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Gauge Fluxes in F-theory Compactifications

In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications
to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic
model building scenarios, we develop methods for a systematic analysis of primary vertical G4-
fluxes on torus-fibred Calabi—Yau fourfolds.

In particular, we extend the well-known description of fluxes on elliptic fibrations with sections
to the more general set-up of genus-one fibrations with multi-sections. The latter are known to
give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes
in such geometries on an explicit model with SU(5) x Zg symmetry, which is connected to an
ordinary elliptically fibration with SU(5) x U(1) symmetry by a conifold transition. With our
methods we systematically verify anomaly cancellation and tadpole matching in both models.
Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in
purely geometric terms. This observation is further strengthened by a similar analysis of an
SU(3) x SU(2) x U(1)? model.

The obvious connection of this particular model with the Standard Model is then investigated
in a more phenomenologically motivated survey. There, we will first provide possible matchings
of the geometric spectrum with the Standard Model states, which highlights the role of the
additional U (1) factor as a selection rule. In a second step, we then utilise our novel methods on
flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard-
Model-like fibrations over specific base manifolds 5. As a demonstration, we scan over three
choices P3, Bl;P3 and BlyP3 for the base. As a result we find a consistent flux that gives the
chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs
mechanism.

Eichfliisse in F-Theorie Kompaktifizierungen

In dieser Arbeit beschéftigen wir uns mit der Geometrie und Physik von Eichfliissen in F-Theorie
Kompaktifizierungen nach vier Dimensionen. Um phénomenologisch realistische Modelle mit
chiraler Materie zu konsturieren, entwickeln wir Methoden fiir eine systematische Analyse von
vertikalen G4-Fliissen auf Torus-gefaserten Calabi—Yau Vierfalten.

Insbesondere erweitern wir die vertraute Beschreibung von Fliissen in elliptischen Faserungen
mit Schnitten auf allgemeinere Torus-Faserungen mit Multi-Schnitten, welche bekanntermafien zu
diskreten abelschen Symmetrien in F-Theorie fithren. Darauf basierend konstruieren wir Fliisse
in einem expliziten Multi-Schnitt-Beispiel mit einer SU(5) x Zy Symmetrie, welche iiber eine
sog. Conifold-Transition in Verbindung zu einer elliptischen Faserung mit SU(5) xU(1) Symmetrie
steht. Mit unseren Berechnungsmethoden verifizieren wir systematisch Tadpole-Bedingungen und
die Kiirzung von Anomalien in beiden Modellen. In dieser Analyse finden wir einen neuartigen,
rein geometrischen Zugang zur Anomalie-Kiirzung in 4D F-Theorie, die wir auf &hnliche Weise
auch in der Analyse von einem Modell mit SU(3) x SU(2) x U(1)? beobachten.

Die offensichtliche Verbindung von diesem Modell zum Standardmodell der Teilchenphysik
ist dann der Startpunkt fiir eine phdnomenologische Analyse. Darin untersuchen wir zunéchst,
wie das geometrische Spektrum mit den Standardmodell-Teilchen identifiziert werden kann und
wie die zusétzliche U(1) die Rolle einer Auswahlregel ibernimmt. Im zweiten Schritt benutzen
wir dann die zuvor entwickelten Methoden fiir Fluss-Berechnungen, um einen Such-Algorithmus
aufzustellen, der semi-realistische chirale Spektren in unseren Standardmodell-ahnlichen Faser-
ungen iiber konkrete Basen B identifiziert. Als eine Demonstration fithren wir eine Suche fiir
drei verschiedene Basen, P3, Bl;P? and BlyP?, durch. Damit finden wir unter anderem eine
konsistente Fluss-Konfiguration, die das chirale Standardmodell Spektrum mit einem exotischen
vektorartigen Triplet realisiert, welcher prinzipiell mit einem Higgs Mechanismus geliftet werden
kann.
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Chapter 1

Motivation

The theoretical foundation of contemporary physics can be roughly divided into two realms. On
large scales, the gravitational dynamics of satellites and planets, all the way to galaxy clusters
and the universe, can be effectively described by the theory of general relativity (GR). At the
microscopic level, the framework of quantum field theories (QFTs) covers phenomena ranging
from superconducting materials to particle scattering at the LHC. While both theories have
proven to be tremendously successful on their own, they are mutually incompatible at the most
fundamental level: When applying the techniques of QFT to GR, physical quantities turn out
to be divergent in an uncontrollable manner [1]. While many physical systems can be well-
approximated by either of the two theories alone, phenomena like black holes or the big bang
bear intrinsically quantum and gravitational characteristics. For a complete understanding —
at least at the conceptual level — of our physical reality, we therefore require a fully consistent
quantum theory of gravity.

