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Modeling Cell Dynamics on Micropatterned Substrates with a Cel-
lular Potts Model

Tools from materials science are increasingly used to decrease the variability
that often limits the quantitative analysis of cell experiments. Most promi-
nently, micropatterned substrates can be used to normalize cell shape and
internal organization. For long-term experiments, however, cells must be able
to divide and migrate. This creates the need to design networks of micropat-
terns that ensure normalization to be maintained even in a dynamic context.
The design of such networks requires an efficient model predicting the degree
of normalization for dividing and migrating cells. Here we extend earlier for-
mulations of the two-dimensional cellular Potts model with the aim to achieve
good agreement with existing cell experiments on cell shape and forces on
micropatterns. We show that our model correctly predicts cell spreading,
division and migration on micropatterns, both for single cells and cell com-
munities. The inverse problem of network optimization is then addressed with
genetic algorithms.

Modellierung von Zelldynamik auf mikrostrukturierten Substraten mit
einem zellulären Potts-Modell

Methoden aus der Materialwissenschaft werden zunehmend eingesetzt, um die Va-
riabilität in der quantitativen Analyse von Zellexperimenten zu verringern. Von
größter Bedeutung sind dabei mikrostrukturierte Substrate, welche benutzt werden
können, um Zellform und deren inneren Aufbau zu normieren. Für Langzeitstudien
müssen die Zellen allerdings in der Lage sein, sich zu teilen und zu migrieren. Folg-
lich müssen mikrostrukturierte Netzwerke entworfen werden, welche die Erhaltung
der Zellnormierung auch in einem dynamischen Kontext gewährleisten. Um diese
Netzwerke entwerfen zu können, wird ein effizientes Modell benötigt, welches den
Grad der Normierung von sich teilenden und migrierenden Zellen vorhersagt. Hier-
für erweitern wir das bereits etablierte zweidimensionale zelluläre Potts-Modell. Ziel
ist dabei, eine gute Übereinstimmung mit bestehenden Experimenten zu Zellform
und -kraft auf mikrostrukturierten Substraten zu erzielen. Wir zeigen, dass unser
Modell Zellausbreitung, -teilung und -migration auf mikrostrukturierten Substra-
ten korrekt vorhersagt, sowohl für einzelne Zellen als auch für Zellgruppen. Für
das inverse Problem der Netzwerkoptimierung führen wir dann einen genetischen
Algorithmus ein.
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1
Introduction

1.1. The Shape of Cells

Over the last two decades, physical features like cell shape and forces have emerged
as determinants of cell fate that are equally important as are biochemical and genetic
factors. It has been shown that cells do not need only nutrition and growth factors
to survive and grow, but also a certain level of spatial extension and force generation
[4–7].

Most cells in animal or plant tissue grow in an environment where neighboring cells
provide defined boundary conditions resulting in a very regular cell shape [8]. To
study animal cells in detail, however, they are usually grown in cell culture on a two-
dimensional substrate. The lower dimensionality in cell culture compared to tissue
makes them easier to image and many experiments would not be possible without the
simplification a two dimensional environment brings. As in physics, reducing degrees
of freedom and studying systems under controlled conditions is an integral part of
biology.

Unlike inanimate objects, however, cells react to changes in their environment. Fig-
ure 1.1a shows cells grown in cell culture. Without the confinement and boundary
conditions imposed by neighbouring cells in three-dimensional tissue the cells display
a large variety of sizes and shapes although all cells belong to the same cell type.
The cells shown in Figure 1.1a are stained with fluorophores which can be modified
to bind to specific components of the cell. In the image shown, green fluorescent dye
binds to actin, which forms the mechanical backbone of the cell, blue dye to DNA
marking the nucleus and red dye to mitochondria generating the energy needed by the
cell to live. The green actin is present throughout the whole cell and also marks its
outline. Each nucleus indicated by the blue dots belongs to a single cell and without
any further information, it is almost impossible to identify boundaries between cell or
to even determine their size. Experiments with structure related readouts, such as the
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CHAPTER 1. INTRODUCTION

(a)

(b)

(c)

Figure 1.1. (a) Epithelial cells grown in cell culture stained for actin (green), nucleus
(blue) and mitochondria (red) [9]. Without constrains the cell shape is very irregular
and cells adhere to each other. (b) [Y] shaped micropattern. The extracellular matrix
made of fibronectin (white) is printed on a nonadhesive background of polyethylene
glycol [10]. Cells can only adhere to the extracellular matrix. (c) A single cell on [Y]
shaped pattern stained for actin (red) and vinculin (green) which is involved in cell
adhesion [10]. The cell has a very regular shape determined by the micropattern.

organization of actin or distribution of cell organelles, are hard to quantify due to the
inherent variability of cell shape in cell culture. The initial simplification by studying
cells extracted from the complex tissue environment turns out to be a drawback when
it comes to shape and structure related readouts.

However, there exists a method from material science to restore a defined geometry
in cell culture. Most cell types need a surface, called the extracellular matrix (ECM),
they can adhere to in order to stay alive. The ECM is a mixture of different proteins
and without it present on the substrate in sufficient quantities cells die [4]. Thus,
by controlling the ECM, boundary conditions can be imposed on cells again in cell
culture.

Photolithography well established for semiconductors allows to manufacture sur-
faces with specific ECM geometries. Either by printing ECM proteins from a stamp
produced by lithography [11] or by using lithography directly to modify the surface
the ECM binds to [12]. A even more direct method without a photomask is the use
of high energy lasers to modify the surface [13].

Figure 1.1b shows a substrate with micrometer sized features printed on. Such
micropatterns provide a defined geometry of ECM proteins to cells which can only
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1.2. THE CONTRACTILE CELL

(a) (b) (c)

Figure 1.2. Cell normalization. Cells are grown on an array of micropatterns. Images
of the cells are collected and averaged. The cells are stained for actin and the averaged
cell displays prominent actin features at concave segments of the cell boundary. 16 cells
where averaged. Figure Adapted from [14] with the cell images in part (b) obtained
by the collaboration with Dr. Starkuviene.

adhere to the printed pattern. As shown in Figure 1.1c a cell growing on such a [Y]
shaped pattern has a defined shape. This time, actin is stained in red and vinculin, a
protein involved in the adhesion of the cell to the substrate, in green. Adhesion occurs
only on the ECM but the cell spans also non-adhesive regions resulting in the almost
triangular shape.

Seeding many cells on micropatterns as depicted in Figure 1.2 results in an array of
regular shaped cells. Superposition of many such cells averages variations inherent to
biological experiments and result in the normalized cell shown in Figure 1.2c. Bright
red areas indicate regions with increased actin density which strongly localizes to
convex parts of cells. Micropatterns allow to quantify differences in actin distribution
and other cellular proteins [14]. Moreover, they allow to relate form and function of
cells systematically [15].

The possibility to shape cells, control boundary conditions and repeatability offers
many more possibilities [8, 16] which will be review in greater detail below. But this
first requires an understanding of cell mechanics [17].

1.2. The Contractile Cell

Cells are not static objects. They actively explore their environment and constantly
change their internal organization and adhesion to the substrate [18]. The key struc-
tural element for most mammalian cell is the protein actin. In its monomeric form,
it is a globular polar protein with a size of 6 nm [19]. It can polymerize into double
stranded polar filaments of several µm length [19]. Addition of new subunits happens
preferentially at the so called barbed end and depolymerization at the pointed end
[20] as depicted in Figure 1.3b. The polymerization is driven by hydrolysis of adeno-
sine triphosphate (ATP) providing an energy of 80 pN nm which is much larger than
the thermal energy of kbT = 4.1 pN nm at 300 K available in cells [21, see Appendix
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CHAPTER 1. INTRODUCTION

B therein]. Special proteins associated with the barbed or pointed ends regulate the
polymerization allowing control of the filament length [22].

Filaments are not restricted to a linear geometry. Branching is mediated through a
protein complex called Arp2/3. It allows new filaments to grow out from existing ones
with a defined angle of 70° [20] also depicted in Figure 1.3b. Together with crosslinkers
connecting single filaments, branching allows actin to assembly into networks. Another
mode of higher order organization are bundles of parallel actin filaments which are
stabilized by crosslinker proteins like α-actinin.

All of the above actin structures are present in cells and are commonly referred
to as the actin cytoskeleton (ACS) . Figure 1.3a shows a cell on a two dimensional
substrate. The interface between the cell and the surrounding medium is formed by
a lipid double layer called the cell membrane [23]. Underneath the cell membrane
and connected to it lies the actin cortex, a network of crosslinked actin filaments
stabilizing the membrane [24]. The cortex in Figure 1.3a is only shown at the outline
of the two dimensional cell, but it actually spans across the whole membrane removed
in the image to show the interior of the cell. Bundles of parallel actin filaments are
formed at several locations. Stress fibers [25] span across the whole cell and end in focal
adhesions (purple dots), large protein complexes responsible for cell adhesion discussed
below. Filopodia are actin filled protrusions exploring the surrounding. They originate
from the lamellipodium, an actin rich region with a branched and crosslinked network
of filaments.

