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Summary: The excess mass approach is a general approach to statistical
analysis. It can be used to formulate a probabilistic model for clustering and can
be applied to the analysis of multi-modality. Intuitively, a mode is present where
an excess of probability mass is concentrated. This intuitive idea can be
formalized directly by means of the excess mass functional. There is no need for
intervening steps like initial density estimation. The excess mass measures the
local difference of a given distribution to a reference model, usually the uniform
distribution. The excess mass defines a functional which can be estimated
efficiently from the data and can be used to test for multi-modality.

1. The problem of multi-modality

We want to find the number of modes of a distribution in Rk, based on a sample
of n independent observations. There are many approaches to this problem. Any
approach has to face an inherent difficulty of the modality-problem: the functional
which associates the number of modes to a distribution is only semi-continuous.
In any neighbourhood (with respect to the testing topology) of a given
distribution, there are distributions with an arbitrarily large number of modes. As
a consequence, any confidence interval for the number of modes with finite upper
bound will have a confidence level zero (Donoho (1988), Theorem 2.1 and
Theorem 2.2).

The impossibility of upper bounds is a combined effect of the semi-continuity,
and the richness of the space of probability distributions. If we have restrictions
on the family of distributions, upper bounds may be feasible. For example in
finite-dimensional parametric families it may still be possible to give non-trivial
upper bounds for the number of modes. Unfortunately the restrictions necessary
to reduce the space of probability distributions are usually not empirically
verifyable. In contrast to problems involving only continuous functionals, with
only semi-continuity we cannot even derive approximate solutions for “nearly
regular” distributions. Unless we resort to unverifyable assumptions of critical
influence, the best we can do is to get lower bounds for the number of modes.

Getting lower bounds for the number of modes with guarantied confidence is the
first task. Second, we can ask for the power of a procedure. When estimating the
number of modes, the challenge is to avoid over-estimation.
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2. The excess mass functional

Any approach has to start with a proper definition of a mode. For a cluster
analysis approach, a mode might be defined as a cluster center. For a density
estimation based approach, a mode may be identified with a local maximum of the
density. In a parametric mixture model, a mode might be related to a mixture
component. We try to give here a truly nonparametric approach. Let F be our
underlying distribution on Rk. We assume that F has a (bounded, continuous)
density f, f>0.

Intuitively, a mode is present where probability mass is concentrated. A large
value of the probability density is not enough to guarantee a high mass
concentration: a distribution may have isolated spots with high densitiy values,
but each with an arbitrarily small support. We may speak of modes of different
strengths, depending on the probability mass contained in a mode.

A first step is to measure the mass concentration. Since ‘high’ mass concentration
or ‘low’ mass concentration are relative properties, we have to take a reference
measure. Using a λ-multiple of the Lebesgue measure Rk as a reference, we
define the excess mass at level λ to be the integrated probability mass exceeding
the Lebesgue density λ:

E(λ) = ∫ (f(x) - λ)+dx. (1)

with E(λ) = 1. At any level λ, the excess mass is the sum of contributions coming
from the connectivity components Cj(λ) ⊆  Rk of {f≥λ}:

E(λ) = ∑ ∫Cj(λ) (f(x) - λ) dx. (2)

f

f=  λ

Fig. 1: Density and excess mass. The excess mass is the integrated probability
mass exceeding a certain level λ. 
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For short, the connectivity components Cj(λ) of {f≥λ} are called λ-clusters. The
λ-clusters can be characterized as sets maximizing (2).

E(λ) = supC∈ CM
   ∫C (f(x) - λ) dx, (3)

where CM= {C: C=C1∪ C2∪ …∪ CM; Cj ⊆  Rk, Cj≠Ø, disjoint, connected} for
some M≥1. This leads to an immediate generalization. For any system of sets C,
the excess mass at level λ with λ-clusters in C is defined as

EC(l) = supC∈ C   ∫C (f(x) - l) dx, (4)

with C =CM as a special case. For a unimodal distribution, at any level λ we
have exactly one λ-cluster. For an M-modal distribution, we will have at most M
connected components, hence ECM

(λ)=E(λ) for any M-modal distribution F.

