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Abstract
For irreducible admissible representations of the group of symplectic
similitudes GSp(4, F ) of genus two over a p-adic number field F ,
we obtain the parahoric restriction with respect to an arbitrary
parahoric subgroup P. That means we determine the action of
the Levi quotient P/P+ on the invariants under the pro-unipotent
radical P+ in terms of explicit character values. Especially, we get
the parahoric restriction of local endoscopic L-packets in terms of
lifting data.
The inner cohomology of the Siegel modular variety of genus two
with an arbitrary `-adic local system admits an endoscopic and a
Saito-Kurokawa part under spectral decomposition. For principal
congruence subgroups of squarefree level N they define simultaneous
representations of the absolute Galois group ΓQ and the Hecke action
of GSp(4,Z/NZ). We decompose them into irreducible constituents
and give explicit character values. As an application, we prove the
conjectures of Bergström, Faber and van der Geer on level two.

Zusammenfassung

Für die Gruppe GSp(4, F ) symplektischer Ähnlichkeitstransforma-
tionen über einem p-adischen Zahlkörper F bestimmen wir die
Parahori-Restriktion beliebiger irreduzibler zulässiger Darstellun-
gen zu beliebigen Parahori-Gruppen. Das bedeutet, wir berechnen
die Operation des Levi-Quotienten P/P+ auf den Invarianten
unter dem pro-unipotenten Radikal P+ und dessen Zerlegung in
irreduzible Charaktere. Insbesondere erhalten wir auch die Parahori-
Restriktion der lokalen endoskopischen L-Pakete von Tiefe Null für
gegebene Liftungsdaten.
Die Spektralzerlegung der inneren Kohomologie der Siegelschen
Modulvarietät vom Geschlecht zwei mit beliebigem lokalen Koef-
fizientensystem enthält einen schwach endoskopischen und einen
Saito-Kurokawa Anteil. Für Hauptkongruenzgruppen quadratfreier
Stufe N zerlegen wir sie als simultane `-adische Darstellungen der
absoluten Galoisgruppe ΓQ und der Gruppe GSp(4,Z/NZ) unter
der Operation der Heckealgebra. In Stufe zwei liefert das einen
Beweis für die Vermutungen von Bergström, Faber und van der
Geer.
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1. Introduction

The cohomology of Siegel modular varieties encodes a wealth of information as a
Hecke and Galois module. At least since Deligne used the case of genus one as
a keystone in his proof of the Ramanujan conjecture [Del68], they have been a
central focus of research. In this thesis we study the inner cohomology of Siegel
modular threefolds for sufficiently large congruence subgroups, including all principal
congruence subgroups of squarefree level.

We follow the notation of Weissauer [Wei09a]. The Siegel modular threefold is a
Shimura variety

S(C) = G(Q)\(X ×G(Af ))

attached to a Shimura Datum (G, X, h) for the group of symplectic similitudes
G = GSp(4) of genus two. Fix a local system Vλ on S(C) attached to an algebraic
representation of highest weight λ. For a finite set S of non-archimedean places and
parahoric subgroups Pv ⊆ GSp(4,Qv), v ∈ S, with pro-unipotent radical P+

v , let
K ⊆ GSp(4,Af ) be the open congruence subgroup

K =
∏
v/∈S

GSp(4,Zv)
∏
v∈S

P+
v .

We describe the weak endoscopic and the Saito-Kurokawa part of the inner cohomology
H•! (S(C),Vλ)K as an `-adic representation of Gal(Q : Q)×

∏
v∈S Pv/P+

v .

Our approach is based on the Matsushima-Murakami formula, which expresses the
inner cohomology in terms of cuspidal automorphic representations. Important
results on the classification of automorphic representations of GSp(4) have been
obtained by Piatetski-Shapiro [PS83b], Schwermer [Sch95], Soudry [Sou88], Taylor
[Tay93], Tsushima [Tsu83], Weissauer [Wei88], and others.

An alternative approach rests on a geometric description of Siegel modular threefolds.
For example, the Shimura variety SK(C) attached to the modified principal congruence
subgroup of level N ∈ N≥1

K = K ′(N) = {x ∈ GSp(4, Ẑ) ; x ≡ diag(1, 1, ∗, ∗) mod N}.

is isomorphic to the moduli space A2,N of principally polarized complex abelian
surfaces with a level-N -structure. This approach dates back to Riemann and has
been continued by Faltings and Chai [FC90], Lee and Weintraub [LW85], van Geemen
and Nygaard [vGN95], van der Geer [vdG82], and also many others.
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By counting rational points of hyperelliptic curves over finite fields and using the
Lefschetz trace formula, Bergström, Faber and van der Geer [FvdG04], [BFvdG08]
obtained a conjectural description of the compactly supported cohomology. This
gave rise to explicit conjectural formulas about the `-adic representations of

GSp(4,Z/NZ)×Gal(Q : Q)

on the motivic inner cohomology for level N = 1, 2. By recent work of Weissauer
[Wei09b], Tehrani [Teh12] and Petersen [Pet15], these conjectures have been shown
for level N = 1. As an application of our results, we prove the conjectures on level
N = 2 in Section 5.5.

We also determine the Hodge numbers h(p,q)
! = dimH

(p,q)
! (A2,2,Vλ) of the inner

cohomology. For sufficiently regular local systems, it only remains to calculate h(2,1)
!

by Faltings’ result [Fal83] and Tsushima’s formula [Tsu83]. We obtain

h
(2,1)
! = h

(3,0)
! + 5

4
(λ1 + λ2)(λ1 − λ2 − 2),

see Cor. 5.23. For the analogous result with irregular λ, see Cor. 5.24.

The main tool we employ in the local description of invariants is the parahoric
restriction functor. Let F/Qp be a non-archimedean local number field with integers
o and finite residue field o/p of order q. Let G be a quasi-split connected reductive
group defined over F with F -rational points G = G(F ). Parahoric groups are group
schemes over o, whose o-rational points define subgroups P of G. They admit a
Levi decomposition

0→P+ →P →P → 0

with respect to the pro-unipotent radical P+ and a reductive Levi quotient P defined
over the residue field o/p. Restricting an admissible representation (π, V ) of G to P
and taking invariants under P+ gives rise to a finite-dimensional representation of
the Levi quotient P:

rP(π) : P → Aut(V P+

).

This defines the parahoric restriction functor rP from admissible representations
of G to those of P, where the definition on morphisms is the obvious one. The
construction is completely analogous to Jacquet’s functor of parabolic restriction.
We give a survey of the most important results in Section 2.4.

For the general linear group G = GL(n) the parahoric restriction of some representa-
tions has been studied by Bushnell and Kutzko [BK93] and by Vignéras [Vig96]. We
briefly discuss the cases n = 1, 2 at the end of Section 2.4.

For the group G = GSp(4, F ) of symplectic similitudes of genus two, Moy [Moy88] has
determined the parahoric restriction for certain cuspidal irreducible representations.
Sally and Tadic [ST94] have classified the non-cuspidal irreducible representations and
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these have been studied extensively by Roberts and Schmidt [RS07]. For odd residue
characteristic, Breeding-Allison [BA15] has determined the parahoric restriction with
respect to the hyperspecial parahoric for parabolically induced representations. In
Chapter 3 of this thesis, we complete this work and determine the character values of
rP(π) explicitly for arbitrary parahoric subgroups P of GSp(4, F ) and irreducible
admissible representations in arbitrary residue characteristic. To this end, we make
use of the classification of irreducible representations of finite group GSp(4, q) by
Enomoto [Eno72] and Shinoda [Shi82]. A fortiori, we obtain a new proof of the
classification of parahori-spherical vectors, see Cor. 3.8.

The non-generic cuspidal irreducible representations all occur in the anisotropic
theta-lift and we also obtain their parahoric restriction as a special case of our
results on the endoscopic lift. For generic depth-zero cuspidal irreducible admissible
representations, the classification of Moy and Prasad [MP96, 6.8] and the work of
deBacker and Reeder [DR09] implies that their parahoric restriction can only be
non-zero for hyperspecial maximal parahorics, see Lemma 2.18.

Up to isomorphism, the only proper elliptic endoscopic datum for GSp(4, F ) is
attached to the group M = GL(2, F ) × GL(2, F )/GL(1, F ) with respect to the
antidiagonal embedding of GL(1, F ). The endoscopic character lift attached to M is
a homomorphism r between the Grothendieck groups of admissible representations
of M and GSp(4, F ). For every irreducible representation σ of M , we determine in
Chapter 4 the parahoric restriction of its lift r(σ). If σ is unitary generic irreducible,
the lift r(σ) has one or two constituents, forming an endoscopic L-packet. We
determine the parahoric restriction for each individual constituent [Wei09a] in terms
of σ.

For example, hyperspecial parahoric subgroups KM ⊆M and KG ⊆ G satisfy

dim rKG
◦ r(σ) = (q2 + 1) dim rKM

(σ)

for arbitrary virtual representations σ in the Grothendieck group of admissible
representations ofM . This implies that the matching condition of standard endoscopy
is satisfied for the indicator functions fM = (q2 + 1) charK +

M
and fG = charK +

G
. To

give another example, we can verify that an irreducible admissible representation σ is
of depth-zero if and only if r(σ) has a depth-zero constituent. This is in compliance
with the expected depth-preservation under the local Langlands correspondence
[ABPS].
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Notation

The set of nonnegative integers is N0 = {0, 1, . . . } and the positive integers are
N>0 = {1, 2, . . . }. The symbols Z, Q, R and C have their usual meaning. Algebraic
groups are denoted by boldface letters (G, . . . ), the corresponding groups of rational
points over a fixed field F in italics (G = G(F ), . . . ). The finite field of order q is Fq.
For the group of Fq-rational points of an algebraic group G defined over Fq we write
G(q) instead of G(Fq). We will always assume that the prime number ` ∈ N>0 is
distinct from bad primes and any Frobenius primes.

The n× n identity matrix is In. Diagonal and antidiagonal matrices are

diag(a1, . . . , an) =

a1

. . .

an

 and antidiag(a1, . . . , an) =

 a1

. .
.

an

 ,

so the first entry of an antidiagonal matrix is in the upper right corner. The matrix
with a single entry 1 in the i-th row and j-th column and 0 elsewhere is denoted by
Eij. Zeros in a matrix are usually omitted.

The disjoint union of sets is denoted by t. The characteristic function of a subset
A ⊆ B is

B 3 x 7→ charA(x) =

{
1 x ∈ A,
0 x /∈ A.

For a finite cyclic group (Cm, ·) (multiplicative notation) of order m each divisor n of
m gives rise to a unique subgroup Cm[n] ⊆ Cm of index d = m/n. This defines the
projection Nd : Cm → Cm[n], x 7→ xd and the injection id : Cm[n]→ Cm, x 7→ x.
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2. Preliminaries

2.1. Algebraic groups

An affine group scheme G of finite type over a ring o defines a functor from the
category of o-algebras to the category of groups. To an o-algebra R with canonical
morphism o → R the functor associates the group G(R) of R-rational points of
G×Spec(o) Spec(R). A morphism of o-algebras R→ S gives rise to a unique morphism
G(R)→ G(S). It is a common abuse of notation to denote this functor by G again.

For an o-algebra R the algebra R[ε] = R[X]/X2 is equipped with a natural ring
homomorphism e : R[ε]→ R that sends X to zero. The Lie algebra g(R) of G(R)
is the kernel of G(e). This gives rise to the Lie functor Lie : G(R) 7→ g(R). Every
x ∈ G(R) defines a conjugation endomorphism Cx : y 7→ xyx−1 on G(R), which
gives rise to an automorphism Ad(x) = Lie(Cx) of the Lie algebra g(R), the adjoint
representation. For details, see [Wat79].

The symplectic group. Fix an integer g ≥ 0. The connected split reductive group
scheme G = GSp(2g) of symplectic similitudes of genus g assigns to any Z-algebra A
the group

{(x, ν) ∈ Mat(2g × 2g, A)×Gm(A) |xJxt = νJ} for J =
(

Ig
−Ig

)
.

The similitude character is sim : (x, ν) 7→ ν. The Lie algebra of GSp(2g) is

gsp(2g) : K 7→ {(X, ν) ∈ Mat(2g × 2g,K)×Ga(K) |XJ + JX t = νJ}.

The symplectic group Sp(2g) is the kernel of sim : GSp(2g)→ Gm. Its Lie algebra
sp(2g) fits into a split exact sequence

0→ sp(2g) −→ gsp(2g)
ν−→ Ga → 0.

The splitting is given by Ga → gsp(2g), ν 7→ diag(0, . . . , 0, ν, . . . , ν).

5



2.1.1. The root system

We review the root system of the split connected reductive group G = GSp(2g). The
torus T of diagonal matrices

t = diag(t1, . . . , tg, t0/t1, . . . , t0/tg)

with ti ∈ Gm for i ∈ 0, . . . , g is a split maximal torus, so the rank of GSp(2g) is
rk(G) = g + 1. The Lie algebra of T is the subalgebra t ⊆ g = gsp(2g) of diagonal
matrices. Let ei : T → Gm be the elementary character ei(t) = ti. The character
group λ : X∗(T) = {t 7→

∏g
i=0 t

λi
i , λi ∈ Z} is abelian and we use additive notation:

(λ+ λ′)(t) = λ(t)λ′(t) for λ, λ′ ∈ X∗(T).

The character λ =
∑g

i=1 λiei will be denoted by (λ0, . . . , λg). The elementary
cocharacters are the homomorphisms fj : Gm → T with j = 0, . . . , g such that
ei ◦ fj is the identity for i = j and zero for i 6= j. They generate the cocharacter
group X∗(T) =

⊕g
j=0 Zfj. The canonical isomorphism Hom(Gm,Gm) ∼= Z defines a

bilinear form X∗(T)×X∗(T)→ Z. This bilinear pairing identifies V ∗ = R⊗X∗(T)
with the dual vector space of V = R⊗X∗(T).

The torus T acts on g via the adjoint representation and this gives rise to the
decomposition g =

⊕
λ∈X∗(T) gλ into λ-eigenspaces

gλ = {X ∈ g | Ad(t)X = λ(t)X ∀t ∈ T}.

The non-zero characters λ ∈ X∗(T) with gλ 6= 0 form the root system Φ(G).
Explicitly, these roots are

± (ei − ej), 1 ≤ i < j ≤ g,

± (ei + ej − e0), 1 ≤ i < j ≤ g,

± (2ei − e0) 1 ≤ i ≤ g.

By lexicographic ordering we fix positive roots of GSp(2g)

Φ+(G) = {ei − ej, ei + ej − e0 | 1 ≤ i < j ≤ g} ∪ {2ei − e0 | i = 1, . . . , g}.

The simple roots are

∆ = ∆(G) = {αi = ei − ei+1 | i = 1, . . . , g − 1} ∪ {αg = 2eg − e0},

where αg is the long root. They generate Φ+ and give rise to the Dynkin diagram

Cg :
α1 α2 α3 αg−2 αg−1 αg

.
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For each root α ∈ Φ there is a coroot α∨ ∈ X∗(T): Let Gα be the centralizer of
the connected component of ker(α), generated by T and U±α. Then there is a
homomorphism xα : SL(2) → Gα, such that xα(( 1 c

1 )) ⊆ Uα. The coroot is the
cocharacter α∨ = xα ◦ i, where i : Gm ↪→ SL(2) is an embedding into the standard
torus of SL(2), such that 〈α, α∨〉 = 2. The set of coroots is denoted Φ∨ and we get a
bijection Φ→ Φ∨, α 7→ α∨. The coroots of GSp(2g) are

± (ei − ej)∨ = ±(fi − fj), 1 ≤ i < j ≤ g,

± (ei + ej − e0)∨ = ±(fi + fj), 1 ≤ i < j ≤ g,

± (2ei − e0)∨ = ±fi, 1 ≤ i ≤ g.

The Weyl group WG = NG(T)/T of G is the finite quotient of the normalizer NG(T)
by the standard split torus T ⊆ G. The action of WG on T by conjugation gives
rise to a natural action on the character group WG ↪→ Aut(X∗(T)) that preserves Φ.
The reflections sα for α ∈ Φ} at the hyperplanes α−1(0) ⊆ V ∗

sα : V ∗ → V ∗, x 7→ x− 〈x, α∨〉α.

generate the Weyl group WG as a group of automorphisms of X∗(T). It permutes the
ei and changes their signs, so it is isomorphic to the semidirect product Σgn {±1}g.

A character λ ∈ X∗(T) is dominant with respect to Φ+(G) if 〈λ, α∨〉 ≥ 0 for every
positive root α ∈ Φ+(G), that means λ1 ≥ · · · ≥ λg ≥ 0. Every Weyl-orbit of a
character contains a dominant one. There is a unique dominant root β = 2e1 − e0

such that every other root is of the form β −
∑

α∈∆ cαα for non-negative integers
cα ≥ 0.

For the symplectic group G = Sp(2g), the diagonal matrices

t = diag(t1, . . . , tg, t
−1
1 , . . . , t−1

g )

form a maximal split torus of rank g. The root system is similar to GSp(2g), just
drop the character e0. For the general linear group G = GL(g) a split maximal torus
is given by the diagonal matrices t = diag(t1, . . . , tg) with characters ei(t) = ti for
i = 1, . . . , g and the roots are αij = ei − ej for i 6= j.

The root datum of G is the quadruple Ψ(G) = (X∗(T),Φ, X∗(T),Φ∨). The dual
root datum is Ψ∨(G) = (X∗(T),Φ∨, X∗(T),Φ).

For every split connected reductive group G over a local number field F with Weil
group WF we fix a connected reductive complex group Ĝ together with an L-action
ρG of the absolute Galois group ΓF = Gal(F̄ /F ) on Ĝ and a ΓF -bijection ηG from
the dual root datum Ψ∨(G) to the root datum Ψ(Ĝ). The L-datum is the triple
(Ĝ, ρG, ηG). The L-group is the semidirect product LG = ĜoWF such that ρG splits
the exact sequence 1→ Ĝ→ LG→ WF → 1.
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2.1.2. Parabolic subgroups

For each root α the corresponding eigenspace gα is one-dimensional and corresponds
to a unique one-dimensional root subgroup Uα ⊆ G such that gα is the Lie algebra
of Uα. The standard Borel subgroup is the subgroup B of G generated by T and Uα
for all the positive roots α ∈ Φ+(G). The standard parabolic subgroups of G are
the algebraic subgroups containing the standard Borel. For each subset I ⊆ ∆ of
the simple roots the standard parabolic subgroup P = PI is generated by T and
Uα for α ∈ (−I) ∪ Φ+. The Levi subgroup MI of PI is generated by T and Uα for
α ∈ I ∪ −I. The unipotent radical UI is generated by the Uα with α ∈ Φ+\ 〈I〉.
This yields the Levi decomposition PI

∼= MI nUI .

The simple roots of the reductive group MI are given by I. The standard Borel of
G = GSp(2g) is

B = P∅ =

{(
a ∗
0 ν(at)−1

)
∈ GSp(2g) | ν ∈ Gm, a ∈ Mat(g × g) with aij = 0 ∀i > j

}
.

For a fixed subset I ⊆ ∆ let ∆\I =: {αm1 , . . . , αmk |mj < mj+1} be the set of simple
roots not contained in I. For j = 1, . . . , k let nj = mj −mj−1 (with m0 = 0). Then
the Levi subgroup MI is the image of the embedding

GL(n1)× · · ·×GL(nk)×GSp(2g − 2mk) −→ PI ,

(A1, . . . , Ak,M) 7−→ blockdiag(A1, . . . , Ak,M, sim(M)(At1)−1, . . . , sim(M)(Atk)
−1).

2.2. Bruhat-Tits theory

Fix a non-archimedean local number field F with Z-valuation v and finite residue
field o/p. For an split unramified connected reductive group G over o fix a split
maximal torus T and let G and T be their groups of F -rational points.

2.2.1. The affine root system

A split maximal torus T = T(F ) in G gives rise to a reduced root system Φ. An
apartment is an affine space A over V = R⊗X∗(T), which we identify with V by
the choice of an origin 0. The affine roots of G are affine linear maps

ψ : A→ R, x 7→ α(x− 0) +m,

whose vector part v(ψ) = α is a root of G and whose constant part an integer
m ∈ Z. They form the affine root system Φaf = {ψ = α + m |α ∈ Φ(G),m ∈ Z}.
For irreducible Φ(G), we fix a set of simple affine roots by

∆af = {ψ = α + 0 |α ∈ ∆} ∪ {ψ0 = −β + 1},
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where β is the unique dominant root. A reducible Φ admits a unique decomposition
into finitely many irreducible subsystems Φ =

⊔
j Φj. For each Φj its simple affine

roots ∆af,j are constructed as above and the set of simple affine roots of Φ is
∆af =

⊔
j ∆af,j. The affine Weyl group Waf is generated by the reflections sψ at the

hyperplanes ψ−1(0) attached to the simple affine roots ψ ∈ ∆af . The simple affine
roots form the vertices of the affine Coxeter diagram, where two vertices ψi = αi +mi

and ψj = αj +mj are joined by 4 〈αi, αj〉2 /(〈αi, αi〉 〈αj, αj〉) edges. Decorating the
affine Coxeter diagram with arrows pointing from the long to the short roots produces
the affine Dynkin diagram.

Each choice of a Chevalley basis determines such an origin 0 and defines for each
root α a fixed isomorphism

χα : (F,+)→ Uα(F )

to the corresponding root subgroup Uα [Tit79, §1.1]. This defines a filtration of the
root subgroups via Uψ = χα(pm) ⊆ Uα for the affine roots ψ = α +m.

A point x in the apartment A is special1 if every root α is proportional to the vector
part of an affine root ψ with ψ(x) = 0 [Tit79, §1.9]. Since the root system is reduced,
this is equivalent to the condition

ψ(x) ∈ Z ∀ψ ∈ Φaf . (2.1)

A vertex ψ of an irreducible affine Dynkin diagram is special if and only if there is a
special point x with ψ′(x) = 0 for every other vertex ψ′ 6= ψ [Tit79, §1.9].

Example 2.1. For G = GSp(2g) (g ≥ 2) we fix the simple affine roots ψi = αi + 0
for i = 1, . . . , g and ψ0 = −β + 1 for the dominant root β. The isomorphisms χαi
for the simple roots αi are χαi(x) = I2g + xEi,i+1 − xEg+i+1,g+i for i = 1, . . . , g − 1
and χαg(x) = I2g + xEg,2g. The vertices ψ0 and ψg are special. The affine Dynkin
diagram is of type Cg:

ψ0 ψ1 ψ2 ψg−2 ψg−1 ψg

hs hs
.

For G = GL(g) with g ≥ 2 the affine Dynkin diagram of type Ag is a cycle of g
vertices, which are all hyperspecial [Tit79, 1.14].

1Since G is split, special is equivalent to hyperspecial [Tit79, §1.10.2].
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2.2.2. Parahoric subgroups

Fix a standard closed alcove C = {x ∈ A |ψ(x) ≥ 0 ∀ψ ∈ ∆af}. Attached to a proper
subset Θ ( ∆af of simple affine roots is the facet

F = C ∩
⋂
ψ∈Θ

ψ−1(0).

Fix a point x ∈ F such that ψ(x) > 0 for ψ ∈ ∆af\Θ. Conversely, a point x ∈ C
determines Θ = {ψ ∈ Φaf |ψ(x) = 0} uniquely and the corresponding facet F is the
smallest facet that contains x. For each simple root α we have

0 ≤ α(x) ≤ β(x) = 1− ψ0(x) ≤ 1,

especially −α(x) + 1 ≥ 0.

Definition 2.2. The standard parahoric subgroup at x is the group Px = PF
generated by

T(o) = {t ∈ T(F ) |λ(t) ∈ o× ∀λ ∈ X∗(T )}

and Uψ for every affine root ψ with ψ(x) ≥ 0. A standard parahoric subgroup is
(hyper-)special if ∆af\Θ contains a single (hyper-)special vertex, or (equivalently)
if x is (hyper-)special. The standard Iwahori subgroup is the parahoric subgroup
attached to the facet F = C.

A parahoric subgroup only depends on the facet, but its filtration subgroups Px,r

depend on x, so the notation Px is more appropriate.

Levi decomposition. Attached to every parahoric Px is a smooth affine group
scheme Gx over o with generic fiber Gx(F ) ∼= G such that the group of o-rational
points is Px = Gx(o) ⊆ G. The Levi decomposition of Px is the canonical exact
sequence

1→P+
x →Px →Px → 1,

where P+
x is the pro-unipotent radical2 and Px is isomorphic to the Levi quotient

of the special fiber Gx(o/p). The parahoric is special if and only if the special fiber
Gx(o/p) is reductive itself [Tit79, §3.8].

Example 2.3. The pro-unipotent radical of the standard hyperspecial maximal para-
horic Px = GSp(2g, o) ⊆ GSp(2g, F ) is the principle congruence subgroup

P+
x = {X ∈ GSp(2g, o) |X ≡ I2g mod p} with Px/P

+
x
∼= GSp(2g,Fq).

2For facets F1 ⊇ F2, we have PF1
⊆PF2

, but P+
F1
⊇P+

F2
for their pro-unipotent radicals.
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Remark 2.4. Let P = MnU be a parabolic subgroup of G. Both G and M contain
the standard split torus and therefore the standard apartment A of G is also an
apartment of M . Let Px be a parahoric subgroup of G associated to a point x ∈ A,
then

Mx = M ∩Px (2.2)

is the parahoric subgroup of M associated to x with pro-unipotent radical M +
x =

M ∩P+
x [MP96, p.107]. If x ∈ A is special for G, then x is also special for M (clear

by condition (2.1)). Hence, for special Px in G the subgroup Mx is special in M .

Lemma 2.5. For G = GSp(2g) and Θ ( ∆af let Θ′ = {ψi ∈ ∆af |ψg−i ∈ Θ}. Then
the standard parahoric subgroup Px attached to Θ is G-conjugate to the parahoric
subgroup Px′ attached to Θ′. Especially, all the hyperspecial parahoric subgroups of
G are pairwise G-conjugate.

Proof. The Atkin-Lehner element u1 = antidiag(1, . . . , 1, $, . . . , $) ∈ G gives rise to
an element of the affine Weyl group that maps ei to e0 − eg+1−i for 1 ≤ i ≤ g and
fixes e0. Therefore, it interchanges the root αi with the root αg−i for 1 ≤ i ≤ g − 1
and αg with −β. The adjoint action of u1 on the affine roots maps ψi to ψg−i for
0 ≤ i ≤ g and flips the affine Dynkin diagram [Tit79, §1.1]. Hence, Px and Px′ are
G-conjugate. Compare [Tit79, § 2.5].

The Moy-Prasad filtration. For each parahoric subgroup Px ⊆ G Moy and
Prasad [MP94, §2] have constructed an exhaustive filtration of open-compact normal
subgroups Px,r ⊆Px for real r ≥ 0. The group Px,r is generated by

Tn = {t ∈ T(F ) |λ(t) ∈ 1 + pn ∀λ ∈ X∗(T )}

for n ≥ r and the root subgroups Uψ for the affine roots ψ(x) ≥ r. The subgroup
Px,r+ =

⋃
s>r Px,s is normal in Px,r. Especially, the pro-unipotent radical of

Px = Px,0 is P+
x = Px,0+ . For r, s ≥ 0 the commutator [Px,r,Px,s] is contained

in Px,r+s, so the quotient Px,r/Px,r+ is abelian for r > 0.

Let P = M n U be a standard parabolic subgroup of G with opposite parabolic
P− = M n U−. For every x ∈ A and r > 0 the filtration subgroup Px,r ⊆ Px

admits the Iwahori decomposition [MP96, 4.2]

Px,r = (Px,r ∩ U−)(Px,r ∩M)(Px,r ∩ U). (2.3)

For every x there is r > 0 such that the pro-unipotent radical is P+
x = Px,r.

Therefore P+
x admits Iwahori decomposition, too.
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2.3. Representations

Fix a totally real global number field F with integers o and adèle ring A = A∞ ×Af .
Let G be a connected reductive linear group scheme defined over o. For every place
v we equip G(Fv) with the inherited topology of Fv. For non-archimedean v, we fix
the Haar measure dx such that the volume of a hyperspecial group G(ov) is one.
For archimedean places, the Haar measure on G(Fv) can be chosen canonically such
that the product measure on the adelic group G(A) is the Tamagawa measure.

For locally compact topological groups H, the modulus character ∆H : H → R>0 is
defined by ∆H(g) =

∫
H
f(xg) dx/

∫
H
f(x) dx for every f ∈ Cc(H).

2.3.1. Real Lie groups

We fix an archimedean place v of F and write R instead of Fv. Let G be the Lie group
of R-valued points G(R) with Lie algebra g(R). The invariants under the Cartan
involution form the maximal compact subgroup K with corresponding Lie algebra
k ⊆ g. Fix a Cartan subalgebra t ⊆ k. Let gC = C⊗ g denote the complexification.

Admissible representations. A representation (π,Hπ) of G is a homomorphism
π : G → Aut(Hπ) to the group of automorphisms on a complex Hilbert space Hπ

such that the map (x, v) 7→ π(x)v is continuous. It is unitary if π(x) is unitary for
every x ∈ G. A vector v ∈ Hπ is smooth if for every X in the Lie algebra g the limit

Xv = lim
t→0

(π(exp tX)v − v)/t

exists for real t > 0. The space V ∞ of smooth vectors is dense in V and is a g-module
via X 7→ (v 7→ Xv) for X ∈ g. The space of K-finite vectors

VK = {v ∈ V ; dim spanπ(K)v <∞}

is dense in V ∞. By Peter-Weyl’s theorem, VK decomposes as a direct sum

VK =
⊕
τ

nττ

of finite-dimensional irreducible representations τ of K with multiplicity nτ ≤ ∞.

For smooth π the representations τ with nτ > 0 are the K-types. When nτ <∞ for
every K-type of π, the representation (π, V ) is admissible. The category Rep(G)
has isomorphism classes of admissible representations as objects and intertwining
operators as morphisms.

Since VK is preserved under the action of g, it is a (g, K)-module. Representations
of G are infinitesimally equivalent if their (g, K)-modules are isomorphic.
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The induced representation. Let P ⊆ G be a parabolic subgroup and let (σ,Hσ)
be an admissible representation of P such that σ is unitary on the compact subgroup
K ∩ P .3 The vector space of continuous functions f : G→ Hσ with

f(px) = ∆
1/2
P (p)σ(p)f(x) for p ∈ P and x ∈ G

is a pre-Hilbert space (Hπ)0 with respect to the scalar product

〈f1, f2〉 =

∫
K

〈f1(k), f2(k)〉σ dk for f1, f2 ∈ (Hπ)0.

For x, y ∈ G and f ∈ (Hπ)0 define (π(y)f)(x) = f(xy), then π(y) extends to a
bounded operator on the completion Hπ of (Hπ)0. The induced representation from
σ is the G-representation is IndGH(σ,Hσ) = (π,Hπ). If σ is unitary, then IndGH(σ,Hσ)
is also unitary.

The infinitesimal character. Fix an admissible irreducible representation (π, V )
of G. On its K-finite vectors every z in the center Z(gC) of the universal enveloping
algebra of gC acts by multiplication with a complex scalar χ(z) ∈ C, χ(z)idV = π(z).
This is the infinitesimal character χ : Z(g)→ C of (π, V ).

Every infinitesimal character is of the form χλ = λ ◦ γ, where λ is a character of the
universal enveloping algebra U(tC) and γ is the Harish-Chandra homomorphism

γ : Z(g)→ U(t)WG

from the center of U(gC) to the Weyl invariants in U(tC) [Kna86, §VIII.6].

The discrete series. An irreducible continuous representation π of a semisimple
group G on a complex Hilbert space V is (in the) discrete series if it is equivalent to
a direct summand of the regular representation of G on L2(G,C) defined by right
multiplication.

For semisimple G, the irreducible representations in the discrete series have been
classified by Harish-Chandra [Kna86, Thms. 9.20, 12.21].

Proposition 2.6 (Harish-Chandra). Let G be a linear connected semisimple Lie
group and K a maximal closed subgroup with the same rank as G. Fix a Cartan
subalgebra t ⊆ k ⊆ g. For every nonsingular character λ : it→ R, such that λ+ δ∆+

λ

is analytically integral, there is a discrete series representation πλ of G such that

i) πλ has infinitesimal character χλ,

ii) πλ has a minimal K-type τΛ with highest weight Λ = λ+δ∆+
λ
−2δK (the Blattner

parameter), where δ∆+
λ
and δK are the half-sums of positive roots of G and K,

respectively,
3Representations of compact groups are always unitarizable [Wal88, 1.4.8].
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iii) every other K-type has highest weight Λ′ = Λ +
∑

α∈∆+
λ
nαα with nα ∈ Z≥0.

Here ∆+
λ is the set of roots α of G with 〈λ, α〉 > 0 The half sum of (compact) roots

in ∆+
λ is δ∆+

λ
(or δK, respectively). Two such representations are infinitesimally

equivalent if and only if their Harish-Chandra parameters λ are conjugate under the
compact Weyl group WK. Up to infinitesimal equivalence, these are all the discrete
series representations of G.

If the rank of K is smaller than the rank of G, there are no discrete series represen-
tations.

The symplectic group. For the semisimple Lie group G = Sp(2g)

K = K(R) = G ∩O(2g) =

{
x =

(
a b
−b a

)
∈ G | aat + bbt = Ig, ab

t = bat
}
,

which is isomorphic to the unitary group U(g) via κ : x 7→ a+
√
−1b ∈ U(g). The Lie

algebra of K is the space of invariants under the Cartan involution on Lie algebras
g→ g, X 7→ −X t

k =

{(
a b
−b a

)
∈ Mat(2g × 2g,R) | a = −at, b = bt

}
⊆ g.

Together with the −1-eigenspace of the Cartan involution

p =

{(
a b
b −a

)
∈ Mat(2g × 2g,R) | a = at, b = bt

}
⊆ g.

we obtain the decompositions g = k⊕ p and gC = kC ⊕ pC. Fix the compact torus
T̃ = κ−1{diag(t1, . . . , tg)); ti ∈ C, |ti| = 1}. The Cartan subalgebra t̃ ⊆ kC is given by
the set of s =

∑g
j=1 sjbj for sj ∈ R and bj = −

√
−1Ej,g+j +

√
−1Eg+j,j. The group

of complex linear characters of t̃C is generated by ẽi : t̃C → C, s 7→ si. The compact
roots are the roots ±(ẽi − ẽj), i < j of (k, t). Together with the non-compact roots
±(ẽi + ẽj), 1 ≤ i, j ≤ g, they form the root system4 of (g, t).

The Weyl group of K is generated by the reflection sα at the compact roots α ∈ Φ(K).
It permutes the generators ei, so WK is isomorphic to Σg. The Weyl group of
G = Sp(2g) is the semidirect product Σg n {±1}g.

The half sum of the positive roots of Sp(2g) in ∆+
λ for λ1 > λ2 > · · · > 0 is δ∆+

λ
=

g∑
i=1

(g− i+ 1)ẽi and the half sum of positive compact roots is δK = 1
2

g∑
i=1

(g+ 1− 2i)ẽi.

For g = 2 this means δ∆+
λ

= 2ẽ1 + ẽ2 = (2, 1) and δK = (ẽ1 − ẽ2)/2 = (1
2
,−1

2
).

4This is not quite the same as the root system of Section 2.1.1. We write ẽi instead of ei in order
to emphasize this distinction.
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Example 2.7 (SL(2,R)). Let ν(x) = |x| be the valuation and sgn(x) = x/|x| the
sign character for x ∈ R×. For G = SL(2,R) fix g = sl(2,R), K = SO(2,R) and the
standard Borel B of upper triangular matrices. Its roots ±2ẽ1 for ẽ1 are non-compact.
The discrete series representations D±(k) = πλ for λ ∈ Z\{0} and k = |λ|+ 1 and
± = sgn(λ) are the infinite dimensional subrepresentations of the normalized Borel
induced representation

IndGB σ = {f : G→ R | f(bx) = δ
1/2
B (b)σ(b)f(x)}

where σ(b) = sgnkνk−1(a) and the modulus character is δB(b) = |a2| for b = ( a ∗
a−1 ).

The Harish-Chandra parameter is λ(−
√
−1)ẽ1 and the minimal K-type SO(2,R)→

C×,
(
a b
−b a

)
7→ (a+ ib)±k has Blattner parameter ±k(−

√
−1)ẽ1.

The same construction for k = 1 gives the unitary limit of discrete series D±(1).

Example 2.8 (GL(2,R)). We denote by Dω(k) for k ∈ N>1 the essentially discrete
series representation of GL(2,R) with central character ω : R× → C× such that
ω(−1) = (−1)k and whose restriction to SL(2,R) is D+(k) ⊕ D−(k). This is the
unique infinite-dimensional constituent of µ1 × µ2 for smooth complex characters
µ1, µ2 of R× with ω = µ1µ2 and µ1µ

−1
2 = sgnkνk−1. When the central character is

trivial, we also write D(k).

Example 2.9 (Sp(4,R)). Discrete series representations πλ of G = Sp(4,R) are
attached to Harish-Chandra-parameters (λ1, λ2) ∈ Z2 with 0 6= λ1 6= ±λ2 6= 0.

For λ1 > λ2 > 0, the representation π(λ1,λ2) is non-generic and holomorphic with
Blattner parameter Λ = λ + (1, 2). For 0 > λ1 > λ2 the representation πλ is
non-generic and antiholomorphic with Blattner parameter Λ = λ+ (−2,−1).

For λ1 > 0 > λ2 or λ2 > 0 > λ1, the discrete series πλ is large and therefore
generic, but not (anti-)holomorphic. The Blattner parameter is Λ = λ + (1, 0) or
Λ = λ+ (0,−1), respectively.

