverse the argument and use anom-
aly cancellation to consistently determine the chiralities of those singlets, such that the resulting
spectrum is free of any gauge anomalies. Note that while for elliptic fibrations, fluxes have been
included in explicit models for a long time, the role of fluxes in genus-one fibrations has been much
less studied. In particular, an analogue of the transversality conditions has not been derived and
tested for fibrations with no sections. These conditions are to ensure that the flux configuration in
the dual M-theory compactification lifts properly in the F-theory limit. Guided by the intuition
of a KK U(1) that ought to arise in the circle reduction from F-theory to M-theory, we proposed
a multi-section version of the transversality conditions. It is reassuring to see that indeed, this
proposal survived the first consistency test of anomaly cancellation.

Moreover, while all the above investigations relied on having explicit G4 solutions to the
transversality conditions, we have found a different approach to anomaly cancellation in 4D
F-theory compactifications. This is based on the observation that both the anomaly and its
potential GS-counterterm are given as an integral of G4 over some 4-cycle; for the first it is a
linear combination of the matter surfaces, whereas for the second it is a specific 4-cycle determined
from a related Chern–Simons theory in the dual M-theory compactification. Indeed, we could
show for the anomalies not involving singlets that these 4-cycles agree in homology up to terms
that are guaranteed by the transversality conditions to vanish upon G4-integration. Therefore,
we could provide a geometric argument in terms of certain 4-cycle classes – without reference to
any explicit G4-flux – for the cancellation of chiral anomalies in 4D F-theory models. Note that
this base independent argument also extends to non-vertical fluxes.

Motivated by this observation, we also studied two types of discrete anomalies – the Z2 and the
Witten SU(2) anomaly – based solely on the analysis of matter surface classes. Unlike the gauge
anomalies, these discrete anomalies are cancelled only for appropriately quantised G4-fluxes. In
particular, this analysis also revealed a new link between the Z2 and the U(1) model related by
Higgsing. It turned out that the Z2 anomaly is cancelled if and only if in the corresponding
U(1) model, all chiral indices are integer. While somewhat surprising from the geometric point
of view, this is in full agreement with our physical intuition, since the Z2 symmetry must be
anomaly free if it arises as the discrete remnant of a continuous U(1) symmetry after a Higgsing
process. Note that in order to establish this link, we also had to understand how the flux
background changes in the Higgsing process. Indeed, we found an explicit map that identifies the
flux configurations on both sides of the transition. This serves as another consistency check for
the proposed transversality conditions in genus-one fibrations.

In chapter V, we turned our attention to more phenomenological applications. The goal here
was to find possible realisations of the Standard Model in F-theory. To this end, we constructed all
toric models with an SU(3)×SU(2)×U(1)1×U(1)2 symmetry. These models have an abundant
matter spectrum with a rich Yukawa coupling structure. Our explicit analysis in section 1 showed
that all the couplings allowed by gauge invariance are in fact realised geometrically at intersections
of the corresponding matter curves. In order to compare these F-theory models with the Standard
Model, we first had to appropriately identify the geometric spectrum with the Standard Model
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spectrum. In particular, this amounts to an identification U(1)Y = aU(1)1 + b U(1)2 of the
hypercharge with the geometric U(1)s. To be as general as possible, we only insisted on this
identification to be compatible with the left-handed quarks arising from the only bifundamental
states geometrically available. As a result, there is a plurality of possible matches, which mostly
differ by the dimension four and five operators in the effective field theory. This difference can be
attributed to the remaining U(1) orthogonal to U(1)Y , which serves as a selection rule for these
operators.

Based on those matchings, we have then investigated possible flux configurations that give rise
to chirality. We restricted ourselves to one model out of the five possible toric realisations of the
extended Standard Model group. For this model we have already studied the vertical fluxes and
matter surfaces before in chapter IV. Thus the results, especially those on chiralities of singlet
matter derived from the anomaly conditions, carried over straightforwardly. Unlike the analyses
in chapter IV however, we now had to specialise the fibrations to explicit bases in order to obtain
actual numbers for the chiral indices. For the scope of this thesis, we studied three possible
base manifolds: P3, Bl1P3 and Bl2P3. For each base, there are multiple choices of fibrations
allowed. For each fibration, we computed a basis {bi} of vertical fluxes and scanned over the flux
configurations G4 =

∑
i λi bi by varying λi discretely over a finite range. During this scan, we

searched for fluxes that give rise to a chiral spectrum with chiralities lower than 10. It turned
out that there are only a few configurations that give semi-realistic spectra. In particular, we
did not find ‘just’ the Standard Model. In general, there are many exotic states that go beyond
the Standard Model spectrum. Amongst these semi-realistic models, we presented a particular
one in section 2.2.3 of chapter V that resembles the Standard Model the most within our search.
This model has one exotic vector-like pair of 3-states and extra singlet states. We argued that in
principle, one recovers the exact Standard Model spectrum by Higgsing these singlets.

However, this argument requires certain assumptions about the exact massless spectrum that
goes beyond the chiral index. These data are not contained in the G4-flux, but are encoded
in the gauge potential C3. To access these, one needs a better handle of the so-called Déligne
cohomology, as proposed in [95]. Despite the rather formal character of such an analysis, the
result would have great benefits for phenomenology. After all, any F-theory realisation of particle
physics must in the end be able to realise the exact number of left- and right-handed fermions
and not just the net chirality. Unfortunately, such an analysis is far beyond the scope of this
work.

Nevertheless, the results of chapter IV are evidence that fluxes are worthwhile to study.
In particular, the novel approach to anomalies in 4D F-theory can be put into a mathematical
statement: On any torus-fibred Calabi–Yau fourfold, the 4-cycles prescribed by F-theory anomaly
cancellation must be zero in homology modulo terms that are trivial under the transversality
conditions. Note that while anomaly cancellation might be expected from a physical point of view,
there is (so far) no apparent mathematical reason why these 4-cycles should behave as such. Since
topologists and geometers are generally interested in any universal properties of manifolds, this
F-theory ‘prediction’ could lead to a new ‘classification’ method for certain subclasses of fourfolds.
Note that similar predictions have been made in F-theory compactifications to 6D [41,181]. Also
there, anomaly cancellation was used as a physical input to derive purely mathematical conditions
on Calabi–Yau threefolds. In fact, these works derived an explicit relationship between the
geometric description of matter in 6D F-theory and their associated anomaly contribution in a
general setting. In the four-dimensional setting, the best we can do at the moment is to verify
the statement for a given fibration with a specific fibre structure. It would be interesting to see
if and how one can formalise the four-dimensional statement in a similarly general way as in 6D.

In addition to these efforts, one should also extend the systematic approach presented in this
thesis to non-vertical fluxes. If nothing else, then such methods would be of great interest in
other phenomenological quests. For example, a better handle on horizontal fluxes can open up
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new possibilities for moduli stabilisation in F-theory [97–99]. Such mechanisms must ultimately
be considered in any realistic compactification model to ensure vacuum stability and absence of
light scalars. Furthermore, the remaining fluxes that are neither horizontal nor vertical are of
great importance to GUT phenomenology. Indeed, it was shown in [100] that the hypercharge flux
that breaks an SU(5) GUT to the MSSM must be of this type. An extension of the works [182,183]
might be able to give a more efficient way of describing hypercharge flux breaking, and possibly
revive the phenomenological interest in F-theory GUTs.

Finally, a more thorough search for realistic chiral spectra might shed some light on the
likelihood of obtaining directly the Standard Model in F-theory without the detour via GUTs. In
fact, our search results seem to suggest that it is extremely rare to find a realisation with only few
chiral exotics. However, one should not be to hasty with such a conclusion. Indeed, our search
algorithm was rather simple and only covered three different bases. It is conceivable that for more
sophisticated bases, there might be a plethora of flux configurations with realistic chiralities. As
our search algorithm is limited in several respects, an improved version will be needed to perform
a more efficient and far reaching scan for other fibrations. It would be interesting to also extend
the search to other types of F-theory models that lead to Standard-Model-like gauge groups.
In particular, a comparison with the flux vacua of three generation F-theory GUTs might reveal
whether a direct realisation of Standard Model in F-theory is preferred or not. In the end, we will
need to answer all these questions in order to unfold the full model building power of F-theory. It
is certain though that our understanding of the string landscape will benefit tremendously from
these endeavours.
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Appendix A

Intersection Theory of algebraic
Cycles

Throughout this thesis, we make heavy use of the duality between cohomology forms and homo-
logy classes of certain submanifolds of our fibration geometry, which we can write down explicitly
as vanishing loci of polynomials. Thus it seems appropriate to present the mathematical founda-
tion of this duality. This foundation is provided by intersection theory. Intersection theory on a
smooth, projective, complex manifold X is a rich topic by itself, as the amount of textbooks on
it shows (e.g. [106,184,185]). Here, we will not attempt any thorough discussion and merely give
a brief overview.

Poincaré-duality provides an isomorphism between homology and cohomology. On a smooth,
projective, complex manifold X, the translation of cohomology into homology is particular use-
ful. The reason is that (k, k)-forms are mapped under Poincaré-duality to homology classes of
complex submanifolds and vice versa. For projective manifolds X, it is known that any complex
submanifold is an algebraic cycle, i.e. can be described by the vanishing of polynomials.

In section 3 of chapter III, we have introduced algebraic cycles as subvarieties.1 There we
have seen that any subvariety V ⊂ X can be (up to embedded components) uniquely decomposed
via primary decomposition into irreducible components Vi with associated multiplicity mi. We
then define the cycle class of V to be the formal linear combination

∑
imi Vi. Clearly, the set

of all cycles can be seen as being formally generated by the irreducible subvarieties Vi of X.

One can easily define sums of two cycles C1 =
∑

im
(1)
i Vi and C2 =

∑
im

(2)
i Vi as the formal

linear combination C1 + C2 :=
∑

i(m
(1)
i + m

(2)
i )Vi. One can imagine this to be the analogue

of the geometric union C1 ∪ C2 including the multiplicities. Note that in this definition, the
embedded components are neglected. With the empty set representing the neutral element under
the putative addition, it is easy to see that the cycles form an abelian group called the group of
algebraic cycles of X. This additive structure of course carries over to homology, i.e. when we
consider homological equivalence classes of algebraic cycles.

Let us denote the set of all homology class of algebraic cycles on X by A(X). Then A(X)
carries a multiplication induced by the intersection of submanifolds: Suppose Z,Z ′ ⊂ X are of
(complex) codimension k resp. k′, then they intersect ‘transversely’ or ‘properly’, if all connected
components of Z ∩ Z ′ have pure codimension k + k′. The so-called Moving Lemma then asserts
that for any two equivalence classes C,C ′ ∈ A(X) of pure codimension k resp. k′, there are always
representatives Z resp. Z ′ which intersect properly in a cycle Z ∩ Z ′ of codimension k + k′. One
can show that this gives a well-behaved intersection product · by defining C · C ′ := [Z] · [Z ′] =
[Z ∩Z ′]. Note that this multiplication induces a natural grading A(X) =

⊕n
k=0A

k(X), such that

Ai×Aj ·−→ Ai+j , where Ak are the cycle classes of codimension i. With this multiplication, A(X)

1‘Cycles’ is a term common to intersection theory.
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becomes a ring.
Note that the famous Hodge conjecture asserts that A(X) is actually isomorphic to the co-

homology groups of type (k, k):

n⊕
k=0

H(k,k)(X,Q) ∼= A(X)⊗Q =
n⊕
k=0

Ak(X)⊗Q , (A.1)

where on the right hand side, the tensor product Ak(X) ⊗ C is just fancy way to say that we
allow for linear combinations of cycles classes with rational coefficients. The Hodge conjecture is
yet to be proven in full generality. However there are instances, where the conjecture is known
to hold. In particular, it is known to hold for any threefold, for all toric spaces, and for H(1,1).
Note that in section 2.1 of chapter III, we have used a different notation for Ak(X)⊗Q. There,

for consistency, we denoted this group by Halg
2(N−k)(X,Q), where N = dimCX.

Given (A.1), we now have a geometric way to compute wedge products of (k, k)-forms as the
intersection product of their Poincaré-dual (PD) algebraic cycle classes:

PD(ω1 ∧ ... ∧ ωk) = PD(ω1) · ... · PD(ωk) . (A.2)

In particular, an integral
∫
Z ω of a (k, k)-form over a 2k algebraic cycle Z can now also be

computed as the intersection number [Z] · PD(ω) ≡ [Z] · [W ]. Geometrically, this is just the
number of points (counted with multiplicity and orientation) in the intersection of two transverse
intersecting representatives Z ′ ∈ [Z] and W ′ ∈ [W ]. This is for example very handy when
computing the Cartan charges of matter P1s in F-theory. As an integral, the charge under the
Cartan U(1) associated with the exceptional divisor Exi is given as

∫
P1 PD(Exi). This may now be

interpreted as the intersection Exi ·P1, which can be read off from the fibre structure in F-theory.
This identification is extremely helpful for our computation of fluxes. Note that for divisors,

the Hodge conjecture is proven. Therefore, the identification (A.1) for the vertical cohomology
on the left hand side and the ring generated by divisor classes on the right is actually a fact.
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Appendix B

Details on the Construction of the
SU(3)×SU(2)×U(1)2 Gauge Group

1 Details on the Toric Diagrams

In this appendix we present the toric diagrams of the SU(2) and SU(3) tops. Special emphasis will
be put on the symmetries which identify some of the models as equivalent pairs. The relationship
between toric geometry and the geometry of Calabi-Yau hypersurfaces is described in e.g. [71].

The ambient space Bl2P2 has the toric diagram depicted on the left in figure B.1. The lattice
points of the dual diagram on the right correspond to the terms of the hypersurface equation
(V.1). Clearly the diagrams share a common reflection symmetry along the dotted diagonal axis.

u s1

w

v

s0

d2 b2d1

c1

c2b0

d0 b1

Figure B.1: Polygon 5 (in the classification of [71]) describing the fibre ambient space Bl2P2;
every lattice point of the dual polygon (right) gives an individual term of the hypersurface equa-
tion. The reflection symmetry along the dotted diagonal is manifest.

The symmetry exchanges fibre coordinates s0 ↔ s1, v ↔ w and coefficients b0 ↔ b2, c1 ↔
c2, d0 ↔ d1 of the hypersurface equation. Consequently, the U(1) generators (V.5) are also
transformed, namely as

ω1 = S1 − S0 −K −→ S0 − S1 −K = −ω1 + 2K ,
ω2 = U − S0 −K − [c1] −→ U − S1 −K − [c2] = ω2 − ω1 −K + [c1]− [c2] .

(B.1)

These forms do not satisfy the verticality condition, i.e. they are not in the image of the Shioda
map. However they only differ from such by the pullback of divisors of the base. Since such
pullbacks never contribute to the U(1) charges of any states, the U(1) charges indeed transform
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as

U(1)′1 = −U(1)1 ,

U(1)′2 = U(1)2 − U(1)1 .
(B.2)

The symmetry also exchanges the singlets (as the coefficients bi, cj , dk are exchanged), namely

1(1) ↔ 1
(3)
,1(2) ↔ 1

(4)
, while 1(5) and 1(6) are invariant.

I: II: III:

e0 e1

e0

e1

e0

e1

A:
f2

f1f0

B:

f0

f2f1

C:

f1

f0

f2

Figure B.2: Possible SU(2) (upper) and SU(3) (lower) tops. The coloured lines and vertices are
the ‘top layer’ of the three-dimensional toric diagram, projected down onto the layer containing
the base polygon representing the fibre ambient space.

The same symmetry relates the SU(2) and SU(3) tops as well as combinations of those. As
shown in figure B.2, the SU(2)-I and -II tops are precisely matched onto each other, however
only if one also exchanges the resolution coordinates e0 ↔ e1. The U(1) generators on both
sides can be similarly matched. The first generator transforms as ωI

1 −→ SII
0 − SII

1 −K+ 1
2E

II
0 =

−(SII
1 − SII

0 −K + 1
2E

II
1 ) + 2K + 1

2π
∗W2 = −ωII

1 + 2K + 1
2π
∗W2, where the first equality exploits

the relation E0 + E1 = π∗W2 for the resolution divisors of an SU(2) singularity. For the second
generator one now needs to take into account that cI

1 = cI
1,0 e

I
1 is mapped onto cII

2 = cII
2,1 e

II
0 , from

which one can easily verify the transformation ωI
2 −→ ωII

2 −ω II
1 + [cII

1 ]− [cII
2,1]−K. As mentioned

after (V.31), the spectrum of SU(2)-charged states is also exchanged as 2I
i ↔ 2

II
i , i = 1, 2, 3.

