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Abstract

For stationary linear processes Kolmogorov�Smirnov type goodness�of��t tests for com�

pound hypotheses based on frequency domain bootstrap methods are proposed� Similar

bootstrap tests for comparing the spectral distributions of two time series are suggested�

The small sample performance of the tests is investigated by simulations� and a real data

example is given for illustration�

� Introduction

In time series analysis� and generally in statistics� often parametric model classes are used

for purposes like prediction or �parametric� spectral density estimation� for which e�g� an

autoregressive model can be applied� In this case a model class has to be selected� and then

a model within the class must be estimated by some suitable estimator� There are several

possibilities for model class selection� especially selection procedures based on criteria like

AIC �Akaike� ��	
�� With these methods one tries to �nd the model class best suited to the

particular purpose from a given set of competing model classes� However� even if we knew

which of the model classes under consideration is the best� we still do not know whether it

has a good �t� or whether it is just the best under several unsuitable classes�

In this paper we will deal with some goodness�of��t test statistics for stationary linear

time series which are functions of the periodogram in contrast to most goodness�of��t tests

we test a compound hypothesis� Since the asymptotic distributions of the statistics cannot

be evaluated analytically we estimate them by a bootstrap method that works on the peri�

odogram values� which is both an obvious and a universal approach� as the method is quite

independent of the model class under consideration �in contrast to similar work by Chen and

Romano� ���	� who use a time domain bootstrap��

Suppose we have a class of parametric models with parameter set � and some obser�

vations X�� � � � � XT from a realisation of a stationary time series fXtg� A goodness�of��t
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test can be used to check the adequacy of the model class� i�e� to test the hypothesis that

the time series is generated by a model with some parameter �� � �� In contrast to many
well�known goodness�of��t tests �see Priestley� ����� Ch� ��
��� Anderson� ����� this is a

compound hypothesis� where ��� the parameter which speci�es the best model of the model

class� is unknown and must be estimated�

We will restrict ourselves to second order properties� so it is enough to test the hypoth�

esis

H� � f � � against H� � f �� �

�in the sense� H� � �� � � � f � f� against H� � �� � � � f �� f��� where f and f� denote the

spectral densities of the process and of the model with parameter �� respectively� Dahlhaus

������� ex� ���� considers the asymptotic distribution of the test statistic

WT � sup
�������

j
p
T �FT ���� F������j�

where FT ��� �
R �
� IT ���d� and F����� �

R �
� f�����d�� Here

�� denotes the Whittle estimator

of the optimal parameter �� � �� IT is the periodogram of the data� and f�� is the spectral

density of the estimated model� The limit distribution ofWT is di�cult to calculate explicitly�

Furthermore� it depends on f and f�� which are unknown�

Another possible test statistic is Bartlett�s Up � statistic �Bartlett� ����� generalized to

the situation of a compound hypothesis

VT � sup
�������

j
p
T �

FT ���

FT ���
� F�����

F�����
�j�

In Section 
 we show that the asymptotic distribution of the test statistic VT can be ap�

proximated by the distribution of the supremum of a certain stochastic approximation of

jpT�FT ���FT ���
� F��

���
F��

����j over all � � ��� ��� In Section � we �nd that a bootstrap of the peri�
odogram values can imitate this distribution� thus yielding the critical values for the test�

An appropriate bootstrap method is suggested which creates a test of adequate power for

misspeci�ed model classes� i�e� for model classes which do not contain the true process�

The goodness�of��t test based on the test statistic VT has for example no power in

the case that the parameter set � does not contain the true innovation variance �it cancels

out in the statistic VT � and the shape of the spectral density is �tted correctly� Therefore

it is shown in Section � that it is possible to get a similar goodness�of��t test using the test






statistic WT � For this purpose we need a special periodogram bootstrap which also emulates

the dependence structure of the periodogram �cp� Janas and Dahlhaus� ������

Further we consider the problem of comparing two independent time series� For the

comparison one may choose a model class� estimate the necessary parameters for each of

them separately� and compare the results by testing equality of the parameters� However� a

more general approach is the calculation of a statistic which directly compares the spectral

densities of both series without making assumptions on a parametric model for the processes

�cf� Diggle and Fisher� ������ In Section � bootstrap tests are introduced to compare the

spectral densities of the time series� using essentially the same bootstrap methods as in

Sections � and ��

Some of the tests are illustrated by simulations and a real data example �Beveridge

Wheat Price Index� in Section � some possible improvements of the methods for small

sample sizes are summarized there� too� In this paper we restrict ourselves to test statistics

of Kolmogorov�Smirnov type� but the method allows the application of other test statistics

�e�g� Cram�er�von Mises statistics�� too�

Bootstrap methods for goodness�of��t tests for time series are also investigated e�g� by

Paparoditis ������� but with a di�erent test statistic� and by Chen and Romano ����	� with

a time domain bootstrap� For a goodness�of��t test for autoregressive models see Anderson

����	��

� Distribution of the test statistic

The Kullback�Leibler distance for Gaussian processes can be written up to a constant as

���� �
�


�

Z �

�
�log f���� �

f���

f����
�d�

�cf� Parzen� ����� it is used as a measure for the di�erence between the true process and

the model with parameter � � �� even for non�Gaussian processes� where f��� and f����

are the corresponding spectral densities� The model with parameter �� � argmin������� is

the model in � which approximates the true process best �in the Kullback�Leibler sense��

Furthermore f�� � f if f � ��

The unknown spectral density f��� is approximately the expectation of the peri�

�



odogram of the data X�� � � � � XT at frequency ��

IT ��� �� �
�H	�T�
��dT ���dT�����

where

dT ��� ��
TX
t
�

htXt exp��i�t� �
���

is the Fourier transform of the tapered data� and ht is a data taper with Hi�T ��
PT

t
� h
i
t �see

assumption ��� The empirical Kullback�Leibler distance

����� �
�


�

Z �

�
�log f���� �

IT ���

f����
�d�

is a consistent estimator of the Kullback�Leibler distance ����� By minimizing it we get the

Whittle estimate �� � argmin��� ����� as an estimate of ��� which for autoregressive models

is identical to the well�known Yule�Walker estimate� As far as the asymptotic convergence

is concerned� all integrals can be replaced by sums� e�g� �
n

Pn
j
� 	�

	�j
T �IT �

	�j
T �� n � �T�
��

instead of
R �
� 	���IT ���d� �see Brillinger� ����� Th� �����
� Dahlhaus� ����� Section ���

Assumptions�

�� The spectral densities of the models have the form

f���� �

	


�
h� ���� � � ��

with parameters � � �
	� ����� �� � ���� � � � � �p�� and ful�ll the Kolmogorov equation

�

�

Z
�
log f����d� � log


	


�
�

Here and in the following we set  �� ��� ��� � is assumed to be compact�


� There is a unique �� � �
	�� �
�
� �

� minimizing the Kullback�Leibler distance ���� in ��
and it lies in the interior of ��

�� The model spectral densities f���� are twice continuously di�erentiable as functions of

� � � with derivatives bounded uniformly for all � and �� and with uniformly bounded
total variations as functions of �� The matrix !� � r	

������ is positive de�nite� Further

there is a c� such that � � c� � f���� for all � �  and all � � ��

�



�� fXtg is a linear real valued stationary process Xt �
P�

v
� avt�v � where the t are

independent identically distributed random variables with mean �� variance 
	 and

existing cumulants of all orders �k� where j�kj � ck for some c � �� Furthermore� we

assume av � O�jvj������� for some � � �� and f��� � � for all � �  �

�� Either the data X�� � � � � XT are untapered� i�e� ht � � for all t in �
���� or they are

tapered with an asymptotically vanishing data taper of the form ht � h	�
t
T � with

h	�x� � u�x�������	
	��x����	
	���	
	��x��u����x��������	
	����x�� where the function
u � ��� �� 	 ��� �� is twice di�erentiable with bounded second derivative and u��� � ��

u����� � � � � ��T � with ��T � 
 T��� where � � ����

�� �f is a spectral density estimator which converges to f uniformly� almost surely�

	� The innovations satisfy a Cram�er condition� �� � �� d � � such that for all jtj � d the

inequality jE exp�it��j � � � � holds� Further� the limit of the dispersion matrix of

�H
��
	
	�T �dT ����� � � � � dT ��k��

� exists and is positive de�nite for �xed k� Furthermore�

we assume javj � ��jvj for large jvj and some � � � � ��

�� �� is an estimator which converges almost surely to the fourth cumulant � of the

process innovations t�

The second part of Assumption � that the data taper is asymptotically vanishing is

a realistic assumption� If an arbitrary taper is used the bootstrap procedure needs certain

modi�cations� Assumption 	 is necessary for the proof of the convergence of the empirical

distribution of the studentized periodogram values to the exponential distribution� which

follows from Theorem � in Chen and Hannan ������ for untapered data� or else from Theorem

��� in Janas and von Sachs ������� It has to be made for the bootstrap method used in Section

�� but not for the goodness � of � �t tests in Sections � and �� because here the resamples

are drawn from an exponential distribution� It is not di�cult to see that for e�g� a causal

autoregressive model Assumptions ��� are ful�lled� provided the parameter set � sati�es

some restrictions�

To get an approximation of the test statistic VT we �rst have to get an approximation

of the Whittle estimate� By a Taylor expansion

r�
������ � r�

������� r�
������ � r	

�
�������� � ����

�



where � is between �� and ��� we �nd that

p
T ��� � ��� � �!���

p
Tr�

������ �OP �T
��
	�� �
�
�

holds with !� � r	
������� This follows from the convergence of �� to �� in probability

�from ����� 	 ����� uniformly for all � � �� cp� Dahlhaus� ������ Assumption �� and

r	
�
����� � r	

����� �OP �T
��
	� for all � � ��

To derive the distribution of the test statistic VT we get �cp� Lemma � below� by another

Taylor expansion for

V ��� �
p
T �

FT ���

FT ���
� F��

���

F�����
�

V ��� �
p
T �

FT ���

FT ���
� F�����

F�����
��

p
T��� � ���

�r��
F�����

F�����
� � OP �T

��
	� �

�
���

�
p
T �

FT ���

FT ���
� F�����

F�����
� �

p
Tr�

������
�!��� r��

F�����

F�����
� �OP �T

��
	��

Since

r�
������ �

�


�

Z
�
�IT ���� f������r�f

��
��

� ���d�

the second summand is of the form c
p
T
R
��IT ��� � f������	���d�� It is well known that

under H� this converges for a linear process to a normal distribution with mean zero and

variance


�c	
Z
�
		���f	�����d�� c	

�


�

Z
�
	���f�����d��

	�

where the second term is due to the �small but existing� dependence structure of the pe�

riodogram ordinates� Since this dependence structure is lost with an ordinary frequency

domain bootstrap there is no chance of a good bootstrap approximation unless � � � orR
� 	���f�����d� � � �cp� the discussion in Dahlhaus and Janas� ������ Luckily the lat�

ter holds since it follows from Assumption � that
R
� f�����r�f

��
��
���d� � � and �!���� �

r�r������ � �� The �rst term of �
��� is a so called "ratio statistic" �cp� Dahlhaus

and Janas� ����� which can be approximated by a statistic of the form c
p
T
R
��IT ��� �

f������	���d� with
R
� 	���f�����d� � �� Heuristically this is the reason why the ordinary

frequency bootstrap works for the statistic VT � We make this precise in the following lemma�

Lemma � Under Assumptions ���� the approximation

V ��� �
p
T �

FT ���

FT ���
� F�����

F�����
� � V ��� �OP �T

��
	�

�



holds uniformly for all � �  � where

V ��� �
p
T

Z
�
	����IT ���d��

p
T

Z
�
����������

f���R
� f���d�

� f�����R
� f�����d�

�d��

�
p
T �

�


�

Z
�
�IT ���� f������r�f

��
��
���d���!��� r��

F�����

F�����
�

and

	���� � �����������
R
� ���������f���d�R

� f���d�
��

Z
�
f���d��

Under the hypothesis H� we have

V ��� �
p
T

Z
�
�	���� � ������IT ���d�� �
���

where

����� �
�


�
�r�f

��
��
�����!��� r��

F�����

F�����
�� �
���

In this case we have
R
� 	����f���d� � � and

R
� �����f���d� � ��

Proof� see Appendix A�

We now derive the joint distribution of the approximations V ����

Lemma � Under Assumptions ���� the approximations V ����� � � � � V ��r� asymptotically have

a multivariate normal distribution� and their cumulants are

EV ��� �
p
T

Z
�
����������

f���R
� f���d�

� f�����R
� f�����d�

�d�� o����

Cov�V ���� V ���� � 
�
Z
�
�	���� � �������	��� � �����f

	���d�� o����

Cum�V ����� � � � � V ��r�� � o��� for r � 
�

uniformly for all �� �i� � �  �

Proof� see Appendix B�

Under the hypothesis the expectation term vanishes asymptotically� so the distribution

of �V ����� � � � � V ��r�� converges to a multivariate normal distribution with expectation zero�

The expectation of V ��� is diverging for some � �  under the alternative� so asymptotically
it is possible to detect deviations from H��

	



Since V ��� is an approximation of V ��� uniformly in �� we have VT � sup������� jV ���j�
OP �T

��
	�� so by the continuous mapping theorem the distribution of VT converges under

H� to the distribution of the supremum of the absolute value of a Gaussian process with

zero mean and covariances as given in Lemma 
 �see Dahlhaus� ������ This follows from the

observation that the set fV ���� � � ��� ��g can be interpreted as an empirical spectral process
indexed by all functions f�	���� � ������� � �  g� which converges as a stochastic process to
a Gaussian limit process under our assumptions �see Dahlhaus� ������ The distribution of

VT is di�cult to derive analytically� but it may be approximated by a bootstrap method as

indicated in the next section�

� Bootstrap of the test statistic

First we describe the frequency bootstrap which has been introduced in Franke and H�ardle

����
� in Dahlhaus and Janas ������ it is used for estimating the distribution of ratio

statistics and Whittle estimates� The wild bootstrap� which will be described in Section

�� imitates the variance of the integrated periodogram correctly for quite arbitrary weight

functions� even for linear processes with innovations that have non�vanishing fourth cumulant�

We get bootstrap resamples of the test statistic by a bootstrap of the periodogram

ordinates� The bootstrap as suggested by Franke and H�ardle ����
� is performed in the

following way�

�� Calculate the periodogram values IT ��j� at the Fourier frequencies �j �
	�j
T for j �

�� � � � � n� where n � �T�
��


� Calculate a uniformly consistent estimate �f of the spectral density�

�� Compute the studentized periodogram values �j � IT ��j�� �f��j� for j � �� � � � � n�

�� Rescale f�jg and consider the approximately independent and identically distributed
rescaled values f#jg � f�j���g� where �� � �

n

Pn
j
� �j �

�� Draw independent bootstrap replicates f�jg from the empirical distribution of the #j �

�� De�ne the bootstrap periodogram values by fI�j g � f �fj � �j g� Alternatively one may
draw the f�jg from an exponential distribution with mean ��

�



	� For a statistic S�I� which is a function of the periodogram� estimate the distribution of