Example 2.10 (GSp(4,R)). Fix integers λ1 > λ2 > 0 and a character ω : R× → C×
with ω(−1) = (−1)λ1+λ2+1. Up to infinitesimal equivalence, there are two essentially
discrete series representations of GSp(4,R) with infinitesimal character χλ and central
character ω. One of them is the non-generic representations πHλ,ω whose restriction
to Sp(4,R) decomposes into the holomorphic and anti-holomorphic discrete series
π(λ1,λ2)⊕π(−λ2,−λ1). The other one is the generic non-holomorphic representation πWλ,ω
whose restriction to Sp(4,R) decomposes into the non-holomorphic discrete series
π(λ1,−λ2) ⊕ π(λ2,−λ1).
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2.3.2. p-adic groups

The group G = G(Fv) of Fv-valued points of G for a non-archimedean place v is
a locally profinite topological group. A (complex linear) representation (π, V ) of
G is a homomorphism π : G → Aut(V ) to the automorphism group of a vector
space V over C. For a subgroup K ⊆ G the vector space V K of K-invariants is
the space of v ∈ V with π(k)v = v for every k ∈ K. The representation (π, V ) is
smooth if V =

⋃
K V

K for the compact open subgroups K ⊆ G. The representation
is admissible if it is smooth and V K is finite-dimensional for every compact open
subgroup K ⊆ G. Every irreducible smooth representation of G is admissible.

An admissible irreducible representation of G is called parahori-spherical (or Px-
spherical) if it admits non-zero invariants under a parahoric subgroup Px ⊆ G. For
hyperspecial Px, we say spherical.

The Hecke algebra. LetH = (C∞c (G), ∗) be the Hecke algebra with the convolution
product. Every admissible representation (π, V ) of G defines a representation of the
Hecke algebra H(G) via

π(f)v =

∫
G

f(x)π(x)v dx, f ∈ C∞c (G), v ∈ V.

Every such f is biinvariant with respect to some open compact subset Kf ⊆ G, so
π(f)v is contained in the finite-dimensional subspace V Kf . The character of π is the
conjugation-invariant distribution

χπ : C∞c (G) −→ C, f 7−→ tr(π(f), V Kf ).

Two representations have the same character if and only if they are isomorphic up to
semisimplification.

An intertwining operator f : (π1, V1)→ (π2, V2) between admissible representations
is a linear map f : V1 → V2 such that f ◦ π1(x) = π2(x) ◦ f for every x ∈ G. The
category of isomorphism classes of admissible representations of G will be denoted
Rep(G). Its morphisms are the intertwining operators.

Induced representation. Let (σ,Hσ) be a smooth representation of a closed
subgroup M ⊆ G. Denote by Hπ be the vector space of functions f : G→ Hσ such
that

f(mxk) = ∆
1/2
M (m)σ(m)f(x) ∀m ∈M,x ∈ G, k ∈ Kf

for an open subgroup Kf ⊆ G depending on f . The representation IndGM(σ,Hσ) =
(π,Hπ) of G is defined by

(π(y)f)(x) = f(xy) ∀x, y ∈ G.

This is the induced representation of σ. The subspace of those f whose support is
compact modulo M is the compactly induced representation c-IndGH(σ,Hσ). If M\G
is compact, induction preserves admissibility.
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2.3.3. Parabolic induction and restriction

Let o→ k be a nonarchimedean local or a finite field over o and let G = G(k). For
a parabolic subgroup P = M n U of G fix an admissible representation σ of M . An
admissible unitary representation σ of M gives rise to a representation σ′ of P by
inflation. Then

iGP,M σ = IndGP (σ′)

is the parabolically induced representation from σ. By the Iwasawa decomposition
P\G is compact, so parabolic induction preserves admissibility.

Fix an admissible representation (π, V ) ofG. The normalized restriction to a parabolic
subgroup P is the representation

P → Aut(V ), p 7→ ∆
−1/2
P · π(p).

The Levi quotient M ∼= P/U preserves the space of U -coinvariants

VU = V/ 〈π(u)v − v |u ∈ U, v ∈ V 〉 .

The parabolical restriction or Jacquet module of σ is the admissible M -representation

rGP,M(π, V ) = (∆
−1/2
P · π, VU)

The parabolic induction functor iGP,M : Rep(M) → Rep(G) is right adjoint to
rGP,M : Rep(G)→ Rep(M). Both functors are exact and transitive. After semisim-
plification, they do not depend on P , only on M and G. The normalization ensures
that unitarity is preserved.

An irreducible admissible representation π ∈ Rep(G) is cuspidal if rGP,M(π) = 0 for
every proper parabolic subgroup P ( G.

Tadic notation. If PI = MInUI is a standard parabolic subgroup ofG = GSp(2g, k),
the Levi quotient is of block diagonal form and admits a natural decomposition

MI
∼= GL(n1, k)× · · · ×GL(nm, k)×GSp(2g − 2|n|, k)

for |n| =
∑m

i=1 ni ≤ g. For σi ∈ Rep(GL(ni, k)) and ρ ∈ Rep(GSp(2g − 2|n|, k))
Tadic [Tad91] has introduced the notation

σ1 × · · · × σm o ρ = iGPI ,MI
(σ1 � · · ·� σm � ρ) ∈ Rep(G). (2.4)
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2.3.4. Automorphic representations

Fix a totally real number field F with adèle ring A. Let ω : Z(F )\Z(A)→ C× be a
unitary character of the center Z of G.

A square-integrable automorphic form with central character ω is a smooth function
φ : G(F )\G(A)→ C such that φ(xz) = φ(x)ω(z) for every z ∈ Z(A) and such that
|φ|2 is integrable over (Z(A)G(F ))\G(A). As usual, we identify two such φ if their
difference is non-zero only on a subset of measure zero. The completion of the vector
space of these φ with respect to the L2-norm is the Hilbert space

L2(G(F )\G(A), ω).

Right-multiplication defines a unitary representationR ofG(A) on L2(G(F )\G(A), ω)

(R(g)φ)(x) = φ(xg) for g, x ∈ G(A).

An automorphic representation of G(A) is an irreducible smooth representation
that is isomorphic to a subquotient of L2(G(F )\G(A), ω). A Hecke character is an
automorphic representation of GL(1,A).

The discrete spectrum L2
d(G(F )\G(A), ω) is the largest subspace L2(G(F )\G(A), ω)

that completely decomposes as a Hilbert direct sum. It orthogonal complement is
the continuous spectrum.

An automorphic form φ is cuspidal if∫
N(F )\N(A)

φ(nx) dn = 0

for the unipotent radical N of every proper parabolic subgroup of G and (almost)
every x ∈ G(A). The cuspidal spectrum L2

0(G(F )\G(A), ω) consists of cuspidal φ
and it is a closed subspace of the discrete spectrum. An automorphic representation
is cuspidal if it occurs in the cuspidal spectrum.

By the tensor product theorem [Gel75, §4.C], every automorphic representation π of
G(A) is isomorphic to a restricted tensor product

π ∼=
⊗
v

πv

of irreducible representations πv of G(Fv) for the non-archimedean places v < ∞
and (g, K)-modules πv for the real places v|∞.

Two automorphic representations are weakly equivalent if their local factors are iso-
morphic at almost every place. This defines an equivalence relation. An automorphic
representation is cuspidal associated to a parabolic or CAP if it cuspidal and weakly
equivalent to a constituent of a representation globally parabolically induced from
an automorphic representation.
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2.4. The parahoric restriction functor

Let G be the group of F -rational points of a split connected reductive linear algebraic
group over a non-archimedean local number field F . Fix a split maximal torus T
and a basis of simple roots ∆ generating a standard Borel subgroup B.

Let Px ⊆ G be a parahoric subgroup with Levi decomposition

1→P+
x →Px →Px → 1.

For an admissible (complex linear) representation π : G → Aut(V ), the action
of Px preserves the subspace V P+

x of P+
x -invariants in V . This defines a unique

representation (π|Px , V
P+
x ) of Px/P+

x
∼= Px.

An intertwining operator V1 → V2 between admissible representations (π1, V1) and
(π2, V2) of G preserves P+

x -invariants and defines a canonical operator V P+
x

1 → V P+
x

2 .

Definition 2.11. The parahoric restriction functor for Px is the exact functor

rPx : Rep(G)→ Rep(Px),

{
(π, V ) 7→ (π|Px , V

P+
x ),

(V1 → V2) 7→ (V P+
x

1 → V P+
x

2 ).

This is the parahoric analogoue of Jacquet’s functor of parabolic restriction. Parahoric
restriction has been studied by Morris [Mor93], Moy [Moy88], Vignéras [Vig01] and
others.

2.4.1. Basic properties

For parahoric subgroups Py ⊆ Px ⊆ G, parahoric restriction is transitive with
respect to Jacquet’s parabolic restriction functor [Vig03, 4.1.3]

rPy
∼= r

Px

Py
◦ rPx . (2.5)

Here we take Py as the Levi quotient of the parabolic subgroup Py/P+
x ⊆Px/P+

x .

The depth of an irreducible admissible representation π of G is the smallest real
number r ≥ 0 such that π admits non-zero invariants under P+

x,r for some parahoric
subgroup Px ⊆ G. Especially, π has depth zero if and only if it admits non-zero
parahoric restriction with respect to some parahoric subgroup.

Lemma 2.12. Twisting an admissible representation ρ of GSp(2g, F ) by a tamely
ramified or unramified character µ of F× commutes with parahoric restriction in the
following sense:

rPx((µ ◦ sim)⊗ ρ) ∼= (µ̃ ◦ sim)⊗ rPx(ρ), for µ̃ = ro×(µ). (2.6)

For G = GL(g, F ) the analogous formula holds with respect to the determinant.
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Proof. The restriction of the similitude character (or the determinant, respectively) to
P+

x factors over P+
x → 1 + p ⊆ kerµ, so the subspace of P+

x -invariants is preserved
under twisting.

The corresponding statement for wildly ramified µ is not true.

2.4.2. Results of Moy and Prasad

Moy and Prasad [MP96, 3.4] have defined a minimal K-type of depth zero to be a
pair (Px, σ) of a parahoric subgroup Px ⊆ G and a non-zero cuspidal irreducible
admissible representation σ of the finite reductive group Px, inflated5 to Px. A depth
zero minimal K-type (Px, σ) is contained in an irreducible admissible representation
(π, V ) of G, if σ is a subquotient of the parahoric restriction rPx(π, V ). Associativity
of minimal K-types is defined as in [MP96].

Lemma 2.13 ([MP96, 6.2]). Suppose (σ,Px) is a minimal K-type occuring in an
irreducible admissible representation (π, V ). A minimal K-type (Py, ρ) occurs in
(π, V ) if and only if it is associate to (Px, σ).

Now let P = M n U ⊆ G be a standard parabolic subgroup of G with T ⊆M . Let
σ be an admissible irreducible representation of M and π an irreducible subquotient
of its parabolic induction iGP,M(σ).

Corollary 2.14. Let x ∈ A be a point in the standard apartment of G. If σ has
non-zero parahoric restriction with respect to Mx = M ∩Px, then π has non-zero
parahoric restriction with respect to Px.

Proof. By (2.3), the pro-unipotent radical P+
x admits Iwahori decomposition. The

statement is then implied by a theorem of Jacquet, see [Cas95, 3.3.6].

For special x we have the equivalence rMx(σ) 6= 0⇔ rPx(π) 6= 0 by Thm. 2.19, but
that does not hold for arbitrary x. However, the representations σ and π have the
same depth [MP96, 5.2(1)].

5For the inflation of σ to Px we write σ again.
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2.4.3. Cuspidal irreducible smooth representations of depth zero

For a maximal parahoric subgroup Px of G and a cuspidal irreducible representation
σ of Px let τ be an irreducible representation of the normalizer N(Px) whose
restriction to Px contains the inflation of σ as a constituent.

Theorem 2.15 (Classification). The compactly induced representation c-IndGN(Px)(τ)
is irreducible, cuspidal, admissible, of depth zero, and contains the minimal K-type
(Px, σ). Every cuspidal admissible irreducible G-representation of depth zero is of
this form for some minimal depth zero K-type (Px, σ) with maximal parahoric Px.

Proof. This has been shown by Moy and Prasad [MP96, 6.6, 6.8] and independently
by Morris [Mor96].

Fix a non-trivial additive character ψ : (F,+)→ C× whose restriction to o factors
over a non-trivial additive character of the residue field ψ̃ : o/p→ C×.

Proposition 2.16. A depth zero supercuspidal irreducible admissible representation
π ∼= c-IndGN(Px)(τ) of G is ψ-generic if and only if Px is a hyperspecial maximal
parahoric and σ is a ψ̃-generic representation of Px/P+

x .

Proof. This is a result of deBacker and Reeder [DR09, 6.1.1, 6.1.2].

Corollary 2.17. For a depth zero cuspidal irreducible admissible G-representation
π = c-IndGN(Px)(τ) with maximal parahoric Px the parahoric restriction rPgx(π)
for g ∈ G is isomorphic to the restriction of τ to Px/P+

x . For another parahoric
Py ⊆ G whose normalizer is not G-conjugate to N(Px) the parahoric restriction
rPy(π) is zero.

Proof. Since Pgx = gPxg
−1 we can assume g = 1 without loss of generality. By

Mackey decomposition, the restriction of τ to Px is a direct sum of N(Px)-conjugates
of σ, which are all cuspidal. Since P+

x is a normal subgroup of N(Px), the space
of πP+

x -invariants in V is preserved under the π-action of N(Px) and this defines
an admissible representation (ρ, V P+

x ) of N(Px). Vignéras has shown that ρ is
isomorphic to τ [Vig01, Cor. 5.3]. Therefore rPx(π) is isomorphic to the restriction
of τ to Px.

If rPy(π) 6= 0 for a parahoric Py, then there is a minimal K-type (Pz, χ) contained
in π with Pz ⊆Py. But Pz must be a maximal parahoric [MP96, 6.8] and therefore
coincide with Py. Then the normalizer of Py is G-conjugate to N(Px) [Yu01,
3.3(ii)].
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2.4.4. Hyperspecial parahoric restriction

Fix a hyperspecial parahoric subgroup K of G and let G be the the associated
reductive group scheme with G(F ) = G and G(o) = K .

Lemma 2.18. Let π ∼= c-IndGN(K )(τ) be a depth zero cuspidal irreducible admissible
representation of G, where τ is an extension to N(K ) of an irreducible cuspidal
admissible representation σ of K /K +. The hyperspecial parahoric restriction rK (π)
is irreducible and isomorphic to σ.

Proof. The normalizer of the hyperspecial parahoric is N(K ) = ZK , where Z is
the center of G, so τ is uniquely determined by σ and a choice of a central character.
By Cor. 2.17 the parahoric restriction rK (π) of π is isomorphic to the restriction
τ |K . Since Z commutes with K , the restriction τ |K is irreducible and contains the
irreducible constituent σ by Frobenius reciprocity.

Compare Vignéras [Vig96, 3.14a)] for G = GL(g).

Let P = MnN be a standard parabolic subgroup scheme of G attached to K with
corresponding group P = M n U of F -rational points. Then KM = M(o) naturally
defines a hyperspecial parahoric subgroup of M .

Theorem 2.19. Let σ be an admissible representation of M . Then the hyperspecial
parahoric restriction commutes with parabolic induction:

i
G(q)
P(q),M(q) ◦ rKM

(σ) ∼= rK ◦ iGP,M(σ). (2.7)

For G = GL(g),GSp(2g) this implies

rK (σ1 × · · · × σm) ∼= rGL(n1,o)(σ1)× · · · × rGL(nm,o)(σm),

rK (σ1 × · · · × σm o ρ) ∼= rGL(n1,o)(σ1)× · · · × rGL(nm,o)(σm) o rGSp(2g−|n|,o)(ρ)

for admissible representations σi of GL(ni, F ) with i = 1, . . . ,m and representations
ρ of GSp(2g − |n|, F ) using the Tadic notation.

Proof. Hyperspecial parahoric subgroups admit Iwasawa decomposition [Tit79, 3.3.2],
so one can apply Thm. 3.1.1 in Casselman’s notes [Cas95].

For GL(g, F ) an explicit proof has been given by Vignéras [Vig96, 3.14b)], the
argument for the general case is completely analogous. Compare [MR].
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ρ ∈ Irr(G) rKG
(ρ) of GL(2,Fq) rBG

(ρ) of F×q × F×q

µ× λ µ̃× λ̃ µ̃� λ̃+ λ̃� µ̃
µ · 1G µ̃ · 1GL(2,q) µ̃� µ̃

µ · StG µ̃ · StGL(2,q) µ̃� µ̃

Table 2.1.: Hyperspecial parahoric restriction and Iwahori restriction for non-cuspidal
representations of G = GL(2, F ).

2.4.5. Examples

Example 2.20. For G = GL(1) the irreducible admissible representations are the
smooth characters µ : F× → C×. The hyperspecial maximal parahoric subgroup of
F× is o× with pro-unipotent radical 1 + p. The hyperspecial restriction ro×(µ) of µ
with (1 + p) ⊆ kerµ (tamely ramified) is the character µ̃ of F×q ∼= o×/(1 + p) over
which µ factors by the homomorphism theorem. If (1 + p) 6⊆ kerµ (wildly ramified),
then ro×(µ) is zero.

Example 2.21. For G = GL(2, F ), the two conjugacy classes of parahoric subgroups
are represented by the standard hyperspecial parahoric subgroup KG = GL(2, o) and
the standard Iwahori BG = K ∩ ( o o

p o ). The non-cuspidal irreducible representations
ρ of G are

1. the principal series µ× λ,

2. the twists of the Steinberg representation µ St,

3. the one-dimensional representations µ1 = µ ◦ det,

for smooth characters µ and λ of F×. The hyperspecial parahoric restriction and the
Iwahori restriction of ρ are given by Table 2.1.

Proof. The hyperspecial parahoric restriction for parabolically induced representa-
tions µ× λ is given by Thm. 2.19. Since parahoric restriction is exact, it preserves
the exactness of the sequence

0 −→ µ1GL(2,F ) −→ (| · |−1/2µ)× (| · |1/2µ) −→ µ StGL(2,F ) −→ 0.

Since Rep(GL(2,Fq)) is a semisimple category, this implies

ro×(| · |−1/2µ)× ro×(| · |1/2µ) ∼= rKG
(µ1GL(2,F )) + rKG

(µ StGL(2,F )).

For at most tamely ramified µ we have det(K +
G ) = 1+p ⊆ µ̃, so rKG

(µ◦det) = µ̃◦det.6
For the Iwahori restriction use (2.5) and apply the Jacquet functor to rKG

(ρ).

6Alternatively, we can use 0 < dim rKG
(µ1GL(2,F )) ≤ 1 and dim µ̃StGL(2,q) > 1 and employ

Cor. 2.14.
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2.5. `-adic Galois representations

Let F/Q be a global number field with a fixed non-archimedean place v. Fix a prime
`. An `-adic representation of the absolute Galois group ΓF is a continuous morphism
from ΓF to the automorphism group of a finite dimensional vector field over the
algebraic closure Q`. Such a representation is always defined over a finite extension
of Q`.

For a non-archimedean place v let Fv be the corresponding local field with residue
field Fq. The arithmetic Frobenius is Frobq : Fq → Fq, x 7→ xq. A fixed element in
the preimage of Frobq under the canonical map ΓFv → ΓFq is denoted Frobq again.
Its image under the embedding ΓFv ↪→ ΓF is also denoted Frobq.

The Tate twist. The absolute Galois group ΓF acts on the group µ`m of `m-th of
roots of unity. Any γ ∈ ΓF raises them to a power ζ 7→ ζa for a = a(γ) ∈ (Z/`mZ)×.
This defines a homomorphism ΓF → (Z/`mZ)×. Varying m defines the `-adic
cyclotomic character χ` : ΓF → Z×` over the projective limit lim←−m(Z/`mZ)× ∼= Z×` .
For every integer k, the k-th Tate twist of an `-adic representation V of ΓF is the
twisted representation

V (k) = V ⊗Z` χ
k
` .

When q is coprime to `, the image of the arithmetic Frobenius is χ`(Frobq) = q.
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3. Parahoric Restriction for GSp(4)

Let G = GSp(4) be the group of symplectic similitudes of genus two. Fix a nonar-
chimedean local number field F with finite residue field o/p ∼= Fq of order q. The
valuation character ν = | · | of F× is normalized such that |$| = q−1 for a uniformizing
element $ ∈ p. In this chapter we determine the parahoric restriction for irreducible
admissible representations and arbitrary parahoric subgroups of G = G(F ).

The standard torusT inG is the group of diagonal matrices t = diag(t1, t2, t0/t1, t0/t2).
Its character group X∗(T) ∼= Z3 is generated by ei : t 7→ ti for i = 0, 1, 2 and the
simple roots are α1 = e1 − e2 and α2 = 2e2 − e0. The reflections s1, s2 at α1, α2

generate the Weyl group N(T)/T, explicitly given by representatives modulo T

I4 =

(
1

1
1

1

)
, s2 =

(
1

1
1

−1

)
, s1s2 =

(
1

1
−1

1

)
, s2s1s2 =

(
1

1
−1

−1

)
,

s1 =

(
1

1
1

1

)
, s2s1 =

(
1

1
1

−1

)
, s1s2s1 =

(
1

1
−1

1

)
, s1s2s1s2 =

(
1

1
−1
−1

)
.

The Weyl group is isomorphic to the dihedral group of eight elements. We fix the
standard Borel, Siegel and Klingen parabolic subgroups

B =
( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗

)
∩G, P =

( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

)
∩G, Q =

( ∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗ ∗

)
∩G

and write B = MB n UB, P = MP n UP , Q = MQ n UQ for their F -rational points.

A non-trivial additive character ψ : F → C× gives rise to a generic character of the
unipotent radical UB of the standard Borel subgroup of GSp(4, F ) via ψU : UB →
C, u 7→ ψ(au12 + bu24) for a, b ∈ C×. An admissible representation ρ of GSp(4, F ) is
generic if it admits a non-trivial UB-intertwining operator (ρ|UB , V )→ (ψU ,C). This
does not depend on the choice of ψ or a, b. Therefore we fix a = b = 1 and assume
that ψ has conductor one, so the restriction to o factors over a non-trivial additive
character ψ̃ of o/p.

We briefly review the classification of standard parahoric subgroups of G, compare
[Sch05a], [Moy88]. For T = T(F ), fix the simple affine roots ψ0 = −(2e1 − e0) +
1, ψ1 = e1 − e2 and ψ2 = 2e2 − e0 in the apartment of T . The affine Dynkin diagram
is of type C2:

ψ0 ψ1 ψ2

hs hs
.
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Let N(T ) be the normalizer of the standard torus T = T(F ) in G. The affine Weyl
group Waf = N(T )/T(o) is generated by the root reflections si at ψi for i = 0, 1, 2. A
further non-trivial symmetry of the standard apartment is given by the Atkin-Lehner
element u1:

s0 =

(
$−1

1
−$

1

)
, s1 =

(
1

1
1

1

)
, s2 =

(
1

1
1

−1

)
, u1 =

(
1

1
$

$

)
,

The closed standard alcove C is the set of points where ψi(x) ≥ 0 for i = 0, 1, 2. To
each facet in C there is attached a standard parahoric subgroup. Explicitly, the seven
standard parahoric subgroups of GSp(4, F ) with pro-unipotent radicals are

1. the standard Iwahori subgroup B, attached to C

B = sim−1(o×) ∩


o o o o
p o o o
p p o p
p p o o

 , B+ = B ∩


1 + p o o o
p 1 + p o o
p p 1 + p p
p p o 1 + p

 ,

2. the standard Siegel parahoric P, attached to the facet ψ−1
1 (0) ∩ C,

P = sim−1(o×) ∩


o o o o
o o o o
p p o o
p p o o

 , P+ = P ∩


1 + p p o o
p 1 + p o o
p p 1 + p p
p p p 1 + p

 ,

3. the standard Klingen parahoric Q, attached to the facet ψ−1
2 (0) ∩ C,

Q = sim−1(o×) ∩


o o o o
p o o o
p p o p
p o o o

 , Q+ = Q ∩


1 + p o o o
p 1 + p o p
p p 1 + p p
p p o 1 + p

 ,

4. the standard hyperspecial parahoric subgroup K = GSp(4, o), attached to the
facet ψ−1

1 (0) ∩ ψ−1
2 (0) ∩ C,

K = sim−1(o×) ∩


o o o o
o o o o
o o o o
o o o o

 , K + = K ∩


1 + p p p p
p 1 + p p p
p p 1 + p p
p p p 1 + p

 ,

5. the standard paramodular subgroup J , with facet ψ−1
0 (0) ∩ ψ−1

2 (0) ∩ C,

J = sim−1(o×) ∩


o o p−1 o
p o o o
p p o p
p o o o

 , J + = J ∩


1 + p o o o
p 1 + p o p
p2 p 1 + p p
p p o 1 + p

 ,
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6. the parahoric u−1
1 Qu1 attached to the facet ψ−1

0 (0) ∩ C,

7. the hyperspecial parahoric u−1
1 K u1 attached to the facet ψ−1

0 (0) ∩ ψ−1
1 (0) ∩ C.

The simple affine roots ψ0 and ψ2 are conjugate under the Atkin Lehner element
u1 by Lemma 2.5. This non-trivial automorphism preserves B, Q and J . The
standard maximal parahorics are the conjugates of K , J and u−1

1 K u1.

3.1. Main result

The parahoric restriction functor factors over semisimplification, because admissible
representations of finite groups form a semisimple category. Therefore it is sufficient
to determine parahoric restriction of irreducible admissible representations ρ of G.

The non-cuspidal irreducible admissible representations of G have been classified by
Sally and Tadic [ST94]. We use the notation of Roberts and Schmidt [RS07].

The cuspidal irreducible admissible representations of G with depth zero have been
classified by Moy and Prasad [MP96, 6.8], see Thm. 2.15. For positive depth, the
parahoric restriction is zero by definition.

3.1.1. Hyperspecial parahoric restriction

In this section, we determine the parahoric restriction of the irreducible admissi-
ble representations (ρ, V ) of GSp(4, F ) with respect to the standard hyperspecial
parahoric subgroup K ⊆ G.

Lemma 3.1. Let π be a cuspidal irreducible admissible representation of G. If
π is isomorphic to c-IndGZK τ where τ is an irreducible extension of some cuspidal
irreducible representation σ of K /K + to the normalizer ZK of K , then rK (π) ∼= σ.
Otherwise rK (π) = 0.

Proof. This is a special case of Lemma 2.18.

Theorem 3.2. The hyperspecial parahoric restriction rK (ρ) of non-cuspidal admis-
sible irreducible representations ρ of GSp4(F ) with depth-zero induction data is given
by Table 3.1. For induction data of depth > 0, the hyperspecial parahoric restriction
of ρ is zero.

The proof is in Section 3.2.
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type
(ρ
,V

)∈
Irr(G

S
p

(4,F
))

r
K

(ρ
)|S

p
(4

)
(even

q)
r

K
(ρ

)
(odd

q)
centralchar.

dim
ension

I
µ

1 ×
µ

2
o
µ

χ
1 (k

1 ,k
2 )

X
1 (µ̃

1 ,µ̃
2 ,µ̃

)
µ̃

1 µ̃
2 µ̃

2
(q

+
1)

2(q
2

+
1)

IIa
µ

1
S

to
µ

χ
1
0 (k

1 )
χ

4 (µ̃
1 ,µ̃

)
µ̃

1
2µ̃

2
q(q

+
1)(q

2
+

1)

IIb
µ

1
1
o
µ

χ
6 (k

1 )
χ

3 (µ̃
1 ,µ̃

)
µ̃

1
2µ̃

2
(q

+
1
)(q

2
+

1)
IIIa

µ
1
o
µ

S
t

χ
1
1 (k

1 )
χ

2 (µ̃
1 ,µ̃

)
µ̃

1 µ̃
2

q(q
+

1)(q
2

+
1)

IIIb
µ

1
o
µ
1

χ
7 (k

1 )
χ

1 (µ̃
1 ,µ̃

)
µ̃

1 µ̃
2

(q
+

1)(q
2

+
1)

IV
a

µ
S

t
G

S
p
(4
,F

)
θ

4
θ

5 (µ̃
)

µ̃
2

q
4

IV
b

L
(ν

2,ν
−

1µ
S

t)
θ

1 ⊕
θ

2
θ

1 (µ̃
)⊕

θ
3 (µ̃

)
µ̃

2
q

3
+
q

2
+
q

IV
c

L
(ν

3
/
2

S
t,ν
−

3
/
2µ

)
θ

1 ⊕
θ

3
θ

1 (µ̃
)⊕

θ
4 (µ̃

)
µ̃

2
q

3
+
q

2
+
q

IV
d

µ
1

G
S
p
(4
,F

)
θ

0
θ

0 (µ̃
)

µ̃
2

1
V
a

δ([ξ
u
,ν
ξ
u
],ν
−

1
/
2µ

)
θ

3 ⊕
θ

4
θ

4 (µ̃
)⊕

θ
5 (µ̃

)
µ̃

2
q

4
+

12
q(q

2
+

1)
δ([ξ

t ,ν
ξ
t ],ν

−
1
/
2µ

)
−

τ
3 (µ̃

)
µ̃

2
q

2(q
2

+
1)

V
b

L
(ν

1
/
2ξ
u

S
t,ν
−

1
/
2µ

)
θ

1
θ

1 (µ̃
)

µ̃
2

12
q(q

+
1)

2

L
(ν

1
/
2ξ
t
S

t,ν
−

1
/
2µ

)
−

τ
2 (µ̃

)
µ̃

2
q(q

2
+

1)
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c

L
(ν

1
/
2ξ
u

S
t,ν
−

1
/
2ξ
u
µ

)
θ

1
θ

1 (µ̃
)
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2

12
q(q
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2

L
(ν

1
/
2ξ
t
S

t,ν
−
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Notation 3.3 (Table 3.1). Let µ, µ1, µ2 : F× → C× be tamely ramified or unramified
characters which restrict to characters µ̃, µ̃1, µ̃2 of (o/p)×.

Let Π be a cuspidal irreducible admissible representation of GL(2, F ) of depth zero
with hyperspecial restriction πΛ attached to a character Λ of F×q2 in the notation of
Table A.1. The non-trivial unramified quadratic character of F× is ξu. For odd q let
ξt be either one of the two tamely ramified quadratic characters which reduce to the
non-trivial quadratic character λ0 over the residue field F×q .

The irreducible representations of GSp(4, q) for odd q have been classified by Shinoda
[Shi82], see Section A.3.

For even q there is an isomorphism GSp(4, q) ∼= Sp(4, q) × F×q and the irreducible
representations of Sp(4, q) have been classified by Enomoto [Eno72], see Section
A.4. Fix a generator θ̂ of the character group of F×q2 . Denote its restrictions to
F×q2 [q− 1] = F×q and to F×q2 [q + 1] by γ̂ and η̂, respectively. Let k, k1, k2 ∈ Z/(q− 1)Z
be such that γ̂ki = µ̃i. Let l ∈ Z/(q2 − 1)Z be such that Λ = θ̂l and let l′ be the
image of l under the canonical projection Z/(q2 − 1)Z � Z/(q + 1)Z so that the
restriction of Λ to F×q2 [q + 1] is η̂l′ .

If Λq+1 = 1, then Λ factors over a character ωΛ of F×q2 [q+1] so that Λ = ωΛ◦Nq−1. For
even q there is a unique preimage l′′ of l under the canonical injection Z/(q + 1)Z ↪→
Z/(q2 − 1)Z with ωΛ = ηl

′′ . If Λq−1 = Λ0 is the quadratic character, let λ′ be the
character of F×q2 [2(q − 1)] with Λ = λ′ ◦N(q+1)/2.

3.1.2. Parahoric restriction at non-maximal parahorics

Every non-maximal parahoric subgroup of G is conjugate to either the Iwahori
subgroup B, the standard Klingen parahoric Q, or the standard Siegel parahoric P .
Corollary 2.17 implies that for cuspidal irreducible admissible representations of G,
the parahoric restriction at non-maximal parahoric subgroups is zero.

Theorem 3.4. For non-cuspidal irreducible admissible representations (ρ, V ) of
GSp(4, F ) with depth-zero inducing data, the parahoric restriction with respect to the
standard non-maximal parahoric subgroups B, P and Q is given by Table 3.2.

Proof. According to (2.5) it is sufficient to determine the parabolic restriction of the
hyperspecial parahoric restriction rK (ρ). This is given by Tables A.4 and A.7.

In Table 3.2, µ, µ1, µ2 are smooth characters of F× and ξ is either the unramified
or a tamely ramified quadratic character of F×. We denote by Π a cuspidal irre-
ducible admissible representation of GL(2, F ) with hyperspecial parahoric restriction
rGL(2,o)(Π) =: π̃.
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3.1.3. Paramodular restriction

For the standard paramodular subgroup J we identify J /J + with

(GL(2, q)2)0 = {(x, y) ∈ GL(2, q)×GL(2, q) | det x = det y}.

via

J 3


x1,1 ∗ $−1x1,2 ∗
∗ y1,1 ∗ y1,2

$x2,1 ∗ x2,2 ∗
∗ y2,1 ∗ y2,2

 7→ ((
x1,1 x1,2

x2,1 x2,2

)
,

(
y1,1 y1,2

y2,1 y2,2

))

where xij, yij is the image of xi,j, yi,j under the canonical map o → o/p. The
parahoric restriction functor with respect to J is the paramodular restriction rJ

from admissible representations of G to those of (GL(2, q)2)0. The irreducible
representations of (GL(2, q)2)0 have been classified in Lemma A.6.

Lemma 3.5. Let ρ be an irreducible admissible representation of GSp(4, F ). For
every irreducible constituent σ of rJ (ρ) the opposite σ∗ is also a constituent.

Proof. The Atkin Lehner involution u1 preserves J and maps σ to σ∗.

Proposition 3.6. Let π be a cuspidal irreducible admissible representation of G.
The paramodular restriction rJ (π) is non-zero if and only if π is isomorphic to a
compactly induced representation c-IndGN(J )(τ) where τ is an irreducible extension of
some cuspidal irreducible representation σ of J /J +. In that case π is non-generic.

If σ ∼= σ∗, then rJ (π) ∼= σ. If σ 6∼= σ∗, then rJ (π) ∼= σ ⊕ σ∗.

Proof. This is clear by Frobenius reciprocity, 3.35 and Corollary 2.17. The Atkin-
Lehner involution preserves τ . If π was generic, then it would be induced from the
normalizer of a hyperspecial parahoric subgroup [DR09, §6.1.2].

The main result in this section is:

Theorem 3.7. For non-cuspidal irreducible admissible representations ρ of GSp(4, F )
with depth-zero induction data, the paramodular restriction rJ (ρ) is given by Table
3.3. For induction data of depth > 0, the paramodular restriction is zero.

The proof is given in Section 3.3.
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type ρ ∈ Irr(GSp(4, F )) rJ (ρ) ∈ Rep((GL(2, q)2)0) dim rJ (ρ)

I µ1 × µ2 o µ µ̃[1× µ̃1, 1× µ̃2] + µ̃[1× µ̃2, 1× µ̃1] 2(q + 1)2

IIa µ1 St o µ µ̃[1× µ̃1, 1× µ̃1] (q + 1)2

IIb µ1 1o µ µ̃[1× µ̃1, 1× µ̃1] (q + 1)2

IIIa µ1 o µ St µ̃[1× µ̃1, St] + µ̃[ St, 1× µ̃1] 2q(q + 1)
IIIb µ1 o µ1 µ̃[1× µ̃1, 1] + µ̃[1, 1× µ̃1] 2(q + 1)

IVa µ StGSp(4,F ) µ̃[ St, St] q2

IVb L(ν2, ν−1µ St) µ̃[ St, St] + µ̃[1, St] + µ̃[ St, 1] q2 + 2q
IVc L(ν3/2 St, ν−3/2µ) µ̃[1, 1] + µ̃[1, St] + µ̃[ St, 1] 2q + 1
IVd µ1GSp(4,F ) µ̃[1, 1] 1

Va δ([ξu, νξu] , ν
−1/2µ) µ̃[1, St] + µ̃[ St, 1] 2q

δ([ξt, νξt] , ν
−1/2µ) µ̃[1× λ0, 1× λ0]± (q + 1)2/2

Vb L(ν1/2ξu St, ν−1/2µ) µ̃[1, 1] + µ̃[ St, St] q2 + 1
L(ν1/2ξt St, ν−1/2µ) µ̃[1× λ0, 1× λ0]∓ (q + 1)2/2

Vc L(ν1/2ξu St, ν−1/2ξuµ) µ̃[1, 1] + µ̃[ St, St] q2 + 1
L(ν1/2ξt St, ν−1/2ξtµ) µ̃[1× λ0, 1× λ0]∓ (q + 1)2/2

Vd L(νξu, ξu o ν−1/2µ) µ̃[1, St] + µ̃[ St, 1] 2q
L(νξt, ξt o ν−1/2µ) µ̃[1× λ0, 1× λ0]± (q + 1)2/2

VIa τ(S, ν−1/2µ) µ̃[ St, St] + µ̃[ St, 1] + µ̃[1, St] q2 + 2q
VIb τ(T, ν−1/2µ) µ̃[ St, St] q2

VIc L(ν1/2 St, ν−1/2µ) µ̃[1, 1] 1
VId L(ν, 1F× o ν−1/2µ) µ̃[1, 1] + µ̃[ St, 1] + µ̃[1, St] 2q + 1

VII µ1 o Π [1× µ̃1, π̃] + [π̃, 1× µ̃1] 2(q2 − 1)

VIIIa τ(S,Π) [1, π̃] + [π̃, 1] 2(q − 1)
VIIIb τ(T,Π) [ St, π̃] + [π̃, St] 2(q − 1)q

IXa δ(νξu, ν
−1/2Π) [ St, π̃] + [π̃, St] 2(q − 1)q

δ(νξt, ν
−1/2Π) [π̃, 1× λ0]∓ + [1× λ0, π̃]∓ q2 − 1

IXb L(νξu, ν
−1/2Π) [1, π̃] + [π̃, 1] 2(q − 1)

L(νξt, ν
−1/2Π) [π̃, 1× λ0]± + [1× λ0, π̃]± q2 − 1

X Π o µ 0 0

XIa δ(ν1/2Π, ν−1/2µ) 0 0
XIb L(ν1/2Π, ν−1/2µ) 0 0

Table 3.3.: Paramodular restriction for non-cuspidal irreducible admissible represen-
tations of GSp(4, F ). The index is determined by ξt($) = ±1.
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type ρ ∈ Irr(GSp(4, F )) dim ρK dim ρJ dim ρP dim ρQ dim ρB

I µ1 × µ2 o µ 1 2 4 4 8

IIa µ1 St o µ 0 1 1 2 4
IIb µ1 1o µ 1 1 3 2 4

IIIa µ1 o µSt 0 0 2 1 4
IIIb µ1 o µ1 1 2 2 3 4

IVa µStGSp(4,F ) 0 0 0 0 1

IVb L(ν2, ν−1µSt) 0 0 2 1 3

IVc L(ν3/2 St, ν−3/2µ) 0 1 1 2 3
IVd µ1GSp(4,F ) 1 1 1 1 1

Va δ([ξu, νξu] , ν−1/2µ) 0 0 0 1 2

Vb L(ν1/2ξu St, ν−1/2µ) 0 1 1 1 2

Vc L(ν1/2ξu St, ν−1/2ξuµ) 0 1 1 1 2

Vd L(νξu, ξu o ν−1/2µ) 1 0 2 1 2

VIa τ(S, ν−1/2µ) 0 0 1 1 3

VIb τ(T, ν−1/2µ) 0 0 1 0 1

VIc L(ν1/2 St, ν−1/2µ) 0 1 0 1 1

VId L(ν, 1F× o ν−1/2µ) 1 1 2 2 3

Table 3.4.: Dimensions of parahori-spherical vectors in non-cuspidal representations
of GSp(4, F ) for unramified characters µ1, µ2, µ, ξ of F×.