Obviously the SU(2)-III top is invariant under the reflection symmetry. The spectrum and U(1)
charges transform as stated in subsection 1.2.4. Similarly one can see that the SU(3)-A and
-C tops are equivalent to each other, while the -B top is invariant under reflection. Analogous
calculations as above show that the U(1) generators transform accordingly.
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When we combine the SU(2) and SU(3) tops, we see that among the nine possibilities there
are in fact five inequivalent models with SU(2) × SU(3) gauge group. The redundancy comes
again from reflecting along the symmetry axis of the base polygon, which identifies four pairs of
models to be equivalent (cf. figure B.3). The combination III×B is invariant under the reflection
transformation. The equivalence of the pairs of models can also be checked in a similar fashion
as above, by inspecting the transformation of the U(1) generators and the matter states.

III× B

I×A I× B I× C III×A

II× C II× B II×A III× C

Figure B.3: The combination of SU(2) and SU(3) tops gives rise to five inequivalent models.
Their toric diagram lies in a four-dimensional lattice, where the ‘top layers’ corresponding to
SU(2) and SU(3) resolution divisors extend into two linearly independent directions that do not
lie in the plane spanned by the base polygon. For this figure we have projected the tops down
into said plane. The four pairs of tops that are equivalent are related to each other by reflection
along the diagonal in the plane of the base polygon.

2 Details on SU(2)-II and -III Tops

In this part we provide more details on the matter and Yukawa couplings of the SU(2)-II and
-III top which have not been discussed at length in the corpus of this paper.

2.1 SU(2)-II Top

The top corresponds to restricting the hypersurface coefficients as

b0 = b0,1 e0, b2 = b2,0 e1, c2 = c2,1 e0, d1 = d1,0 e1, d2 = d2,0 e1. (B.3)

There are two possible SR-ideals, of which we choose

u v, u w,w s0, v s1, s0 s1, e0 s1, e0 u, e1 v. (B.4)
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The scaling relations and divisor classes for this top are as follows:

u v w s0 s1 e1 e0

U 1 1 1 · · · ·
S0 · · 1 1 · · ·
S1 · 1 · · 1 · ·
E1 · 1 · · · 1 −1

(B.5)

The U(1) generators, normalised such that the SU(2) root remains uncharged, are given by

ωII
1 = S1 − S0 −K +

1

2
E1,

ωII
2 = U − S0 −K − [c1] +

1

2
E1.

(B.6)

The discriminant locus now takes the form

∆ ' w2
2

(
c1 (c2

2,1 d0 − b0,1 b1 c2,1 + b20,1 c1) `3 (b21 − 4c1d0)2 +O(w2)
)
. (B.7)

The fibres over the intersection of the first three factors inside the big bracket in (B.7) with
{w2} are indeed of split Kodaira type I3. A similar analysis as for the SU(2)-I top confirms
matter in the 2 representation (together with their charge conjugates 2) on the matter curves
displayed in table B.1.

R locus = W2 ∩ . . . splitting of fibre components U(1)− charges

2II
1 {c1} P1

1 → P1
1s0

+ P1
1A (1

2 ,
3
2)

2II
2 {c2

2,1 d0 − b0,1 b1 c2,1 + b20,1 c1} P1
1 → P1

1B + P1
1C (1

2 ,−
1
2)

{`3} := {b22,0 d2
0

2II
3 +b2,0 (b21 d2,0 − 2 c1 d0 d2,0 − b1 d0 d1,0) P1

0 → P1
0A + P1

0B (1
2 ,

1
2)

+c1(d0 d
2
1,0 + d2,0(c1 d2,0 − b1 d1,0))}

Table B.1: Matter states in the SU(2)-II top.

The splitting of the fibre components over the first curve and the resulting enhancement of
the intersection structure to that of an affine SU(3) diagram is straightforward to see. For the
second curve, we factorise

c2
2,1 d0 − b0,1 b1 c2,1 + b20,1 c1 =

1

d0
C+ C− with C± = c2,1 d0 − b0,1

(
b1
2
±
√
b21
4
− c1 d0

)
, (B.8)

which splits the curve into two parts W2 ∩ {C± = 0} that are connected at a branch cut. Similar
to the results (V.26) of the first SU(2) top, we find that over these two parts the fibre of the
divisor E1 splits into two components, P1

1B and P1
1C , that can be extended over the whole curve

without being interchanged by any monodromy. The intersection structure is again that of the
affine SU(3) diagram. Analogously, the third curve can be written as W2 ∩ `3 with

`3 = 1/d2
0D+D−, D± = b2,0 d

2
0 −

[
c1 d0 d2,0 + (d0 d1,0 − b1 d2,0)

(
b1
2
±
√
b21
4
− c1 d0

)]
.

(B.9)
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A similar calculation as (V.28) shows that the divisor E0 splits into P1
0A + P1

0B, with both com-
ponents well-defined over the whole curve. As expected one finds the intersection structure to be
an affine SU(3) diagram.

Note that apart from the three matter curves discussed above, the vanishing order of the
discriminant increases from 2 to 3 also along the curve {w2} ∩ {b21 − 4c1d0}; however, the fibre is
of Kodaira type III since the Weierstrass sections f and g vanish to order 1 and 2 respectively.
Thus no extra charged matter representations arise here, in agreement with the formalism of [41].

The Yukawa couplings involving SU(2) matter are summarised in table B.2. The fibre struc-
ture enhancement for each Yukawa point can be read off from the last column in an analogous
fashion as with the first SU(2) top (cf. table V.4). We find the affine SU(4) diagram as the
intersection structure over all Yukawa points. Note that for the second and third pair of Yukawa
points, the same split products of each pair arrange themselves into different intersection patterns,
realising either 2i − 2j − 1/1 or 2i − 2j − 1/1 couplings.

coupling locus = W2 ∩ . . . splitting of fibre components

2II
1 2II

2 1
(4) {c1} ∩ {c2,1 d0 − b0,1 b1} P1

1 → P1
1s0C

+ P1
1AB + P1

1AC

2II
1 2

II
2 1

(5) {c1} ∩ {c2,1} P1
1 → P1

1s0B
+ P1

1AB′ + P
1
1AC′

2II
1 2II

3 1
(3) {c1} ∩ {b2,0} P1

0 → P1
0A + P1

0B, P1
1 → P1

1s0
+ P1

1A

2II
1 2

II
3 1

(6) {c1} ∩ {b2,0 d2
0 + b1 (d0 d1,0 − b1 d2,0)} P1

0 → P1
0A + P1

0B, P1
1 → P1

1s0
+ P1

1A

2II
2 2II

3 1
(2)

({C+} ∩ {D+}) ∪ ({C−} ∩ {D−}) P1
0 → P1

0A + P1
0B, P1

1 → P1
1B + P1

1C

2II
2 2

II
3 1(6) ({C+} ∩ {D−}) ∪ ({C−} ∩ {D+}) P1

0 → P1
0A + P1

0B, P1
1 → P1

1B + P1
1C

2II
2 2II

2 1
(1) {b0,1} ∩ {c2,1} P1

1 → P1
1B+ P1

1s1C
+ P1

1C′

2II
3 2II

3 1
(4) {b1 d2,0 − d0 d1,0} ∩ {c1 d2,0 − b2,0 d0} P1

0 → P1
0A+ P1

0B′ + P
1
0B′′

Table B.2: Yukawa couplings in the SU(2)-II top.

2.2 SU(2)-III Top

This top restricts the hypersurface coefficients as

c1 = c1,1 e0, c2 = c2,1 e0, d0 = d0,0 e1, d1 = d1,0 e1, d2 = d2,0 e
2
1. (B.10)

For this top there are four possible SR-ideals, of which we choose

u v,u w,w s0, v s1, s0 s1, e0 u, e0 s0, e1 w. (B.11)

The scaling relations and divisor classes for this top are

u v w s0 s1 e1 e0

U 1 1 1 · · · ·
S0 · · 1 1 · · ·
S1 · 1 · · 1 · ·
E1 · 1 1 · · 1 −1

(B.12)

155



APPENDIX B. DETAILS ON CONSTRUCTION OF STANDARD MODELS

The SU(2) root in this top is uncharged under the generators (V.5) so that no correction term is
needed,

ωIII
1 = S1 − S0 −K,
ωIII

2 = U − S0 −K − [c1,1].
(B.13)

This time the discriminant of the singular blow-down takes the form

∆ =w2
2

(
b0 b2 (b0 c

2
1,1 − b1 c1,1 c2,1 + b2 c

2
2,1)(b21 − 4b0b2)2

(−b2d2
0 + b1d0,0d1,0 − b0d2

1,0 − b21d2,0 + 4b0b2d2,0) +O(w2)
)
. (B.14)

Over the intersection of {w2} with the first three factors in the bracket in (B.14), the fibre
type enhances to split Kodaira type I3. This gives rise to matter states in the 2 representation
(together with their charge conjugate 2 states) summarised in tabe B.3.

By setting b0/b2 = 0 in the hypersurface equation, it is again straightforward to see the
splitting process and the enhancement of the intersection structure to an affine SU(3) diagram
over the first/second 2-curve. The quadratic equation defining the third curve can be again
factorised analogously to (V.25). However, because of the Yukawa points that are present in this
top (see below), we need two different factorisations,

b0 c
2
1,1 − b1 c1,1 c2,1 + b2 c

2
2,1 =

1

b0
C+ C− =

1

b2
D+D− (B.15)

with

C± = c1,1 b0 − c2,1

(
b1
2
±
√
b21
4
− b0 b2

)
, D± = c2,1 b2 − c1,1

(
b1
2
∓
√
b21
4
− b0 b2

)
. (B.16)

The two factorisations describe the same splittings of the curve into two parts which are
connected at the branch cut of the square root. With these two factorisations, one can analyse
the splitting of the fibre when either b0 or b2 is non-zero.1 When b0 6= 0, we can solve C± for c1,1

and plug the result into the hypersurface equation; if b2 6= 0, we solve D± for c2,1. Doing so, we
find no splitting for P1

0, but P1
1 splits as follows:

PT (e1 = 0, C±/D± = 0)

b0 6=0
=

1

b0

[(
b1
2
±
√
b21
4
− b0 b2

)
s1 + b0 s0 v

]
︸ ︷︷ ︸

P11B

[(
b1
2
∓
√
b21
4
− b0 b2

)
s1 u + c2,1 e0 v + b0 s0 u v

]
︸ ︷︷ ︸

P11C
(B.17)

b2 6=0
=

1

b2

︷ ︸︸ ︷[
b2 s1 +

(
b1
2
∓
√
b21
4
− b0 b2

)
s0 v

]︷ ︸︸ ︷[
b2 s1 u + c1,1 e0 v +

(
b1
2
±
√
b21
4
− b0 b2

)
s0 u v

]
(B.18)

The fibre over {w2} ∩ {b21− 4b0b2} is of Kodaira type III and thus no massless matter arises.
Interestingly, over the remaining locus {w2} ∩ {−b2d2

0 + b1d0,0d1,0 − b0d2
1,0 − b21d2,0 + 4b0b2d2,0},

(f, g,∆) vanish to order (0, 0, 3), but the fibre is of non-split Kodaira type I3. This can be read
off from the specifics of the Weierstrass sections f and g following Tate’s algorithm. Moreover, an
explicit analysis of the resolved fibre confirms that it locally factors into three P1s, two of which

1On a generic base of complex dimension 3, b0 and b2 cannot both vanish on the codimension 2 curve.
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R locus = W2 ∩ . . . splitting of fibre components U(1)− charges

2III
1 {b0} P1

0 → P1
0s1

+ P1
0A (1, 0)

2III
2 {b2} P1

1 → P1
1v + P1

1A (1, 1)

2III
3 {b0 c2

1,1 − b1 c1,1 c2,1 + b2 c
2
2,1} P1

1 → P1
1B + P1

1C (0, 1)

Table B.3: Matter states in the SU(2)-III top.

are however exchanged by a monodromy along the curve in the base. Since the corresponding
singularity type is merely Sp(1) (as opposed to SU(3)) no massless matter arises here. Note that
this conclusion is not in contradiction with the results of [41], especially table 9, which would
naively indicate fundamental matter along this curve. However, the analysis of [41] holds on
Calabi-Yau 3-folds and therefore does not account for potential monodromies along the matter
loci.

The possible Yukawa couplings are summarised in table B.4. The splitting process over the
first type of Yukawa points is straightforward to see when one evaluates the hypersurface equation
on the locus.

coupling locus = W2 ∩ . . . splitting of fibre components

2III
1 2

III
2 1(6) {b0} ∩ {b2} P1

0 → P1
0s1

+ P1
0A, P1

1 → P1
1v + P1

1A

2III
1 2III

3 1
(4) {b0} ∩ {c2,1 b2 − c1,1 b1} P1

0 → P1
0s1

+ P1
0A, P1

1 → P1
1B + P1

1C

2III
1 2

III
3 1

(1) {b0} ∩ {c2,1} P1
0 → P1

0s1
+ P1

0A, P1
1 → P1

1B′ + P
1
1C

2III
2 2III

3 1
(3) {b2} ∩ {c1,1} P1

1 → P1
1vB + P1

1AB + P1
1AC

2III
2 2

III
3 1

(2) {b2} ∩ {c1,1 b0 − c2,1 b1} P1
1 → P1

1vC + P1
1AB′ + P

1
1AC′

2III
3 2III

3 1
(5) {c1,1} ∩ {c2,1} P1

1 → P1
1B + P1

1uC + P1
1C′

Table B.4: Yukawa couplings in the SU(2)-III top.

The second and third groups of couplings arise over the intersection of the 2III
3 -curve with

b0 = 0 and hence require the factorisation (B.18). The second Yukawa point lies over D− = 0,
corresponding to the downstairs signs in (B.18); the third point lies over D+ = 0, corresponding
to upstairs signs. In both cases, we see that there is no further splitting of P1

1B and P1
1C when we

set b0 = 0. Rather, P1
0 splits, coming from the already present enhancement over the 2III

1 curve.

The fourth and fifth Yukawa point are the intersection points of 2III
3 and b2 = 0, hence we

make use of the factorisation (B.17). The fourth/fifth point lies on C−/C+ = 0, correspondingly
we take the downstairs/upstairs signs in (B.17). Setting b2 = 0, we see that for the fourth
coupling, P1

1B splits off a factor v, while P1
1C remains irreducible; for the fifth coupling, it is P1

1C

that splits.

Finally, over the last Yukawa point, which is a self-intersection point, neither b0 nor b2 are 0,
and so both factorisations (B.17) and (B.18) should give the same splitting process in the fibre.
Indeed, setting c2,1 = 0 in (B.17) and c1,1 = 0 in (B.18) shows that P1

1B remains irreducible while
P1

1C splits off a factor u.

Over all Yukawa points we find that the intersection structure of the P1 components is the
affine SU(4) diagram.
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3 Details on SU(3)-B and -C Tops

Here we go through the remaining SU(3) tops in more detail.

3.1 SU(3)-B Top

The SU(3)-B top leads to the restrictions of the following coefficients

b0 = b0,2 f
2
0 f1, b2 = b2,0 f1 f

2
2 , c1 = c1,0 f2, c2 = c2,1 f0,

d0 = d0,1 f0 f1, d1 = d1,0 f1 f2, d2 = d2,0 f1,
(B.19)

while b1 remain unrestricted. There are eight different triangulations. For definiteness, we choose
the one leading to the following SR-ideal:

u v,u w,w s0, v s1, s0 s1, f0 u, f0 s1, f1 v, f1 w, f2 u, f2 s0, f2 v. (B.20)

The coordinates and their corresponding divisor classes are summarised in the following table:

u v w s0 s1 f1 f2 f0

U 1 1 1 · · · · ·
S0 · · 1 1 · · · ·
S1 · 1 · · 1 · · ·
F1 · 1 · · · 1 · −1
F2 · 1 −1 · · · 1 −1

(B.21)

For SU(3) roots to have zero U(1) charge, the generators (V.5) receive the following correction:

ωB
1 = S1 − S0 −K +

1

3
F1 +

2

3
F2,

ωB
2 = U − S0 −K − [c1,0] +

2

3
F1 +

1

3
F2.

(B.22)

We find codimension 2 enhancement with 3 and 3 matter over loci and with charges as
presented in table B.5. Over the curve {w3} ∩ {b1} the fibre type changes to Kodaira type IV ,
but such fibres do not give rise to additional charged matter.

The gauge invariant Yukawa coupling appearing are listed in table B.6.