One of the arguably most promising candidates is string theory. In the most basic approach
to it, string theory can be seen as a quantum theory of one-dimensional objects (a.k.a. strings)
which replace the traditional idea of point-like elementary particles. In such a description, our
ignorance of the extended nature of strings is a consequence of their extremely small size, which
need energies beyond our reach to be resolved. Accordingly, we perceive different excitation states
of strings as different point-like particles.

Originally proposed as an ill-fated attempt to describe the strong force, string theory was
nearly forgotten with the rise of QCD. Luckily, it was brought back to life when in the 1970s
people stumbled across two striking features of string theory. The first observation was the
appearance of massless physical excitations with spin 2 — the characteristics of the graviton [2].
The second was that scattering amplitudes of string states exhibit a UV-finite behaviour [3], as
opposed to divergent amplitudes that are omnipresent in QFTs with point-like particle states.
Thus, with the natural appearance of gravity in a UV-finite quantum description, string theory
possesses two pivotal elements of quantum gravity.

Despite these remarkable properties, string theory in its early days was plagued by many
conceptual and phenomenological issues. It took the combined work of numerous brilliant minds
to resolve problems, which in turn would often lead to further new insights and provide novel
links between previously unrelated aspects. E.g. the necessity of fermionic excitations of the string
led to the utilisation and subsequent rise to prominence of supersymmetry in string-related and
-unrelated theories. Likewise, it was realised that a consistent theory of strings must necessarily
include higher-dimensional objects, so-called p-branes. Being of non-perturbative nature, branes
have not only extended our conceptual understanding of string theory, but also vastly increased
its phenomenological capabilities, with numerous applications to particle physics or cosmological
model building.

One of the most puzzling revelations in the first two decades of string theory was the existence



CHAPTER I. MOTIVATION

of five possible supersymmetric formulations of string theory, which seemed to be independent
of each other. It was not until the mid 1990s when it was realised that these five string theories
are perturbative limits of one big underlying M(ysterious)-theory, and related to each other by
so-called dualities (cf. figure 1.1). While we do not have a fundamental description, the dualities
provide a powerful way to study many aspects of M-theory through the better understood string

theories.

heterotic SO(32)

\

heterotic Eg x Eg

\ 11D SUGRA

Figure I.1: The ‘M-theory star’: A schematic visualisation of the relationship amongst M-theory
and its perturbative limits. The grey area represents possible physical configurations of M-theory
(also known as its ‘moduli space’). In certain corners, the description is equivalent to one of the
five perturbative string theories, or to 11D supergravity (SUGRA). These limits are connected
to each other via duality relations indicated by the arrows.

type I type 1IB

M-theory

type ITA

One critical consistency condition of string and M-theory is that they all require spacetime to
have extra dimensions going beyond the four we observe in our everyday life (all string theories live
in ten dimensions, while M-theory and its low energy limit, 11D SUGRA are eleven-dimensional).
One might think that this criterion alone already discards string theory as a viable description
of our physical reality. However, salvation comes in form of an idea by Kaluza and Klein dating
back to the times of Einstein, which nowadays goes by the name of compactification.

Historically, the theory of Kaluza—Klein was an extension of GR, by generalising Finstein’s
formulation of gravity to a five-dimensional spacetime with a periodic spatial dimension, i.e. a
(compact) circle. It turns out that the field equations of 5D can be re-interpreted in terms of
physics in the four non-compact dimensions as ‘ordinary’ GR coupled to an electromagnetic gauge
field. Furthermore, the coupling strength can be related to the size of the circle (i.e. the geometry
of the extra dimension). It is therefore not exaggerated to say that (parts of the) physics in
4D is dictated by the geometry of the compact dimensions. Even though the original Kaluza—
Klein theory is physically flawed (e.g. it predicts an unrealistic electron mass), this idea prevails
throughout string theory.