3.1.4. Parahori-spherical representations

As a corollary, we obtain the dimensions of parahori-spherical vectors.

Corollary 3.8. An irreducible admissible representation ρ of GSp(4, F ) is parahori-
spherical if and only if it is a subquotient of µ1 × µ2 o µ0 for unramified characters
µ1, µ2, µ0 of F×. The dimension of invariants under the standard parahoric subgroups
are given in Table 3.4.

Proof. The dimension of spherical vectors is the multiplicity of the trivial representa-
tion in the parahoric restriction of ρ. For non-cuspidal ρ, this is given by the tables
above. If ρ is cuspidal, the parahoric restriction is either zero or a sum of cuspidal
representations by Cor. 2.17 and Mackey’s theorem, so parahoric restriction with
respect to the Iwahori subgroup B gives zero by transitivity (2.5). A fortiori, there
are no non-zero parahori-spherical vectors.

Remark 3.9. The non-cuspidal case has already been determined by Roberts and
Schmidt [RS07, Table A.15].
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3.2. The proof for hyperspecial parahoric restriction

We now prove the result on hyperspecial parahoric restriction of non-cuspidal irre-
ducible admissible representations of GSp(4, F ).

Proof of Thm. 3.2. Irreducible representations ρ of type I, IIa, IIb, IIIa, IIIb, VII and
X are parabolically induced, so the result is clear by Thm. 2.19 and Examples 2.20
and 2.21. In the other cases, ρ is a non-trivial subquotient of a parabolically induced
representation κ. If rK (κ) = 0, then rK (ρ) = 0 by exactness of the parahoric
restriction functor, otherwise rK (ρ) 6= 0 by Cor. 2.14. Furthermore, rK (ρ) is a
non-zero subquotient of the parabolically induced rK (κ). It remains to determine
the correct constituents of rK (κ) case by case.

We only discuss the case of odd q. For even q one can determine the restriction of
rK (ρ) to Sp(4, q) by the analogous arguments, see [Rös12, Thm. 2.33]. The central
character of rK (ρ) is the restriction ω̃ρ of the central character ωρ of ρ.

For ρ = µ1GSp(4,F ) of type IVd, the hyperspecial parahoric restriction is at most
one-dimensional, so it must be µ̃1GSp(4,q) = θ0(µ̃) (for at most tamely ramified µ) or
zero (for wildly ramified µ). By [RS07, (2.9)] and Table A.5

rK (L(ν2, ν−1µ StGSp(2,F ))) + rK (µ1GSp(4,F )) ≡ 1GL(2,q) o µ̃ = χ3(1, µ̃)

decomposes as χ3(1, µ̃) = µ̃(θ0 + θ1 + θ3). For type IVb we have

rK (L(ν2, ν−1µ StGSp(2,F ))) = µ̃(θ1 + θ3).

By the same argument we determine the parahoric restriction for type IVa and IVc
as constituents of χ1(1, µ̃) = 1 o µ̃1GSp(2,q) and χ2(1, µ̃) = 1 o µ̃ StGSp(2,q).

The representation ρ = L(ν1/2ξ St, ν−1/2µ) of type Vb is a constituent of both
ν1/2ξ StGL(2,F ) o ν−1/2µ and ν1/2ξ 1GL(2,F ) o ν−1/2ξµ by [RS07, (2.10)]. Therefore the
hyperspecial parahoric restriction rK (ρ) must be a constituent of both ξ̃ StGL(2,q) o µ̃

and ξ̃ StGL(2,q)oξ̃µ̃. By Table A.2, the only common constituent is θ1(µ̃) for unramified
ξ and τ2(µ̃) for tamely ramified ξ. By exactness and [RS07, (2.10)], types Va, Vc and
Vd are clear.

The representation ρ = τ(T, ν−1/2µ) of type VIb is a constituent of 1 o µ StGL(2,q)

and ν1/2 1GL(2,q) o ν−1/2µ by [RS07, (2.11)]. By exactness the hyperspecial parahoric
restriction rK (ρ) must be a constituent of both χ2(1, µ̃) = µ̃(θ1 + θ3 + θ5) and of
χ3(1, µ̃) = µ̃(θ0 +θ1 +θ3). Therefore rK (ρ) can only be θ3(µ̃) or θ1(µ̃) or θ1(µ̃)+θ3(µ̃).
By (2.6) we can assume that µ is unitary, then Thm. 4.29 and [Wei09a, Thm. 4.5]
imply dim rK (τ(T, ν−1/2µ)) = q(q2 + 1)/2. This implies rK (τ(T, ν−1/2µ)) = µ̃ θ3. By
exactness the restrictions of type VIa, VIc and VId are clear.
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The representation ρ = τ(T,Π) of type VIIIb is the non-generic constituent of 1 o Π
for an irreducible cuspidal admissible representation Π of GL(2, F ) whose non-zero
parahoric restriction rGL(2,o)(Π) = π̃ is the cuspidal irreducible representation of
GL(2, q) attached to a character Λ of F×q2 . Its hyperspecial parahoric restriction is one
of the two irreducible constituents of rK (1oΠ) ∼= 1o π̃ = X3(Λ, 1) = χ7(Λ) +χ8(Λ).
By a suitable character twist we can assume that Π is unitary. Then τ(T,Π) =
Wp−(Π) is the anisotropic theta-lift of (Π,Π) by [Wei09a, 4.5]. The dimension of the
hyperspecial parahoric restriction of τ(T,Π) is (q2 + 1)(q − 1), so it must be χ7(Λ).
The rest is clear.

For ρ of type IXa or IXb, this is the statement of Thms. 3.18 and 3.21.

Let ρ = δ(ν1/2Π, ν−1/2µ) be an irreducible representation of type XIa where Π
is a cuspidal irreducible admissible representation of GL(2, F ) with trivial central
character. By (2.6) we can assume without loss of generality that µ = 1. The
hyperspecial restriction of ρ must be one of the two irreducible subquotients of

rK (ν1/2Π, ν−1/2µ) = π̃ o 1 = X2(ωΛ ◦Nq−1, 1) = χ5(ωΛ, 1) + χ6(ωΛ, 1).

By [RS07, Table A.12], ρ has paramodular level ≥ 3 and therefore does not admit
non-zero invariants under the subgroup

L =


o p o p
p o p o
o p o p
p o p o

 ∩K .

By character theory, χ5(ωΛ, 1) admits non-zero invariants under the image of L in
K /K +, so rK (ρ) cannot be χ5(ωΛ, 1). The rest is clear.

3.2.1. Type IX

For non-cuspidal irreducible admissible representations (ρ, V ) of type IXa and IXb
we need to determine the hyperspecial parahoric restriction rK (ρ) for K = GSp(4, o)
by hand. We consider two operators T and H, which preserve a subspace W1, and
compare their eigenvectors in W1.

Recall the setting: Fix a non-trivial additive character ψ : (F,+) → C× whose
restriction to o factors over a non-trivial additive character ψ̃ of o/p, fix a non-trivial
tamely ramified or unramified quadratic character ξ of F× and a depth zero cuspidal
irreducible admissible representation (Π, VΠ) of GL(2, F ) with central character ωΠ

and complex multiplication ξΠ = Π. The hyperspecial parahoric restriction of Π is a
cuspidal and irreducible representation π̃ = rGL(2,o)(Π) of GL(2, q) by Lemma 2.18.
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This defines an irreducible representation νξ � ν−1/2Π of the Levi subgroup of the
Klingen parabolic Q. The normalized Klingen induced representation (ρ, V ) :=
νξ o ν−1/2Π has an explicit model as the space of smooth functions

V =
{
f : GSp(4, F )→ VΠ; f(pg) = δ

1/2
Q (p)(νξ � ν−1/2Π)(p)f(g) ∀p ∈ Q

}
, (3.1)

where GSp(4, F ) acts by right multiplication. It decomposes into an exact sequence

0→ δ(νξ, ν−1/2Π)→ νξ o ν−1/2Π→ L(νξ, ν−1/2Π)→ 0 (3.2)

with two irreducible constituents.

As a K -module, V K + is naturally isomorphic to the representation (ρ̃, Ṽ ) = ξ̃ o π̃
of GSp(4,Fq) ∼= K /K + by right-multiplication on the function space

Ṽ =
{
f̃ : K /K + → Vπ̃; f̃(pg) = (ξ̃ � π̃)(p)f̃(g) ∀p ∈ Q(Fq)

}
.

This natural isomorphism is given by the restriction V K + 3 f 7→ f̃ = f |K to K .
Each f̃ extends to a unique f by Iwasawa decomposition G = QK .

The representation (ρ̃, Ṽ ) admits two irreducible constituents by Tables A.2 and A.5.
For each subquotient of ρ, the hyperspecial parahoric restriction is one of the two
constituents of (ρ̃, Ṽ ) ∼= ξ̃ o π̃ by Cor. 2.14 and we have to determine the correct one.

We will use the following two vector subspaces of V K + :

W1 =
{
f ∈ V ; f(gu) = ψ(u24)f(g)∀u ∈ B+

}
and

W2 =
{
f ∈ V ; f(gu) = ψ(u12 + u24)f(g)∀u ∈ B+

}
.

Let 0 6= v0 ∈ Vπ̃ be a fixed vector with π̃ ( 1 c
1 ) v0 = ψ̃(c)v0 for all c ∈ Fq. Since π̃ is

cuspidal, v0 exists and is unique up to multiples.

For w = 1 and w = s1s2s1 let fw ∈ V be defined by

fw(x) =

{
ψ(u24)(νξ � ν−1/2π)(p)v0 if x = pwu ∈ QwB+,
0 else.

Likewise, let fWh ∈ V be given by

fWh(x) =

{
ψ(u12 + u24)(νξ � ν−1/2π)(p)v0 if x = ps1s2s1u ∈ Qs1s2s1B+,
0 else.

The choice of v0 ensures that fw and fWh do not depend on the decomposition of x.

Lemma 3.10. W1 = Cf1 ⊕ Cfs1s2s1 and W2 = CfWh.
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Proof. It is clear by construction that f1, fs1s2s1 ∈ W1 and fWh ∈ W2. The three
functions are non-trivial because f1(1) = fs1s2s1(s1s2s1) = fWh(s1s2s1) = v0 is
non-zero. By (3.14) there is the disjoint double coset decomposition

GSp(4, F ) =
⊔
w

QwB+ w ∈{1, s1, s1s2, s1s2s1} (3.3)

and therefore supp(f1) ∩ supp(fs1s2s1) = ∅, so f1 and fs1s2s1 are linearly independent.
The subspace W2 is the space of Whittaker vectors in the K -representation ξ̃ o π̃
on Ṽ , so W2 is one-dimensional. It remains to be shown that W1 is two-dimensional.
Indeed, an arbitrary f ∈ W1 is uniquely determined by its values on 1, s1s2s1, s1, s1s2

because of (3.3). For every f ∈ W1 and arbitrary c ∈ o we have

π̃ ( 1 c
1 ) f(i) = f

((
1

1 c
1

1

)
i

)
= f

(
i

(
1

1 c
1

1

))
= ψ(c)f(i),

and this implies f(1), f(s1s2s1) ∈ Cv0, by definition of v0. Furthermore,

π̃ ( 1 c
1 ) f(s1) = f

(
s1

(
1 c

1
1

1

))
= f(s1) and

π̃ ( 1 c
1 ) f(s1s2) = f

(
s1s2

(
1 c

1
1

1

))
= f(s1s2),

so f(s1) and f(s1s2) are invariant under π̃ ( 1 ∗
1 ). But π̃ is cuspidal, so f(s1) =

f(s1s2) = 0. Now W1 = Cf1 ⊕ Cfs1s2s1 is clear by definition of W1.

Lemma 3.11. The K -intertwining operator

T : Ṽ → Ṽ , (T f̃)(g) =
∑

u∈Q+/K +

f̃(s1s2s1ug) ∀g ∈ K ,

is well-defined and stabilizes the subspaces W1 and W2.

Proof. It has to be shown that T f̃ ∈ Ṽ for every f̃ ∈ Ṽ . Let g ∈ K /K + ∼= GSp(4, q)

be arbitrary. By construction, T f̃(ug) = T f̃(g) for any u in the unipotent radical
Q+/K + of the finite Klingen parabolic Q/K + ∼= Q(q). For every m in the Levi
quotient Q/Q+ ∼= F×q ×GSp(2,Fq), we have

T f̃(mg) = (ξ̃ � π̃)(s1s2s1m(s1s2s1)−1)T f̃(g)

= ξ̃(m11)−1(ξ̃ π̃) (m22 m24
m42 m44 )T f̃(g)

= (ξ̃ � π̃)(m)T f̃(g),

so T f̃ ∈ Ṽ . Since T is K -intertwining, it preserves W̃1 and W̃2.
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Lemma 3.12. i) For A := Q+ diag($, 1, $−1, 1)Q+ the Hecke operator

H : V −→ V Q+

, f 7−→ vol(Q+)−1ρ(charA)f .

acts on f ∈ V Q+ by

Hf =
∑
a,b∈o/p
c∈o/p2

ρ

(
$ a c$−1 b

1 b$−1

$−1

−a$−1 1

)
f . (3.4)

ii) The Hecke operator H stabilises the subspace W1 ⊆ V Q+.

Proof. i) The double-coset A is the disjoint union

A =
⊔

a,b∈o/p
c∈o/p2

(
$ a c$−1 b

1 b$−1

$−1

−a$−1 1

)
Q+.

Since ρ(charQ+)f = vol(Q+)f for every f ∈ V Q+ , we have (3.4).

ii) For u ∈ B+ there is ũ ∈ Q+ such that u = (I4 + u24E24)ũ. Since Q+ is a normal
subgroup of B+, we have uA = Au and that implies ρ(u)◦H = H ◦ρ(u). For f ∈ W1

this means ρ(u)H(f) = ψ(u24)H(f), so Hf ∈ W1.

Type IX for unramified ξ. For the unramified quadratic character ξ(x) = (−1)vF (x)

of F×, we will now determine the action of the endomorphisms T : W1 → W1

and H : W1 → W1 explicitly on the generators f1, fs1s2s1 . The intersection of
the subrepresentation Vδ = δ(νξ, ν−1/2Π) of (ρ, V ) with the subspace W1 must be
preserved by both H and T .

Since T is K -intertwining on (ρ̃, Ṽ ), one of the eigenvalues of T : W1 → W1 must
coincide with the eigenvalue of T : W2 → W2. The corresponding eigenvectors must
belong to the generic constituent of (ρ̃, Ṽ ). If this eigenvector fa ∈ W1 is also an
eigenvector of H and the other T eigenvector fb ∈ W1 is not an eigenvector of H,
then rK (δ(νξ, ν−1/2Π)) must contain the space of Whittaker vectors W2 and thus be
generic.

Lemma 3.13. For any cuspidal admissible representation (π, Vπ) ∈ Rep(GL(2, q))

∑
a,b,c∈Fq
c6=0

π

(
1− ab/c −a2/c
b2/c 1 + ab/c

)
= (q − q2)π(I2). (3.5)
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Proof. Fix (a, b) 6= (0, 0). Since
(
−ab −a2
b2 ab

)
is nilpotent, there is A ∈ GL(2, q) such

that
(
−ab −a2
b2 ab

)
= A−1 ( 0 1

0 0 )A and this implies:∑
c∈F×q

π

(
1− ab/c −a2/c
b2/c 1 + ab/c

)
= π(A−1)

∑
c′∈Fq

π

(
1 c′

1

)
︸ ︷︷ ︸
=0 (π is cuspidal)

π(A)− π(A−1A) = −π(I2).

with 1/c = c′ for c′ 6= 0. The sum over a, b ∈ Fq and c ∈ F×q is then clear.

Lemma 3.14. The action of T on W1 and W2 is given by

Tf1 =fs1s2s1 , T fs1s2s1 =q3f1 + (q − q2)fs1s2s1 , T fWh =qfWh. (3.6)

Proof. For f ∈ W1 we have

Tf(1) =
∑

u∈Q+/K +

f(s1s2s1u) =
∑

u∈Q+/K +

f(s1s2s1) = q3f(s1s2s1),

since f is right invariant under Q+ by definition of W1. Further,

Tf(s1s2s1) =
∑

a,b,c∈Fq

f

(( −1
−b 1
c −a −1 −b
a 1

))
=

∑
a,b,c∈Fq

a=b=0 or c6=0

f

(( −1
−b 1
c −a −1 −b
a 1

))

= f(1) +
∑

a,b,c∈Fq
c6=0

f

((
−1/c −a/c 1 −b/c

1−ab/c b −b2/c
−c

a2/c −a 1+ab/c

)
s1s2s1

(
1 −a/c −1/c −b/c

1 −b/c
1
a/c 1

))

= f(1) +
∑

a,b,c∈Fq
c6=0

π̃
((

1−ab/c −b2/c
a2/c 1+ab/c

))
f(s1s2s1)

= f(1) + (q − q2)f(s1s2s1) by Lemma 3.13.

Since suppTf ⊆ QtQs1s2s1B+, the image Tf ∈ W1 is uniquely determined by the
values on 1 and s1s2s1. For W2 we have supp fWh ⊆ Qs1s2s1B+, hence

TfWh(s1s2s1) =
∑

a,b,c∈Fq
c6=0

fWh

((
−1/c −a/c 1 −b/c

1−ab/c b −b2/c
−c

a2/c −a 1+ab/c

)
s1s2s1

(
1 −a/c −1/c −b/c

1 −b/c
1
a/c 1

))

=
∑

a,b,c∈Fq
c6=0

ψ̃(−a/c)π̃
((

1−ab/c −b2/c
a2/c 1+ab/c

))
fWh(s1s2s1)

=
∑

a′,b′∈Fq

ψ̃(−a′)
∑
c∈F×q

π̃
((

1−a′b′c −b′2c
a′2c 1+a′b′c

))
fWh(s1s2s1)

(3.6)
= ψ̃(0)

∑
c∈F×q

π̃ (I2) fWh(s1s2s1) +
∑

a′,b′∈Fq
(a′,b′)6=(0,0)

ψ̃(−a′)(−π̃(I2))fWh(s1s2s1)

= (q − 1)fWh(s1s2s1) + fWh(s1s2s1) = qfWh(s1s2s1).

39



In the third line the substitution a′ := a/c and b′ := b/c was made.

Lemma 3.15. The Hecke operator H : W1 → W1 is given by

Hf1 = −qf1 + (q − q−1)fs1s2s1 and Hfs1s2s1 = −q3fs1s2s1. (3.7)

Proof. We begin by calculating Hf(1) for f ∈ W1. The modulus character of the
standard Klingen parabolic Q is δQ(p) = |p11|4|p22p44 − p24p42|−2. Therefore

Hf(1) =
∑
a,b∈o/p
c∈o/p2

f

(
$ a c$−1 b

1 b$−1

$−1

−a$−1 1

)
=
∑
a,b∈o/p
c∈o/p2

δ
1/2
Q

(
$ a c$−1 b

1 b$−1

$−1

−a$−1 1

)
ξ($)ν($)f(1)

=
∑
a,b∈o/p
c∈o/p2

q−2(−q−1)f(1) = −qf(1).

In order to calculate Hf(s1s2s1), recall supp(f) ⊆ QQ+ tQs1s2s1Q+. By Table 3.5
we have Hf1(s1s2s1) = (q − q−1)v0 and Hfs1s2s1(s1s2s1) = −q3v0. Functions in W1

are uniquely determined by their values on 1 and s1s2s1, so (3.7) follows.

The representation

rK (ξ o Π) = 1F×q o π̃

of K /K + has two irreducible constituents. The generic one is χg = χ13(l2) � ωπ̃
for even q and χg = χ8(Λ) for odd q and the non-generic one is χn = χ9(l2) � ωπ̃ for
even q and χn = χ7(Λ) for odd q.1

Lemma 3.14 implies that T : W1 → W1 admits the eigenvector fb := qf1 − fs1s2s1
with eigenvalue −q2 and the eigenvector fa := q2f1 + fs1s2s1 with eigenvalue q. But
the Whittaker vector fWh has eigenvalue q and belongs to the generic representation
χg, so Schur’s Lemma implies:

Corollary 3.16. The vector fa generates the constituent χg, while fb generates χn.

Corollary 3.17. The T -eigenvector fa ∈ W1 is an H-eigenvector with H-eigenvalue
−q, but the T -eigenvector fb ∈ W1 is not an H-eigenvector.

Proof. Lemma 3.15 implies Hfa = −qfa and Hfb = −q3fb + (q2 − 1)fa.

Theorem 3.18. If ξ : F× → C× is the non-trivial unramified quadratic character of
F× and Π is a depth zero cuspidal irreducible admissible representation of GL(2, F )
with ξΠ = Π, then the hyperspecial parahoric restriction for type IX is

rK (δ(νξ, ν−1/2Π)) = χg and rK (L(νξ, ν−1/2Π)) = χn.

1The character Λ of F×q2 is the one that determines π̃ by Thm.A.1 with l2 like in Not. 3.3.
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Hf(s1s2s1) =
∑

a,b∈o mod p
c∈o mod p2

f

(
s1s2s1

(
$ a c$−1 b

1 b$−1

$−1

−a$−1 1

))
=

∑
a,b∈o mod p
c∈o mod p2

f

(
$−1

1 b$−1

−$ −a −c$−1 −b
−a$−1 1

)

=
∑

a,b∈p mod p
c∈p−p2 mod p2

f

(( −$/c −a/c $−1 −b/c
1−ab/c b$−1 −b2/c

−c$−1

a2/c −a$−1 1+ab/c

)
︸ ︷︷ ︸

∈Q

(
1

−$b/c 1

$2/c $a/c 1 $b/c
$a/c 1

)
︸ ︷︷ ︸

∈Q+

)

+
∑

a,b∈o mod p
c∈o−p mod p2

f

(( −$1/c −a/c $−1 −b/c
1−ab/c b$−1 −b2/c

−c$−1

a2/c −a$−1 1+ab/c

)
︸ ︷︷ ︸

∈Q

(
1

−$b/c 1

$2/c $a/c 1 $b/c
$a/c 1

)
︸ ︷︷ ︸

∈Q+

)

+
∑

a,b∈p mod p
c∈p2 mod p2

f

((
$−1

1
$

1

)
︸ ︷︷ ︸

∈Q

s1s2s1

(
1 a$−1 c$−2 b$−1

1 b$−1

1
−a$−1 1

)
︸ ︷︷ ︸

∈Q+

)

+
∑

a,b∈o mod p
(a,b)6=(0,0) mod (p,p)

c∈p mod p2

f

(
$−1

1 b$−1

−$ −a −c$−1 −b
−a$−1 1

)
︸ ︷︷ ︸

/∈supp(f)

by Lemma 3.32

=
∑

a,b∈p mod p
c∈p−p2 mod p2

| −$c−1|2νξ(−$c−1)(ν−1/2Π)(I2)f(1)

+
∑

a,b∈o mod p
c∈o−p mod p2

| −$c−1|2νξ(−$c−1)(ν−1/2Π)
(

1−ab/c −b2/c
a2/c 1+ab/c

)
f(1)

+
∑

a,b∈p mod p
c∈p2 mod p2

|$−1|2νξ($−1)f(s1s2s1)

=
∑

a,b∈p mod p
c∈p−p2 mod p2

f(1) +
∑

a,b∈o mod p
c∈o−p mod p2

q−2(−q−1)Π
(

1−ab/c −b2/c
a2/c 1+ab/c

)
f(1)

+
∑

a,b∈p mod p
c∈p2 mod p2

q2(−q)f(s1s2s1)

= (q − 1)f(1) + q(q − q2)q−2(−q−1)f(1)− q3f(s1s2s1) (Lemma 3.13)
= (q − q−1)f(1)− q3f(s1s2s1).

Table 3.5.: The calculation of Hf(s1s2s1) in the proof of Lemma 3.15.
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Proof. By definition, δ(νξ, ν−1/2Π)) is a subrepresentation of νξo ν−1/2Π, defined on
a vector subspace Vδ ⊆ Vρ. The subspace W1 ∩ V K +

δ is one-dimensional, because W1

contains T -eigenvectors with two different eigenvalues. The operators T and H both
stabilize W1 ∩ V K +

δ , so this space must contain a common eigenvector of T and H.
We have already seen that fb is not an H-eigenvector, so W1 ∩ Vδ = Cfa. Therefore
fa ∈ V K +

δ and Cor. 3.16 implies that χg is a constituent of rK (δ(νξ, ν−1/2Π))). Then
the parahoric restriction of L(νξ, ν−1/2Π) can only be zero or χn. It cannot be zero
because of Cor. 2.14.

Type IX for tamely ramified quadratic character. Let q be an odd prime
power and fix a tamely ramified quadratic character ξ = ξt of F× such that the
restriction to o× factors over the nontrivial quadratic character λ0 of o×/(1+p) ∼= F×q .
In this section, we determine the hyperspecial parahoric restriction of the irreducible
admissible constituents of the Klingen induced representation (ρ, V ) = νξ o ν−1/2Π.
The Gauß sum

G =
∑
x∈F×q

λ0(x)ψ̃(x) =
∑
x∈Fq

ψ̃(x2) (3.8)

has square G2 = qλ0(−1) = (−1)(q−1)/2q, but G depends on the choice of ψ̃.

The argument is analogous to the unramified case. For any cuspidal irreducible
representation π̃ of GL(2, q), a tedious calculation with the model of Prop.A.2 yields∑

a,b,c∈Fq
c6=0

ξ(−1
c
)ψ(a

c
)π̃
(

1−ab/c −b2/c
a2/c 1+ab/c

)
= −G · π̃(I2), (3.9)

∑
a,b,c∈Fq
c6=0

ξ(−1
c
)π̃
(

1−ab/c −b2/c
a2/c 1+ab/c

)
= (q2 − 1)G · π̃(I2). (3.10)

Lemma 3.19. For fa = q3f̃1 −Gf̃s1s2s1 and fb = qf̃1 + Gf̃s1s2s1 in W1 we have

Tfa = −G · fa, T fb = q2 · fb, T fWh = −G · fWh.

Sketch of proof. For every f ∈ W1 and fWh ∈ W2 we have

Tf(1) = q3f(s1s2s1), T f(s1s2s1) = ξ(−1)f(1) + (q2 − 1)G · f(s1s2s1),

T f̃Wh(s1s2s1) = −G · f̃Wh(s1s2s1)

by a standard calculation using (3.9) and (3.10).

Lemma 3.20. The Hecke operator H acts on W1 via

Hfa = qξ($)fa Hfb = ξ($)((1
q
− q)fa + q3fb).
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Proof. A standard calculation as in Lemma 3.15 yields Hf(1) = ξ($)qf(1) and

Hf(s1s2s1) = ξ($)(1− q−2)Gf(1) + ξ($)q3f(s1s2s1).

By the same argument as in Thm. 3.18 we obtain

Theorem 3.21. For a tamely ramified quadratic character ξ of F× and a depth zero
cuspidal irreducible admissible representation Π of GL(2, F ) with complex multiplica-
tion ξΠ ∼= Π, the hyperspecial parahoric restriction is

rK (δ(ν1/2ξ, ν−1/2Π)) = τ5(λ′), rK (L(ν1/2ξ, ν−1/2Π)) = τ4(λ′),

with a character λ′ of F×q2 [2(q − 1)] such that the cuspidal irreducible representation
π̃ = rGL(2,o)(Π) is generated by the character Λ = λ′ ◦N(q+1)/2.

3.3. The proof for paramodular restriction

We now prove the result on paramodular restriction of non-cuspidal irreducible
admissible representations of GSp(4, F ).

Proof of Thm. 3.7. The strategy is similar to the hyperspecial case by combining
Lemma 3.22, Lemma 3.5 and Cor. 2.14. If a parabolically induced representation κ
of G has non-zero paramodular restriction, then for every irreducible constituent ρ
of κ the paramodular restriction rJ (ρ) is a non-zero (not necessarily irreducible)
subquotient of rJ (κ). For each case we have to determine the correct constituent(s)
of the representations rJ (κ) given by Lemmas 3.22 and 3.23. We can assume without
loss of generality that the inducing data are of depth zero [MP96, 5.2(1)].

The irreducible admissible representations ρ of type I, IIIa, IIIb and VII are Klingen
induced and the statement is implied by Lemma 3.22. For representations of type
IIa, IIb, X, XIa and XIb there is Lemma 3.23.

The irreducible admissible representation ρ = µ StGSp(4,F ) of type IVa is the irreducible
subrepresentation of ν2 × ν o ν−3/2µ. By Table 3.2, the paramodular restriction
of ρ is irreducible and either µ̃[1, St] or µ̃[ St, St]. By Lemma 3.5 it must be
µ̃[ St, St]. By [RS07, (2.9)], IVa and IVb are the constituents of the Klingen induced
representation ν2 × νµ St, so case IVb is also clear by Lemma 3.22. Lemma 3.23
gives the paramodular restriction for representations of type IVc and IVd. The proof
for type VI is analogous [RS07, (2.11)].

We begin with ρ of type Vc with an unramified quadratic character ξu of F×. By
Thm. 3.30, the paramodular restriction rJ (ρ) has a generic subquotient, which
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must be µ̃[ St, St]. Since the Klingen parahoric restriction of type Vc contains two
constituents, there must be another irreducible constituent of µ̃[1× 1, 1× 1] in rJ (ρ).
By the symmetry argument of Lemma 3.5, this can only be µ̃[1, 1]. For type Vc with
tamely ramified quadratic character ξt, the paramodular restriction is the generic
constituent of [1 × λ0, 1 × λ0] if and only if ξt($) = −1 (and the non-generic one
otherwise) by Thm. 3.30. The paramodular restriction for types Va,Vb and Vd is
then clear by Lemma 3.23 and [RS07, (2.10)].

Representations of type VIII are irreducible subquotients of 1 o Π. Without loss of
generality let Π be of depth zero. Their paramodular restriction is either [π̃, 1]+[1, π̃]
or [π̃, St] + [ St, π̃] by Lemma 3.22 and Lemma 3.5. Corollary 4.15 implies that the
character value of rJ (τ(S,Π) − τ(T,Π)) = rJ ◦r(Π,Π) on the conjugacy class
EG(αβ, αβq) stably conjugate to (diag(αβ, αqβq), diag(αβq, αqβ)) is given by

−2(−Λ(α)− Λ(αq))(−Λ(β)− Λ(βq)) = 2(−Λ(αβ)− Λq(αβ)) + 2(−Λ(αβq)− Λq(αβq))

for α, β ∈ F×q2 with α, β, αβ, αβq /∈ F×q . The correct choice is therefore given by
rJ (τ(T,Π)) = [π̃, St] + [ St, π̃] and rJ (τ(S,Π)) = [π̃, 1] + [1, π̃].

For representations of type IX, there is Thm. 3.25 in Subsection 3.3.2.

3.3.1. Klingen and Siegel induced representations

As an analogue of Thm. 2.19, the following theorem describes the paramodular
restriction of Klingen parabolically induced representations of GSp(4, F ).

Lemma 3.22. For admissible representations (σ, Vσ) of GL(2, F ) and (µ, Vµ) of F×,
the paramodular restriction of the Klingen induced representation µo σ is

rJ (µo σ) ∼= [µ̃× 1, σ̃]⊕ [σ̃, µ̃× 1] (3.11)

for the hyperspecial parahoric restrictions µ̃ = ro×(µ) and σ̃ = rGL(2,o)(σ).

The proof is similar to that of Thm. 2.19.

Proof. An explicit model of rJ (µo σ) is given by the right-action of J on

Ṽ = {f : G→ Vµ ⊗ Vσ | f(pgk) = δ
1/2
Q (p)(µ� σ)(p)f(g) ∀p ∈ Q, g ∈ G, k ∈J +}.

By (3.13), any f ∈ Ṽ is uniquely determined by its restriction to J and s1J , so
the J -representation Ṽ is isomorphic to the direct sum

{f |J : J → Vµ ⊗ Vσ | f ∈ Ṽ } ⊕ {f |s1J : s1J → Vµ ⊗ Vσ | f ∈ Ṽ }.
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We claim that the first summand factors over J /J + ∼= (GL(2, q)2)0. Indeed, every
element of it is right invariant under J + and factors over a unique function

f̃ : J /J + → V 1+p
µ ⊗ V GL(2,o)+

σ with f̃(qg) = (µ̃(q11)⊗ σ̃ ( q22 q24q42 q44 ))f̃(g)

for every g ∈J /J + ∼= (GL(2, q)2)0 and every

q ∈ (J ∩Q)J +/J + ∼= (( ∗ ∗∗ )× ( ∗ ∗∗ ∗ ))0 ⊆ (GL(2, q)2)0.

By definition, the action of (GL(2, q)2)0 on the space of these f̃ is the induced
representation [µ̃× 1, σ̃].

For the second summand the argument is analogous after conjugation with s1, it
yields the representation [σ̃, µ̃× 1].

Lemma 3.23. Let µ and µ1 be a smooth characters of F× and let σ be an irreducible
admissible representation of GL(2, F ). The paramodular restriction of the Siegel
induced representation σ o µ is

rJ (σ o µ) ∼= µ̃[1× µ̃1, 1× µ̃1] for σ = µ1 St, µ1 1,

and it is rJ (σ o µ) ∼= 0 for cuspidal σ.

Proof. An explicit model Ṽ of rJ (µ1 St o µ) is given by right-multiplication with
elements of J on the space of smooth functions f : G→ Vµ1 St with

f(pgk) = δ
1/2
P (p)µ(sim(p))(µ1 St) ( p11 p12p21 p22 ) f(g)

for p ∈ P , g ∈ G and k ∈J +. By the decomposition G = PJ of Prop. 3.31 every
such f is uniquely determined by its restriction to J . Therefore Ṽ is isomorphic to
the vector space of J + invariant functions

f̃ : J → Vµ1 St

which satisfy for every g ∈J and every p ∈ P ∩J the condition

f̃(pg) =µ(sim(p)) · (µ1 St) ( p11 p12p21 p22 ) f̃(g).

Especially, f̃(g) is invariant under every p ∈ P ∩J + with the property

( p11 p12p21 p22 ) ∼= ( 1 ∗
1 ) mod p and sim(p) ∈ 1 + p,

so f̃(g) must be contained in the parahoric restriction of µ1 St with respect to the
standard Iwahori subgroup2 of GL(2, F ). The above condition is equivalent to

f̃(pg) =µ̃(sim(p)) · µ̃1(p11) µ̃1(p22)f̃(g).

for g ∈J /J + and p ∈ P ∩J /P ∩J +. By construction of the isomorphism to
(GL(2, q)2)0, this is the induced representation µ̃[1× µ̃1, 1× µ̃1].

The proof for the other cases is analogous.
2That means f̃(g) is in the Jacquet module µ̃1 � µ̃1 of the hyperspecial parahoric restriction
rGL(2,o)(µ1 St) = µ̃1 StGL(2,q).
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3.3.2. Type IX

Let ξ = ξu, ξt be an unramified or tamely ramified non-trivial quadratic character of
F× and Π be a depth zero irreducible cuspidal admissible representation of GL(2, F )
with hyperspecial parahoric restriction π̃. We determine the paramodular restriction
of the irreducible constituents in the representation (ρ, V ) = ξ o Π with ξΠ ∼= Π
using the explicit model (3.1). The argument is analogous to the hyperspecial case
in the previous section with minor modifications, so the proof will only be sketched.

For every J +-invariant f ∈ V with support in QJ , we denote by f̃ its restriction to
J . By the proof of Lemmma 3.22, these f̃ generate the representation Ṽ = [ξ̃×1, π̃].
We consider the J -intertwining operator

T : Ṽ → Ṽ , Tf(g) =
∑

u∈(J∩U2)J +/J +

f(s0ug) =
∑
c∈o/p

f(s0u(c)g)

for u(c) =

(
1 c$−1

1
1

1

)
and s0 = diag($−1, 1, $, 1)s1s2s1 ∈J .