R locus = W3 ∩ . . . splitting of fibre components U(1)− charges

3B
1 {c1,0} P1

1 → P1
1s0

+ P1
1A (−2

3 ,−
4
3)

3B
2 {c2,1} P1

1 → P1
1s1

+ P1
1B (−2

3 ,
2
3)

3B
3 {d2,0} P1

0 → P1
0w + P1

0A (−2
3 ,−

1
3)

3B
4 {b21 b2,0 − b1 c1,0 d1,0 + c2

1,0 d2,0} P1
0 → P1

0B + P1
0C (1

3 ,
2
3)

3B
5 {b0,2 b21 + c2

2,1 d2.0 − b1 c2,1 d0,1} P1
2 → P1

2A + P1
2B (1

3 ,−
1
3)

Table B.5: Matter states in the SU(3)-B top.
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coupling locus = W3 ∩ . . . splitting of fibre components

3B
1 3

B
2 1(5) {c1,0} ∩ {c2,1} P1

1 → P1
1s0B

+ P1
1s1A

+ P1
1AB

3B
1 3

B
3 1(6) {c1,0} ∩ {d2,0} P1

0 → P1
0w + P1

0A, P1
1 → P1

1s0
+ P1

1A

3B
1 3

B
4 1(3) {c1,0} ∩ {b2,0} P1

0 → P1
0B + P1

0C , P1
1 → P1

1s0
+ P1

1A

3B
1 3

B
5 1(4) {c1,0} ∩

(
3B

5

)
P1

1 → P1
1s0

+ P1
1A, P1

2 → P1
2A + P1

2B

3B
2 3

B
3 1

(6) {c2,1} ∩ {d2,0} P1
0 + P1

0w + P1
0A, P1

1 → P1
1s1

+ P1
1B

3B
2 3

B
4 1(2) {c2,1} ∩

(
3B

4

)
P1

0 → P1
0B + P1

0C , P1
1 → P1

1s1
+ P1

1B

3B
2 3

B
5 1(1) {b0,2} ∩ {c2,1} P1

1 → P1
1s1

+ P1
1B, P1

2 → P1
2A + P1

2B

3B
3 3

B
4 1(4) {d2,0} ∩ {b1 b2,0 − c1,0 d1,0} P1

0 → P1
0wC + P1

0AC + P1
0AB

3B
3 3

B
5 1(2) {d2,0} ∩ {b0,2 b1 − c2,1 d0,1} P1

0 + P1
0w + P1

0A, P1
2 → P1

2A + P1
2B

3B
4 3

B
5 1

(6) (
3B

4

)
∩
(
3B

5

)
\ ({d2,0} ∩ {b1}) P1

0 → P1
0B + P1

0C , P1
2 → P1

2A + P1
2B

3B
3 3B

4 3B
5 {d2,0} ∩ {b1} P1

0 → P1
0wB + P1

0AB′ + P
1
0AC′ , P

1
2 → P1

2A + P1
2B

P1
0AB′ = P1

2A

3B
1 3B

4 3B
4 {c1,0} ∩ {b1} P1

0 → P1
0B + P1

0C′ + P
1
0C1, P1

1 → P1
1s0

+ P1
1A

P1
0C1 = P1

1A

3B
2 3B

5 3B
5 {c2,1} ∩ {b1} P1

1 → P1
1s1

+ P1
1B′ , P

1
2 → P1

2A + P1
2B′ + P

1
2B1

P1
1B = P1

2B1

Table B.6: Yukawa couplings in the SU(3)-B top.

3.2 SU(3)-C Top

The third top leads to the restrictions of the following coefficients

b0 = b0,1 f0 f2, b2 = b2,0 f1, c1 = c1,1 f0 f1, c2 = c2,1 f0,

d0 = d0,0 f2, d1 = d1,0 f1 f2, d2 = d2,0 f1 f
2
2 ,

(B.23)

while b1 remain unrestricted. The top allows 4 different triangulations. For definiteness, we
choose the one leading to the following SR-ideal:

u v,u w,w s0, v s1, s0 s1, f0 u, f0 s0, f0 s1, f1 s0, f1 v, f2 w, f2 s1. (B.24)

The coordinates and their corresponding divisor classes are summarised in the following table:

u v w s0 s1 f1 f2 f0

U 1 1 1 · · · · ·
S0 · · 1 1 · · · ·
S1 · 1 · · 1 · · ·
F1 · 1 · · · 1 · −1
F2 · 1 1 · · · 1 −1

(B.25)

For SU(3) roots to have zero U(1) charge, the generators (V.5) receive the following correction:

ωC
1 = S1 − S0 −K +

1

3
F1 −

1

3
F2,

ωC
2 = U − S0 −K − [c1,1].

(B.26)
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The Kodaira type of the fibre enhances from I3 to I4 (split) over the codimension-2 loci
displayed in table B.7, which therefore give rise to 3 and 3 matter. In addition, over the curve
{w3} ∩ {b1} the fibre type changes to Kodaira type IV , but no matter representation arises over
this locus.

The gauge invariant Yukawa coupling appearing are summarised in table B.8.

R locus = W3 ∩ . . . splitting of fibre components U(1)− charges

3C
1 {b2,0} P1

2 → P1
2v + P1

2A (−2
3 ,−1)

3C
2 {c2,1} P1

1 → P1
1u + P1

1A (1
3 ,−1)

3C
3 {b1 c1,1 − b2,0 c2,1} P1

2 → P1
2B + P1

2C (1
3 , 1)

3C
4 {b0,1 b1 − c2,1 d0,0} P1

1 → P1
1B + P1

1C (−2
3 , 0)

3C
5 {b2,0 d2

0,0 + b21 d2,0 − b1 d0,0 d1,0} P1
0 → P1

0A + P1
0B (1

3 , 0)

Table B.7: Matter states in the SU(3)-C top.

coupling locus = W3 ∩ . . . splitting of fibre components

3C
1 3

C
2 1(2) {b2,0} ∩ {c2,1} P1

1 → P1
1u + P1

1A, P1
2 → P1

2v + P1
2A

3C
1 3

C
3 1(3) {b2,0} ∩ {c1,1} P1

2 → P1
2vC + P1

2AB + P1
2C′

3C
1 3

C
4 1(6) {b2,0} ∩ {b0,1 b1 − c2,1 d0,0} P1

1 → P1
1B + P1

1C , P1
2 → P1

2v + P1
2A

3C
1 3

C
5 1(4) {b2,0} ∩ {b1 d2,0 − d0,0 d1,0} P1

0 → P1
0A + P1

0B, P1
2 → P1

2v + P1
2A

3C
2 3

C
3 1(5) {c2,1} ∩ {c1,1} P1

1 → P1
1u + P1

1A, P1
2 → P1

2B + P1
2C

3C
2 3

C
4 1

(1) {c2,1} ∩ {b0,1} P1
1 → P1

1uB + P1
1B′ + P

1
1AC

3C
2 3

C
5 1(6) {c2,1} ∩

(
3C

5

)
P1

0 → P1
0A + P1

0B, P1
1 → P1

1u + P1
1A

3C
3 3

C
4 1

(4) (
3C

3

)
∩
(
3C

4

)
\ ({c2,1} ∩ {b1}) P1

1 → P1
1B + P1

1C , P1
2 → P1

2B + P1
2C

3C
3 3

C
5 1

(6) (
3C

3

)
∩
(
3C

5

)
\ ({b2,0} ∩ {b1}) P1

0 → P1
0A + P1

0B, P1
2 → P1

2B + P1
2C

3C
4 3

C
5 1(2)

(
3C

4

)
∩
(
3C

5

)
\ ({d0,0} ∩ {b1}) P1

0 → P1
0A + P1

0B, P1
1 → P1

1B + P1
1C

3C
1 3C

3 3C
5 {b2,0} ∩ {b1} P1

0 → P1
0A + P1

0B, P1
2 → P1

2vB + P1
2B′ + P

1
2AC

P1
0A = P1

2B′

3C
2 3C

3 3C
4 {c2,1} ∩ {b1} P1

1 → P1
1uC + P1

1C′ + P
1
1AB, P1

2 → P1
2B + P1

2C

P1
1C′ = P1

2C

3C
4 3C

5 3C
5 {d0,0} ∩ {b1} P1

0 → P1
0B + P1

0C′ + P
1
0C1, P1

1 → P1
1B + P1

1C

P1
0C′ = P1

1C

Table B.8: Yukawa couplings in the SU(3)-C top.
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Appendix C

Matching the MSSM-Spectrum

With the search criteria and algorithm presented in section 2.1, we find, for each of the toric
SU(3)× SU(2)× U(1)1 × U(1)2 models described in section 1.4, a significant number of possib-
ilities to match the geometric spectrum with matter states of the MSSM including right-handed
neutrinos und µ-singlets. The results are listed in the left column of the tables below, in the
notation introduced in section 2.1. In the right column, we have listed which of the baryon
and lepton number violating couplings (cf. (V.57) to (V.60)) are allowed by the U(1) selection
rules, although – for space-saving reasons – in a slightly altered order. Furthermore we do not
explicitly write down the states associated with Hu, Hd and Q in each coupling that appears, as
these states are fixed for each possible match. For example the α-term comes from a coupling
QLdcR, where there can be, depending on the matching, several different states for L and dcR,
while Q is given by the unique (3,2)-state. In our table we list such an existing coupling as
(2,3), where the 2-state is the lepton L and 3 the down-quark, i.e. the states appear in the same
order as in the corresponding term in equations (V.57) – (V.60). When there is no Q and H
involved in a coupling we give all the states involved, again in the order as they appear in the
corresponding term; e.g. for the β-term ucR u

c
R d

c
R the corresponding entry in the table looks like

3i 3j 3k, with the first up-quark involved being the state 3i, the second one being 3j , and the
down-quark being 3k. Note that we have summarised all possible terms of Wsinglet (V.58) in the
entry δ. Another special entry is the λ3-term in (V.59) of the form QQQHd; since there is no
ambiguity in this term from the matching of the states, we simply list whether the coupling is
allowed by the selection rules (X) or not (−).

We need to point out one case where the search algorithm does not completely fix the iden-
tification of the states with the MSSM fields. This happens when the choice of the Higgs states
Hu/d together with the charges of Q = (3,2) does not completely fix the coefficients a and b
of the hypercharge in terms of U(1)1/2. In fact this is the case whenever there is a linear com-
bination of U(1)1/2 under which Q and Hu/d are all uncharged, which is the orthogonal linear
combination to U(1)Y . In such a case there might be some other states that are also uncharged
under this particular U(1) charge combination and can be identified with some Standard Model
states. As these states are uncharged under the orthogonal U(1), they are not subject to any
selection rules, so that the dimension-four and -five operators in (V.57) – (V.60) will be present
if all states involved are present. In this case there may be more possibilities to match the spec-
trum, which we do not work out explicitly here. For every top combination (except for III × B,
where there is no such case) we have listed the corresponding case at the end of the tables below.

In the I × A-model for example, this happens when Hu = 2I
1, Hd = 2

I
1, and any assignment

U(1)Y = (2b+ 1)U(1)1 + b U(1)2 for arbitrary b gives the correct hypercharge for the Higgs and
the left-handed quarks, because they are uncharged under the linear combination 2U(1)1 +U(1)2.
To match states charged under this U(1) one needs to specify the value of b. It would be in-
teresting to see if, after Higgsing the particular linear combination of U(1)1/2 under which Hu/d
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APPENDIX C. MATCHING THE MSSM-SPECTRUM

and Q are uncharged, the geometric spectrum can be embedded into the most general F-theory
compactification with only one abelian factor [56].

Finally, recall from section 1.4 that the top-combination III × B generically suffers from a
non-Kodaira point, which, at least as far as our current understanding of F-theory is concerned,
must be absent in order for the fibration to describe a well-defined vacuum.

Table C.1: Possible matches for I×A

Matter spectrum Baryon- and Lepton number violation

possibility no. 1

a = 0, b = − 1
2
; (Hu, Hd) = (2I

1,2
I
2)

heavy (ucR, d
c
R): (− ,3A

4 )

light ucR: 3
A
2 ; light dcR: 3

A
3

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,1

(5)
), (2I

2,1
(2)
,1

(3)
)

light νcR: 1(2); light ecR: −
1µ: 1

(2)

α: (2
I
1,3

A
3 ) , (2I

2,3
A
4 ) ; β: 3

A
2 3

A
4 3

A
3 ; δ: − ;

γ: 2
I
12

I
21

(5)
, 2I

22
I
21

(3)
;

λ1: 2I
1; λ3: − ; λ6: − ; λ8: 1

(5)
; λ10: (3

A
3 )∗;

λ4: (3
A
2 ,1

(3)
); λ5: (2

I
1,2

I
1);

λ9: (3
A
2 , (2

I
2)∗);

λ7: 3
A
2 (3

A
4 )∗1

(3)
, 3

A
2 (3

A
3 )∗1

(5)
;

λ2: 3
A
2 3

A
2 3

A
4 1

(5)
, 3

A
2 3

A
2 3

A
3 1

(3)

possibility no. 2

a = 1, b = 0; (Hu, Hd) = (2I
1,2

I
2)

heavy (ucR, d
c
R): (− ,3A

2 )

light ucR: 3
A
1 , 3

A
4 ; light dcR: 3

A
3 , 3

A
5

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,1(2)), (2

I
2,1

(5),1(3)), (2
I
3,1

(6),1(4))

light νcR: 1
(5)
, 1

(6)
; light ecR: 1(1)

1µ: 1(5)

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
1 3

A
3 3

A
5 ,

3
A
4 3

A
2 3

A
3 , 3

A
4 3

A
5 3

A
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: − ; λ8: 1(2); λ10: (3

A
3 )∗;

λ4: (3
A
1 ,1

(4)), (3
A
4 ,1

(3)) ; λ5: (2
I
1,2

I
1);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
3 )∗1(1), 3

A
1 (3

A
5 )∗1(2),

3
A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
3 )∗1(2), 3

A
4 (3

A
5 )∗1(4);

λ2: 3
A
1 3

A
1 3

A
3 1

(2), 3
A
1 3

A
1 3

A
5 1

(1), 3
A
1 3

A
4 3

A
2 1

(1),

3
A
1 3

A
4 3

A
3 1

(4), 3
A
1 3

A
4 3

A
5 1

(2), 3
A
4 3

A
4 3

A
2 1

(2),

3
A
4 3

A
4 3

A
3 1

(3), 3
A
4 3

A
4 3

A
5 1

(4)

possibility no. 3

a = −1, b = −1; (Hu, Hd) = (2I
1,2

I
3)

heavy (ucR, d
c
R): (− ,3A

1 )

light ucR: 3
A
5 ; light dcR: 3

A
3

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,1

(6)
), (2I

3,1
(1)
,1

(2)
)

light νcR: 1(1); light ecR: −
1µ: 1

(1)

α: (2
I
1,3

A
3 ) , (2I

3,3
A
1 ) ; β: 3

A
5 3

A
1 3

A
3 ; δ: − ;

γ: 2
I
12

I
31

(6)
, 2I

32
I
31

(2)
;

λ1: 2I
1; λ3: − ; λ6: − ; λ8: 1

(6)
; λ10: (3

A
3 )∗;

λ4: (3
A
5 ,1

(2)
); λ5: (2

I
1,2

I
1);

λ9: (3
A
5 , (2

I
3)∗);

λ7: 3
A
5 (3

A
1 )∗1

(2)
, 3

A
5 (3

A
3 )∗1

(6)
;

λ2: 3
A
5 3

A
5 3

A
1 1

(6)
, 3

A
5 3

A
5 3

A
3 1

(2)

possibility no. 4

a = 1, b = 0; (Hu, Hd) = (2I
1,2

I
3)

heavy (ucR, d
c
R): (− ,3A

5 )

light ucR: 3
A
1 , 3

A
4 ; light dcR: 3

A
2 , 3

A
3

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,1(1)), (2

I
2,1

(5),1(4)), (2
I
3,1

(6),1(2))

light νcR: 1
(5)
, 1

(6)
; light ecR: 1(3)

1µ: 1(6)

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
1 3

A
5 3

A
3 ,

3
A
4 3

A
5 3

A
5 , 3

A
4 3

A
2 3

A
3 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: − ; λ8: 1(1); λ10: (3

A
3 )∗;

λ4: (3
A
1 ,1

(2)), (3
A
4 ,1

(4)) ; λ5: (2
I
1,2

I
1);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
1 (3

A
5 )∗1(2), 3

A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
3 )∗1(1),

3
A
4 (3

A
5 )∗1(4), 3

A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
3 )∗1(2);

λ2: 3
A
1 3

A
1 3

A
5 1

(1), 3
A
1 3

A
1 3

A
3 1

(2), 3
A
1 3

A
4 3

A
5 1

(2),

3
A
1 3

A
4 3

A
2 1

(1), 3
A
1 3

A
4 3

A
3 1

(4), 3
A
4 3

A
4 3

A
5 1

(4),

3
A
4 3

A
4 3

A
2 1

(2), 3
A
4 3

A
4 3

A
3 1

(3)

