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� Introduction

The problem of recovering a signal from observation of the signal plus noise may be

formulated as follows� Let X 
 Xn 
 �X�t��t�T be a random function observed on the set

T 
 Tn 
 f
� 	� � � � � ng� The componentsX�t� are independent with IEX�t� 
 ��t� 
 �n�t�

and Var�X�t�� 
 �� for every t � T � Working with functions on T rather than vectors

in Rn is very convenient for the present purposes� As just indicated� we will usually

drop the subscript n for notational simplicity� The signal � and the noise variance �� are

both unknown� For simplicity we assume throughout that X is Gaussian� Portions of the

argument that hold for non�Gaussian X are expressed by the lemmas in Section ��	�

For any g � RT � the space of real�valued functions de�ned on T � let

ave�g� �
 n��
X
t�T

g�t��

The loss of any estimator b� for � is de�ned to be

L�b�� �� �
 ave��b� � �����
�
�

and the corresponding risk of b� is
��b�� �� ��� �
 IEL�b�� ���

The �rst goal is to devise an estimator that is e�cient in terms of this risk� If � and X

are electrical voltages� then ave���� and L�b�� �� are the time�averaged powers dissipated

in passing the signal � and the error b� � � through a unit resistance�

Any estimator b� of � is governed by the asymptotic minimax bound

lim inf
n��

infb� sup
ave�����c

��b�� �� ��� � ��c

�� � c
�
�	�

for every positive c and ��� Inequality �
�	� follows from a more general bound proved by

Pinsker �
���� for signal recovery in Gaussian noise �see Nussbaum 
��� and Section 	�� It

may also be derived from ideas in Stein �
���� by considering best orthogonally equivariant

estimators in the submodel where ave���� 
 c �see Beran 
���b�� Let b�� 
 b��n be an

estimator of �� that is consistent as in display �	�	� of Section 	� Then

b�S �
 �
� b��� ave�X����X

	



is essentially the James�Stein �
��
� estimator� where ���� denotes the positive part func�

tion� It achieves the Pinsker bound �
�	� because

lim
n��

sup
ave�����c

��b�S � �� ��� 

��c

�� � c
�
���

for every positive c and ��� The limit �
��� follows from Corollary 	�� or from asymptotics

in Casella and Hwang�
��	�� For the maximum likelihood estimator b�ML 
 X � the risk is

always ��� which is strictly greater than the Pinsker bound�

Section 	 of this paper constructs estimators of � that are asymptotically minimax

over a variety of ellipsoids in the parameter space while achieving� in particular� the

asymptotic minimax bound �
�	� for every c � �� These modulation estimators take the

form bfX 
 � bf�t�X�t��t�T � Here bf � T � ��� 
� depends on X and is chosen to minimize the

estimated risk of the linear estimator fX over all functions f in a class F 
 Fn � ��� 
�T �

Many well�known estimators are of this form with special classes F � In the present paper

we analyze such estimators under rather general assumptions on F � How large this class

may be is at the heart of the analysis� Taking F to be the set of all functions from T

to ��� 
� leads to a poor modulation estimator� Successful is to let F be a closed convex

set of functions with well�behaved uniform covering numbers� One example is the set of

all functions in ��� 
�T that are nonincreasing� The asymptotic theory of such modulation

estimators� including links with the literature� is the subject of Section 	� Section �

develops algorithms for computing bfX in the example of F just cited�

Section � constructs con�dence sets that are centered at a modulation estimator bfX
and have asymptotic coverage probability 	 for �� The risk of the modulation estimator

at the center is shown to determine the risk of the con�dence set� when that is viewed as a

set�valued estimator for �� In this manner� e�ciency of a modulation estimator determines

the e�ciency of the associated con�dence set�

Before estimation of �� the data X may be transformed orthogonally without changing

its Gaussian character� A modulation estimator computed in the new coordinate sys�

tem can be transformed back into the original coordinate system to yield an estimator

of �� Standard choices for such preliminary orthogonal transformation include Fourier

transforms� wavelet transforms� or analysis�of�variance transforms� When applied in this

�



manner� modulation estimators perform data�driven tapering of empirical Fourier� wavelet

or analysis�of�variance coe�cients� Section � includes numerical examples of modulation

estimators and con�dence bounds after Fourier transformation�

� Modulation estimators

After de�ning modulation estimators� this section obtains uniform asymptotic approxima�

tions to their risks� Let F 
 Fn be a given subset of ��� 
�T � Each function f � F is called

a modulator and de�nes a candidate linear estimator fX 
 �f�t�X�t��t�T for �� The risk

of this candidate estimator under quadratic loss �
�
� is

��fX� �� ��� 
 IEL�fX� �� 
 ave���f� � ���
� f�����	�
�

For brevity� we will write R�f� �� ��� in place of ��fX� �� ����

We will �rst construct a suitably consistent estimator bR�f� of this risk� Suppose that
b�� 
 b��n is an estimator of ��� constructed �for instance� by one of the methods described

later� Let X� be a bootstrap random vector in RT such that L�X� jX� b��� 
 NT �X� b��I��
The corresponding bootstrap risk estimator for R�f� �� ��� is

IE
�
L�fX�� X�

���X� b��� 
 R�f�X� b����
We call R�f�X� b��� the naive risk estimator because it is badly biased upwards� even

asymptotically� The key point is

IER�f�X� ��� 
 ave�f��� � �
� f����� � ���� 
 R�f� �� ��� � ave��
� f������

Two possible corrections to the naive risk estimator are

bRC�f� �
 ave�f�b�� � �
� f���X� � b���� 
 R�f�X� b���� ave��
� f��b����
bRB�f� �
 max

n
ave�f�b���� bRC�f�

o

 ave�f�b��� � ave��
� f���X� � b������

Risk estimator bRC is essentially Mallows� �
���� CL criterion or Stein�s �
��
� unbiased

estimator of risk� with estimation of �� incorporated� Risk estimator bRB corrects the

possible negativity in ave��
� f���X� � b���� as an estimator for ave��
� f������ Let X�

�



be a random vector in RT such that L�X� jX� b��� is NT �b�� b��I�� where b� 
 b��X� b��� is a
vector such that ave�b��� 
 ave��
� f���X�� b������ ave��
� f��X��� Then the bootstrap

risk estimator IE�L�fX�� b���jX� b��� is precisely bRB�

Let bR denote either bRC or bRB� We propose to estimate � by the modulation estimatorbfX � where bf is any function in F that minimizes bR�f�� Unless stated otherwise it is

assumed throughout that

F is a closed convex subset of ��� 
�T containing all constants c � ��� 
��

Because both bRC��� and bRB��� are convex functions on ��� 
�T � the minimizer bf over F
exists in each case� These minimizers are unique with probability one because bRC�f�

is strictly convex in f whenever X�t� �
 � for every t � T � Similarly� the risk function

R�f� �� ��� de�ned through �	�
� is strictly convex over ��� 
�T � with unique minimizer ef �
REMARK A� The modulation estimator bfX behaves poorly when the class F is too

large� For instance� let F be the class of all functions in ��� 
�T � The minimizer ofR��� �� ���
over ��� 
�T is the �oracle� modulator �cf� Donoho and Johnstone 
����

eg �
 ������� ����

the division being componentwise� while the minimizer of bR��� over F is now the greedy

modulator bg�� where
bg �
 �X�� b����X��

To simplify the discussion� suppose that �� is known and b�� 	 ��� Then the estimator

bg�X is of the general form b� �
 �
S�X�t��

�
t�T

for some measurable function S on the line�

Since the maximum likelihood estimator X is componentwise admissible� the risk function

��b�� �� ��� of b� is either identical to ��X� �� ��� 	 �� or there is a real number 
 such thatR
�
 � S�� dN �
� ��� � ��� Then� if ���� 	 
�

��b�� �� ��� � �� 
 ��X� �� ��� � ��
����� � 
���

the latter being the asymptotic risk of the James�Stein estimator b�S � Thus� the maximum

risk of bg�X is worse than that of estimators achieving Pinsker�s asymptotic minimax

bound �
�	� and is even worse than that of the naive estimator X �

�



It should be mentioned that greedy modulation can be made successful in some sense

if one overestimates the variance �� systematically� Donoho and Johnstone �
���� propose

threshold estimators of the form b� 
 �
� �n��jX j��X or b� 
 
fjX j � �n�gX � and prove

that they have surprising optimality properties if �n 
 �	 logn�����
� �n� with a suitable

sequence ��n�n tending to zero� These estimators are similar to bg�X if bg is computed with

b��n �
 ��n�
�� While showing good performance in case of �sparse signals�� these estimators

do not achieve the Pinsker bound �
�	� or the minimax bounds in Corollary 	�� below�

Also� the construction of con�dence bounds for their loss seems to be intractable� Section

� illustrates the possibly poor performance of hard thresholding for non�sparse signals�

REMARK B� Kneip�s �
���� ordered linear smoothers are equivalent to certain modu�

lation estimators computed after suitable orthogonal transformation of X � The conditions

that we impose on F in this paper are substantially weaker than the ordering of F required

by Kneip� Consequently� our results also apply to the ridge regression� spline estimation�

and kernel estimation examples discussed in Kneip�s paper� The earlier paper of Li �
����

treated non�diagonal linear estimators indexed by a parameter h� Li�s optimality result

may be compared with Theorem 	�
 below� However� it does not seem easy to relate Li�s

conditions on the range of h to our conditions on F � The latter conditions give access to
empirical process results that yield asymptotic distributions for the loss of bfX and hence

con�dence sets for � centered at modulation estimators�

REMARK C� Nussbaum �
���� surveyed constructions of adaptive estimators that

achieve Pinsker�type asymptotic minimax bounds� For instance� Golubev and Nuss�

baum �
��	� treated adaptive� asymptotically minimax estimation when �i 
 g�xi� and g

lies in an ellipsoid of unknown radius within a Sobolev space of unknown order� Corol�

lary 	�� below is of related character� However� our results make no smoothness assump�

tions on �� For instance� sample paths up to time n of suitably scaled� discrete�time�

independent white noise ultimately lie� as n�
� within the ball ave���� � c�

Useful classes of modulators F can be characterized through their uniform covering

numbers� which are de�ned as follows� For any probability measure Q on T � consider the

�



pseudo�distance dQ�f� g�
� �


R
�f � g�� dQ on ��� 
�T � For every positive u� let

N�u�F � dQ� �
 min
n
�Fo � Fo � F � inf

fo�Fo
dQ�f�� f� � u �f � F

o
�

De�ne the uniform covering number

N�u�F� �
 sup
Q

N�u�F � dQ��

where the supremum is taken over all probabilities on T � Let

J�F� �

Z �

�

q
logN�u�F�du�

Throughout C denotes a generic universal real constant which does not depend on n� ��

�� or F � but whose value may be di�erent in various places�

THEOREM ��� Let F be any closed subset of ��� 
�T containing �� let ef be a minimizer

of R�f� �� ��� over f � F � and let bf minimize either bRC�f� or bRB�f� over f � F � Then

IE
���G� R� ef� �� ������ � C

�
J�F��

� � �
p
ave����p
n

� IE jb�� � ��j
�
�

where G is any one of the following quantities�

L� bfX� ��� inf
f�F

L�fX� ��� bRC� bf�� bRB� bf��
In particular�

����� bfX� �� ����R� ef� �� ������ � C
�
J�F��

�� �
p
ave����p
n

� IE jb�� � ��j
�
�

This theorem is about convergence of losses and risks� The next result uses convexity

of F to establish that bf and ef � as well as bfX and efX � converge to one another� Note that

the second bound holds uniformly in � � RT �

THEOREM ��� Let bf be the minimizer of bRC� Then

IE ave
�
��� � ���� bf � ef��� � CJ�F��

� � �
p
ave����p
n

� IE jb�� � ��j�

IE ave
�
� bfX � efX��

�
� CJ�F� �

�

p
n
� IE jb�� � ��j�

�



Given consistency of b� and boundedness of �� � ave����� a key assumption on F that

ensures success of the modulation estimator bfX de�ned above is that J�F� 
 o�n�����

Here are some examples of modulator classes F to which Theorem 	�
 applies�

EXAMPLE � �Stein shrinkage�� Suppose that F consists of all constant functions in

��� 
�T � The minimizer over F of R�f� �� ��� is

efS 	 
� ������ � ave������

The minimizer of both bRC and bRB is

bfS 	 �
� b��� ave�X�����

The resulting modulation estimator bfSX is the �modi�ed� James�Stein �
��
� estimatorb�S � Here one easily shows that N�u�F� � 
 � �	u���� whence J�F� is bounded by a

universal constant�

EXAMPLE � �Multiple Stein shrinkage�� Let B 
 Bn be a partition of T and de�ne

F �

nX
B�B


B c�B� � c � ��� 
�B
o
�

where 
B is the indicator function of B� The values of c�B� that de�ne ef and bf � respec�
tively� are

ec�B� 
 ave�
B�
��� ave�
B��

� � �����

bc�B� 
 ave�
B�X
� � b������ ave�
BX���

The modulation estimator bfX now has the asymptotic form of the multiple shrinkage

estimator in Stein �
����� Elementary calculations show that N�u�F� � �
 � �	u�����B�

Thus J�F� is bounded by a universal constant times ��B����� so that J�F� 
 o�n����

follows from the intuitively appealing condition �B 
 o�n��

EXAMPLE 	 �Monotone shrinkage�� Let Fmon be the set of all nonincreasing functions

in ��� 
�T � The class of candidate estimators ffX � f � Fmong includes the nested model�

selection estimators fkX � � � k � n� de�ned by fk�t� �
 
ft � kg� In fact� Fmon is the

�



convex hull of DMS �
 ff�� f�� � � � � fng� Elementary calculations show that

N�u�DMS� � 
 � u�� � 	u��

for � 
 u � 
� Together with Theorem ��
 of Dudley �
���� it follows that

logN�u�Fmon� � Cu�� for all u � ��� 
��

EXAMPLE 
 �Monotone shrinkage with respect to a quasi�order�� Let 
 be a quasi�

order relation on T �cf� Robertson et al� 
���� Chapter 
���� and let F� be the set of all

functions in ��� 
�T that are nonincreasing with respect to 
� That means� for all f � F�
and s� t � T �

f�s� � f�t� if s 
 t�

Here one can easily deduce from the conclusion of Example � that

logN�u�F�� � CN�u
��

for � 
 u � 
� where N� 
 N��n is the minimal cardinality of a partition of �T�
� into
totally ordered subsets� Thus J�F�� is of order O�N���

� �� To give an example� suppose

that X consists of n 
 	k�� � 
 empirical Haar �or wavelet� coe�cients� arranged as

a binary tree� If this tree is equipped with its natural order 
� then the monotonicity

constraint bf � F� means that bfX is a mixture of histogram estimators �cf� Engel 
�����

Here N� 
 	k � n�	� Therefore� in order to apply our theory one has to replace the class

F� with suitable subclasses�

EXAMPLE � �Shrinkage with bounded total variation�� Let F�M� be all functions f

in ��� 
�T with total variation not greater than M 
Mn� i�e�

nX
t��

jf�t�� f�t � 
�j � M�

For instance� the class of functions f�t� �
 maxfminfp�t�� 
g� �g� where p is a polynomial

of degree less than or equal to M � belongs to F�M�� Any f � F�M� can be written as

�M � 
��f� � f�� with f�� f� � Fmon� Hence

logN�u�F�M�� � 	 logN
�
�	�M � 
����u�Fmon

�
� C�M � 
�u��

�



for � 
 u � 
� In particular� J�F�M�� 
 O��M � 
������

The minimizers ef and bf in Examples ��� lack closed forms� Section � describes com�

putational algorithms for ef and bf in Examples ���� Example � di�ers from the remaining

examples both theoretically as well as computationally and will be treated in detail else�

where�

A particular consequence of Theorem 	�
 is that the modulation estimators are asymp�

totically minimax optimal for a large class of submodels for ��� ���� Namely� for a � �
�
�T

and c � � de�ne the linear minimax risk

���a� c� ��� �
 inf
g�	���
T

sup
ave�a����c

R�g� �� ����

It is shown by Pinsker �
���� that the linear minimax risk approximates the unrestricted

minimax risk in that

infb� sup
ave�a����c

��b�� �� �������a� c� ��� � 
 as n���a� c� ����
�

Moreover�

���a� c� ��� 
 sup
ave�a����c

R�go� �� �
�� 
 R�go� �o� �

���

where go �
 �
 � �a��o�
������ ��o �
 �����o�a�

��� � 
��� and �o � � is the unique real

number satisfying ave�a���o�a�
��� � 
��� 
 c���� The special case a 	 
 yields �
�	��

If the minimax modulator go 
 go�� j a� c���� happens to be in F � which is certainly

true for a 	 
� then

sup
ave�a����c

�� bfX� �� ��� � sup
ave�a����c

����� bfX� �� ����R� ef� �� ������� ���a� c� ����

Thus Theorem 	�
 immediately implies the following minimax result� where the distribu�

tion of �X� b��� is assumed to depend on ��� ��� only�

COROLLARY ��� Suppose that J�F� 
 o�n����� and that for every c� �� � ��

�n�c� �
�� �
 sup

ave�����c
IE jb�� � ��j � � �n�
���	�	�

Then the modulation estimator bfX achieves the asymptotic minimax bound ������


�



More generally� let a 
 an � �
�
�T such that

�
� �a�������� � F for all constants � � 
��	���

Then for every c� �� � ��

sup
ave�a����c

�� bfX� �� ��� � ���a� c� ��� � O�n����J�F� � �n�c� �
���� �

Speci�cally� let a�t� 
 
 for t � A � T and a�t� 
 
 otherwise� Then ave�a��� � c is

equivalent to ave���� � c and �� 
 � on T nA� Here one can easily see that condition �	���

is equivalent to 
A � F � The linear minimax risk equals

���a� c� ��� 

�� ave�
A�c

�� ave�
A� � c
�

which can be signi�cantly smaller than the bound in �
�	��

In case of F 
 Fmon condition �	��� is equivalent to a being nondecreasing on T �

We end this section with some examples for b�� Internal estimators of �� depend only on

X and require additional smoothness or dimensionality restrictions on the possible values

of � to achieve the consistency property �	�	�� One internal estimator of ��� analyzed by

Rice �
���� and by Gasser et al� �
���� is

b����� 
 �	�n� 
����
nX
t��

�X�t��X�t� 
�����	���

Here IE jb��n � ��nj � � as n�
 and

n��
nX
t��

��n�t�� �n�t� 
��� � ��

External estimators of variance are available in linear models� where one observes an

N �dimensional normal random vector Y with mean IE Y 
 D� and covariance matrix

Cov�Y � 
 ��IN for some design matrix D � RN�n� N 
 Nn � n� After suitable

linear transformation of Y and � one may assume that � is the expectation of the vector

X �
 �Y�� Y�� � � � � Yn�� Then the standard estimator for �� is given by

b����� �
 �N � n���
NX

i�n��

Y �
i �

which is independent from X with �N � n����b����� � �N�n� This estimator also satis�es

�	�	�� provided that N � n�
�







� Con�dence sets

Having replaced the maximum likelihood estimator X with bfX � a natural question is

to what extent bfX is closer to the unknown signal � than X � More precisely we want

to compare the distance L�X� bfX���� with an upper con�dence bound br 
 br�X� b��� for
L��� bfX����� In geometrical terms� the con�dence ball of primary interest is de�ned by

bC 
 bCn �
 f� � RT � L� bfX� ��� br�g�
The radius br is chosen so that the coverage probability IP�� � bC� converges to 	 � ��� 
� as n

increases� The full de�nition of bC follows the theorem below� Underlying the construction

is the con�dence set idea sketched at the end of Stein �
��
�� The quality of bC as a

set�valued estimator of � will be measured through the quadratic loss

L� bC� �� �
 sup
��bC L��� �� 
 �L� bfX� ������ br������
�

This is a natural extension of the quadratic loss de�ned in �
�
� and has an appealing

projection�pursuit interpretation� see Beran �
���a��

One main assumption for this section is that

Xn and b��n are independent with L����n b��n� depending only on n���	�

such that lim
n��

m
�
L�n�������b��n � 
���N ��� ���

�

 ��

Here �� � � is a given constant and m��� �� metrizes weak convergence of distributions

on the line� For instance� the estimator b����� of Section 	 satis�es Condition ���	� with

� �
 	 limn�� n��Nn�n�� provided that this limit exists� Condition ���	� is made for the

sake of simplicity� It could be replaced with weaker� but more technical conditions in order

to include special internal estimators of variance such as b������ A second key assumption

is that Z �

�

r
sup
n
N�u�Fn�du 
 
������

Roughly speaking� this condition allows us to pretend that bf is equal to ef � It is satis�ed
in all Examples 
��� provided that �Bn 
 O�
� in Example 	� N��n 
 O�
� in Example ��

and Mn 
 O�
� in Example ��


	



At �rst let us consider con�dence balls centered at the naive estimator X � Since

n��� ave��X � ���� has a chi�squared distribution with n degrees of freedom� we consider

bCN �

n
� � RT � ave��X � ���� � b���
 � n����c�

o
for some �xed c� The inequality ave��X � ���� � b���
 � n����c� is equivalent to

n���
�
��� ave��X � ����� 


�
� n�������b�� � 
� � ���b��c 
 c� op�
��

Thus the Central Limit Theorem for the chi�squared distribution together with Condi�

tion ��	 implies that c 
 �	 � ����������	� yields a con�dence set bCN with

lim
n��

sup
��RT � ����

���IPf� � bCNg � 	
��� 
 ��

where ����	� denotes the 	�th quantile of N ��� 
�� Moreover�

lim
n��

sup
��RT

IP
n
jL� bCN� ��� ���j � �

o

 � � � � ��

In what follows we shall see that con�dence sets centered at a good modulation estimatorbfX dominate the naive con�dence set bCN in terms of the loss L� bC� ���
To construct these con�dence sets� we �rst determine the asymptotic distribution of

bd 
 bdn �
 n����L� bfX� ��� bRC� bf���
This di�erence compares the loss of bfX with an estimate for the expected loss of bfX �

THEOREM ��� Under Conditions �	��� 	�	��

lim
n��

sup
ave�����c

m�L� bd��N ��� ���� 
 ��

for arbitrary c� �� � �� where

�� 
 ��n��� �
�� �
 	�� ave��	 ef � 
��� � �����ave�	 ef � 
��� � ��� ave����
� ef ����

A consistent estimator b�� 
 b��n of �� is obtained by substituting b�� for ��� bf for ef and

X��b�� for �� in the expression for ��� The implied estimator of the approximating normal


�



distribution N ��� ��� is N ��� b���� This leads to the following de�nition of a con�dence ball

for � that is centered at the modulation estimator bfX �

bC �

n
� � RT � L� bfX� ��� bRC� bf� � n����b� ����	�o�

The intended coverage probability of bC is 	� The next theorem establishes asymptotic

properties of this con�dence set construction� Beran �
���� treats in detail the example

where bfX is the James�Stein estimator� That situation is much easier to analyze than the

general case�

THEOREM ��� Under the conditions of Theorem 	��� for arbitrary c� �� � ��

lim
n���K��

sup
ave�����c

IP
n
jL� bC� ��� �R� ef� �� ���j � Kn����

o

 �

and lim
n���K��

sup
ave�����c

IP
n
jbr� � R� ef� �� ���j � Kn����

o

 ��

Moreover� b�� is consistent in that

lim
n��

sup
ave�����c

IP
n
jb�� � ��j � �

o

 � � � � ��

If

lim inf
n��

inf
ave�����c

��n��� �
�� � �������

then

lim
n��

sup
ave�����c

���IPf� � bCg � 	
��� 
 ��

A su
cient condition for �	��� is the following� For every n� F 
 Fn is such that


ff � cgf � F for all f � F and c � ��� 
�������

Condition ����� ensures that L� bd� does not approach a degenerate distribution� Note

that Condition ����� is satis�ed in Examples 
��� When R� ef� �� ��� 
 O�n����� our con�

�dence ball has loss L� bC� �� 
 Op�n
������ In fact� according to Theorem 	�
 of Li �
����

this is the smallest possible order of magnitude for a Euclidean con�dence ball� unless one

imposes further constraints on the signal �� The result ���	� on asymptotic coverage of bC
may be compared with the lower bound in Theorem ��	 of Li �
�����


�



A key step in the proof of Theorem ��
 is that in the de�nition of bd one may replace ef
with bf � Instead of the normal approximation underlying bC a bootstrap approximation of

H 
 Hn �
 L� bd� that imitates the estimation of ef seems to be more reliable in moderate

dimension� Precisely� let bH 
 bHn be the conditional distribution �function� of bd� given
�X� b���� where bd� is computed as bd with the pair �X�� b���� in place of �X� b���� More

precisely� let b� 
 b��� jX� b��� be an estimator for �� Let S�n be a random variable with a

speci�ed distribution depending only on n such that

lim
n��

m
�
L�n����S�n � 
���N ��� ���

�

 ��

where Sn and �X� b��� are independent� Then
L�X�� b�� � jX� b��� 
 N �b�� b��I�� L�b��S�n jX� b����

the product of the probability measures N �b�� b��I� and L�b��S�n jX� b���� The resulting

bootstrap con�dence bound brb�	� for L��� bfX� is given by

br�b �	� 
 bR� bf� � n���� bH���	��

The last theorem of this section states conditions� under which bH is a consistent estimator

for H � An interesting fact is that neither b� 
 X nor b� 
 bfX satisfy these conditions�

THEOREM ��� Under the assumptions of Theorem 	���

lim
n��

sup
ave�����c

IP
n
jm� bHn� Hn�j � �

o

 � � � � ��

provided that bf 
 argmin
f�F

R�f� b�� b��� almost surely������

lim sup
n���K��

sup
ave�����c

IPfave�b��� � Kg 
 �������

lim
n��

sup
ave�����c

IP
n���ave�b���
� bf���� ave����
� ef������ � �

o

 � � � � �������

In particular� suppose that each Fn has the following property� For all X� � � RT with

X� � � and any c � ��� 
��

c 
 ave�
f bf 
 cg�X� � b������ ave�
f bf 
 cgX�� if f bf 
 cg �
 ��
c 
 ave�
f ef 
 cg���� ave�
f ef 
 cg���� ���� if f ef 
 cg �
 ��


�



Then the function b� �
 �b�� bf��
� bf����� satis�es Conditions �	�
� 	��� 	����

One can show that the last part of Theorem ��� applies to Examples 
��� This follows

from the representation of bf given in Section � and Robertson et al� �
���� Theorem 
������

Here one can also show that b� �
 bf���X satis�es these requirements� too� This yields a

natural extension of the bootstrap method proposed by Beran �
�����

� Computation of bf and ef
We restrict our attention to bR 
 bRC � With the oracle modulator eg �
 ������ � ��� and

its naive estimator bg �
 �X� � b����X� one can write

R�f� �� ��� 
 ave��f � eg����� � ���� � ave���eg��
bRC�f� 
 ave��f � bg��X�� � ave�b��bg��

Hence both functions ef and bf are metric projections of some function g onto F �
Now we consider the family F� of Example �� Note that this case includes Examples 
�

� as special cases� The family F� can be written as H� � ��� 
�T � where

H� �
 fnonincreasing functions h � RT with respect to 
g�

Given arbitrary h � H� and a � R� the functions maxfh� ag and minfh� ag also belong to

H�� Consequently� since � � eg � 
 and bg � 
�

ef 
 argmin
h�H�

ave��h� eg����� � ���� and bf 
 argmin
h�H�

�

ave��h� bg��X���

where H�
� �
 fh � H � h � �g� Hence ef can be computed by any algorithm for projections

onto H�� while in case of bf one has to deal with a nonnegativity constraint� �Replacing

bg with bg� would yield an inconsistent estimator for ef in general�� The latter problem is

easy to solve� Let bh be the unique unrestricted projection

bh �
 argmin
h�H�

ave��h� bg��X��

of bg� Then bf 
 bh��

�



For if bh 
 bh� � bh�� then bf � bh� � H� and bh� � H�
�� Hence

ave��bh� bg��X�� � ave�� bf � bh� � bg��X��


 ave�� bf � bg��X�� � ave��bh� � bg��X��� ave�bg�X��

� 	 ave� bfbh�X��

� ave�� bf � bg��X�� � ave��bh� � bg��X��� ave�bg�X��

� ave��bh� � bg��X�� � ave��bh� � bg��X��� ave�bg�X��


 ave��bh� bg��X���

by de�nition of bf and bh� Thus bf � bh� equals bh� whence bf 
 bh��
Explicit algorithms for computing bh are described in Robertson et al� �
���� Section 
��

Because of the special form of eg and bg one can even replace weighted least squares by

ordinary least squares� Namely� let

H� �
 argmin
h�H�

ave
�
�h� ����

�
and HX �
 argmin

h�H�

ave
�
�h�X���

�
�

Then ef 
 H����
� �H�� and bf 
 �HX � b�����HX �

This follows from the min�max formula for antitonic regression �Robertson et al� 
����

Theorem 
������ For let L and U be generic lower and upper sets� respectively� That

means�

L 

n
y � T � y 
 x for some x � L

o
and U 


n
y � T � x 
 y for some x � U

o
�

Then

bh�t� 
 max
L�t�L

min
U �t�U

ave�
L	UX
�bg�� ave�
L	UX��


 max
L�t�L

min
U �t�U

�

� b�� ave�
L	U�� ave�
L	UX��

�

 
� b��� max

L�t�L
min
U �t�U

�
ave�
L	UX

��� ave�
L	U�
�


 
� b���HX�t��

The formula for ef is proved analogously�


�



� Numerical examples

In this section we apply the proposed methods to empirical Fourier coe�cients� We

simulated data

Y �z� 
 ��z�n� � ��z�� z � T�

where n 
 
���� � � NT ��� I�� and � is one of the following two functions on ��� 
��

Case 
� ��u� �
 	 �����u��
� u��
�

Case 	� ��u� �


��������	

�� if 
�� 
 u 
 ����
��� if ��� 
 u � ����
	 if ��� 
 u � ����
� else�

With the orthonormal functions �� 	 n���� ��k���z� �
 �	n���� cos�	�kz�n� and ��k�z� �


�	n���� sin�	�kz�n� �
 � k 
 n�	�� and �n���z� �
 n�����
�z on T these data were

transformed into

X �
 �ave��tY ��t�T 
 �ave��t����n���t�T � �ave��t���t�T 
� � � E�

so that E � NT ��� I�� Then we computed the modulation estimator bfX using b�� 	 
 �for

simplicity� and the modulator class

F �

n
f � Fmon � f�k�� 
 f�k for 
 � k 
 n�	

o
�

This yielded the estimator

b��z�n� �

X
t�T

ave��t bfX��t�z�

for ��z�n�� The additional requirement on f � Fmon takes into account the ambiguity

of labeling sine and cosine functions of the same frequency� It also makes the resulting

estimator b� equivariant under cyclical shifts of the data Y �

Figures 
a and 	a depict the data Y and the estimator b����n� in the two cases� re�

spectively� Figures 
b and 	b show the estimator b����n� and the true function ����n��
Figures 
a� and 	a� contain Y and b����n�� too� but this time the modulator bf was com�

puted with b� 	 ��� and b� 	 
�
� respectively� A higher estimated variance leads to a


�



smoother estimate� These plots show clearly that estimating the variance is a crucial step�

They also indicate the possibility to pick b� visually�

Figures 
c and 	c show what is going on in the Fourier domain� The �rst plot shows

the ideal greedy modulator eg and the ideal monotone modulator ef � F � The second

plot gives the empirical counterparts bg� and bf � Apparently the functions eg and bg� have

little in common� On the other hand� the estimator bf and ef are close to one another� as

predicted by Theorem 	�	�

Note that a �hard� threshold estimator keeps all coe�cients X�t� of X such that bg�t� is
above a certain level while replacing the remaining coe�cients with zero� In examples the

authors looked at� this often led to peculiar estimators using only very few low frequencies

or including some high frequencies� For cases 
 and 	� Figure � shows �oracle� �in a strong

sense de�ned by the next display� threshold estimators e�th���n� �

P

t�T ave��t
e�th��t�

where e�th�t� �
 
fjX�t�j � cthgX�t� and

cth 
 cth�X� �� �
 argmin
c
�

L
�

fjX j � cgX� �

�
�

In Case 
 the function � is very smooth� thus leading to a sparse signal �� In fact� the

threshold �t is excellent� In Case 	 the threshold �t seems useless�

Finally we computed the bootstrap upper con�dence bounds br�b ����� for the actual loss
L� bfX� �� as described in Section �� The quantile bH������� was estimated in ���� Monte�

Carlo simulations� Table 
 contains the distance L�X� bfX�� the estimated risk bR� bf�� the
bootstrap bound br�b������ the actual loss L� bfX� �� as well as the loss L�e�th� ���

L� bfX�X� bR� bf� br�b ����� L� bfX� �� L�e�th� ��
Case 
 ����
� ���
�� �����
 ���
�� ������

Case 	 ���
�� ������ ��
��
 ������ ��
�
�

Table �

� Proofs

��� Auxiliary results

Our results utilize well�known techniques from empirical process theory� Theorem ��


below follows from standard symmetrization arguments and Pisier�s �
���� version of the


�



Chaining lemma �see also Pollard 
���� Sections 	 and ��� Theorem ��	 is a simpli�ed

and modi�ed version of Alexander�s �
���� general results �see also Pollard 
���� Theo�

rem 
�����

Let S 

Pn

i�� �i with independent stochastic processes ��� ��� � � � � �n on an index set T �
Examples for S are empirical processes and partial sum processes� see also Pollard �
�����

For technical reasons we suppose that all �i have continuous paths with respect to some

metric d on T such that �T � d� is separable� Now de�ne a random pseudodistance b� on T
via

b��s� t�� �

nX
i��

��i�s�� �i�t��
��

Further let

��s� t� �
 IE�b��s� t�������
For any pseudo�metric � on T de�ne the covering numbers