The space W1 ⊆ V Q+ ⊆ V J + is the same as in the hyperspecial case and it is
generated by the functions

fw(x) =

{
ψ(u24)(νξ � ν−1/2Π)(p)v0 for x = pwu ∈ QwB+

0 else.

for w ∈ {1, s1s2s1}. Both have support in QJ , so the space W1 belongs to Ṽ . The
space

W2 = {f ∈ V | f(xu) = f(x)ψ(−u31$
−1 + u24)∀u ∈ B+} ⊆ Ṽ ⊆ V J +

is (GL(2, q)2)0-conjugate to the one-dimensional space of standard Whittaker vectors
in in the paramodular restriction Ṽ . It is generated by

fWh =

{
νξ � νΠ(−$−1u31 + u24)v0 x = qu ∈ QB+,

0 else,

by the same argument as in the hyperspecial case.

Lemma 3.24. For unramified ξ = ξu, eigenvectors of T in W1 are given by

fa = q2f1 + fs1s2s1 Tfa = (−1) · fa
fb = q3f1 − fs1s2s1 Tfb = q · fb.

and for tamely ramified ξ = ξt by

f± =q3f1 ± ξ(−1)Gfs1s2s1 Tf± =± ξ(−$)GTf±.

The operator T acts on W2 by TfWh = −1 · fWh for unramified ξ = ξu and TfWh =
G · fWh for tamely ramified ξ = ξt.
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Proof. For f̃ ∈ W1 we have

T f̃(1) =
∑
c∈o/p

f̃(s0u(c)) = f̃(s0) +
∑

c∈(o/p)×

f̃(

(
−c−1 $−1

1
−c

1

)
︸ ︷︷ ︸

∈Q

(
1

1
$c−1 1

1

)
︸ ︷︷ ︸

∈P+
∅

)

= f̃(s0) +
∑

c∈(o/p)×

| − c−1|3ξ(−c−1)f̃(1)

= ξ($)q3f̃(s1s2s1) +

{
(q − 1)f̃(1) ξ = ξu,

0 ξ = ξt.

and

T f̃(s1s2s1) = q−3ξ($)T f̃(s0) = q−3ξ($)
∑
c∈o/p

f̃(s0u(c)s0)

= q−3ξ($)
∑
c∈o/p

f̃(

( −1
1
−1

1

)
︸ ︷︷ ︸

∈Q

(
1

1
−$c 1

1

)
︸ ︷︷ ︸

∈P+
∅

) = q−2ξ(−$)f̃(1).

The action of T on W1 is therefore given by

Tf1 = q−2ξ(−$)fs1s2s1 +

{
(q − 1)f1 ξ = ξu,

0 ξ = ξt,
and Tfs1s2s1 = q3ξ($)f1.

The calculation for T f̃Wh(1) is analogous to T f̃(1).

Therefore the eigenvectors fa and fξ(−$) belong to generic constituents of Ṽ .

The Hecke operator H is the same as in the hyperspecial case. For unramified ξ we
have Hf1 = −qf1 + (q + q−1)fs1s2s1 and Hfs1s2s1 = −q3fs1s2s1 ; the other eigenvector
is fa = q2f1 + fs1s2s1 with eigenvalue −q. For tamely ramified ξ it is given by
Hf1 = qξ($)f1 + ξ($)(1 − q−2)Gfs1s2s1 and Hfs1s2s1 = ξ($)q3fs1s2s1 ; the other
eigenvector is q3f1 −Gfs1s2s1 with eigenvalue ξ($)q.

Theorem 3.25. Fix an at most tamely ramified quadratic character ξ = ξu, ξt of F×
and a depth zero irreducible cuspidal admissible representation Π of GL(2, F ) with
ξΠ ∼= Π.

The paramodular restriction of the subrepresentation δ(νξ, ν−1/2Π) of type IXa is

rJ (δ(νξ, ν−1/2Π) =

{
[ St, π̃] + [π̃, St] if ξ = ξu,

[1× λ0, π̃]∓ + [π̃, 1× λ0]∓ if ξ = ξt and ξ($) = ±1.
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The paramodular restriction of the quotient L(νξ, ν−1/2Π) of type IXb is

rJ (L(νξ, ν−1/2Π) =

{
[1, π̃] + [π̃, 1] if ξ = ξu,

[1× λ0, π̃]± + [π̃, 1× λ0]± if ξ = ξt and ξ($) = ±1.

Proof. For the subrepresentations of Ṽ = [ξ̃ × 1, π̃] the argument is completely
analogous to the hyperspecial case. The rest is implied by Lemma 3.5.

3.3.3. Type V

We determine the paramodular restriction for non-cuspidal irreducible admissible
representations of type Vc and Vd. By definition, these are the irreducible constituents
of the Siegel induced representation (ρ, V ) = ν1/2ξ 1� ν−1/2µ, which is given by right
multiplication on the function space

V = {f : G→ C | f(pg) = δ
1/2
P (p)(ν1/2ξ 1� ν−1/2µ)(p)f(g)∀p ∈ P}.

The modulus character of the Siegel parabolic is δP (p) = | det ( p11 p12p21 p22 ) |3 · | sim(p)|−3.
By the double coset decomposition (3.13), every f ∈ V is uniquely determined by its
restriction to J . The vector subspaces

W1 = {f ∈ Ṽ | f(gu) = f(g)ψ(u24) ∀u ∈ B},
W2 = {f ∈ Ṽ | f(gu) = f(g)ψ(−$−1u31 + u24) ∀u ∈ B},

are contained in the space of J +-invariants in V . For x ∈ G and w ∈ {s0s2, s2} let

fw(x) =

{
δ

1/2
P (p)(ν1/2ξ 1o ν−1/2µ)(p)ψ(u31$

−1) x = pwu ∈ PwB+,

0 else,

and let

fWh(x) =

{
δ

1/2
P (p)(ν1/2ξ 1o ν−1/2µ)(p)ψ(−u31$

−1 + u24) x = ps2u ∈ Ps2B+,

0 else.

This definition does not depend on the choice of double coset decomposition of x.

Lemma 3.26. W1 = Cfs0s2 ⊕ Cfs2 and W2 = CfWh.

Proof. Eq. (3.13) implies the disjoint double coset decomposition

G =
⊔
w

PwB+ w ∈ {1, s2, s0, s0s2}, (3.12)
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so any f in W1 and W2 is uniquely determined by its values on w ∈ {1, s2, s0, s0s2}.
For every c ∈ o, the element I4 + cE24 ∈ GSp(4, F ) is in B+ and in the unipotent
radical of P . For every f ∈ W1 we have

f(1)ψ(c) = f(I4 + cE24) = f(1),

f(s0)ψ(c) = f(s0(I4 + cE24)) = f((I4 + cE24)s0) = f(s0),

so f(1) = f(s0) = 0. Therefore W1 is at most two-dimensional. Since the supports of
fs0s2 and fs2 are disjoint, the are linearly independent and generate W1. The space
W2 is (GL(2, q)2)0-conjugate to the one-dimensional space of Whittaker vectors in
µ̃[1× ξ̃, 1× ξ̃] and it is generated by fWh.

Lemma 3.27. The J -intertwining operator T : Ṽ → Ṽ

T f̃(g) =
∑

u∈(P∩J )J +/J +

f̃(s0s2ug) =
∑
a,b∈o/p

f̃(s0s2

(
1 b$−1

1 a
1

1

)
g)

for g ∈J preserves W1 and W2.

Proof. That T : Ṽ → Ṽ is well-defined is shown in the same way in Lemma 3.11. It
is J -intertwining and therefore preserves W1 and W2.

Lemma 3.28. For unramified ξ = ξu with ξ̃ = 1, T is given on W1 and W2 by

Tfs2 = −(q − 1)fs2 − qfs0s2 , T fs0s2 = −fs2 , T fWh = fWh,

with eigenvalue equations

T (fa) = fa, fa = fs2 − qfs0s2 ,
T (fb) = −qfb, fb = fs2 + fs0s2 .

For tamely ramified ξ = ξt we have

Tfs2 = qξ̃(−1)Gfs0s2 , T fs0s2 = Gfs0 , T fWh = G2fWh,

with eigenvalue equations T (f±) = ±G2f± for f± = fs2 ±Gfs0s2 .
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Proof. For f ∈ W1 the value of Tf(s2) is the following sum over a, b ∈ o/p.

Tf(s2) =
∑
a,b∈o/p

f(

(
$−1

−1
−$ −b

a −1

)
)

=
∑
a6=0
b6=0

f(

(
−b−1 $−1

−a−1 1
−b

−a

)
s2

(
1

1 −a−1

$b−1 1
1

)
)

+
∑
a6=0
b=0

f(

(
1
−a−1 1

1
−a

)
s0s2

(
1

1 −a−1

1
1

)
)

=
∑
a6=0
b6=0

ξ̃(ab)ψ(−a−1)f(s2) +
∑
a6=0
b=0

ξ̃(−a−1)ψ(−a−1)f(s0s2)

=

{
−(q − 1)f(s2)− f(s0s2) ξ = ξu,

Gf(s0s2) ξ = ξt.

The terms for a = 0 vanish because f(1) = f(s0) = 0.

Tf(s0s2) =
∑
a,b

f

( −1
−1

$b −1
a −1

)
=
∑
a6=0
b

f(

( −1
−a−1 1

−1
−a

)
s2

(
1

1 −a−1

−$b 1
1

)
) +

∑
b

f(−I4

(
1

1
−$b 1

1

)
)

=
∑
a6=0
b

ξ̃((−1)(−a−1))f(s2)ψ(−a−1) +
∑
b

ξ((−1)2)f(1) =

{
−qf(s2) ξ = ξu,

qξ̃(−1)Gf(s2) ξ = ξt.

The calculation for fWh is analogous. The eigenvalue equations are clear.

Lemma 3.29. The Hecke operator H : V → V from Lemma 3.12 is given for
f ∈ V Q+ by the finite sum (3.4). It preserves W1 with

Hfs2 = ξ($)q2fs2 +

{
−(q4 − q3)fs0s2 ξ = ξu,

G(q3 − q2)fs0s2 ξ = ξt,
and Hfs0s2 = ξ($)q3fs0s2 .

and satisfies the eigenvalue equations Hfa = −q2 · fa for unramified ξ = ξu and
Hf−ξ($) = ξ($)q2 · f−ξ($) for tamely ramified ξ = ξt with the T -eigenvectors from
Lemma 3.28.

Proof. That H preserves W1 and that (3.4) holds is shown the same way as in
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Lemma 3.12. For every f ∈ W1 we have

Hf(s2) =
∑
a,b∈o/p
c∈o/p2

f(s2

(
$ a c$−1 b

1 b$−1

$−1

−a$−1 1

)
) =

∑
a,b∈o/p
c∈o/p2

f(

(
$ b c$−1 −a

1 −a$−1

$−1

−b$−1 1

)
s2)

=
∑
a,b∈o/p
c∈o/p2

(ν3/2ν1/2ξ)(det ($ b
1 ))f(s2) = ξ($)q2f(s2)

and Hf(s0s2) is given by Table 3.6. This determines Hf uniquely. The eigenvalue
equations are clear.

Theorem 3.30. Let ξ and µ be at most tamely ramified characters of F×, where ξ
is non-trivial quadratic. For unramified ξ = ξu, the paramodular restriction of the
irreducible admissible representation ρsub = L(ν1/2ξ St, ν−1/2ξµ) of type Vc admits a
generic subquotient. For tamely ramified ξ = ξt the parahoric restriction of ρsub is
µ̃[1× λ0, 1× λ0]∓ for ξ($) = ±1.

Proof. The representation ρsub is the unique subrepresentation of the Siegel induced
representation ν1/2ξ 1o ν−1/2µ [ST94, 3.6]. For unramified ξ, both W1 and W2 are
contained in the subrepresentation

µ̃[1× 1, St] ⊆ µ̃[1× 1, 1× 1] = rJ (ν1/2ξ 1o ν−1/2µ),

of (GL(2, q)2)0 because the action of the subgroup {(I2, ( 1 ∗
1 ))} ⊆ (GL(2, q)2)0 is

non-trivial. This subrepresentation µ̃[1× 1, St] has two irreducible constituents and
by Schur’s lemma applied to T the subspace W1 has non-zero intersection with both
of these constituents. Any v ∈ W1 ∩ rJ (ρsub) must be an eigenvector for both H
and T . The T -eigenvalue of v coincides with the T -eigenvalue for fWh if and only if
rJ (ρsub) is generic.

For tamely ramified ξ, the representation rJ (ν1/2ξ 1o ν−1/2µ) = µ̃[1× λ0, 1× λ0]
has one generic constituent µ̃[1 × λ0, 1 × λ0]+ and one non-generic constituent
µ̃[1× λ0, 1× λ0]− by Lemma A.6. The same argument works here as well.

3.4. Double-coset decompositions

Let K be the standard hyperspecial and J be the standard paramodular subgroup
of G = GSp(4, F ).

Proposition 3.31. There are disjoint double coset decompositions

GSp(4, F ) = BK =
⊔

w∈WG

BwB+ = QJ tQs1J = PJ (3.13)

for the standard parabolics B, P , Q and the Weyl group WG.
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Hf(s0s2) =
∑
a,b∈o/p
c∈o/p2

f

(
$−2

−a$−1 1
−$2 −a$ −c −b$

−1 −b$−1

)

=
∑
a∈o/p

b∈(o−p)/p

∑
y∈(o−p)/p2

(ν2ξ)(y−1)f(s2)ψ(b2y−1)

+
∑
a∈o/p
b∈p/p

∑
y∈p2/p2

(ν2ξ)($−1)f(s0s2)

+
∑
a∈o/p
b∈p/p

∑
y∈(o−p2)/p2

(ν2ξ)(y−1)f(s2)ψ(b2y−1)︸ ︷︷ ︸
=1

+
∑
a∈o/p

b∈(o−p)/p

∑
y∈p/p2

(ν2ξ)(−b−2) f(1)︸︷︷︸
=0

by Lemma 3.33

= q2
∑

b∈(o−p)/p

∑
y∈(o−p)/p

ξ(y−1)ψ(b2y−1)︸ ︷︷ ︸
=−1 if ξ̃=1, =G if ξ̃=λ0

f(s2)

+q3ξ($−1)f(s0s2) + q
∑

y∈(o−p2)/p2

(ν2ξ)(y−1)f(s2)

=

{
−(q3 − q2) · f(s2)− q3f(s0s2) ξ̃ = 1,

(q3 − q2) ·Gf(s2) + ξ($)q3f(s0s2) ξ̃ = λ0

+q2
∑

y∈(o−p)/p

ξ(y)f(s2) + q3
∑

y∈(p−p2)/p2

ξ(y)f(s2)

=

{
−(q4 − q3)f(s2)− q3f(s0s2) ξ̃ = 1

(q3 − q2)Gf(s2) + ξ($)q3f(s0s2) ξ̃ = λ0.

Table 3.6.: The calculation of Hf(s0s2) for the proof of Lemma 3.29.
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Proof. Iwasawa decomposition and Bruhat decomposition imply

G = BK = B(
⊔

w∈WG

BwB+) =
⊔

w∈WG

BK +wB+ =
⊔

w∈WG

BwB+. (3.14)

The last equality follows because w−1K +w = K + ⊆ B+. It is disjoint because
Iwasawa decomposition is unique up to elements in B ∩K ⊆ B.

The element s2 is contained in the paramodular group J and in the Klingen parabolic
Q. Furthermore, s1s2s1 = diag($, 1, $−1, 1)s0 ∈ QJ , so G = QJ ∪ Qs1J . For
any k ∈J at least one of the matrix entries k31 and k33 is non-zero, since det(k) ∈ o×.
Then (pk)31 6= 0 or (pk)33 6= 0 for p ∈ Q, so s1 /∈ QP{02} and the decomposition is
disjoint. For the Siegel parabolic P the proof is analogous.

In the proof of Lemma 3.15 we need the following matrix decompositions:

Lemma 3.32. Let a, b, c ∈ o be arbitrary. The disjoint decomposition (3.3) of

α :=


$−1

1 b$−1

−$ −a −c$−1 −b
−a$−1 1


takes the following explicit form

i) For c ∈ o− p2 and a, b ∈ c · o we have α ∈∈ QB+ with

α =


−$c−1 −c−1a $−1 −c−1b

1− ab/c b$−1 −b2/c
−c$−1

a2/c −a$−1 1 + ab/c




1
−$b/c 1
$2/c $a/c 1 $b/c
$a/c 1

 ,

ii) for c ∈ p2 and a, b ∈ p we have α ∈ Qs1s2s1B+ with

α =


$−1

1
$

1

 s1s2s1


1 a$−1 c$−2 b$−1

1 $−1b
1

−$−1a 1

 .

iii) For a, c ∈ p and b ∈ o× we get α ∈ Qs1B+ with

α =


−b−1 $−1

b$−1

−b
−$b−1 1 ( c

b
− a)$−1

 s1


1 c(b$)−1

1
$b−1 1

$b−1 ab−1 −c(b$)−1 1

 ,

53



iv) Finally, c ∈ p and a ∈ o× implies α ∈ Qs1s2B+ with

α =


−a−1 $−1

$a−1 −1 (b− c
a
)$−1

−a
$−1a

 s1s2


1 c(a$)−1

−$a−1 1 c(a$)−1 −a−1b
1 $a−1

1

 .

Proof. This can be checked directly.

Lemma 3.33. For a, b, c ∈ o, the decomposition (3.12) of

α =


$−2

−a$−1 1
−$2 −a$ −c −b$

−1 −b$−1

 ∈ GSp(4, F )

admits the following form:

1. If y = ab− c ∈ o− p2 and y−1b ∈ o, then α ∈ Ps2B+ with

α =


y−1 by−1$−1 $−2

−ay−1$ −cy−1 −a$−1

−c a$
−b$−1 1

 s2


1

by−1$ 1 b2y−1

−y−1$2 1 −by−1$
1

 .

2. If y = ab− c ∈ p and b ∈ o×, then α ∈ PB+ with

α =


−b−1$−1 $−2

−b−1$ cb−2 −a$−1 1
−c −b$
−b$−1




1
1

b−1$ 1
b−1$ yb−2 1

 .

3. If y = ab− c ∈ p2 and b ∈ p, then α ∈ Ps0s2B+ with

α =


$−1

−a 1
$ a$

1

 s0s2


1 −y$−2 b$−1

1 b$−1

1
1

 .

4. There are no a, b, c ∈ o with α ∈ Ps0B+.

Proof. The first three cases can be checked directly. These are all the a, b, c ∈ o.
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Proposition 3.34. The group GSp(4, F ) admits the following disjoint double coset
decompositions with respect to the maximal parahorics

GSp(4, F ) =
⊔

n1≤n2≤n0−n2

K λ∨($)K , (3.15)

GSp(4, F ) =
⊔

n1≤n0−n1
n2≤n0−n2

J λ∨($)J tJ u1λ
∨($)J (3.16)

for cocharacters λ∨ = n0f0 + n1f1 + n2f2 with integer coefficients.

Here λ∨($) = diag($n1 , $n2 , $n0−n1 , $n0−n2) and u1 is the Atkin-Lehner element.

Proof. Associating to w in the normalizer of the standard torus the double coset
BwB furnishes a bijection between the affine Weyl group W̃ and the double coset
decomposition B\G/B [BT72, 7.3.4]. For every parahoric PI generated by B and
reflections si with i ∈ I, this gives a bijection from PI\G/PI to W̃I\W̃/W̃I , where
W̃I is generated by the si [Moy88, p.258]. For the hyperspecial parahoric K , such
representatives are λ∨($) for the cocharacters λ∨ with 〈αi, λ∨〉 ≥ 0 for the simple
affine roots α1, α2, cp. [Tit79, 3.3.3]. For the paramodular group J , representatives
are λ∨($) and u1λ

∨($) where 〈αi, λ∨〉 ≥ 0 for α0, α2.

Corollary 3.35. The normalizer of K is NG(K ) = ZK and the normalizer of J
is NG(J ) = ZJ ∪ u1ZJ .
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4. Depth-Zero Endoscopy for GSp(4)

Fix a local non-archimedean number field F with finite residue field Fq = oF/pF of
order q, unramified closure F un, absolute Galois group ΓF = Gal(F̄ /F ), and Weil
group WF . Let ν(x) = |x| for x ∈ F be the valuation character normalized such
that ν($) = q−1 for a fixed uniformizer $ ∈ p. Fix a non-trivial additive character
ψ : F → C× whose restriction to oF comes from a non-trivial character of oF/pF .

4.1. Local Endoscopy

The endoscopic datum. Let G be a quasisplit connected reductive group over F
with center Z(G). An L-group datum (Ĝ, ρG, ηG) defines a Langlands dual group LG.
A (standard) endoscopic datum attached to G as given by Langlands and Shelstad
[LS87, p. 224] is a quadruple (H,H, s, ξ), composed of

1. a quasisplit reductive group H over F with L-datum (Ĥ, ρH , ηH),

2. a split extension H of Ĥ by WF which gives rise to an exact sequence

1→ Ĥ→ H→ WF → 1,

such that the splitting ρH : WF → Aut(Ĥ) coincides with ρH ,

3. a semisimple element s ∈ Ĝ,

4. an L-homomorphism ξ : H → LG such that

a) ξ defines an isomorphism from Ĥ to the connected component of the
centralizer Cent(s, Ĝ),

b) Int(s) ◦ ξ ∼= a ⊗ ξ where a is a trivial 1-cocycle of WF in Z(Ĝ) and
(a⊗ ξ)(h) = a(w)ξ(h) for h ∈ H with image w ∈ WF .

The trivial endoscopic datum is (G, LG, 1, id). There is a natural definition of
equivalence between endoscopic data [LS87, § 1.2].

An endoscopic datum is elliptic if the connected component of ξ(Z(Ĥ)Γ) is contained
in Z(Ĝ). That means ξ(H) is not contained in a proper parabolic subgroup of LG.
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Point correspondences. Fix a quasisplit connected reductive group G and an
elliptic endoscopic datum (H,H, s, ξ). As usual, G and H denote the groups of
F -rational points. Borel pairs1 (BG, TG) of G and (BH, TH) of H define tori TH ⊆ H
and TG ⊆ LG in the L-groups. If ξ(TH) = TG and s ∈ TG, there is a naturally
defined isomorphism

ψ : TH → TG.

This ψ is an admissible embedding if it is defined over F [LS87, (1.3)]. For every
maximal torus TH ⊆ H over F there is a maximal torus TG ⊆ G over F with
an admissible embedding ψ : TH → TG [KS99, Lemma 3.3.B]. This gives rise to
a Γ-invariant canonical map AH/G from semisimple conjugacy classes of H(F̄ ) to
semisimple conjugacy classes of G(F̄ ) [KS99, Lemma 3.3A].

A semisimple δ ∈ H(F̄ ) is strongly regular if its centralizer Cent(δ,H(F̄ )) is a torus.
It is strongly G-regular if the image of its conjugacy class under AH/G consists of
strongly regular elements in G(F̄ ). A semisimple strongly G-regular γH ∈ H(F )
is an image of γG ∈ G(F ) if γG ∈ AH/G(Int(H(F̄ ))(γH)), i.e. if γG is a semisimple
strongly regular element in the image of the H(F̄ )-conjugacy class of γH under AH/G.

Orbital integrals. Strongly regular semisimple δ, δ′ ∈ H(F ) are stably conjugate
δ ∼ δ′ if they are conjugate in H(F̄ ). The stable conjugacy class of δ is a disjoint
union of finitely many H(F )-conjugacy classes. The orbital integral of a compactly
supported smooth function f ∈ C∞c (G) at an element δ ∈ G is the integral over the
G-conjugacy class of δ ∈ G

Oδ(f) =

∫
Cent(δ,G)\G

f(g−1δg) dt\ dg, (4.1)

where Cent(δ,G) is the centralizer of δ in G. The stable orbital integral SOδ(f) is
the integral over the stable conjugacy class of δ. It coincides with the sum

SOδ(f) =
∑
δ′∼δ

Oδ′(f) (4.2)

over representatives δ′ of the G-conjugacy classes stably conjugate to δ.

Matching. The Langlands-Shelstad-transfer factor ∆(γH , γG) ∈ C for strongly
G-regular semisimple γH ∈ H and strongly regular semisimple γG ∈ G depends only
on the conjugacy class of γG and the stable conjugacy classes of γH [LS87, §1.4, §3.7].
It is zero whenever γH is not an image of γG.

Definition 4.1. A pair of functions f ∈ C∞c (G) and fH ∈ C∞c (H) satisfies the
matching condition for standard endoscopy if

SOγH (fH) =
∑
γG

∆(γH , γG)OγG(f) (4.3)

1A Borel pair is a choice of a Borel subgroup BG of G with maximal torus TG in BG.
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for every strongly G-regular semisimple γH ∈ H. The sums runs over representatives
γG ∈ G for conjugacy classes of strongly regular semisimple elements in G and only
finitely many terms are non-zero. Such a pair (f, fH) is called a transfer f → fH .

The Fundamental Lemma for Standard Endoscopy [Ngô10] asserts that for every
f ∈ C∞c (G) there is a (non-unique) fM ∈ C∞c (M) such that f → fM is a transfer.

A distribution α : C∞c (H)→ C is invariant if α(f) = α(fh) for every h ∈ H where
fh(x) = f(hxh−1). It is stably invariant if it factors over stable equivalence, that
means over the orbital integrals Oδ(f) for all regular semisimple δ ∈M . This permits
the definition of the endoscopic lift of a stably invariant distribution α : C∞c (H)→ C
as the distribution

αG : C∞c (G)→ C, αG(f) = α(fH)

for every transfer f → fH . Thus, every stably invariant distribution α can be lifted
to an invariant distribution αG on G.

4.1.1. Local Endoscopy for GSp(4)

Let G = GSp(4) be group of symplectic similitudes in genus two with respect to
the symplectic element

(
0 I2
−I2 0

)
. Its dual is Ĝ = GSp(4,C) and the L-group is

LG ∼= Ĝ oWF . Endoscopy for G has been studied by Hales [Hal89, Hal97] and
Weissauer [Wei09a]. Up to equivalence, there is only one proper elliptic endoscopic
datum (M, LM, s, ξ). The endoscopic group is

M = GSO(2, 2) ∼= (GL(2)×GL(2))/∆ GL(1),

where the quotient is formed with respect to the antidiagonal embedding

∆ : GL(1)→ GL(2)×GL(2), t 7→ (tI2, t
−1I2).

The L-group is LM = M̂oWF for

M̂ = (GL(2,C)2)0 = {(x, x′) ∈ GL(2,C)×GL(2,C)) | detx = detx′}. (4.4)

The embedding ξ is defined on the dual groups as

ξ : M̂ −→ GSp(4,C) (x, y) 7−→


x11 x12

y11 y12

x21 x22

y21 y22

 (4.5)

into the connected component of the centralizer of s = diag(1,−1, 1,−1). The affine
Dynkin diagram ofM = M(F ) is composed of two disjoint copies of the affine Dynkin
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diagram of GL(2, F ). There are seven classes of maximal tori TG in GSp(4, F ); four
of them admit an admissible embedding from a torus TM ⊆M [Wei09a, 4.4.2]. The
embedding AM/G of semisimple conjugacy classes in G(F̄ ) is given on representatives
in the split diagonal tori by [Wei09a, Lemma 8.1]

(diag(t1, t
′
1), diag(t2, t

′
2)) 7→ diag(t′1t

′
2, t
′
2t1, t2t1, t2t

′
1). (4.6)

The transfer factors for GSp(4, F ) are only unique up to a scalar. We use the
normalization of [Wei09a, p.212].

Representations of M . By inflation, the irreducible admissible representations σ of
M are in one to one correspondence with pairs (σ1, σ2) of irreducible representations
of GL(2, F ) with equal central character ωσ1 = ωσ2 . Indeed, σ1 � σ2(tI2, t

−1I2) = id
for every t ∈ F×}, so the representation σ1 � σ2 of GL(2, F )×GL(2, F ) factors over
a unique representation σ of M . Every irreducible admissible representations σ of M
defines a unique pair (σ1, σ2) of representations of GL(2, F ) such that σ pulls back
to σ1 � σ2 under the natural projection

GL(2, F )×GL(2, F ) �M.

We will write (σ1, σ2) for σ. An irreducible admissible representation σ of M is
generic, cuspidal, or discrete series if and only if both σ1 and σ2 are generic, cuspidal,
or discrete series, respectively. For each irreducible admissible representation σ of
M , the character χσ pulls back to an invariant distribution of GL(2, F )×GL(2, F )
and is therefore stably invariant.

The local endoscopic character lift for GSp(4). Let σ be an irreducible admis-
sible representation of M . Then its character χσ is a stably invariant distribution on
M , so there is a well defined lift to an invariant distribution χGσ on G. This lift is a
finite linear combination

χGσ =
∑
π

n(σ, π)χπ

of characters of irreducible admissible representations π of G with integer coefficients
n(σ, π) ∈ Z [Wei09a, Cor. 4.5]. The endoscopic character lift gives rise to a homo-
morphism of Grothendieck groups of finitely generated admissible representations

r : RZ(M) −→ RZ(G) (4.7)

such that χGσ = χr(σ).

Proposition 4.2 ([Wei09a, §4.11]). For irreducible admissible representations σ of
M with central character ωσ, the endoscopic lift r(σ) satisfies

1. r(σ1, σ2) = r(σ2, σ1),
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2. r(µσ1, µσ2) = (µ ◦ sim)⊗ r(σ1, σ2) for smooth characters µ of F×,

3. each constituent π of r(σ) has central character ωπ = ωσ.
Lemma 4.3 ([Wei09a, Lemma 4.23]). Let σ be an admissible representation of M
such that σ2 = µ1 × µ2 for a pair of smooth characters µ1, µ2 of F× with central
character µ1µ2 = ωσ1. Then the endoscopic lift is the semisimplified Siegel induced
representation

r(σ) = µ−1
1 σ1 o µ1. (4.8)

Lemma 4.4. For every essentially discrete series irreducible admissible representation
σ of M , the endoscopic lift has two irreducible constituents

r(σ) = π+(σ)− π−(σ). (4.9)

Proof. After a character twist we can assume σ to be unitary. By [Wei09a, Thm. 4.5]
π+(σ) = θ+(σ) is the generic irreducible isotropic theta lift [PSS81], [GT11, §8.2] and
π−(σ) = θ−(σ) is the nongeneric irreducible anisotropic theta lift [GT11, §8.1].

Every generic irreducible admissible representations ofM , which is not in the essential
discrete series, is parabolically induced and the endoscopic character lift is given by
4.3. The endoscopic lift of a non-generic admissible representation σ of M can be
determined by linear combinations of generic representations σ [Wei09a, §4.11].

The local endoscopic L-packets. For every irreducible representation σ ofM , the
local endoscopic packet attached to σ is the finite set of irreducible representations of
G that occur in r(σ) =

∑
π n(σ, π)π with nonzero multiplicity n(σ, π) [Wei09a, Def.

4.5]. For preunitary generic σ this is called the local endoscopic L-packet. The packet
attached to preunitary non-generic σ is the Arthur-packet.
Lemma 4.5. Let σ be a unitary generic irreducible admissible representation of
M . If σ is in the discrete series, the L-packet attached to σ has exactly two unitary
constituents π±(σ). If σ is not in the discrete series, then the endoscopic lift r(σ) is
irreducible, and the local L-packet has exactly one unitary constituent π+(σ). The
non-cuspidal constituents are explicitly given by Table 4.1.

Proof. The discrete series case is [Wei09a, Thm. 4.5], so we assume σ is not in the
discrete series. Without loss of generality let σ2 = µ1 × µ2 be parabolically induced
from a pair of smooth characters µ1, µ2 of F×. Then r(σ) is the Siegel induced
representation µ−1

1 σ1 o µ1 by [Wei09a, Lemma 4.23]. Either σ2 is in the tempered
principal series (with unitary µi) or it is in the unitary complementary series. For
both cases irreducibility is shown in [Wei09a, p. 156]. The conditions for unitarity of
π+(σ) = r(σ) apply, cp. [RS07, Table A.2].
Notation 4.6 (Table 4.1). Let ξ, µ, µ1, . . . , µ4 be smooth characters of F× with
ξ2 = 1. Let Π1 and Π2 be two non-isomorphic cuspidal irreducible representations of
GL(2, F ). The central characters are ωΠ1 = ωΠ2 = µ1µ2 = µ3µ4 = µ2.
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σ1 σ2 π+(σ) type π−(σ) type

ξµ · St µ · St δ(ξν1/2 · St o µν−1/2) Va cuspidal
µ · St µ · St τ(S, ν−1/2µ) VIa τ(T, ν−1/2µ) VIb
Π1 µ · St δ(µ−1ν1/2 · Π1 o µν−1/2) XIa cuspidal
Π1 Π1 τ(S,Π1) VIIIa τ(T,Π1) VIIIb
Π1 Π2 cuspidal cuspidal

µ3 × µ4 µ1 × µ2 µ3µ
−1
1 × µ4µ

−1
1 o µ1 I —

µ · St µ1 × µ2 µµ−1
1 · StGL(2,F ) o µ1 IIa —

Π1 µ1 × µ2 µ−1
3 · Π1 o µ3 X —

Table 4.1.: Constituents of the local endoscopic L-packet attached to generic unitary
irreducible σ.

4.2. Main result on parahoric restriction of endoscopic lifts

Parahoric restriction with respect to a parahoric subgroup Px ⊆ G is an exact functor
between categories of admissible representations, so it defines a homomorphism
between Grothendieck groups of finitely generated admissible representations

rPx : RZ(G)→ RZ(Px/P
+
x ). (4.10)

In this section, we will determine the parahoric restriction of the endoscopic lift r(σ)
for every irreducible admissible representation σ of M . We will also determine the
parahoric restriction of the local endoscopic L-packets attached to unitary generic
irreducible admissible σ. By (2.5), it is sufficient to study maximal parahoric
subgroups.

4.2.1. Hyperspecial parahoric restriction

Let rK : Rep(GSp(4, F )) → Rep(GSp(4, q)) be the parahoric restriction functor
with respect to the standard hyperspecial parahoric subgroup K = KG = GSp(4, oF )
with Levi quotient K ∼= GSp(4, q).

Theorem 4.7. Fix a unitary generic irreducible representation σ of M and let
π± = π±(σ) be an irreducible constituent of the attached local endoscopic L-packet.
If σ has depth zero, then rK (π±) is given by Table 4.2. If σ has depth > 0, then
rK (π) = 0.

Proof. The non-cuspidal π are explicitly given by Table 4.1; for rK (π) see Thm. 3.2.
If π is cuspidal, then rK (π) is either zero or cuspidal irreducible by Lemma 2.18.
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σ rK (π+)|Sp(4,q) (even q) rK (π+) (odd q) dimension

(µ1 × µ2, µ3 × µ4) χ1(k1 − k3, k2 − k3) X1(µ̃1/µ̃3, µ̃2/µ̃3, µ̃1) (q + 1)2(q2 + 1)
(µ1 × µ2, µ · St) χ10(k − k1) χ4(µ̃/µ̃1, µ̃1) (q2 + q)(q2 + 1)
(µ1 × µ2, µ1 ·Π1) χ2(l1) X2(Λ1, µ̃1) q4 − 1
(µ · St, µ · St) θ1 + θ4 θ1(µ̃) + θ5(µ̃) q4 + q(q + 1)2/2
(µ · St, µξu · St θ3 + θ4 θ4(µ̃) + θ5(µ̃) q4 + q(q2 + 1)/2
(µ · St, µξt · St) — τ3(µ̃) q4 + q2

(µ · St, µ ·Π1) χ12(l′′1) χ6(ωΛ1 , µ̃) (q2 + 1)(q2 − q)
(Π1,Π1) χ13(l′1) χ8(Λ1) (q2 + 1)(q2 − q)
(Π1,Π2) χ4(k̃+, k̃−) X5(Λ1, ωΛ2/Λ1

) (q2 + 1)(q − 1)2

σ rK (π−)|Sp(4,q) (even q) rK (π−) (odd q) dimension

(µ · St, µ · St) θ2 θ3(µ̃) q(q2 + 1)/2
(µ · St, µξu · St) θ5 θ2(µ̃) q(q − 1)2/2
(µ · St, µξt · St) — 0 0
(µ · St, µ ·Π1) 0 0 0
(Π1,Π1) χ9(l′1) χ7(Λ1) (q2 + 1)(q − 1)
(Π1,Π2) 0 0 0

Table 4.2.: Hyperspecial parahoric restriction rK (π±) of π±(σ) in the endoscopic
L-packet for depth zero preunitary generic irreducible admissible σ.

If π = θ−(σ) is non-generic and cuspidal, we must have σ1 6∼= σ2. By Thm. 4.29, the
hyperspecial parahoric restriction of π is zero unless σ ∼= (µ St, µξu St) for an at most
tamely ramified character µ and the unramified quadratic character ξu. For even q,
the only irreducible cuspidal representation of GSp(4, q) with dimension q(q2 − 1)/2
and central character µ̃2 is θ5 � µ̃2. For odd q it is either θ2(µ̃) or θ2(λ0µ̃) where
λ0 is the non-trivial quadratic character of F×q . The character value of rK ◦r(σ)
on the conjugacy class L0 is given by (4.20), and we have θ−(σ) = θ+(σ)− r(σ) in
the Grothendieck group. Hence rK (θ−(σ)) is the twist of the unipotent cuspidal
non-generic representation θ2 by the character µ̃.

If π = θ+(σ) is generic and cuspidal, we must have σ ∼= (Π1,Π2) for a pair of
non-isomorphic cuspidal irreducible representations Π1, Π2 of GL(2, F ) with equal
central character. Thm. 4.29 implies rK (θ−(σ)) = 0, so rK (π) = rK ◦r(σ). This is
either zero or an irreducible cuspidal representation of GSp(4, q). For odd q, the only
cuspidal irreducible representations of GSp(4, q) are of type X4, X5 and θ2. But the
character values of rK ◦r(σ) on the anisotropic semisimple conjugacy classes K0 and
L0 are given by (4.22) and (4.20) and completely determine rK (π). For even q the
proof is analogous.

