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1. Introduction

Let x1, x2 , ..., xn be real numbers with real-valued “responses” y1, y2 , ..., yn and real-

valued “scores”  s1, s2,..., sn . For a function k on ℜ1  we consider the “contrast” 

C(k) = Σh=1,...,n sh I [yh ≥ k(xh)]. The following quantity is of interest:

C* =  max C(k),

where the maximum is taken over all convex functions k on ℜ1.

This article describes a recursive relation and an algorithm based on it to compute the optimal

contrast C* and a convex curve k* with C(k*) = C* (the optimal contrast curve) in O(n3) steps.

In the simplest special case the (xi,yi) are assumed to belong to one of two groups, the

group identifier being si with values in {α,β} (αβ < 0). For example α = 1, β = – 1. 

A statistical application to nonparametric analysis of covariance will be discussed in section 6.

There one considers the difference of the empirical distributions formed by the two groups

evaluated for the epigraphs of convex functions k. If the group sizes are n1 and n2 respectively

(n = n1 + n2), the scores will be set si = 1/n1 for the treatment group and 

si = – 1/n2 for the control group.

In general we have C* ≥ 0, because  C(k) = 0 for the constant function 

k(x) ≡ 1 + maxi=1,...,n yi. Moreover maxh=1,...,n sh ≤ C* ≤ Σh=1,...,n sh
+; hence C* > 0 if and

only if maxi=1,...,n si > 0. 

Without restriction of generality we will assume the x-values being ordered: 

x1 ≤ x2 ≤ ... ≤ xn. Obviously, maximization can be restricted to the class K  of those special
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convex functions k which are broken linear functions with break points 

(xi1
,yi1

), ... ,(xih
,yih

) (i1 < i2 < ... < ih), i.e. functions k such that 

k(x i j
) = yi j

 (j = 1,2, ... ,h), k(xi) > yi (i = 1,2, ... ,i1, ih + 1, ..., n), being linear in the

intervals (– ∞, x1], [x i j
, xi j+1

] (j = 1,2, ... ,h – 1), [xih
, + ∞).

The algorithm is related to the algorithm designed by Hartigan (1987) for computing the

minimal volume convex set in ℜ2 containing a given proportion of a sample. However, in the

present situation, backward induction can be used, leading to a transparent structure of the

algorithm. Both algorithms have complexity at most O(n3).

2. The recursion

First we assume the absence of ties, i.e. x1 < x2 < ... < xn. In this case the structure of

the recursion is most transparent. The necessary modifications in the presence of ties will be

described in section 5.

We introduce the subfamilies of convex functions Ki,δ = {k ∈ K: k(xi) = yi and k’(xi) ≥

δ}. Here k’(xi) denotes the right derivative of k at xi. Moreover 

K = K1,–∞ ∪ K2,–∞ ∪ ... ∪ Kn,–∞.

The important quantity to be considered here is

C(i,δ)   (i = 1,2, ... ,n; δ ∈ℜ1),

defined as

C(i,δ) = maxk∈Ki,δ
{ Σh≥i sh I [yh ≥ k(xh)]} .

C(i,+ ∞) and C(i,– ∞) will denote the limits of C(i,δ) for δ → + ∞ and δ → – ∞, respectively.

For each i, C(i,•) is a monotonically decreasing left-continuous function taking at most n

– i +1 values. We have C(n,δ) = sn (all δ) and C(i,+ ∞) = si (all i). We note that 

C(i,δ) = max { C(k): k ∈ Ki,δ,k(x1) > y1, k(x2) > y2, ..., k(xi–1) > yi–1} .
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Our purpose is to compute C(i,•) from C(i+1,•), ... , C(n,•) (“backward induction”).

The recursive relation will be given by proposition 1. For its formulation we need the quantities

δ(i,j)  =  
yj – yi

xj – xi
 (i ≠ j) and u(i,j) (i ≤ j): 

u(i,j) = Σ{ sh: i ≤ h < j, yh ≥ yi + δ(i,j) (xh – xi)} .

For given i ≤ j the value u(i,j) can be computed in O(n) steps. Thus the function u can be

tabulated in O(n3) steps. However, as the following recursion shows, there is no need to store

the whole matrix u, since at each induction step i only the ith row will be required.

Proposition 1 (backward induction). For each i = 1, ... , n – 1:

C(i,δ) = si ∨ maxi<j≤n{ u(i,j) + C(j,δ(i,j)): δ(i,j) ≥ δ} .