S�I�� S�f� by the empirical distribution of the bootstrap statistic S�I��� S� �f� after

generating many independent periodogram resamples I� � �I�� � � � � � I
�
n��

As we explain below Theorem � we recommend in this context to use the estimate �f � f��

and to draw the f�jg from an exponential distribution� This guarantees that the bootstrap

test statistic has the correct distribution � even if the hypothesis is wrong� If we use this

method then Assumption 	 becomes unnecessary�

An advantage of this bootstrap method over model�based bootstrap methods in the

time domain is that it is not necessary to isolate innovations in the time domain which can

be regarded as approximately iid� because this can be di�cult for complex models� Instead

one has to estimate the spectral density� which often is easier� Furthermore� one can use

spectral densities for the hypothesis which are di�cult to translate to the time domain� Of

course this does not imply that a frequency domain bootstrap is generally preferable �cf�

Chen and Romano� ���	��

For each resample I� of the periodogram the Whittle estimate ��� has to be calculated

by minimizing

������ �
�


n

nX
j
�

�log f���j� �
I���j�

f���j�
��

over all � � �� ������ is interpreted as an estimate of the distance ����� based on the

estimated spectral density �f instead of f �

����� �
�


�

Z
�
�log f���� �

�f���

f����
�d�

with minimizing value �� � �� The statistical $uctuation of the periodogram I around the

spectral density f is imitated by the $uctuation of I� around the estimated spectral density

�f �

We can estimate the distribution of VT under the hypothesis by the bootstrap dis�

tribution �conditonal on the data� of the statistic V �
T that is computed by substituting the

periodogram in the de�nition of VT by the bootstrap periodogram I� and the Whittle esti�

mator �� by the Whittle estimator ��� calculated by minimizing ����

For every bootstrap resample and every Fourier frequency �j we can calculate

V ���j� �
p
T �

F �
T ��j�

F �
T ���

� F�����j�

F������
��

�



where the asterisk indicates that the resample is used for the calculation� Note that the

bootstrap periodogram values are available only at the Fourier frequencies� so we have to

replace integrals by sums� F �
T ��j� �

	�
T

Pj
k
� I

�
k � We may also use such sums instead of

integrals in the de�nition of FT ��j� so that its distribution can be expected to be imitated

better by the bootstrap distribution of F �
T ��j�� especially for small samples� It can be shown

that the di�erence between sums and di�erences does not a�ect the asymptotic result of

Theorem � in our case �cf� Dahlhaus� ����� Section � Brillinger� ����� Th� �����
��

The distribution �conditional on the data� of the supremum V �
T of the values jV ���j�j�

j � �� � � � � n� is our estimate for the distribution of VT under the hypothesis� because for

�f � f�� the approximation �
��� of V ��� by V ��� holds similarly for an approximation of

V ���� by �under H��

V
�
��� � T �
	
�

T

nX
j
�

��	���j� � �����j��I
�
j �����

�see below�� This can be shown as in the proof of Lemma � if IT is substituted by I
�� f by

�f � and �� by �
��

It has been shown by Dahlhaus and Janas ������ that the bootstrap method works

for the Whittle estimator and for ratio statistics with similar arguments in our case the

convergence �in probability� under H� of the multivariate bootstrap distribution of V
���� to

the multivariate distribution of the original values V ��� will follow for all �nite sets of � �  �
Although the Fourier coe�cients of the functions �	����������� do not fall exponentially as it
is assumed in Dahlhaus and Janas ������ �to ensure the validity of an Edgeworth expansion

of the integrated periodogram�� we still get the right covariances of the bootstrap resample�

which means that the bootstrap "works"�

Lemma � Under Assumptions ���� the approximations V
�
��� asymptotically have a normal

distribution� and their cumulants are

E�V
�
��� �

p
T

Z
�
����������

�f���R
�
�f ���d�

� f�����R
� f�����d�

�d�� o���� a�s�

Cov��V
�
���� V

�
���� � 
�

Z
�
��	���� � ���������	��� � ������ �f

	���d�� o���	

	 
�

Z
�
�	���� � �������	��� � �����f

	���d�� a�s�

Cum��V
�
����� � � � � V

�
��r�� � o��� for r � 
� a�s�

��



uniformly for all �� �i� � �  � Here E�� Cov�� Cum� denote the expectation� covariance and

cumulants of the bootstrap statistics conditional on the data� �	� and ��� are de�ned as 	� and

�� are de�ned in Lemma � and 	
���� respectively� but with f replaced by �f and �� replaced

by ��� We have E�V
�
��� 	 � for all � �  if �f � ff� � � � �g 	i�e� �f � f��� which will be

assumed in the following� cp� also the discussion below Theorem ���

Proof� See Appendix C�

We can see from Lemma � that the bootstrap imitates the �nite�dimensional distri�

butions of the processes fV ���g and fV ���g� � �  � and therefore the distribution of their
absolute values is imitated� too� but we need to estimate the distribution of the supremum

of them over all �� which is our test statistic VT � Theorem � states that the distribution of

VT is imitated by the bootstrap�

Theorem � Suppose Assumptions ��� hold and the bootstrap is applied with �f � f��� Then�

under H�� the conditional distribution of the bootstrap statistic V �
T converges to the distribu�

tion of the original statistic VT a�s��

sup
x�R

jP �VT � x�� P ��V �
T � x�j � o����

where P � denotes the conditional probability� Therefore the test which rejects H� if VT is

larger than the �� � ���quantile of the conditional distribution of V �
T asymptotically has the

level ��

Proof� See Appendix D�

An important issue is the selection of the spectral density estimate �f � For several

applications a nonparametric estimate is the right choice since this leads to a model � free

bootstrap �cf� Dahlhaus and Janas� ������ However� in the present context the situation is

di�erent� With our bootstrap test statistic V �
T we want to estimate the distribution of the

statistic VT under the hypothesis H� � even if H� is wrong� i�e� even if VT itself has a di�erent

distribution� This guarantees that the test has a good power� For this reason we recommend

using �f � f�� and drawing the 
�
j independently from an exponential distribution with mean

� �which is the asymptotic distribution of IT ����f�����

If instead we used a nonparametric estimate �f then �f���� R �f were close to f������ R f��
also under the alternative leading to a low power of the test� Using exponentially distributed

��



�j avoids the distortion of the residuals which will result if an inconsistent spectral density

estimate is used �in particular under the alternative��

There is a second reason for using �f � f�� instead of a nonparametric estimator� Under

the hypothesis H� we have f � f�� �in the "real world"� � but
�f � f�� �in the "bootstrap

world"� if and only if �f is a parametric estimate itself� This implies that the conditional

expectation E�V
�
��� converges to zero under H� which is necessary for the bootstrap to

work �see Lemma ���

Dahlhaus and Janas ������ prove that the bootstrap approximation of statistics of

the form
R
� ����IT���d� with

R
� ����f���d� � � and ���� smooth even leads to a better

approximation than a normal approximation� We conjecture that this also holds for the

approximation of the distribution of VT � However� in the present situation the bene�t of

the bootstrap is even greater since the variance of the asymptotic distribution of VT is too

di�cult to evaluate�

Simulation results� which give an impression of the performance of this modi�ed test�

and an example can be found in Section ��

� Wild bootstrap tests

Since the estimated variance of the innovations cancels out in the above test statistic the test

has no power for wrong 
	� Only the other parameters �i�e� the shape of the spectral density�

can be tested� To overcome this restriction we discuss in the present chapter a bootstrap

approximation of the test statistic

WT � sup
�������

j
p
T �FT ���� F������j�

The hypothesis then is

H� � � � �� � f�j� � �
	� ��� � � � � �p��� 
	 � �a� b�g � �� b � a�

i�e� the test should reject if the variance 
	 is not between a and b� To this purpose the

bootstrap method must imitate the distribution of �
	� which cannot be done by the above

bootstrap except in special cases �e�g� for Gaussian processes�� The reason is that the part

of the variance of the integrated periodogram which stems from the correlation of di�erent