Notation 4.8 (Table 4.2 and 4.3). Let µ, µ1, µ2, µ3, µ4 be tamely ramified or unram-
ified characters of F× which restrict to non-zero characters µ̃, µ̃1, µ̃2, µ̃3, µ̃4 of (o/p)×.
Fix two non-isomorphic cuspidal irreducible depth zero representations Π1 and Π2 of
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σ ∈ Irr(M) (rK ◦r(σ))|Sp(4) (even q) rK ◦r(σ) (odd q) dimension

(µ1 × µ2, µ3 × µ4) χ1(k1 − k3, k2 − k3) X1(µ̃1/µ̃3, µ̃2/µ̃3, µ̃3) (q + 1)2(q2 + 1)
(µ1 × µ2, µ · St) χ10(k − k1) χ4(µ̃/µ̃1, µ̃1) q(q + 1)(q2 + 1)
(µ1 × µ2, µ · 1) χ6(k − k1) χ3(µ̃/µ̃1, µ̃1) (q + 1)(q2 + 1)
(µ1 × µ2, µ1 ·Π1) χ2(l1) X2(Λ1, µ̃1) (q2 − 1)(q2 + 1)

(µ · St, µ · St) θ1 + θ4 − θ2 θ1(µ̃) + θ5(µ̃)− θ3(µ̃) q2(q2 + 1)
(µ · St, µξu · St) θ3 + θ4 − θ5 θ4(µ̃) + θ5(µ̃)− θ2(µ̃) q2(q2 + 1)
(µ · St, µξt · St) — τ3(µ̃) q2(q2 + 1)
(µ · St, µ ·Π1) χ12(l′′1) χ6(ωΛ1 , µ̃) q(q − 1)(q2 + 1)
(Π1,Π1) χ13(l′1)− χ9(l′1) χ8(Λ1)− χ7(Λ1) (q − 1)2(q2 + 1)

(Π1,Π2) χ4(k̃+, k̃−) X5(Λ1, ωΛ2/Λ1
) (q − 1)2(q2 + 1)

(µ · 1, µ · St) θ2 + θ3 θ3(µ̃) + θ4(µ̃) q(q2 + 1)
(µ · 1, µξu · St) θ1 + θ5 θ1(µ̃) + θ2(µ̃) q(q2 + 1)
(µ · 1, µξt · St) — τ2(µ̃) q(q2 + 1)
(µ · 1, µ · 1) θ0 + θ1 − θ3 θ0(µ̃) + θ1(µ̃)− θ4(µ̃) (q2 + 1)
(µ · 1, µξu · 1) θ0 + θ2 − θ5 θ0(µ̃) + θ3(µ̃)− θ2(µ̃) (q2 + 1)
(µ · 1, µξt · 1) — τ1(µ̃) (q2 + 1)
(µ · 1, µ ·Π1) χ8(l′′1) χ5(ωΛ1 , µ̃) (q − 1)(q2 + 1)

Table 4.3.: Hyperspecial parahoric restriction rK ◦r(σ) of the endoscopic lift r(σ) of
depth zero irreducible admissible representations σ of M .

GL(2, F ) with common central character. Their hyperspecial parahoric restriction is
a cuspidal irreducible representation πΛi of GL(2, q) attached to a character Λi of
F×q2 as in Thm.A.1 with Λ1|F×q = Λ2|F×q . A character Λ of F×q2 with Λ|F×q = 1 factors
over a character ωΛ of F×q [q + 1] with Λ(x) = ωΛ(xq−1). The nontrivial unramified
quadratic character of F is ξu. Either one of the tamely ramified quadratic characters
is denoted ξt. Equality of central characters of σ1 and σ2 is tacitly assumed.

For irreducible representations of the finite group GSp(4, q) with odd q we use the
notation of Shinoda [Shi82].

For even q a representation of GSp(4, q) is uniquely determined by its central character
and its restriction to Sp(4, q). The irreducible representations of Sp(4, q) have been
classified by Enomoto [Eno72]. Fix a primitive character θ̂ : F×q2 → C× and let γ̂ and
η̂ be its restriction to F×q and F×q2 [q + 1], respectively. Let kj ∈ Z/(q − 1)Z be such
that γ̂kj = µ̃j. Let li ∈ Z/(q2 − 1)Z be such that θ̂li = Λi. Denote by l′i the image of
li under the canonical projection Z/(q2 − 1)Z � Z(q + 1)Z. If Λi|F×q = 1, there is a
unique preimage l′′i of li under the canonical injection Z/(q + 1)Z ↪→ Z(q2 − 1)Z so
that ωΛi = η̂l

′′
i . Finally, for Λ1|F×q = Λ2|F×q let k̃± = q+2

2
(l′1 ± l′2).
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Theorem 4.9. Let σ be an irreducible admissible representation of M . If σ has
depth zero, the hyperspecial parahoric restriction rK (r(σ)) of the endoscopic lift is
given by Table 4.3. If σ has positive depth, then rK (r(σ)) = 0.

Proof. If σ is essentially discrete series, we can assume σ to be in the unitary
discrete series after a character twist. Then the result is implied by Thm. 4.7 and
r(σ) = π+(σ)− π−(σ). If σ is parabolically induced, the result is implied by Lemma
4.3 and Thm. 3.2. Lemma 4.3 implies ν1/2µ−1σ2 o ν−1/2µ ≡ r(µ St, σ2) + r(µ1, σ2) in
the Grothendieck group, so rK ◦r(µ1, σ2) can be determined by linear combinations
using the previous results.

Since r(σ1, σ2) = r(σ2, σ1), Table 4.3 determines F ◦ r(σ) for every depth zero
irreducible admissible representation σ of the endoscopic group.

Corollary 4.10. For every admissible representation σ of M , the endoscopic char-
acter lift satisfies the equation

dim rKG
(r(σ)) = (q2 + 1) dim rKM

(σ). (4.11)

for hyperspecial parahoric subgroups KG ⊆ G, KM ⊆M .

4.2.2. Paramodular restriction

For the standard paramodular subgroup J of G = GSp(4, F ) we fix the isomorphism
J /J + → (GL(2, q)2)0 = {(x, x′) ∈ GL(2, q)2 | detx = detx′}

x1,1 ∗ $−1x1,3 ∗
∗ x2,2 ∗ x2,4

$x3,1 ∗ x3,3 ∗
∗ x4,2 ∗ x4,4

 7→ ((
x1,1 x1,3

x3,1 x3,3

)
,

(
x2,2 x2,4

x4,2 x4,4

))
, (4.12)

where xij is the image of xij ∈ oF under the projection oF → oF/pF . The representa-
tions of (GL(2, q)2)0 have been classified in Lemma A.6. The paramodular restriction
functor is discussed in Subsection 3.1.3.

Theorem 4.11. Let σ be a preunitary discrete series generic irreducible admissible
representation of M and let π = π±(σ) be an irreducible constituent of the local endo-
scopic L-packet attached to σ. If σ has depth zero, then the paramodular restriction
rJ (π) is the (GL(2, q)2)0-representation given by Table 4.4. If σ has positive depth,
then the paramodular restriction rJ (π) is zero.

Proof. For the non-cuspidal representations π, the paramodular restriction is deter-
mined by Table 4.1 and Thm.3.7.
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If π is cuspidal and generic, then π is compactly induced from an extension of τ to
the normalizer ZGKG of a hyperspecial parahoric subgroup KG [DR09, 6.2.1]. The
paramodular restriction of π is then zero by Corollary 2.17.

If π is non-generic and cuspidal, then π = θ−(σ) for σ1 6∼= σ2 in the discrete series.
The paramodular restriction is either zero or a sum of one or two cuspidal irreducible
representations of (GL(2, q)2)0 by Prop. 3.6. The character values on the anisotropic
conjugacy classes EG are given by (4.21). We discuss each case separately:

For σ = (Π1,Π2) of depth zero with Π1 6∼= Π2 we have θ+(σ) = 0, so the character
value of rJ (π) at EG = EG(αβ, αβq) is

tr(rJ (π); EG) = − tr(rJ ◦r(σ); EG)
(4.21)
= tr(rK ◦r(σ); EM(α, β))

= (Λ1(α) + Λq
1(α)) · (Λ2(β) + Λq

2(β))

+(Λ2(α) + Λq
2(α)) · (Λ1(β) + Λq

1(β))

= (Λa(αβ) + Λq
a(αβ)) · (Λb(αβ

q) + Λq
b(αβ

q))

+(Λb(αβ) + Λq
b(αβ)) · (Λa(αβ

q) + Λq
a(αβ

q))

for ΛaΛb = Λ1 and ΛaΛ
q
b = Λ2. Therefore the paramodular restriction of π must be

the representation [πΛa , πΛb ] + [πΛb , πΛa ]. The characters Λa and Λb are only unique
up to a character twist, but by (A.1) this does not affect rJ (π).

Consider σ = (µ · St, µ ·Π1) where Π1 is of depth zero and has trivial central character.
Since θ+(σ) = 0, the character value of π = θ−(σ) at EG = EG(αβ, αβq) is

tr(rJ ◦π; EG) = − tr(rJ ◦r(σ); EG)
(4.21)
= tr(rKM

(σ); EM(α, β))

= µ̃((αβ)q+1) · (Λ1(α) + Λ1(αq) + Λ1(β) + Λ1(βq)).

Hence rJ (π) is the irreducible representation µ̃ · [πΛ′1
, πΛ′1

−1 ] with (Λ′1)q−1 = Λ1. Like
before, πΛ′1

is only unique up to a twist with an F×q -character, but rJ (π) is uniquely
determined.

If σ = (µ · St, µξt · St) for a tamely ramified quadratic character ξt, then the character
value of rJ ◦θ+(σ) at the conjugacy class EG(αβ, αβq) is zero. Then (4.21) implies

tr(rJ ◦π; EG) = − tr(rJ ◦r(σ); EG)
(4.21)
= tr(rKM

(σ); EM(α, β))

= µ̃((αβ)q+1)(Λ0(α) + Λ0(β)).

Therefore the paramodular restriction of π = θ−(σ) is one of the two irreducible
constituents in µ̃ · [πΛ′0

, πΛ′−1
0

] with Λ′0 such that Λ′0
q−1 = Λ0 is the nontrivial quadratic

character of F×q2 . The correct choice depends on ξt($F ) and is identified by the
character value of rJ (π) at (( 1 x

1 ) ,
(

1 y
1

)
) ∈ (GL(2, q)2)0 by (4.31) and (A.2).

Finally, for σ = (µ · St, µξu · St) we have rJ ◦θ−(σ) = 0 because the character value
of rJ (θ+(σ)− r(σ)) at EG is zero.
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σ ∈ Irr(M) rJ ◦π+(σ) dimension

(µ1 × µ2, µ3 × µ4) µ̃1
−1 · [µ̃1 × µ̃3, µ̃1 × µ̃4] 2(q + 1)2

+µ̃1
−1 · [µ̃1 × µ̃4, µ̃1 × µ̃3]

(µ1 × µ2, µ · St) µ̃1
−1 · [µ̃1 × µ̃, µ̃1 × µ̃] (q + 1)2

(µ · St, µ · St) µ̃ · [1, StGL(2,q)] + µ̃ · [ StGL(2,q), 1] q2 + 2q
+µ̃ · [ StGL(2,q), StGL(2,q)]

(µ · St, µξu · St) µ̃ · [1, StGL(2,q)] + µ̃ · [ StGL(2,q), 1] 2q
(µ · St, µξt · St) µ̃ · [1× λ0, 1× λ0]± (q + 1)2/2
(µ1 × µ2, µ1 · Π1) 0 0
(µ · St, µ · Π1) 0 0
(Π1,Π1) [πΛ1 , 1] + [1, πΛ1 ] 2(q − 1)
(Π1,Π2) 0 0

σ ∈ Irr(M) rJ ◦π−(σ) dimension

(µ · St, µ · St) µ̃ · [ StGL(2,q), StGL(2,q)] q2

(µ · St, µξu · St) 0 0
(µ · St, µξt · St) µ̃ · [πΛ′0

, πΛ′−1
0

]± (q − 1)2/2

(µ · St, µ · Π1) µ̃ · [πΛ′1
, πΛ′1

−1 ] (q − 1)2

(Π1,Π1) [ StGL(2,q), πΛ1 ] + [πΛ1 , StGL(2,q)] 2q(q − 1)
(Π1,Π2) [πΛa , πΛb ] + [πΛb , πΛa ] 2(q − 1)2

Table 4.4.: Paramodular restriction of π+(σ) and π−(σ) in the endoscopic L-packet
attached to preunitary generic depth zero irreducible admissible repre-
sentations σ of M . The index is determined by the parity of ξt($) = ±1.
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σ ∈ Irr(M) rJ ◦r(σ) dimension

(µ1 × µ2, µ3 × µ4) µ̃1
−1 · [µ̃1 × µ̃3, µ̃1 × µ̃4] 2(q + 1)2

+µ̃1
−1 · [µ̃1 × µ̃4, µ̃1 × µ̃3]

(µ1 × µ2, µ · St) µ̃1
−1 · [µ̃1 × µ̃, µ̃1 × µ̃] (q + 1)2

(µ1 × µ2, µ · 1) µ̃1
−1 · [µ̃1 × µ̃, µ̃1 × µ̃] (q + 1)2

(µ1 × µ2, µ1 · Π1) 0 0

(µ · St, µ · St) µ̃ · [1, StGL(2,q)] + µ̃ · [ StGL(2,q), 1] 2q
(µ · St, µξu · St) µ̃ · [1, StGL(2,q)] + µ̃ · [ StGL(2,q), 1] 2q
(µ · St, µξt · St) µ̃ · [1× λ0, 1× λ0]± − µ̃ · [πΛ′0

, πΛ′−1
0

]± 2q

(µ · St, µ · Π1) −µ̃ · [πΛ′1
, πΛ′1

−1 ] −(q − 1)2

(Π1,Π1) [πΛ1 , 1− St] + [1− St, πΛ1 ] −2(q − 1)2

(Π1,Π2) −[πΛa , πΛb ]− [πΛb , πΛa ] −2(q − 1)2

(µ · 1, µ · St) µ̃ · [ StGL(2,q), StGL(2,q)] + µ̃ · [1, 1] q2 + 1
(µ · 1, µξu · St) µ̃ · [ StGL(2,q), StGL(2,q)] + µ̃ · [1, 1] q2 + 1
(µ · 1, µξt · St) µ̃ · [1× λ0, 1× λ0]∓ + µ̃ · [πΛ′0

, πΛ′−1
0

]± q2 + 1

(µ · 1, µ · 1) µ̃ · [1, StGL(2,q)] + µ̃ · [ StGL(2,q), 1] 2q
(µ · 1, µξu · 1) µ̃ · [1, StGL(2,q)] + µ̃ · [ StGL(2,q), 1] 2q
(µ · 1, µξt · 1) µ̃ · [1× λ0, 1× λ0]± − µ̃ · [πΛ′0

, πΛ′−1
0

]± 2q

(µ · 1, µ · Π1) µ̃ · [πΛ′1
, πΛ′1

−1 ] (q − 1)2

Table 4.5.: Paramodular restriction rJ ◦r(σ) of the endoscopic lift r(σ) in the
Grothendieck group for depth zero irreducible admissible representations
σ of M . The index is determined by ξt($) = ±1.

Notation 4.12 (Tables 4.4 and 4.5). Irreducible representations σ of M are denoted
as before. Irreducible representations of (GL(2, q)2)0 are denoted as in Lemma
A.6. The pair of characters (Λa,Λb) is an arbitrary solution of ΛaΛb = Λ1 and
ΛaΛ

q
b = Λ2. For every character Λ of F×q2 with Λq+1 = 1 let Λ′ be an arbitrary solution

of (Λ′)q−1 = Λ.

Theorem 4.13. Let σ be a generic irreducible admissible representation of M . If σ
has depth zero, then the paramodular restriction rJ ◦r(σ) of the endoscopic lift r(σ)
is the virtual (GL(2, q)2)0-representation given by Table 4.5. If σ has positive depth,
then the paramodular restriction of the endoscopic lift of σ is zero.

Proof. The proof is completely analogous to Thm. 4.9.

Corollary 4.14. For a generic preunitary irreducible representations σ of M let
π = π±(σ) be in the local L-packet attached to σ. Then σ is depth zero or KM -
spherical if and only if π is depth zero or KG-spherical, respectively.
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π has non-zero hyperspecial parahoric reduction if and only if π admits non-zero
invariants under the modified principle congruence subgroup.

Proof. The representation π has depth zero if and only if it admits non-zero parahoric
restriction with respect to at least one maximal parahoric subgroup. Up to conjugacy,
the only parahoric subgroups are the hyperspecial parahoric and the paramodular
subgroup. The statement is implied by Thms. 4.7 and 4.13.

A representation is K -spherical if its hyperspecial parahoric restriction admits a
trivial constituent. This occurs exactly for σ = (µ1 × µ2, µ3 × µ4) with unramified
characters µi of F×, compare Table 4.2.

The space of invariants under the modified principal congruence subgroup K ′
G in

π is the subspace of {diag(1, 1, ∗, ∗)}-invariants in rK (π). But for every occuring
representation π, character theory gives

dim Homdiag(1,1,∗,∗)(π, 1) =
∑
a∈F×q

tr rK (π)(diag(1, 1, a, a)) > 0.

Preservation of depth zero under the endoscopic lift for generic pre-unitary irre-
ducible representations of M is a special case of depth preservation under the local
theta correspondence [Pan02]. It complies with depth preservation under the local
Langlands correspondence [ABPS].

4.3. Matchings

Fix G = GSp(4) and its unique proper elliptic endoscopic group

M = GL(2)2/∆ GL(1).

Let G,M be the groups of F -rational points with center ZG and ZM . In order to
identify the depth zero cuspidal irreducible constituents in the endoscopic character
lift we need certain character formulas on the anisotropic conjugacy classes. To
this end we determine three pairs of matching functions, which determine character
identities by the following Lemma.

Lemma 4.15. Let P ⊆ G be an arbitrary parahoric subgroup with pro-unipotent
radical P+. For a conjugacy class C ⊆P/P+ let charC ∈ C∞c (G) be the indicator
function of the preimage C = p−1(C) under the projection p : P →P/P+. Then
we have

tr(rP(π); C) = vol(C)−1χπ(charC). (4.13)
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Proof. This is clear by unraveling the definitions.

We show two matchings f → fM between functions with support in the maximal
tori of elliptic case I [Wei09a, 4.4.2] for the unramified quadratic extension L/F .
Together with a third matching, this will provide the necessary character identities
(4.20), (4.21) and (4.22).

4.3.1. Maximal tori of unramified elliptic case I

Let L be the unramified quadratic field extension of F . Fix ζ ∈ o×F such that L is
the splitting field of the irreducible Artin-Schreier polynomial2 X2 −X − ζ. As an
F -vector space, L ∼= F [X]/(X2 −X − ζ) is generated by 1 and X. The image of the
regular representation

φζ : L× → GL(2, F ), a+ bX 7→
(
a bζ
b a+ b

)
, (4.14)

is an anisotropic torus of GL(2, F ).

Let the anisotropic maximal torus TM in M be the image of the canonical morphism

(φζ , φζ) : L× × L× → GL(2, F )×GL(2, F )→M

Every other M -torus that is isomorphic to TM is conjugate to TM over M .

The non-trivial Galois automorphism of L is a+ bX 7→ a+ bX = a+ b− bX. The
identity (a+bX)(a+ bX) = a(a+b)−b2ζ = detφζ(a+bX) gives rise to an embedding
(φζ , φζ) : (L× × L×)0 −→ (GL(2, F )2)0, where the exponent 0 indicates the subset of
pairs with equal norm or determinant. With the embedding

φ : (GL(2, F )2)0 −→ G, (x, y) 7−→
(
x11 x12

y11 y12
x21 x22

y21 y22

)
, (4.15)

the maximal torus TG is the image of (L× × L×)0 under φ ◦ (φζ , φζ). The alternative
regular representation

φ′ζ : L× → GL(2, F ), a+ bX 7→
(
a bζ$−1

b$ a+ b

)
(4.16)

gives rise to a different torus T ′G as the image of (L× × L×)0 under φ ◦ (φ′ζ , φζ). The
image of (o×L ×o×L)0 is TG∩KG or T ′G∩J , respectively. The tori TG and T ′G generate
the two G-conjugacy classes of embeddings of (L× × L×)0 [Wei09a, Lemma 6.1].

2This is a small deviation from [Wei09a, §6.2] in order to include even residue characteristic.
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The canonical map (4.6) over L

(L××L×)/{(t,t−1) | t∈F×} −→ (L× × L×)0, (t, t′) 7−→ (tt′, tt′). (4.17)

defines admissible embeddings TM → TG and TM → T ′G [Wei09a, §6.2-3].

The endoscopic matching condition (4.3) for γM ∈ TM becomes

SOγM (fM) = ∆(γG, γM)Oκ
γG

(f) for Oκ
γG

= OγG(f)−Oγ′G
(f) (4.18)

with γG ∈ TG and γ′G ∈ T ′G stably related to γM [Wei09a, 6.2.1].

In the following sections, let KM = M(oF ) and KG = G(oF ) be the standard
hyperspecial parahoric subgroups. Fix Haar measures on M , G, TM , TG, and T ′G,
such that the volume of KG, KM , and KM ∩ TM is one and such that the admissible
embeddings TM → TG and TM → T ′G preserve the measure. These groups are
reductive and therefore unimodular, so there are well-defined quotient measures on
TG\G, T ′G\G and TM\M .

4.3.2. First matching

Fix α, β ∈ F×q2 ∼= oL/pL with α, β, αβ, αβq /∈ F×q .

Let L0 = L0(αβ, αβq) be the conjugacy class3 in G(q) of elements stably conjugate
to diag(αβ, αβq, αqβq, αqβ) ∈ G(q2) and let L0 = p−1(L0) be its preimage under the
projection p : KG � KG/K

+
G .

Lemma 4.16. Let f1 ∈ C∞c (G) be the indicator function of L0. Fix a strongly
regular semisimple γG ∈ G that comes from an admissible embedding of M . The
orbital integral is OγG(f1) = 1 if γG is G-conjugate to an element of L0, and it is
OγG(f1) = 0 else.

Proof. If γG is conjugate to an element of L0, we can assume γG ∈ L0, since orbital
integrals are conjugation invariant. The eigenvalues of γG ∈ KG are integers in the
unramified quadratic field extension L, so the centralizer CG(γG) is isomorphic to
(L× × L×)0 of unramified elliptic case I. Up to conjugation in KG, we can assume
that γG ∈ TG, so the centralizer is CG(γG) = TG.

We now claim that for t ∈ G, we have t−1γGt ∈ L0 if and only if t ∈ ZGKG.
Indeed, t = k1 diag($n1 , $n2 , $n0−n1 , $n0−n2)k2 for certain ni ∈ Z and k1, k2 ∈ KG

by Cartan decomposition (3.15). Since L0 is preserved under KG-conjugacy it is

3For odd q, this is Shinoda’s L0 [Shi82]. For even q, it is a twist of Enomoto’s B4 [Eno72].
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sufficient to look at the case k2 = 1. Up to KG-conjugacy of γG we can assume
k−1

1 γGk1 ∈ TG for the embedding (4.15), so

k−1
1 γGk1 =

(
a bζ
a′ b′ζ

b a+b
b′ a′+b′

)
for integers a, b, a′, b′ ∈ oF . Since the image of k−1

1 γGk1 in KG/K
+
G does not admit

eigenvalues in F×q , we have b, b′ ∈ o×F . If t
−1γGt ∈ L0, then t−1γGt must have integer

matrix entries, so n1 = n2 = n0/2 implies t ∈ ZGKG. Conversely, it is clear that
t−1γGt ∈ L0 for every t ∈ ZGKG, because L0 is a conjugacy class of KG/K

+
G .

This implies that the support of t 7→ f1(t−1γGt) is ZGKG = TGKG. Now we have

OγG(f1) =

∫
TG\G

f1(t−1γGt) dt =

∫
TG\G

charTG\TGKG
(t) dt = 1.

If γG is not G-conjugate to an element of L0, the orbital integral is clearly zero.

Let EM (α, β) ⊆M(q) be the image of E(α)× E(β) ⊆ GL(2, q)2, where E(α) denotes
the anisotropic conjugacy class in GL(2, q) with eigenvalues α, αq as in Section A.1.
Denote by EM (α, β) the preimage of EM (α, β) under the projection KM � KM/K

+
M .

Lemma 4.17. Let fM1 ∈ C∞c (M) be the indicator function of EM(α, β) t EM(β, α).
Let γM ∈M be a strongly regular semisimple element. The stable orbital integral is
SOγM (fM1 ) = 1 if γM is M -conjugate to an element of EM(α, β) t EM(β, α), else it
is SOγM (fM1 ) = 0.

Proof. For γM ∈ EM(α, β), the eigenvalues generate of γM generate L, so the
centralizer of γM conjugate to the torus TM .

For every s ∈ M , we claim that s−1γMs ∈ EM(α, β) if and only if s ∈ TMKM and
that s−1γMs /∈ KM otherwise. By Cartan decomposition

s = k1tk2 mod {(x, x−1) |x ∈ F×}

for t = (diag($n1 , $n2), diag($n3 , $n4)) with ni ∈ Z and k1, k2 ∈ KM . Let k2 = 1
without loss of generality. By replacing γM with a KM -conjugate we can assume

k−1
1 γMk1 =

((
a1 b1ζ
b1 a1+b1

)
,
(
a1 b1ζ
b1 a1+b1

))
∈ TM ∩KM

for a1, b1, a2, b2 ∈ o. Since α, β /∈ F×q , we have bi ∈ o× as before.

If s−1γMs ∈ KM , then n1 = n2 and n3 = n4, therefore s ∈ ZMKM ⊆ TMKM . It
is clear that the orbit of γM under the conjugation action with TMKM preserves
EM(α, β). The orbital integral for γM ∈ EM(α, β) is therefore

OγM (fM) =

∫
TM\M

fM1 (s−1γMs) ds =

∫
TM\M

charTM\TMKM
(s) = 1.
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The elements of EM(α, β) have stable conjugation orbit, so SOγM (fM1 ) = OγM (fM1 )
is the stable orbital integral. When the stable G-conjugation orbit of γM is disjoint
to EM(α, β), the stable orbital integral is zero.

Lemma 4.18. For semisimple strongly G-regular γM ∈ EM and γG ∈ TG stably
related by the admissible embedding TM → TG, the transfer factor is ∆(γG, γM) = 1.

Proof. Without loss of generality let γG ∈ TG for the TG constructed above. Let
(x, x′) ∈ (L× × L×)0 be the preimage of γG ∈ TG under the embedding (4.15). The
character ξL/F attached to the unramified quadratic field extension L/F by class field
theory is the unramified quadratic character. By assumption, the image of x−x ∈ oL
under the projection oL → oL/pL is αβ − αβq 6= 0. Since x, x′, x − x, x′ − x′ are
invertible in o×L , every factor in the following expression [Wei09a, Cor. 8.1] is trivial:

∆(γM , γG) =
ξL(x− x)ξL(x′ − x′) · |x− x| · |x′ − x′|

|xx′|
= 1. (4.19)

Proposition 4.19. The pair (f1, f
M
1 ) satisfies the matching condition (4.3).

Proof. For a semisimple strongly G-regular γM ∈ EM(α, β) t EM(β, α) ⊆ G, the
stable orbital integral is SOγM (fM1 ) = 1 by Lemma 4.17. There are two conjugacy
classes in G stably related to γM with representatives γG ∈ L0 ∩ TG and γ′G ∈ T ′G.
Since γ′G is not conjugate to an element of L0, only γG gives a non-zero orbital integral
OγG(f1) = 1 by Lemma 4.16. This implies

Oκ
γG

= OγG(f1)−Oγ′G
(f1) = 1− 0 = 1.

The transfer factor is ∆(γM , γG) = 1 by Lemma 4.18, so (4.18) holds.

If γM is not conjugate to an element of EM(α, β) t EM(β, α), the orbital integrals
are all zero.

Corollary 4.20. Let α, β ∈ F×q2 with α, β, αβ, αβq /∈ F×q be arbitrary. The hyperspe-
cial parahoric restriction of the endoscopic lift of any admissible representation σ of
M satisfies

tr(rKG
◦r(σ); L0(αβ, αβq)) = tr(rKM

(σ); E(α, β)) + tr(rKM
(σ); E(β, α)). (4.20)

Proof. Lemma 4.15 implies

tr(rKG
◦r(σ); L0(αβ, αβq)) = vol(L0(αβ, αβq))−1χr(σ)(f1) = (q − 1)(q + 1)2χr(σ)(f1)

and tr(rKG
(r(σ));EM (α, β)) = (q−1)(q+1)2χσ(fM1 ). By definition of the endoscopic

character lift we have χr(σ)(f1) = χσ(fM1 ).
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4.3.3. Second matching

The second matching is the analogue of the first matching with respect to the standard
paramodular subgroup J = P{0,2} ⊆ G. Fix α, β ∈ F×q2 with α, β, αβ, αβq /∈ F×q
as before. Let EG = EG(αβ, αβq) ⊆ J be the preimage of E(αβ) × E(αβq) ⊆
(GL(2, q)2)0 under the embedding (4.12) and set

f2 ∈ C∞c (G), f2 = − vol(J )−1 charEG(αβ,αβq) .

Lemma 4.21. Let γ′G ∈ G be strongly regular semisimple. The orbital integral of f2

is Oγ′G
(f2) = −1 if γ′G is G-conjugate to an element of EG, and zero else.

Proof. Without loss of generality, let γ′G ∈ EG. Up to conjugation in G, the centralizer
of γG is G-conjugate to the torus T ′G, so we can assume γG ∈ T ′G ∩ EG.

For t ∈ G we claim that t−1γGt ∈ EG(αβ, αβq) if and only if t ∈ ZGJ . Indeed, by
(3.16) t is either t = k1tk2 or t = k1u1tk2 for t = diag($n1 , $n2 , $n0−n1 , $n0−n2))
with ni ∈ Z and k1, k2 ∈J . Since EG is preserved under J -conjugacy, it is sufficient
to assume k2 = 1. Since

γG =

(
a $−1bζ
a′ b′ζ

$b a+b
b′ a′+b′

)

for integers a, b, a′, b′ ∈ oF does not split under projection to J /J +, we must have
b, b′ ∈ o×F , so for t−1γ′Gt ∈J it is necessary that t ∈ ZG. Conjugation by u1 preserves
J , but maps EG(αβ, αβq) to EG(αβq, αβ). Therefore t−1γ′Gt ∈ EG(αβ, αβq) if and
only if t = $nk for n ∈ Z and k ∈J if and only if t ∈ ZGJ . Since ZGJ = T ′GJ ,
the orbital integral is

Oγ′G
(f2) =

∫
T ′G\G

f2(t−1γ′Gt) dt = − vol(J )−1

∫
T ′G\G

charT ′G\T ′GJ (t) = − vol(T ′G ∩J )−1 = −1.

The last equation follows from vol(T ′G ∩J ) = vol(T ′G(oG)) = vol(TM ∩KM), since
the admissible embeding preserves the measure.

If γ′G is not conjugate to an element of EG, the orbital integral is zero.

Let fM2 = fM1 ∈ C∞c (M) be the indicator function of EM (α, β) tEM (β, α) as before.

Proposition 4.22. The pair (f2, f
M
2 ) satisfies the matching condition (4.3).

Proof. Fix some semisimple strongly G-regular γM ∈ EM . Up to conjugation in
KM we can assume γM ∈ EM ∩ TM . Let γG ∈ L0 ∩ TG and γ′G ∈ EG ∩ TG be
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semisimple strongly regular and stably related to γM . The orbital integral OγM (fM2 ) =
SOγM (fM2 ) = 1 has been determined in Lemma 4.17. The κ-orbital integral is

Oκ
γG

(f2) = OγG(f2)−Oγ′G
(f2) = 0− (−1) = 1

by Lemma 4.21, since γG ∈ TG is not conjugate to an element in EG. The transfer
factor ∆(γG, γM) = 1 has been determined in Lemma 4.18, so (4.18) holds.

If γM is not conjugate to an element in EM , then the orbital integrals are zero.

Corollary 4.23. Fix α, β ∈ F×q2 with α, β, αβ, αβq /∈ F×q . Then the paramodular
restriction rJ ◦r(σ) of the endoscopic lift of every admissible representation σ of M
satisfies

tr(rJ ◦r(σ); EG(αβ, αβq)) = − tr(rKM
(σ); EM(α, β))− tr(rKM

(σ); EM(β, α)).
(4.21)

Proof. Lemma 4.15 implies

tr(rJ ◦r(σ); EG(αβ, αβq)) = vol(J)
vol(EG)

χr(σ)(−f2) = −(q − 1)(q + 1)2χr(σ)(f2)

and by the proof of Corollary 4.20

tr(rKG
(r(σ));EM(α, β)) + tr(rKG

(r(σ));EM(β, α)) = (q − 1)(q + 1)2χσ(fM2 ).

The endoscopic character lift gives χr(σ)(f1) = χσ(fM1 ).

4.3.4. Third matching

Fix τ ∈ F×q4−F×q2 with τ (q2+1)(q−1) = 1. Let K0(τ) be the conjugacy class4 of elements
in G which are stably conjugate to diag(τ, τ q, τ q

2
, τ q

3
) and let K0(τ) = p−1(K0(τ))

be the preimage of K0(τ) under the projection p : KG → KG/K
+
G .

Lemma 4.24. Let f3 ∈ C∞c (G) be the characteristic function of K0(τ) and let
fM3 ∈ C∞c (M) be zero. Then (f3, f

M
3 ) satisfies the matching condition (4.3).

Proof. Every element in K0(τ) has an eigenvalue that generates the unramified field
extension E/F of order four. For every semisimple regular γG that comes from an
admissible embedding, the eigenvalues generate at most quadratic field extensions
[Wei09a, 4.4.2]. Therefore, γG is not conjugate to an element in the support of f3.

Corollary 4.25. For every such τ and every admissible representation σ of M

tr(rKG
◦r(σ); K0(τ)) = 0. (4.22)

Proof. This is analogous to Corollary 4.20.
4For odd q, this is the conjugacy class denoted K0 by Shinoda [Shi82]. For even q, it is a twist of
Enomoto’s class B5 [Eno72].
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4.4. The anisotropic theta lift

For the proof of Thm. 4.11, we need to find the paramodular restriction of the
anisotropic theta-lift θ−( StGL(2,F ), ξt StGL(2,F )) with tamely ramified quadratic char-
acter ξt. The only two candidates are [πΛ′0

, πΛ′−1
0

]±, where Λ′0 is a regular character of
F×q2 such that (Λ′0)q−1 is the non-trivial quadratic character. In Prop. 4.32 below we
distinguish these representations by their character values on the unipotent conjugacy
classes. Eq. (A.2) implies then that the sign is given by ξt($).

At first, we briefly review the anisotropic theta lift [Wei09a, §4.12]. Let D be the
unique quaternion division algebra over the local non-archimedean number field F
with F -linear conjugation map D → D, d 7→ d. This defines the (surjective) reduced
norm and reduced trace homomorphisms

nrdD/F : D× → F×, d 7→ d · d, trdD/F : D → F, d 7→ d+ d.

The natural bilinear form B(x, y) = 1
2

trdD/F (xy) on D ×D is normalized so that
B(x, x) = xx̄ = nrdD/F (x). For every symmetric 2 × 2 matrix T = T t over F let
Q(T, ·, ·) be the F -bilinear form Q : D2 ×D2 → F

Q(T,X, Y ) = 1
2

trdD/F ((x1, x2)T
(
y1
y2

)
) ∈ F X = (x1, x2), Y = (y1, y2).

The valuation vF of F defines a valuation vD = vF ◦ nrdD/F on D× and gives
rise to an oF -algebra oD = {d ∈ D | vD(d) ≥ 0} with two-sided principal ideal
P = {d ∈ D | vD(d) > 0} and residue field oD/pD ∼= Fq2 . Fix Haar-measures dx and
d•t on D and F× such that vol(OD) = 1 and vol•(O×F ) = 1. Let dX = dx1 dx2 be
the corresponding product measure on D ×D. Let Mc be the inner form of M

Mc = GSO(D) = (D× ×D×)/∆F×

for the antidiagonal embedding ∆ : F× → D× × D×, t 7→ (t, t−1). For the coset
(d1, d2)∆F

× in Mc we write (d1, d2). The pre-Hilbert space of complex Schwarz-
Bruhat-functions S(D ×D × F×) with scalar product

〈ϕ1, ϕ2〉 =

∫
D2×F×

ϕ1(X, t)ϕ2(X, t) dX d•t. (4.23)

for ϕ1, ϕ2 ∈ S(D×D×F×) is a dense subspace of the Hilbert space L2(D×D×F×).
The complex Weil constant ε is independent of ψ and given by

ε = lim
i→∞

ci
|ci|

for ci =

∫
p−iD

ψ(nrdD/F (x)) dx.

For fixed t ∈ F×, the Haar measure dYψt = |t|4 q2 dY with normalization∫
OD×OD

∫
D×D

ψt(2Q(I2, X, Y )) dXψt dYψt = 1
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gives rise to the Fourier transform ϕ̂(·, t) of ϕ(·, t) ∈ S(D ×D) via

ϕ̂(X, t) =

∫
D×D

ϕ(Y, t)ψt(2Q(I2, X, Y )) dYψt . (4.24)

such that ̂̂ϕ(X, t) = ϕ(−X, t).
Definition 4.26. The action of G = GSp(4, F ) on ϕ ∈ S(D ×D × F×) by

π

(
I2 T

I2

)
ϕ(X, t) = ψ(tQ(T,X,X)) · ϕ(X, t), (4.25)

π

(
A

A−t

)
ϕ(X, t) = |det(A)|2 · ϕ(XA, t), (4.26)

π

(
I2

−I2

)
ϕ(X, t) = εϕ̂(X, t), (4.27)

π

(
I2

λI2

)
ϕ(X, t) = ϕ(X, tλ−1). (4.28)

gives rise to a well-defined unique preunitary representation of G. Let Mc act from
the right on ϕ via

(ϕπMc(d1, d2))(X, t) =
∣∣nrdD/F (d1d2)

∣∣2 · ϕ(d1Xd2, nrdD/F (d1d2)−1t). (4.29)

The extension to unique unitary representations π, πMc on the closure L2(D×D×F×)
is the Weil Representation of G and Mc. The actions of G and Mc commute.