Proof. The proof relies on the fact that ωk([i,h)) = Σi≤j<h sj I [y j ≥ k(xj)] is an additive

functional on the intervals [i,h): ωk([i,h)) = ωk([i,j)) + ωk([j,h)). It is related to C(i,δ) via 

C(i,δ) = max k ∈ Ki,δ
{ ωk([i,n])}

= maxi <j ≤ n max k ∈ Ki,δ
{ ωk([i,j)) + ωk([j,n])} (by additivity) .

Then

Ki,δ = { k ∈ Ki,δ: k(xj) > yj for all j = i+1, ... ,n}  ∪ { k: k linear in [xi, xj], interpolating yi

and yj (for some i<j) with δ(i,j) ≥ δ, and  k(x) = l(x) (x ≥ xj) for some l ∈ Kj,δ(i,j)} . Thus

C(i,δ) = si ∨ maxi<j≤n { u(i,j) + maxl∈Kj,δ(i,j)
ωl([j,n]): δ(i,j)  ≥ δ}

= si ∨ maxi<j≤n { u(i,j) + C(j,δ(i,j)): δ(i,j)  ≥ δ} .■

By means of this recursion the functions C(1,•), ... , C(n,•) can now be computed in

O(n3) steps. This is due to the fact that the value C(i,δ) will only be needed for arguments δ =

δ(i,j) (j = 1,..., i – 1, i + 1, ... ,n) (see section 3). Then, by proposition 2, the quantity of

interest C* can be obtained in another O(n) steps.

Proposition 2. 

C* = 0 ∨ max1≤i≤nC(i,– ∞).
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Proof. C(k) will be maximized either by k (then C* = 0) or by some k ∈ K; in the latter

case the optimal k* ∈ K will satisfy 

k*(x1) > y1, k*(x2) > y2, ... , k*(xi–1) > yi–1, k*(x i) = yi for some i ≥ 1; this means that

k* ∈ Ki,–∞ and C* = C(i,– ∞).■

3. The algorithm

For computational purposes, the functions C(i,•) will be represented as vectors 

v(i,•) ∈ ℜn  giving the values of C(i,•) at all slopes δ(i,j) of line segments joining the point

(xi,yi) with all the other n – 1 points (component loop). Only these special values will be

needed.

In detail, let 

v(i,j) = C(i,δ(i,j)) (j = 1, ... , i – 1, i + 1, ..., n).

(v(i,i) will be left undefined). The last n – i cases correspond to possible jumps of C(i,•); the

first i – 1 cases give values of the function C(i,•), which will be needed in the recursion. In the

new notation the recursion of proposition 1 becomes

(a) v(i,h) = si ∨ maxi<j≤n{ u(i,j) + v(j,i): δ(i,j) ≥ δ(i,h)} (i+1 ≤ h ≤ n).

On the other hand, for h ≤ i – 1, v(i,h) is the value C(i,δ(i,h)) of the monotonically

decreasing left-continuous function C(i,•) with jumps at δ(i,j), i < j ≤ n; thus

(b) v(i,h) = si ∨ max i < j ≤ n { v(i,j): δ(i,j) ≥ δ(i,h)}  (1 ≤ h ≤ i-1). 

In both cases (a) and (b), for given h, at most n – i + 1 operations for searching the max

are required (inner loop). (The operations (b) can be replaced by a simultaneous calculation of

v(i,h), 1 ≤ h ≤ i – 1, using a sorting algorithm, thus reducing the computational complexity.

This modification, however, will not affect the rate of the overall complexity of the algorithm, in

view of the operations (a)).

In toto, v(i,•) will be calculated from v(i+1,•), ... ,v(n,•) in at most (n – 1)(n – i + 1)

steps. Thus v(•,•) will be available after at most Σi(n – 1)(n – i + 1) = O(n3) steps (outer

loop).
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We now summarize the computational scheme for v(•,•) as follows:

for  h := 1 to n do v(n,h) := sn ; {h, component loop}

for  i := n – 1 downto 1 do 

begin

for h := i + 1 to n do

begin

v := si;

for  j := i + 1 to n do

if  δ(i,j) ≥ δ(i,h) then v := max(v, u(i,j) + v(j,i));{j, inner loop (a)} 

v(i,h) := v 

end;{h, component loop}

for  h := 1 to i - 1 do

begin 

v := si;

for  j := i+1 to n do 

if  δ(i,h) ≤ δ(i,j) then v := max(v, v(i,j));{j, inner loop (b)} 

v(i,h) := v  

end;{h, component loop}

end;{i, outer loop}.