The cell shown in Figure 1.3a is moving in the direction of the lamellipodium which
requires the asymmetric distributions of the different actin structures. At the front,
the so called leading edge, actin polymerizes and the elongating filaments push against
the membrane moving it forward [20, 27, 28]. At the back, the cell cortex is strongly
contracted by myosin II, a molecular motor introduced below, to drag the rear of the
cell along. The branched network in the lamellipodium generates a uniform pushing
force and a broad propagating cell front is formed. In contrast, the crosslinked parallel
filaments pushing in filopodia generate spike like protrusions. A few microns behind
the leading edge, in the lamella, the branched network disappears and stress fibers are
formed [29] which involves non-muscle myosin II, another key player in cell mechanics.

Myosin II is a molecular machine converting chemical energy stored in ATP into
motion. It consists of a head domain responsible for the ATP conversion and a long
tail which allows assembly of many myosin proteins into larger structures. Myosin II
is present in large quantities in muscles where it generates the force for contraction
[23]. It moves along actin filaments into the direction of barbed ends. Single myosin
motors can generate forces of several pN [19] and work in groups to increase cooper-
ativity and force output. In non-muscle cells 14-20 myosin molecules assemble into
bipolar filaments with head domains pointing in opposite directions [30]. Because the
minifilaments are bipolar, the myosin heads at opposite ends can pull actin filaments
with the right polarity toward each other as depicted in Figure 1.3c.

Myosin contraction starts a few microns behind the lamellipodium. The force in-
duced by it partly breaks filaments in the previously grown network down and helps to
disassemble it [20]. The remodeling of the network by myosin also helps in the assem-
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1.2. THE CONTRACTILE CELL

(a)

(b)

(c)

Figure 1.3. (a) Migrating cell with different types of actin structures (gray) forming
the actin cytoskeleton (ACS). The nucleus is shown in blue and focal adhesions con-
necting the cell to the substrate in purple. Adapted from [20]. (b) Polymerizing actin
filament. Actin monomers (circles) assemble into polar helical filaments. Polymeriza-
tion preferentially happens at the barbed end and depolymerization at the pointed.
Branching is enabled through the Arp2/3 protein complex (blue) which binds to ex-
isting filaments and provides a nucleation site for a new filament. Branched filaments
grow out with an angle of 70° from existing filaments. (c) Actin structures contracted
by bipolar myosin II minifilaments (green). Myosin moves towards the barbed (+)
end of actin. Assembled into bipolar filaments it generates contractile forces in actin
with antiparallel organization in stress fibers and random organization in the cortex.
Adapted from [26].

bly of stress fibers [29]. The antiparallel actin filament organization of the fibers allows
them to be strongly contracted by the bipolar filaments. Myosin is also present in the
actin cortex where it controls cell shape. In migrating cells its activity is increased in
the rear to contract it and drag it along [27].

Contractile fibers or polymerizing networks could not generate forces without being
anchored to the substrate. Without anchorage, the fibers would just slide past each
other without any resistance. Anchorage occurs via large protein complexes called
focal adhesions [31]. Focal adhesions link actin filaments through the membrane to the
ECM and can only form and grow if they experience pulling forces through their actin
connection [18]. They start to form as focal complexes in the lamella a few microns
behind the lamellipodium [18, 20, 26] (compare Figure 1.3a). Forces generated at the
leading edge by polymerization are transmitted to the substrate by them [27]. In a
similar fashion stress fibers are anchored. The forces generated by myosin in them
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CHAPTER 1. INTRODUCTION

are used by the cell to deform and probe the ECM. In this way, cells can translate
environmental properties such as the rigidity of the matrix into signals in a process
called mechanotransduction [32, 33]. The complex array of molecules focal adhesions
are made of is thought to be involved in the transfer of mechanical responses into
chemical signals [33]. Models for myosin II suggest that the motors also react to
changes in of the ECM rigidity supporting the sensing by focal adhesions [1, 2]. The
sensing of the environment is important e.g. in tissue to get information about when
to grow or migrate. In turn, it plays an important role in disease. The most prominent
example is the invasion of healthy tissue by cancer cells which are assumed to have
lost the ability to sense other cells [20].

The migrating cell in figure 1.3a can now be fully understood. Actin polymerizing
at the leading edge pushes the membrane forward and is anchored to the substrate by
focal adhesions. A few microns behind the leading edge, myosin contraction starts,
the actin network is remodeled and depolymerizes partly. Elongation at the front and
depolymerization at the back form a treadmill like structure [34] moving the cell front
forward. Focal adhesions are disassembled at the rear of the cell where also increased
myosin activity in the cortex helps to retract the moving cell. Lamellipodia do not
only exist in migrating cells. They are also formed during cell spreading and are used
to explore the environment.

1.3. Micropatterns Control Cell Shape and Behavior

The insights micropatterns reveal about cell mechanics is already demonstrated by the
averaged cell in Figure 1.2. It shows that actin strongly localizes to concave sections of
the cell contour which is now easy to understand. The contractile actin cortex beneath
the membrane tries to pull the contour inwards while the stress fibers forming in the
cell periphery resist the contraction and pull the contour outwards allowing the cell
to spread over a wider area. The circular shape of cells at regions without ECM was
investigated in more detail on dot patterns as show in Figure 1.4a [15]. The free
spanning arcs are indeed circular as shown in the bottom of the Figure indicating a
type of Laplace law involved. It was further observed, that the arc radius depends on
the distance between dots, which gives further insights in the forces acting along arcs
[15].

Besides the mechanical aspects pattern where used in a pioneering study which
showed that cell survival depends not only on the amount of ECM ligand offered to
the cell but also also on the spatial extensions of it [4]. The internal organization of
cells was also investigated in great detail with micropatterns, including the distribution
of stress fibers [10, 37], the influence of cell geometry on cell division [38–41] or how
shape and drugs influence the machinery responsible for intracellular transport [42].

Micropatterns are not limited to define shape, they also provide defined geometries
for cell migration. Initial studies where performed on cells on isolated island to investi-
gate the impact of shape on lamellipodium formation [43] and the preferred migration
direction after removal of the pattern constraint [44]. Arrangement of triangles as

6



1.3. MICROPATTERNS CONTROL CELL SHAPE AND BEHAVIOR

(a) (b) (c) (d)

Figure 1.4. (a) Cell on dot pattern (blue) stained for actin (green). Prominent
stress fibers are visible at the edge of the cell. The same cell is shown in the bottom
image with circles fitted to the arcs spanning between dots [15]. (b) Cell migration
biased by pattern geometry. The green mesh indicates the branched actin network in
the lamellipodium and the migration direction is indicated by arrows. Variation of
the triangular shape can reverse migration direction. Adapted from [16]. (c) Phase
contrast image of epithelial cells confined to a circular shape by a stencil (top). After
stencil removal leader cells guiding the migration preferentially form at the tips of
spikes (bottom) [35]. (d) Principle of traction force microscopy. Fluorescent beads are
embedded into an elastic substrate. The magnification of the substrate at the bottom
shows beads before (red) and after (green) cell detachment. The displacement of the
beads is used to reconstruct forces. This experiment combined micropatterns with
elastic substrates, the shape of the [crossbow] pattern can be seen in the top image.
Adapted from [36].

depicted in Figure 1.4b were shown to bias cell migration into one direction [45, 46],
gaps between patterns have an influence on the bias [45, 47] and variations of the
triangle shape can reverse migration direction [16].

Multicellular systems have also been investigated in great detail. Cell pairs placed
on circular and square shaped patterns display a rotational motion [48] which persists
if the cell number is increased but eventually breaks down into several swirls for
very large numbers of cells [49]. The rotational motion can be completely stopped
by variations of the pattern geometry [50], e.g. by putting cell pairs on [H] shaped
patterns. The collective migration of many cells is important for wound healing and
comb shaped patterns have demonstrated the ability of cell sheets to bridge wide
nonadhesive areas [51]. Cues for the migration direction can arise from the curvature
of the cell front as shown in Figure 1.4c [35].
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CHAPTER 1. INTRODUCTION

Cellular sensing of micropattern geometry is closely related to stiffness sensing of the
ECM, as both depend on cellular forces being developed in the ACS. Those forces are
transmitted to the ECM via focal adhesions [18]. In order to measure cellular forces
on flat elastic substrates, different variants of traction force microscopy have been
developed [52–54]. They work by placing fluorescent beads into an elastic substrate as
shown in Figure 1.4d. A cell adhering to the substrate contracts and deforms it. From
the displacement of the beads in the substrate the force generated by the cell can be
reconstructed. This approach is now increasingly combined with micropatterning of
cell shape, for example by using microcontact printing [55] or deep UV-illumination of
polyacrylamide substrates [36, 56] or lift-off techniques on silicone rubber substrates
[57].

1.4. Modeling Cell Shape and Forces

Micropatterning of cell shape is naturally complemented by quantitative image pro-
cessing and modeling. Several types of mathematical models have been developed to
predict cell shape on micropatterns [17, 58]. The simplest type is a contour model.
Motivated by circular arc features of cells adhering to homogeneous substrates, it has
been suggested early that Laplace-type models arise from the competition of tension
in the periphery (geometrically a line tension) and tension in the cell body (geomet-
rically a surface tension) [59, 60]. In the following, we will call this approach the
simple tension model (STM). A quantitative analysis of cell shape on dot patterns
(compare Figure 1.4a) has shown that in the presence of strong contour reinforcement
by peripheral actin bundles, the simple tension model has to be modified by elastic
elements, leading to the tension-elasticity model (TEM) [15]. Both STM and TEM
not only describe cell shape, but also cell forces [61]. Recently it has been shown that
the TEM emerges as a good approximation to a bulk model for contractile cells if the
the bulk arcs do not accumulate compression energy [62, 63].