Unlike the original Kaluza—Klein theory, compactification of string or M-theory employs higher
dimensional spaces in order to make contact to 4D physics. These spaces necessarily have much
more structure than a simple circle. Consequently, the variety of possible physical theories in the

2
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non-compact dimensions is enormous. In the literature, this huge set of possible physical models
is usually called the ‘string landscape’. In particular, it is an outstanding problem to identify
amongst all models in the landscape of 4D (four non-compact dimensions) models those which
could approximate or even exactly describe our real world. Indeed, most of today’s research in
string phenomenology is concerned with this problem.

The difficulties of this program can be summarised very concisely as follows: Geometry of
higher dimensional compact manifolds is complicated. As a consequence, many computations
yielding physically important quantities can only be carried out in very restrictive set-ups.! Some-
what paradoxically, this issue turns out to be one of the main reasons string theory became so
popular: Mathematicians became interested in string compactifications. Unlike many physical
theories before, where physicists could usually fall back onto known mathematics, the mathem-
atics required to describe string and M-theory compactifications has largely to be invented yet.?
On the other hand, physical intuition can often serve as a guideline in case rigorous mathem-
atics are lacking, and in turn explain mathematics. For example, the mathematical theory of
knots can be understood from studying physics of certain conformal field theories obtained from
compactifications to 6D. This principle of ‘physicalisation’ sparked many novel developments in
pure mathematics based on research in string compactifications. Mirror symmetry, topological
quantum field theories, geometric Langlands correspondence, and moonshine theory are only a
few of the salient topics inspired by string theory. At the same time, physicists have also profited
extensively from the involvement of mathematicians. Especially the utilisation of algebraic geo-
metry and topology has vastly increased the model building power of string compactifications.
Over the last two decades, these novel mathematical methods have helped considerably in the
advances through the string landscape.

In particular, people began to push beyond the perturbative limits of M-theory and explore
more and more the interior of the M-theory star. Consistent compactifications constructed in this
part of the moduli space inherently take certain non-perturbative corrections into account, thus
extending the classes of perturbative string models. One of the most prominent non-perturbative
frameworks of constructing string compactifications is F-theory.

Enter F-theory
Introduced by Vafa in 1996 [4], F-theory naturally extends the model building powers of the
popular type IIB strings by geometrising parts of the physical data. Concretely, Vafa realised
that the physical quantity governing the coupling strength between strings® exhibit the same
characteristics as the modulus 7 of a torus, which in algebraic geometry is also referred to as an
elliptic curve. To formalise this, F-theory introduces an auxiliary elliptic curve attached to every
point of the ten-dimensional spacetime of type IIB string theory, whose modulus 7 encodes the
value of the string coupling. By allowing 7 to vary over spacetime non-trivially, i.e. fibring elliptic
curves over spacetime, one can describe type IIB string theory with non-perturbative values of
the string coupling. If the total space (fibre plus spacetime) of these so-called elliptic fibrations is
globally consistent, then the mathematical formulation automatically takes care of all corrections
stemming from non-perturbative back-reactions.

However, this is not the only way to understand F-theory. In fact, as we will see in chapter
II, the most accurate definition of F-theory originates from M-theory directly. In this definition,

!E.g. the scattering amplitude of strings, even at tree level, requires the knowledge of the compact space’s
metric, which can be explicitly written down only for a very limited subset of all possibilities.

2The only comparable situations was when Newton invented calculus for mechanics and when von Neumann
set the foundations of functional analysis in order to understand quantum mechanics. None of the two however
compare to the complexity and far-reaching range of the geometric innovations that arose from the study of string
theory.

3To be precise: It is the complexified string coupling, also called the axio-dilaton. We will discuss the mathem-
atical details in chapter II.
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the auxiliary torus becomes part of the eleven-dimensional spacetime of M-theory, and a certain
limit process recovers non-perturbative type IIB string theory. Likewise, through an alternative
limit, one can actually relate F-theory with heterotic Fg x Fg string theory. Even though this
duality will not be of relevance to the content of this thesis, it should be said that much of our
understanding of F-theory is derived from the heterotic/F-theory duality [4-9].

Through these dualities, F-theory combines features of heterotic and type IIB strings. One
of the most fruitful outcomes is the appearance of exceptional gauge symmetry localised on 7-
branes, which proved to be invaluable for model building of Grand Unified Theories (GUTS).
Especially, the appearance of Eg immensely raised the phenomenological interest in F-theory, as
the realisation of the top-quark Yukawa coupling in SU(5) GUTs are tied to Eg. Indeed, with the
development of systematic tools to geometrically engineer gauge symmetries in F-theory [10-12],
GUT model building were predominant in the most recent era of F-theory particle phenomenology.