In a computer experiment on an Apple Quadra 950 (68030 processor) xi,yi were sampled

from a standard Gaussian distribution, with independently assigned scores ± 1; the running

times were as follows 

n 10-5n3 seconds

50 1.25 1.35

100 10 10.02

150 33.75 33.17

200 80 78.25

300 270 262.28

400 640 627.62
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500 1250 1219.62

The following figure shows a computer output of the optimal contrast curve based on 100

samples (56 from N(0,1)⊗N(0.5,1) with scores = 1/56, plotted bold face, and 44 from

N(0,1)⊗N(0,1) with scores -1/44. The contrast value is 0.401.

4. Optimal contrast curves

As a byproduct of the above algorithm, convex contrast curves k* maximizing C(k) can

be computed. This can be done by forward induction using the list v(•,•), according to the

following principle.

Let k ∈ Ki,δ(i,j) (i < j) where δ(i,j) is a point of discontinuity (jump) of C(i,•). Then 

Σh≥i sh I [yh ≥ k(xh)] = C(i,δ(i,j)) 

if and only if 
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k is linear in the interval [xi,xj] interpolating yi and yj, k ∈ Kj,δ(i,j) and 

Σh≥j sj I [yh ≥ k(xh)] = C(j,δ(i,j)).

According to this principle optimal contrast curves k ∈ K can be constructed by

successively defining its linear segments. 

Since a row index i with maximal v(i,j) for some j > i can be found from the table of v, it

suffices to have an algorithm finding some ki ∈ Ki,–∞ such that C(ki) = C(i,– ∞) for given i.

Such an algorithm will now be desribed.

First step. Let δi = max{δ: C(i,δ) = C(i,–∞)}. If δi = + ∞, then we define ki such that

ki(xj) > yj for all j > i. In this case, the construction of ki is complete. If δi < + ∞, then δi is the

position of a discontinuity (jump) of C(i,•). Therefore in this case there exists a 

k ∈ Ki,δi 
such that Σh≥i sh I [yh ≥ k(xh)] = C(i,δi) and k’ = δi = δ(i,j) for some j > i. This

means that k is linear in the interval [xi,xj], interpolating yi and yj linearly. Hence we set  ki(x)

= yi + δ(i,j)(x – xi) (x ∈ [xi,xj]).

Second step.  Put δj = max{δ: C(j,δ) = C(j,δ(i,j))}.If δj = +∞, then we define ki such

that ki(xh) > yh for all h > j. In this case, the construction of ki is complete. If aj < +∞, then δj

is the position of a discontinuity of C(j,•). Therefore there exists a k ∈ Kj,aj 
such that Σh≥j sh

I [yh ≥ k(xh)] = C(j,δj) and k’ = δj = δ(j,m) for some m > j. This means that k is linear in the

interval [xj,xm], interpolating yj and ym. Hence we set  

ki(x) = yj + δ(j,m)(x – xj) (x ∈ [xj,xm]). This step is being repeated until the construction of ki

is complete.

5. The presence of ties

It is now only assumed that  x1 ≤ x2 ≤ ... ≤ xn. This necessitates a few modifications.

First of all, it is no restriction of generality to assume that yi ≠ yj, if xi = xj. Otherwise the two

points (xi,yi), (xj,yj) could be considered as only one point with score si + sj.

By reordering the y’s, it is possible to assume that for i ≤ j, xi = xj, we always have 

yi ≤ yj. We then introduce the new scores si = Σh≥i {sh: xi = xh}.
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Then proposition 1 becomes

Proposition 1t. (backward induction). For each i = 1,..., n – 1:

C(i,δ) = si ∨ maxi<j≤n{ u(i,j) + C(j,δ(i,j)): x j ≠ xi, δ(i,j) ≥ δ} .

(Here the maximum over an empty set is – ∞. The slope δ(i,j) is undefined for xi = xj).

Proposition 2 remains valid without change when ties are present.