The natural starting point for a bulk model of cell shape is continuum mechanics,
which can be implemented with the Finite Element Method (FEM). To represent con-
tractility in such a framework, one can use isotropic thermoelasticity, which represents
contractility by a negative pressure in the elastic equations, as it can be induced in
passive materials by lowering temperature. This approach is commonly used for model
contraction in cell monolayers [64–66]. Recently also the shape and forces of cells on
micropatterns have been predicted with such an isotropic thermoelastic model [67].
In order to represent the anisotropic effect of stress fibers, the isotropic thermoelas-
tic approach has been extended by an orientation-dependent order parameter field
for contractility [68, 69]. The strength of a stress fiber is determined by a positive
feedback mechanism regarding how much force can be built up in a given direction,
favoring directions of large effective stiffness. Cell shapes and forces then can be pre-
dicted if the attachment sites are known, for example for micropatterns [62, 70] and
pillar arrays [71].

FEM-based models for cell shape usually assume linear elastic or hyperelastic mate-
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(b) (c) (d)

Figure 1.5. Cell representations in different two-dimensional models. (a) Cable net-
work model representation with regular and irregular networks. The cells are pinned
at the four corners and the network edges are contractile. Both network topologies
result in similar cell contours. Adapted from [63]. (b) Two dimensional lattice based
cell representation in a cellular Potts model (CPM). All lattice sites with the same
spin orientation (indicated by a number and color) belong to one cell. The medium
surrounding cells is labeled with 0. (c) Keratocyte crawling to the right described by
a CPM. Migration is driven by a reaction diffusion system of the small G-proteins
solved in the domain defined by the cell. Small G-proteins interact with actin and
myosin. The color encodes Arp2/3 concentration which is at maximum at the leading
edge [72]. (d) Vertex model representation of tissue. Each face surrounded by edges
represents a cell. The edges usually meet in three fold vertices. The color of the cells
encodes the number of neighbors [73].

rial laws for the mechanical properties of cells. Indeed often this is a good assumption,
for example on the large scale of tissues or for single cells with conserved volume. How-
ever, for cells adhering to a substrate, the projected area is not a conserved quantity
and volume can be exchanged with the third dimension. In this case, the mechanical
response is mainly determined by the actin cytoskeleton, which behaves like an elastic
solid under extension, but does not resist compression because actin filaments under
compression can buckle, depolymerize and slide. When modeling cells on an inter-
mediate length scale, this fundamental asymmetry between tension and compression
can be represented by cable networks [74, 75]. If actomyosin contractility is not repre-
sented by a reduced resting length, but rather by a constant pull between neighboring
nodes, one arrives at the model of actively contracting cable networks [15, 63] shown
in Figure 1.5a. Because contractile tension dominates in the bulk and passive elastic
tension in the periphery, the corresponding computer simulations are described well
by the analytical predictions of the TEM, both for actively contracting cable networks
[63] and thermoelastic continuum models [62].

All of the above models are relatively static in nature and assume that the general
features of cell shape (in particular pinning points to the substrate) are already known.
Here we aim to develop a model that predicts the dynamics of cell shape and traction
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CHAPTER 1. INTRODUCTION

forces on micropatterned substrates without any a priori assumptions regarding the
final shape. Two types of models seem to qualify in particular for this purpose. Phase
fields models (also known as level set methods) have recently been used to predict
cell shape in the context of cell migration, because they are particularly suited to
represent propagating contours [76–80]. In order to represent contractility, however,
cellular Potts models (CPM) seem to be more appropriate. CPMs are lattice-based
and represent a cell by a collection of spins (compare Figure 1.5b), thus allowing for
arbitrary cell shapes. By defining an energy functional on the spin configuration and
exploiting the slow time scale for cell spreading, one can use Metropolis dynamics
to propagate the system. CPMs are commonly used to model tissues, as reviewed
in [81]. One prominent application is the study of cell sorting by the differential
adhesion hypothesis [82, 83]. Besides applications to tissue, CPM have also been used
in systems consisting of only a few cells [84]. Recently, however, a CPM has been
applied also to predict the shape of single cells on micropatterned substrates [85].
Moreover single keratocyte movement has been modeled with a CPM by coupling the
Metropolis dynamics to a model for actin polymerization [72, 86] with a typical cell
shown in Figure 1.5c.

Like for the Ising model, the shapes predicted by the CPM are dominated by inter-
facial tension. This generates a close relation not only to contour models, but also to
vertex models, which however are not lattice-based but rather define energy function-
als for cell shapes with straight contours as shown in Figure 1.5d. They have been used
e.g., to explore the role of mechanical interactions for growth of the Drosophila wing
imaginal disk [87] or to investigate the influence of cell elasticity, cell-cell interaction
and cell proliferation on cell sheet packing geometry [73, 88]. However, vertex models
cannot be used to model single cells on micropatterns because they cannot account
for arbitrary shapes.

Phase field, CPM and vertex models have in common that they describe the cell
by an energy functional but they differ in how they represent cells and minimize
the functional. CPM with their lattice based description and phase field models can
account for arbitrary shapes. CPM use Metropolis dynamics to propagate the cell
and phase field models overdamped dynamics. Vertex models are limited to straight
contours and often use conjugated gradient methods to minimize the energy functional.

1.5. Aim and Outline of This Work

This theoretical work was motivated by the experimental need for micropatterns that
are suitable for long time cell experiments. For example, the combination of micropat-
terns with RNA interference experiments. RNA interference is a tool to selectively
knock down genes [89–91] without the need of genome modifications. The normaliza-
tion micropatterns provide should make the identification of relevant RNAs easier [42],
but the method requires cells to stay on the patterns for several days. During such a
long time cells start to divide which ceases the normalization effect of the patterns.
After all, the patterns were designed to provide shape normalization for one cell as
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1.5. AIM AND OUTLINE OF THIS WORK

depicted in Figure 1.6a. To maintain cell normalization even after several cell divisions
networks of patterns as shown in Figure 1.6b are required.

The cell normalization of a network shown in the Figure 1.6b is an idealization
and experiments show that the arrangement of [Y] in an hexagonal lattice does not
normalize cells. One cannot know if the cells divide in the right orientation such that
one daughter cell is able to move on to the next pattern. Similarly, it is not known
if two cell sitting on the same island are stable or start to migrate or even if a single
cell already migrates to the next pattern. Trying out many different network layouts
would take too much time and resources. Therefore, models are needed to predict the
normalization effect a given layout has on cells.

The aim of this work is to develop a model which correctly predicts the behavior of
cells on micropatterned substrates and to use this model to optimize the pattern layout
with respect to cell normalization. Due to the complex nature of cells a computational
model is the only choice. To optimize the pattern layouts a mechanism generating
layouts is needed. The computer generated layouts are then evaluated by the model
which requires it to be fast enough to allow evaluation of many possible candidates.

We choose a cellular Potts model (CPM) to describe cells because of its ability to
describe single and multicellular systems dynamically and its computational simplicity.
The model needs to fulfill certain requirements. Firstly, it needs to be mechanically
coherent predicting the correct cell shapes and scaling behaviors found by the tension-
elasticity model on the one hand and correct forces generated by the cell on the other.
In addition, it needs to predict the placement of daughter cells after cell division,
cell-cell interaction and cell migrations on arbitrary patterns correctly.

Following these requirements, the first chapter introduces the CPM and its Hamilto-
nian. Each term of the Hamiltonian is motivated on a single cell basis. We show that
our approach can predict cell spreading dynamics, shapes and traction forces correctly.
The second chapter introduces cell division and cell-cell interactions to the model. We
show that a mapping of the pattern geometry to an ellipse is enough to predict the
location of daughter cells correctly. The second part of this chapter discusses cell-cell
adhesion and its implementation in detail. The third chapter extends the model by
cell migration. Forces generated by actomyosin activity can be integrated in the CPM
framework naturally and combined with an mechanism setting the cell polarity the
stability of cell pairs on micropatterns can be predicted correctly.

The second part of this work addresses the optimization of the pattern layout with
a genetic algorithm. The previously developed model is used to evaluate the normal-
ization capabilities of layouts generated by the genetic algorithm. First, methods to
generate arbitrary patterns are introduced and the genetic algorithm is tested with
tasks where solutions are known. It is then applied to the optimization of micropattern
networks.
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CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.6. (a) Arrangement of isolated micropatterns. Spherical cells initially
suspended in a medium make contact with the substrate and attach to adhesive mi-
cropatterns (top). Cells without contact to patterns die and cells with contact spread
over the pattern. The micropatterns normalize the cell shape (middle). Cells start
to divide and with neighboring patterns to far away two cells are stuck on one island
(bottom). The normalization ceases, the cell pair might start to rotate or oscillate,
and the cells might be in an unfavorable condition because they have to little area
to spread. (b) Arrangement of micropatterns into a network. Cell make contact and
adhere (top). Their shape gets normalized (middle). After cell division the daugh-
ter cells have neighboring patterns to explore and migrate there (bottom). The cells
adhere to each other but stay normalized even after cell division.
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2
The Cellular Potts Model

2.1. Introduction

The cellular Potts model (CPM) has been mainly used for multicellular systems with
little exceptions [72, 85, 86]. On micropatterns cells are often isolated or the cell
density is low which requires modifications of the Hamiltonian defining the cell model
in several regards. In this chapter, we use insights from the tension-elasticity model
(TEM) to derive a Hamiltonian for single cells on micropatterned substrates. The
energy functional is based on the different kinds of tensions acting in the cell. The
tensions are balanced by the adhesive substrate and can be interpreted as traction
forces acting on it. Thus, the model derived in this way not only predicts cell shapes
but also allows the extraction of traction forces for any adhesive geometry in a very
efficient manner in good agreement with experimental results.