The center of G and Mc operates via

(ϕπMc(s, 1))(X, t) = |s|4 ϕ(sX, s−2t) = π(sI4)ϕ(X, t) ∀s ∈ F×.

Fix a unitary irreducible admissible representation σ of M in the discrete series. It
gives rise to a unitary irreducible representation σ̂ of Mc by applying the Jacquet-
Langlands correspondence to σ1 and σ2. The π-action of G preserves the σ̂-isotypic
quotient S(D2 × F×, σ̂) [Wei09a, §4.12.2]. The big Theta-lift is the G-representation
Θ(σ̂) so that the Mc×G-representation on S(D2×F×, σ̂) is isomorphic to σ�Θ(σ).
The maximal semisimple quotient of Θ(σ̂) is the anisotropic theta lift θ−(σ).

Lemma 4.27. For every unitary irreducible admissible representation σ = (σ1, σ2)
of M in the discrete series, the lift Θ(σ̂) of σ is non-zero, unitary, irreducible, has
the same central character as σ and is not generic. Especially, Θ(σ̂) = θ−(σ). It is
invariant under the outer automorphism σ 7→ σ∗ = (σ2, σ1).

The image of the anisotropic theta-lift θ− is precisely the set of non-generic tempered
irreducible admissible representations of GSp(4, F ). If σ1

∼= σ2, then θ−(σ) is the
unique non-generic irreducible subrepresentation of the Klingen induced representation
1 o σ1. For σ1 6∼= σ2 the lift θ−(σ) is cuspidal.

Proof. See Gan and Takeda [GT11, Thm. 8.1] and Weissauer [Wei09a, §4.12].
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4.4.1. Parahoric restriction for the Weil representation

Fix the additive character ψ : F → C× such that it factors over a non-trivial character
of the residue field. Let ω be an at most tamely ramified unitary character. Then we
have the following result on the parahoric restriction of the Weil representation.

Proposition 4.28. The subspace of K +-invariants in the Weil representation on
L2(D2 × F×, ω) is representated by the space of smooth ϕ : D2 × F× → C with

1. ϕ(X, t) = 0 for every (nrd(x1)t, nrd(x2)t) /∈ oF × oF ,

2. ϕ(X + Y, t) = ϕ(X, t) for every Y ∈ D2 with (nrd(y1)t, nrd(y2)t) ∈ pF × pF ,

3. ϕ(X, st) = ϕ(X, t) for every s ∈ 1 + pF .

The subspace of J +-invariants in L2(D2 × F×, ω) is representated by the smooth
functions ϕ : D2 × F× → C that satisfy

1. ϕ(X, t) = 0 for every (nrd(x1)t, nrd(x2)t) /∈ pF × oF ,

2. ϕ(X + Y, t) = ϕ(X, t) for every Y ∈ D2 with (nrd(y1)t, nrd(y2)t) ∈ p2
F × pF ,

3. ϕ(X, st) = ϕ(X, t) for every s ∈ 1 + pF .

The case for K + is [Rös12, Prop. 3.20]. The valuation there is off by one because a
different ψ was chosen. The paramodular case is analogous.

4.4.2. Hyperspecial parahoric restriction

Theorem 4.29 (Dimension Formula). Let σ be a unitary irreducible admissible
representation of M in the discrete series. Then the dimension of the hyperspecial
parahoric restriction of the anisotropic theta lift θ−(σ) is

dim rK (θ−(σ)) =


(q2 + 1)(q − 1), if σ1

∼= σ2 is cuspidal of depth zero,
q(q2 + 1)/2, if σ ∼= (µ St, µ St),

q(q − 1)2/2, if σ ∼= (ξµ St, µ St),

0 else.

(4.30)

Here ξ is the unramified quadratic character of F× and µ runs through the unramified
or tamely ramified unitary characters of F×.

Proof. This is the main result of the author’s diploma thesis [Rös12, Thm. 3.41].
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4.4.3. Character values on unipotent conjugacy classes

Let F be a non-archimedean local field with odd residue characteristic. Let θ−(σ) be
the anisotropic theta lift of σ = (µ St, ξµ St), where µ is a unitary at most tamely
ramified character and ξ = ξt is a tamely ramified quadratic character of F×. We
will construct an explicit basis and calculate the trace of θ−(σ) on the unipotent
conjugacy class generated by u =

(
I2 T

I2

)
for T = diag($−1u1, u2) with u1, u2 ∈ o×.

Under the (generalized) Jacquet-Langlands correspondence [Wei09a, §4.12.3], σ
corresponds to the representation σ̂ = (µ ◦ nrd, (µξ) ◦ nrd) of Mc. Since dim σ̂ = 1,
the paramodular restriction rJ ◦Θ(σ̂) is isomorphic to the action of J /J + on the
σ̂-isotypic subspace5 of L2(D2 × F×, µ2)J + .

Lemma 4.30. For α, β ∈ o×F with ξ(α−1β) = ξ(nrd($D)) let Nα,β be the set of
(X, t) ∈ D2×F× with nrd(x2)t ≡ β mod 1 + pF and nrd(x1$

−1
D )t ≡ α mod 1 + pF .

Fix a character Λ : (oD/pD)× → C× of order 2(q − 1). Then the function

ϕα,β(X, t) =

{
|t|2µ−1(t)Λ($Dx

−1
1 x2) (X, t) ∈ Nα,β,

0 else.

is in L2(D2 × F×, µ2)J +. The subspace Cϕα,β is σ̂-isotypic under πMc.

Proof. The first statement is Prop. 4.28. It is clear that the action of D× ×D× via
πMc preserves the support Nα,β. For (X, t) ∈ Nα,β and (d1, d2) ∈ D× ×D× we have

(ϕα,βπMc(d1, d2))(X, t) = | nrd(d1d2)|2ϕα,β(d1Xd2, nrd(d1d2)−1t)

= µ ◦ nrd(d1d2) · Λ($D(d2)−1x−1
1 x2d2)

Λ($Dx
−1
1 x2)

· ϕα,β(X, t).

It remains to show that the quotient is ξ ◦ nrd(d2). Indeed, for d2 ∈ o×D we have6

Λ($Dd2
−1
x−1

1 x2d2) = Λ($Dx
−1
1 x2d

−1
2 d2) = Λ($Dx

−1
1 x2) · Λ(d−1

2 d2)

and Λ(d−1
2 d2) = Λ(dq−1

2 ) = ξ ◦ nrd(d2). For d2 = $D write h = $Dx
−1
1 x2 ∈ o×D, then

by the analogous argument

Λ($Dd2
−1
x−1

1 x2d2) = Λ(x−1
1 x2$D) = Λ($−1

D h$D) = Λ(h) = Λ($Dx
−1
1 x2)Λ(h−1h)

and Λ(h−1h) = Λ(hq−1) = ξ(nrd(h)) = ξ(α−1β) = ξ(nrd($D)).

Lemma 4.31. The functions ϕα,β for coset representatives α, β in (oF/pF )× with
ξ(αβ) = ξ(nrd($D)) form a basis of the σ̂-isotypic subspace of L2(D2 × F×, µ2)J +.

5It is sufficient to study the isotypic subspace instead of the quotient, because Mc is compact
modulo center, so πMc

on L2(D2 × F×, µ2) is semisimple.
6We use x$D = $Dx for x ∈ o×D and the fact that o×D/(1 + pD) ∼= Fq2 is commutative.
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Sketch of proof. They are linearly independent because their supports are mutually
disjoint. Any σ̂-isotypic ϕ ∈ L2(D2 × F×, µ2)J + must satisfy the conditions of
Prop. 4.28. The restriction of ϕ to Nα,β is then a constant multiple of ϕα,β by the
σ̂-action and Hilbert’s Theorem 90. The condition on α, β comes from ϕ(X, t) =

(ϕπMc(x1x
−1
2 , x−1

1 x2))(X, t) = ξ(nrd(x−1
1 x2))ϕ(X, t) for nonzero x1, x2 ∈ D×. The

values of ϕ(0, x2, t) and ϕ(x1, 0, t) are invariant under πMc(d, d
−1) for every d ∈ D×,

and therefore zero. Hence ϕ is a linear combination of the ϕα,β.

Especially, the dimension of the paramodular restriction of θ−(σ) is (q − 1)2/2.

Proposition 4.32. The trace of rJ ◦ θ−(σ) at u =
(
I2 T

I2

)
for T = diag($−1u1, u2)

with u1, u2 ∈ o×F is

tr(rJ ◦ θ−(σ);u) = 1
2
(1 + ξ(−$−1

F u1u2)q). (4.31)

Proof. The Weil action of u is π(u)ϕ(X, t) = ψ(tQ(T,X,X))ϕ(X, t) by (4.25). For
(X, t) ∈ Nα,β this factor is

ψ(tQ(T,X,X)) = ψ($−1
F u1t nrd(x1) + u2t nrd(x2)) = ψ($−1

F u1 nrd($D)α + u2β).

The trace is then calculated with respect to the basis constructed in Lemma 4.31:

tr(rJ ◦ θ−(σ);u) =
∑

α,β∈(oF /pF )×

ξ(αβ)=ξ(nrd$D)

ψ(u1$
−1
F α nrd($D) + u2β)

=
∑

α∈(oF /pF )×

ψ(u1$
−1
F α nrd($D)

∑
β∈(oF /pF )×

ψ(u2β)1
2
(ξ(nrd($D)αβ) + 1)

= 1
2

∑
α∈(oF /pF )×

ψ(u1$
−1
F α nrd($D)) (−1 + ξ(nrd($D)αu2)G)

= 1
2

(
1 +

∑
α∈(oF /pF )×

ψ(u1$
−1
F α nrd($D))ξ(nrd($D)αu2)G

)
= 1

2
(1 + ξ($−1

F u1u2)G2)

with the Gauß sum G =
∑

α∈(oF /pF )×
ψ(α)ξ(α) =

∑
β∈(oF /pF )×

ψ(β)ξ(β) and G2 = ξ(−1)q.
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5. Cohomology of Siegel modular threefolds

We employ our results on parahoric restriction in order to describe the weak endo-
scopic (Thm. 5.8) and the Saito-Kurokawa part (Thm. 5.4) of the inner cohomology
H•! (SK(C),Vλ) as an `-adic representation of the absolute Galois group Gal(Q : Q)
and the Hecke algebra. We then prove the conjectures of Bergström, Faber and van
der Geer [BFvdG08].

5.1. Preliminaries

Let G = GSp(2g) be the group scheme of symplectic similitudes of genus g ≥ 1 with
real Lie algebra g = Lie(G(R)) and center Z ∼= Gm.1 Let A = R× Af be the ring of
rational adèle. For every prime p, fix the Haar measure on G(Qp) normalized on the
hyperspecial subgroups by vol(G(Zp)) = 1.

The adelic Siegel modular variety. The Siegel modular variety admits a descrip-
tion as a Shimura variety. We recall Milne’s exposition [Mil04, §6]:

Let S = ResC/R Gm,C be the Deligne torus. Fix a symplectic form ψ : R2g ×R2g → R
preserved by G = G(R). A complex structure J preserving ψ (i.e. ψ(J · , J · ) = ψ)
defines a Hodge structure hJ : S(R) → G, a + ib 7→ a + Jb. Let X+ and X−

be the set of J such that ψ( · , J · ) is positive or negative definite, respectively.
For X = X+ t X− this defines a map h : X → HomR(S(R), G), J 7→ hJ . The
triple (G, X, h) is a Shimura datum in the sense of Pink [Pin92, §3], cp.Deligne
[Del79, §2.1.1]. For the conjugation action of G on X let K ′∞ = CentG(h) ⊆ G
be the stabilizer of h, so X is diffeomorphic to G/K ′∞.2 For every open compact
Kf ⊆ G(Af ), the Shimura variety SKf attached to (G, X, h) is defined over the reflex
field Q. It is a quasi-projective variety whose complex points are diffeomorphic to
the orbifold

SKf (C) ∼= G(Q)\(X ×G(Af )/Kf ).

For neat congruence subgroups Kf of G(Af), this orbifold is a smooth analytic
variety. Every compact open Kf contains a neat compact open subgroup of finite
index [Bor69, 17.4].

1Mutatis mutandis, the following holds for arbitrary Shimura varieties with quasisplit connected
reductive groups G over a totally real global number field F/Q.

2Under this diffeomorphism, X+ ∼= GSp+(2g,R)/K ′∞ corresponds to the Siegel upper half space
of genus g, see (B.3).
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The local system. Let λ : G(Q) → AutQ(Vλ) be an algebraic finite dimensional
irreducible linear representation over a Q-vector space Vλ. For every Q-algebra A
and every compact open subgroup Kf of G(A) this defines a vector bundle

G(Q)\(Vλ(A)×G(A)/K ′∞Kf ) −→ G(Q)\(G(A)/K ′∞Kf ) ∼= SKf (C),

with fiber Vλ(A) = Vλ ⊗Q A. Here G(Q) acts both on Vλ(A) via λ and on G(A) via
the diagonal embedding. The local system Vλ(A) on SKf (C) attached to λ is the
locally constant sheaf of locally constant sections of this vector bundle.

We fix an arbitrary isomorphism C ∼= Q` and write Vλ for Vλ(C) or Vλ(Q`). This
should not lead to confusion as no other Q-algebra will occur.

The L2-cohomology. The L2-cohomology is defined via square-integrable differen-
tial forms [Zuc88, §1.6], [Sap05]. Fix a compact open subgroup K = Kf ⊆ G(Af ). A
differential form ω on an orbifold3 is square-integrable if both ω ∧ ∗ω and dω ∧ ∗ dω
are Lebesgue-integrable. Let Ω•(2) be the sheaf of complex-valued square-integrable
smooth differential forms on SK(C). It gives rise to a complex of square-integrable
differential forms with cofficients in Vλ(C) via the global section functor

L•2(SK(C),Vλ(C)) = H0(SK(C),Ω•(2) ⊗ Vλ(C)).

The differential forms in this complex are square-integrable on SK(C) with respect
to the fiber metric on Vλ. The L2-cohomology H•(2)(SK(C),Vλ(C)) is the cohomology
of this complex. On the pro-variety S(C) = lim←−K SK(C) the L2-cohomology is the
direct limit over the compact open subgroups K of G(Af )

H•(2)(S(C),Vλ) = lim−→
K

H•(2)(SK(C),Vλ). (5.1)

The canonical Hermitian complex structure gives rise to a Hodge decomposition,
i.e. a bigrading H•(2) =

⊕
p,qH

(p,q)
(2) , for 0 ≤ p, q ≤ dimCX = g(g + 1)/2. This

L2-cohomology of SK(C) is finite-dimensional [BC83, Thm.A] and by the L2-product
it enjoys Poincaré duality.

The Hecke algebra. For h ∈ G(Af ) and compact open subgroups K1, K2 ⊆ G(Af )
with h−1K2h ⊆ K1, there is a natural morphism

Th : SK2(C)→ SK1(C), G(Q)(x∞K
′
∞, xfK2) 7→ G(Q)(x∞K

′
∞, xfhK1).

On S(C) = lim←−K SK(C) the morphism Th is well-defined for every h and defines a
right action of G(Af ). By abuse of notation, the operator H•(2)(Th) acting from the
left on H•(2)(S(C),Vλ) is also denoted Th. For every open compact subgroup K, the
L2-cohomology of the orbifold SK(C) is isomorphic to the subspace of invariants
under Th for h ∈ K

H•(2)(S(C),Vλ)K = H•(2)(SK(C),Vλ).
3For differential forms on orbifolds, compare Satake [Sat57, §1.5].
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Recall that the Hecke algebra H is the algebra of compactly supported smooth
functions f : G(Af) → C with the convolution product. It acts on H•(2)(S(C),Vλ)
from the left by

∫
G(Af )

f(h)Th dh for f ∈ H. The subalgebraHK ⊆ H ofK-biinvariant
functions preserves the K-invariant subspace.

The Galois representation. The Baily-Borel-Satake compactification SK of SK
is a normal projective variety defined over Q with an embedding j : SK ↪→ SK . In
general, this compactification is highly singular. For a non-archimedean valuation ` of
Q we fix a noncanonical field isomorphism Q`

∼= C. Then the intersection cohomology
of SK is determined by the Zucker isomorphism4

H•(2)(SK(C),Vλ(C)) ∼= IH•(SK ×Spec(Q) Spec(Q); j!∗Vλ(Q`)).

This defines a canonical action of the absolute Galois group ΓQ on H•(2)(SK(C),Vλ(C)),
which commutes with the action of the Hecke algebra HK .

The Matsushima-Murakami formula. By a well-known extension of a result of
Borel and Casselman [BC83, Prop. 5.6] there is a Hecke-equivariant isomorphism to
the relative Lie algebra cohomology

H•(2)(SK(C),Vλ(C)) ∼=
⊕
ω

H•(g, K ′∞;L2(G(Q)\G(A), ω)∞ ⊗ Vλ)K . (5.2)

The sum runs over unitary central characters ω = ω∞ωf , trivial on Z(A)∩K ′∞K, and
L2(G(Q)\G(A), ω)∞ denotes the space of smooth automorphic forms with central
character ω.

The Hilbert direct sum of the irreducible subrepresentations in L2(G(Q)\G(A), ω)
constitutes the discrete spectrum L2

d(G(Q)\G(A), ω). Its orthocomplement is the
continuous spectrum; it does not contribute to the L2-cohomology [BC83, Thm. 4.5].
The L2-cohomology of SK(C) is therefore determined by the K-invariant subspace
L2
d(G(Q)\G(A), ω)K of the discrete spectrum. Inside the discrete spectrum is the

cuspidal spectrum L2
cusp(G(Q)\G(A), ω), the closed subspace of cuspidal automorphic

forms. The cuspidal cohomology is the subspace of (5.2) with

H•cusp(SK(C),Vλ(C)) ∼=
⊕
ω

H•(g, K ′∞;L2
cusp(G(Q)\G(A), ω)K ⊗ Vλ). (5.3)

The relative Lie algebra cohomology admits a natural bigrading Hn =
⊕

p+q=nH
(p,q)

compatible with the bigrading on H•(2)(S(C),Vλ(C)) and with the “filtration bête“ of
Faltings and Chai [FC90, Thm. 5.5].

4It was conjectured by Zucker and proved by Saper and Stern [SS90] and independently by
Looijenga [Loo88], compare [Zuc88].
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The spectral decomposition. The regular representation of G(Af ) on the smooth
discrete spectrum decomposes as a direct sum L2

d(G(Q)\G(A), ω) ∼=
⊕

πm(π)π over
isomorphism classes of irreducible admissible representations π with finite multiplicity
m(π). Those π with m(π) > 0 are by definition the automorphic representations in
the discrete spectrum. Every irreducible automorphic representation is a restricted
tensor product π =

⊗
v πv = π∞ ⊗ πf over irreducible admissible representations πv

of G(Qv) for v <∞ and an irreducible (g, K ′∞)-module π∞, see [Gel75, §4.C]. The
spectral decomposition is the Hecke-equivariant isomorphism

H•(2)(SK(C),Vλ(C)) ∼=
⊕
π

m(π)H•(g, K ′∞; π∞ ⊗ Vλ)πKf (5.4)

to the direct sum over isomorphism classes of automorphic representations π, compare
[Art89, (2.2)]. The (g, K ′∞)-cohomology H•(g, K ′∞; π∞⊗Vλ) has been determined by
Vogan and Zuckerman [VZ84]. By Wigner’s Lemma, it vanishes unless the central
character and the infinitesimal character of π∞⊗Vλ(C) are trivial. The Hecke algebra
acts on the HK-modules πKf . Since the Hecke action commutes with the Galois action,
each πf is preserved by action of the absolute Galois group ΓQ and the cohomology
decomposes as a direct sum of ΓQ ×HK-modules

H•(2)(SK(C),Vλ(C)) ∼=
⊕
πf

ρπf � πKf

where ρπf is the associated `-adic Galois representation. The cuspidal cohomology
admits the same decomposition as a sum over cuspidal π.

The inner cohomology. Let us temporarily drop (SK(C),Vλ(C)) from the notation.
The image of the natural map

H•c −→ H• (5.5)

from the cohomology with compact support to the cohomology is the inner cohomology
H•! and the kernel is the compactly supported Eisenstein cohomology H•c,Eis. There
are well-known natural Hecke-equivariant morphisms

H•cusp −→ H•c −→ H•(2) −→ H•. (5.6)

Borel [Bor81, Cor. 5.5] has shown that the composition H•cusp −→ H•! is an injection.
At least for g = 2 the cuspidal cohomology is actually isomorphic to the inner
cohomology. Weissauer has shown this for the trivial local system [Wei88, 10.4], but
the proof for arbitrary local systems is analogous.
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5.2. Cohomological automorphic representations for GSp(4)

Let G = GSp(4) be the group of symplectic similitudes of genus two. From now on,
we fix a pair of integers λ1 ≥ λ2 ≥ 0 with even sum λ1 + λ2. Let λ be the irreducible
algebraic representation of G(Q) with trivial central character and whose restriction
to Sp(4,Q) has highest weight (λ1, λ2). This choice of λ is self-dual and corresponds
to the unitary normalization in the sense of [Wei09a, p.3]. We say λ is regular if
λ1 > λ2 > 0. For regular λ the inner cohomology H i

! (SK(C),Vλ) vanishes for i 6= 3
by a result of Faltings [Fal83].

5.2.1. (g, K ′∞)-modules with non-zero cohomology

By the spectral decomposition, an automorphic representation π = π∞ ⊗ πf con-
tributes to the L2-cohomology if and only if H•(g, K ′∞; π∞ ⊗ Vλ) is non-zero. The
irreducible (g, K ′∞)-modules with non-zero cohomology have been determined by
Vogan and Zuckerman [VZ84]. For the case of GSp(4), compare [SO90, §2], [Tay93].

Theorem 5.1 (Vogan-Zuckerman). For irreducible admissible pre-unitary (unitary
up to twist) (g, K ′∞)-modules π, the cohomology H(i,j)(g, K ′∞; π∞ ⊗ Vλ) with Hodge
type (p, q) is one-dimensional in the following cases and zero otherwise.

1. For every λ as above, the holomorphic non-generic discrete series π∞ = πHλ+(2,1)

with trivial central character and infinitesimal character χλ+(2,1) contributes
with Hodge types (3, 0), (0, 3).

2. For every λ as above, the generic non-holomorphic discrete series π∞ = πWλ+(2,1)

with trivial central character and infinitesimal character χλ+(2,1) contributes
with Hodge types (2, 1), (1, 2).

3. For λ1 = λ2 ≥ 0, the (g, K ′∞)-module of the non-tempered Langlands quotient

π∞ = L(ν1/2D(2λ1 + 4), ξν−1/2) (5.7)

with ξ ∈ {1, sgn} contributes with Hodge types (1, 1) and (2, 2). It is denoted
(ξ ◦ sim)⊗ σ−λ1+3 by Schmidt [Sch05b] and π2,±

λ by Taylor [Tay93].

4. For λ1 ≥ λ2 = 0, the (g, K ′∞)-module of the non-tempered Langlands quotient

π∞ = L(sgn · ν, ν−1/2Dsgn(λ1 + 3)) (5.8)

with trivial central character contributes with Hodge types (0, 2), (2, 0), (1, 3),
(3, 1). This is π1

λ with c = 0 in Taylor’s notation.

5. For λ1 = λ2 = 0, the (g, K ′∞)-modules of the one-dimensional representations
π∞ = sgn ◦ sim and π∞ = 1 with trivial central character contribute with Hodge
types (0, 0), (1, 1), (2, 2), (3, 3).
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Notation: On R× the valuation character is ν(x) = |x| and the sign character is
sgn(x) = x/|x|. The discrete series representations of GL(2,R) and GSp(4,R) are
described in Examples 2.8 and 2.10.

5.2.2. Cohomological discrete spectrum

According to Langland’s principle of functoriality every L-homomorphism LH → LG
should give rise to a correspondence between automorphic representations. For
G = GSp(4) we have the following classification of cohomological automorphic
representations π of G(A) in the discrete spectrum.

1. The Soudry lifts [Sou84] are strongly associated5 to the Klingen parabolic
Q = LQ n UQ. On the L-group side they correspond to the embedding
LLQ → LG. Their degree five L-function has a simple pole at s = 2. They are
attached to automorphic representations σ of GL(2). Their archimedean factor
is the Langlands quotient (5.8) for λ2 = 0. The cuspidal Soudry lifts are the
Soudry-CAPs.6

2. Piatetski-Shapiro’s Saito-Kurokawa lifts [PS83b] are strongly associated7 to
the Siegel parabolic P = LP n UP . On the L-group side they correspond to
the standard embedding LLP → LG. Up to twists, these are the automor-
phic representations which have a pole in the degree four spinor L-function.
Their archimedean factors are the holomorphic discrete series πHλ+(2,1) and the
Langlands quotients (5.7) for λ1 = λ2. The condition for cuspidality has been
explicitly determined, see Section 5.3.

3. The weak endoscopic lifts are the cuspidal automorphic representations π whose
degree four spinor L-function is a product L(s, σ1,v)L(s, σ2,v) at almost every
local place for distinct cuspidal automorphic representation σ1, σ2 of GL(2)
with equal central character. Their archimedean factors are the discrete series
π∞ = πHλ+(2,1) and π∞ = πWλ+(2,1). On the L-group side they correspond to the
embedding ξ : LM → LG of (4.5). See Section 5.4.

4. The stable spectrum consists of the cuspidal automorphic representations π
which are neither CAP nor weak endoscopic lifts. The archimedean component
is either πHλ+(2,1) or π

W
λ+(2,1) in the discrete series. The four-dimensional Galois

representations ρπf are irreducible [Wei05].

5There are also Soudry lifts strongly associated to the Borel, but they are not cohomological.
6Not every Soudry lift is cuspidal, compare [Wei88, §8] and [Sou84, Lemma 1.3]. This is a misprint
in [Tay93, p.293].

7Piatetski-Shapiro’s construction yields lifts strongly associated to the Borel, but they are not
cohomological.
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5. The one-dimensional automorphic representations π = χ ◦ sim factor over the
similitude character with a Hecke character χ. They are never cuspidal.

This gives rise to a decomposition8 of the L2-cohomology:

H•(2) = H•(2),Soudry ⊕H•(2),SK ⊕H•endo ⊕H•stab ⊕H•sim (5.9)

where each summand is the subspace of the spectral decomposition (5.2) generated
by the corresponding automorphic representations in the above list. The inner
cohomology decomposes as the subspace generated by the cuspidal spectrum:

H•! = H•!,Soudry ⊕H•!,SK ⊕H•endo ⊕H•stab. (5.10)

In the remaining part of this chapter we will discuss the Saito-Kurokawa part and
the weak endoscopic part of the L2-cohomology for certain K ⊆ GSp(4,Af ). In order
to apply results about parahoric restriction, we consider only those compact open
subgroups K that satisfy∏

v<∞,v /∈S

GSp(4,Zv)
∏

v<∞,v∈S

P+
v ⊆ K ⊆ G(Af ), (5.11)

for a finite set S of places and parahoric subgroups Pv ⊆ GSp(4,Qv) for each v ∈ S.
This includes the principal congruence subgroups of squarefree level.

5.3. Saito-Kurokawa Lift

The classical Saito-Kurokawa Lift has been constructed by Maaß, Andrianov and
Zagier [Zag81] for the full modular group. To an elliptic cuspidal eigenform f for
the full modular group SL(2,Z) and weight 2k − 2 for even k ≥ 10 it attaches a
scalar-valued genus two Siegel cuspform for the full Siegel modular group Sp(4,Z)
and weight Sym0⊗ detk, such that its degree four spinor L-function equals

ζ(s− k + 1)ζ(s− k + 2)L(f, s),

where ζ denotes the Riemann Zeta Function and L(f, s) has central value at s = k−1.
Piatetski-Shapiro [PS83b] and Schmidt [Sch05b] have generalized the classical Saito-
Kurokawa-lift from automorphic representations σ of PGL(2,A) to automorphic
representations of the twofold covering of SL(2) and from there to automorphic rep-
resentations π of PGSp(4,A). Every automorphic representation strongly associated
to the Siegel parabolic (or the Borel) is a twist of such a lift by a Hecke character
ω : Q×\A× → C×.

8Since SK(C) and λ are clear from the context, we write H•? instead of H•? (S(C),Vλ).
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Let σ be a cuspidal automorphic representation of GL(2,A) with trivial central
character. Fix a finite set S of places including∞, such that σv is spherical for v /∈ S.
For a set Σ ⊆ S of places let σΣ be the irreducible subquotient of the parabolically
induced representation | · |1/2A × | · |−1/2

A of GL(2,A) such that σΣ,v is locally in
the discrete series exactly at the places v ∈ Σ. The non-cuspidal automorphic
representation σΣ of PGL(2,A) is locally given by

σΣ,v =

{
1GL(2,Qv) v /∈ Σ,
StGL(2,Qv) v ∈ Σ,

where StGL(2,R) is the discrete series representation D(2). We assume that σv is in the
discrete series for every v ∈ Σ. Then there is an irreducible admissible representation
π = π(σ, σΣ) of GSp(4,A) with trivial central character such that at almost every
place v the degree four L-factor is

L(πv, s) = L(σv, s)L(σΣ,v, s).

For an explicit construction, see Piatetski-Shapiro [PS83b, §4–6]. The lift is local in
the sense that πv = πv(σv, σΣ,v) only depends on σv and σΣ,v. Every local factor πv
is unitary and non-generic.

The local non-archimedean lift. Fix a non-archimedean place v of Q and let
ν = | · |v. The non-cuspidal local factors πv have been determined explicitly by
Schmidt [Sch05b, p. 239], this is reprinted in the third column of Table 5.1. Cuspidal
local factors πv can only occur at v ∈ Σ. But then πv coincides with the anisotropic
theta-lift πv(σv, Stv) = θ−(σv, Stv) of Section 4.4 and Table 4.1 by [Sch05b, Prop. 5.8].

The local archimedean lift. The archimedean factors have also been determined
by Schmidt [Sch05b, §4].

If ∞ /∈ Σ and σ∞ is the irreducible principal series representation χ × χ−1 for
a unitary character χ of R×, then the lift is the unitary non-generic irreducible
representation π∞(σ∞, 1GL(2,R)) = χ1GL(2,R) o χ−1. Its (g, K)-module does not
contribute to cohomology.

If ∞ /∈ Σ and σ∞ is the discrete series 9 representation D(2k− 2), k ≥ 2, of GL(2,R)
with trivial central character, then the lift is the non-tempered Langlands quotient

π∞(σ∞, 1GL(2,R)) = L(| · |1/2∞ D(2k − 2), | · |−1/2
∞ )

of (5.7), has minimal K-type of weight (k − 1, 1− k) and contributes to cohomology
with local system Vλ for λ = (k − 3, k − 3) and with Hodge-type (1, 1) and (2, 2).

If ∞ ∈ Σ, then by assumption σ∞ = D(2k − 2), k ≥ 2, is in the discrete series. For
k ≥ 3, the lift π∞(D(2k − 2), Stv) is the holomorphic discrete series representation

9Schmidt [Sch05b] denotes the discrete series of PGL(2,R) with Blattner parameter 2k − 2 by
D(2k − 3) instead of our D(2k − 2).
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σv σΣ,v πv rKv(πv) rJv(πv)

even q odd q

µ× µ−1 1 (µ · 1) o µ−1 χ6(k) χ3(µ̃, µ̃−1) [1× µ̃, 1× µ̃−1]

St 1 L(ν1/2 · St, ν−1/2) θ3 θ4(1) [1, 1]

St τ(T, ν−1/2) θ2 θ3(1) [ St, St]

ξu · St 1 L(ν1/2ξu · St, ν−1/2) θ1 θ1(1) [1, 1] + [ St, St]
St θ−(ξu · St, St) cusp. θ5 θ2(1) 0

ξt · St 1 L(ν1/2ξt · St, ν−1/2) − τ2(1) [1× λ0, 1× λ0]∓
St θ−(ξt · St, St) cusp. − 0 [πΛ′0

, πΛ′−1
0

]±

cuspidal 1 L(ν1/2 · σv, ν−1/2) χ8(l′′) χ5(ωΛ, 1) 0
St θ−(σv, St) cusp. 0 0 [πΛ′ , πΛ′−1 ]

Table 5.1.: The local Saito-Kurokawa lifts at a non-archimedean place v. For depth
zero σv, the right hand side shows the parahoric restriction of πv at the
standard hyperspecial parahoric Kv and the paramodular Jv. The sign
depends on ξt($) = ±1.

πHk−1,k−2 with infinitesimal character χk−1,k−2 and Blattner parameters ±(k, k). It
contributes to the cohomology with local system Vλ for λ = (k − 3, k − 3) and with
Hodge types (3, 0) and (0, 3). For k = 2, the lift π∞( StGL(2,R), StGL(2,R)) is only in
the limit of the discrete series.

The global Saito-Kurokawa lift. Attached to a cuspidal automorphic representa-
tion σ of GL(2,A) with trivial central character and a subset Σ ⊆ S of places where
σv is in the discrete series, is the restricted tensor product π =

⊗
v πv(σv, σΣ,v) of

the local lifts. It occurs in the discrete spectrum of GSp(4,A) with trivial central
character and multiplicity

m(π) = 1
2
(1 + (−1)#Σε(σ, 1/2)). (5.12)

For the ground field Q, an argument analogous to Prop. 5.7 shows that the degree
four Euler factors are

L(πv, s) = L(σv, s)L(σΣ,v, s) and ε(πv, s) = ε(σv, s)ε(σΣ,v, s) (5.13)

at every place v. The global lift π is cuspidal if and only if L(σ, 1/2) = 0 or Σ 6= ∅,
compare Schmidt [Sch05b, Thm. 3.1] and Piateski-Shapiro [PS83b, Thm. 2.6]. It is
weakly equivalent to the globally Siegel induced representation | · |1/2A σ o | · |−1/2

A .

Piatetski-Shapiro makes the additional assumption L(χσ, 1/2) 6= 0 for a certain
quadratic Hecke character χ, but for ε(σ, 1/2) = 1 that property is always satisfied
[FH95, Thm.B.1].

Parahoric restriction. Fix a non-archimedean place v of Q with residue field Fq.
In order to determine the parahoric restriction of the local Saito-Kurokawa lift, it is
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sufficient to do this for the standard hyperspecial parahoric Kv = GSp(4,Zv) and
the standard paramodular group Jv ⊆ GSp(4,Qv) by (2.5).

Theorem 5.2. Let πv = πv(σv, σΣ,v) be a local Saito-Kurokawa lift of a generic
irreducible admissible representation σv of GL(2,Qv) with trivial central character.
Then σv has depth zero if and only if πv has depth zero. In that case, the hyperspecial
parahoric restriction and the paramodular restriction are given by the corresponding
columns of Table 5.1.

Proof. For the non-cuspidal local factors πv, the hyperspecial parahoric restriction
rKv(πv) is given by Table 3.1. If πv is cuspidal, it is isomorphic to the anisotropic
theta-lift θ−(σv, St) = πv, see Table 4.2.

For the hyperspecial parahoric restriction at non-archimedean v, we obtain

dim rKv πv(σv, 1) + dim rKv πv(σv, Stv) = (q2 + 1) dim rGL(2,Zv) σv, (5.14)

where the second summand is zero for v /∈ Σ.

Notation 5.3 (Table 5.1). The notation is analogous to Section 4.2. For a smooth
character µ of Q×v we write µ̃ = rZ×v µ. If σv is cuspidal irreducible of depth zero,
its hyperspecial parahoric restriction rGL(2,Zv)(σv) is also cuspidal irreducible and
attached to a regular character Λ of F×q2 as in Table A.1. Since Λq+1 = 1, there is a
character Λ′ of F×q2 with (Λ′)q−1 = Λ. Let ωΛ be the restriction of Λ′ to F×q2 [q+ 1]. As
usual, ξu and ξt are the unramified and either one of the tamely ramified quadratic
characters. Let λ0 and Λ0 denote the non-trivial quadratic characters of F×q and F×q2 ,
respectively.

For even q the canonical homomorphism Sp(4, q)→ PGSp(4, q) is an isomorphism
and we can use Enomoto’s notation [Eno72] as in Section A.4. Let k ∈ Z/(q − 1)Z
and l′′ ∈ Z/(q+ 1)Z be such that µ̃ = γ̂k and ωΛ = η̂l

′′ . For F = Q, this means k = 0
and l′′ = 1 or 2.

The cohomology H•SK. We have shown:

Theorem 5.4. Fix a finite set S of places of Q, including ∞ ∈ S, and let K ⊆
GSp(4,Af) be a subgroup of the form (5.11). For λ = (k − 3, k − 3), k ≥ 3, the
Hecke action of

∏
v<∞,v∈S Pv/P+

v on the Saito-Kurokawa part of the cohomology is
the representation

H
(p,q)
SK (SK(C),Vλ) ∼=

⊕
σ

⊕
ω

⊕
Σ

H(p,q)(g, K ′∞;ω∞π∞ ⊗ Vλ)
⊗

v∈S,v<∞

rPv(ωvπv).

(5.15)
The first sum runs over cuspidal automorphic representations σ of GL(2,A) with
trivial central character, with σ∞ = D(2k− 2), spherical outside of S and σv of depth
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zero for v ∈ S, v < ∞. The second sum runs over locally tamely ramified unitary
Hecke characters ω of A× with ω∞ ∈ {1, sgn}, which are unramified outside of S.
The third sum runs over subsets Σ ⊆ S of places where σv is in the discrete series
such that (−1)#Σ = ε(σ, 1/2).