6. Statistical application (nonparametric analysis of covariance)

Let (x1,y1), ..., (xn,yn) be repeated observations of a covariable x and its response y

consisting of two groups (treatment and control) of size n1 and n2 respectively 

(n = n1 + n2). For an observation (xi,yi) of the first group si = 1/n1, otherwise si = – 1/n2. It is

assumed in the simplest case that the observations follow a random process of the type 

yi = k0(xi) + αi + εi with a convex function k0, an additive treatment effect αi, depending only

on the group, and the assumption that the error terms εi are independent identically distributed

according to G, independent of xi (i = 1,2, ... n) whose distribution is F. F and G are assumed

to have strictly positive densities f,g w.r. to Lebesgue measure, respectivly. The deterministic

quantities k0 and αi are unknown to the statistician. The problem is to test the hypothesis of no

treatment effect (α1 = α2). In classical statistics it has been assumed that k0 is a linear function.

The performance of tests derived for this situation must be poor when the assumption of

linearity is violated. Therefore nonparametric tests have been proposed which work under weak

assumptions on k0 (see Quade 1982). We consider a generalized Kolmogorov-Smirnov test,

which rejects the hypothesis of no treatment effect if 

KSn = maxk convex{ 1
n1

 #{i ≤ n: yi ≥ k(xi): si  > o} – 1
n2

 #{i ≤ n: yi ≥ k(xi): si  < o}}  ≥ c. It is

easy to see that KSn can be written as max{C(k): k convex} = C(kn*). The critical constant c

will be determined by rerandomization. We are going to argue that this test works reasonably if

k0 is a convex function.

If there is a treatment effect (i.e. α1 > α2), then under some conditions on the error

distribution the optimal kn* is a consistent estimator of some translate of k0  (n → +∞, such that

n1∧n2 → +∞).  This is the content of proposition 3.
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Proposition 3. The density g of the error distribution G is assumed to be continuous

and unimodal in the sense that, for some z0, g(z) is strictly increasing for 

z < z0, strictly decreasing for z > z0. 

If α1 > α2, not depending on n, then there exists a constant γ0 such that the optimal

kn*  converges to k0 + γ0 uniformly on compacts, almost surely. 

γ0 = α1 + λ(α1 - α2), where λ is the function on [0,+∞) defined by: g(z1) = g(z2), 

z1 < z2  ⇒  z1 = λ(z2 - z1).

For the proof the following elementary lemma will be used.

Lemma. Let ψ(κ,π) be a function of abstract arguments κ and π. Assume that 

  (i) κ is the unique maximum of ψ(•,π);

 (ii) ψ(κ,πn) → ψ(κ,π) uniformly in κ as n → + ∞;

(iii) κn  maximizes ψ(•, πn). 

Then ψ(κn,π) → ψ(κ,π) as n → +∞.

Proof (proposition 3). 

Let A be the family of all closed convex sets A such that (x,y) ∈ A, 

y < z ⇒ (x,z) ∈ A. Hence the epigraph U(k) = {(x,y): y ≥ k(x)} of a convex function k is a

member of A. In this way, convex functions are imbedded in A. The following defines a metric

on the space A: d(A,B) = N(0,1)⊗N(0,1)(A∆B)  (A,B ∈ A). In this metric, the space A is

compact. If d(U(kn), U(k)) → 0 (n → +∞) for convex functions kn,k, then 

kn(x) → k(x) uniformly on compact sets.Let

P = L(x, k0(x) + α1 + ε|(x,ε)~F⊗G), Q = L(x, k0(x) + α2 + ε|(x,ε)~F⊗G), and

Φ(A,P,Q) = P(A) – Q(A) (A ∈ A). After the assumptions on g, this functional on A has its

unique maximum at A = U(k1) where  g(k1(x) – k0(x) – α1) = g(k1(x) – k0(x) – α2). Hence

k1(x) - k0(x) - α1 = λ(α1 - α2), that is, k1(x) - k0(x) - α1 is a constant. Thus 

k1(x) = k0(x) + γ0, where γ0 = α1 + λ(α1 - α2). Let Pn1
,Qn2 

be the empirical distributions of

two independent samples of P,Q of size n1,n2 respectively. The Glivenko-Cantelli theorem

yields Pn1
(A) → P(A), Qn2

(A) → Q(A) uniformly in A ∈ A, almost surely (P,Q) as n1∧n2 →

+ ∞, hence Φ(A,Pn1
,Qn2

) → Φ(A,P,Q) uniformly in A ∈ A, almost surely (P,Q) as n1∧n2 →
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+∞. Now U(kn*) maximizes Φ(A,Pn1
,Qn2

) over A ∈ A. Therefore the lemma applies giving

Φ(U(kn*), P, Q) → Φ(U(k1), P, Q) almost surely (P, Q) as 

n1∧n2 → +∞. Now Φ(U(kn*),P,Q) → Φ(U(k1),P,Q) implies that d(U(kn*), U(k1)) → 0, by

compactness. Thus kn*(x) → k1(x) uniformly on compact sets.■

Also in a less restritive statistical model the above test statistic KSn can be justified by

being the empirical measure of the minimum guaranteed treatment effect (as in Müller (1980)).