Continued on next page

162



APPENDIX C. MATCHING THE MSSM-SPECTRUM

Table C.1, Possible matches for I×A – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 5

a = 1, b = 0; (Hu, Hd) = (2I
2,2

I
1)

heavy (ucR, d
c
R): (3

A
4 ,3

A
3 )

light ucR: 3
A
1 ; light dcR: 3

A
2 , 3

A
5

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(5)
,− ), (2

I
2,− ,1(2)), (2

I
3,1

(6)
,1(1))

light νcR: 1(5), 1(6); light ecR: 1(3), 1(4)

1µ: 1
(5)

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
4 3

A
3 3

A
2 ,

3
A
4 3

A
5 3

A
5 , 3

A
1 3

A
3 3

A
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: X ; λ6: − ; λ8: 1(2); λ10: (3

A
3 )∗;

λ4: (3
A
4 ,1

(2)), (3
A
1 ,1

(1)) ; λ5: (2
I
2,2

I
2);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
4 (3

A
3 )∗1(2), 3

A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
5 )∗1(4),

3
A
1 (3

A
3 )∗1(1), 3

A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
5 )∗1(2);

λ2: 3
A
4 3

A
4 3

A
3 1

(3), 3
A
4 3

A
4 3

A
2 1

(2), 3
A
4 3

A
4 3

A
5 1

(4),

3
A
4 3

A
1 3

A
3 1

(4), 3
A
4 3

A
1 3

A
2 1

(1), 3
A
4 3

A
1 3

A
5 1

(2),

3
A
1 3

A
1 3

A
3 1

(2), 3
A
1 3

A
1 3

A
5 1

(1)

possibility no. 6

a = 1, b = 0; (Hu, Hd) = (2I
2,2

I
2)

heavy (ucR, d
c
R): (3

A
4 ,3

A
2 )

light ucR: 3
A
1 ; light dcR: 3

A
3 , 3

A
5

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(5)
,1(2)), (2

I
2,− ,1(3)), (2

I
3,1

(6)
,1(4))

light νcR: 1(5), 1(6); light ecR: 1(1)

1µ: −

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
4 3

A
2 3

A
3 ,

3
A
4 3

A
5 3

A
5 , 3

A
1 3

A
3 3

A
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: 2

I
1; λ8: 1(3); λ10: (3

A
3 )∗;

λ4: (3
A
4 ,1

(3)), (3
A
1 ,1

(4)) ; λ5: (2
I
2,2

I
2);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
3 )∗1(2), 3

A
4 (3

A
5 )∗1(4),

3
A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
3 )∗1(1), 3

A
1 (3

A
5 )∗1(2);

λ2: 3
A
4 3

A
4 3

A
2 1

(2), 3
A
4 3

A
4 3

A
3 1

(3), 3
A
4 3

A
4 3

A
5 1

(4),

3
A
4 3

A
1 3

A
2 1

(1), 3
A
4 3

A
1 3

A
3 1

(4), 3
A
4 3

A
1 3

A
5 1

(2),

3
A
1 3

A
1 3

A
3 1

(2), 3
A
1 3

A
1 3

A
5 1

(1)

possibility no. 7

a = 1, b = 0; (Hu, Hd) = (2I
2,2

I
3)

heavy (ucR, d
c
R): (3

A
4 ,3

A
5 )

light ucR: 3
A
1 ; light dcR: 3

A
2 , 3

A
3

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(5)
,1(1)), (2

I
2,− ,1(4)), (2

I
3,1

(6)
,1(2))

light νcR: 1(5), 1(6); light ecR: 1(3)

1µ: 1
(6)

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
4 3

A
5 3

A
5 ,

3
A
4 3

A
2 3

A
3 , 3

A
1 3

A
5 3

A
3 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: − ; λ8: 1(4); λ10: (3

A
3 )∗;

λ4: (3
A
4 ,1

(4)), (3
A
1 ,1

(2)) ; λ5: (2
I
2,2

I
2);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
4 (3

A
5 )∗1(4), 3

A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
3 )∗1(2),

3
A
1 (3

A
5 )∗1(2), 3

A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
3 )∗1(1);

λ2: 3
A
4 3

A
4 3

A
5 1

(4), 3
A
4 3

A
4 3

A
2 1

(2), 3
A
4 3

A
4 3

A
3 1

(3),

3
A
4 3

A
1 3

A
5 1

(2), 3
A
4 3

A
1 3

A
2 1

(1), 3
A
4 3

A
1 3

A
3 1

(4),

3
A
1 3

A
1 3

A
5 1

(1), 3
A
1 3

A
1 3

A
3 1

(2)

possibility no. 8

a = 0, b = − 1
2
; (Hu, Hd) = (2

I
2,2

I
1)

heavy (ucR, d
c
R): (3

A
2 ,3

A
3 )

light ucR: − ; light dcR: 3
A
4

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(2),− ), (2I
2,− ,1

(5)
)

light νcR: 1
(2)

; light ecR: 1
(3)

1µ: 1(2)

α: (2
I
1,3

A
3 ) , (2I

2,3
A
4 ) ; β: 3

A
2 3

A
3 3

A
4 ; δ: − ;

γ: 2
I
12

I
21

(5)
, 2I

22
I
21

(3)
;

λ1: 2I
1; λ3: X ; λ6: − ; λ8: 1

(5)
; λ10: (3

A
3 )∗;

λ4: (3
A
2 ,1

(5)
); λ5: (2I

2,2
I
2);

λ9: (3
A
2 , (2

I
2)∗);

λ7: 3
A
2 (3

A
3 )∗1

(5)
, 3

A
2 (3

A
4 )∗1

(3)
;

λ2: 3
A
2 3

A
2 3

A
3 1

(3)
, 3

A
2 3

A
2 3

A
4 1

(5)

Continued on next page
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Table C.1, Possible matches for I×A – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 9

a = 0, b = − 1
2
; (Hu, Hd) = (2

I
2,2

I
2)

heavy (ucR, d
c
R): (3

A
2 ,3

A
4 )

light ucR: − ; light dcR: 3
A
3

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(2),1
(5)

), (2I
2,− ,1

(3)
)

light νcR: 1
(2)

; light ecR: −
1µ: −

α: (2
I
1,3

A
3 ) , (2I

2,3
A
4 ) ; β: 3

A
2 3

A
4 3

A
3 ; δ: − ;

γ: 2
I
12

I
21

(5)
, 2I

22
I
21

(3)
;

λ1: 2I
1; λ3: − ; λ6: 2

I
1; λ8: 1

(3)
; λ10: (3

A
3 )∗;

λ4: (3
A
2 ,1

(3)
); λ5: (2I

2,2
I
2);

λ9: (3
A
2 , (2

I
2)∗);

λ7: 3
A
2 (3

A
4 )∗1

(3)
, 3

A
2 (3

A
3 )∗1

(5)
;

λ2: 3
A
2 3

A
2 3

A
4 1

(5)
, 3

A
2 3

A
2 3

A
3 1

(3)

possibility no. 10

a = 1, b = 0; (Hu, Hd) = (2I
3,2

I
1)

heavy (ucR, d
c
R): (3

A
1 ,3

A
3 )

light ucR: 3
A
4 ; light dcR: 3

A
2 , 3

A
5

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(6)
,− ), (2

I
2,1

(6),1(2)), (2
I
3,− ,1(1))

light νcR: 1(5), 1
(5)

; light ecR: 1(3), 1(4)

1µ: 1
(6)

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
1 3

A
3 3

A
5 ,

3
A
4 3

A
3 3

A
2 , 3

A
4 3

A
5 3

A
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: X ; λ6: 2

I
1; λ8: 1(1); λ10: (3

A
3 )∗;

λ4: (3
A
1 ,1

(1)), (3
A
4 ,1

(2)) ; λ5: (2
I
1,2

I
2), (2

I
3,2

I
3);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
1 (3

A
3 )∗1(1), 3

A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
5 )∗1(2),

3
A
4 (3

A
3 )∗1(2), 3

A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
5 )∗1(4);

λ2: 3
A
1 3

A
1 3

A
3 1

(2), 3
A
1 3

A
1 3

A
5 1

(1), 3
A
1 3

A
4 3

A
3 1

(4),

3
A
1 3

A
4 3

A
2 1

(1), 3
A
1 3

A
4 3

A
5 1

(2), 3
A
4 3

A
4 3

A
3 1

(3),

3
A
4 3

A
4 3

A
2 1

(2), 3
A
4 3

A
4 3

A
5 1

(4)

possibility no. 11

a = 1, b = 0; (Hu, Hd) = (2I
3,2

I
2)

heavy (ucR, d
c
R): (3

A
1 ,3

A
2 )

light ucR: 3
A
4 ; light dcR: 3

A
3 , 3

A
5

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(6)
,1(2)), (2

I
2,1

(6),1(3)), (2
I
3,− ,1(4))

light νcR: 1(5), 1
(5)

; light ecR: 1(1)

1µ: 1(6)

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
1 3

A
3 3

A
5 ,

3
A
4 3

A
2 3

A
3 , 3

A
4 3

A
5 3

A
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: 2I

1; λ8: 1(4); λ10: (3
A
3 )∗;

λ4: (3
A
1 ,1

(4)), (3
A
4 ,1

(3)) ; λ5: (2
I
1,2

I
2), (2

I
3,2

I
3);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
3 )∗1(1), 3

A
1 (3

A
5 )∗1(2),

3
A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
3 )∗1(2), 3

A
4 (3

A
5 )∗1(4);

λ2: 3
A
1 3

A
1 3

A
3 1

(2), 3
A
1 3

A
1 3

A
5 1

(1), 3
A
1 3

A
4 3

A
2 1

(1),

3
A
1 3

A
4 3

A
3 1

(4), 3
A
1 3

A
4 3

A
5 1

(2), 3
A
4 3

A
4 3

A
2 1

(2),

3
A
4 3

A
4 3

A
3 1

(3), 3
A
4 3

A
4 3

A
5 1

(4)

possibility no. 12

a = 1, b = 0; (Hu, Hd) = (2I
3,2

I
3)

heavy (ucR, d
c
R): (3

A
1 ,3

A
5 )

light ucR: 3
A
4 ; light dcR: 3

A
2 , 3

A
3

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(6)
,1(1)), (2

I
2,1

(6),1(4)), (2
I
3,− ,1(2))

light νcR: 1(5), 1
(5)

; light ecR: 1(3)

1µ: −

α: (2
I
1,3

A
3 ) , (2

I
2,3

A
2 ) , (2

I
3,3

A
5 ) ; β: 3

A
1 3

A
5 3

A
3 ,

3
A
4 3

A
5 3

A
5 , 3

A
4 3

A
2 3

A
3 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2
I
12

I
21

(2), 2
I
12

I
31

(1), 2
I
22

I
21

(3), 2
I
22

I
31

(4), 2
I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: 2I

2; λ8: 1(2); λ10: (3
A
3 )∗;

λ4: (3
A
1 ,1

(2)), (3
A
4 ,1

(4)) ; λ5: (2
I
1,2

I
2), (2

I
3,2

I
3);

λ9: (3
A
4 , (2

I
2)∗), (3

A
1 , (2

I
3)∗);

λ7: 3
A
1 (3

A
5 )∗1(2), 3

A
1 (3

A
2 )∗1(4), 3

A
1 (3

A
3 )∗1(1),

3
A
4 (3

A
5 )∗1(4), 3

A
4 (3

A
2 )∗1(3), 3

A
4 (3

A
3 )∗1(2);

λ2: 3
A
1 3

A
1 3

A
5 1

(1), 3
A
1 3

A
1 3

A
3 1

(2), 3
A
1 3

A
4 3

A
5 1

(2),

3
A
1 3

A
4 3

A
2 1

(1), 3
A
1 3

A
4 3

A
3 1

(4), 3
A
4 3

A
4 3

A
5 1

(4),

3
A
4 3

A
4 3

A
2 1

(2), 3
A
4 3

A
4 3

A
3 1

(3)
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Table C.1, Possible matches for I×A – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 13

a = −1, b = −1; (Hu, Hd) = (2
I
3,2

I
1)

heavy (ucR, d
c
R): (3

A
5 ,3

A
3 )

light ucR: − ; light dcR: 3
A
1

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(1),− ), (2I
3,− ,1

(6)
)

light νcR: 1
(1)

; light ecR: 1
(2)

1µ: 1(1)

α: (2
I
1,3

A
3 ) , (2I

3,3
A
1 ) ; β: 3

A
5 3

A
3 3

A
1 ; δ: − ;

γ: 2
I
12

I
31

(6)
, 2I

32
I
31

(2)
;

λ1: 2I
1; λ3: X ; λ6: − ; λ8: 1

(6)
; λ10: (3

A
3 )∗;

λ4: (3
A
5 ,1

(6)
); λ5: (2I

3,2
I
3);

λ9: (3
A
5 , (2

I
3)∗);

λ7: 3
A
5 (3

A
3 )∗1

(6)
, 3

A
5 (3

A
1 )∗1

(2)
;

λ2: 3
A
5 3

A
5 3

A
3 1

(2)
, 3

A
5 3

A
5 3

A
1 1

(6)

possibility no. 14

a = −1, b = −1; (Hu, Hd) = (2
I
3,2

I
3)

heavy (ucR, d
c
R): (3

A
5 ,3

A
1 )

light ucR: − ; light dcR: 3
A
3

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(1),1
(6)

), (2I
3,− ,1

(2)
)

light νcR: 1
(1)

; light ecR: −
1µ: −

α: (2
I
1,3

A
3 ) , (2I

3,3
A
1 ) ; β: 3

A
5 3

A
1 3

A
3 ; δ: − ;

γ: 2
I
12

I
31

(6)
, 2I

32
I
31

(2)
;

λ1: 2I
1; λ3: − ; λ6: 2

I
1; λ8: 1

(2)
; λ10: (3

A
3 )∗;

λ4: (3
A
5 ,1

(2)
); λ5: (2I

3,2
I
3);

λ9: (3
A
5 , (2

I
3)∗);

λ7: 3
A
5 (3

A
1 )∗1

(2)
, 3

A
5 (3

A
3 )∗1

(6)
;

λ2: 3
A
5 3

A
5 3

A
1 1

(6)
, 3

A
5 3

A
5 3

A
3 1

(2)

Incomplete match

a = 2b+ 1; (Hu, Hd) = (2I
1,2

I
1)

heavy dcR: 3
A
3

1µ: −
other states depend on value of b

λ3: X, λ10: X
other couplings depend on value of b

Table C.2: Possible matches for I× B

Matter spectrum Baryon- and Lepton number violation

possibility no. 1

a = 0, b = − 1
2
; (Hu, Hd) = (2I

1,2
I
1)

heavy (ucR, d
c
R): (− ,3B

2 )

light ucR: 3
B
1 ; light dcR: 3

B
4

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,− ), (2I

2,1
(2)
,1

(5)
)

light νcR: 1(2); light ecR: 1
(3)

1µ: −

α: (2
I
1,3

B
2 ) , (2I

2,3
B
4 ) ; β: 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2
I
12

I
21

(5)
, 2I

22
I
21

(3)
;

λ1: 2
I
1; λ3: − ; λ6: 2I

1; λ8: − ; λ10: (3
B
4 )∗;

λ4: (3
B
1 ,1

(5)
); λ5: (2

I
1,2

I
1);

λ9: (3
B
1 , (2

I
2)∗);

λ7: 3
B
1 (3

B
2 )∗1

(5)
, 3

B
1 (3

B
4 )∗1

(3)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)

possibility no. 2

a = 0, b = − 1
2
; (Hu, Hd) = (2I

1,2
I
2)

heavy (ucR, d
c
R): (− ,3B

4 )

light ucR: 3
B
1 ; light dcR: 3

B
2

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,1

(5)
), (2I

2,1
(2)
,1

(3)
)

light νcR: 1(2); light ecR: −
1µ: 1

(2)

α: (2
I
1,3

B
2 ) , (2I

2,3
B
4 ) ; β: 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2
I
12

I
21

(5)
, 2I

22
I
21

(3)
;

λ1: 2
I
1; λ3: X ; λ6: − ; λ8: 1

(5)
; λ10: (3

B
4 )∗;

λ4: (3
B
1 ,1

(3)
); λ5: (2

I
1,2

I
1);

λ9: (3
B
1 , (2

I
2)∗);