Example 5.5. Fix a principal congruence subgroup K of prime level p and let
λ = (k − 3, k − 3), k ≥ 3. The Saito-Kurokawa cohomology with local coefficients in
Vλ defines a representation of GSp(4, Ẑ)/K ∼= GSp(4,Z/pZ), which is non-zero only
in the following cases. For Hodge type (∗, ∗) = (3, 0) and (0, 3) it is

H∗,∗SK(SK(C),Vλ) =
⊕
σ,ω

{
ω̃ · rKp πp(σp, St), ε(σp, 1/2) = (−1)k−1,

ω̃ · rKp πp(σp, 1), ε(σp, 1/2) = −(−1)k−1.
(5.16)

For Hodge type (∗) = (1, 1) and (2, 2) it is

H∗,∗SK(SK(C),Vλ) =
⊕
σ,ω

{
ω̃ · rKp πp(σp, St), ε(σp, 1/2) = −(−1)k−1,

ω̃ · rKp πp(σp, 1), ε(σp, 1/2) = (−1)k−1.
(5.17)

The sum runs over automorphic representations σ of GL(2,A) with trivial central
character σ∞ ∼= D(2k − 2). The second sum runs over Hecke characters ω corre-
sponding to characters ω̃ of (Z/pZ)×. The hyperspecial parahoric restriction is given
by Table 5.1.

Proof. The four cases correspond to the subsets Σ = {∞, p}, {∞}, {p}, ∅ of S =
{p,∞}. The central archimedean epsilon factor is ε(D(2k − 2), 1/2) = (−1)k−1, so
the automorphy condition ε(σ, s) = ε(σΣ, s) of the global Saito-Kurokawa lift depends
on the parity of k.

The non-cuspidal Saito-Kurokawa lifts are those with Σ = ∅ and L(σ, 1/2) 6= 0.
Therefore H3,0

SK ⊆ H3,0
cusp is always cuspidal and analogous for (0, 3). For Hodge types

(1, 1) and (2, 2), the cuspidal part HSK ∩Hcusp is given by excluding those σ with
ε(σp, 1/2) = (−1)k−1 and L(σ, 1/2) 6= 0 from the above sum.

The Galois representation. Let ρσ be the `-adic Galois representation attached
to a cohomological representation σ of GL(2,A) with σ∞ = D(2k − 2), k ≥ 3 in the
discrete series. Then the `-adic Galois representation ρπ attached to the cohomological
Saito-Kurokawa lift π = π(σ, σΣ) occuring with λ1 = λ2 = k − 3 is

ρπfin
∼=

{
ρσ π∞ = πHλ+(2,1),

Q`(−λ1 − 1)⊕Q`(−λ1 − 2), π∞ = π2±
λ .

(5.18)
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5.4. Weak endoscopic lift

The weak endoscopic lift is the correspondence that belongs to the embedding of
L-groups LM → LG for the proper elliptic endoscopic group

M = (GL(2)×GL(2))/GL(1)

of G = GSp(4, F ) in (4.5) under Langlands functoriality. To a cuspidal automorphic
representation σ = (σ1, σ2) of M(A) with σ1 6∼= σ2 it attaches an endoscopic L-packet
of automorphic representations π of GSp(4) with local degree four spinor L-factor

L(π, v, s) = L(σ1,v, s)L(σ2,v, s)

at almost every place v. Since we are interested in contributions to the cohomology
with a local coefficient system, we fix integers λ1 ≥ λ2 ≥ 0.

The local endoscopic L-packets. Let v be a local place of Q. The local endoscopic
L-packet attached to a unitary generic irreducible admissible representation σv
of M(Qv) contains one or two unitary irreducible admissible representations of
GSp(4, Fv). If σv is in the discrete series, the local L-packet is {Π+(σv),Π−(σv)},
otherwise it is a singleton Π+(σv).

For non-archimedean places the local endoscopic L-packet is the one in Lemma 4.5.

For the archimedean place v =∞ let ω be a unitary character ω of R× with ω(−1) =
(−1)λ1+λ2+1. To the generic discrete series representation σ∞ = (Dω(r1),Dω(r2)) with
central character ω and weights

r1 = λ1 + λ2 + 4, r2 = λ1 − λ2 + 2 (5.19)

is attached the local endoscopic L-packet {Π+(σ∞),Π−(σ∞)}. It contains the holo-
morphic non-generic discrete series irreducible representation Π−(σ∞) = πHλ,ω and
the non-holomorphic generic irreducible representation Π+(σ∞) = π∞ described in
Example 2.10. Compare [Wei09a, Cor.4.2].

If σ∞ is not in the discrete series, then without loss of generality σ∞,1 = µ1 × µ2 is
in the principal or in the complementary series. The archimedean local endoscopic
L-packet contains the single representation Π+(σ∞) = µ−1

1 σ2 o µ1 [Wei09a, Lemma
4.27]. It does not contribute to cohomology.

The global lift. Fix a generic cuspidal automorphic representation σ = (σ1, σ2) of
M(A) and let S be the finite set of local places v where σv is in the discrete series.
We assume that ∞ ∈ S. A cuspidal automorphic representation π of GSp(4,A) is a
weak endoscopic lift attached to σ if it is not CAP and has local degree four spinor
L-factor

L(πv, s) = L(σ1,v, s)L(σ2,v, s). (5.20)

92



at almost every place v. The cuspidal automorphic representations π that occur as
weak endoscopic lifts form the global L-packet attached to σ. The global L-packet
contains a cuspidal automorphic representation if and only if σ1 6∼= σ2. A weak
endoscopic lift attached to σ is also attached to σ∗ = (σ2, σ1), but this is the only
equivalence between global L-packets by the strong multiplicity one theorem for
GL(2) [Wei09a, Prop. 5.2].

Theorem 5.6 ([Wei09a, Thm. 5.2]). Suppose the generic automorphic cuspidal rep-
resentation σ satisfies σ1 6∼= σ2. A restricted tensor product of irreducible admissible
representations π =

⊗′
v πv is a weak endoscopic lift of σ if and only if there is a

subset Σ ⊆ S of finite even cardinality such that

πv ∼=

{
Π+(σv) v /∈ Σ,

Π−(σv) v ∈ Σ.

In that case π is cuspidal automorphic, not CAP, and has multiplicity one.

The automorphic representations in the global L-packet form an equivalence class
under weak equivalence. If σv is in the discrete series at d ≥ 2 places, then the
global L-packet contains 2d−1 automorphic representations, otherwise there is only
the globally generic automorphic representation π+(σ) =

⊗′
v Π+(σv).

The local degree four Euler factors. Suppose σ = (σ1, σ2) is a cuspidal auto-
morphic representation of M(A) with σ1 6∼= σ2.

Proposition 5.7. For every weak endoscopic lift π of σ, the local degree four spinor
factors are

L(σ1,v, s)L(σ2,v, s) = L(πv, s) and ε(σ1,v, s)ε(σ2,v, s) = ε(πv, s) (5.21)

at every nonarchimedean place v.

Proof. Each non-cuspidal factor is given explicitly by Table 4.1 and the local spinor
factors are given by [RS07, Tables A.8 and A.9]. If πv is cuspidal generic, then
both σ1,v and σ2,v are also cuspidal generic, so L(πv, s) = 1 = L(σ1, s)L(σ2, s).
The corresponding equation of γ-factors [PSS81, Thm. 3.1] implies (5.21) by the
local functional equation. If πv is non-generic cuspidal and if Qv has odd residue
characteristic, (5.21) is implied by a result of Danisman [Dan11, Cor. 4.5] and the
fact that the local Jacquet-Langlands correspondence preserves L- and ε-factors.

It remains to discuss the case of non-generic cuspidal πv at the place v = 2. Choose
a cuspidal automorphic representations σ′ of M(A) with σ′1 6∼= σ′2, unramified at
v = 2, in the discrete series at at least some other non-archimedean place, with
the same archimedean factors σ′i,∞ ∼= σi,∞ [Wei09a, p. 100]. For any weak endo-
scopic lift π′ of σ′ with the same archimedean factor, the previous arguments imply
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(5.21). By the local functional equation, the archimedean γ-factors must satisfy
γ(σ1,∞, s)γ(σ2,∞, s) = γ(π∞, s). But then the same functional equation applied to
σ and π implies γ(σ1,v, s)γ(σ2,v, s) = γ(πv, s) for v = 2. By the same argument as
in the proof of [Dan11, Cor. 4.5], the local γ-factors uniquely determine the L- and
ε-factors at v = 2.

The cohomology. By the above arguments, we have shown:

Theorem 5.8. Fix a finite set S of places of Q, including ∞ ∈ S, and a compact
open subgroup K ⊆ GSp(4,Af ) of the form (5.11). For every λ1 ≥ λ2 ≥ 0, the Hecke
action of

∏
v<∞,v∈S Pv/P+

v on the weak endoscopic part of the cohomology is the
representation

H•endo(SK(C),Vλ) ∼=
⊕
σ

⊕
Σ

H•(g, K ′∞; π∞ ⊗ Vλ)
⊗

v∈S,v<∞

rPv(πv). (5.22)

The first sum runs over cuspidal automorphic representations σ of M(A), with
archimedean factor σ∞ = (D(r1),D(r2)) as in (5.19), spherical for non-archimedean
v /∈ S and of depth zero at the non-archimedean v ∈ S. The second sum runs over
subsets Σ ⊆ S of finite even cardinality. The parahoric restriction of Π+(σv) and
Π−(σv) at the maximal standard parahorics is given by Tables 4.2 and 4.4.

Example 5.9. Suppose K ⊆ GSp(4,Af ) is a principal congruence subgroup of prime
level p corresponding to the standard hyperspecial parahoric Kp of GSp(Qp). The
action of GSp(4, Ẑ) on the weak endoscopic part of the cohomology of SK(C) with
local coefficients in Vλ defines a representation of GSp(4,Z/pZ), which is non-zero
only in the following cases:

H
(3,0)
endo (SK(C),Vλ) ∼= H

(0,3)
endo (SK(C),Vλ) ∼=

⊕
σ

rKp Π−(σp), (5.23)

H
(2,1)
endo (SK(C),Vλ) ∼= H

(1,2)
endo (SK(C),Vλ) ∼=

⊕
σ

rKp Π+(σp). (5.24)

The sums run over cuspidal automorphic representations σ of M(A), unramified at
v 6= p, with archimedean factor σ∞ ∼= (D(r1),D(r2)) for the weights (5.19). The
hyperspecial parahoric restriction is given by Table 4.2.

The Galois representations. Let σ = (σ1, σ2) be a cuspidal automorphic repre-
sentation of M(A) with `-adic Galois representations ρσ1 and ρσ2 attached to σ1 and
σ2. We assume σ∞ is the discrete series Dω(r1),Dω(r2) with weights r1 > r2, this
distinguishes σ1 from σ2. Then the (semisimplified) `-adic Galois representation
attached to a weak endoscopic lift π of σ is calculated by the cohomological trace
formula [Wei09a, Cor. 4.2, 4.4]

ρπf =

{
ρσ1 π∞ = πHλ ,

ρσ2(−λ2 − 1) π∞ = πWλ .
(5.25)

By a result of Ribet these representations are irreducible.
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5.5. Conjectures of Bergström, Faber and van der Geer

Bergström, Faber and van der Geer [BFvdG08] made explicit conjectures on the
inner cohomology in level two. We will now prove these conjectures.

At first, we adjust our notation to their situation. The moduli space A2,N of
principally polarized abelian surfaces with a level N -structure is a Deligne-Mumford
stack defined over Spec(Z[1/N ]). Its analytification over the category of complex
analytic spaces is isomorphic to the orbifold H2/Γ[N ], the quotient of the Siegel upper
half space by the principal congruence subgroup Γ[N ] ⊆ Sp(4,Z). The cohomology
is preserved by Serre’s GAGA theorems. Under strong approximation, H2/Γ[N ] is
isomorphic to SK′(N)(C) for the modified principal congruence subgroup

K ′(N) = {x ∈ GSp(4, Ẑ) |x ≡ diag(1, 1, ∗, ∗) mod N}. (5.26)

The local system Vλ is parametrized by integers (l,m) = (λ1, λ2) with l ≥ m ≥ 0.

The holomorphic part H(3,0)
! (A2,N ,Vλ) of the inner cohomology is Hecke-isomorphic

to the space of holomorphic Siegel cuspforms of weight Syml−m⊗ detm+3 for the
principal congruence subgroup Γ[N ] ⊆ Sp(4,Z).

Let τN,k = #Sk(Γ0[N ])new denote the cardinality of the finite set of normalized elliptic
cuspidal newforms10 of weight k and level N . We write τ ′N,k for the cardinality of
the subset with vanishing central L-value.11 In level N = 2, we denote by τ±k the
subspace of forms with Atkin-Lehner eigenvalue ±1.

Scholl [Sch90] has constructed a motive for the space of elliptic cuspidal newforms
with weight k and level N . Since we need only the underlying semisimple `-adic
Galois representation of ΓQ, we write

S[Γ0(N), k]new =
⊕

f∈Sk(Γ0[N ])new

ρf

where ρf is the Galois representation attached to f by Deligne [Del68]. We use
the corresponding notation also for the subspaces S±k (Γ0[N ]) with Atkin-Lehner
eigenvalue ±1 and the subspace S ′k(Γ0[N ]) with vanishing central L-value. We write
Lm = Q`(−m) for the m-power of the dual cyclotomic character as in [BFvdG08],
and the trivial character L0 is dropped from the notation.

5.5.1. Previous results on level one

For level N = 1, Faber and van der Geer [FvdG04, §2], [vdG11, Cor. 10.2] and
Petersen [Pet15] have determined the Eisenstein cohomology of A2,1 explicitly. We
10By definition, newforms are eigenforms of the Hecke algebra.
11For k ≡ 2 mod 4, we have τ ′N,k = τN,k by the functional equation. For k ≡ 0 mod 4, it can be

verified numerically that τ ′N,k = 0 for small values of k and N .
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only give the regular case here to simplify the notation. For irregular λ, see Petersen
[Pet15, Thm. 2.1].

Theorem 5.10. Let Vλ be a regular local system with l + m even. The compactly
supported Eisenstein cohomology H i

c,eis(A2,1,Vλ(Q`)) decomposes as an `-adic Galois
representation for i = 2 as

S[Sp(4,Z),m+ 2] + τ1,l−m+2L
0 +

{
L0 l,m odd,
0 l,m even,

for i = 3 as
S[Sp(4,Z), l + 3] + τ1,l+m+4L

m+1,

and is zero for i = 0, 1, 4, 5, 6.

By counting points on finite fields [vdG], Faber and van der Geer obtained conjectural
results on the Euler characteristic of the cohomology with compact support and this
led to precise conjectures about the inner cohomology [FvdG04]. Indeed, the inner
cohomology can be described explicitly as follows.

Theorem 5.11. Fix an arbitrary local system Vλ with l + m even. The inner
cohomology H•! (A2,Vλ) of the moduli space of principally polarized abelian varieties
is the direct sum of the following contributions. The endoscopic part

H i
endo(A2,Vλ) =

{
τ1,l+m+4S[Sp(4,Z), l −m+ 2]⊗ Lm+1 i = 3

0 i 6= 3.

is concentrated in Hodge types (2, 1) and (1, 2). The Saito-Kurokawa part

H i
!,SK(A2,Vλ) =


τ ′1,2l−2L

m+1 if i = 2 and l = m even,
S[Sp(4,Z), l +m+ 4] if i = 3 and l = m odd,
τ ′1,2l−2L

m+2 if i = 4 and l = m even,
0 else.

is concentrated in Hodge types (1, 1), (3, 0), (0, 3) and (2, 2), respectively. The
contribution from the Soudry part is

H i
!,Soudry(A2,Vλ) = 0.

The stable spectrum12 decomposes into irreducible four-dimensional Galois represen-
tations

H i
stable(A2,Vλ) =

{⊕
πf
ρπf i = 3

0 i 6= 3,

attached to cuspidal automorphic representations, that are neither CAP nor weak
endoscopic, and which are spherical at every finite place. It occurs with Hodge-type
(3, 0), (2, 1), (1, 2), (3, 0).
12This is S[l −m,m+ 3] in the notation of [FvdG04] and Ŝ[l −m,m+ 3] in [BFvdG14].
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This has been shown by Weissauer [Wei09b], Tehrani [Teh12], and Petersen [Pet15].
In our notation, the endoscopic part is the special case of (5.22) with S = {∞} and
Σ = ∅ and the Galois representation given by (5.25). The Saito-Kurokawa part is
(5.15) with S = {∞}, ω = 1 and Σ = ∅ or {∞} and the Galois representation of
(5.18). The Soudry part contributes to cohomology when m = 0, but there are no
non-zero elliptic cuspforms of odd weight l + 3 for the full modular group.

5.5.2. Level two

The case of level N = 2 has been studied extensively [vdG82], [LW85, §8], [BFvdG08],
[BFvdG14], [CvdGG15]. The Hecke action of GSp(4, Ẑ) on the invariants under the
principal congruence subgroup K(2) = K ′(2) ⊆ GSp(4, Ẑ) of level two gives rise
to a representation of GSp(4, Ẑ)/K(2) ∼= Sp(4,F2). After semisimplification, the
cohomology of A2,2 decomposes into `-adic representations of Sp(4,F2)× ΓQ.

Since Sp(4,F2) is isomorphic to the symmetric group in six letters, the irreducible
representations of Sp(4,F2) can be classified by partitions of six. We fix parabolically
induced representations A,B,C,A′, B′, C ′ as in Section 5.5.5. We write r1 = l+m+4
and r2 = l −m+ 2 as in (5.19).

For the compactly supported Eisenstein cohomology of A2,2, the Euler characteristic
has been determined as before [BFvdG08, Thms. 4.2, 4.4] using the BGG-complex of
Faltings and Chai [FC90].

Theorem 5.12 (Bergström, Faber, van der Geer). For regular λ, the Euler character-
istic of the compactly supported Eisenstein cohomology decomposes as a representation
of Sp(4,F2)× ΓQ as

ec,Eis(A2,2,Vλ) = τ1,r2(A′ +B′) + τ2,r2B
′ + τ4,r2C

′ − (τ1,r1(A′ +B′) + τ2,r1B
′ + τ4,r1C

′)Lm+1

+(A+B) � S[Γ0(1),m+ 2] +B � S[Γ0(2),m+ 2]new + C � S[Γ0(4),m+ 2]new

−(A+B) � S[Γ0(1), l + 3]−B � S[Γ0(2), l + 3]new − C � S[Γ0(4), l + 3]new

+1
2(1 + (−1)m)(A+B).

We can explicitly describe the endoscopic part of the inner cohomology:

Theorem 5.13. For l ≥ m ≥ 0, the semisimplified endoscopic part H•endo(A2,2,Vλ)
of the inner cohomology decomposes under the action of Sp(4,F2)× ΓQ as

H
(3,0)
endo ⊕H

(0,3)
endo
∼= τ4,r2 · s[2, 14] � S[Γ0(4), r1]new

+
(
τ+
r2
· s[23] + τ−r2 · s[1

6]
)
� S+[Γ0(2), r1]new

+
(
τ+
r2
· s[16] + τ−r2 · s[2

3]
)
� S−[Γ0(2), r1]new
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and

H
(2,1)
endo ⊕H

(1,2)
endo
∼= Lm+1

((
τ4,r1 · s[3, 13] + τ2,r1 · s[4, 12] + τ1,r1 · C ′

)
� S[Γ0(4), r2]new

+
(
τ2,r1 · s[3, 2, 1] + τ4,r1 · s[4, 12] + τ1,r1 ·B′

)
� S[Γ0(2), r2]new

+
(
τ+
r1
· s[4, 2] + τ−r1 · s[5, 1]

)
� S+[Γ0(2), r2]new

+
(
τ−r1 · s[4, 2] + τ+

r1
· s[5, 1]

)
� S−[Γ0(2), r2]new

+
(
τ4,r1 · C ′ + τ2,r1 ·B′ + τ1,r1 · (A′ +B′)

)
� S[Γ0(1), r2]

)
with the notation of Section 5.5.5. The other Hodge numbers are zero.

The proof is given in the next subsection.

Remark 5.14. This solves Conjectures 6.4 and 7.1 of Bergström, Faber and van der
Geer [BFvdG08]. They call the non-holomorphic part with Hodge types (2, 1) and
(1, 2) the ”middle endoscopic part“. The holomorphic part with Hodge types (3, 0)
and (0, 3) is the “leading part“ and corresponds to Yoshida lifts.

Corollary 5.15. For l ≥ m ≥ 0 we have

dimH
(2,1)
endo (A2,2,Vλ)− dimH

(3,0)
endo (A2,2,Vλ) = 5 · dimSr1(Γ0[4]) · dimSr2(Γ0[4]).

Proof. The left hand side is given by Thm. 5.13. It equals the right hand side by
Atkin-Lehner theory.

Remark 5.16. This is a special case of (4.11). It approximates Conjecture 7.2 of
[BFvdG08] for regular l > m > 0, but the conjecture does not hold literally, because
“trailing terms” do not appear in the cohomology H(3,0)

endo ⊕H
(0,3)
endo .

Theorem 5.17. For l = m ≥ 0 the semisimplified Saito-Kurokawa part of the inner
cohomology H•! (A2,2,Vλ) decomposes under the action of Sp(4,F2)× ΓQ as

H
(3,0)
!,SK (A2,2,Vλ)⊕H(0,3)

!,SK (A2,2,Vλ) ∼={
S+[Γ0(2), r1]new � s[4, 2] + S−[Γ0(2), r1]new � s[23] + S[Γ0(1), r1] �A′ l odd,
S[Γ0(4), r1]new � s[32] + S+[Γ0(2), r1]new � s[16] + S−[Γ0(2), r1]new � s[5, 1] l even

and

H
(1,1)
!,SK (A2,2,Vλ) ∼=

Lm+1

{
S′[Γ0(4), r1]new � s[32] + S′+[Γ0(2), r1]new � s[16] + S−[Γ0(2), r1]new � s[5, 1] l odd,
S+[Γ0(2), r1]new � s[4, 2] + S′−[Γ0(2), r1]new � s[23] + S′[Γ0(1), r1] �A′ l even,

and H(2,2)
!,SK (A2,2,Vλ) ∼= L⊗H(1,1)

!,SK (A2,2,Vλ). The other Hodge numbers are zero.
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The proof is given in the next subsection.

Remark 5.18. This solves Conjectures 6.6 and 7.4 of Bergström, Faber and van
der Geer [BFvdG08]. A Saito-Kurokawa lift is cuspidal if and only if it comes from
an automorphic representation (σ, σΣ) with Σ = ∅ or L(σ, 1/2) = 0; this explains
the S′ components. Replacing S′ by S gives the Saito-Kurokawa part H•(2),SK of the
L2-cohomology.

Corollary 5.19. dimH
(1,1)
(2),SK(A2,2,Vλ) + dimH

(3,0)
(2),SK(A2,2,Vλ) = 5 · dimSr1(Γ0[4]).

The proof is analogous to Cor. 5.15. This is the closest approximation we can give to
Conjecture 7.2 in [BFvdG08] for the case l = m. The conjecture is not literally true
because the Galois representations on both sides are different.

Corollary 5.20. The inner cohomology of A2,2 with l ≥ m ≥ 0 and l + m ≡ 0
mod 2 decomposes as a direct sum

H•! (A2,2,Vλ) = H•!,endo(A2,2,Vλ)⊕H•!,SK(A2,2,Vλ)⊕H•!,stable(A2,2,Vλ),

where the first two terms are given above and the last term is the stable part that
decomposes into four-dimensional irreducible Galois representations and contributes
equally to Hodge types (3, 0), (2, 1), (1, 2), (0, 3).

Proof. This is decomposition (5.10). The Soudry lift does not contribute to the inner
cohomology in level two by the same argument as in level one: For m = 0 we have
even l, so the central character ω of a Soudry lift must satisfy ω(−1) = 1. But the
Soudry lift preserves central characters and there are no non-zero elliptic modular
forms of odd weight 3 +m whose congruence group contains −1.

Together with Theorem 5.12 this determines the compactly supported cohomology
with regular weight up to semisimplification.

5.5.3. The proof

We will now prove the above theorems about the endoscopic and the Saito-Kurokawa
part of the inner cohomology in level two. At first, we establish the correspondence
between modular forms and automorphic representation.

It is well-known that every cuspidal automorphic representation σ of GL(2,A) with
discrete series archimedean factor σ∞ ∼= D(r) and trivial central character is generated
by a unique elliptic newform of weight r and level Γ0(N), compare e.g. [Gel75]. At
the unramified places p not dividing N the local factor σp is spherical and determined
by the Satake parameters. If p divides N exactly once, σp is determined by the
Atkin-Lehner eigenvalue. Otherwise it is not known in general how to describe σp in
terms of f . However, for p = 2 the situation simplifies.
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Lemma 5.21. Let σ be an irreducible smooth representation of G = GL(2,Q2) of
depth zero, but not Iwahori-spherical. Then σ is cuspidal, its hyperspecial parahoric
restriction is cuspidal, and σ is uniquely determined by its central character. Its local
Euler factors are ε(σ, s) = −1 and L(σ, s) = 1 for every s ∈ C.

Proof. An Iwahori subgroup of GL(2,Q2) is its own pro-unipotent radical, so the
parahoric restriction with respect to an Iwahori subgroup is zero. The hyperspecial
parahoric restriction σ̃ = rGL(2,Z2)(σ) as a representation of GL(2,F2) is non-zero by
assumption and it is cuspidal by (2.5). By Example 2.21, σ itself is cuspidal. By
Lemma 2.18, the hyperspecial parahoric restriction σ̃ is irreducible. There is only one
isomorphism class of cuspidal irreducible representations GL(2,F2). Now Thm. 2.15
implies that σ is uniquely determined by the central character ωσ. It remains to
determine the Euler factors.

Fix an additive character ψ : Q2 → C× of conductor one. Its restriction to Z2 factors
over the non-trivial additive character ψ̃ : Z2/2Z2 → C×. The ε-factor of σ is given
by §25.2 of [BH06] (their notation)

ε(σ, s, ψ) = 22`(σ)(
1
2
−s) τ(Ξ, ψ)

(A : Pn+1)1/2
.

Depth zero implies that n and `(σ) are zero. We have A = Mat2(Z2) and P =
I2 + Mat2(2Z2) and therefore (A : P) = 16. In the classification of Thm.A.1, the
cuspidal irreducible σ̃ corresponds to a non-trivial regular character of F×4 , denoted
by θ in §6.4 of [BH06]. By the first equation in §23.7 of [BH06]

τ(Ξ, ψ) = −2
∑
x∈F×4

Λ(x)ψ̃(x+ x2) = −4.

The local L-factor is trivial for every cuspidal representation of GL(2,Q2).

The analogue of Lemma 5.21 for odd residue characteristic includes principal series
representations induced from tamely ramified characters.

Lemma 5.22. For a cuspidal elliptic newform f of level N and weight r let σ be
the automorphic representation of GL(2,A) generated by f . The local factor σ2 is of
depth zero if and only if it belongs to one of the following:

1. The spherical principal series σ2 = µ× µ−1 for an unramified character µ of
Q×2 with µ2 6= | · |±1. This occurs if and only if N is odd.

2. the Steinberg representation σ2 = StGL(2,Q2). This occurs if and only if N ∼= 2
mod 4 and the Atkin-Lehner eigenvalue at two is ε2 = −1,
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3. the twist σ2 = ξu StGL(2,Q2) of the Steinberg by the unramified quadratic character
ξ of Q×2 . This occurs if and only if f has level N ≡ 2 mod 4 and Atkin-Lehner
eigenvalue ε2 = +1,

4. the unique cuspidal representation of GL(2,Q2) with depth zero and trivial
central character. This occurs if and only if N ≡ 4 mod 8.

Proof. If σ2 is Iwahori-spherical, it belongs to one of the first three cases. The level is
given by [Gel75, Prop. 5.21]. Otherwise it belongs to the last case by Lemma 5.21 and
because Γ0(4) is conjugate to the principal congruence subgroup Γ(2) ⊆ SL(2,Z).

Proof of Theorem 5.13. This is Example 5.9 for p = 2. The central characters of
the automorphic representations σ must factor over (Z/2Z)× and are therefore
trivial. The sum runs over pairs of automorphic representations σ = (σ1, σ2) of
PGL(2,A)×PGL(2,A) with archimedean part in the discrete series of weight r1 and
r2.

For a fixed σ, only the endoscopic lifts π with generic non-holomorphic archimedean
factor π∞ = Π+(σ∞) contribute to cohomology with Hodge numbers (2, 1) and (1, 2).
At the non-archimedean places v 6= 2, the local lift πv is spherical if and only if σv is
spherical.

At v = 2 the local lift must be the generic πv = Π+(σv) by the multiplicity formula
in Thm. 5.6. It is depth zero if and only if σv is depth zero at v = 2 by Cor. 4.14. For
each local factor σi,v there are four possible cases by Lemma 5.22 and they occur
with cardinalities τ1,ri , τ

−
2,ri

, τ+
2,ri

, τ4,ri , respectively. The corresponding local lifts
Π+(σv) are given in Table 4.1 and their hyperspecial parahoric restriction is given in
Table 4.2 in the language of Enomoto’s characters. The translation into irreducible
representation of the symmetric group Σ6 is given in Table 5.2. The `-adic Galois
representation is Lm+1ρσ2 by (5.25).

For Hodge types (3, 0), (0, 3) the proof is analogous with the local lift πv = Π−(σv)
at the place v = 2. This is only possible when σv is in the discrete series at v = 2, so
there are no contributions with level N = 1.

Proof of Theorem 5.17. This is Example 5.5 for p = 2. The central character ω
must factor over (Z/2Z)× and hence be trivial. The argument is analogous to
the endoscopic case. Contributions to Hodge type (3, 0) and (0, 3) come from
Saito-Kurokawa lifts whose archimedean factor is the holomorphic discrete series
representation π∞ = πHλ = π(D(r1),D(2)).

Non-zero contributions to the cohomology can only come from automorphic repre-
sentations σ of GL(2,A) which are locally spherical at v 6= 2 and of depth zero at
v = 2. Their lifts πv are spherical at v 6= 2,∞ and the local factor σ2 belongs to
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one of the four cases in Lemma 5.22. The local lifts and their parahoric restrictions
are given by Table 5.1. A global lift is automorphic if and only if the ε-factor
satisfies ε(σ, 1/2) = (−1)#Σ. Here the right hand side is (−1)r1ε(σv, 1/2) for v = 2,
so automorphy depends on the parity of l. The lifts are all cuspidal, because Σ is not
empty. Summing over a the possible σ gives the contributions with corresponding
multiplicities like in the endoscopic case. The Galois representation is given by (5.18).

Contributions to Hodge types (1, 1) and (2, 2) come from Saito-Kurokawa lifts whose
archimedean factor is the non-holomorphic Langlands quotient L(ν1/2D(r1), ξν−1/2).
The proof is analogous, but we have to exclude any σ with ε(σ, 1/2) = 1 and
L(σ, 1/2) 6= 0, because its lift does not contribute to the cuspidal spectrum.

5.5.4. Hodge numbers

We determine the Hodge numbers h(p,q)
! = dimH

(p,q)
! (A2,2,Vλ) of the inner cohomology

attached to a local system of highest weight (l,m).

Corollary 5.23. For regular local systems with l > m ≥ 2 and even sum l +m the
non-zero Hodge numbers of the inner cohomology are

h
(3,0)
! = h

(0,3)
! = 1

24
(l −m+ 1)(l + 2)(m+ 1)(l +m+ 3)

−5
8
(l −m+ 1)(l +m)− (−1)m 5

8
(m− 2)(l − 1),

h
(2,1)
! = h

(1,2)
! = h

(3,0)
! + 5

4
(l +m)(l −m− 2).

Proof. Tsushima [Tsu83, Thm. 3] has calculated the dimension of H(3,0)
! (A2,2,Vλ).

The Hecke modules H(3,0)
stable(A2,2,Vλ) and H

(2,1)
stable(A2,2,Vλ) are isomorphic [Wei05]

and we obtain h
(2,1)
stable = h

(3,0)
stable. For regular λ there is no contribution from CAP-

representations. Now Cor. 5.15 implies

h
(2,1)
! = h

(3,0)
! + 5 dimSr1(Γ0[4]) · dimSr2(Γ0[4]) = h

(3,0)
! + 5 · l +m

2
· l −m− 2

2
.

Complex conjugation gives h(0,3)
! = h

(3,0)
! and h

(1,2)
! = h

(2,1)
! . By Falting’s result

[Fal83] the other Hodge numbers are zero.

Corollary 5.24. For local systems with l = m ≥ 1, the non-zero Hodge numbers of
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Sp(4,F2) θ0 θ1 θ2 θ3 θ4 θ5 χ5(1) χ8(1) χ9(1) χ12(1) χ13(1)

Σ6 [6] [4, 2] [23] [5, 1] [3, 2, 1] [16] [22, 12] [32] [2, 14] [4, 12] [3, 13]

dim 1 9 5 5 16 1 9 5 5 10 10

Table 5.2.: Irreducible representations of Sp(4,F2) ∼= Σ6.

the inner cohomology are

h
(3,0)
! = h

(0,3)
! = 1

24
(l −m+ 1)(l + 2)(m+ 1)(l +m+ 3)

−5
8
(l −m+ 1)(l +m)− (−1)m 5

8
(m− 2)(l − 1),

h
(1,2)
! = h

(2,1)
! = h

(3,0)
! −

{
9τ+
r1

+ 5τ−r1 + 15τ1,r1 l odd,
5τ4,r1 + 1τ+

r1
+ 5τ−r1 l even,

h
(1,1)
! = h

(2,2)
! =

{
5τ ′4,r1 + 1τ ′+r1 + 5τ−r1 l odd,
9τ ′+r1 + 5τ ′−r1 + 15τ ′1,r1 l even.

Proof. The non-zero terms come from the Saito-Kurokawa lift and from the stable
part. The argument is analogous.

5.5.5. The isomorphism GSp(4,F2) ∼= Σ6

Permuting the six Weierstraß points on a hyperelliptic curve of genus two defines an
action of the symmetric group Σ6 on the moduli space of their Jacobians and thus
on A2,2. It preserves the Weil pairing and thus gives rise to a morphism from Σ6 to
the finite symplectic group Sp(4,F2). This defines an isomorphism of finite groups.

Let us give an alternative. The symmetric group Σ6 acts naturally on the vector
space F6

2 and preserves the inner product 〈v, w〉 =
∑6

i=1 viwi. The isotropic vector
u = diag(1, 1, 1, 1, 1, 1) is fixed under action. Since the inner product is symplectic on
the four-dimensional space u⊥/u, this defines a group homomorphism Σ6 → Sp(4,F2),
which is actually an isomorphism.

The irreducible representations of Σ6 are classified by partitions of six. The dictionary
between Enomoto’s characters [Eno72] and the partitions of six is given in Table
5.2. The finite group GL(2,F2) admits three isomorphism classes of irreducible
representations, the trivial 1, the Steinberg St and the cuspidal representation σ.
Parabolic induction via the Klingen parabolic (respectively, the Siegel parabolic) in
Sp(4,F2) gives rise to the following representations:

A = χ7(0) ∼= s[6] + s[4, 2] + s[5, 1], A′ = χ6(0) ∼= s[6] + s[4, 2] + s[23],

B = χ11(0) ∼= s[3, 2, 1] + s[4, 2] + s[23], B′ = χ10(0) ∼= s[3, 2, 1] + s[4, 2] + s[5, 1],

C = χ3(0, 1) ∼= s[3, 13] + s[2, 14], C ′ = χ2(1) ∼= s[4, 12] + s[32].
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6. Conclusion

The parahoric restriction of irreducible admissible representations π of GSp(4, F ) over
a non-archimedean local number field is now completely known. For non-cuspidal π,
this is given by our results in Chapter 3. The non-generic cuspidal ρ occur in the
anisotropic theta-lift. Up to possible character twists, their parahoric restriction is
given by the lower halfs of Table 4.2 and Table 4.4. For generic cuspidal ρ of depth
zero, the parahoric restriction with respect to hyperspecial parahorics is irreducible
cuspidal and it is zero for every other parahoric. This is implied by a result of
deBacker and Reeder [DR09, 6.1.1] and our Lemma 2.18. For positive depth, the
parahoric restriction is zero by definition.

Our description of the endoscopic character lift in depth zero has provided further ev-
idence for the expected depth preservation under the local Langlands correspondence.
The non-cuspidal case is already a result of Moy and Prasad [MP96, 5.2(1)].

The description of the inner cohomology of the Siegel modular threefold with principal
congruence subgroup level two is now complete. In principle, we can also calculate
the Hodge numbers for arbitrary open compact subgroups of GSp(4,Afin), that
contain a principal congruence subgroup of squarefree level, in terms of automorphic
representations of GL(2). This would depend on an explicit local description of
Soudry lifts and the analogues to Tsushimua’s dimension formulas [Tsu83]. The
Eisenstein cohomology has been described precisely by Harder [Har12] and can be
used to determine the compactly supported cohomology in the analogous fashion to
Petersen’s results [Pet15].

Outlook. In a recent article, Clery, van der Geer and Grushevsky [CvdGG15] have
begun a detailed description of the Sp(4,F2)-representations on the vector space of
Siegel modular forms invariant under the principal congruence subgroup of level two.
It would be interesting to understand the explicit correspondence with our results.

Bergström, Faber and van der Geer have extended their numerical calculations to
genus three [BFvdG14]. If there was a classification of automorphic representations
of GSp(6), the analogous techniques could be employed to prove their conjectures.
To the author’s knowledge, such a classification seems absent.

We have obtained some evidence that the hyperspecial parahoric restriction of a
depth zero generic irreducible admissible representation π of GSp(4, F ) contains a
generic constituent. Under certain technical assumptions on π we could show this for
arbitrary unramified connected reductive groups [MR].
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A. Representations of finite groups

Let Fq be the finite field of order q. For certain linear groups G over Fq we recall the
irreducible representations ofG(q). Fix an non-trivial additive character ψ : Fq → C×.
For odd q let λ0 and Λ0 be the non-trivial quadratic characters of F×q and F×q2 .

The character χσ of a representation σ is denoted by σ again, when the meaning is
clear from the context.