While GUTs certainly have phenomenologically appealing features, their existence and neces-
sity are still open for debate. In particular, one of the main motivations for postulating a unifying
gauge group was the apparent unification of the Standard Model couplings at high energies. This
unification however is only convincing if one considers the minimal supersymmetric extension of
the Standard Model (MSSM), and even then is achieved numerically only if the scale of SUSY
breaking is in the TeV range. As the LHC has yet to find any significant signs of SUSY after its
first 14TeV run, the scenario of low scale SUSY, and consequently the idea of unification, is under
severe tension. Thus, it seems well-motivated to study parts of the string landscape — especially
within the F-theory framework — which realise the Stand Model directly, without an underlying
GUT structure.

This route has only been accessible recently with a complete understanding of abelian sym-
metries in F-theory. While U(1)s are omni-present in type IIB brane-models, their geometric
description in F-theory were much harder to identify. However, the pay off for these technical
analyses are the phenomenological possibilities that comes with abelian symmetries. Not only can
we now construct the hypercharge U(1)y in non-GUT realisations of the Standard Model, but
we can also include abelian factors as additional selection rules in various GUT and non-GUT
models. Despite the phenomenological advances, abelian symmetries remain an active field of
formal investigation, and we will encounter both aspects throughout this thesis.

One key ingredient in F-theory model building is the inclusion of so-called gauge or Gy-
fluxes. These are physical data specifying the low energy, i.e. vacuum configurations of certain
background fields in the M-theory description, similar to the Higgs vacuum expectation value
(vev) in the Standard Model. From the duality to type IIB, we know that G4-fluxes in F-theory
have immense impact on phenomenology. They are required by various consistency conditions,
e.g. cancelling certain non-perturbative anomalies or stabilising the compactification configura-
tion. For particle phenomenology in 4D, G4-fluxes are in particular needed to construct a chiral
spectrum. Since the Standard Model is a chiral theory, any realistic F-theory model building must
necessarily include gauge fluxes. For the phenomenological investigations in this work, fluxes will
thus play a central role.

However, in order for these models to be fully consistent, the flux configurations have to pass
the test of anomaly cancellation. Like any chiral QFT, also the 4D field theories obtained from F-
theory compactifications have potential chiral anomalies. While these anomalies are shown to be
cancelled in very explicit examples, there is until now no argument from first principles, why these
cancellations are expected for more generic models. In this thesis, we will attempt to establish
such a general argument. As we will see in chapter IV, this will be based on a purely geometric
analysis, that in principle can be formalised for generic compactification spaces in F-theory.

Outline of the thesis
As F-theory is part of the string and M-theory family, we will first give a short review of string

4
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theory in section 1 of chapter II, focusing on compactifications and string dualities. In particular,
as F-theory is naturally tied to type IIB strings, we will have a closer look at this theory. In
section 2, we will then discuss in detail the mathematical description together with the most
important physical aspects of F-theory compactifications.

As gauge fluxes are the central object of interest, we will devote chapter III to them. Most
importantly, we will present two sets of mathematical tools that was developed for a systematic
treatment of fluxes in F-theory. These tools are heavily utilised in chapter IV, where we focus on
chiral anomalies and their cancellation in F-theory. In particular, we will look at three classes of
F-theory models with SU(5) x U(1), SU(5) X Zg, and SU(3) x SU(2) x U(1)? gauge symmetry,
on which we test our hypothesis of F-theory anomaly cancellation. Along the lines, we will
also investigate the role of fluxes in the conifold or Higgsing-transition, which relates the SU(5)
models.

Finally, we will attempt a direct construction of the Standard Model in F-theory based on
the SU(3) x SU(2) x U(1)? models. In chapter V, we will carefully examine the Yukawa coupling
structure of matter in these models and discuss how the extra U(1) factor may be utilised as a
phenomenologically interesting selection rule. Utilising the results from chapter IV, we will then
proceed to search for explicit models in our landscape of F-theory Standard Models, that have a
realistic chiral spectrum.

The results of chapters IV and V have been presented in the publications [13-15].