λ7: 3
B
1 (3

B
4 )∗1

(3)
, 3

B
1 (3

B
2 )∗1

(5)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)
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Table C.2, Possible matches for I× B – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 3

a = −1, b = 0; (Hu, Hd) = (2
I
1,2

I
1)

heavy (ucR, d
c
R): (3

B
2 ,− )

light ucR: 3
B
1 , 3

B
3 ; light dcR: 3

B
4 , 3

B
5

heavy generations of (L, νcR, e
c
R):

(2I
1,− ,− ), (2I

2,1
(5)
,1

(2)
), (2I

3,1
(6)
,1

(1)
)

light νcR: 1(5), 1(6); light ecR: 1
(3)
, 1

(4)

1µ: −

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
2 3

B
5 3

B
5 , 3

B
1 3

B
4 3

B
4 ,

3
B
3 3

B
4 3

B
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: 2I

1; λ8: − ; λ10: (3
B
4 )∗;

λ4: (3
B
1 ,1

(2)
), (3

B
3 ,1

(1)
) ; λ5: (2I

1,2
I
1);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
2 (3

B
4 )∗1

(2)
, 3

B
2 (3

B
5 )∗1

(1)
, 3

B
1 (3

B
4 )∗1

(3)
,

3
B
1 (3

B
5 )∗1

(4)
, 3

B
3 (3

B
4 )∗1

(4)
, 3

B
3 (3

B
5 )∗1

(2)
;

λ2: 3
B
2 3

B
2 3

B
5 1

(1)
, 3

B
2 3

B
1 3

B
4 1

(2)
, 3

B
2 3

B
1 3

B
5 1

(4)
,

3
B
2 3

B
3 3

B
4 1

(1)
, 3

B
2 3

B
3 3

B
5 1

(2)
, 3

B
1 3

B
1 3

B
4 1

(3)
,

3
B
1 3

B
3 3

B
4 1

(4)
, 3

B
1 3

B
3 3

B
5 1

(3)
, 3

B
3 3

B
3 3

B
4 1

(2)
,

3
B
3 3

B
3 3

B
5 1

(4)

possibility no. 4

a = −1, b = 0; (Hu, Hd) = (2
I
1,2

I
2)

heavy (ucR, d
c
R): (3

B
2 ,3

B
4 )

light ucR: 3
B
1 , 3

B
3 ; light dcR: 3

B
5

heavy generations of (L, νcR, e
c
R):

(2I
1,− ,1

(2)
), (2I

2,1
(5)
,1

(3)
), (2I

3,1
(6)
,1

(4)
)

light νcR: 1(5), 1(6); light ecR: 1
(1)

1µ: 1
(5)

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
2 3

B
5 3

B
5 , 3

B
1 3

B
4 3

B
4 ,

3
B
3 3

B
4 3

B
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: X ; λ6: − ; λ8: 1

(2)
; λ10: (3

B
4 )∗;

λ4: (3
B
2 ,1

(2)
), (3

B
1 ,1

(3)
) , (3

B
3 ,1

(4)
) ; λ5: (2I

1,2
I
1);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
2 (3

B
4 )∗1

(2)
, 3

B
2 (3

B
5 )∗1

(1)
, 3

B
1 (3

B
4 )∗1

(3)
,

3
B
1 (3

B
5 )∗1

(4)
, 3

B
3 (3

B
4 )∗1

(4)
, 3

B
3 (3

B
5 )∗1

(2)
;

λ2: 3
B
2 3

B
2 3

B
5 1

(1)
, 3

B
2 3

B
1 3

B
4 1

(2)
, 3

B
2 3

B
1 3

B
5 1

(4)
,

3
B
2 3

B
3 3

B
4 1

(1)
, 3

B
2 3

B
3 3

B
5 1

(2)
, 3

B
1 3

B
1 3

B
4 1

(3)
,

3
B
1 3

B
3 3

B
4 1

(4)
, 3

B
1 3

B
3 3

B
5 1

(3)
, 3

B
3 3

B
3 3

B
4 1

(2)
,

3
B
3 3

B
3 3

B
5 1

(4)

possibility no. 5

a = −1, b = 0; (Hu, Hd) = (2
I
1,2

I
3)

heavy (ucR, d
c
R): (3

B
2 ,3

B
5 )

light ucR: 3
B
1 , 3

B
3 ; light dcR: 3

B
4

heavy generations of (L, νcR, e
c
R):

(2I
1,− ,1

(1)
), (2I

2,1
(5)
,1

(4)
), (2I

3,1
(6)
,1

(2)
)

light νcR: 1(5), 1(6); light ecR: 1
(3)

1µ: 1
(6)

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
2 3

B
5 3

B
5 , 3

B
1 3

B
4 3

B
4 ,

3
B
3 3

B
5 3

B
4 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: − ; λ8: 1

(1)
; λ10: (3

B
4 )∗;

λ4: (3
B
2 ,1

(1)
), (3

B
1 ,1

(4)
) , (3

B
3 ,1

(2)
) ; λ5: (2I

1,2
I
1);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
2 (3

B
5 )∗1

(1)
, 3

B
2 (3

B
4 )∗1

(2)
, 3

B
1 (3

B
5 )∗1

(4)
,

3
B
1 (3

B
4 )∗1

(3)
, 3

B
3 (3

B
5 )∗1

(2)
, 3

B
3 (3

B
4 )∗1

(4)
;

λ2: 3
B
2 3

B
2 3

B
5 1

(1)
, 3

B
2 3

B
1 3

B
5 1

(4)
, 3

B
2 3

B
1 3

B
4 1

(2)
,

3
B
2 3

B
3 3

B
5 1

(2)
, 3

B
2 3

B
3 3

B
4 1

(1)
, 3

B
1 3

B
1 3

B
4 1

(3)
,

3
B
1 3

B
3 3

B
5 1

(3)
, 3

B
1 3

B
3 3

B
4 1

(4)
, 3

B
3 3

B
3 3

B
5 1

(4)
,

3
B
3 3

B
3 3

B
4 1

(2)

Continued on next page
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APPENDIX C. MATCHING THE MSSM-SPECTRUM

Table C.2, Possible matches for I× B – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 6

a = −1, b = 0; (Hu, Hd) = (2
I
2,2

I
1)

heavy (ucR, d
c
R): (3

B
1 ,− )

light ucR: 3
B
2 , 3

B
3 ; light dcR: 3

B
4 , 3

B
5

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(5),− ), (2I
2,− ,1

(2)
), (2I

3,1
(6),1

(1)
)

light νcR: 1
(5)
, 1

(6)
; light ecR: 1

(3)
, 1

(4)

1µ: 1(5)

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
1 3

B
4 3

B
4 , 3

B
2 3

B
5 3

B
5 ,

3
B
3 3

B
4 3

B
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: − ; λ8: 1

(2)
; λ10: (3

B
4 )∗;

λ4: (3
B
1 ,1

(2)
), (3

B
3 ,1

(1)
) ; λ5: (2I

2,2
I
2);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
1 (3

B
4 )∗1

(3)
, 3

B
1 (3

B
5 )∗1

(4)
, 3

B
2 (3

B
4 )∗1

(2)
,

3
B
2 (3

B
5 )∗1

(1)
, 3

B
3 (3

B
4 )∗1

(4)
, 3

B
3 (3

B
5 )∗1

(2)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)
, 3

B
1 3

B
2 3

B
4 1

(2)
, 3

B
1 3

B
2 3

B
5 1

(4)
,

3
B
1 3

B
3 3

B
4 1

(4)
, 3

B
1 3

B
3 3

B
5 1

(3)
, 3

B
2 3

B
2 3

B
5 1

(1)
,

3
B
2 3

B
3 3

B
4 1

(1)
, 3

B
2 3

B
3 3

B
5 1

(2)
, 3

B
3 3

B
3 3

B
4 1

(2)
,

3
B
3 3

B
3 3

B
5 1

(4)

possibility no. 7

a = 0, b = − 1
2
; (Hu, Hd) = (2

I
2,2

I
1)

heavy (ucR, d
c
R): (3

B
1 ,3

B
2 )

light ucR: − ; light dcR: 3
B
4

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(2),− ), (2I
2,− ,1

(5)
)

light νcR: 1
(2)

; light ecR: 1
(3)

1µ: 1(2)

α: (2
I
1,3

B
2 ) , (2I

2,3
B
4 ) ; β: 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2
I
12

I
21

(5)
, 2I

22
I
21

(3)
;

λ1: 2
I
1; λ3: − ; λ6: − ; λ8: 1

(5)
; λ10: (3

B
4 )∗;

λ4: (3
B
1 ,1

(5)
); λ5: (2I

2,2
I
2);

λ9: (3
B
1 , (2

I
2)∗);

λ7: 3
B
1 (3

B
2 )∗1

(5)
, 3

B
1 (3

B
4 )∗1

(3)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)

possibility no. 8

a = −1, b = 0; (Hu, Hd) = (2
I
2,2

I
3)

heavy (ucR, d
c
R): (3

B
1 ,3

B
5 )

light ucR: 3
B
2 , 3

B
3 ; light dcR: 3

B
4

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(5),1
(1)

), (2I
2,− ,1

(4)
), (2I

3,1
(6),1

(2)
)

light νcR: 1
(5)
, 1

(6)
; light ecR: 1

(3)

1µ: 1(6)

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
1 3

B
4 3

B
4 , 3

B
2 3

B
5 3

B
5 ,

3
B
3 3

B
5 3

B
4 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: − ; λ8: 1

(4)
; λ10: (3

B
4 )∗;

λ4: (3
B
1 ,1

(4)
), (3

B
2 ,1

(1)
) , (3

B
3 ,1

(2)
) ; λ5: (2I

2,2
I
2);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
1 (3

B
5 )∗1

(4)
, 3

B
1 (3

B
4 )∗1

(3)
, 3

B
2 (3

B
5 )∗1

(1)
,

3
B
2 (3

B
4 )∗1

(2)
, 3

B
3 (3

B
5 )∗1

(2)
, 3

B
3 (3

B
4 )∗1

(4)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)
, 3

B
1 3

B
2 3

B
5 1

(4)
, 3

B
1 3

B
2 3

B
4 1

(2)
,

3
B
1 3

B
3 3

B
5 1

(3)
, 3

B
1 3

B
3 3

B
4 1

(4)
, 3

B
2 3

B
2 3

B
5 1

(1)
,

3
B
2 3

B
3 3

B
5 1

(2)
, 3

B
2 3

B
3 3

B
4 1

(1)
, 3

B
3 3

B
3 3

B
5 1

(4)
,

3
B
3 3

B
3 3

B
4 1

(2)

possibility no. 9

a = 1, b = −1; (Hu, Hd) = (2
I
2,2

I
3)

heavy (ucR, d
c
R): (3

B
1 ,3

B
3 )

light ucR: 3
B
5 ; light dcR: 3

B
4

heavy generations of (L, νcR, e
c
R):

(2I
2,− ,1

(6)
), (2

I
3,1

(4),1(2))

light νcR: 1
(4)

; light ecR: 1
(3)

1µ: 1(4)

α: (2I
2,3

B
4 ) , (2

I
3,3

B
3 ) ; β: 3

B
1 3

B
4 3

B
4 , 3

B
5 3

B
3 3

B
4 ; δ: − ;

γ: 2I
22

I
21

(3)
, 2I

22
I
31

(6)
, 2

I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: − ; λ8: 1

(6)
; λ10: (3

B
4 )∗;

λ4: (3
B
1 ,1

(6)
), (3

B
5 ,1

(2)) ; λ5: (2I
2,2

I
2);

λ9: (3
B
1 , (2

I
2)∗), (3

B
5 , (2

I
3)∗);

λ7: 3
B
1 (3

B
3 )∗1

(6)
, 3

B
1 (3

B
4 )∗1

(3)
, 3

B
5 (3

B
3 )∗1(2),

3
B
5 (3

B
4 )∗1

(6)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)
, 3

B
1 3

B
5 3

B
3 1

(3)
, 3

B
1 3

B
5 3

B
4 1

(6)
,

3
B
5 3

B
5 3

B
3 1

(6)
, 3

B
5 3

B
5 3

B
4 1

(2)

Continued on next page
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APPENDIX C. MATCHING THE MSSM-SPECTRUM

Table C.2, Possible matches for I× B – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 10

a = 1, b = −1; (Hu, Hd) = (2I
3,2

I
2)

heavy (ucR, d
c
R): (3

B
5 ,3

B
4 )

light ucR: 3
B
1 ; light dcR: 3

B
3

heavy generations of (L, νcR, e
c
R):

(2I
2,1

(4)
,1

(3)
), (2

I
3,− ,1

(6)
)

light νcR: 1(4); light ecR: 1(2)

1µ: 1
(4)

α: (2I
2,3

B
4 ) , (2

I
3,3

B
3 ) ; β: 3

B
5 3

B
4 3

B
3 , 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2I
22

I
21

(3)
, 2I

22
I
31

(6)
, 2

I
32

I
31

(2);

λ1: 2I
1; λ3: X ; λ6: − ; λ8: 1

(6)
; λ10: (3

B
4 )∗;

λ4: (3
B
5 ,1

(6)
), (3

B
1 ,1

(3)
) ; λ5: (2

I
3,2

I
3);

λ9: (3
B
1 , (2

I
2)∗), (3

B
5 , (2

I
3)∗);

λ7: 3
B
5 (3

B
4 )∗1

(6)
, 3

B
5 (3

B
3 )∗1(2), 3

B
1 (3

B
4 )∗1

(3)
,

3
B
1 (3

B
3 )∗1

(6)
;

λ2: 3
B
5 3

B
5 3

B
4 1

(2), 3
B
5 3

B
5 3

B
3 1

(6)
, 3

B
5 3

B
1 3

B
4 1

(6)
,

3
B
5 3

B
1 3

B
3 1

(3)
, 3

B
1 3

B
1 3

B
4 1

(3)

possibility no. 11

a = 1, b = −1; (Hu, Hd) = (2I
3,2

I
3)

heavy (ucR, d
c
R): (3

B
5 ,3

B
3 )

light ucR: 3
B
1 ; light dcR: 3

B
4

heavy generations of (L, νcR, e
c
R):

(2I
2,1

(4)
,1

(6)
), (2

I
3,− ,1(2))

light νcR: 1(4); light ecR: 1
(3)

1µ: −

α: (2I
2,3

B
4 ) , (2

I
3,3

B
3 ) ; β: 3

B
5 3

B
3 3

B
4 , 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2I
22

I
21

(3)
, 2I

22
I
31

(6)
, 2

I
32

I
31

(2);

λ1: 2I
1; λ3: − ; λ6: 2

I
1; λ8: 1(2); λ10: (3

B
4 )∗;

λ4: (3
B
5 ,1

(2)), (3
B
1 ,1

(6)
) ; λ5: (2

I
3,2

I
3);

λ9: (3
B
1 , (2

I
2)∗), (3

B
5 , (2

I
3)∗);

λ7: 3
B
5 (3

B
3 )∗1(2), 3

B
5 (3

B
4 )∗1

(6)
, 3

B
1 (3

B
3 )∗1

(6)
,

3
B
1 (3

B
4 )∗1

(3)
;

λ2: 3
B
5 3

B
5 3

B
3 1

(6)
, 3

B
5 3

B
5 3

B
4 1

(2), 3
B
5 3

B
1 3

B
3 1

(3)
,

3
B
5 3

B
1 3

B
4 1

(6)
, 3

B
1 3

B
1 3

B
4 1

(3)

possibility no. 12

a = −1, b = 0; (Hu, Hd) = (2
I
3,2

I
1)

heavy (ucR, d
c
R): (3

B
3 ,− )

light ucR: 3
B
1 , 3

B
2 ; light dcR: 3

B
4 , 3

B
5

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(6),− ), (2I
2,1

(6)
,1

(2)
), (2I

3,− ,1
(1)

)

light νcR: 1(5), 1
(5)

; light ecR: 1
(3)
, 1

(4)

1µ: 1(6)

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
3 3

B
4 3

B
5 , 3

B
1 3

B
4 3

B
4 ,

3
B
2 3

B
5 3

B
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: 2

I
1; λ8: 1

(1)
; λ10: (3

B
4 )∗;

λ4: (3
B
3 ,1

(1)
), (3

B
1 ,1

(2)
) ; λ5: (2I

1,2
I
2), (2I

3,2
I
3);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
3 (3

B
4 )∗1

(4)
, 3

B
3 (3

B
5 )∗1

(2)
, 3

B
1 (3

B
4 )∗1

(3)
,

3
B
1 (3

B
5 )∗1

(4)
, 3

B
2 (3

B
4 )∗1

(2)
, 3

B
2 (3

B
5 )∗1

(1)
;