In the first part the classical CPM model and its origin from systems driven by
interfacial tension is introduced. In a Potts model, the configuration space is often
explored by Metropolis dynamics. The same dynamics is used for cells, although cells
are nonequilibrium systems which needs justification. The second and main part of
this chapter focuses on motivating the CPM Hamiltonian on a single cell basis. This
part is based on the manuscript about cell dynamics and traction forces [3].

2.2. The Classical Cellular Potts Model

The cellular Potts model was developed to study cell sorting as proposed by the differ-
ential adhesion hypothesis [82, 83]. It originates from the Potts model [92] which is a
generalized Ising model with more than two spin components. The spins usually reside
on a regularly spaced two dimensional lattice and their interaction is described by an
Hamiltonian. In the Potts model spin orientations are confined to a two-dimensional
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CHAPTER 2. THE CELLULAR POTTS MODEL

(a) (b) (c)

Figure 2.1. Systems with domains shaped by interfacial tension (a) Soap froth
between glass plates [94]. (b) Polycrystalline metal grains etched to highlight grain
boundaries [95]. (c) Zebrafish cell aggregate. Cell boundaries are green and the nuclei
blue [96] .

plane and take orientations [92]

Θ =
2πn

q
, n = 0, 1, . . . , q − 1, (2.1)

where q denotes the number of possible spin orientations. One of the simplest interac-
tions between neighboring spins is set by their relative orientation. The corresponding
Hamiltonian is equal to

HPotts = J
∑

〈i,j〉

cos(Θi − Θj), (2.2)

where 〈i, j〉 denotes summation over all sites and their neighbors located at i and j on
the two dimensional lattice. Θi and Θj are the corresponding orientations of the spins
at those locations and J is their interaction strength. For q = 2 the Ising model is
recovered.

The configuration space is usually explored with Metropolis dynamics. The energy
∆H = Hfinal − Hintial associated with a spin reorientation is calculated and the spin
change is accepted with the probability

P (∆H) =







1 if ∆H < 0,

e−∆H/kbT if ∆H ≥ 0,
(2.3)

where T is the temperature of the system. For large values of T almost all configuration
changes are accepted and no domains with similar spin orientations form. For T
approaching zero the spin system may reach the ground state [93].

In a degenerated version the energy depends only on whether a neighboring spin
has a different orientation but not on its value:

HGrain = J
∑

〈i,j〉

1 − δ(Θi,Θj), (2.4)
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(a) complete (b) inverted (c) checkerboard (d) partial (e) dispersal

Figure 2.2. Outcomes of cell sorting for two cell types labeled dark and light.
Adapted from [83]. The analogy of cells to molecules of liquids is often used. Cell
types with low cell-cell interaction energies J(Θi,Θj) are viewed analogous to a liquid
with a high surface tension. The relative strength of the cell-cell and cell-medium
interaction energies sets the degree of cell sorting. (a) Interactions between dark-dark
cells have the lowest interaction energy leading to complete engulfment. Cell medium
interactions are the same for both types. (b) Engulfment is inverted by increasing
the interaction energy between light cells and the medium. (c) If energy between
light-dark interfaces is the smallest and cell-medium are equal cells are completely
mixed. (d) Similar interaction energies between cells lead to partial sorting. (e)
Similar interaction energies between cells and the medium lead to dispersal.

where δ(Θi,Θj) = 0 if the spins at i and j have different orientations and 1 if they have
the same. Systems driven by interfacial tension are well described by this Hamiltonian.
Examples range from soap froth to grain growth [97] which closely resemble cells in
tissue, a system also driven by interfacial tension [98] (compare Figure 2.1). All of
these systems are three dimensional but the small extension of the third dimension is
usually neglected. Domains formed in these systems are described by regions of same
spin orientation (compare Figure 1.5b) and interface energies by spin-spin interactions.

The simple description of foam and grain growth by a Hamiltonian and their simi-
larity to cells in tissue motivated the development of the CPM [81]. However, besides
their similarity in shape, cells differ in a few aspects from soap and grains which re-
quires modifications of the Hamiltonian. E.g. size variations of cells in tissue are small
and cells stay cohesive which is achieved by a low enough simulation temperature.
The low temperature ensures that domains of equal spin orientation seldom break up
into separated domains. In the classical CPM the Hamiltonian is given by [82, 83]

HcCPM =
∑

〈i,j〉

[1 − δ(Θi,Θj)]J(Θi,Θj) + κ
∑

cell i

[ai −Ai]
2. (2.5)

Each cell is now represented by a domain with the same spin orientation. To implement
different cell types, an implementation needs to keep track what spin orientation is
associated with a specific type. The interaction energies J(Θi,Θj) are usually different
between different cell types. The last term constrains the cell area ai of cell i to a
target area Ai by a Lagrange multiplier κ and is motivated by a roughly constant cell
area observed in tissue. The medium surrounding the cells is treated as a cell without
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area constraint. The area of a cell is measured by counting all spins with the same
orientation.

The variable interface energy J(Θi,Θj) drives cell sorting [82, 83] with examples
shown in Figure 2.2 for two species represented by dark and light cells. The analogy
of cells an molecules in a liquid is often used where the interface energies are viewed
as inter-molecular forces. The interface energies J(Θi,Θj) set the adhesion strength
between cells. For all J(Θi,Θj)>0 a low value of J(Θi,Θj) means strong adhesion.
E.g. if the energy between dark-dark cell interfaces is the lowest, those cells can be
seen as a liquid with high surface tension and are completely engulfed by the light
cells. This requires the cell-medium interaction energy to be the largest and similar
for both cell types, otherwise cells disperse or the engulfment is inverted. Depending
on the relative strength of the interaction energies the various states of cell sorting
shown in Figure 2.2 are obtained.

2.2.1. Metropolis Dynamics in Nonequilibrium Systems

Cells are a nonequilibrium system. They constantly consume ATP, migrate and dissi-
pate energy into their surrounding. Nevertheless, they are described by the Metropo-
lis algorithm which is formulated for equilibrium systems. This works because of a
separation of time scales. Forces on the membrane at any point equilibrate within
milliseconds [99], a time scale where cell migration and large reorganizations of the
actin cytoskeleton (ACS) are not important. Thus, the membrane can always be con-
sidered in equilibrium. The energy consuming processes on a long time scale such as
cell migration can be viewed as a tilt of the energy landscape driving spin reorientation
at one side of a cell.

Another important aspect to justify the use of Metropolis dynamics are membrane
fluctuations. The size of fluctuations observed in cells is too large to be of thermal
origin. They arise from the activity of actin and myosin beneath the membrane. Cells
actively explore their surrounding by forming membrane protrusion. Actin polymerizes
in localized areas protruding the membrane which is then contracted by myosin again
giving rise to a fluctuation like movement of the membrane. It is generally assumed
that the actomyosin activity, which is an nonequilibrium process, is equivalent to an
effective temperature [81, 100, 101]. Therefore, the application of Metropolis dynamics
is justified. Due to the non-thermal origin of the fluctuations the temperature T used
in the Metropolis dynamics (2.3) does not correspond to the actual temperature of
the biological cells.

Remodeling of the cytoskeleton is a dissipative process due to the formation and
breakage of bonds. Modifications of the Metropolis dynamics accounting for dissipa-
tion have been suggested [102] where the probability for a spin flip becomes

P (∆H) =







1 if ∆H < −Y,
e

− ∆H+Y

kbT if ∆H ≥ Y.
(2.6)

The parameter Y represents a dissipative cost for deforming the cell boundary and can
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be interpreted as a force acting on it [81, p. 110]. Throughout this work the Metropolis
algorithm as defined in equation (2.3) will be used. Dissipative effects are unimportant
for the model introduced in this chapter because cells are stationary. In Chapter 4
which extend the CPM by cell migration dissipation is assumed to be included in the
migratory machinery introduced there.