�




periodogram ordinates �and which depends on the fourth cumulant of the innovations� is

ignored by independent resampling�

For this purpose Janas and Dahlhaus ������ use the wild bootstrap which "arti�cially"

introduces a dependence between the di�erent resampled periodogram values� Instead of

generating the periodogram resample by I�j ��
�fj ��j � as in Section �� now a consistent estimate

�� of the fourth cumulant � of the process innovations t is calculated �cf� Grenander and

Rosenblatt� ����� Ch������ and the resamples are generated by

I�j �� �fj�
�
j � c��� �����

where

c� � ��� � ��������

���
	 � �� �

n

nX
k
�

��k � ��� ���
�

c� introduces a small correction to the bootstrap � periodogram which emulates the correlation

structure of the true periodogram� This provides an additional variance for the integrated

periodogram which stems from the correlation between di�erent periodogram ordinates �
	 is

the estimated variance of the innovations� which converges to 
	 under H� �see Assumption

���

The resulting bootstrap periodogram values have �conditional� covariances converging

to

Cov��I�j � I
�
k� � fjfk��j�k � ��T �

if �f 	 f � �
	 	 
	� and �� 	 �� Note that c
� in ����� depends on the resample values

f�kg� but it is independent of the index j� Janas and Dahlhaus ������� Section �� show that

with this bootstrap method a convergence in the Mallows d	�metric of the original statistics

and the bootstrap statistics is achieved �almost surely� for statistics which are integrated

periodograms
R
� 	���IT���d� this implies that their distribution functions converge to the

same limit�

The distribution of the test statisticWT now is estimated by the conditional distribution

of W �
T � supj
������n jT �
	�F �

T ��j� � F�����j��j� which is calculated as in Section � from the

bootstrap resamples I�j as in ������

Of course we require that ��� ��� � ��� which means in particular that �
	 must lie in

�a� b�� Under the hypothesis� H� � f � ��� the estimate �
	 will converge to 
	� � �a� b�� Using

��



R
� f����f�����d� � �� �

���
f����

��� � � �
��
�

f����
��� �see Assumption ��� and �
�
�� we get the

following approximation� similarly as in Appendix A�

W ��� ��
p
T �FT ���� F������ � �����

�
p
T �
Z
�
����������IT���� f������d���

p
T ��r�F������

���� � ��� � OP �T
��
	� �

�
p
T �
Z
�
����������IT���� f����d�� �

p
T �
Z
�
����������f���� f������d�� �

�
p
T �r�F������

�!���
�


�
�
��

	�

Z
�
f����

����IT ���� f����d��

Z
�
�r�f

��
��
������IT ���� f����d��� �OP �T

��
	� �

� W ��� � OP �T
��
	��

Here we use !� � r	
������ and

r�
������ �

�


�
�
��

	�

Z
�
f����

����IT���� f����d��
Z
�
�r�f

��
��
������IT ���� f����d����

The error term is uniformly of order OP �T��
	� for all � �  �
The above derivation assumes that 
	� � �a� b�� which is true under H�� Otherwise�

we will have no convergence �
	 	 
	� � so the Taylor expansion does not work� Under our

Assumptions ���� the wild bootstrap will imitate the multivariate distribution of the statistics

W ��j� for �nite sets f��� � � � � �rg under the hypothesis �see Janas and Dahlhaus� ������

Lemma � Under Assumptions ��� and � and 
	� � �a� b�� the approximations W ��� asymp�

totically have a normal distribution� and their cumulants are

EW ��� �
p
T

Z
�
����������f���� f������d�� o����

Cov�W ����W���� � 
�

Z
�
f	������������d��

�
�


�

Z
�
f��������d���

Z
�
f�������d�� � o����

Cum�W ����� � � � �W��r�� � o��� for r � 
� where

����� �� ��������� � �r�F������
�!���

�


�
�� �


	�
f����

���� �r�f
��
��
��������

The remainder terms converge uniformly for all �� �i� � �  �

Proof� see Appendix B�

In the covariance expression the fourth cumulant � appears� which shows that the

ordinary frequency bootstrap will not work without a correction as in ������ because �
R
��f

��



cannot be expected to vanish in general� The cumulants of the bootstrap statistics W
�
����

which are de�ned analogously to V
�
��� in Section �� converge to the same limits a�s� if a

spectral density estimate is used which is consistent under the hypothesis� As in Section �

one should use a parametric spectral density estimate �f � f���
�� � ��� for the bootstrap�

We replace f � ��� IT � �� by �f � ��� I�� ���� respectively� and use a Taylor expansion as in

����� to calculate the approximations W
�
��j�� The properties of these approximations under

the hypothesis are summarized in the following lemma�

Lemma � Under Assumptions ��� and � and H�� the approximations

W
�
��� �

p
T�F �

T ���� F�������

asymptotically have a normal distribution� and their cumulants are

E�W
�
��� �

p
T

Z
�
���������� �f���� f������d�� o����

Cov��W
�
����W

�
���� � 
��

Z
�

������ ����� �f
	���d��

������

��

Z
�

�f��� ������d���

Z
�

�f��� �����d�� � o���	

	 
��

Z
�
���������f

	���d��

����

��

Z
�
f��������d���

Z
�
f�������d���

Cum��W
�
����� � � � �W

�
��r�� � o��� for r � 
�

uniformly for all �� �i� � �  	always a�s��� ��� is de�ned as �� is de�ned in Lemma �� but

with f replaced by �f and �� replaced by ��� We have E�W
�
���	 � if �f � f�� �

Proof� See Appendix C�

The equicontinuity of the bootstrap statistics W
�
���� which is necessary to get a valid

approximation of the supremum W �
T of the absolute values of these bootstrap statistics�

follows similarly as for V �
T in Section ��

Theorem � Suppose Assumptions ��� and  hold� and the wild bootstrap is applied with

�f � f��� Then� under H�� the conditional distribution of the bootstrap statistic W �
T converges

to the distribution of the original statistic WT a�s��

sup
x�R

jP �WT � x�� P ��W �
T � x�j � o����

��



where P � denotes the conditional probability� Therefore the test which rejects H� if WT is

larger than the ��� ���quantile of the conditional distribution of W �
T asymptotically has the

level ��

Proof� See Appendix D�

Of course� one can also test the hypothesis that f � f�� with some given spectral

density f�� and the distribution of the test statistic sup��� j
p
T �FT ����

R
� ���������f����d��j

is imitated by the wild bootstrap �with �f � f�� under H�� too�

� Comparison of two time series

Now suppose we have two independent time series X���
� � � � � � X

���
T�
and X

�	�
� � � � � � X

�	�
T�
� where

T� and T	 may be di�erent� and we want to test whether their spectral densities are equal�

H� � f
������ � f �	���� for all � �  �

where f �i� is the spectral density of time series i� or we want to test whether the shapes of

their spectral densities are equal�

HF
� � f

�������f �	���� � const� for all � �  �

against the alternatives f ������ �� f �	���� and f �������f �	���� �� f �������f �	���� for some

�� � �  � respectively�

For tests of the hypothesis H� Diggle and Fisher ������ use the empirical spectral

process after dividing by the integrated periodograms� Their test statistic �we again focus

on tests of Kolmogorov�Smirnov type� is essentially

D � sup
���

jF
���
T�
���

F
���
T�
���

� F
�	�
T�
���

F
�	�
T�
���

j�

where F
�i�
T ��� �

R
� ���������I

�i�
T ���d�� Diggle and Fisher estimate its distribution by exchang�

ing the periodogram values I
���
j � I

�	�
j of the two time series for every j with probability ����

Under H� the periodograms are independent and �approximately� identically distributed� Of

course� this does not work under HF
� since the periodogram values may have di�erent distri�

butions� Further� the test does not work without modi�cations for time series with unequal

numbers of observations� Due to the division by the integrated periodogram� the test has