λ2: 3
B
3 3

B
3 3

B
4 1

(2)
, 3

B
3 3

B
3 3

B
5 1

(4)
, 3

B
3 3

B
1 3

B
4 1

(4)
,

3
B
3 3

B
1 3

B
5 1

(3)
, 3

B
3 3

B
2 3

B
4 1

(1)
, 3

B
3 3

B
2 3

B
5 1

(2)
,

3
B
1 3

B
1 3

B
4 1

(3)
, 3

B
1 3

B
2 3

B
4 1

(2)
, 3

B
1 3

B
2 3

B
5 1

(4)
,

3
B
2 3

B
2 3

B
5 1

(1)

possibility no. 13

a = −1, b = 0; (Hu, Hd) = (2
I
3,2

I
2)

heavy (ucR, d
c
R): (3

B
3 ,3

B
4 )

light ucR: 3
B
1 , 3

B
2 ; light dcR: 3

B
5

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(6),1
(2)

), (2I
2,1

(6)
,1

(3)
), (2I

3,− ,1
(4)

)

light νcR: 1(5), 1
(5)

; light ecR: 1
(1)

1µ: 1
(6)

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
3 3

B
4 3

B
5 , 3

B
1 3

B
4 3

B
4 ,

3
B
2 3

B
5 3

B
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: X ; λ6: 2I

1; λ8: 1
(4)

; λ10: (3
B
4 )∗;

λ4: (3
B
3 ,1

(4)
), (3

B
1 ,1

(3)
) , (3

B
2 ,1

(2)
) ; λ5: (2I

1,2
I
2),

(2I
3,2

I
3);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
3 (3

B
4 )∗1

(4)
, 3

B
3 (3

B
5 )∗1

(2)
, 3

B
1 (3

B
4 )∗1

(3)
,

3
B
1 (3

B
5 )∗1

(4)
, 3

B
2 (3

B
4 )∗1

(2)
, 3

B
2 (3

B
5 )∗1

(1)
;

λ2: 3
B
3 3

B
3 3

B
4 1

(2)
, 3

B
3 3

B
3 3

B
5 1

(4)
, 3

B
3 3

B
1 3

B
4 1

(4)
,

3
B
3 3

B
1 3

B
5 1

(3)
, 3

B
3 3

B
2 3

B
4 1

(1)
, 3

B
3 3

B
2 3

B
5 1

(2)
,

3
B
1 3

B
1 3

B
4 1

(3)
, 3

B
1 3

B
2 3

B
4 1

(2)
, 3

B
1 3

B
2 3

B
5 1

(4)
,

3
B
2 3

B
2 3

B
5 1

(1)

Continued on next page
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Table C.2, Possible matches for I× B – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 14

a = −1, b = 0; (Hu, Hd) = (2
I
3,2

I
3)

heavy (ucR, d
c
R): (3

B
3 ,3

B
5 )

light ucR: 3
B
1 , 3

B
2 ; light dcR: 3

B
4

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(6),1
(1)

), (2I
2,1

(6)
,1

(4)
), (2I

3,− ,1
(2)

)

light νcR: 1(5), 1
(5)

; light ecR: 1
(3)

1µ: −

α: (2I
2,3

B
4 ) , (2I

3,3
B
5 ) ; β: 3

B
3 3

B
5 3

B
4 , 3

B
1 3

B
4 3

B
4 ,

3
B
2 3

B
5 3

B
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: 2I

2; λ8: 1
(2)

; λ10: (3
B
4 )∗;

λ4: (3
B
3 ,1

(2)
), (3

B
1 ,1

(4)
) , (3

B
2 ,1

(1)
) ; λ5: (2I

1,2
I
2),

(2I
3,2

I
3);

λ9: (3
B
2 , (2

I
1)∗), (3

B
1 , (2

I
2)∗), (3

B
3 , (2

I
3)∗);

λ7: 3
B
3 (3

B
5 )∗1

(2)
, 3

B
3 (3

B
4 )∗1

(4)
, 3

B
1 (3

B
5 )∗1

(4)
,

3
B
1 (3

B
4 )∗1

(3)
, 3

B
2 (3

B
5 )∗1

(1)
, 3

B
2 (3

B
4 )∗1

(2)
;

λ2: 3
B
3 3

B
3 3

B
5 1

(4)
, 3

B
3 3

B
3 3

B
4 1

(2)
, 3

B
3 3

B
1 3

B
5 1

(3)
,

3
B
3 3

B
1 3

B
4 1

(4)
, 3

B
3 3

B
2 3

B
5 1

(2)
, 3

B
3 3

B
2 3

B
4 1

(1)
,

3
B
1 3

B
1 3

B
4 1

(3)
, 3

B
1 3

B
2 3

B
5 1

(4)
, 3

B
1 3

B
2 3

B
4 1

(2)
,

3
B
2 3

B
2 3

B
5 1

(1)

Incomplete match

a = −2b− 1; (Hu, Hd) = (2
I
2,2

I
2)

heavy (ucR, d
c
R): (3

B
1 ,3

B
4 )

ecR: 1
(3)

1µ: −
other states depend on value of b

β: X, λ2: X, λ3: X, λ4: X, λ7: X, λ8: X, λ10: X
other couplings depend on value of b

Table C.3: Possible matches for I× C

Matter spectrum Baryon- and Lepton number violation

possibility no. 1

a = −1, b = −1; (Hu, Hd) = (2I
1,2

I
1)

heavy (ucR, d
c
R): (3

C
2 ,− )

light ucR: 3
C
4 ; light dcR: 3

C
5

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,− ), (2I

3,1
(1)
,1

(6)
)

light νcR: 1(1); light ecR: 1
(2)

1µ: −

α: (2I
3,3

C
5 ) ; β: 3

C
4 3

C
5 3

C
5 ; δ: − ;

γ: 2
I
12

I
31

(6)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: 2I

1; λ8: − ; λ10: (3
C
5 )∗;

λ4: (3
C
4 ,1

(6)
); λ5: (2

I
1,2

I
1);

λ9: (3
C
2 , (2

I
1)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
2 (3

C
5 )∗1

(6)
, 3

C
4 (3

C
5 )∗1

(2)
;

λ2: 3
C
2 3

C
4 3

C
5 1

(6)
, 3

C
4 3

C
4 3

C
5 1

(2)

possibility no. 2

a = −1, b = −1; (Hu, Hd) = (2I
1,2

I
3)

heavy (ucR, d
c
R): (3

C
2 ,3

C
5 )

light ucR: 3
C
4 ; light dcR: −

heavy generations of (L, νcR, e
c
R):

(2
I
1,− ,1

(6)
), (2I

3,1
(1)
,1

(2)
)

light νcR: 1(1); light ecR: −
1µ: 1

(1)

α: (2I
3,3

C
5 ) ; β: 3

C
4 3

C
5 3

C
5 ; δ: − ;

γ: 2
I
12

I
31

(6)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: X ; λ6: − ; λ8: 1

(6)
; λ10: (3

C
5 )∗;

λ4: (3
C
2 ,1

(6)
), (3

C
4 ,1

(2)
) ; λ5: (2

I
1,2

I
1);

λ9: (3
C
2 , (2

I
1)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
2 (3

C
5 )∗1

(6)
, 3

C
4 (3

C
5 )∗1

(2)
;

λ2: 3
C
2 3

C
4 3

C
5 1

(6)
, 3

C
4 3

C
4 3

C
5 1

(2)

Continued on next page
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Table C.3, Possible matches for I×C – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 3

a = −1, b = 0; (Hu, Hd) = (2
I
1,2

I
1)

heavy (ucR, d
c
R): (− ,3C

2 )

light ucR: 3
C
1 , 3

C
4 ; light dcR: 3

C
3 , 3

C
5

heavy generations of (L, νcR, e
c
R):

(2I
1,− ,− ), (2I

2,1
(5)
,1

(2)
), (2I

3,1
(6)
,1

(1)
)

light νcR: 1(5), 1(6); light ecR: 1
(3)
, 1

(4)

1µ: −

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
1 3

C
3 3

C
5 ,

3
C
4 3

C
2 3

C
3 , 3

C
4 3

C
5 3

C
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: − ; λ6: 2I

1; λ8: − ; λ10: (3
C
5 )∗;

λ4: (3
C
1 ,1

(2)
), (3

C
4 ,1

(1)
) ; λ5: (2I

1,2
I
1);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
3 )∗1

(3)
, 3

C
1 (3

C
5 )∗1

(4)
,

3
C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
3 )∗1

(4)
, 3

C
4 (3

C
5 )∗1

(2)
;

λ2: 3
C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
1 3

C
5 1

(3)
, 3

C
1 3

C
4 3

C
2 1

(3)
,

3
C
1 3

C
4 3

C
3 1

(2)
, 3

C
1 3

C
4 3

C
5 1

(4)
, 3

C
4 3

C
4 3

C
2 1

(4)
,

3
C
4 3

C
4 3

C
3 1

(1)
, 3

C
4 3

C
4 3

C
5 1

(2)

possibility no. 4

a = −1, b = 0; (Hu, Hd) = (2
I
1,2

I
2)

heavy (ucR, d
c
R): (− ,3C

3 )

light ucR: 3
C
1 , 3

C
4 ; light dcR: 3

C
2 , 3

C
5

heavy generations of (L, νcR, e
c
R):

(2I
1,− ,1

(2)
), (2I

2,1
(5)
,1

(3)
), (2I

3,1
(6)
,1

(4)
)

light νcR: 1(5), 1(6); light ecR: 1
(1)

1µ: 1
(5)

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
1 3

C
3 3

C
5 ,

3
C
4 3

C
3 3

C
2 , 3

C
4 3

C
5 3

C
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: − ; λ6: − ; λ8: 1

(2)
; λ10: (3

C
5 )∗;

λ4: (3
C
1 ,1

(3)
), (3

C
4 ,1

(4)
) ; λ5: (2I

1,2
I
1);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
1 (3

C
3 )∗1

(3)
, 3

C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
5 )∗1

(4)
,

3
C
4 (3

C
3 )∗1

(4)
, 3

C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
5 )∗1

(2)
;

λ2: 3
C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
1 3

C
5 1

(3)
, 3

C
1 3

C
4 3

C
3 1

(2)
,

3
C
1 3

C
4 3

C
2 1

(3)
, 3

C
1 3

C
4 3

C
5 1

(4)
, 3

C
4 3

C
4 3

C
3 1

(1)
,

3
C
4 3

C
4 3

C
2 1

(4)
, 3

C
4 3

C
4 3

C
5 1

(2)

possibility no. 5

a = −1, b = 0; (Hu, Hd) = (2
I
1,2

I
3)

heavy (ucR, d
c
R): (− ,3C

5 )

light ucR: 3
C
1 , 3

C
4 ; light dcR: 3

C
2 , 3

C
3

heavy generations of (L, νcR, e
c
R):

(2I
1,− ,1

(1)
), (2I

2,1
(5)
,1

(4)
), (2I

3,1
(6)
,1

(2)
)

light νcR: 1(5), 1(6); light ecR: 1
(3)

1µ: 1
(6)

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
1 3

C
5 3

C
3 ,

3
C
4 3

C
5 3

C
5 , 3

C
4 3

C
2 3

C
3 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: X ; λ6: − ; λ8: 1

(1)
; λ10: (3

C
5 )∗;

λ4: (3
C
1 ,1

(4)
), (3

C
4 ,1

(2)
) ; λ5: (2I

1,2
I
1);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
1 (3

C
5 )∗1

(4)
, 3

C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
3 )∗1

(3)
,

3
C
4 (3

C
5 )∗1

(2)
, 3

C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
3 )∗1

(4)
;

λ2: 3
C
1 3

C
1 3

C
5 1

(3)
, 3

C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
4 3

C
5 1

(4)
,

3
C
1 3

C
4 3

C
2 1

(3)
, 3

C
1 3

C
4 3

C
3 1

(2)
, 3

C
4 3

C
4 3

C
5 1

(2)
,

3
C
4 3

C
4 3

C
2 1

(4)
, 3

C
4 3

C
4 3

C
3 1

(1)

possibility no. 6

a = −1, b = 1; (Hu, Hd) = (2I
2,2

I
2)

heavy (ucR, d
c
R): (3

C
3 ,3

C
1 )

light ucR: 3
C
4 ; light dcR: 3

C
5

heavy generations of (L, νcR, e
c
R):

(2
I
2,− ,1(3)), (2I

3,1
(4)
,1(6))

light νcR: 1(4); light ecR: 1
(2)

1µ: −

α: (2
I
2,3

C
1 ) , (2I

3,3
C
5 ) ; β: 3

C
3 3

C
1 3

C
5 , 3

C
4 3

C
5 3

C
5 ; δ: − ;

γ: 2
I
22

I
21

(3), 2
I
22

I
31

(6), 2I
32

I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: 2I

1; λ8: 1(3); λ10: (3
C
5 )∗;

λ4: (3
C
3 ,1

(3)), (3
C
4 ,1

(6)) ; λ5: (2
I
2,2

I
2);

λ9: (3
C
3 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
3 (3

C
1 )∗1(3), 3

C
3 (3

C
5 )∗1(6), 3

C
4 (3

C
1 )∗1(6),

3
C
4 (3

C
5 )∗1

(2)
;

λ2: 3
C
3 3

C
3 3

C
1 1

(6), 3
C
3 3

C
3 3

C
5 1

(3), 3
C
3 3

C
4 3

C
1 1

(2)
,

3
C
3 3

C
4 3

C
5 1

(6), 3
C
4 3

C
4 3

C
5 1

(2)

Continued on next page
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Table C.3, Possible matches for I×C – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 7

a = −1, b = 1; (Hu, Hd) = (2I
2,2

I
3)

heavy (ucR, d
c
R): (3

C
3 ,3

C
5 )

light ucR: 3
C
4 ; light dcR: 3

C
1

heavy generations of (L, νcR, e
c
R):

(2
I
2,− ,1(6)), (2I

3,1
(4)
,1

(2)
)

light νcR: 1(4); light ecR: 1(3)

1µ: 1
(4)

α: (2
I
2,3

C
1 ) , (2I

3,3
C
5 ) ; β: 3

C
3 3

C
5 3

C
1 , 3

C
4 3

C
5 3

C
5 ; δ: − ;

γ: 2
I
22

I
21

(3), 2
I
22

I
31

(6), 2I
32

I
31

(2)
;

λ1: 2
I
1; λ3: X ; λ6: − ; λ8: 1(6); λ10: (3

C
5 )∗;

λ4: (3
C
3 ,1

(6)), (3
C
4 ,1

(2)
) ; λ5: (2

I
2,2

I
2);

λ9: (3
C
3 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
3 (3

C
5 )∗1(6), 3

C
3 (3

C
1 )∗1(3), 3

C
4 (3

C
5 )∗1

(2)
,

3
C
4 (3

C
1 )∗1(6);

λ2: 3
C
3 3

C
3 3

C
5 1

(3), 3
C
3 3

C
3 3

C
1 1

(6), 3
C
3 3

C
4 3

C
5 1

(6),

3
C
3 3

C
4 3

C
1 1

(2)
, 3

C
4 3

C
4 3

C
5 1

(2)

possibility no. 8

a = −1, b = 0; (Hu, Hd) = (2
I
2,2

I
1)

heavy (ucR, d
c
R): (3

C
1 ,3

C
2 )

light ucR: 3
C
4 ; light dcR: 3

C
3 , 3

C
5

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(5),− ), (2I
2,− ,1

(2)
), (2I

3,1
(6),1

(1)
)

light νcR: 1
(5)
, 1

(6)
; light ecR: 1

(3)
, 1

(4)

1µ: 1(5)

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
1 3

C
3 3

C
5 ,

3
C
4 3

C
2 3

C
3 , 3

C
4 3

C
5 3

C
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: − ; λ6: − ; λ8: 1

(2)
; λ10: (3

C
5 )∗;

λ4: (3
C
1 ,1

(2)
), (3

C
4 ,1

(1)
) ; λ5: (2I

2,2
I
2);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
3 )∗1

(3)
, 3

C
1 (3

C
5 )∗1

(4)
,

3
C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
3 )∗1

(4)
, 3

C
4 (3

C
5 )∗1

(2)
;

λ2: 3
C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
1 3

C
5 1

(3)
, 3

C
1 3

C
4 3

C
2 1

(3)
,

3
C
1 3

C
4 3

C
3 1

(2)
, 3

C
1 3

C
4 3

C
5 1

(4)
, 3

C
4 3

C
4 3

C
2 1

(4)
,

3
C
4 3

C
4 3

C
3 1

(1)
, 3

C
4 3

C
4 3

C
5 1

(2)

possibility no. 9

a = −1, b = 0; (Hu, Hd) = (2
I
2,2

I
2)

heavy (ucR, d
c
R): (3

C
1 ,3

C
3 )

light ucR: 3
C
4 ; light dcR: 3

C
2 , 3

C
5

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(5),1
(2)