N�u� T � �� �
 min
n
�To � To � T � inf

to�To
��to� t� � u � t � T

o
�

THEOREM ��� Suppose that S�to� 	 � for some to � T � Then

IE kS � IESkT � C IE
Z bD
�

q
logN�u� T � b�� du�

where bD �
 supt�T b��t� to� and kxkT �
 supt�T jx�t�j� �

THEOREM ��� Suppose that T 
 Tn� �i 
 �n�i depend on n such that the following

conditions are satis�ed as n�
�

IE
nX
i��

k�ik�T 
 O�
� and IE
nX
i��


fk�ik�T � ug k�ik�T 
 o�
� for all u � �����
�

Z ��n�

�

q
logN�u� T � b��du �p � whenever ��n� � �����	�

Then

IE kb�� � ��kT �T 
 o�
� and N�u� T � �� 
 O�
� for all u � ��

sup
s�t�T �	�s�t��


����S � IE S��s�� �S � IES��t�
��� �p � as n�
� 	 � ��

kS � IESkT 
 Op�
��

	�



Moreover� let an � T � R be arbitrary functions such that
P

t�T jan�t�j 
 O�
�� Then

m
�
L
�X
t�T

an�t��S � IE S��t�
�
� N

�
��Var

hX
t�T

an�t�S�t�
i��

� �� �

��� Proofs for Section �

With the vector E �
 X � � of residuals we de�ne random functions

W� �
 E� � �� and W� �
 �E

on T � Then one can write

L�fX� ���R�f� �� ��� 
 avef�fE � �
� f���� � f��� � �
� f����g

 ave�f�W� � 	�f� � f�W���

Moreover� X� 
 E� � 	�E � �� 
 W� � 	W� � �� � ��� and with

V �
 b�� � ��

one obtains

bRC�f��R�f� �� ���


 ave�f�b�� � �
� f���X� � b���� f��� � �
� f�����


 ave��f� � 	f � 
��W� � 	W�� � �	f � 
�V ��

bRB�f��R�f� �� ���


 ave
�
�
� f���� � �
� f���W� � 	W� � V �

�� � ave��
� f���� � f�V �


 ��f� ave
�
�f� � 	f � 
��W� � 	W�� � �f� � ��f��
� f���V

�
�

where � � ��f� � 
� Hence the following inequalities hold�

LEMMA ���

sup
f�F

��� bR�f�� R�f� �� ���
��� � � sup

g�G
j ave�gW��j� � sup

g�G
j ave�gW��j� jV j�

sup
f�F

���L�fX� ��� R�f� �� ���
��� � sup

g�G
j ave�gW��j� � sup

g�G
j ave�gW��j�

where G �
 ffg � f� g � Fg�

	




If F is the convex hull of a family D of �indicators of� subsets of T � which is closed under

intersection� then G 
 F � In fact� in that case one may replace J�F� in Theorems 	�
� 	�	

and Corollary 	�� with J�D��
Theorem 	�
 follows easily from Lemma ��� and the following result� which is stated

for potentially non�Gaussian error E�

LEMMA ��� Let X 
 � �E� where E has independent components with mean zero and

variance ��� Then

IE sup
g�G

j ave�gW��j � C J�F�
s
IE ave�E��

n
�

IE sup
g�G

j ave�gW��j � C J�F�
s
�� ave����

n
�

Proof of Lemma ���� Elementary calculations show that the uniform covering num�

bers of G satisfy

N�u�G� � N�u�	�F�� for all u � ��

Thus J�G� � �J�F�� and F may be replaced with G� Now the asserted inequalities for

W�� W� are direct consequences of Theorem ��
� For let T �
 G and

�i�g� �




n��E�i��g�i� for j 
 
�
n����i�E�i�g�i� for j 
 	�

Then supg�G j ave�gWj�j 
 kS � IE SkG�
For j 
 
� and arbitrary g� h � G�

b��g� h�� 
 n�� ave�E��g � h���


 n�� ave�E��dbQ�g� h��
� n�� ave�E��

for some �random� probability measure bQ on T � Thus bD � n���� ave�E����� and

N�u�G� b�� � N �n��� ave�E������u�G��

Hence Z bD
�

q
logN�u�G� b�� du �

Z n���� ave�E�����

�

q
logN �n��� ave�E������u�G�du


 n���� ave�E�����
Z �

�

q
logN�u�G�du�

		



and IE�ave�E������ � �IE ave�E�������

For j 
 	 the same arguments yield

Z bD
�

q
logN�u�G� b��du � n���� ave���E�����

Z �

�

q
logN�u�G�du�

and IE�ave���E������ � � ave�������� �

Proof of Theorem ���� Let w� �
 X�� w� �
 �� � ��� g� �
 bg and g� �
 eg� Thenbf 
 f� and ef 
 f�� where generally

fi �
 argmin
f�F

ave
�
wi�f � gi�

�
�
�

Let �i� j� be either �
� 	� or �	� 
�� By convexity of F �
�

�t

���
t��

ave
�
wi�fi � t�fj � fi�� gi�

�
�


 	 ave
�
wi�fi � gi��fj � fi�

�
� �������

Hence�

�

�t

���
t��

ave
�
wi�fi � t�fj � fi�� gi�

�
�


 	 ave
�
wi�fi � gi��fj � fi�

�
� 	 ave

�
wi�fj � fi�

�
�

� 	 ave
�
wi�fj � fi�

�
�
�

On the other hand�

�

�t

���
t��

ave
�
wi�fi � t�fj � fi�� gi�

�
�


 � �

�t

���
t��

ave
�
wi�fj � t�fi � fj�� gi�

�
�


 �	 ave
�
wi�fj � gi��fi � fj�

�
� 	 ave

�
�wj�fj � gj�� wi�fj � gi���fi � fj�

�
�

where the latter inequality follows from ����� with i and j interchanged� Thus we end up

with the inequality

ave�wi�fj � fi�
�� � ave

�
�wj�fj � gj�� wi�fj � gi���fi � fj�

�
�

Elementary algebra yields

wj�fj � gj�� wi�fj � gi� 




� bf � 
��W� � 	W�� � V if �i� j� 
 �
� 	��

�
� ef ��W� � 	W��� V if �i� j� 
 �	� 
��

	�



Consequently� Lemma ��� yields

IE ave
�
X�� bf � ef��� � 	 IE sup

f�F

���ave��
� ef��W� � 	W��f
����� IE jV j

� CJ�F�n����
�
�� � � ave��
� ef���������� IE jV j

� CJ�F�n������ � IE jV j�
IE ave

�
��� � ���� bf � ef��� � � IE sup

g�G

���ave��W� � 	W��g�
���� IE jV j

� CJ�F�n����
�
�� � � ave�������

�
� IE jV j�

In the �rst case we applied Lemma ��� with �
 � ef �� in place of � and utilized the fact

that ave
�
�
� ef����� � R� ef� �� ��� � R�
� �� ��� 
 ��� �

��� Proofs for Section �

Throughout this subsection asymptotic statements are meant as n � 
 uniformly in

ave���n� � c� where c� �� � � are arbitrary and �xed�

Proof of Theorem ���� At �rst it is shown that

bd 
 bd� ef� � op�
�������

where bd�f� �
 n����L�fX� �� � bRC�f��� i�e� bd 
 bd� bf�� The formulas of Section ��	 for