��



no power against a di�erence in variance� Simply omitting the division will not work in

general� because then the dependence between di�erent periodogram ordinates of one time

series no longer can be neglected as in the last section� In this case the method of Diggle and

Fisher ������ will produce a critical value di�erent from the true one� even asymptotically�

To overcome these restrictions we propose the following bootstrap methods�

��� Test of HF
�

For a test which is insensitive against a di�erent scale of the spectral densities we use the

above test statistic D� but we propose a bootstrap method to estimate the distribution of D

under the hypothesis�

The distribution of D is estimated under HF
� by the bootstrap distribution of

D� � sup
�
jF

����
T�

���

F
����
T�

���
� F

�	��
T�

���

F
�	��
T�

���
j� where

F
�i��
T ��� �

�

ni

niX
j
�

��������j�I
�i��
j �

ni � �Ti�
��

For the generation of the bootstrap periodogram values I
�i��
j we suggest the following method�

First compute a nonparametric �consistent� spectral density estimate �f �i� for each of the two

time series� i � �� 
� and calculate the residuals #
�i�
j � j � �� � � � � ni� as indicated in Section

�� separately for each time series� Under HF
� � f

�������
R
� f

������d� � f �	�����
R
� f

�	����d�

holds� and therefore

g�i���� � �
T�

T� � T	

f ������R
� f

������d�
�

T	
T� � T	

f �	����R
� f

�	����d�
�

Z
�
f �i����d�

equals f �i���� for all �� Calculate the corresponding estimators �g�i���� by replacing f ���

and f �	� by �f ��� and �f �	�� respectively� and generate the resamples I
�i��
j � �g�i���j� � �i��j �

j � �� � � � � ni� where 
�i��
j are resampled independently from #

�i�
� � � � � � #

�i�
ni � We have a bootstrap

method which assumes thatHF
� is true� because �g

��������
R
�g������ � �g�	�����

R
�g�	����� holds�

This procedure guarantees that D� has asymptotically the same distribution as D has under

HF
� � even if the hypothesis is not true� We prove this assertion under HF

� in the following

theorem�

�	



Theorem � Under HF
� and with Assumptions ��� holding for each of the two independent

time series X
���
� � � � � � X

���
T�

and X
�	�
� � � � � � X

�	�
T�

� the conditional distribution of the bootstrap

statistic � T�T�
T��T�

��
	D� converges to the same limit as the original statistic � T�T�
T��T�

��
	D a�s�

if min �T�� T	� 	  holds� Therefore the test which rejects HF
� if D is larger than the

��� ���quantile of the conditional distribution of D� asymptotically has the level ��

Proof� See Appendix E�

��� Test of H�

If the variances of the processes are included in the hypothesis� we can use the obvious

modi�cation of D�

E � sup
���

jF ���
T�
���� F

�	�
T�
���j�

As we have seen in Section �� for statistics of this type we have to use the wild bootstrap to

get the correct variance� except if the fourth cumulants �
���
 � �

�	�
 of the innovations of both

processes vanish�

The resampling of the periodogram ordinates works similarly as in the test of HF
� � but

now we can use

g��� ��
T�

T� � T	
f ������ �

T	
T� � T	

f �	�����

�and correspondingly �g��� �� T�
T��T�

�f ������ � T�
T��T�

�f �	���� � instead of g�i����� which equals

both f ������ and f �	���� under H�� When resampling I
�i��
j � we have to add a term containing

��
�i�
 which corrects the variance of the integrated periodogram �see Section �� if we include

�
���
 � �

�	�
 in the hypothesis H�� we can estimate �

�i�
 from both time series� otherwise we

have to estimate it separately for each time series�

De�ning E� � sup��� jF ����
T�

��� � F
�	��
T�

���j with this bootstrap� we get the following
theorem�

Theorem � Under H� and with Assumptions �� holding for each of the two independent

time series X
���
� � � � � � X

���
T�

and X
�	�
� � � � � � X

�	�
T�

� the conditional distribution of the bootstrap

statistic � T�T�
T��cT�

��
	E� converges to the same limit as the the original statistic � T�T�
T��cT�

��
	E

a�s� if min �T�� T	�	  holds� c � c��
���
 � �

�	�
 � is some positive constant� Therefore the test

which rejects H� if E is larger than the ��� ���quantile of the conditional distribution of E�

asymptotically has the level ��

��



Proof� See Appendix E�

It should be noted that in practice D and E are calculated as suprema over all Fourier

frequencies �
���
j � �

�	�
k � j � �� � � � � n�� k � �� � � � � n	� of the two time series instead over all

� �  � at least for the resamples� because only at these points the bootstrap periodogram
values are available� If T� �� T	� the Fourier frequencies of the time series lie at di�erent

locations in this case the statistics may be calculated as suprema of the absolute values of

e�g� the linearly interpolated normalized periodogram values�

� Simulations and examples

In this section the performance of the goodness�of��t test of Theorem � and of the comparison

test of Theorem � are illustrated for small samples by a simulation study� We do not include

simulations for the tests involving the wild bootstrap�

For small samples several additional considerations are necessary to improve the per�

formance of the bootstrap� These concern the selection of a suitable nonparametric spectral

density estimate �for comparison tests� and some small sample corrections� The latter e�g�

try to take into account deviations from the asymptotic distribution that stem from the data

taper or the bias of the residuals originating from the use of the estimated spectral density

instead of the unknown true spectral density� For these and other small sample corrections

see Section ����

��� Simulations

�	�	� Goodness
of
�t tests

First we want to explore the small sample performance of the goodness�of��t test described

in Sections 
 and � by a small simulation study� For this purpose for each pair of several AR

processes and one ARMA process� and of several AR model classes� 
��� samples have been

simulated� each sample with �
� observations� The innovations of all simulated processes

are uniformly distributed with mean � and variance � note that these random variables

have fourth cumulants ���
 �� �� For every sample ���� resamples are generated using the

bootstrap method described in Section �� based on a parametric spectral density estimate

within the model class under consideration �estimated by the Yule�Walker estimator�� and

��



these resamples are used to estimate the distribution of the test statistic under the hypothesis

as hypotheses we use AR����� � ��AR��� model classes� The inverse roots of the characteristic

polynomials � �Pp
j
� �jz

j of the AR parts of order p� p � �� � � � � �� of these models have

modulus ��� and the following phases�

p � �� �

p � 
� ��
� ���

p � �� �� ��
� ���

p � �� ���� ����� ����� �����
p � �� �� ���� ����� ����� �����
p � �� ��
� ���
� ���� ����� ����� ������
The normalized spectral densities of these models are plotted in Figure �� The modulus

of the roots of the AR�
� model has been varied further ����� ��	� to get some impression

about the e�ect of spectral peaks of di�erent heights on the bootstrap test� Further� an

ARMA�
��� model has been included as an example of a process for which all model classes

under investigation are misspeci�ed� The power of the test is estimated by the relative

frequency of rejections for the 
��� simulated samples� and the critical values of the test

are determined separately for every sample by the bootstrap� The levels of signi�cance have

been chosen as 
��%� �%� and ��%� In Table � one can see that the tests generally perform

reasonably well� There usually is a good agreement between the nominal and the estimated

level of signi�cance� if one considers that the standard deviation of the power is about ����%�

����%� and ���	% for the true models and the di�erent levels the tests for model classes with

several parameters tend to be too conservative� though� It is not possible to identify models

with too many parameters for this purpose one has to use a model selection method �such

as using a model selection criterium like AIC etc�� As these models are too large� but not

really "wrong"� a goodness�of��t test does not have to reject in these cases�

Potential problems include the deviation of the true distribution of the periodogram

values from the asymptotic exponential distribution� correlation between the di�erent peri�

odogram values� and the bias of the spectral density estimate that is the base of the bootstrap

procedure� These di�culties will arise especially when the sample size is small� The use of a

good parametric spectral estimate� e�g� a Yule�Walker estimate with data taper �used here� or

a Burg estimator� which have a smaller bias than the Yule�Walker estimator with no data ta�

per� is therefore recommended� A bootstrap calibration procedure �see Section ���� or a bias

correction of the spectral density estimate may further reduce these small sample problems�


�



but have not been used in these simulations�

Chen and Romano ����	� report that smoothing the periodogram or testing the resid�

uals of the �tted model for white noise increases the power of their test method this may

also be true for our method�

�	�	� Comparison tests

Now we use the AR�i� models to illustrate the performance of the comparison test of The�

orem �� For every pair �i� j�� i� j � �� � � � � �� we generate ���� samples� each consisting of

one realisation of the AR�i� process of length �
� and one realisation of the AR�j� process

�independent of the other process�� also of length �
�� with parameters as given in Table

�� The variance of both processes� innovations is �� but using di�erent variances does not

change the result as only the shapes of the spectral densities �cp� Figure �� are compared�

For every sample we calculate the test statistic D� and we estimate its distribution under the

hypothesis HF
� by drawing ���� resamples as indicated in Section ���� separately for each

sample� Then we estimate the power of the test �at level �%� by the number of rejections of

the hypothesis divided by ���� the results are given in Table 
 for all pairs �i� j� of models�

Note that the standard deviation of the estimated power is ���% under the hypothesis� The

simulation is repeated for time series of lengths �
� and 
��� respectively �see Table ���

One can see that the level of the tests are reasonably close to the nominal level of �%�

However� it seems to be di�cult to reject the hypothesis for some pairs of models� e�g� the

AR�
� and the AR���� or the AR��� and the AR��� models� This can be seen from the low

power of the tests for these pairs in Tables 
 and � for the comparison tests� and in Table � for

the goodness�of��t tests �with the higher order model as true model�� The spectral densities

of these models are not di�erent enough to be discriminated by the test for a moderate sample

size �cf� Figure ���

��� Real data example

As illustration we use the Beveridge Wheat Prize Index� which is an annual index of European

wheat prizes for the years ���������� After trend correction �cp� Figure 
 and Anderson�

��	�� Appendix A��� and subtraction of the mean we analyze these data by goodness�of��t

tests� Furthermore� we compare the subset of the data for the years ��������� with the
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level� 
��% �tted models

true models AR��� AR��� AR�
� AR��� AR��� AR��� AR���

AR��� 
�� ��	 ��� ��	 ��� ��� ��	

AR��� ����� ��� ��
 ��� ��� ��	 ���

AR�
����� 
�� 	�� 
�� 
�� ��� ��	 ���

AR�
���	� ���� ���� 
�� ��� ��� ��� ���

AR�
� ����� ����� 
�� ��	 ��	 ��
 ���

AR��� ����� 	��� ���
 ��� 
�� ��� ���
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�� 
��
 ���� 	��� ��� ��	

AR��� �
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ARMA�
��� ����� ����� 
��� 
�	 ��� 
�� ���

level� �% �tted models

true models AR��� AR��� AR�
� AR��� AR��� AR��� AR���

AR��� ��	 ��� ��� ��� 
�� 
�
 ���

AR��� ����� 	�	 	�	 	�	 	�� 	�	 	��
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�� 
�
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level� ��% �tted models

true models AR��� AR��� AR�
� AR��� AR��� AR��� AR���

AR��� ���� �
�� ��	 ��� ��� ��� ���

AR��� ����� ���� ���� ���� ���� ���� ����

AR�
����� �
�	 
��� ��� 	�� ��� ��� ���

AR�
���	� ���� ���� ��
 ��� ��� ��� ���

AR�
� ����� ����� ��
 ��� ��� 	�	 	�	

AR��� ����� ���� ���� ��� ��� ��� ���

AR��� ���� ���	 ����� ����� ��� ��
 ��


AR��� ����� ���	 ���
 ���� ���� ��� ���

AR��� ����� ����� �
�� ���	 ���	 ���� ��	

ARMA�
��� ����� ����� ���� ���	 ���� ��� 	��

Table �� Estimated power �in percent� of goodness�of��t tests for various models �true model

vertical� �tted model horizontal� and levels 
��%� �%� and ��% 
��� samples with �
�

observations� ���� resamples for each sample�

The true models are �t iid uniformly distributed with mean � and variance ���

AR���� Xt � t�

AR���� Xt � ���Xt��� t�

AR�
�� Xt � �����Xt�	� t�

AR���� Xt � ���Xt��� ���Xt�	 � ��	
Xt��� t�

AR���� Xt � �������Xt�� t�

AR���� Xt � ���Xt��� ������Xt�� �������Xt��� t�

AR���� Xt � �����Xt�	� ������Xt�� ��������Xt��� t�

ARMA�
� ��� Xt � �����Xt�	 � t � ���t���

AR�
� h�� Xt � �h	 �Xt�	 � t� h � ���� ��	�


�



level��% �
� data

�
� data AR��� AR��� AR�
� AR��� AR��� AR��� AR���

AR��� ��	 ����� �	�
 �	�� 
	�� ����� ���


AR��� � ��� ����� �
�� ����� ���� �����

AR�
� � � ��� �	�� ����� ����� ����

AR��� � � � ��� ���� �	�
 ����

AR��� � � � � ��� ���	 �
��

AR��� � � � � � ��� �����

AR��� � � � � � � ���

Table 
� Estimated power of comparison tests for AR models �in percent�� For every model

���� samples with �
� observations have been calculated� and ���� resamples have been used

for each sample�

level��% 
�� data

�
� data AR��� AR��� AR�
� AR��� AR��� AR��� AR���

AR��� ��� ����� �	�	 ���� 
	�
 ����� ����

AR��� ����� ��� ����� ���	 ����� 
��
 �����

AR�
� ���	 ����� ��	 ���� ����� ����� ���

AR��� ���� ���� ���� ��� ���� ���� �
�	

AR��� 
��� ����� ����� ���	 ��� ����� 	���

AR��� ����� �	�
 ����� ���� ���� ��� �����

AR��� ���
 ����� ���� �	�� ���� ����� ���

Table �� Estimated power of comparison tests for AR models �in percent�� For every model

���� samples with �
� or 
�� observations� respectively� have been calculated� and ����

resamples have been used for each sample�
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Normalized Spectral Densities
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Figure �� Spectral densities f �i���� of the AR�i� processes� i � �� � � � � �� with parameters as
given in Table �� divided by

R 	�
� f �i����d��
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model class AR��� AR��� AR�
� AR��� AR��� AR��� AR��� AR�	� AR���

p�value �in %� ��� ��� ���� ��� 
�� ��� �
�
 �	�� ����

reject at level

�% � � � �
��% � � � � �

Table �� Bootstrap goodness�of��t test for Beveridge Wheat Price Index ����������� using

���� bootstrap resamples�

Wheat Price Data

1500 1550 1600 1650 1700 1750 1800 1850

80

100

120

140

160

180

Figure 
� Trend�free Beveridge Wheat Price Index ������������

subset for the years �		������� assuming these are su�ciently independent so that the test of