), (2I
2,− ,1

(3)
), (2I

3,1
(6),1

(4)
)

light νcR: 1
(5)
, 1

(6)
; light ecR: 1

(1)

1µ: −

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
1 3

C
3 3

C
5 ,

3
C
4 3

C
3 3

C
2 , 3

C
4 3

C
5 3

C
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: − ; λ6: 2

I
1; λ8: 1

(3)
; λ10: (3

C
5 )∗;

λ4: (3
C
1 ,1

(3)
), (3

C
4 ,1

(4)
) ; λ5: (2I

2,2
I
2);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
1 (3

C
3 )∗1

(3)
, 3

C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
5 )∗1

(4)
,

3
C
4 (3

C
3 )∗1

(4)
, 3

C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
5 )∗1

(2)
;

λ2: 3
C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
1 3

C
5 1

(3)
, 3

C
1 3

C
4 3

C
3 1

(2)
,

3
C
1 3

C
4 3

C
2 1

(3)
, 3

C
1 3

C
4 3

C
5 1

(4)
, 3

C
4 3

C
4 3

C
3 1

(1)
,

3
C
4 3

C
4 3

C
2 1

(4)
, 3

C
4 3

C
4 3

C
5 1

(2)

possibility no. 10

a = −1, b = 0; (Hu, Hd) = (2
I
2,2

I
3)

heavy (ucR, d
c
R): (3

C
1 ,3

C
5 )

light ucR: 3
C
4 ; light dcR: 3

C
2 , 3

C
3

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(5),1
(1)

), (2I
2,− ,1

(4)
), (2I

3,1
(6),1

(2)
)

light νcR: 1
(5)
, 1

(6)
; light ecR: 1

(3)

1µ: 1(6)

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
1 3

C
5 3

C
3 ,

3
C
4 3

C
5 3

C
5 , 3

C
4 3

C
2 3

C
3 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: X ; λ6: − ; λ8: 1

(4)
; λ10: (3

C
5 )∗;

λ4: (3
C
1 ,1

(4)
), (3

C
4 ,1

(2)
) ; λ5: (2I

2,2
I
2);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
1 (3

C
5 )∗1

(4)
, 3

C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
3 )∗1

(3)
,

3
C
4 (3

C
5 )∗1

(2)
, 3

C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
3 )∗1

(4)
;

λ2: 3
C
1 3

C
1 3

C
5 1

(3)
, 3

C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
4 3

C
5 1

(4)
,

3
C
1 3

C
4 3

C
2 1

(3)
, 3

C
1 3

C
4 3

C
3 1

(2)
, 3

C
4 3

C
4 3

C
5 1

(2)
,

3
C
4 3

C
4 3

C
2 1

(4)
, 3

C
4 3

C
4 3

C
3 1

(1)

Continued on next page
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APPENDIX C. MATCHING THE MSSM-SPECTRUM

Table C.3, Possible matches for I×C – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 11

a = −1, b = 0; (Hu, Hd) = (2
I
3,2

I
1)

heavy (ucR, d
c
R): (3

C
4 ,3

C
2 )

light ucR: 3
C
1 ; light dcR: 3

C
3 , 3

C
5

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(6),− ), (2I
2,1

(6)
,1

(2)
), (2I

3,− ,1
(1)

)

light νcR: 1(5), 1
(5)

; light ecR: 1
(3)
, 1

(4)

1µ: 1(6)

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
4 3

C
2 3

C
3 ,

3
C
4 3

C
5 3

C
5 , 3

C
1 3

C
3 3

C
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: − ; λ6: 2

I
1; λ8: 1

(1)
; λ10: (3

C
5 )∗;

λ4: (3
C
4 ,1

(1)
), (3

C
1 ,1

(2)
) ; λ5: (2I

1,2
I
2), (2I

3,2
I
3);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
3 )∗1

(4)
, 3

C
4 (3

C
5 )∗1

(2)
,

3
C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
3 )∗1

(3)
, 3

C
1 (3

C
5 )∗1

(4)
;

λ2: 3
C
4 3

C
4 3

C
2 1

(4)
, 3

C
4 3

C
4 3

C
3 1

(1)
, 3

C
4 3

C
4 3

C
5 1

(2)
,

3
C
4 3

C
1 3

C
2 1

(3)
, 3

C
4 3

C
1 3

C
3 1

(2)
, 3

C
4 3

C
1 3

C
5 1

(4)
,

3
C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
1 3

C
5 1

(3)

possibility no. 12

a = −1, b = −1; (Hu, Hd) = (2
I
3,2

I
1)

heavy (ucR, d
c
R): (3

C
4 ,− )

light ucR: 3
C
2 ; light dcR: 3

C
5

heavy generations of (L, νcR, e
c
R):

(2
I
1,1

(1),− ), (2I
3,− ,1

(6)
)

light νcR: 1
(1)

; light ecR: 1
(2)

1µ: 1(1)

α: (2I
3,3

C
5 ) ; β: 3

C
4 3

C
5 3

C
5 ; δ: − ;

γ: 2
I
12

I
31

(6)
, 2I

32
I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: − ; λ8: 1

(6)
; λ10: (3

C
5 )∗;

λ4: (3
C
4 ,1

(6)
); λ5: (2I

3,2
I
3);

λ9: (3
C
2 , (2

I
1)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
4 (3

C
5 )∗1

(2)
, 3

C
2 (3

C
5 )∗1

(6)
;

λ2: 3
C
4 3

C
4 3

C
5 1

(2)
, 3

C
4 3

C
2 3

C
5 1

(6)

possibility no. 13

a = −1, b = 0; (Hu, Hd) = (2
I
3,2

I
2)

heavy (ucR, d
c
R): (3

C
4 ,3

C
3 )

light ucR: 3
C
1 ; light dcR: 3

C
2 , 3

C
5

heavy generations of (L, νcR, e
c
R):

(2I
1,1

(6),1
(2)

), (2I
2,1

(6)
,1

(3)
), (2I

3,− ,1
(4)

)

light νcR: 1(5), 1
(5)

; light ecR: 1
(1)

1µ: 1
(6)

α: (2I
1,3

C
2 ) , (2I

2,3
C
3 ) , (2I

3,3
C
5 ) ; β: 3

C
4 3

C
3 3

C
2 ,

3
C
4 3

C
5 3

C
5 , 3

C
1 3

C
3 3

C
5 ; δ: 1

(5)
1(6)1(6), 1(5)1

(6)
1
(6)

;

γ: 2I
12

I
21

(2)
, 2I

12
I
31

(1)
, 2I

22
I
21

(3)
, 2I

22
I
31

(4)
, 2I

32
I
31

(2)
;

λ1: 2I
2; λ3: − ; λ6: 2I

1; λ8: 1
(4)

; λ10: (3
C
5 )∗;

λ4: (3
C
4 ,1

(4)
), (3

C
1 ,1

(3)
) ; λ5: (2I

1,2
I
2), (2I

3,2
I
3);

λ9: (3
C
1 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
4 (3

C
3 )∗1

(4)
, 3

C
4 (3

C
2 )∗1

(1)
, 3

C
4 (3

C
5 )∗1

(2)
,

3
C
1 (3

C
3 )∗1

(3)
, 3

C
1 (3

C
2 )∗1

(2)
, 3

C
1 (3

C
5 )∗1

(4)
;

λ2: 3
C
4 3

C
4 3

C
3 1

(1)
, 3

C
4 3

C
4 3

C
2 1

(4)
, 3

C
4 3

C
4 3

C
5 1

(2)
,

3
C
4 3

C
1 3

C
3 1

(2)
, 3

C
4 3

C
1 3

C
2 1

(3)
, 3

C
4 3

C
1 3

C
5 1

(4)
,

3
C
1 3

C
1 3

C
3 1

(4)
, 3

C
1 3

C
1 3

C
5 1

(3)

possibility no. 14

a = −1, b = 1; (Hu, Hd) = (2
I
3,2

I
2)

heavy (ucR, d
c
R): (3

C
4 ,3

C
1 )

light ucR: 3
C
3 ; light dcR: 3

C
5

heavy generations of (L, νcR, e
c
R):

(2
I
2,1

(4),1(3)), (2I
3,− ,1(6))

light νcR: 1
(4)

; light ecR: 1
(2)

1µ: 1(4)

α: (2
I
2,3

C
1 ) , (2I

3,3
C
5 ) ; β: 3

C
4 3

C
5 3

C
5 , 3

C
3 3

C
1 3

C
5 ; δ: − ;

γ: 2
I
22

I
21

(3), 2
I
22

I
31

(6), 2I
32

I
31

(2)
;

λ1: 2
I
1; λ3: − ; λ6: − ; λ8: 1(6); λ10: (3

C
5 )∗;

λ4: (3
C
4 ,1

(6)), (3
C
3 ,1

(3)) ; λ5: (2I
3,2

I
3);

λ9: (3
C
3 , (2

I
2)∗), (3

C
4 , (2

I
3)∗);

λ7: 3
C
4 (3

C
1 )∗1(6), 3

C
4 (3

C
5 )∗1

(2)
, 3

C
3 (3

C
1 )∗1(3),

3
C
3 (3

C
5 )∗1(6);

λ2: 3
C
4 3

C
4 3

C
5 1

(2)
, 3

C
4 3

C
3 3

C
1 1

(2)
, 3

C
4 3

C
3 3

C
5 1

(6),

3
C
3 3

C
3 3

C
1 1

(6), 3
C
3 3

C
3 3

C
5 1

(3)

Incomplete match

a = −1; (Hu, Hd) = (2
I
3,2

I
3)

heavy (ucR, d
c
R): (3

C
4 ,3

C
5 )

ecR: 1
(2)

1µ: −
other states depend on value of b

β: X, λ2: X, λ3: X, λ4: X, λ7: X, λ8: X, λ10: X
other couplings depend on value of b
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Table C.4: Possible matches for III×A

Matter spectrum Baryon- and Lepton number violation

possibility no. 1

a = 1
2
, b = −1; (Hu, Hd) = (2III

1 ,2
III
1 )

heavy (ucR, d
c
R): (3

A
1 ,− )

light ucR: − ; light dcR: 3
A
4

heavy generations of (L, νcR, e
c
R):

(2
III
1 ,− ,− ), (2III

2 ,− ,1(6)
)

light νcR: − ; light ecR: −
1µ: −

α: (2III
2 ,3

A
4 ) ; β: - ; δ: − ;

γ: 2
III
1 2III

2 1
(6)

;

λ1: 2
III
1 ; λ3: − ; λ6: 2III

1 ; λ8: − ; λ10: (3
A
4 )∗;

λ4: − ; λ5: (2
III
1 ,2

III
1 );

λ9: (3
A
1 , (2

III
1 )∗);

λ7: 3
A
1 (3

A
4 )∗1

(6)
;

λ2: −

possibility no. 2

a = 1
2
, b = −1; (Hu, Hd) = (2III

1 ,2III
2 )

heavy (ucR, d
c
R): (3

A
1 ,3

A
4 )

light ucR: − ; light dcR: −
heavy generations of (L, νcR, e

c
R):

(2
III
1 ,− ,1(6)

), (2III
2 ,− ,− )

light νcR: − ; light ecR: −
1µ: −

α: (2III
2 ,3

A
4 ) ; β: - ; δ: − ;

γ: 2
III
1 2III

2 1
(6)

;

λ1: 2
III
1 ; λ3: X ; λ6: − ; λ8: 1

(6)
; λ10: (3

A
4 )∗;

λ4: (3
A
1 ,1

(6)
); λ5: (2

III
1 ,2

III
1 );

λ9: (3
A
1 , (2

III
1 )∗);

λ7: 3
A
1 (3

A
4 )∗1

(6)
;

λ2: −

possibility no. 3

a = 1
2
, b = −1; (Hu, Hd) = (2

III
2 ,2

III
1 )

heavy (ucR, d
c
R): (− ,− )

light ucR: 3
A
1 ; light dcR: 3

A
4

heavy generations of (L, νcR, e
c
R):

(2
III
1 ,− ,− ), (2III

2 ,− ,1(6)
)

light νcR: − ; light ecR: −
1µ: −

α: (2III
2 ,3

A
4 ) ; β: - ; δ: − ;

γ: 2
III
1 2III

2 1
(6)

;

λ1: 2
III
1 ; λ3: − ; λ6: − ; λ8: 1

(6)
; λ10: (3

A
4 )∗;

λ4: − ; λ5: (2III
2 ,2III

2 );

λ9: (3
A
1 , (2

III
1 )∗);

λ7: 3
A
1 (3

A
4 )∗1

(6)
;

λ2: −

possibility no. 4

a = 0, b = − 1
2
; (Hu, Hd) = (2

III
2 ,2III

3 )

heavy (ucR, d
c
R): (− ,3A

3 )

light ucR: 3
A
2 ; light dcR: 3

A
4

heavy generations of (L, νcR, e
c
R):

(2III
2 ,− ,1(3)

), (2III
3 ,1(2),1

(5)
)

light νcR: 1
(2)

; light ecR: −
1µ: 1(2)

α: (2III
2 ,3

A
4 ) , (2III

3 ,3
A
3 ) ; β: 3

A
2 3

A
3 3

A
4 ; δ: − ;

γ: 2III
2 2III

3 1
(3)

, 2III
3 2III

3 1
(5)

;

λ1: 2III
1 ; λ3: − ; λ6: − ; λ8: 1

(3)
; λ10: (3

A
4 )∗;

λ4: (3
A
2 ,1

(5)
); λ5: (2III

2 ,2III
2 );

λ9: (3
A
2 , (2

III
3 )∗);

λ7: 3
A
2 (3

A
3 )∗1

(5)
, 3

A
2 (3

A
4 )∗1

(3)
;

λ2: 3
A
2 3

A
2 3

A
3 1

(3)
, 3

A
2 3

A
2 3

A
4 1

(5)

possibility no. 5

a = −1, b = 1
2
; (Hu, Hd) = (2

III
2 ,2

III
3 )

heavy (ucR, d
c
R): (− ,3A

2 )

light ucR: 3
A
3 ; light dcR: 3

A
4

heavy generations of (L, νcR, e
c
R):

(2III
2 ,− ,1(2)

), (2
III
3 ,1(3),1(5))

light νcR: 1
(3)

; light ecR: −
1µ: 1(3)

α: (2III
2 ,3

A
4 ) , (2

III
3 ,3

A
2 ) ; β: 3

A
3 3

A
2 3

A
4 ; δ: − ;

γ: 2III
2 2

III
3 1

(2)
, 2

III
3 2

III
3 1(5);

λ1: 2III
1 ; λ3: − ; λ6: − ; λ8: 1

(2)
; λ10: (3

A
4 )∗;

λ4: (3
A
3 ,1

(5)); λ5: (2III
2 ,2III

2 );

λ9: (3
A
3 , (2

III
3 )∗);

λ7: 3
A
3 (3

A
2 )∗1(5), 3

A
3 (3

A
4 )∗1

(2)
;

λ2: 3
A
3 3

A
3 3

A
2 1

(2)
, 3

A
3 3

A
3 3

A
4 1

(5)

Continued on next page
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Table C.4, Possible matches for III×A – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 6

a = −1, b = 1
2
; (Hu, Hd) = (2III

3 ,2III
2 )

heavy (ucR, d
c
R): (3

A
3 ,3

A
4 )

light ucR: − ; light dcR: 3
A
2

heavy generations of (L, νcR, e
c
R):

(2III
2 ,1

(3)
,− ), (2

III
3 ,− ,1(2)

)

light νcR: 1(3); light ecR: 1(5)

1µ: 1
(3)

α: (2III
2 ,3

A
4 ) , (2

III
3 ,3

A
2 ) ; β: 3

A
3 3

A
4 3

A
2 ; δ: − ;

γ: 2III
2 2

III
3 1

(2)
, 2

III
3 2

III
3 1(5);

λ1: 2III
1 ; λ3: X ; λ6: − ; λ8: 1

(2)
; λ10: (3

A
4 )∗;

λ4: (3
A
3 ,1

(2)
); λ5: (2

III
3 ,2

III
3 );

λ9: (3
A
3 , (2

III
3 )∗);

λ7: 3
A
3 (3

A
4 )∗1

(2)
, 3

A
3 (3

A
2 )∗1(5);

λ2: 3
A
3 3

A
3 3

A
4 1

(5), 3
A
3 3

A
3 3

A
2 1

(2)

possibility no. 7

a = −1, b = 1
2
; (Hu, Hd) = (2III

3 ,2
III
3 )

heavy (ucR, d
c
R): (3

A
3 ,3

A
2 )

light ucR: − ; light dcR: 3
A
4

heavy generations of (L, νcR, e
c
R):