2.3. Motivating the Hamiltonian on a Single Cell Basis

2.3.1. Cell shape Model

Single cells on flat micropatterned substrates are effectively two-dimensional and often
form invaginated circular arcs along free edges [15] as shown in Figure 1.4a. The
circular shape can be understood in context of a Laplace law, where a surface tension σ,
which draws the contour inwards, is balanced by a line tension λ, which wants to draw
the contour straight [59, 60] as illustrated in Figure 2.3a. The surface tension results
from the combined action of the plasma membrane wrapping the whole cell body and
the actin cortex underlying it [98]. In particular, the actin cortex is contracted by
myosin II minifilaments. The line tension reflects the fact that plasma membrane and
actin cortex are folded back onto themselves at the cell periphery and thus lead to a
geometrically different contribution than in the bulk. Moreover it reflects the fact that
actin filament bundles tend to accumulate in these folded parts at the cell edge. The
appearance of circular arcs is not restricted to cells on dot pattern, but also occurs
on concave parts of the micropatterned island [10, 14], as depicted for the [crossbow]
shape in Figure 2.3c. Here the surface tension σ pulls the contour inwards, while
the line tension λ pulls the contour outwards. This is different at the convex parts,
where both surface tension and line tension pull inwards. This pull is balanced by the
adhesion sites along the cell contour. Because the cell periphery is less reinforced by
actin bundles along the convex parts, the line tension there is expected to be weaker.

The simplest model for the situation depicted in Figure 2.3c is the simple tension
model (STM), which assume both line tension λs and surface tension σ to be constant.
Then a Laplace law results that predicts circular arcs with a constant radius Rs = λs/σ
to occur along free parts of the contour. In experiments a correlation of the arc radius
R and the spanning distance d between two adhesive islands was observed which can
be understood in terms of the tension elasticity model (TEM) [15]. In this model,
the reinforced actin edge fibers forming at the free spanning edges contribute with an
elastic line tension λe = EA(L − L0)/L0, where the one-dimensional elastic modulus
EA for the rigidity of the contour and L and L0 are the contour length and rest length,
respectively (see Figure 2.3c). Pinned parts of the contour are not reinforced and
we assume only the simple tension λs acting there. For the free arcs one then has the
overall line tension λ = λs + λe . Like the STM, the TEM also leads to a Laplace law.
Combining this with the elastic line tension and the geometrical relation between arc
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radius R and spanning distance d, one finds a self-consistent equation for R(d):

R = lf

(

2R

L0
arcsin

(

d

2R

)

− 1

)

+
λs

σ
, (2.7)

where lf = EA/σ is a length scale defined by the relative weight of the one-dimensional
elastic modulus and the surface tension. Therefore circular arcs also arise in the
TEM, but with a radius R that increases with spanning distance d and with contour
reinforcement lf [15].

Like these contour models, the cellular Potts model (CPM) also centers around the
concept of geometrical tension, but allows for much more variable geometries. Our
CPM implementation uses a two-dimensional square lattice where the cell is repre-
sented by occupied lattice sites, compare Figure 2.3b. The adhesive pattern is realized
by marking the corresponding lattice sites as adhesive. Typically a pattern is made
from 200 x 200 spins and the cell is represented by 30.000 spins. The length l of the
total cell interface is calculated with a modified marching square algorithm. Because
cell spreading is a relatively slow process (typical time scale 10 min), one can assume
that the system is close to mechanical equilibrium and the Metropolis algorithm can
be used to propagate cell shape. During each step a lattice site at the periphery of
the cell is selected at random and inverted. Then, an appropriate Hamiltonian H
is used to calculate the energy difference ∆H = Hinvert − Hcurrent. The inversion is
accepted with the probability defined in equation (2.3). The effective temperature T
governs the contour fluctuation amplitude (typical value 0.2 in dimensionless units).
Only lattice sites at the periphery of the cells are chosen for update attempts because
cells do not form spontaneous holes in the bulk or nucleate new material far away from
the bulk. For a cell with n lattice sites in its periphery a Monte Carlo sweep (MCS)
defined as n inversion attempts. A more detailed description of the implementation
can be found in the Appendix, section A.1.3.

The core of the CPM is defined by the cell Hamiltonian which we choose to be

H = σA + λsl +
∑

arc i

EA

2L0,i
(Li − L0,i)

2 − E0

Aref + Aad
Aad. (2.8)

The first term accounts for the surface tension which scales with the cell area A as
conjugated quantity. The second term is the contribution of the simple line tension
which scales with the cell perimeter l. The third term is the sum over the contribution
from each actin edge fiber and a circle is fit [103] to the corresponding part of the
contour to calculate Li. All of the previously mentioned tensions contract a convex
shaped cell and are balanced by the adhesive geometry accounted for by the fourth
term. Cells form adhesive contacts with the substrate and the bond energy of each
contact lowers the total energy. The number of adhesion molecules in a cell is finite and
the energy gain by covering more adhesive area therefore saturates with the covered
area Aad. This choice ensures a linear growth during initial spreading which later
slows down and plateaus as observed for many different cell types [104, 105]. Strength
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Figure 2.3. (a) Contour spanning between pinned points of distance d. The surface
tension σ and line tension λ result in circular contour of radius R (b) of a cell in the
cellular Potts model (CPM). Occupied lattice sites are indicated by the index 1, empty
sites by 0. With a sufficiently large number of spins, the resulting shapes are smooth
and can be compared to other models or experiments. (c) Schematic representation of
a cell (light gray) not fully spread on a [crossbow]-shaped micropattern (dark gray).
Both the line tension λ and the surface tension σ act on the contour. Free spanning
arcs form at concave parts of the pattern. They are characterized by the spanning
distance d and arc contour length L. In the tension-elasticity model (TEM), the line
tension λ of the arcs is augmented by an elastic part. For the arc on the right side,
the anchoring points of the contour are indicated by x1 and x2 with tangents t1 and
t2. The normals n1 and n2 point to the center of the circular arc with radius R.

and saturation of the adhesive energy are controlled by E0 and Aref .
Cells in tissue are often described by CPM or vertex models with an energy func-

tional including an elastic (harmonic) constraint on the cell area [73, 82–85, 87]. In
contrast to tissue, single cells on a substrate are essentially two-dimensional and can
increase their projected surface area by taking material from the third-dimension or
by making use of the excess area stored in the plasma membrane or close-by vesicles.
We therefore do not use an elastic area constraint in our energy functional. The impli-
cations of an elastic area constraint on the spreading dynamics and on the dependence
of arc radius on spanning distance are discussed in the Appendix, section A.1.1. There
it is also shown that the fourth term in equation (2.8) can alternatively be interpreted
as a saturation effect in membrane tension (section A.1.2).

2.3.2. Parameter Estimation

The surface tension has been estimated before as σ ≈ 2 nN µm−1 from pillar deflections
for endothelial cells [61] and as σ ≈ 0.7 nN µm−1 from analysis of the traction forces of
epithelial cell sheets [66]. The simple line tension should be of the order of λs ≈ 10 nN,
which is the typical force acting on focal adhesion connected to the actin cytoskeleton
[106]. The rest length L0 of the elastic arc is assumed to be equal to the spanning
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distance d. The ratio lf = EA/σ of elastic rigidity and surface tension describes the
degree of arc reinforcement and is taken to be constant for computational simplicity,
although in practice it might vary dynamically during cell spreading. It has been
estimated for BRL cells on hard substrates with purely elastic arcs and a rest length
of L0 = 1.01d as lf = 1300 µm [15]. In our case, this value has to be reduced for several
reasons: here we consider soft substrates, we have both simple and elastic tension, and
we assume L0 = d. For typical arcs with R = 15 µm and d = 12 µm, the same arc
tension as in the purely elastic case is reached for lf ≈ 340µm (σ = 0.7 nN µm−1, λs =
10 nN). For a typical bundle radius of 100 nm, this would correspond to a Young
modulus in the MPa-range, as found experimentally [107].

The two remaining parameters E0 and Aref can be estimated from the adhesive en-
ergy density and the average cell size on homogeneous substrates. For weakly spread
cells the adhesive energy gain in equation (2.8) becomes W = E0/Aref as the number
of adhesive contacts is not yet saturated . This adhesive energy density reflects the
amount of adhesion receptors available to the cell and has been estimated before as
W = 20 nN µm−1 [108]. Epithelial MCF10A cell on 3kP gels reach a spread area of
A0 ≈ 1700 µm2 with an approximately round shape [109]. In order to relate these val-
ues to our model, we note that there are no edge bundles on a homogeneous substrate
and the spread area A and adhesive area Aad in equation (2.8) are equal. The energy
functional equation (2.8) depends then only on A and its minimum determines the
final cell size. From this we calculate

E0 = WAref , (2.9)

Aref = A0

σ
√
A0 + λs

√
π +

√

σWA0 + λsW
√
A0π

(W − σ)
√
A0 − λs

√
π

. (2.10)

From these formula, we obtain typical values for the adhesion parameters as E0 =
104nN µm and Aref = 530 µm2 (σ = 0.7 nN µm−1, λs = 10 nN). In experiments, these
values can be varied for example by using micropatterns with different ligand density
or with mixtures of functional and denatured proteins.

2.3.3. Traction Forces

Contractile forces generated in cells are balanced by the adhesive substrate. Both the
surface tension σ and the simple line tension λs pull normally to the contour, but the
latter force depends on the curvature of the contour. For a given part of the contour
with length dl the force is [61]

dF = −(σ + λsκ)n dl, (2.11)

where κ is the curvature and n the normal vector of unit length pointing outwards
of the contour. Free spanning arcs are anchored at their endpoints and exert a force
tangential to the contour [61]

Farc = λet, (2.12)
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where t is the tangent at the endpoints. Note that the edge bundles only exert a
tangential force at their endpoints if their line tension λs + λe is different from the
value λs of the rest of the contour.