Chapter 11

Basics of F-theory

In this chapter we will review the physical and mathematical foundations of F-theory. Starting
with a brief introduction to string and M-theory, we will focus on the emergence of F-theory as
a non-perturbative extension of type IIB string theory and as a decompactification limit of M-
theory compactifications. We will explain how these two pictures are related by dualities. With
these ingredients we will then thoroughly discuss the appearance of gauge symmetries, matter
states and Yukawa couplings in 4D F-theory compactifications.

1 String Theory in a Nutshell

In this section, we will give a short overview of aspects of string theory that is tied to the
discussions of this thesis. By now this content is standard textbook material. For detailed string
theory introductions, we refer to [3,16-19].

1.1 Dynamics of quantum strings

String theory replaces our naive picture of point-like elementary particles with one-dimensional
strings as the fundamental objects of nature. Classically, a string propagating in a d-dimensional
spacetime M, sweeps out a two-dimensional timelike surface ¥ C My called the string-worldsheet.
Denoting the local coordinates of this surface by 0% = (¢, ') = (7, ), the evolution of the string
is fully specified by an embedding X*(c) of the worldsheet into spacetime My, which is also called
the target space, with coordinates X#. With this embedding, the metric of the worldsheet induced

by the metric G, of My is given by

OXM 9X”
Tab = gga Pab T

The dynamics of the string, i.e. the dependence of the target space coordinates X* on ¢“, can be
then determined via the so-called Nambu—Goto action

Sne = —T/ drdo /—det, (IL.1)
by

which is nothing but the area of the string worldsheet in M;.! The pre-factor T has mass-
dimension 2 and can be interpreted as the tension of the string. It is common to re-write T' =
27 /a/, where 2o/ =, is the typical length of strings, also known as the string scale. Since
there is until now no direct evidence of strings in nature, the string scale must be far beyond our

!This is an obvious generalisation of the action for a relativistic point-like particle. In that case the trajectory
of the particle is a worldline in My, whose length as a functional of the trajectory is the relativistic action.

7
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current energy scales, most likely only a few orders of magnitude below the Planck scale. Note
that in principle, this is the only fundamental scale of string theory.

In the formulation (II.1), string theory can be regarded as a field theory on the worldsheet
with fields X#.2 These fields are bosonic fields, and consequently, one usually refers to (II.1) as
the bosonic string. However, in order to have fermionic string excitations in the target space,
one needs to introduce supersymmetric partners ¥* to the fields X#. In contrast to the bosonic
string, these ‘super-strings’ have a further advantage of being free of unstable (tachyonic) ground
states.

One important feature of the (super-)string worldsheet is its invariance under conformal trans-
formations. While this symmetry is hidden in the Nambu—Goto description of the action, there
exists an alternative version, called the Polyakov action, which makes this symmetry manifest.
Both actions are equivalent at the level of equations of motions, however, the Polyakov action is
much better suited for the quantisation of strings. The conformal symmetry of the worldsheet is
the single reason we can fully solve the quantum string (at least for flat target space). Irrespective
of the quantisation procedure — either using operators or the path integral — one has to make
sure that the conformal symmetry persists at the quantum level. Remarkably, this condition
restricts the dimension of the target space M. For the bosonic string, d must be 26, while in the
case of super-strings we have d = 10. As we are ultimately interested in spacetime theories with
fermions, we will restrict ourselves to super-string theories in the following. For convenience, we
will also drop the prefix ‘super’.

The result of the quantisation process is an infinite spectrum of excitation states of the string,
which from the target space perspective may be perceived as different elementary particles with
different quantum numbers (e.g. mass and spin in flat target space). Interactions, i.e. scatterings
between different states, can be literally pictured as the joining and splitting of strings. The
likelihood of this process — in other words the coupling between strings — is measured by the
string coupling constant gs. In contrast to the scattering of point-like particles, the interaction of
strings cannot be localised at one point of spacetime (cf. figure II1.1). Indeed, one may attribute
the UV-finiteness of string scatterings to this ‘smearing’ [3].

Figure I1.1: A schematic visualisation of a string scattering. By replacing point-particles with
strings, the extended nature of the latter ‘smears’ out the point of interaction; the resulting
worldsheet has no singularity, as opposed to the vertex of the ‘Feynman-diagram’.