Equation (4) has an empirical version. With 
Hλ:=F - λ ⋅Leb, (5)

where Leb is the Lebesue measure in Rk, (4) can be written as EC(λ ) =
supC∈ C Hλ(C). Using the empirical distribution function Fn in (5) yields an
empirical version

Hn,λ:=Fn - λ ⋅Leb, (6)
leading to an empirical excess mass estimator

En,C(λ) = supC∈ C  Hn,λ(C). (7)

Various assumptions about the modality can be modeled using appropriate
choices for C, and tests for multi-modalitiy can be based on the corresponding
excess mass estimators. For example, a test for bi-modality can be based on the
excess mass difference

Dn(λ) = En,C2(λ) - En,C1(λ), (8)
using the maximal excess mass difference

supλ Dn(λ) = supλ( En,C2(λ) - En,C1(λ) ). (9)

as test statistics. Similar tests can be constructed for more general hypotheses and
alternatives. 

Since for any sets C, C'
Fn(C'\C)=0 ⇒  Hn,λ(C)≥Hn,λ(C') for C⊂  C'

and 
Hn,λ(C∪ C') = Hn,λ(C) + Hn,λ(C') for C∩C'=∅

the calculation of the excess mass for usual choices of C amounts to a search for
sets in C with components spanned by data points, maximizing (7). In most
cases, this is a finite search problem.

3. The excess mass approach

The construction discussed in section 2 is based on the excess mass approach, a
general approach which can be applied to a variety of statistical problems (Müller
1992). The basic idea is to find the maximum amount of probability mass which
can be attained by a certain model, and to use the exceeding mass as a basis for
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further analysis. For the problem of multi-modality, the question is: how much
additional probability mass can be attained by a multi-modal model compared to a
uni-modal?  To answer this question, we have to estimate this excess probability
mass EC(λ) from the data under specific assumptions about the number of
modes, e.g.unimodality or bi-modality. To draw our conclusions, we have to
study the stochastic behaviour of our excess mass estimator first. Then we can
take the estimated excess probability mass as a decision basis. This approach
yields diagnostic indices and statistics, which have an immediate empirical
interpretation. The decision criterion is the amount of data not fitting a certain
model. 

While the excess mass approach can be used to find tests or estimators in the
classical sense, for many of the practically interesting problems the classical
framework is like a procrustean bed. For the multi-modality problem, almost any
member of the naïve null hypothesis described by the family of all uni-modal
distributions, has most extreme alternatives in any neighbourhood. Defining a
useful null hypothesis becomes a problem. The excess mass approach adds to the
repertoire as discussed in Gordon (1994). The natural suggestion based on the
excess mass approach is to start from the empirical distribution function, find best
approximating unimodal models (i.e. distributions minimizing the total variation
distance), and to compare the obtained test statistics with the distributions of the
excess mass test statistics drawn from these models. As has been pointed out by
Davies (1994), this kind of bootstrap fits well into a general framework of data-
based inference which explicitly recognizes the approximate nature of probability
models. 

The excess mass approach has been first applied to the multi-modality problem in
Müller and Sawitzki (1987) where the excess mass functional is introduced and
first asymptotic results are given for the one-dimensional case. The resulting
method is closely related to procedures suggested in Hartigan (1975), Hartigan
and Hartigan (1985) and Hartigan (1987).

4. Analysis for multi-modality in one dimension

In one dimension, the situation is simplified, as there is only one choice for the
family of possible support sets C. If we have a continuous density, the λ-clusters
for an M-modal distribution must be in CM, the family of sets composed of at
most M disjoint intervals. Given a data set, we can explicitely calculate the excess
mass for any hypothetical number of modes M by searching for a set composed
of at most M intervals with endpoints at data points, maximizing (7).

4.1 Excess mass algorithm in one dimension

The excess mass En,M(λ) =   supC∈ CM Hn,λ  (C) can be calculated stepwise
using an iteration over the number of possible modes M. For M=1, this requires
the search for an interval with endpoints at data points, i.e. C1=argmax Hn,λ(C).
To pass from M to M+1, one of two cases may occur. Additional probability
mass may be gained by splitting one of the intervals found in step M (by
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removing an open interval with endpoints at data points). Or additional probability
mass may be gained by adding an interval in the complement of the intervals
found at step M (“splitting lemma” in Müller and Sawitzki (1987)). Both
possibilities must be explored, and the maximum contribution taken. The
common computational problem resides in finding intervals with maximal ascent
(or descent) of Hn,λ. The complexity of this algorithm can be reduced by keeping
a “hiker's record list”: to find the maximum asscent on your trip, you must keep
track of the lowest minimum you have seen so far, and compare the present
relative height to the record obtained so far. This gives an algorithm of complexity
O(n). More details and an explicit algorithm for the basic search algorithm is
given in Müller and Sawitzki (1991).