By calculating the curvature and normal (as explained in the Appendix, section
A.1.3) for each lattice site along the contour for cell shapes predicted with our CPM,
equation (2.11) gives the traction force acting on the adhesive part of the pattern
beneath the contour. From circles fitted to the free spanning arcs the tangent at the
anchoring points, arc length and spanning distance are estimated which are used in
equation (2.12) to calculate the force acting on the anchoring points (represented by
a single lattice site in the simulations). Together with the force generated by the
adhesive part this gives the total traction force resulting from our shape model.

In order to compare to experimental results, several issues have to be taken into
account. First our model predicts spatially strongly localized forces, while in practice
they are typically distributed over a stripe of focal adhesions along the cell contour
[14]. We therefore distribute our simulated forces on a stripe of 2µm width beneath
the membrane using a disk shaped kernel. Second our model shows stochastic fluctu-
ations in the cell contour which are expected to be averaged out in experiments. We
therefore average it over 5 × 105 Monte Carlo sweeps to account for the fluctuating
contour due to the finite simulation temperature. Third traction forces are typically
reconstructed in experiments by an inverse procedure that filters out displacement
noise. To obtain traction data which is comparable to experimental results, we use
the finite element method (FEM) as implemented in the deal.II library to calculate
the displacement from our CPM. In our FEM calculations the forces generated by the
cell are applied to the surface of a 250µm ×250µm wide and 100µm deep linear elastic
material with a displacement free boundary at the bottom stress free boundaries at
the sides. The hexahedral mesh is locally refined beneath the cell. We then apply the
Fourier-transform traction cytometry method (FTTC) [53, 54] to obtain a traction
pattern which can be compared directly with experimental results. A complete cycle
of simulated forces, calculated displacements fields and reconstructed forces can be
found in the Appendix, Figure A.4.

Momentum Conservation and Force Magnitude

We now show that for our model the sum of all traction forces vanishes as required by
momentum conservation. For a contour x(l) = (x(l), y(l)) parameterized by contour
length l, the tangent is normalized and we can use equation (2.11) to write the sum
of the traction forces resulting from the part of the contour extending from x1 = x(l1)
to x2 = x(l2) as

−
l2∫

l1

(σ + λsκ)n dl = −
l2∫

l1

(

σ
d

dl

(

y

−x

)

− λs
dt

dl

)

dl

= −σM
(

x2 − x1

)

+ λs(t2 − t1). (2.13)
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The minus in the second term comes from the normal pointing outwards. M is the
matrix for a 90◦ counterclockwise rotation and t1 and t2 are the tangents at the
endpoints of the contour as illustrated in Figure 2.3c. For cells without arcs the
start and end points of the integral are the same and thus it vanishes as required by
momentum conservation.

For cells with a single arc, we can apply this calculation only to the complementary
part of the contour. Moreover we now have to account for the elastic line tension in
the arc according to equation (2.12). Because the arc is circular, the contour endpoints
and circle normals are related by x2 − x1 = −R(n2 − n1). With equation (2.13) and
equation (2.12), the total force becomes

l2∫

l1

dF + Farc = σRM(n2 − n1) + (λs + λe)(t2 − t1). (2.14)

Rewriting the arc radius in terms of tension, R = (λe+λs)/σ, and rotating the normals
with the matrix M shows that the net force vanishes. This also ensures momentum
conservation in the STM as this simply corresponds to setting the elastic tension λe

to zero. For cells with more than one arc, the same result follows by recursion.
We finally comment on the magnitude of the total traction force. For cells on a

homogeneous substrate this is simply

∫

|(σ + λsκ)n|dl = σl + 2πλs. (2.15)

Thus the total traction force scales linearly with cell perimeter l as previously described
for cell colonies [66]. Both shape and size of the cell change the perimeter l and
therefore influence the total force through the surface tension σ. Larger cells or cells
which deviate from a round shape exert a higher total force on the substrate than round
cells with the same area, as it was found experimentally for rectangular micropatterns
[55].

2.4. Results

2.4.1. Equilibrium Shapes and Cell Spreading

We first discuss the steady state shape of cells on micropatterns. In Figure 2.4 we
compare experimental and simulated shapes for HeLa-cells plated on three fibronectin-
coated patterns commonly used for cell normalization, namely the [crossbow], [Y] and
[H] patterns. The pattern width is equal to 30 µm and the CPM simulation uses a
lattice constant of 0.15 µm/pixel. One sees that our model predicts very well the
typical sequence of convex and concave parts along the cell contour. Moreover the
arc reinforcement modeled by the TEM is clearly visible in all three actin images.
Note that here the same parameter set (λs = 10 nN, σ = 0.7 nN µm−1, lf = 340 µm,
A0 = 1200 µm2, E0 = 7800 nN µm and Aref = 390 µm2) is used for all three cases
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Figure 2.4. The top row shows experimental images for [crossbow], [Y] and [H]
patterns coated with fibronectin. Scale bar represents 10 µm. The middle row shows
HeLa-cells stained for actin on those patterns. The bottom row hows shape predictions
by the CPM with circles fitted to the free spanning arcs. Experimental images kindly
provided by Gintarė Garbenčiūtė and Vytaute Starkuviene-Erfle.

because they have been realized on the same chip with the same cell type and the
same culture conditions.

The steady state shapes shown in Figure 2.4 results from a dynamical spreading
process which cannot be easily described by standard models for cell shape. We now
show that the CPM also describes this process very well. In our simulations, we start
with a small spreading area of about 10 µm in diameter at an arbitrary location on
the pattern and then let the cell spread. Here we choose the [V] shaped pattern
which has been studied before experimentally [10]. For the RPE1 cells used in this
study, the steady state arcs have an unusual small curvature, indicating that these
cells have a weak bulk contractility or very strong arc reinforcement. For both STM
and TEM, we first fix the model parameters such that this final steady state shape is
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(a) (b)

Figure 2.5. Cell shapes predicted by the CPM with surface tension σ = 0.6nN µm−1,
simple tension λs = 10nN, arc rigidity EA = 2000nN, adhesive energy density W =
60nN µm−1 and cell target area of A0 = 1700µm2. (a) Cell spreading on [V] shaped
pattern. The arms have an length of 46µm and the final spanning distance and radius
are d ≈ 33µm and R ≈ 61µm. A circle is fitted to the edge bundle. (b) Phase contrast
images of cell spreading on [V] with tangents and circles fitted to the contour. Adapted
from [10].

achieved. We use a relatively small surface tension of σ = 0.6 nN µm−1. In the STM
this surface tension requires a simple line tension of λs = 36.6 nN to reach the final
arc radius of 61µm. Then adhesive energies of W = 60 nN µm−1 are required to allow
spreading, which is several times larger than previous estimates [108]. For the TEM
the simple line tension can be reduced to λs = 10nN because the final arc radius is
also determined by the elastic contribution to the line tension. The required elastic
tension of EA = 2000 nN to match the final arc radius is similar to values reported
previously for stiff substrates [15]. In this case, an adhesive energy of W = 10 nN µm−1

is sufficient to allow spreading.

With these parameters in place, we now can simulate the spreading dynamics as
shown in Figure 2.5a. When the cells bridges the non-adhesive gap of the [V] shaped
pattern, an actin edge bundle is formed as indicated by a circle. After a main spreading
phase, during which the cell covers the complete adhesive area of the pattern, the free
spanning edge continues to move outwards, thereby increasing the spanning distance
and the radius of the edge bundle. The same two-step process is seen in experiments
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Figure 2.6. Continuation of Figure 2.5 (a) Radius of the circle fitted to the edge as
function of Monte Carlo sweeps for cells described by the STM and TEM. The radius
is averaged over 104 cells all starting to spread at the same position as in the previous
figure. Here, each Monte Carlo sweeps consists of 2 × 104 attempts to invert one of
the boundary lattice sites. For the simulation of the STM cells a simple line tension
of λs = 36.6nN was used resulting in the same final radius as for the TEM cells. The
inset shows the initial spread phase and data taken from [10]. (b) Final cell shape
on adhesive pattern which cannot be fully covered by the cell. Pattern has a with of
40µm and height of 96µm. (c) same as the previous figure but with a hollow adhesive
geometry.

[10] (compare Figure 2.5b). The STM and TEM models differ strongly in the timescale
of spreading. Figure 2.6a shows the radius of the circles fitted to the edge bundles
averaged over 104 cells spreading on a [V] shaped pattern. Cells described by the TEM
spread faster than cells described by the STM. The reason lies in the increased simple
line tension of the STM needed to reach the same final radius as the TEM. The inset
of Figure 2.6a compares the curves for the initial spreading phase with experimental
data [10]. TEM-cells cover the whole adhesive area of the pattern after 80 Monte
Carlo sweeps while STM take up to 300 Monte Carlo sweeps. During these periods
the curves of the two models are qualitatively similar. However, only the TEM-data
can be fit well to the experimentally measured data. This implies an important role
of arc reinforcement for the spreading process and sets the time scale to 30 min for
the 80 MC sweeps. One can understand the TEM as a mechanism which allows the
cell to pull its contour outwards above non adhesive parts of the substrate without
sacrificing any spreading potential above adhesive parts. Spreading within the STM
on the [V] shaped pattern with moderate choices for the simple tension and adhesive
energy would only be possible with an reduced surface tension.