2The metric G,,, is a priori a fixed background field in the worldsheet formulation. However, it is possible to
constrain the metric using consistency conditions of the worldsheet theory. In particular, field theory computations
(to first order in perturbation theory) on the worldsheet actually impose G, to be Ricci-flat, i.e. vacuum solutions
of Einstein’s equations. For details see e.g. [20].
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In addition to the massless excitations, which contain a spin 2 state, there is an infinite
tower of massive states. However, the masses of these excitations are proportional to the string
scale My = ¢!, and hence are way too massive to be observed in our current experiments.
Consequently, if we are interested in the low energy (compared to the string scale) physics, the
contributions of these massive states will be highly suppressed and can thus be neglected safely.
Meanwhile, the massless excitations and their interactions can be consistently described by a field
theory with an effective Lagrangian description. The resulting effective field theories with only
massless excitations take the form of a supergravity (SUGRA) theory. The ‘super’ refers to the
fact that these theories exhibit a certain amount of spacetime supersymmetry in their massless
spectrum, while the ‘gravity’ part comes from the spin-2 excitations which can be interpreted
metric perturbations, i.e. gravitons.

The spectrum of string theories is subject to severe consistency conditions arising from the
worldsheet formulation of strings. It turns out that there are five inequivalent super-string theories
in flat Minkowski spacetime, which fulfil these conditions. They are referred to as type I, type
ITA or IIB, and heterotic Eg x Eg or SO(32) string theories. Each of the five string theories
has a corresponding consistent description as an effective supergravity theory at the massless
level. These effective field theories in turn can be treated with standard field theory techniques
to simplify the more complicated stringy computations for at least the massless excitations.

Branes

Strings can come in two configurations: either they have two ends, in which case they are called
‘open strings’, or they form a closed loop, i.e. a ‘closed string’. While closed strings can move
around freely in spacetime, the equations of motion forces the ends of open strings to lie on
certain (p + 1)-dimensional (i.e. p spatial and one time dimension) submanifolds of Mjo. These
submanifolds are the world-volume of so-called Dp-branes.? In particular, as we will see in section
1.4, there are other type of strings arising as D1-branes, which differ from the fundamental strings,
which are referred to as Fl-strings.

In type II string theories, an important aspect of branes is that they realise gauge symmetry
on their world-volume. In a semi-classical picture, the gauge fields can be understood as the
perturbations of the brane longitudinal to its world-volume. These perturbations may also be
pictured as open strings, with ending on the brane, ‘pulling and pushing’ the brane parallel to its
world-volume. The quantised version of these perturbations give rise to gauge bosons propagating
along the brane. In this naive picture it is hard to explain the appearance of massless matter
charged under the gauge symmetry. However, it can be shown rigorously (see e.g. [19]) that
these states arise at the intersection of branes and can be visualised as excitations of open strings
stretched between the intersecting branes.

The intuitive picture of brane perturbations suggests that branes are themselves dynamical
objects. Indeed, it is possible to generalise the Nambu—Goto action (II.1) to higher dimensional
objects, leading to the so-called Dirac-Born—Infeld (DBI) action. From this action, one can,
at least classically, derive the existence of a Yang—Mills theory, i.e. gauge fields, on the brane.
However, a similar quantisation as that of strings is not possible, because for branes there is no
comparable symmetry like conformal symmetry on the string worldsheet. The lack of a clear
description of branes can be seen as a result of their non-perturbative nature. To be precise,
their dynamics decouples in the limit of vanishing string coupling, gs — 0. Indeed, one can

(p+1)

heuristically argue that the tension of Dp-branes behaves like £ g5 !, implying that their

typical mass scale is /31 gs_l/ @+ For small values of the string coupling gs, the lowest mass

scale is set by branes with the lowest p. Conversely, away from the perturbative limit, we expect

3The ‘D’ denotes the fact these branes arise from Dirichlet-boundary conditions imposed on the ends of open
strings. In the context of F-theory, we will see that other types of branes.
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all branes to appear on equal footing.

In the supergravity limit of string theories, branes appear as so-called BPS objects, i.e. massive
states whose stability is guaranteed by supersymmetry. Importantly, this stability statement is
not tied to any perturbative results, i.e. they hold also in non-perturbative regimes. Indeed,
branes appeared prior to their rediscovery in string theory as extremal black hole (or rather black
brane), which are known to be stable solutions of supergravity. For example, in type II and
heterotic string theories, the fundamental string as a 1-brane are BPS states in the supergravity
description, whereas type I string theory contains no BPS strings. Heuristically, this can be
understood as the fact that all theories except type I only have closed fundamental strings which
are stable. Type I on the other hand has also open fundamental strings, into which closed and
open strings can break up into; thus they are not stable and hence not BPS.