A.1. GL(2, q) and SL(2, q)

An extensive survey of the representation theory of GL(2, q) has been given by
Piatetski-Shapiro [PS83a]. The conjugacy classes of G = GL(2, q) are those which
admit an Fq-rational Jordan normal form and the anisotropic classes E(α) of elements
with eigenvalues α, αq for α ∈ F×q2 − F×q like

(
0 −αq+1

1 α+αq

)
∈ E(α).

Theorem A.1. Up to isomorphism, the irreducible representations of G are

1. twists of the trivial representation µ · 1G = µ ◦ det for µ : F×q → C×,

2. twists of the Steinberg representation µ · StG for µ : F×q → C×,

3. principal series µ1 × µ2 for characters µ1, µ2 : F×q → C× with µ1 6= µ2,

4. cuspidal representations πΛ for a character Λ : F×q2 → C× with Λ 6= Λq.

They are pairwise inequivalent except for µ1 × µ2
∼= µ2 × µ1 and π(Λ) ∼= π(Λq). The

character values are listed in Table A.1.

A representation (σ, V ) of GL(2, q) is generic if it admits a non-zero v ∈ V with
σ ( 1 x

1 ) v = ψ(x)v for x ∈ Fq. This does not depend on the choice of ψ. Except for
the twists of the trivial representation, all the irreducible representations are generic.

For odd q there is an explicit model of the cuspidal irreducible representations:

Proposition A.2. For an odd prime power q fix a character Λ of F×q2 with Λ 6= Λq.
Let V = {f : F×q → C} and let ρ : G→ Aut(V ) be the homomorphism given on the
standard Borel of G by

(ρ ( a bd ) f)(x) = Λ(d)ψ( b
d
x)f(a

d
x)
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Conj. class ( a 0
0 a ) ( a 1

0 a ) ( a 0
0 d ) E(α)

a ∈ F×q a ∈ F×q a, d ∈ F×q , a 6= d α ∈ F×q2 − F×q
# of classes q − 1 q − 1 1

2 (q − 1)(q − 2) 1
2 (q − 1)q

µ1GL(2,q) µ(a)2 µ(a)2 µ(ad) µ ◦ nr(α)
µ · StGL(2,q) qµ(a)2 0 µ(ad) −µ ◦ nr(α)

µ× ν (q + 1)µ(a)ν(a) µ(a)ν(a) µ(a)ν(d) + µ(d)ν(a) 0
πΛ (q − 1)Λ(a) −Λ(a) 0 −Λ(α)− Λ(αq)

Table A.1.: Character table of GL(2, q).

and on the non-trivial Weyl group element w′ = ( 1
−1 ) by

(ρ(w′)f)(x) = −q−1
∑
y∈F×q

Λ(y−1)
∑
α∈F×

q2

αq+1=xy

ψ(α + αq)Λ(α)f(y).

for a, d, x ∈ F×q and b ∈ Fq. This gives rise to a well-defined cuspidal irreducible
representation (ρ, V ) of G isomorphic to πΛ.

Proof. For the proof, see Piatetski-Shapiro [PS83a, §13].1

Remark A.3. In the special case q = 2 there is an isomorphism GL(2, 2) ∼= Σ3

to the symmetric group in three letters given by the natural action of GL(2, 2) on
the projective space P1F2. Therefore irreducible representations of GL(2, 2) can be
classified by partitions of three as in [BFvdG08].

Irreducible representations of SL(2, q) can be obtained by restricting representations
of GL(2, q). The definition of generic is the same as for GL(2, q), but depends on ψ.

Corollary A.4 (Irreducible Representations of SL(2, q)). Let σ be an irreducible
representation of GL(2, q). If q is even or if λ0σ 6∼= σ, then its restriction [σ] to
SL(2, q) is irreducible. Otherwise the restriction has two irreducible equidimensional
constituents, a ψ-generic [σ]+ and a non-ψ-generic [σ]−. These are all the irreducible
representations of SL(2, q).

For non-square a ∈ F×q the representation [σ]− is ψa-generic and [σ]+ is not ψa-generic
with respect to the additive character ψa : x 7→ ψ(ax).

Remark A.5. For odd q, the only representations σ of GL(2, q) with σ ∼= λ0σ are
σ = µ×λ0µ and σ = πΛ′0

such that Λ′0
q−1 = Λ0 is the nontrivial quadratic character of

F×q2 . The character values of [σ]± on ux = ( 1 x
1 ) are tr((µ×λ0µ)±;ux) = 1

2
(1±λ0(x)G)

and tr((πΛ)±;ux) = 1
2
(−1± λ0(x)G) with the Gauß sum G =

∑
x∈F×q λ0(x)ψ(x).

1There is a minus sign missing in the definition of j in loc. cit.
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A.2. (GL(2, q)2)0

Let G = (GL(2, q)2)0 be the group of (x, y) ∈ GL(2, q)2 with equal determinant
detx = det y. We call an irreducible representation (ρ, V ) of G generic, if it contains
a non-zero v ∈ V with ρ(( 1 x

1 ) ,
(

1 y
1

)
)v = ψ(x+ y)v. This condition does not depend

on the choice of ψ.

Lemma A.6 (Irreducible representations). For an irreducible representation σ =
σ1 � σ2 of GL(2, q)2 let [σ] denote its restriction to G. If q is even or if σ1 6∼=
λ0σ1 or σ2 6∼= λ0σ2, then [σ] is irreducible. Otherwise2 [σ] is a direct sum of two
equidimensional irreducible representations [σ]+ and [σ]−, where [σ]+ is generic and
[σ]− is not generic.3 These are all the irreducible representations of G.

Proof. For an irreducible representation σ of GL(2, q)2, Frobenius reciprocity implies

dim HomG([σ], [σ])

=
∑
µ∈F̂×q

dim HomGL(2,q)(σ1, µ · σ1) · dim HomGL(2,q)(σ2, µ
−1 · σ2)

=

{
1 q even,
1 + dim HomGL(2,q)(σ1, λ0 · σ1) · dim HomGL(2,q)(σ2, λ0 · σ2) q odd.

The sum runs over characters µ : F×q → C× and for µ2 6= 1 the factors must be
zero by comparing central characters. For odd q, this term is two if and only if
σi ∼= λ0σi and in that case there are two irreducible constituent in [σ]. Each of
these irreducible subquotients decomposes into two irreducible representations of
SL(2, q)× SL(2, q) by the analogous argument. Let [σ]+ be the G-constituent that
becomes [σ1]+ � [σ2]+ ⊕ [σ1]− � [σ2]− upon restriction to SL(2, q)2, then for any
choice of ψ exactly one of these SL(2, q)2-constituents contains a Whittaker-vector.
By Frobenius reciprocity every irreducible representation of G is contained in some
irreducible representation of GL(2, q)2.

Remark A.7. The twist of [σ] by a character µ of F×q is

µ · [σ1, σ2] = [µσ1, σ2] = [σ1, µσ2]. (A.1)

This is the only equivalence between representations of G.

For an irreducible representation σ = σ1 � σ2 of GL(2, q)2 we call the involution
σ 7→ σ∗ = σ2 � σ1 the opposite. For the corresponding representations of G write

2This happens exactly when σ1 and σ2 belong to the cases described in Remark A.5.
3If q is odd and λ0σ ∼= σ and if we replace (x, y) 7→ ψ(x+ y) by ψ′ : (x, y) 7→ ψ(ax+ by), where
ab is not a square in Fq, then [σ]− is ψ′-generic and [σ]+ is not ψ′-generic.
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[σ]∗ := [σ∗] and [σ]∗± := [σ∗]±. The generic representations are preserved under this
involution, so the notation is justified.

On the unipotent element u = (( 1 u1
1 ) , ( 1 u2

1 )) ∈ G with u1, u2 ∈ F×q Remark A.5
implies that the character value of [σ1, σ2]± is

tr([1× λ0, 1× λ0]±;u) = tr([πΛ′0
, πΛ′0

]±;u) = 1
2
(1± λ0(−u1u2)q), (A.2)

tr([1× λ0, πΛ′0
]±;u) = tr([πΛ′0

, 1× λ0]±;u) = 1
2
(−1± λ0(−u1u2)q). (A.3)

A.3. GSp(4, q) for odd q

The irreducible representations of the finite group G = GSp(4, q) with odd q have
been classified by Shinoda [Shi82, Table 5].

Characters of F×q are denoted λ or ν, while Λ, ω, λ′ and Θ will always be characters
of F×q2 ,F

×
q2 [q+ 1],F×q2 [2(q− 1)] and F×q4 [(q− 1)(q2 + 1)], respectively. We only consider

the case where λ′ does not factor over some λ, which means λ′(−1) = −1. The
non-trivial quadratic character of F×q2 [q + 1] is ω0. For typesetting reasons, we write

A[λ1, λ2, ν] =λ1 � λ2 � ν + λ1 � λ−1
2 � λ2ν

+ λ−1
1 � λ2 � λ1ν + λ−1

1 � λ−1
2 � λ1λ2ν,

B[λ1, λ2, ν] =λ1 � (λ2 o ν) + λ−1
1 � (λ2 o λ1ν),

C[λ1, λ2, ν] =(λ1 × λ2) � ν + (λ−1
1 × λ2) � λ1ν.

Shinoda denotes the conjugacy classes of G by A0, A1, . . . , L1 in his Table 2. He gives
explicit values for certain virtual characters in his Table 5. For their decomposition
into irreducibles see Table A.2. This gives all the irreducible representations of G
[Shi82, §5].

Lemma A.8 (Shinoda [Shi82, p.1403]). The decomposition of the virtual charac-
ters X1, . . . , X5 and χ1, . . . , χ8 into irreducible components is given in Table A.2.
The characters θ1(ν), . . . , θ5(ν) and τ1(λ), . . . , τ5(λ

′) for λ′(−1) = −1 are always
irreducible.

Corollary A.9. The parabolic restriction (Jacquet functor) of the irreducible repre-
sentations of GSp(4, q) is given by Table A.4.

Proof. This is directly implied by Frobenius reciprocity and the decompositions in
Table A.2.
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Lemma A.10. Shinoda’s virtual characters are pairwise inequivalent except for the
following identities.

X4(Θ) = X4(Θq) = X4(Θq2) = X4(Θq3)

X5(Λ, ω) = X5(Λω̃, ω−1) = X5(Λq, ω−1) = X5(Λqω̃q, ω) = X5(Λ, (Λ ◦ iq−1) · ω−1)

= X5(Λq, (Λq ◦ iq−1) · ω) = X5(Λω̃, (Λ ◦ iq−1) · ω−1) = X5(Λqω̃q, (Λq ◦ iq−1) · ω),

χ1(λ, ν) = χ1(λ−1, λν), χ2(λ, ν) = χ2(λ−1, λν),

χ3(λ, ν) = χ3(λ−1, λ2ν), χ4(λ, ν) = χ4(λ−1, λ2ν),

χ5(ω, ν) = χ5(ω−1, ν), χ6(ω, ν) = χ6(ω−1, ν),

χ7(Λ, ν) = χ7(Λq, ν), χ8(Λ, ν) = χ8(Λq, ν),

τ1(λ) = τ1(λλ0), τ3(λ) = τ3(λλ0),

τ4(λ′) = τ4(λ′q), τ5(λ′) = τ5(λ′q).

The identities between X1, X2, X3 are those from the action of the Weyl group and
parabolic induction.

Proof. This is a simple calculation.

Lemma A.11. Let ρ be an irreducible representation of GSp(4, q) for odd q. Table
A.3 lists the central character ωρ of ρ; the cuspidal ρ (a ”•“ in the c-column); the
generic ρ (a ”•“ in the g-column); and the dimension of invariants under the subgroup
{diag(1, 1, ∗, ∗)} ⊆ GSp(4, q).

Proof. The central characters are given by ωρ(a) = ρ(A0(a))/ dim ρ for a ∈ F×q . The
cuspidal irreducible representations are those that do not occur as subrepresentations
of parabolically induced proper representations in Table A.2. The generic irreducible
ones are exactly those whose dimension is a fourth degree polynomial in q [Shi82,
p. 1405]. The dimension of invariants under {diag(1, 1, ∗, ∗)} is given by 1

q−1
(ρ(A0(1))+∑

16=b∈F×q

ρ(D0(1, b))). The calculations are straightforward.
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ρ ∈ RZ(G) induced Decomposition for

X1(λ1, λ2, ν) λ1 × λ2 o ν (irreducible) 1 6= λ1 6= λ±1
2 6= 1

χ1(λ1, ν) + χ2(λ1, ν) λ1 6= λ2 = 1
χ3(λ1, ν) + χ4(λ1, ν) λ1 = λ2 6= 1, λ0

ν(τ1 + τ2 + λ0τ2 + τ3) λ1 = λ2 = λ0

ν(θ0 + 2θ1 + θ3 + θ4 + θ5) λ1 = λ2 = 1

X2(Λ, ν) π(Λ) o ν (irreducible) Λq 6= Λ±1

χ4(λ, ν)− χ3(λ, ν) Λ = λ ◦Nq+1

χ5(ωΛ, ν) + χ6(ωΛ, ν) Λ = ωΛ ◦Nq−1

ν(−τ1 − λ0τ2 + τ2 + τ3) Λ = Λ0

ν(−θ0 − θ3 + θ4 + θ5) Λ = 1

X3(Λ, λ) λo π(Λ) (irreducible)

{
Λq 6= Λ, λ 6= 1 and
Λq−1 6= Λ0 ifλ = λ0

χ7(Λ) + χ8(Λ) λ = 1
χ2(λ, ν)− χ1(λ, ν) Λ = ν ◦Nq+1

τ4(λ′) + τ5(λ′) λ = λ0,Λ = λ′ ◦N(q+1)/2

ν(−θ0 + θ3 − θ4 + θ5) λ = 1,Λ = ν ◦Nq+1

X4(Θ) (irreducible) Θ2(q−1) 6= 1
τ5(λ′)− τ4(λ′) Θ = λ′ ◦N(q2+1)/2

ν(θ0 − θ1 + θ2 + θ5) Θ = ν ◦Nq2+1

X5(Λ, ω) (irreducible)

{
Λq 6= Λ, ω 6= 1 and
Λ ◦ iq−1 6= ω, ω2

χ6(ω, ν)− χ5(ω, ν) Λ = ν ◦Nq+1, ω
2 6= 1

χ8(Λ)− χ7(Λ) ω = 1 or ω = Λ ◦ iq−1

ν(τ1 − τ2 − λ0τ2 + τ3) Λ = ν ◦Nq−1, ω = ω0

ν(θ0 − 2θ2 − θ3 − θ4 + θ5) Λ = ν ◦Nq+1, ω = 1

χ1(λ, ν) λo ν 1GSp(2,q) (irreducible) λ 6= 1
ν(θ0 + θ1 + θ4) λ = 1

χ2(λ, ν) λo ν StGSp(2,q) (irreducible) λ 6= 1
ν(θ1 + θ3 + θ5) λ = 1

χ3(λ, ν) λ1GL(2,q) o ν (irreducible) λ2 6= 1
ν(τ1 + λ0τ2) λ = λ0

ν(θ0 + θ1 + θ3) λ = 1

χ4(λ, ν) λStGL(2,q) o ν (irreducible) λ2 6= 1
ν(τ2 + τ3) λ = λ0

ν(θ1 + θ4 + θ5) λ = 1
χ5(ω, ν) (irreducible) ω2 6= 1

ν(τ2 − τ1) ω = ω0

ν(−θ0 + θ2 + θ4) ω = 1

χ6(ω, ν) (irreducible) ω2 6= 1
ν(τ3 − λ0τ2) ω = ω0

ν(−θ2 − θ3 + θ5) ω = 1

χ7(Λ) (irreducible) Λq−1 6= 1
λ(−θ0 + θ2 + θ3) Λ = λ ◦Nq+1

χ8(Λ) (irreducible) Λq−1 6= 1
λ(−θ2 − θ4 + θ5) Λ = λ ◦Nq+1

Table A.2.: Decomposition of virtual representations ρ of GSp(4, q) for odd q.
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ρ ∈ Irr(G) ωρ c g dim ρ{diag(1,1,∗,∗)}

X1(λ1, λ2, ν) λ1λ2ν
2 •

{
q3 + 3q2 + 6q + 4 ν−1 = 1, λ1, λ2, λ1λ2

q3 + 3q2 + 5q + 3 else

X2(Λ, ν) (Λ ◦ iq+1)ν2 •

{
q3 + q2 + 2q − 2 ν−1 = 1,Λ|F×

q

q3 + q2 + q − 1 else
X3(Λ, ν) (Λ ◦ iq+1)ν • q3 + q2 + q + 1
X4(Θ) Θ ◦ iq2+1 • • q3 + q2 − q − 1
X5(Λ, ω) Λ ◦ iq+1 • • q3 − q2 + q − 1

χ1(λ, ν) λν2

{
q2 + 3q + 2 ν−1 = λ, 1

q2 + 2q + 1 else

χ2(λ, ν) λν2 •

{
q3 + 2q2 + 4q + 3 ν−1 = λ, 1

q3 + 2q2 + 3q + 2 else

χ3(λ, ν) λ2ν2


q2 + 3q + 3 ν−1 = λ

q2 + 2q + 3 ν−1 = λ2, 1

q2 + 2q + 2 else

χ4(λ, ν) λ2ν2 •


q3 + 2q2 + 4q + 2 ν−1 = λ

q3 + 2q2 + 4q + 1 ν−1 = λ2, 1

q3 + 2q2 + 3q + 1 else

χ5(ω, ν) ν2

{
q2 + q − 1 ν = 1

q2 ν 6= 1

χ6(ω, ν) ν2 •

{
q3 + 2q − 2 ν = 1

q3 + q − 1 ν 6= 1

χ7(Λ, ν) Λ ◦ iq+1 q2 + 1
χ8(Λ, ν) Λ ◦ iq+1 • q3 + q

τ1(λ) λ2

{
q + 2 λ = 1, λ0

q + 1 λ 6= 1, λ0

τ2(λ) λ2


q2 + 2q + 1 λ = 1

q2 + q + 2 λ = λ0

q2 + q + 1 λ 6= 1, λ0

τ3(λ) λ2 •

{
q3 + q2 + 3q λ = 1, λ0

q3 + q2 + 2q λ 6= 1, λ0

τ4(λ′) λ′ ◦ i2 q + 1
τ5(λ′) λ′ ◦ i2 • q2(q + 1)

θ0(λ) λ2

{
1 λ = 1

0 λ 6= 1

θ1(λ) λ2

{
1
2 (q2 + 5q + 4) λ = 1
1
2 (q2 + 3q + 2) λ 6= 1

θ2(λ) λ2 • 1
2q(q − 1)

θ3(λ) λ2

{
1
2 (q2 + q + 4) λ = 1
1
2 (q2 + q + 2) λ 6= 1

θ4(λ) λ2

{
1
2 (q2 + 3q) λ = 1
1
2 (q2 + q) λ 6= 1

θ5(λ) λ2 •

{
(q3 + q2 + 2q) λ = 1

(q3 + q2 + q) λ 6= 1

Table A.3.: The irreducible representations ρ of GSp(4, q) for odd q.
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A.4. GSp(4, q) for even q

For even q the Frobenius gives rise to an isomorphism GSp(4, q) ∼= F×q × Sp(4, q), so
it is sufficient to know the irreducible representations of Sp(4, q). The irreducible
representations of Sp(4, q) with even q have been classified by Enomoto [Eno72].
Enomoto’s notation is different from Shinoda’s. Fix a generator κ̂ of the Pontrjagin
dual of F×q4 . Denote by γ̂ its restriction to F×q , by θ̂ its restriction to F×q2 and by η̂ its
restriction to F×q2 [q+ 1]. Enomoto defines certain virtual characters of Sp(4, q), which
depend on integers (k, l). For example, the character χ1(k, l) for k, l ∈ Z/(q − 1)Z
corresponds to the principal series representation γ̂k×γ̂lo1. These virtual characters
are pairwise inequivalent except for the following identities:

1. the eight characters generated by the equivalence χs(k, l) = χs(l, k) = χs(−l, k)
are equal for s ∈ {1, 4},

2. χs(k) = χs(−k) = χs(qk) = χs(−qk) for s = 2, 5,

3. χ3(k, l) = χ3(k,−l) = χ3(−k, l) = χ3(−k,−l),

4. and χs(k) = χs(−k) for s = 6, 7, 8, 9, 10, 11, 12, 13.

The decomposition into irreducible components is given in Table A.5. The properties
of the irreducible representations are given in Table A.6. The parabolic restriction is
described in Table A.7. Again, for typesetting reasons, we write

A′[γ̂k1 , γ̂k2 ] = γ̂k1 � γ̂k2 + γ̂k1 � γ̂−k2 + γ̂−k1 � γ̂k2 + γ̂−k1 � γ̂−k2 .
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ρ Parameters Name Decomposition for

χ1(k, l) k, l ∈ Z/(q−1)Z γ̂k × γ̂l o 1 (irreducible) 0 6= l 6= ±k 6= 0
χ6(k) + χ10(k) l = ±k
χ7(k) + χ11(k) l = 0

θ0 + 2θ1 + θ2 + θ3 + θ4 l = k = 0

χ2(l) l ∈ Z/(q2−1)Z π(θ̂l) o 1 (irreducible) (q ± 1)l 6= 0
χ8(k) + χ12(k) l = (q − 1)k
χ10(k)− χ6(k) l = (q + 1)k

−θ0 − θ2 + θ3 + θ4 l = 0

χ3(k, l) k ∈ Z/(q−1)Z γ̂k o π(η̂l) (irreducible) k 6= 0, l 6= 0
l ∈ Z/(q+1)Z χ9(l) + χ13(l) k = 0

χ11(k)− χ7(k) l = 0
−θ0 + θ2 − θ3 + θ4 k = 0, l = 0

χ4(k, l) k, l ∈ Z/(q+1)Z (irreducible) 0 6= k 6= ±l 6= 0
χ12(k)− χ8(k) l = ±k
χ13(k)− χ9(k) l = 0

θ0 − θ2 − θ3 + θ4 − 2θ5 l = k = 0

χ5(k) k ∈ Z/(q2+1)Z (irreducible) k 6= 0
θ0 − θ1 + θ4 + θ5 k = 0

χ6(k) k ∈ Z/(q−1)Z γ̂k 1GL(2,q) o 1 (irreducible) k 6= 0

θ0 + θ1 + θ2 k = 0

χ7(k) k ∈ Z/(q−1)Z γ̂k o 1Sp(2,q) (irreducible) k 6= 0

θ0 + θ1 + θ3 k = 0

χ8(k) k ∈ Z/(q+1)Z (irreducible) k 6= 0
−θ0 + θ3 + θ5 k = 0

χ9(k) k ∈ Z/(q+1)Z (irreducible) k 6= 0
−θ0 + θ2 + θ5 k = 0

χ10(k) k ∈ Z/(q−1)Z γ̂k StGL(2,q) o 1 (irreducible) k 6= 0

θ1 + θ3 + θ4 k = 0

χ11(k) k ∈ Z/(q−1)Z γ̂k o StSp(2,q) (irreducible) k 6= 0

θ1 + θ2 + θ4 k = 0

χ12(k) k ∈ Z/(q+1)Z (irreducible) k 6= 0
−θ2 + θ4 − θ5 k = 0

χ13(k) k ∈ Z/(q+1)Z (irreducible) k 6= 0
−θ3 + θ4 − θ5 k = 0

θ0 1Sp(4,q) (irreducible)
θ1 (irreducible)
θ2 (irreducible)
θ3 (irreducible)
θ4 StSp(4,q) (irreducible)
θ5 (irreducible)

Table A.5.: Decomposition of Enomoto’s virtual characters ρ of Sp(4, q) for even q.
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ρ = ρ|Sp(4,q) � ωρ c g dim ρ{diag(1,1,∗,∗)}

χ1(k, l) � γ̂r •

{
q3 + 3q2 + 6q + 4

q3 + 3q2 + 5q + 3

r = ±(k + l),±(k − l)
r 6= ±(k + l),±(k − l)

χ2(l) � γ̂r •

{
q3 + q2 + 2q − 2

q3 + q2 + q − 1

r = ±l mod (q − 1)
r 6= ±l mod (q − 1)

χ3(k, l) � γ̂r • q3 + q2 + q + 1

χ4(k, l) � γ̂r • • q3 − q2 + q − 1

χ5(k) � γ̂r • • q3 + q2 − q − 1

χ6(k) � γ̂r


q2 + 3q + 3

q2 + 2q + 3

q2 + 2q + 2

r = 0
r = ±2k
r 6= ±2k, 0

χ7(k) � γ̂r

{
q2 + 3q + 2

q2 + 2q + 1

r = ±k
r 6= ±k

χ8(k) � γ̂r

{
q2 + q − 1

q2

r = 0
r 6= 0

χ9(k) � γ̂r q2 + 1

χ10(k) � γ̂r •


q3 + 2q2 + 4q + 2

q3 + 2q2 + 4q + 1

q3 + 2q2 + 3q + 1

r = 0
r = ±2k
r 6= ±2k, 0

χ11(k) � γ̂r •

{
q3 + 2q2 + 4q + 3

q3 + 2q2 + 3q + 2

r = ±k
r 6= ±k

χ12(k) � γ̂r •

{
q3 + 2q − 2

q3 + q − 1

r = 0
r 6= 0

χ13(k) � γ̂r • q3 + q

θ0 � γ̂r

{
1

0

r = 0
r 6= 0

θ1 � γ̂r

{
1
2 (q2 + 5q + 4)
1
2 (q2 + 3q + 2)

r = 0
r 6= 0

θ2 � γ̂r

{
1
2 (q2 + q + 4)
1
2 (q2 + q + 2)

r = 0
r 6= 0

θ3 � γ̂r

{
1
2 (q2 + 3q)
1
2 (q2 + q)

r = 0
r 6= 0

θ4 � γ̂r •

{
q3 + q2 + 2q

q3 + q2 + q

r = 0
r 6= 0

θ5 � γ̂r • 1
2 (q2 − q)

Table A.6.: The irreducible representations ρ of GSp(4, q) for even q. The conditions
for irreducibility of ρ|Sp(4,q) are tacitly imposed on the parameters. The
central character of ρ is ωρ = γ̂r for some r ∈ Z/(q − 1)Z.
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B. Vector-valued Siegel modular forms

For the convenience of the reader, we give a brief survey on the correspondence
between Siegel modular forms and automorphic representations (without proofs). A
good reference is the book of Gelbart [Gel75] and also the survey article of Schmidt
and Asgari [AS01]. We then review the results of Chapter 5 for classical Siegel
modular forms.

Classical Siegel modular forms. The real symplectic group of genus g ≥ 1

Sp(2g,R) = {x ∈ GL(2g,C) |xJxt = J} for J =

(
Ig

−Ig

)
acts on the Siegel upper half space

Hg = {τ = τ t ∈ Mat(g × g,C) | Im(τ) > 0}

via modular substitutions

x · τ = (aτ + b)(cτ + d)−1, x =

(
a b
c d

)
∈ Sp(2g,R).

The automorphic factor

j : Sp(2g,R)×Hg → GL(g,C), j(x, τ) = (cτ + d).

satisfies the cocycle condition j(x1x2, τ) = j(x1, x2τ)j(x2, τ) for x1, x2 ∈ Sp(2g,R).

Fix a holomorphic finite-dimensional irreducible complex representation (ρ, Vρ) of
GL(g,C) and a hermitian scalar product 〈·, ·〉ρ on Vρ with

〈ρ(x)v, w〉ρ =
〈
v, ρ(xt)w

〉
ρ

∀x ∈ GL(g,C),

so that ρ|U(g) is unitary. The symplectic group Sp(2g,R) acts from the right on the
space of holomorphic functions f : Hg → Vρ via the Petersson operator

(f |ρ x)(τ) = ρ(j(x, τ))−1f(x · τ).

A vector-valued Siegel modular form of weight ρ with congruence subgroup Γ ⊆
Sp(2g,Z) is a holomorphic function f : Hg → Vρ that is invariant under the right
action of Γ and holomorphic at the cusps.
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By the Köcher principle, the second condition is redundant for g > 1. The Siegel
modular forms of type ρ and level Γ form a vector space Sρ(Γ).

The imaginary part Im(τ) of τ ∈ Hg transforms via

j(x, τ)
t
· Im(x · τ) · j(x, τ) = Im(τ) for x ∈ Sp(2n,R), (B.1)

so τ 7→ 〈ρ(Im(τ))f1(τ), f2(τ)〉ρ is invariant under Γ for Siegel modular forms f1, f2 ∈
Sρ(Γ). The Petersson scalar product for square-integrable1 f1, f2 is the hermitian
product

〈f1, f2〉 =
1

[Sp(2g,Z) : Γ]

∫
Γ\Hn
〈ρ(Im(τ))f1(τ), f2(τ)〉 dτ, (B.2)

where dτ = det Im(τ)−n−1 ·
∏

i≤j dxij dyij is a fixed Sp(2g,Z)-invariant measure.

Real automorphic forms. The stabilizer of iIg = diag(i, . . . , i) ∈ Hg is the
compact group

K∞ =
{(

a b
−b a

)
| aat + bbt = Ig, ab

t = bat
}
⊆ Sp(2g,R),

which is isomorphic to the unitary group U(g) ⊆ GL(g,C) via x 7→ j(x, iIg). For a
convenient normalization of the Haar measure this gives rise to a homeomorphism

Sp(2g,R)/K∞ ∼= Hg, x 7→ x · iIg. (B.3)

For a Siegel modular form f ∈ Sρ(Γ), the smooth function

φf : Sp(2n,R)→ Vρ, φf (x) = (f |ρ x)(iIn), (B.4)

satisfies

ρ(j(k, iIg))
−1φf (x) = φf (γxk), k ∈ K∞, γ ∈ Γ. (B.5)

Since ρ(Im(iIg)) = id, (B.1) implies

〈φf1(x), φf2(x)〉ρ = 〈ρ(Im(τ))f1(τ), f2(τ)〉ρ , f1, f2 ∈ Sρ(Γ)

for x ∈ Sp(2g,R) and τ = x · iIg. Hence, up to normalization of the Haar measure,
the Petersson scalar product for square-integrable f1, f2 equals

〈φf1 , φf2〉 =
1

[Sp(2g,Z) : Γ]

∫
Γ\Sp(2g,R)/K∞

〈φf1(x), φf2(x)〉 dx. (B.6)

This defines an isometric embedding f 7→ φf from square-integrable vector-valued
Siegel modular forms to vector-valued K∞-finite automorphic forms.

1By definition, a Siegel modular form f is square-integrable if and only if 〈f, f〉 exists.
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Strong approximation. The rational idele A× = R××A×fin admit a decomposition
A× = Q×(R>0 × Ẑ×), where Q× is diagonally embedded and

Ẑ = lim←−
n

Z/nZ ∼=
∏
p

Zp ⊆ Afin

is the Prüfer ring. Strong approximation is the generalization of this result to
reductive groups.

Denote by GSp+(2g,R) ⊆ GSp(2g,R) the connected subgroup with similitude char-
acter in R>0. Fix a compact open subgroup K ⊆ GSp(2g,Afin). If the similitude
character sim : K → Ẑ× is surjective, every g ∈ GSp(2g,A) admits a decomposition
gQ(g∞k) with gQ ∈ GSp(2g,Q), g∞ ∈ GSp+(2g,R) and k ∈ K. In other words, there
is a decomposition

GSp(2g,A) = GSp(2g,Q)(GSp+(2g,R)×K) (B.7)

for the diagonally embedded GSp(2g,Q). We obtain a homeomorphism

Γ\ Sp(2g,R) ∼= GSp(2g,Q)\GSp(2g,A)/(R× ×K) (B.8)

for Γ = (GSp+(2g,R)K)∩Sp(2n,Q). For example, the modified principal congruence
subgroup

K ′(N) = {x ∈ GSp(2g, Ẑ) | ∃λ ∈ Ẑ : x ≡ diag(Ig, λIg) mod N}

satisfies sim(K ′(N)) = Ẑ× and Γ = K ′(N) ∩ Sp(2g,Q) is the principal congruence
subgroup of level N .

Adelic automorphic forms. By strong approximation, a real automorphic form
φ : Γ\ Sp(2g,R) → Vρ gives rise to a function φA : GSp(2g,Q)\GSp(2g,A) → Vρ.
This defines an isometric Hecke-equivariant embedding from square-integrable Siegel
modular forms to the subspace of Vρ-valued adelic automorphic forms φA with

1. φA(γxk) = φA(x) for γ ∈ GSp(2n,Q), k ∈ K,

2. φA(xk∞) = ρ(j(k∞, iIg))φA(x) for k∞ ∈ K∞,

3. φA(zx) = φA(x) for z ∈ Z(A) the center of GSp(2g),

4. φA is square-integrable over GSp(2g,Q)\GSp(2g,A)/Z(R)K∞.
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Automorphic representations. Fix an arbitrary non-zero linear projection Vρ →
C. For every Vρ-valued automorphic form φA, its scalar-valued image belongs to
the space of automorphic forms L2(GSp(2g,Q)\GSp(2g,A), 1) with trivial central
character. Every automorphic representation π occuring in this space decomposes as
a tensor product π ∼= π∞ ⊗ πfin of representations of GSp(2g,R) and GSp(2g,Afin).
This decouples the congruence condition from the weight condition: The weight
is encoded by the Langlands-parameter of the discrete series representation π∞.
Invariance under a compact open subgroup K of GSp(2g,Afin) is a statement about
non-archimedean factor πfin.

For g = 1 the theory of newforms provides a one-to-one correspondence between
normalized cuspidal elliptic newforms, eigenforms under the Hecke algebra, and the
automorphic representations they generate. For g = 2 an analogous theory has been
developed by Roberts and Schmidt [RS07] for locally generic representations, but
the general case is still open.

We now translate the results about local parahoric restrictions into the language of
Siegel modular forms.

On the Saito-Kurokawa lift.

Corollary B.1. Fix an elliptic cuspidal newform f of level Γ0[N ] ⊆ SL(2,Z) for
squarefree N and weight 2k − 2, k ≥ 3, with Atkin-Lehner eigenvalues εp at p | N ,
which is an eigenform of the Hecke algebra. For any divisor M of N with Möbius
µ-function

µ(M) = (−1)#{primes dividing M} = (−1)k
∏
p|N

εp, (B.9)

there is a scalar-valued genus two Siegel cuspform F with weight detk, invariant
under the principle congruence subgroup Γ[N ] ⊆ Sp(4,Z), whose spinor L-function is

L(F, s) = ζ(s− k + 1)ζ(s− k + 2)L(f, s)
∏
p|M

(1− p−s+k−1)(1− p−s+k−2)

(1 + εpp−s+k−2)
,

where ζ denotes the Riemann zeta function.

Proof. Let S = {p |M}∪ {∞} and let σ be the cuspidal automorphic representation
of GL(2,A) generated by f . The Saito-Kurokawa lift π = π(σ, σS) is automorphic by
(5.12) and

ε(σ, 1/2) = ε(f, k − 1) = (−1)k−1
∏
p|N

εp.
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It is cuspidal because S is not empty. Every local factor πv, v | N , has non-zero
hyperspecial parahoric restriction and one can show show that πf admits non-zero
invariants under the modified principal congruence subgroup

K ′(N) =
∏
v<∞

{xv ∈ GSp(4,Zv) |xv ≡ diag(1, 1, ∗, ∗) mod N} .

Strong approximation defines an automorphic form on Sp(4,R), left-invariant under
Sp(4,Q) ∩ K ′(N) = Γ[N ]. This gives rise to a Siegel cuspform F as above. The
spinor L-function is given at every non-archimedean place by (5.13).

Schmidt [Sch07, Thm. 5.2.ii)] has already shown this with the restriction to the case
of even k and where M is the product over the primes with Atkin-Lehner eigenvalue
εp = −1.

On the Yoshida lift.

Corollary B.2. Fix cuspidal elliptic newforms f1, f2, eigenforms under the Hecke-
algebra, with weights r1 > r2 ≥ 2 such that r1 + r2 ≡ 0 mod 2 and with level Γ0(Ni),
i = 1, 2, such that N1 and N2 are squarefree, but not coprime. Then there is a genus
two Siegel cuspform F with weight

ρ = Symr2−2(std)⊗ det(r1−r2)/2+2,

invariant under the principal congruence group Γ2(N) for the least common multiple
N = lcm(N1, N2) and with spinor L-function

L(F, s) = L(f1, s)L(f2, s+ 1
2
(r2 − r1)). (B.10)

Proof. Let σi be the cuspidal automorphic representation of GL(2,A) generated by
fi. For every non-archimedean place v dividing Ni, the local factor σi,v is a twist of
the Steinberg representation by an unramified character. Fix a prime p0 dividing
N1 and N2, then σi,p0 are both in the discrete series. By Thm. 5.6 there is a weak
endoscopic lift π, attached to σ, that is locally generic at every place except p0 and∞.
The archimedean factor π∞ = Π−(σ∞) is the non-generic holomorphic discrete series
representations. By strong approximation σi,v is Iwahori-spherical for every v dividing
Ni, so Thm. 4.7 implies that πv 6= 0 admits non-zero invariants under the modified
principal congruence subgroup of level p for every prime p dividing N1 or N2. Pick
a non-zero adelic automorphic form φ in π invariant under the modified principal
congruence K ′(N) subgroup of level N = lcm(N1, N2) and whose archimedean
component corresponds to a lowest weight vector. By strong approximation φ gives a
Siegel modular form F of weight ρ invariant under the principal congruence subgroup
Γ2[N ].

The equation of L-factors holds at every non-archimedean place by Prop. 5.7.
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The result on the Yoshida lift has already been shown by Schmidt and Saha [SS13,
Prop. 3.1], but under the restriction that the Atkin-Lehner eigenvalues of f1, f2

coincide at every common divisor of N1 and N2.

The case N1 = N2 = 2 proves the first part of Conjecture 6.1 of Bergström, Faber
and van der Geer [BFvdG08]. By similar arguments using Lemma 5.21 one can also
prove the second part.
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