Let Q = L(x, k0(x) + ε|(x,ε) ~ F⊗H), the joint law of x ~ F and k0(x) + ε (ε ~ H independent

of x) be the control distribution. Following Müller (1980) we model the treatment by means of a

Markov kernel K(z,•), being the distribution of the error ε after treatment, given that z = y –

k0(x) without treatment. This extends the approach of Doksum (1974) (see also Doksum and

Sievers (1976)) who models the treatment effect by a deterministic function. The kernel K

describes the stochastic change of the residual caused by the treatment. Thus P = L(x, k0(x) +

ε|(x,ε) ~ F⊗G) where 

G(•) = KH(•) = ∫ K(z,•) H(dz). The kernel K is unobservable, because only independent

samples from the marginals P and Q will be taken. We assume that negative effects are

excluded, that is, K is monotone in the sense that K(z, [z,+∞)) = 1 for all z. The probability of

a positive treatment effect given z will be K(z, (z,+∞)). The minimum guaranteed treatment

effect will then be the minimum of  ∫ K(z, (z,+∞)) H(dz), taken over all monotone kernels

satisfying G = KH. This minimum can be seen to equal 

π = 1 – ||G∧H|| = ∫ g∧h(z) dz = ||(G – H)+|| where h is the density of H. If g – h is increasing

((g – h)(ζ0) = 0) then 

π =  ||(G-H)+|| 

= ∫∫ (g – h)+ [y – k0(x)] dy F(dx)

= ∫∫ I [y – k0(x) ≥ z0] (g – h) [y – k(x)] F(dx) dy 

= ∫∫ I [y ≥ ζ0+ k0(x)] (P – Q)(dxy) 

= P(U(ζ0+k0)) – Q(U(ζ0+k0)).

On the other hand, for any k, 

P(U(k)) – Q(U(k)) = ∫∫ I [y – k(x) ≥ 0] (g – h)[y – k(x)] F(dx) dy which is maximized in

k if the inner integral is maximized for each x:

∫ I [y – k(x) ≥ 0] (g – h) [y – k(x)] dy = (G – H)([k(x) – k0(x),+∞)). 
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The maximum is attained for k(x) = ζ0 + k0(x). Thus π = ||(G – H)+|| ≥ P(U(k)) – Q(U(k)) with

equality for k = ζ0 + k0. Thus, using the Glivenko-Cantelli theorem, we have proved

Proposition 4. Let the densities g,h of G, H respectively be such that g – h i s

increasing. With probability 1,KSn converges to π = ||(G-H)+||, the minimum guaranteed

treatment effect.

√n - consistency and a central limit theorem easily follow from the central limit theorem

for the empirical process (see Bolthausen 1978). However, the asymptotic power for

contiguous alternatives will depend on speculative assumptions about the error distributions.

The large sample behaviour of the test using bootstrapped critical values can be derived

following the lines of Romano (1989). The author does not expect that large sample results will

be useful for sample sizes permitting computation.

7. Example

The following data from Snedecor and Cochran (1980) have been reanalyzed by Quade

(1982). The variable y measures the cholesterol concentration for two groups of women (11

from Iowa serving as controls (ο), 19 from Nebraska (+)), the covariable x is age. The figure

shows an optimal contrast curve.
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The resulting contrast value is C* = 0.4785. The significance probability was determined by a

Monte Carlo simulation of 10,000 runs using Apple’s SANE random number generator, an

implementation of the portable pseudorandom number generator of Wichmann and Hill (1987).

Under the hypothesis of no difference between the states the estimated probability that a contrast

value of this size will be exceeded is 0.48. Thus, by our analysis (as well as by the analyses of

the above-mentioned authors), there appears no significant difference between the states.

8. Further developments (S-shaped regression) 

The analogous problem of an optimal S-shaped (i.e. convex-concave) contrast curve can

be solved in the same manner; the corresponding algorithm has complexity at most O(n4). Also

the problem of more than two samples can be treated as usual in the present context. 
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It is desirable to increase the power of the test by using the ranks of yi – k(xi). The

optimization of such contrast functionals seems to be an unsolved problem.
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