Theorem � may be applied� As model classes for the goodness�of��t tests we use the AR�i�

model classes� i � �� � � � � ��

The goodness�of��t test using ���� bootstrap resamples produced the results given in

Table �� where the p�values of the tests� i�e� the smallest levels of signi�cance for which the

test rejects� are given� We can see that the hypotheses that the data follow a model from a

model class with orders �� �� �� �� and perhaps �� may be rejected� For a di�erent analysis

see Anderson ���	��� Sct� ����

Now we compare the data from the years ��������� with those from the years �		������
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Wheat Prices 1500 − 1599
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180 Wheat Prices 1770 − 1869
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Figure �� Trend�free Beveridge Wheat Price Index for the years ��������� and �		�������

in order to see whether there can be found a signi�cant di�erence between their distributions�

The data and nonparametric spectral density estimates can be found in Figures � and ��

respectively� A test of the hypothesis HF
� � f

�������f �	���� � f �������f �	���� for all �� � �  �
has been performed as described in Section ���� using ���� bootstrap resamples� As one can

conjecture from Figure �� the comparison test of the hypothesis HF
� cannot reject even for a

level of ��% �in fact� the test statistic corresponds to the ��%�quantile of the distribution of

the bootstrap statistic�� so no change in the distribution can be found with this method�

��� Small sample corrections

The bootstrap methods used in this paper estimate the distributions of the test statistics

asymptotically correctly� but for �nite samples there can be substantial deviations from these

distributions�

One of the reasons for this is that �f will be a bad estimate of the spectral density f

if we have not enough data� The bias of a nonparametric estimate �f��� will be large if we

have to calculate a kernel estimate by smoothing over periodogram values too far away from

� which do not have an expectation close enough to f���� To reduce this problem one should

use a local bandwidth� or alternatively a pre�lter to get approximately equally distributed
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Spectral Density Estimates

Figure �� Estimated spectral densities of Beveridge Wheat Price Index for the years ���������

and �		�������

periodogram values before calculating the kernel estimate this last approach has been used

in the above comparison tests with AR�models as pre�lters whose orders have been selected

by the BIC criterium� The bias of a parametric spectral density estimate� which is used in

the goodness�of��t tests� can be reduced by a bias�correction of the corresponding parameter

estimate�

The use of a data taper results in an increase of the variance of the integrated peri�

odograms �cf� Dahlhaus� ����� Theorem 
� by a factor of � � TH�T�H
	
	�T � which should be

imitated by a corresponding increase of the variance of the bootstrap periodogram resamples�

e�g� by using I�j �
�fj�
p
���j � �� � �� instead of I�j � �fj

�
j �

To avoid other di�culties we have used iid exponentially distributed random variables

with mean � in the simulations of the goodness�of��t tests �with a data taper and the ��

correction as above�� instead of resampling from the estimated residuals f#jg�

Another possibility of correcting the �nite sample deviations mentioned above is the

use of a parametric bootstrap in the time domain to get a calibration curve for the critical

levels of the tests this method has not been used in the calculations in Sections ��� and ��
�


�



though� because of its huge computational e�ort� The idea �cp� Loh� ���	� is to imitate the

data generation process together with the frequency domain bootstrap in order to �nd some

corrections for systematic distortions of the frequency domain bootstrap� As the true data

generation process is unknown� one has to �t a parametric model to the data� If this model

decribes the data reasonably well� the estimated corrections should be useful for the true

model� too� In contrast to our original data we know the true distribution of the generated

�pseudo�� data� and we can calculate the distribution of the test statistic by a Monte Carlo

simulation� so we can compare it with the estimated distribution of the test statistic given by

the periodogram bootstrap� and we can use these distributions to calculate the calibration

curve�

There are several possible ways for calculating a calibration curve� e�g� one can proceed

as follows �we restrict ourselves to a single time series of length T � but for the comparison

tests a similar method can be applied��

�� Choose a model family � which seems to be appropriate to describe the data �for

the use in a goodness�of��t test one should use the model family of the hypothesis��

The models should have a form which makes it easy to generate data from it� e�g� an

autoregressive model Xt �
Pp

k
� �kXt�k � �t for some suitable p�


� Estimate a model parameter �� � � from the data�

�� Calculate the corresponding residuals f��jg� e�g� ��t �� Xt � Pp
k
�

��kXt�k� t � p �

�� � � � � T � and center them� #�j �� ��j � �
T�p

PT
k
p�� ��k�

�� Repeat steps � to � S times �s � �� � � � � S�� Generate T pseudo�data from the esti�

mated model �� by resampling f���s�t g from the estimated innovations f#�jg� e�g� X��s�
t �Pp

k
�
��kX

��s�
t�k � �

��s�
t �

�� Treat the pseudo data fX��s�
t g as the real data fXtg are treated in the test procedure� i�e�

calculate the test statistic and estimate its distribution with the periodogram bootstrap�

�� Calculate the quantiles q
�B�
� �s� of the test statistic for some suitable set of � � A �

��� ��� e�g� for � � k����� k � �� � � � � ���

	� Calculate the mean quantiles q
�B�
� � �

S

PS
s
� q

�B�
� �s� of the bootstrap distributions and

the quantiles q� of the true distribution of the test statistic �under the estimated model


�



���� which is estimated by the empirical distribution of the S test statistics calculated

in step ��

�� Calculate the quantile curves by interpolating the point sets f��� q�B�
� �g and f��� q��g�

� � A� respectively�

�� Calculate the calibration curve ��� ������ where � � ���� is de�ned by q
�B�
� � q��

If we now want to test a hypothesis on our data set at a level of � with the periodogram

bootstrap� we use the �����quantile of the bootstrap distribution of the test statistic instead

of the ��quantile as critical value� The calibration curve maps every requested critical value

� to the critical value � that we must use in the bootstrap test to get an improved result�

Other possible calibration methods include the estimation of a bias correction for a

given quantile or the estimation of calibration factors for the variances �or even calibration

curves for the distributions� of every single periodogram value� However� all these calibration

methods require a great computational e�ort�

Acknowledgement� The simulation programs are based on the extensible data anal�

ysis system Voyager developed by G� Sawitzki� M� Diller� F� Friedrich et al� at StatLab
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Appendix

A� Proof of Lemma ��

From �
�
� we get

p
T �

F�����

F�����
� F�����

F�����
� �

p
T ��� � ���

�r��
F�����

F�����
� �

�




p
T ��� � ���

�r	
��
F����

F����
���� � ��� �

� �
p
T �

�


�

Z
�
��IT ���� f������r�f

��
��
���d���!��� r��

F�����

F�����
� �

�OP �T
��
	��

because

r�
������ �

�


�

Z
�
�IT ���� f������r�f

��
��
���d�

follows from Assumptions � and 
� The error term is uniform in � because of Assumption ��

The parameter � lies between �� and ���

��



Therefore we get

V ��� �
p
T �

FT ���

FT ���
� F�����

F�����
� �

�
p
T �

�

FT ���

Z
�
���������IT ���d���

p
T

�

F�����

Z
�
���������f�����d��

�
p
T �

�


�

Z
�
��IT ���� f������r�f

��
��
���d���!��� r��

F�� ���

F�����
� �OP �T

��
	� �

�
p
T

Z
�
	����IT ���d��

p
T

Z
�
����������

f���R
� f���d�

� f�����R
� f�����d�

�d��

�
p
T �

�


�

Z
�
��IT ���� f������r�f

��
��
���d���!��� r��

F�� ���

F�����
� �OP �T

��
	� �

� V ��� � OP �T
��
	��

because
R
� IT ���d� �

R
� f���d��OP �T��
	�� The remainder terms are uniform in �� The

representation of V ��� under H� follows with the arguments given prior to Lemma ��

B� Proof of Lemmas � and ��

From Lemma � and Lemma 	 of Dahlhaus ������ and by the same arguments as in Dahlhaus

and Janas ������� Lemma �� we get for functions ��i� bounded and of bounded total variation�

T �
	E

Z
�
�������IT ���d� � T �
	

Z
�
�������f���d�� o����

TCum�

Z
�
�������IT ���d��

Z
�
��	����IT ���d�� � 
�

Z
�
���������	����f	���d��

�
�


�

Z
�
�������f���d���

Z
�
��	����f���d�� � o����

T r
	Cum�

Z
�
�������IT ���d�� � � ��

Z
�
��r����IT ���d�� � o��� for r � ��

The remainder terms are uniform for all functions ��i� which are uniformly bounded and of

uniformly bounded variation this is the case for the functions f	����� � �  g by Assumption
��

Therefore the moments of V ��� are

EV ��� � ET �
	
Z
�
�	���� � ������IT ���d��

p
T

Z
�
����������

f���R
� f���d�

� f�����R
� f�����d�

�d� �

�
p
T

Z
�
����������

f���R
� f���d�

� f�����R
� f�����d�

�d�� o����

since
R
��	���� � ������f���d� � �� and for the same reason

Cov�V ���� V ���� � Cov�T �
	
Z
�
�	���� � ������IT ���d�� T

�
	
Z
�
�	��� � �����IT ���d�� �

��



� 
�

Z
�
f	����	���� � �������	��� � �����d��

�
�


�

Z
�
f����	���� � ������d���

Z
�
f����	��� � �����d�� � o��� �

� 
�

Z
�
f	����	���� � �������	��� � �����d�� o����

The proof for the higher order cumulants is obvious� Lemma � is proved similarly using

����� as integrand here the ��term does not vanish� though� The convergence to a normal

distribution follows from the convergence of the cumulants to the cumulants of the normal

distribution�

C� Proof of Lemmas � and ��

As in �
�
� we get

T �
	���� � ��� � �!���� T �
	r�
������� �OP ��T��
	��

where !�� � r	
��

�����	 !� a�s�

By the same arguments as in Appendix A we can see that V ���� � V
�
����OP ��T��
	�

with remainder term uniform in �� where

V
�
��� � T �
	
�

T

nX
j
�

��	���j� � �����j��I
�
j �

�T �
	
�

T

nX
j
�

��������j��
�f ��j�

	�
T

Pn
k
�

�f��k�
� f����j�

	�
T

Pn
k
� f����k�

��

Here �	� and ��� are de�ned as 	� and ��� respectively� but with !� replaced by !
�
�� �� by �

��

f by �f � and integrals by sums�

The proof of Lemma � now follows as in Dahlhaus and Janas ������� cp� their Lemma

�� and Appendix B� using the uniform convergences �	����	 	���� and ������ 	 ����� for

all � and � �Assumptions � and ���

Similarly Lemma � follows from an expansion as in ������ using the theorem in Janas

and Dahlhaus ������� Note that the additional term c� in the de�nition of I�j has no in$uence

on the conditional mean of the bootstrap periodogram�

�




D� Proof of Theorems � and ��

We have seen �Lemma �� that under H� the �nite�dimensional distribution of �V ����� � � � �

V ��k�� is imitated by the conditional distribution of �V
�
����� � � � � V

�
��k�� for all �xed ��� � � � �

�k �  � and from Lemma � and Appendix C it follows that this holds for the statistics V ��i�
and V ���i�� respectively� too� Theorem � will follow if the distribution of the supremum

of the absolute values over all � is estimated consistently by the conditional distribution of

the corresponding bootstrap statistic this will be a consequence of the continuous mapping

theorem and the fact that the processes fV ���g and fV �
��g� � �  � converge �almost surely�

to the same Gaussian limit process �in the sense of Dahlhaus� ������

The convergence of the empirical spectral process fV ���g follows under our assumptions
from Dahlhaus ������� and for the bootstrap process fV �

���g it follows from the convergence
of the �nite�dimensional distributions to the Gaussian distribution with the same covariances

as for the original statistics� and from the equicontinuity of the process� The equicontinuity

can be shown similarly as in Pollard ������� Lemma VII������� where it is proved for the

empirical process of independent and identically distributed random variables� The necessary

conditions on the covering numbers follow from Assumption �� As the bootstrap periodogram

values I�j are independent� though not identically distributed� the result carries over to our

case with some modi�cations� The mean of the random variables� P	 in Pollard ������� is

replaced by �
n

Pn
j
��

�	���j� � �����j�� �fj � and the mean of the empirical distribution� Pn	� is

replaced by �
n

Pn
j
��

�	���j� � �����j��I�j �see ������� As
�
n

Pn
j
� I

�	
j is of order O��� a�s�� the

equicontinuity follows �see also Dahlhaus� ������

The proof of Theorem 
 follows essentially the same way as the proof of Theorem �� re�

placing �	����� by ���� because the factor T
�
	c� in the additional term T �
	c� 	�T

Pn
j
�

�����j� �fj �

which is not covered by the above considerations� is of order OP ����� and 	�
T

Pn
j
�

�����j� �fj 	R
� �����f���d� �� z��� uniformly for all �� As z��� is �uniformly� continuous by Assump�

tions � and �� this leads to the equicontinuity of the summed bootstrap periodogram generated

by the wild bootstrap�

Similar results for Gaussian time series have been obtained by Nordgaard ������ who

shows the convergence of the bootstrap empirical process for a related bootstrap method�

��



E� Proof of Theorems � and ��

We write for short

D
�i�
T ��� �� �

Z
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�i����d����

Z
�
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and similarly
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�i���j����
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niX
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Theorem � can be shown similarly as Theorems � and 
 by �rst approximating D
�i�
T ���

and D
�i��
T ��� by some suitable statistics D��i�

T ��� and D��i��
T ���� proving the convergence of

the multivariate distribution of fT �
	
i D��i�

T ��k�� k � Mg and fTi�
	D��i��
T ��k�� k � Mg �a�s��

to the same limit distribution �for arbitrary �nite sets M � N�� and �nally showing the

convergence of fTi�
	D��i�
T ���g and fTi�
	D��i��

T ���g to the same Gaussian limit process by
proving equicontinuity� By the usual argument for a comparison test for independent Gauss�

sian random variables the convergence results for
p
T�T	��T� � T	��D

����
T ����D��	�

T ����� their

bootstrap counterpart� and the suprema follow�

The �rst two points can be handled as in Dahlhaus and Janas ������� because D
�i�
T ��� is

a ratio statistic the additional assumptions in Dahlhaus and Janas ������ are unnecessary in

our case as we do not need a higher order approximation of the statistic�s distribution by the

bootstrap� As the variance of Ti
�
	D��i�

T ��� asymptotically only depends on the normalized

spectral densities �see Dahlhaus and Janas� ����� Theorem ��� we have the same variances

under HF
� for i � � and i � 
� and

p
T�T	��T� � T	��D����

T ���� D��	�
T ���� is asymptotically

normally distributed the equicontinuity follows from the equicontinuity of the statistics of

the two independent processes �cp� Anderson� ����� Sct� ��� As the same arguments hold

for the bootstrap processes fD�i��
T ���g �cp� Appendix D�� we get Theorem � similarly as

Theorems � and 
�

The proof of Theorem � is exactly the same except that now no approximations like

D��i�
T ��� and D��i��

T ��� are needed� and the asymptotic distributions of the processes depend

on the fourth cumulants �
�i�
 � which is the reason for the appearance of c � c��

���
 � �

�	�
 � in

the asymptotic distribution �c � � if �
���
 � �

�	�
 � we omitt further details�
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