L�fX� �� and bRC�f� yield

bd�f� 
 n��� ave
�
�	f � 
�W� � 	�f � 
�W� � �
� 	f�V

�
�

In particular� bd�f�� bd� ef� 
 	n��� ave
�
�f � ef��W� �W� � V �

�
�

It follows from the proof of Theorem 	�	 that

ave
�
��� � ���� bf � ef��� 
 op�
�������

Hence jn���V ave� bf � ef�j 
 op�
�� and it su�ces to show that

n��� ave�� bf � ef�Wj � 
 op�
� for j 
 
� 	������

	�



For j 
 
 one can apply Theorem ��	 with T 
 F and �i�f� �
 n����f�i�E�i��

similarly as in the proof of Theorem 	�
� The assumptions of Theorem ��	 are satis�ed�

because

IE
nX
i��

k�ik�F 
 IE ave�E�� 
 ����

IE
nX
i��


fk�ik�F � ug k�ik�F 
 IE ave�
fE� � nugE�� 
 o�
� � u � ��

Z ��n�

�

q
logN�u�F � b��du � ave�E�����

Z ��n��ave�E�����

�

q
N�u�F�du

�p � whenever ��n� � ��

Hence assertion ����� for j 
 
 follows from the fact that

�� bf� ef�� 
 IE ave��f � ef��E��
���
f�bf 
 ��� ave�� bf � ef��� 
 op�
��

according to ������

As for j 
 	� f �� n��� ave�fW�� is a centered Gaussian process with continuous

paths with respect to ��f� g� 
 � ave����f � g������ 
 Varfn��� ave��f � g�W��g���� Hence
Pisier�s �
���� maximal inequality yields

IE sup
f�g�F�	�f�g����n�

���n��� ave��f � g�W��
��� �p � whenever ��n� � ��

and ����� follows from �� bf� ef� 
 op�
�� again a consequence of ������

Because of expansion ����� it su�ces to show that the distribution of

bd� ef� 
 n��� ave��	 ef � 
�W� � 	� ef � 
�W� � �
� 	 ef�V �
is asymptotically normal with mean zero and variance ��� By assumption ���	�� �W��W��

and V are independent with m
�
L�n���V ��N ��� �����

�
� �� Further� Lindeberg�s Central

Limit Theorem entails

m
�
L
�
n��� ave��	 ef � 
�W��

�
�N

�
�� 	�� ave��	 ef � 
���

��
� ��

whereas L
�
n��� ave�� ef � 
�W��

�

 N

�
�� �� ave����
� ef����� Thus it remains to be shown

that n��� ave��	 ef � 
�W�� and n��� ave�� ef � 
�W�� are asymptotically independent� For

	�



that purpose we split T into the two subsets T ��� �
 f�� � n���g and T ��� �
 T nT ���� For

any a � RT let a�k��t� �
 
ft � T �k�ga�t�� Note that �W
���
� �W

���
� � and �W

���
� �W

���
� � are

independent� In addition�

n IE ave��	 ef � 
�W
���
� �� � 	���T ����n � 	�� ave�����n��� 
 o�
��

while n��� ave��	 ef � 
�W
���
� � and n��� ave�� ef � 
�W

���
� � are asymptotically independent�

according to the bivariate CLT� �

Proof of Theorem ���� It follows from Theorem ��
 and the proof of Theorem 	�


that

br� 
 bRC� bf� � Op�n
����� 
 R� ef� �� ��� �Op�n

�����

and L� bfX� �� 
 R� ef� �� ��� �Op�n
������

Consequently�

L� bC� �� 
 �L� bfX� ������ br�� 
 �R� ef� �� ��� �Op�n
������

As for the consistency of b��� we know already that b�� 
 ���op�
� and ave�� bf � ef ��� 

op�
�� Thus the assertion follows from Theorem 	�
 via

ave��X�� b����
� bf ��� 
 bRC� bf�� b�� ave� bf��

 R� ef� �� ���� �� ave� ef�� � op�
�


 ave����
� ef��� � op�
��

Given consistency of b��� the fact that ����� implies asymptotic level 	 of bC follows

from standard arguments� It remains to be shown that ����� implies ������ Suppose that

the latter condition is violated� This is equivalent to

lim inf
n��

inf
ave�����c

�
ave�� ef � 
�	��� � ave����
� ef ���� 
 �������

However�

R� ef� �� ��� � �� ave� ef�� � ����� ave�� ef � 
�	������

	�



while for fo �
 
f ef � ���g ef � F �
R� ef� �� ��� � R�fo� �� �

��


 ave����
� fo�
�� � �� ave�f�o �

� 
� ave����
� ef��� � ��� ave�� ef � 
�	����

These two inequalities are incompatible with ������ �

Proof of Theorem ���� It follows from the fact that b�� 
 ���op�
� and Theorem ��
�

applied to L�X�� b��� jX� b��� in place of L�X� b���� thatm� bH�N ��� b���� 
 op�
�� where b�� is
de�ned as �� with �b�� b��� bf� in place of ��� ��� ef �� One easily checks that b�� 
 ���op�
� 


Op�
�� whence

m� bH�H � � m� bH�N ��� b���� �m�N ��� b����N ��� ���� �m�H�N ��� ���� 
 op�
��

Now suppose that F has the special properties described in Theorem ���� If b�� � ��

then bf 
 
� so that b� is well�de�ned� Condition ��� follows from

argmin
g�	���
T

R�g� b�� b��� 
 b����b�� � b��� 
 bf�
The special construction of b� entails that

b�� 

X

c�bf�T � 
f
bf 
 cg ave�
f bf 
 cg�X�� b������ ave�
f bf 
 cg��

Consequently the moment condition ����� follows from

ave�b��� 

X

c�bf�T �ave�
f
bf 
 cg�X�� b����� � ave�X�� 
 Op�
��

while ����� follows from

ave�b���
� bf��� 
 ave�b�� bf�
� bf��

 ave��� ef�
� ef�� � op�
�


 ave��� ef��
� ef� �
� ef��� � op�
�



X

c�ef�T � ave
h

f ef 
 cg ave�
f ef 
 cg���� ave�
f ef 
 cg� �
� ef��i� op�
�



X

c�ef�T � ave�
f
ef 
 cg���
� ef��� � op�
�


 ave����
� ef��� � op�
�� �
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