As a by-product, the algorithm yields the empirical λ−clusters Cn,j(λ), i.e..
solutions of En,M(λ) = ∑j=1...M Hn,λ(Cn,j(λ)), which can be plotted against λ to
give a silhouette of the data set. In combination with the excess mass plot, the
silhouette can be used for data analysis.

M=2

M=1

min: 20.0       n= 100     max: 190.0

λ

Ε     (   )
n,M

λ
x

Fig. 2: Estimated excess mass under the assumption of uni-modality (M=1) or
bi-modality (M=2) on the left. Silhouette and scatter plot of observed data on the
right.

4.2 Asymptotic stochastic behaviour in one dimension

A recommended test-statistics for bi-modality is
 

Dn:=sup Dn(λ) = sup  En,2(λ) - En,1(λ).

More generally we can allow for M modes as an alternative of interest. We have
to investigate En,M(λ ) under a uni-modal F, but with M>1. Stochastic
contributions to the estimation error En,M(λ) - E (λ) comes from two sources.
There is the classical empirical fluctuation governing Hn,λ - Hλ. And there is an
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error since we use estimated λ-clusters instead of the true λ-clusters, hoping that
{Cn,j(λ) } ≈ {Cj(λ)}. The first asymptotic results can be summarized by:

Theorem (Müller and Sawitzki (1991), Theorem 1):
Let f be a smooth density on R, and x0∈ R with derivative f´(x) = 0 only if f(x) =
0 or x=x0. For all Λ  > 0 , M ≥ 1 the process λ    →   √n(En,M(λ ) - E(λ ))
converges weakly in D[0,Λ] to λ   →  B(aλ), B a standard-Brownian bridge,
where aλ=PF{x|f(x)≥λ}.

This theorem guarantees a square root asymptotics for the excess mass estimator
under the unimodal hypothesis. This is a better rate than usually is achived. The
key is that the excess mass functional contains information about mass
concentration, but does not try to identify mass location. Separating the question
of mass concentration from location allows a better error rate. Confidence bands
can be constructed, using this theorem.

The behaviour of the suggested test statistics Dn is characterized by
Theorem (Müller and Sawitzki (1991), Theorem 2):
Let f be unimodal with f´(x) = 0 iff  f(x) = 0  or x=x0;
f´ ultimately monotone in the tails;
f´´´ bounded in a neighbourhood of x0, with f´´(x0) < 0. 
Under these conditions:
(i) Dn(f(x0)) = OP(n-3/5)

(ii) maxλ ≤ f(x0)-εDn(λ) =OP(n-2/3log2/3 n)  (ε>0)

(iii) maxλDn(λ) = OP(n-3/5log3/5 n)

This theorem tells that in the one-dimensional situation the essential stochastic
contribution to the excess mass difference comes from the mode (3/5< 2/3 !). For
the uniform distribution, we would have maxλDn(λ) =OP(n-1/2). The difference
in order is sizeable: for a sample size of n=50, the difference in order n1/10 has a
numeric value of 1.47.

5. Analysis for multi-modality in higher dimensions

In higher dimensions, additional difficulties occur. First, the family of possible λ-
clusters is an open choice. While in one dimension any disjoint union of intervals
are the obvious candidates, we have more freedom of choice in higher
dimensions. Second, the tools at hand are restricted. In one dimension, the
Komlós-Major-Tusnády machinery could be used to derive the asymptotic
behaviour of the empirical excess mass differences. However this does not have
an immediate extension to higher dimensions. Instead, empirical process theory
must be used which requires a stricter control of the families of sets under
discussion.