In contrast to elastic continuum models, the CPM also finds equilibrium shapes on
adhesive islands which are too large to be fully covered by the cell. This is demon-
strated in Figure 2.6b. Here, a trade off between the adhesive energy gain which favors
a large cell, the line tension which favors a small round cells and circular arcs which
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Figure 2.7. Calculated displacements (upper panel) and experimental displacements
(lower panel) for MCF10A-cells on fibronectin patterns on a polyacrylamide substrate
with a Young modulus of 5kPa [36]. The smaller side panels are vertical and horizontal
one dimensional slices of the displacement data. The slices always go through the
center of the pattern except for the [pacman] shape where the horizontal slice goes
through the tips. The number of averaged cells is indicated by n for each pattern.
Experimental data kindly provided by Martial Balland.

should be as flat as possible to minimize the energy has to be found. The result is a
cell shape without sharp kinks and arcs ending as parallel as possible to the pattern
contour with a large radius. In Figure 2.6c the same adhesive shape as in Figure 2.6b
is used but with hollow diamond shapes. Now, the cell is able to cover the whole
island because the reduction in adhesive surface leads to a less saturated adhesive
energy gain in equation (2.8). In addition arcs form inside the diamonds while the cell
is spreading giving the cell an overall concave shape with reduced area as opposed to
the partly convex cell on the filled diamond pattern in Figure 2.6b.

2.4.2. Prediction of elastic substrate displacements

Although our final aim is to predict traction force patterns for different micropatterns,
we start our discussion of traction patterns with displacement fields, because these are
the immediate outcome of experiments. Therefore we use the FEM to calculate from
our simulated forces displacement fields for an elastic substrate. We then compare to
experimental data and fit our three main model parameters, namely surface tension
σ, simple line tension λs and elastic line tension EA. In Figure 2.7 we show our
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results (upper panel) and compare them to experimental data (lower panel) [36]. The
parameters E0 and Aref responsible for the adhesive energy gain are found to be
unimportant for the fit quality. Due to the small number of cells on the [pacman]
pattern we exclude it from the fit.

Both the [pacman] and circular [disc] show the localization of displacements at the
cell contour as predicted by our model. For the circular [disc], which only has con-
tinuously adhesive edges, the displacements are directed radially inward everywhere.
This changes for the [pacman] where displacements both in the simulation and the
experiment deviate from the radial symmetry at the tips of the wedge. The displace-
ments there point inward because of the actin edge bundle forming across the wedge.
Cells described by the STM would have displacements pointing slightly away from
the wedge because of the curvature of the cell contour there. The fit of our model
parameters is dominated by the larger adhesive parts of the contour for those patterns.
The STM and TEM predict similar magnitudes which makes it difficult to distinguish
between the two. Displacements for the [crossbow] are dominated more strongly by
the two actin edge bundles and are largest at the extremities of the pattern due to
the high curvature and bundles originating there. The experimental displacements in
both arms of the [crossbow] are directed more upwards than expected from the model.
This might indicate the effect of internal actin fibers connecting from the tips to the
top of the micropattern. On the other hand, displacements of the circular pattern and
circular part of the [crossbow] pattern are very similar in magnitude and direction,
indicating that polarized internal fibers only play a minor role in this case.

To quantify the quality of the fit we use the norm L2 =
∑

(uexp,i − usim,i)
2/
∑
u2

exp,i,
that is the squared and normalized distance between the experimental and simulated
displacement fields. For the STM the fit yields a simple line tension of λs = 5.53nN,
surface tension of σ = 0.56 nN µm−1 and a L2-value of 0.16. For the TEM the fit yields
λs = 2.30 nN, σ = 0.83 nN µm−1, EA = 40 nN and a L2-value of 0.15. The TEM fits
the data better, but the difference is small, since both the [disc] and [crossbow] are
dominated by large convex parts where actin edge bundles are unimportant.

The TEM decreases the simple line tension while increasing the surface tension. As
discussed above for spreading on the [V] shaped pattern, the TEM allows the cell to
pull its contour outwards above non-adhesive parts of the substrate with a reduced
simple tension. The increased surface tension in the TEM compensates for the reduced
simple tension, but the contribution of the surface tension is curvature independent.
Thus, the TEM allows smaller forces in regions of high curvature while keeping forces
in small curvature regions the same as in the STM.

The overall agreement of our model with the experimental displacements demon-
strated in Figure 2.7 is quite good. However, the experimental displacements decay
slower than the simulated ones. This can have several reasons. First, the 2µm wide
stripe beneath the membrane where we apply forces to the substrate might be too
narrow and the size of the adhesions might vary with force [106, 110]. The agreement
with the experimental data can be improved by increasing the stripe width to 4µm,
but this does not appear to be reasonable given the actual size of the adhesions and
the feature size of the micropattern. It is therefore more likely that the disagreement
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Figure 2.8. The top row shows reconstructed traction forces for the TEM with the
best fit parameters (λs = 2.30nN, σ = 0.83nN µm−1, EA = 40nN) and the bottom row
traction forces reconstructed from experimental data for MCF10A-cells on fibronectin
patterns on a polyacrylamide substrate. Experimental data reproduced from [36] with
permission of The Royal Society of Chemistry.

arises from the limited resolution of the bead tracking and from the registration and
averaging procedures, which both blur the displacement fields. Variations in the pat-
tern shapes from manufacturing or by deformation from the cells also widen the force
spots and make pattern registration more difficult. Because these experimental limi-
tations might be improved in the future, for our theoretical predictions here we keep
the 2µm scale for the adhesion width.

2.4.3. Prediction of traction forces

Given the displacement data discussed above, one now can reconstruct traction forces
which resemble the ones obtained from experimental data. For this purpose, we use
FTTC with regularization [53, 54]. In the top row of Figure 2.8 we show the traction
force reconstructed from the simulations shown in Figure 2.7. A comparison with the
experimental data shown in the bottom row [36] shows that our procedure predicts
most of the experimental features. The only exception seems to be the additional
localization of experimental traction forces in the upper part of the [crossbow] pattern,
which might be due to the occasional presence of internal stress fibers along the long
side of this pattern.

The influence of cell shape on force generation is best seen by gradually changing
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Figure 2.9. Reconstructed traction force for [T]-shaped pattern changing the
curvature of the top bar into a [crossbow] shaped pattern. Cells are modeled
with the TEM with σ = 0.65nN µm−1, lf = 184µm, λs = 2.7nN. The final panel
shows the total force for the different curvatures both for TEM and STM cells with
σ = 0.5 nN µm−1, λs = 6.5 nN. The pattern widths are T = 32 µm,C1 = 30.8 µm,C2 =
29.34 µm,C3 = 27.49 µm,C4 = 25 µm and ensure the same cell area on all patterns.

the adhesive geometry. Both curvature and spanning distance of the free arcs are
varied in Figure 2.9 as the [T]-shaped pattern is transformed into a [crossbow] for
cells described by the TEM. For all shapes the forces are localized to the extremities
of the patterns but increasing the curvature relocalizes them from the end points to
the adhesive edge of the contour and at the same time the force direction in the
prominent force spots changes from being aligned with the edge bundles to a more
radial orientation. Both observations, the force increase in the adhesive contour and
orientation change, have been observed for RPE1 cells [111]. The increase of forces
with higher curvature at the adhesive contour is a consequence of the simple line
tension acting in the contour (compare equation (2.11)). The prominent force spots in
the extremities are due to the larger curvature and the edge bundles being anchored
there. Changing the curvature of the top bar also decreases the spanning distance and
therefore the force in the bundles from 7.75 nN in the [T]-shaped pattern to 4.33 nN in
the final [crossbow] which explains the decrease of forces in the prominent spots and
also the directional change since arc forces become less important. The force spot at
the bottom of the T-shaped pattern is less localized compared to the final [crossbow]
because the edge bundles do not always attach to the outermost part of this pattern.

The STM yields similar results for the total force but forces are always pointing
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Figure 2.10. Predicted shapes and traction forces for further adhesive geometries,
both for STM and TEM. All patterns have a width of 25 µm. The parameters are
taken from the best fit to the displacement data from Fig. 2.7. STM with σ =
0.56 nN µm−1, EA = 0, λs = 5.53 nN. TEM with σ = 0.83 nN µm−1, EA = 40 nN, λs =
2.3 nN.

radially inward. The decrease of the total force in the STM is a consequence of the
more round shape of the cells on the [crossbow] pattern as stated by equation (2.15)
(the pattern dimensions are chosen to ensure the same cell area on all patterns but
their perimeter decreases linear). For cells described by the TEM the total force is also
influenced by the decreased bundle tension which is reflected by the steeper slope in the
last panel of Figure 2.9 which shows the total force as function of curvature. In Figure
2.10 we show a gallery of additional shape and traction predictions for micropatterns
for which no traction force fields have been reported yet in the experimental literature.
Because these simulations are computationally very cheap, the CPM-approach is a very
helpful exploratory tool to quickly assess the effect of a newly designed micropattern.

2.5. Conclusion

In summary, the CPM is a versatile tool to robustly predict cell shapes and forces
on any micropattern of interest. The underlying reason is that it actually models
the dynamic process of shape determination. Therefore it also makes predictions on
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spreading dynamics and does not require any a priori knowledge of the final shape.
As shown above, all of our predictions agree quite well with published experimental
data.

