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In this paper we deal with the problem of �tting an au�
toregression of order p to given data coming from a station�
ary autoregressive process with in�nite order� The paper is
mainly concerned with the selection of an appropriate or�
der of the autoregressive model� Based on the so�called �nal
prediction error �FPE� a bootstrap order selection can be
proposed� because it turns out that one relevant expres�
sion occuring in the FPE is ready for the application of
the bootstrap principle� Some asymptotic properties of the
bootstrap order selection are proved� To carry through the
bootstrap procedure an autoregression with increasing but
non�stochastic order is �tted to the given data� The paper
is concluded by some simulations�
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�� Introduction

In this paper we deal with observations X�� � � � �Xn which are realizations of an in�nite
order autoregressive model �AR����model� of the following type

Xt �
�X
���

a�Xt�� � �t � t � ZZ � f���	��
� � � �g �

The process ��t � t � ZZ� consists of independent and identically distributed �i�i�d�� real
valued random variables on a probability space ��A� P � with �cumulative� distribution
function F � Furthermore we assume

E �� � �� E ��� � �� � ����� and E ��� �� �

The parameter a � �a� � � � IN�� IN � f	� 
� � � �g� is absolutely summable and the
generating function 	 �

P�
��� a�z

� has no zeros in the closed complex unit disk� More
formally� j�a� � �	��a���a�� � � �� � �� � fb � IRIN� � kbk� �

P�
��� jb�j � �g� IN� �

IN �f�g� and j�a� is invertible in �� with respect to the convolution �b�c�� �
P�

j�� bjc��j �

If � � j�a��� denotes the inverse of j�a� with respect to convolution� then the process
X � �Xt� allows the following representation as an in�nite order moving average process
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�MA����process�

Xt �
�X
���

���t�� � t � ZZ �

where �� � 	 and the coe�cients ��� � � 	� can be computed recursively from the
convolution equation

P�
j�� �ja��j � ��

The paper is devoted to the problem of �tting an autoregression of order p �AR�p��
model� to the given set of data X�� � � � �Xn� We start with a brief but careful study
of the �nal prediction error �FPE�� We obtain that one of two relevant terms is ready
for an approximation through the bootstrap principle� In contrast to the construction of
usual order selection procedures �e�g� FPE� or AIC�method�� which heavily depend on the
kind of the involved parameter estimator �mostly the usual Yule�Walker estimator or the
closely related least squares �LS� estimator�� the bootstrap approximation is open for other
parameter estimates� This takes care of the fact that the more precise we can estimate
the parameter of an AR�p��approximation to the given data the higher we probably want
to choose the de�nitive order to obtain a more precise �t� In this context we think of M�
estimators or ML�estimators for non�normally distributed situations or so�called adaptive
procedures�

The bootstrap procedure is based on a preliminary autoregressive approximation with a
non�stochastic order p��n� converging to in�nity� The reader who is interested in a more
complete theory for the bootstrap procedure in this AR����setup is referred to Kreiss
�	���� 	���� and B�uhlmann �	�����

The paper is concluded by some simulation results� There the properties of the bootstrap
version of FPE are compared with the AIC�method�

�� An Approximation of the Final Prediction Error

In this section� we derive an approximation of the well�known FPE�criterion function
which is of an appropriate form to apply the bootstrap� Here� we sometimes use heuristic
arguments just to motivate this approximation� A rigorous formulation of the asymptotic
properties of the order selection procedure� based on this approximation� is postponed to
Section ��

The optimal parameter of a �tted autoregression of order p is de�ned as

a�p� � argmin
c�p��IRp

E
�
Xt � c�p�TXt���p�

��

where Xt���p� � �Xt��� � � � �Xt�p�T � If 	h � EXtXt�h � h � IN�� denote the autocovari�
ances and

��p� �
�
	ji�jj � i� j � 	� � � � � p

�
and 	�p� � �	�� � � � � 	p�

T �






then a�p� is given by the Yule�Walker equations

a�p� � ��p���	�p� � �
�	�

We note that under our assumptions on the parameter a the �p�p��matrix ��p� is always
positive de�nite� ��p� and ��p��� are uniformly bounded in p � IN with respect to the

operator norm kBk �� supfkBxk� � kxk� �� �
P
x�i �

�
� � 	g and for the autocovariance

function � � �	h � h � IN�� we have � � ���
On the basis of the given observations X�� � � � �Xn suppose that we have an estimator
�a�p� � ��a��p�� � � � � �ap�p��

T of a�p� for all p up to a maximal order p�n�� The FPE idea
suggests to choose the order for the de�nitive autoregressive �t as

P��n� � argmin
��p�p�n�

EXEY
�
Yt � �a�p�TYt���p�

��
� �
�
�

where Y is an independent copy of the time series X� As the number of observations n
tends to in�nity� the maximal order p�n� is also supposed to converge to in�nity� Following
Shibata �	���� we obtain