The choices of basic set families CM in higher dimensions must be governed by
two rationales. They must be sufficiently rich to allow at least for classical
mixture models, like the mixture of normal distributions. On the other hand, they
must be sufficiently sparse to allow empirical process theory, or allow for an
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adequate ad-hoc theory. Usual choices are sparse classes, like Vapnic-
Cervonenkis classes, guaranteeing a small coverage dimension, or richer classes,
like conv2, the convex sets in the plane, as considered in Hartigan (1987).

For any choice of set systems C1⊂  C2 we can define empirical excess mass
estimators En,C1

(λ), En,C2
(λ) as above and use the excess mass difference

Dn(λ) = En,C2
(λ) - En,C1

(λ) to define a test for the hypothesis {f≥λ}∈ C1.To
test against bimodaltity, C1 will be chosen to have one connectivity component,
and C2 having two. But other choices modelling qualitative assumptions on the
shape of the λ-clusters by appropriate choice of C1 and C2 are covered by the
same framework (Polonik 1993a).

5.1 Asymptotic stochastic behaviour in higher dimensions

As in the one-dimensional case, a major step is to get hold of the estimation error
involved in using an empirical λ-cluster Cn(λ) instead of the true set  C(λ). A key
tool is the inequality due to Polonik (1993):

Leb{C(λ)∆Cn(λ)} ≤  
Leb{x:|f(x)-λ|<ε} + ε-1{(Fn-F)(Cn(λ)) - (Fn-F)(C(λ))} ∀ε >0.

This inequality separates analytical properties of the density f (first term) from
oscillation of the process Fn-F (second term).

The asymptotic behaviour of the excess mass difference is characterized by the
following theorem (Polonik 1993):
Theorem Let f be regular unimodal density (i.e. elliptical at mode x0 +
regularity+ rapidly decreasing tails). Then
(i) if C2 is a VC-Class: 

(dimension 1) maxλDn(λ) = OP(n-3/5log3/5n) 
(dimension > 1) maxλDn(λ) = OP(n-2/3log2/3n) 

(ii) if C2 consists of finite unions of differences in conv2:
maxλDn(λ) = OP(n-4/7).

In contrast to the one-dimensional situation, for any dimension > 1 there is no
general dominating contribution from the modes since Leb{x:|f(x)-f(x0)| <ε} ≈
ε1/2 for dimension one, but Leb{x:|f(x)-f(x0)| <ε} ≈ εp with p ≥ 1 in higher
dimensions.
The excess mass difference for a uniform distribution on a bounded region has
rates OP(n-1/2), hence for VC-classes: the previous exponents differ at most by
1/6 (for illustration: 501/6=1.919...).

5.2 Excess mass algorithms in higher algorithms

While the general algorithmic approach sketched above still holds in higher
dimensions, general effective algorithms are not available in higher dimensions.
The search space is defined by the choice of the model spaces CM. For convex
sets in two dimensions, the algorithm suggested by Hartigan (1987) can be
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applied. For ellipsoids, Nolan (1991) uses a variant of the Rousseuw and Leroy
algorithm for minimal volume ellipsoids. Nason and Sibson (1992) suggest a
combination of lower dimension search strategies with approaches from
projection pursuit, like the grand tour method. But so far too little is known about
appropriate search algorithms which can be applied here.

6. Tests for multi-modality

Despite the detailed asymptotics, the finite sample distribution of the excess mass
difference is not yet sufficiently known. We can see three approaches to derive
valid tests.
First, we can derive stochastic bounds. In one dimension, these bounds can be
based on

supλ Dn(λ) ≤ maxC |(Fn - F)(C)| (10)
The right hand side is well-understood in one dimension  (Müller and Sawitzki,
1991). Unfortunately this bound appears to be very conservative. A similar
bound is possible in higher dimensions (Polonik 1993a).

Second, we can derive critical values from special model distributions. For one
dimension, sample size n=50 and a Gaussian, Cauchy and uniform model
distribution, the resulting distribution of the test statistics is plotted in (Müller and
Sawitzki, 1991). For the uniform distribution, as an extremal case of unimodal
distributions, the distribution is tabulated in (Müller and Sawitzki, 1991).

Third, we can bootstrap the excess mass difference based on the estimator fn(x) =
max{λ ≥ 0 : x ∈  Cn,1(λ)} as an estimator of the best-approximating unimodal
distribution. Consistency and quality of this bootstrap approximation however
still need further investigation.
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