1.2 Compactifications

Because all string theories and also M-theory are only well-defined in higher dimensions, it takes
some further modifications to relate them to the four-dimensional world we see. One of the
simplest approaches is called the brane-world scenario, in which one basically assumes that our
world is the world-volume of a 3-brane, to which all forces but gravity are constrained. However,
the prospect of six large extra dimensions is phenomenologically unfavoured, because this would
imply that gravity falls off at large distances much stronger than the behaviour we observe. Thus,
it is physically motivated to further employ the mechanism of compactification.

The principle of compactification is fairly simple: One factors the d-dimensional spacetime
into a compact M° and a non compact M"¢ part:

My = M x MS_, . (11.2)

The physical theory in d dimensions then descends to a theory in the n-dimensional non-compact
spacetime M ¢, whose precise properties depend heavily on the geometry of Mj_, .

1.2.1 Five-dimensional examples

To gain some intuition about the process, let us consider a lower dimensional simple example.
Concretely, suppose we have a free massless scalar field ¢ in a five-dimensional spacetime Mj
with the standard action

S~ [ d <—1aA¢ a%) . (IL3)
Ms 2
Now we would like to compactify this theory on a circle, i.e. M5 = M, x S, where M, is flat
Minikowski spacetime with coordinates z* and S' the compactification circle with coordinate .
To obtain an effective description in 4D, we can perform a Fourier-expansion, i.e. an expansion
into eigenfunctions of the Laplace operator, along the circle:

dlat,y) = dp(at) VR, (IL.4)
keZ

with R denoting the radius of the circle. This allows us to perform the y-coordinate integration
in (I1.3) explicitly, yielding

1 > k?
Saqg ~ /M d*z [—2 o O o — Z (@@k oo™ + R Pk ¢Z)] ,
4 k=1

with ¢; = ¢_j. Thus, we see that the compactification of a 5D scalar field on a circle leads to
a 4D theory with a massless scalar ¢y and an infinite tower of massive scalars ¢ with masses
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m3 = k*/R?. In particular, observers at energies much below the so-called KaluzaKlein (KK)
scale 1/R will only be able to see an effective field theory in 4D with a massless scalar and be
completely ignorant about the fifth dimension.

However, the structure of compactified models can be far richer than than just the appearance
of an infinite tower of massive fields. Indeed, the original Kaluza—Klein theory shows that through
compactification one can also enrich the types of fields in the effective theory. To this end, we again
consider a five-dimensional spacetime, but we replace the simple scalar field theory by Einstein’s
general relativity. The fundamental field is the metric G4p, whose dynamics is governed by
the Einstein—Hilbert action f d°z v/— det G Rsq, where Rsg is the five-dimensional Ricci-scalar.
Omitting the details, we can readily anticipate the result of the compactification on a circle by
a so-called dimensional reduction of the 5D metric, where we express the components into 4D
quantities:

9w =G, Ay =Gu=Gy, ¢:=Gu, forpurv=0,.,3.

Thus we see that the five-dimensional metric G' contains the same degrees of freedom as a four-
dimensional metric g, a vector field A and a scalar ¢. By going through the computations,
one indeed finds — in addition to the massive KK modes — that the massless fields in 4D describe
Einstein gravity coupled to a U(1) gauge field A,, and an additional scalar. The gauge symmetry is
a remnant of the diffeomorphism invariance of the full 5D theory. The scalar field is a prototypical
example of a (geometric) modulus field, whose vev parametrises the radius of the compactification
circle.

1.2.2 Compactification of string theory

One immediate question arises, when we try to realise our real world as the result of a compacti-
fication of string theory: which compact space does the job? An ideal scenario would be if there
is a first principle, which predicts the compact space, and it could be due to our still very limited
understanding of string theory that we are ignorant about such a principle. However, there is a
popular and controversial idea that perhaps there is no such principle at all. Instead, all math-
ematically consistent compactifications are also physically possible. Our observed universe would
then just be one out of many (predictions range between 10°°0 and 1027%?) within the so-called
string landscape. Whether our world is the result of a random (or anthropic) selection, or is
part of a bigger ‘multi-verse’ containing all possibilities is more of a philosophical debate, which
we will not entertain here. In any case, a better understanding of either side requires to study
individual (classes of) compactification models in detail and t