P��n� � argmin
��p�p�n�

n
�� � ka � a�p�k�	 � E k�a�p� � a�p�k�	�p�

o

� argmin
��p�p�n�

�
E
�
Xt � a�p�TXt���p�

��
� E k�a�p�� a�p�k�	�p�

�
�

where � � �	ji�jj � i� j � IN�� kxk�
B

� xTBx and� for the sake of simplicity� a�p� also
denotes the ���vector �a��p�� � � � � ap�p�� �� � � �� �lled up with zeros� Note that P��n� is a
deterministic but not computable quantity� Now the idea is to estimate both parts of the
FPE� Let us start with the �rst expectation

E
�
Xt � a�p�TXt���p�

��
� 	� � 
a�p�T	�p� � ka�p�k�	�p� � �
���

If we denote by �� any consistent estimator of the autocovariance function � �we will see
later that �� need not be the empirical autocovariances� this expression can be estimated
by

�	� � 
a�p�T �	�p� � ka�p�k�
	�p� �

Next we intend to plug in a further estimate� namely estimators �a�p� for a�p�� As the
optimal parameters a�p� correspond to the autocovariance function � through the Yule�
Walker equations �
�	�� the same should hold for the estimators �a�p� and �� belonging to
them� i�e�

���p��a�p� � �	�p� � 	 	 p 	 p�n� � �
���

Obviously� �� needs only to be known up to lag p�n�� For ease of notation we do not
explicitly indicate the dependence of the estimators on the number n of observations�
This second substitution introduces a systematic bias which� using �
���� may be calculated
as �

�	� � 
a�p�T �	�p� � ka�p�k�
	�p�
�
�
�
�	� � 
�a�p�T �	�p� � k�a�p�k�
	�p�

�
� �
 �a�p�� �a�p��T �	�p� � �a�p�� �a�p��T ���p� �a�p� � �a�p��

� ka�p�� �a�p�k�
	�p� �

�



Because of this a reasonable approximation of the argument of P��n� is given by

�	� � �a�p�T �	�p� � 
 
 E k�a�p� � a�p�k�	�p� � �
���

where the expectation is ready for an approximation through the bootstrap� which we
will discuss in detail in the next but one section� Note that we have so far not made any
assumptions on the estimates �a�p� and �� except �
����

Finally we need a further approximation of the expectation in �
��� in order to be able to
evaluate some asymptotic properties of the bootstrap order selection� To this end observe
that

k�a�p� � a�p�k�
	�p��
������p��� ��	�p�� ���p�a�p�

�����

	�p�

�
����	�p�� ���p�a�p�

����

	�p���

�

We will now make use of the following approximation of the argument of P��n�

�	� � �a�p�T �	�p� � 
 
 E
����	�p� � ���p�a�p�

����
	�p���

� �
���

The construction of a bootstrap version of the following theoretical order selection proce�
dure

P��n� �� argmin
��p�p�n�

n
�	� � �a�p�T �	�p� � 
 
 Sn�p�

o
�
���

where

Sn�p� � E
����	�p� � ���p�a�p�

����
	�p���

� E
�����	�p� � 	�p�� �

�
���p�� ��p�

�
a�p�

����
	�p���

�
���

is exactly the goal of the next but one section� Of course P��n� is closely related to

P �
��n� �� argmin

��p�p�n�

n
�	� � �a�p�T �	�p� � 
 
 E k�a�p� � a�p�k�	�p�

o
� �
���

�� Estimators of Prediction Coe�cients

In this section we want to present brie�y some estimators for the autocovariance function
� or the parameter value a�p� of an autoregressive �t of order p which we have in mind�
The easiest situation is to use the empirical autocovariances

�	h �
	

n

n�hX
t��

XtXt�h � h � IN��

�or� asymptotically equivalent� their centered version �	ch � �
n

Pn�h
t�� �Xt�

�
n

Pn
s��Xs��Xt�h�

�
n

Pn
s��Xs��� to which belong the well�known Yule�Walker parameter estimators

�a�p� � ���p����	�p� �

�



In this text we always equip empirical autocovariances and the corresponding Yule�Walker
parameter estimators with a tilde� In contrast to these estimators we propose the following
alternative� Fit in a �rst step an autoregression of �high� order pM � p�n� to the given
data and compute M� or ML�parameter estimators� i�e� solutions of

�n �c�� � � � � cpM � �
nX

t�pM��




�
Xt �

pMX
���

c�Xt��

�
Xt���pM� � � � ���	�

where 
 � IR� IR denotes a suitable score function� We do not intend to discuss at this
place the problem of �nding solutions of ���	�� If pM � pM �n� converges to in�nity with
an appropriate rate and if 
 satis�es some regularity conditions it is possible to �nd a
solution of ���	�� denoted by �aM � �aM�pM�� which is consistent for a� cf� Kreiss �	���� and
Moser �	����� As j�a� is invertible in �� and the set of invertible sequences in �� is open
in ��� we may assume that j ��aM� is invertible as well�

Denote the autocorrelation function belonging to an autoregressive process of order pM
with parameter �aM by �r� As the autocovariance function r is a continuous function of the
parameter a �with respect to k
k��� �r will be a consistent estimator for the theoretical
autocorrelation function r � �

��
�� The estimate �r coincides with the empirical autocor�

relation function up to lag pM if and only if �aM is the Yule�Walker estimate� �r may be
computed using the MA����representation of the AR�process with parameter �aM � As
only the components of �r up to lag p�n� 	 pM are needed� an easier approach is to solve

�R�pM� �a
M � �r�pM� �

or equivalently

�C�pM � 	�

	
BB


�r�
���

�rpM��

�
CCA � �

	
BB


�aM�
���

�aMpM��

�
CCA � �rpM � �aMpM �

pM��X
���

�aMpM���r� �

where �C�pM � 	� �
�
�aMi�j � �aMi�j � 	 	 i� j 	 pM � 	

�
� �aM� � �	 and �aMk � � if k � � or

k � pM � As j��aM� is supposed to be invertible in ��� the matrix �C�pM�	� will be invertible�
too�

Based on the autocorrelation estimates �r� we may calculate new estimates of a�p� using
the Yule�Walker equations�

�a�p� � �R�p����r�p�� p � 	� 
� � � � � p�n� � ���
�

Why do we introduce such estimators� It is known that M�estimators �aM are more e�cient
for a if the innovations �t are not normally distributed� see e�g� Martin �	���� or Kreiss
�	����� In particular� this is true if the distribution of the innovations has a Lebesgue
density f and we take 
 � �f ��f � i�e� if we use ML�estimates� The gain in e�ciency
carries over to the estimators �r and �a�p�� which are smooth functions of �aM � �aM�pM��

�



It is not possible to use the M�estimators �aM�p� directly as estimators for a�p�� because� in
general� they are not even consistent� Therefore� we have to use the detour of calculating
�r from �aM�pM � and then de�ne �a�p� as in ���
� to get robust and consistent estimates of
a�p� for p 	 pM � For a di�erent approach where the quadratic loss function in �
�
� is
replaced by some loss function L� and where the optimal parameters may be estimated
directly by the M�estimators� see Behrens �	�����

To avoid too much technical details� we consider in the following two sections only the
easiest case where �rh � �rh� h 	 p�n�� are the empirical autocorrelations and �a�p� � �a�p�
are the Yule�Walker estimates� A theoretical investigation of the asymptotic properties of
our bootstrap order selection procedure when �r corresponds to some M�estimator �aM�pM�
is considerably more involved and will be the subject of a forthcoming paper� see also
Moser �	�����

�� Bootstrap Order Selection

Let us �rst brie�y introduce the bootstrap principle for AR����processes which will be
applied in the following� For a fuller account the interested reader is referred to Kreiss
�	���� 	���� and B�uhlmann �	�����

Given the observations X�� � � � �Xn we �t an autoregression of  large order p� � p��n� �
p�n� and compute approximate innovations

�t��a�p��� � Xt � �a�p��
TXt���p�� � t � p� � 	� � � � � n �

with empirical and centered �around mean �� empirical �cumulative� distribution functions
�Fn� �F c

n� respectively�

Now suppose that the process ���t � t � ZZ� consists of i�i�d� random variables with distri�
bution function �F c

n� This ensures E� ��t � �� where E� denotes the conditional expecta�
tion E!
jX�� � � � �Xn"� It is well�known known that 	 �

Pp�
��� �a��p��z

� has no zeros in the
closed unit disk and therefore j��a�p��� has an inverse ���p�� in �� with respect to convolu�
tion# cf� Brockwell and Davis �	��	�� p� 
��� Hence we may de�ne the bootstrap process
�X�

t � t � ZZ� as an autoregression of order p� with coe�cients a� � �a�p�� and white noise
process ���t � t � ZZ� � i�e�

X�
t �

p�X
���

�a��p��X
�
t�� � ��t �

�X
���

����p���
�
t�� � t � ZZ �

For later reference we note some asymptotic properties of the bootstrap construction�
Assuming p��n� � � and p��n���n � � we have from Kreiss �	���� E� ��k � E �k in
probability� k � 
� �� �Proposition ��	� and k�� ���p��k� � � in probability �Lemma
��
 and ����� As the autocovariance function � is a continuous function of E ��� � IR and
� � �� this implies k� � ��k� � � in probability for the autocovariance function �� with
components 	�h � E�X�

tX
�
t�h of the bootstrap autoregressive process�

�



Of course �� is closely related to the empirical autocovariance function ��� In fact� the
corresponding autocorrelation functions r� � �

���
�� and �r � �

���
�� coincide up to lag p��

where both 	�� and �	� converge to 	� in probability� In particular� we have

a��p� � ���p���	��p� � ���p����	�p� � �a�p� � 	 	 p 	 p� �

Let ��� and �a��p� be exactly de�ned as �� and �a�p�� with �X�� � � � �Xn� replaced by
�X�

� � � � � �X
�
n�� the bootstrap observations�

We propose to replace E k�a�p� � a�p�k�	�p� in the de�nition of the order selection P �
��n�

�cf� �
���� by its bootstrap approximation

E� k�a��p� � a��p�k�	��p� � E� k�a��p� � �a�p�k�	��p� �

To avoid technical problems� we will work with the order selection P��n� instead of P �
��n��

so we will use the bootstrap analogon

S�n�p� � E�
����	��p�� ����p��a�p�

����
	��p���

� ���	�

of Sn�p�� as we already mentioned in Section 
� cf� �
����

Hence we de�ne the bootstrap order selection as

PB�n� �� argmin
��p�p�n�

n
�	� � �a�p�T �	�p� � 
 
 S�n �p�

o
� ���
�

We remark that the whole procedure resulting in the order selection PB�n� can be done
with general autocovariance estimates �� and the corresponding sample prediction coef�
�cients �a�p�� given by ���
�� We restrict ourselves to the sample autocovariances �� and
the Yule�Walker estimates �a�p� only to simplify the proofs� One of our main results is as
follows�

Theorem ��� � Let fp�n� � n � INg and fp��n� � n � INg be two sequences of integers
with p�n� 	 p��n� for all n � IN and p�n� ��� p��n���n� � as n��� Then we have
for Sn�p�� S�n�p� de�ned in ����� and �	�
�

max
��p�p�n�

�
n

p
jS�n�p� � Sn�p�j


� oP �	� �

All proofs are collected in Section ��

As will be seen in the proof of Theorem ��	� n

p
Sn�p� � �� if p is  large � Hence Theorem

��	 basically maintains that the di�erence between Sn�p� and its bootstrap approximation
S�n�p� tends faster to � than Sn�p� itself� i�e� Sn�p��� jS�n�p�� Sn�p�j � oP �	�� uniformly
in all  large p� If p is  small � then �	� � �a�p�T �	�p� will be the dominating term in
�	� � �a�p�T �	�p� � 
Sn�p�� the expression minimized by P��n�� cf� �
���� In this case the
relative di�erence Sn�p��� jS�n�p� � Sn�p�j will be of secondary importance as long as the
absolute di�erence tends to � fast enough�

�



�� Asymptotic Properties of the Bootstrap Order Selection

In this section we deal with some asymptotic properties of the proposed bootstrap order
selection PB�n� de�ned by ���
��

PB�n� � argmin
��p�p�n�

n
�	� � �a�p�T �	�p� � 
 
 S�n �p�

o
�

The �rst part of the criterion function can be written in the more familiar way

�	� � �a�p�T �	�p� �
	

n

nX
t�p��n���

�
Xt � �a�p�TXt���p�

��
�� ���n�p� �

if we assume that� for the sake of simplicity� we slightly modify the de�nitions of Section �
to

�	h ��
	

n

nX
t�p�n���

XtXt�h � h � �� 	� 
� ���� p�n� ���	�

and

�a�p� ��

�
�	
n

nX
t�p�n���

Xt���p�Xt���p�
T

�
��� ��	�� � � � � �	p�T � ���p����	�p� � ���
�

which are essentially the usual Yule�Walker estimators up to asymptotically negligible
terms�

Now we state the main result of this section� Again� the proof is deferred to Section ��

Theorem 	�� � Under the assumptions of Theorem 	�
 we have

max
��p�p�n�

���S�n�p�� p

n
��
���

p

n
� ���p����

��

� oP �	� �

where ���p� � E
�
Xt � a�p�TXt���p�

��
�

$From this result we can derive an interesting property of the bootstrap order selection�
observing that

max
p

p

n
j�� � ���p�j
p

n
� ���p����

��

	 max
p

p

n
j�� � ���p�j
���p����

��

�
p�n�

n
�� � o�	�

and

max
p

p

n
j���n�p� � ���p�j
p

n
� ���p����

��

	 max
p

������n�p� � ���p�
���

	 max
p

���������n�p� �
	

n

nX
t�p�n���

�
Xt � a�p�TXt���p�

��������
�



� max
p

������
	

n

nX
t�p�n���

�
Xt � a�p�TXt���p�

��
� ���p�

������
� max

p
k�a�p�� a�p�k��	�p� � max

p

�����	n
X
t

�
Xt � a�p�TXt���p�

��
� ���p�

�����
� oP �	�

as the �rst expression is oP �	� by ����� and ����� and the second expression by an appli�
cation of Lemma ��	 to the process Yt � Xt � a�p�TXt���p��

This together with Theorem ��	 and with Theorem ����� of Deistler and Hannan �	����
implies that we have uniformly in p � f	� ���� p�n�g

log
n
���n�p� � 
 
 S�n�p�

o

� log ���n�p� � log

�
	 � 
 


S�n�p�

���n�p�

�

� log ���n�p� � log

�
	 �

p

n

�



���n�p�

�
n

p
S�n�p�� ���n�p�


� 


��

� log ���n�p� � 

p

n
�

p

n

�



���n�p�

�
n

p
S�n�p�� ���n�p�


� oP �	�

�

� log %��n �

�
p

n
�
���p� � ��

��


�	 � oP �	��

�
p

n

�



���n�p�

�
n

p
S�n�p�� ���n�p�


� oP �	�

�

� log %��n �

�
p

n
�
���p� � ��

��


�	 � oP �	��

�



���n�p�


S�n�p� � p�n���n�p�

p�n � ���p����

��

�
p

n
�
���p� � ��

��



� log %��n �

�
p

n
�
���p� � ��

��


�	 � oP �	�� � �����

where %��n is de�ned in Deistler and Hannan �	����� above Theorem ������ and is equal to

%��n �
	

n

nX
t��

��t � n � IN � �����

Summarizing we obtain from Theorem ��	 the following expansion� which holds uniformly
in p � f	� ���� p�n�g

log
n
���n�p� � 
 
 S�n�p

o
� log %��n �

�
p

n
�
���p�� ��

��


�	 � oP �	�� �

This is exactly the same expansion as Deistler and Hannan obtained for the AIC� cf�
Deistler and Hannan �	����� Theorem ������ In other words� the considerations given

�



below Theorem ����� in Deistler and Hannan �	���� hold also true for the bootstrap
order selection�

Remark � 
i� Shibata has a result similar to Theorem ��	 in his paper� cf� Shibata �	����
Lemma ��	� but we can dispend with the assumption of normality�


ii� From Theorem ��	 we obtain exactly along the lines of Section � in Shibata �	����
the asymptotic e�ciency of the bootstrap order selection under the same assumptions as
in Shibata� The concept of asymptotic e�ciency is also de�ned by Shibata�
Following the arguments given in Deistler and Hannan �	����� p� ���&���� we obtain
exactly along the same lines and under the same assumption that

PB�n�

argmin��p�p�n�
�
p

n
� ���p����

��

� � 	 in probability�

In the next Section we report some simulation results for the bootstrap order selection in
comparison with other order selection procedures�

�� Simulations

Let us consider the following two order selection procedures for a simulation study� The
argument of the minimum �argmin� is in both cases computed over the range f	� ���� p�n�g�

AIC � argminp

�
���n�p� 


�
	 �


p

n

��
���	�

PB � argminp
n
���n�p� � 
 
 E� k�a��p� � �a�p�k��R�p�

o
� ���
�

In all cases

���n�p� � 	�
pX

���

�a��r�

and �rh denotes an estimator of the autocorrelation at lag h� which does not necessarily
have to coincide with the empirical autocorrelation �rh of the observations� This deviates
slightly from the preceding sections� where we preferred to work with the autocovariances
in order to simplify the proofs� and obviates the need for an M�estimator of 	�� The AIC
goes back to Akaike �	���a�b� 	����� PB denotes the bootstrap order selection proposed
in Section � of the present paper� Note that for the theoretical investigation we used a
slightly modi�ed version of PB�

	�



criterion p�	 p�
 p�� p�� p�� p�� p�� p��

AIC 
 � �� 	� � � � �
AIC � � �
 	� � � 	 �
AIC � � �� 	� � � 
 	
PB� 
id 	 	 �� 	� � � 
 �
PB� 
id � 	 �� 	
 � � 
 

PB� 
id � � �� 	� � � � �

PB� 
Huber 	 	 �� 	� � � � 

PB� 
Huber � � �� 	� � � 
 �
PB� 
Huber � � �� 	
 � � � �

Table ��	
frequencies of selected orders �	�� repetitions�

model ������ normal innovations� sample size�	��� p�n���

The simulations we are going to report are based on the following three stationary time
series models

Xt � ���� 
Xt�� � ��	� 
Xt�� � ���� 
Xt�� � �t �����

Xt � �Xt�� � ��	 
Xt�� � �t �����

Xt � ���� 
Xt�� � ��� 
 �t�� � �t � �����

The �rst two models are of �nite autoregressive order� while the ARMA�
�	��model �����
possesses an autoregressive representation of in�nite order�

For the innovations �t we use the following distributions

��  N ��� 	� normally distributed innovations �����

��  ���N ��� 	� � ��
N ��� 
�� contaminated innovations �����

��  ��� �N ���� 	� �N ��� 	�� bimodal normal innovations �����

The AIC is always computed using least squares parameter estimates� for which this
criterion is designed� However� changing the parameter estimates does not a�ect the AIC
essentially� The bootstrap order selection PB is computed for di�erent M�estimators� Here
we make use of 
id�x� � x� corresponding to least squares� and 
Huber�x� � ���x���� �
x 
 �����x��� � ��x��� �
We report on the simulated behaviour of the procedures on two di�erent random samples
of 	�� time series each in order to give an impression of the stochastic �uctuation of the
results�

		



criterion p�	 p�
 p�� p�� p�� p�� p�� p��

AIC � �	 � 	
 � 
 � �
AIC � �	 		 	� � 
 
 

AIC � �� 	� 	� � � 	 	
PB� 
id � �� � 	� � 
 
 

PB� 
id � �� 	� 	� � � � �
PB� 
id � �� � 	� 
 � � 	
PB� 
opt � �� � �� � � 	 �
PB� 
opt � �� � �� 	 	 � 	
PB� 
opt � �
 � 
� � � � �

Table ��

frequencies of selected orders �	�� repetitions�

model ������ bimodal innovations� sample size�	��� p�n���

Tables ��	 gives the results for model ������ From this table it can be seen that the re�
sults for normally distributed observations do not di�er very much� This means that the
proposed bootstrap order selection procedure behaves more or less like the AIC for stan�
dard situations� For non�normally distributed innovations the situation is quite di�erent�
To demonstrate this let us �rst consider model ����� with bimodal normally distributed
innovations and sample sizes n � 	�� �cf� Table ��
� and n � 
�� �cf� Table ����� Here we
make use of the asymptotically optimal choice of the 
�function� namely 
 equal to the
logarithmic derivative of the underlying density� i�e� 
 � �f ��f � Additionally we present
results for the least�squares estimator� i�e� 
�x� � x �

criterion p�	 p�
 p�� p�� p�� p�� p�� p��

AIC � �� � 
� � 
 � �
AIC � �� 
 �
 � 
 � �
AIC � �� � �	 � � � 

PB� 
id � �	 � 
� � � � 	
PB� 
id � �
 � 
� 	� � 
 	
PB� 
id � �� � 
� � � 	 

PB� 
opt � � � �� � 
 � �
PB� 
opt � 	� � �� � 
 � 	
PB� 
opt � � � �	 � � � 


Table ���
frequencies of selected orders �	�� repetitions�

model ������ bimodal innovations� sample size�
��� p�n���

	




criterion p�	 p�
 p�� p�� p�� p�� p�� p�� p�� p�	�

AIC � 	 

 �� 	� 		 � � 	 �
AIC � 	 	� �
 
� 	� � � 	 	
AIC � � 	� �
 	� � � � � 	

PB� 
Huber � � � �	 
� 
	 � 
 � 	
PB� 
Huber � � � �� 
� 	� � � � �
PB� 
Huber � � � �	 �� 		 � 
 � �
PB� 
opt � � 
 �� �� � � � 
 	
PB� 
opt � � 	 �� �� 	� 
 
 � �
PB� 
opt � � � �� 
� 		 � � � �

Table ���
frequencies of selected orders �	�� repetitions�

model ������ contaminated innovations� sample size�
��� p�n��
��

It can be seen clearly� especially from Table ���� that the bootstrap order selection using
the asymptotically optimal 
�function tends to select the true order with much higher
probability� This is due to the fact that M�estimators with this 
�function have much
smaller variance than� for example� the least squares estimator used in the construction
of the AIC�

Finally� for the ARMA�
�	��model ����� we again demonstrate the behaviour of the boot�
strap order selection for two di�erent M�estimators �
Huber and 
opt � �f ��f� and con�
taminated innovations �cf� Table ����� The precision of the parameter estimates increases
from the Huber M�estimator to M�estimates with asymptotically optimal score�function�
which implies the desired property that the PB tends to higher orders for the autoregres�
sive �t�
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	� Proofs

The proof of Theorem ��	 will be based on the following approximation lemma� which is
of interest on its own�

Lemma ��� � Under the assumptions of Theorem 	�
 we have

max
��h�k�n

jCov� ��	�h� �	
�
k��Cov ��	h� �	k�j � oP �n

��� � ���	�

max
��h�k�n

jCov ��	h� �	k�j � O�n��� � ���
�

	�



Proof � We will show the following inequality

max
��h�k�n

jCov� ��	�h� �	
�
k��Cov ��	h� �	k�j 	

�

n
k����k� �k�k� � k��k��

�E ���

�
�

n
k��k��

������E ���
��
�
�
E� ���

�
������� ���E ��� � E� ���

�
���� �����

where �� � ���p�� � j��a�p������ The asymptotic properties of the bootstrap construction
mentioned in Section � will then imply ���	�� and ���
� will follow from ����� by setting
�� � �� � O�
The proof of ����� will be based on the MA����representation of the process �Xt�� which
yields the following formula for the empirical autocovariances�

�	h � E �	h �
	

n

n�hX
t��

�X
j����

y �j���t�j�t�h�� �
	

n

n�hX
t��

�X
j��

�j�j�h
�
��t�j � E ���

�

�� V �h� �W �h��

where the dagger indicates that summation takes place only over those pairs �j� �� with
� �� j � h� For any h�� h�� the sums V �h�� and W �h�� are uncorrelated which implies
Cov ��	h� � �	h�� � E V �h��V �h�� � EW �h��W �h��� Furthermore

E V �h��V �h�� �
	

n�
E

�Y
i��

	

n�hiX

t��

�X
j����

y �j���t�j�t�hi��

�
A

�
	

n�

�X
j������

y
�X

j������

y
�Y
i��

��ji��i�
n�h�X
t���

n�h�X
t���

E
�Y
i��

��ti�ji�ti�hi��i� �

As ji �� hi��i� the last expectation equals zero unless t��j� � t��j� or t��j� � t��h�����
in which case it may be �E����

� instead of zero� Hence the double sum over t�� t� reduces
to two single sums over t�� Taking the di�erence EV �h��V �h���E�V ��h��V ��h�� we �rst
replace � by �� to get������

	

n�

�X
j������

y
�X

j������

y

�
�Y
i��

�ji��i �
�Y
i��

��ji�
�
�i

�
n�h�X
t���

n�h�X
t���

E
�Y
i��

��ti�ji�ti�hi��i�

������
	




n
k����k� �k�k� � k��k��

�
�
E ���

��
� �����

In a second step the innovations �t are exchanged for the bootstrap innovations ��t � yielding������
	

n�

�X
j� �����

y
�X

j������

y
�Y
i��

��ji�
�
�i

n�h�X
t���

n�h�X
t���

E
�Y
i��

�ti�ji�ti�hi��i �E�
�Y
i��

��ti�ji�
�
ti�hi��i

������
	




n
k��k��

�����E ���
��
�
�
E ���

�
������ � �����

	�



A bound for E V �h��V �h���E� V ��h��V ��h�� is obtained by adding the bounds in �����
and ������ A similar calculation leads to

jEW �h��W �h���E�W ��h��W
��h��j 	

	

n
k����k� �k�k� � k��k��

�E ���

�
	

n
k��k��

����E ���� � E ���
��
� E�

�
���

� � E� ���
�
������ �

This proves the lemma�

Proof of Theorem ��� � We �rst note that Sn�p� and S�n�p� � cf� �
��� and ���	�� can
be written as

Sn�p� � E kA�p� ��	��p� � 	��p��k
�
	�p���

and
S�n�p� � E� kA��p� ��	���p�� 	���p��k

�
	��p��� �

where the p� 
p �matrix A�p� is de�ned as

�
��������

� � 
 
 
 � � 	 �a��p� 
 
 
 �ap���p� �ap�p�
� � 
 
 
 � 	 �a��p� �a��p� 
 
 
 �ap�p� �
���

� � � � � �
���

� 	 �a��p� 
 
 
 �ap�p� � 
 
 
 �
	 �a��p� �a��p� ��� �ap�p� � 
 
 
 �

�
��������
�

	��p� �� �	p� 	p��� � � � � 	��p�
T � IR�p with 	�h � 	h� A��p� is de�ned as A�p� with �a	�p�

instead of a	�p� and �	��p�� �	
�
��p�� 	

�
��p� are de�ned analogously to 	��p��

Writing '�p� � A�p�T��p���A�p�� '��p� � A��p�T���p���A��p�� we have

jS�n�p� � Sn�p�j �
���E� k�	���p�� 	���p�k

�
��p� � E k�	��p� � 	��p�k

�
�p�

���
	

���E� k�	���p�� 	���p�k
�
��p� � E� k�	���p�� 	���p�k

�
�p�

���
�
���E� k�	���p� � 	���p�k

�
�p� � E k�	��p�� 	��p�k

�
�p�

��� �

Bound the �rst summand through k'��p� � '�p�k 
 E� k�	���p� � 	���p�k
�
�� Because of

Lemma ��	 it su�ces to show that

max
p
k'��p� � '�p�k � max

p

���A��p�T���p���A��p� � A�p�T��p���A�p�
���

� oP �	� �

As k��p�k and k��p���k are uniformly bounded in p � IN � the last equation will follow
from

max
p
kA��p��A�p�k � max

p

������p��� � ��p���
��� � oP �	��max

p
kA�p�k � O�	��
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In view of the matrix inequalities kBk 	 kBk� �� �
P
jbijj��

�
� and kB�� � C��k 	

kB��k
�
kB�Ck

��kB��kkB�Ck
if kB��k kB � Ck � 	� we obtain from Lemma ��	

max
p

������p� � ��p�
��� � oP �	� � �����

max
p

������p��� � ��p���
��� � oP �	� � �����

As ���p� �
���
���
���p� and

���
���
� 	 in probability� ����� and ����� hold with ���p� replaced by

��p���

Now� for any x � IR�p the vector A�p�x obviously consists of certain entries of the con�
volution j�a�p�� � x� where j�a�p��� x are embedded in IRZZ� �x��h � x�h and convolution
takes place over ZZ� From the convolution inequality kb � ck� 	 kbk� kck� we conclude

kA�p�k � sup
kxk���

kA�p�xk� 	 	 � ka�p�k� � �����

where the latter is bounded uniformly in p � IN according to Theorem 
�
 of Baxter
�	��
�� As by Lemma ��	 and �����

max
��p�p�n�

k�a�p�� a�p�k� � max
p

������p����	�p�� ��p�	�p�
���
�

� OP

	


s
p�n��

n

�
A � oP

	

 	q

p�n�

�
A � �����

we get in the same manner as in �����

max
p
kA��p� �A�p�k 	 max

p
k�a�p� � a�p�k� � oP �	� �

For the second summand we have���E� k�	���p�� 	���p�k
�
�p� � E k�	��p�� 	��p�k

�
�p�

���
	

pX
h�k��

j'�p�hkj

�����Cov� ��	�h� �	�k�� Cov ��	h� �	k� �
hk

n�
��	h�	k � 	h	k�

����� �
Now� from Shibata �	����� p� 	�	� there is a constant C such that

Pp
h�k�� j��p�

��
h�k j 	 Cp

for all p � IN � Hence we have
Pp

h�k�� j'�p�hkj 	 Cp�	� ka�p�k��
�� and by Lemma ��	 and

the uniform boundedness of ka�p�k��

max
p

n

p

���E� k�	���p� � 	���p�k
�
�p� � E k�	��p� � 	��p�k

�
�p�

��� � oP �	��

This concludes the proof of Theorem ��	�
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Proof of Theorem 	�� � Because of Theorem ��	 it su�ces to consider

max
��p�p�n�

���Sn�p� � p

n
��
���

p

n
� ���p����

��

� ���	��

Using convention ���	�� ���
� we obtain

Sn�p� � E
����	�p� � ���p�a�p�

����
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� E

����� 	n
X
t
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�����
�

	�p���

where �t�a�p�� � Xt � a�p�TXt���p�� Now� since
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p

n
�� � ���	
�

we have to show
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����E ��� �nPt �t�a�p��Xt���p�
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��� �
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P
t �tXt���p�

����
	�p���

����
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� ���p����
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� oP �	� �

To this end consider������E
�����	n

X
t

�t�a�p��Xt���p�

�����
�

	�p���

�E

�����	n
X
t

�tXt���p�

�����
�

	�p���

������
	 E

�����	n
X
t

��t�a�p��� �t�Xt���p�

�����
�

	�p���

�


vuuutE

�����	n
X
t

�tXt���p�

�����
�

	�p���

vuuutE
�����	n

X
t

��t�a�p��� �t�Xt���p�

�����
�

	�p���

�

Because of ���	
�� we may restrict our attention to

max
p

E
��� �
n

P
t ��t�a�p��� �t�Xt���p�
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	�p���
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� ���p����
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Now� k��p�k and k��p���k are uniformly bounded in p � IN � ���p� � �� � ka� a�p�k�	
and vuutE
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Therefore it su�ces to show
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��t�a�p��� �t�Xt�h
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n
ka� a�p�k�� � h � 	� � � � � p � ���	��
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where C � � is a constant independent of p� For this purpose� we �x p and write Zt ��
�t�a�p�� � �t� Then Zt �

P�
��� ��t�� where � � �j�a�p��� j�a�� �� and � � a��� With

these notations� ���	�� becomes

	

n�
X
s�t

E ZsXs�hZtXt�h 	
C

n
ka� a�p�k�� � h � 	� � � � � p� ���	��

Using the MA����representations of the processes �Xt�� �Zt� and the orthogonality
E ZtXt�h � �� h � 	� � � � � p� it is easy to see that for s 	 t

E ZsXs�hZtXt�h � E ZsZtE Xs�hXt�h � E ZsXt�h E ZtXs�h ���	��

�
�X
���

��h����t�s�h���t�s
�
E ��� � ���

�
�

Setting ��� � � � if � � � we note that for any k � ZZ

E Z�Xk �
�X

����

����k �
�X

����

�������k� �
�
� ���

�
�k

where �� � ��� � � � ZZ� and convolution takes place over ZZ� Similar expressions may be
derived for the autocovariances E Z�Zk and EX�Xk� Summation of the �rst term on the
right side of ���	�� over t � s gives

X
t�s

jE ZsZt EXs�hXt�hj �
X
t��

����� � ���
t

�
� ���

�
t

���
	

���� � ��
���
�

���� ���
���
�

	 ka � a�p�k�� k�k
�
�

by repeated use of the convolution inequality kb � ck� 	 kbk� kck� and kb�k� � kbk��
Summation of the other two terms on the right side of ���	�� leads to similar expressions�
so we may conclude ���	���
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