(2III
2 ,1

(3)
,1

(2)
), (2

III
3 ,− ,1(5))

light νcR: 1(3); light ecR: −
1µ: −

α: (2III
2 ,3

A
4 ) , (2

III
3 ,3

A
2 ) ; β: 3

A
3 3

A
2 3

A
4 ; δ: − ;

γ: 2III
2 2

III
3 1

(2)
, 2

III
3 2

III
3 1(5);

λ1: 2III
1 ; λ3: − ; λ6: 2

III
1 ; λ8: 1(5); λ10: (3

A
4 )∗;

λ4: (3
A
3 ,1

(5)); λ5: (2
III
3 ,2

III
3 );

λ9: (3
A
3 , (2

III
3 )∗);

λ7: 3
A
3 (3

A
2 )∗1(5), 3

A
3 (3

A
4 )∗1

(2)
;

λ2: 3
A
3 3

A
3 3

A
2 1

(2)
, 3

A
3 3

A
3 3

A
4 1

(5)

possibility no. 8

a = 0, b = − 1
2
; (Hu, Hd) = (2

III
3 ,2III

2 )

heavy (ucR, d
c
R): (3

A
2 ,3

A
4 )

light ucR: − ; light dcR: 3
A
3

heavy generations of (L, νcR, e
c
R):

(2III
2 ,1

(2)
,− ), (2III

3 ,− ,1(3)
)

light νcR: 1(2); light ecR: 1
(5)

1µ: 1
(2)

α: (2III
2 ,3

A
4 ) , (2III

3 ,3
A
3 ) ; β: 3

A
2 3

A
4 3

A
3 ; δ: − ;

γ: 2III
2 2III

3 1
(3)

, 2III
3 2III

3 1
(5)

;

λ1: 2III
1 ; λ3: X ; λ6: − ; λ8: 1

(3)
; λ10: (3

A
4 )∗;

λ4: (3
A
2 ,1

(3)
); λ5: (2III

3 ,2III
3 );

λ9: (3
A
2 , (2

III
3 )∗);

λ7: 3
A
2 (3

A
4 )∗1

(3)
, 3

A
2 (3

A
3 )∗1

(5)
;

λ2: 3
A
2 3

A
2 3

A
4 1

(5)
, 3

A
2 3

A
2 3

A
3 1

(3)

possibility no. 9

a = 0, b = − 1
2
; (Hu, Hd) = (2

III
3 ,2III

3 )

heavy (ucR, d
c
R): (3

A
2 ,3

A
3 )

light ucR: − ; light dcR: 3
A
4

heavy generations of (L, νcR, e
c
R):

(2III
2 ,1

(2)
,1

(3)
), (2III

3 ,− ,1(5)
)

light νcR: 1(2); light ecR: −
1µ: −

α: (2III
2 ,3

A
4 ) , (2III

3 ,3
A
3 ) ; β: 3

A
2 3

A
3 3

A
4 ; δ: − ;

γ: 2III
2 2III

3 1
(3)

, 2III
3 2III

3 1
(5)

;

λ1: 2III
1 ; λ3: − ; λ6: 2

III
1 ; λ8: 1

(5)
; λ10: (3

A
4 )∗;

λ4: (3
A
2 ,1

(5)
); λ5: (2III

3 ,2III
3 );

λ9: (3
A
2 , (2

III
3 )∗);

λ7: 3
A
2 (3

A
3 )∗1

(5)
, 3

A
2 (3

A
4 )∗1

(3)
;

λ2: 3
A
2 3

A
2 3

A
3 1

(3)
, 3

A
2 3

A
2 3

A
4 1

(5)

Incomplete match

a = − 1
2
− b; (Hu, Hd) = (2

III
2 ,2III

2 )

heavy dcR: 3
A
4

1µ: −
other states depend on value of b

λ3: X, λ10: X
other couplings depend on value of b
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Table C.5: Possible matches for III× B

Matter spectrum Baryon- and Lepton number violation

possibility no. 1

a = − 1
2
, b = 1

2
; (Hu, Hd) = (2

III
1 ,2III

1 )

heavy (ucR, d
c
R): (− ,3B

5 )

light ucR: 3
B
2 ; light dcR: 3

B
1

heavy generations of (L, νcR, e
c
R):

(2III
1 ,− ,− ), (2

III
3 ,1(4),1

(1)
)

light νcR: 1
(4)

; light ecR: 1(5)

1µ: −

α: (2III
1 ,3

B
5 ) , (2

III
3 ,3

B
1 ) ; β: 3

B
2 3

B
5 3

B
5 ; δ: − ;

γ: 2III
1 2

III
3 1

(1)
, 2

III
3 2

III
3 1(5);

λ1: − ; λ3: − ; λ6: 2III
1 ; λ8: − ; λ10: − ;

λ4: (3
B
2 ,1

(1)
); λ5: (2III

1 ,2III
1 );

λ9: (3
B
2 , (2

III
3 )∗);

λ7: 3
B
2 (3

B
5 )∗1

(1)
, 3

B
2 (3

B
1 )∗1(5);

λ2: 3
B
2 3

B
2 3

B
5 1

(1)

possibility no. 2

a = − 1
2
, b = 1

2
; (Hu, Hd) = (2

III
1 ,2

III
3 )

heavy (ucR, d
c
R): (− ,3B

1 )

light ucR: 3
B
2 ; light dcR: 3

B
5

heavy generations of (L, νcR, e
c
R):

(2III
1 ,− ,1(1)

), (2
III
3 ,1(4),1(5))

light νcR: 1
(4)

; light ecR: −
1µ: 1(4)

α: (2III
1 ,3

B
5 ) , (2

III
3 ,3

B
1 ) ; β: 3

B
2 3

B
5 3

B
5 ; δ: − ;

γ: 2III
1 2

III
3 1

(1)
, 2

III
3 2

III
3 1(5);

λ1: − ; λ3: − ; λ6: − ; λ8: 1
(1)

; λ10: − ;

λ4: (3
B
2 ,1

(5)); λ5: (2III
1 ,2III

1 );

λ9: (3
B
2 , (2

III
3 )∗);

λ7: 3
B
2 (3

B
1 )∗1(5), 3

B
2 (3

B
5 )∗1

(1)
;

λ2: 3
B
2 3

B
2 3

B
5 1

(1)

possibility no. 3

a = 0, b = − 1
2
; (Hu, Hd) = (2

III
2 ,2III

2 )

heavy (ucR, d
c
R): (− ,3B

4 )

light ucR: 3
B
1 ; light dcR: 3

B
2

heavy generations of (L, νcR, e
c
R):

(2III
2 ,− ,− ), (2III

3 ,1(2),1
(3)

)

light νcR: 1
(2)

; light ecR: 1
(5)

1µ: −

α: (2III
2 ,3

B
4 ) , (2III

3 ,3
B
2 ) ; β: 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2III
2 2III

3 1
(3)

, 2III
3 2III

3 1
(5)

;

λ1: − ; λ3: − ; λ6: 2III
1 ; λ8: − ; λ10: − ;

λ4: (3
B
1 ,1

(3)
); λ5: (2III

2 ,2III
2 );

λ9: (3
B
1 , (2

III
3 )∗);

λ7: 3
B
1 (3

B
4 )∗1

(3)
, 3

B
1 (3

B
2 )∗1

(5)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)

possibility no. 4

a = 0, b = − 1
2
; (Hu, Hd) = (2

III
2 ,2III

3 )

heavy (ucR, d
c
R): (− ,3B

2 )

light ucR: 3
B
1 ; light dcR: 3

B
4

heavy generations of (L, νcR, e
c
R):

(2III
2 ,− ,1(3)

), (2III
3 ,1(2),1

(5)
)

light νcR: 1
(2)

; light ecR: −
1µ: 1(2)

α: (2III
2 ,3

B
4 ) , (2III

3 ,3
B
2 ) ; β: 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2III
2 2III

3 1
(3)

, 2III
3 2III

3 1
(5)

;

λ1: − ; λ3: − ; λ6: − ; λ8: 1
(3)

; λ10: − ;

λ4: (3
B
1 ,1

(5)
); λ5: (2III

2 ,2III
2 );

λ9: (3
B
1 , (2

III
3 )∗);

λ7: 3
B
1 (3

B
2 )∗1

(5)
, 3

B
1 (3

B
4 )∗1

(3)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)

possibility no. 5

a = − 1
2
, b = 1

2
; (Hu, Hd) = (2III

3 ,2III
1 )

heavy (ucR, d
c
R): (3

B
2 ,3

B
5 )

light ucR: − ; light dcR: 3
B
1

heavy generations of (L, νcR, e
c
R):

(2III
1 ,1

(4)
,− ), (2

III
3 ,− ,1(1)

)

light νcR: 1(4); light ecR: 1(5)

1µ: 1
(4)

α: (2III
1 ,3

B
5 ) , (2

III
3 ,3

B
1 ) ; β: 3

B
2 3

B
5 3

B
5 ; δ: − ;

γ: 2III
1 2

III
3 1

(1)
, 2

III
3 2

III
3 1(5);

λ1: − ; λ3: − ; λ6: − ; λ8: 1
(1)

; λ10: − ;

λ4: (3
B
2 ,1

(1)
); λ5: (2

III
3 ,2

III
3 );

λ9: (3
B
2 , (2

III
3 )∗);

λ7: 3
B
2 (3

B
5 )∗1

(1)
, 3

B
2 (3

B
1 )∗1(5);

λ2: 3
B
2 3

B
2 3

B
5 1

(1)

Continued on next page
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Table C.5, Possible matches for III× B – continued from previous page

Matter spectrum Baryon- and Lepton number violation

possibility no. 6

a = − 1
2
, b = 1

2
; (Hu, Hd) = (2III

3 ,2
III
3 )

heavy (ucR, d
c
R): (3

B
2 ,3

B
1 )

light ucR: − ; light dcR: 3
B
5

heavy generations of (L, νcR, e
c
R):

(2III
1 ,1

(4)
,1

(1)
), (2

III
3 ,− ,1(5))

light νcR: 1(4); light ecR: −
1µ: −

α: (2III
1 ,3

B
5 ) , (2

III
3 ,3

B
1 ) ; β: 3

B
2 3

B
5 3

B
5 ; δ: − ;

γ: 2III
1 2

III
3 1

(1)
, 2

III
3 2

III
3 1(5);

λ1: − ; λ3: − ; λ6: 2
III
1 ; λ8: 1(5); λ10: − ;

λ4: (3
B
2 ,1

(5)); λ5: (2
III
3 ,2

III
3 );

λ9: (3
B
2 , (2

III
3 )∗);

λ7: 3
B
2 (3

B
1 )∗1(5), 3

B
2 (3

B
5 )∗1

(1)
;

λ2: 3
B
2 3

B
2 3

B
5 1

(1)

possibility no. 7

a = 0, b = − 1
2
; (Hu, Hd) = (2

III
3 ,2III

2 )

heavy (ucR, d
c
R): (3

B
1 ,3

B
4 )

light ucR: − ; light dcR: 3
B
2

heavy generations of (L, νcR, e
c
R):

(2III
2 ,1

(2)
,− ), (2III

3 ,− ,1(3)
)

light νcR: 1(2); light ecR: 1
(5)

1µ: 1
(2)

α: (2III
2 ,3

B
4 ) , (2III

3 ,3
B
2 ) ; β: 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2III
2 2III

3 1
(3)

, 2III
3 2III

3 1
(5)

;

λ1: − ; λ3: − ; λ6: − ; λ8: 1
(3)

; λ10: − ;

λ4: (3
B
1 ,1

(3)
); λ5: (2III

3 ,2III
3 );

λ9: (3
B
1 , (2

III
3 )∗);

λ7: 3
B
1 (3

B
4 )∗1

(3)
, 3

B
1 (3

B
2 )∗1

(5)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)

possibility no. 8

a = 0, b = − 1
2
; (Hu, Hd) = (2

III
3 ,2III

3 )

heavy (ucR, d
c
R): (3

B
1 ,3

B
2 )

light ucR: − ; light dcR: 3
B
4

heavy generations of (L, νcR, e
c
R):

(2III
2 ,1

(2)
,1

(3)
), (2III

3 ,− ,1(5)
)

light νcR: 1(2); light ecR: −
1µ: −

α: (2III
2 ,3

B
4 ) , (2III

3 ,3
B
2 ) ; β: 3

B
1 3

B
4 3

B
4 ; δ: − ;

γ: 2III
2 2III

3 1
(3)

, 2III
3 2III

3 1
(5)

;

λ1: − ; λ3: − ; λ6: 2
III
1 ; λ8: 1

(5)
; λ10: − ;

λ4: (3
B
1 ,1

(5)
); λ5: (2III

3 ,2III
3 );

λ9: (3
B
1 , (2

III
3 )∗);

λ7: 3
B
1 (3

B
2 )∗1

(5)
, 3

B
1 (3

B
4 )∗1

(3)
;

λ2: 3
B
1 3

B
1 3

B
4 1

(3)
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Appendix D

All realistic chiral Models

Here, we give for completeness the other ‘reasonable’ flux configurations we found with our search
presented in section 2.2 of chapter V. Recall that our search was performed over the bases P3,
Bl1P3 and Bl2P3. Only for the first two did we find any reasonable fluxes, i.e. those that give
chiral indices with absolute values smaller than 10.

B = P3

This base has only one independent divisor class H. The divisors of the non-abelian groups are
therefore identified with this divisor: W2 = W3 = H. The only fibration with a reasonable flux
is for α = H,β = 2H. The flux is for the identification U(1)Y = −1/2U(1)2 and is given by

−S1E1 − S1 F1 − 3H F1 − E1 F1 − 2F 2
1 +H F2 − 2F1 F2 .

The D3-tadpole of this flux is 60. The induced spectrum is:

R 21 22 23 31 32 33 34 35 (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

χ −3 0 −2 5 −3 6 −9 −5 3 −1 −9 0 −6 −3 5

B = Bl1P3

This base has two independent divisor classes H and X. We identified the non-abelian divisors
as W2 = X and W3 = H. There are three fibrations with reasonable fluxes.

α = 0, β = −2H

For this fibration, there are two reasonable fluxes. The first flux is for the identification U(1)Y =
U(1)1 and is given by

1

2
(−9E1 F2 − 3E1H + 6E1 S1 − 3F1X + 12HX + 3S0X − 3S1X − 3 [w]X + 6X2)

with the D3-tadpole being 40. The chiral spectrum is:

R 21 22 23 31 32 33 34 35 (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

χ 0 3 −6 0 0 3 −3 −6 3 0 3 0 0 0 −6

The second flux is for U(1)Y = −1/2U(1)2 and is given by

1

2
(−7E1 F2 − E1H + 4E1 S1 − 3F1X + 12HX + 3S0X − 3S1X − 2 [w]X + 6X2)
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with D3-tadpole 42. The chiral spectrum is:

R 21 22 23 31 32 33 34 35 (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

χ 0 3 −2 −2 0 3 −3 −4 3 −6 −5 0 −8 0 −4

α = H +X, β = −H +X
For this fibration, there are two reasonable fluxes. The first flux is for the identification U(1)Y =
U(1)1 and is given by

1

2
(−9E1 F2 − 3E1H + 6E1 S1 − 3F1X + 12HX + 3S0X − 3S1X − 3 [w]X + 6X2)

with D3-tadpole 41. The chiral spectrum is:

R 21 22 23 31 32 33 34 35 (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

χ 0 3 −6 0 0 3 −3 −6 3 0 3 0 0 0 −6

The second flux is for U(1)Y = −1/2U(1)2 and is given by

1

2
(−7E1 F2 − E1H + 4E1 S1 − 3F1X + 12HX + 3S0X − 3S1X − 2 [w]X + 6X2)

with D3-tadpole 43. The chiral spectrum is:

R 21 22 23 31 32 33 34 35 (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

χ 0 3 −2 −2 0 3 −3 −4 3 −6 −5 0 −8 0 −4

Compared to the previous fibration, the two pairs of flux configurations are formally the same,
yielding the same chiral spectrum. The only quantity they differ in are the D3-tadpoles.

α = H +X, β = 0
For this fibration, there is one reasonable flux. It is determined for the identification U(1)Y =
U(1)1 and given as

1

2
(−3E1 F2 + 2E1H − E1 S1 − F1X + F2X + S1X)

with D3-tadpole 49. The chiral spectrum is:

R 21 22 23 31 32 33 34 35 (3,2) 1(1) 1(2) 1(3) 1(4) 1(5) 1(6)

χ −2 1 −2 −1 −1 1 −2 −3 3 1 2 0 0 −1 −3
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