In order to adapt the CPM for the prediction of shapes and forces of single cells
on two-dimensional micropatterns, we have made several modifications to the original
formulation of the CPM model for cell shape in tissue. Despite its large success in
understanding cell sorting and cell shapes in tissue [81], the CPM has been used before
only a few times to describe single cells [85, 86]. To further advance this approach, we
have added two essential elements to the conventional CPM-formulation. Motivated
by the TEM, we have added an elastic line tension to describe the effect of contour
reinforcement of edge bundles. Moreover we have added an adhesion term to the energy
functional that does not constrain cell area, but acts like a reservoir for additional area
that can be used if sufficient ligand is present. The good agreement of our model with
experimental data demonstrated here confirms that our energy functional describes
the main features of this system. One of the biggest advantages of our approach is
that it is computationally cheap (typical run-time is below seconds), thus making it
an ideal exploratory tool to quickly establish typical cell behavior on micropatterns
without any a priori knowledge of the final shape.

Our model revealed that the TEM model allows for faster cell spreading within a
reasonable parameter range and that elastic arcs act to relieve tension from adhesive
parts of the contour while maintaining the same cell shape. The TEM makes spread-
ing above non-adhesive parts easier and at the same time allows the cell to generate
traction forces more by bulk than contour tension. Our CPM assumes that spreading
is limited mainly by the availability of adhesion receptors, thus leading to saturation
in adhesive area. This approach neglects other potential limitations of spreading, most
notable the effect of increased membrane tension [112]. As shown in the Appendix,
section A.1.2, to first order the energy functional of equation (2.8) does not make a
fundamental distinction between these two limitations for spreading. However, appro-
priately designed micropatterns might in fact be an appealing way to investigate these
important questions in the future, both in experiments and in the framework of the
CPM.

The combination of the CPM with a contour model allowed us to interpret the
energy terms in the CPM energy functional as tensions and provides an easy way to
predict traction forces. The contour model also connects our three model parameters,
namely simple line tension, elastic line tension and surface tension, to the cell geometry
via the relation between spanning distance and arc radius (equation (2.7)). For each
cell type of interest, our model parameters can be fitted to the experimentally observed
cell shape on a reference pattern and than used to predict cell shape and forces on
other patterns. As more information becomes available for the detailed molecular
structure of actin cortex and peripheral fibers, our model can be modified to include
such information, e.g. by replacing the TEM-term in the energy functional of equation
(2.8) by a more detailed expression.

There are two important aspects of cell adhesion to micropatterns that are not ad-
dressed in the current study. First our model does not describe the effect of internal
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structures like non-peripheral stress fibers. We expect that this is a good approxima-
tion as long as several cells are averaged to obtain a generic result that averages out
individual inhomogeneities. Otherwise more detailed models are required that also
include internal stress fibers [113]. Such extensions might profit from recent advances
in our understanding of the internal structure and dynamics of different kinds of stress
fibers [29, 114]. Second our model does not explicitly describe the effect of the mechan-
ical feedback between elastic substrate and cell adhesion that allows the cell to sense
the rigidity of its environment [18, 32, 115]. In order to include this important aspect
into our model, it had to be extended by models for the mechanosensitive organiza-
tion of the adhesion structure and the actin cytoskeleton [116]. At the current stage,
the effect of stiffness is incorporated by fitting the model parameters to experimental
reference data and by calculating displacement fields with the correct rigidity values
of the substrate.

Here we have focused on spreading dynamics and steady state properties of sessile
cells. In this case, the Metropolis approach is expected to work well because the cell
is essentially relaxing to local mechanical equilibrium. The next chapters will extend
the model to describe cell division, persistent cell movement on single micropatterns
or on networks of micropatterns.

32



3
Multicellular Systems

3.1. Introduction

The CPM was originally developed to explain spatial sorting of two cell species [82, 83]
and provides a natural way to implement cell-cell interactions by interface energies
associated with domains of different spin orientations. As a multicellular model, it
has been hardly used to describe systems consisting of only a few cells [84, 85]. Our
approach started with a single cell and we will extend it by cell-cell interactions in
this chapter. But before cells can interact, they need to divide. More than a hundred
years ago it was already observed that cell shape has an influence on cell division.
Cells divide preferentially along their shortest axis [117]. Micropatterns are the perfect
tool to study how shape influences the division plane orientation and data is readily
available [38–40, 118]. Of special interest for the design of micropattern networks are
geometries where the division plane orientation is stable and daughter cells are always
in the right spot to move on to the next pattern.

We first address how the orientation of the cell division plane can be predicted from
the pattern geometry by the CPM. The second part of this chapter extends our single
cell model to multicellular system by introducing cell-cell adhesion.

3.2. Cell Division

Figure 3.1a shows snapshots of a dividing cell. The initially spread out cell starts to
contract, becomes completely spherical, divides and the two daughter cells spread out
again. The orientation of the division plane is set by the cell shape before division
[41]. Since the cell is completely spherical when the actual division takes places it
needs to maintain information about its previous shape. This information is assumed
to come from retraction fibers left behind by the cell when it contracts, connecting
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(a) (b)

Figure 3.1. (a) Phase contrast images of a dividing cell. The cell contracts, becomes
spherical and divides [119]. (b) Scanning electron micrograph of a HeLa cell [120] .
The cell shown is dying but its clearly visible retraction fibers are similar to fibers of
a dividing cell.

it to its previously occupied area [14, 38, 39]. Retraction fibers are membrane tubes
under tensions [39] filled with actin as shown in Figure 3.1b.

To investigate the mechanisms which sets the division plane micropatterns are per-
fectly suited. Cells on patterns have defined shapes before division and retraction
fibers left behind during contraction can only adhere to the defined patterns [40]. For
HeLa cells retraction fibers play an important role as demonstrated by laser cutting
of fibers which can trigger an reorientation of the division plane [39]. On the other
hand, the division plane of nonadherent cells is also influenced by their shape prior to
division although they have no retraction fibers [118]. This raises the question how
exactly cues from fibers or the shape set the orientation of the division plane.

During cell division the chromosomes are duplicated and a set of chromosomes needs
to be distributed to each daughter cell. This happens via the mitotic spindle. The
ellipsoidal shaped spindle is constructed from microtubules (MT) originating from the
two spindle poles forming an anti parallel array at the spindle center as shown in
Figure 3.2a. The bipolar organization of the MT at the center is used to separate the
chromosomes during division. The division axis is perpendicular to the pole-pole axis
leaving each daughter cell with a complete set of chromosomes. A second group of
MT, the astral MT, is oriented away from the spindle center towards the cell cortex
[121]. Those astral MT receive cues through the retraction fibers [38, 40] or the shape
[118] resulting in a torque on the spindle inducing rotation into the correct orientation.

On micropatterns, the adhesive geometry is mapped to the cell cortex via the re-
traction fibers as shown in Figure 3.2b. The interacting of the astral MT with the
cortex translate the mapping into a spindle orientation and hence set the orientation
of the division plane which depends on the micropattern geometry. Models predicting
the division axis on micropatterns usually assume a two dimensional spindle geome-
try as depicted in Figure 3.2c [38]. MT grow radially outwards from the two spindle
poles, intersecting MT form the spindle and all other MT are considered to by astral.
Each astral MT is subjected to a force acting with magnitude proportional to the
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(a) (b) (c)

Figure 3.2. (a) Mitotic spindle with chromosome pairs (blue) microtubules (red)
and spindle poles (green). The astral MT grow outwards form the poles and the
division plane is perpendicular to the pole-pole axis. Image adapted from [121]. (b)
Micropatterns (top row) and retraction fibers (bottom row). The retraction fibers are
stained in green and the chromosomes in blue. The division plane will be along the
chromosome axis. (c) Model spindle (red) on [arrow] pattern with retraction fibers
(green). All MT ending at the cell cortex (black circle) are considered astral MT. The
spindle orientation is denoted by ϕ.

density of retraction fibers at the corresponding cortex position. The actual mapping
of the pattern to the cortex happens through the retraction fiber distribution. They
emerge radially from the circular cell and end at the pattern boundary as depicted
in Figure 3.2c. The density along the pattern boundary is constant giving rise to a
higher density of fibers at the cell cortex in regions which are further away from the
pattern boundary. The force acting on the astral MT generate a torque on the spindle
due to the variable retraction fiber density. The spindle is assumed to perform an
overdamped fluctuating random motion in a potential defined by this torque. With
the strength of the random torque fluctuations as fit parameter very good agreement
with experiments is obtained [38].

A similar model has been used to predict orientations for nonadherent cells in mi-
crochambers [118]. Instead of retractions fibers as cues the cell shape before division
was used and MT pull on the cortex with a length dependent force.

3.2.1. Division Plane Prediction with the Cellular Potts Model

In a nutshell, the above models predict division plane orientation by mapping the cell
shape or adhesive geometry onto a circle. The mapping seems to be more important
than the torque generating mechanisms because a random fluctuating torque is added
masking the torque generating details. The strength of the fluctuations needs to
be adjusted for each pattern layout and varies by a factor of five [38] which makes
predictions for arbitrary patterns impossible with this model since the strength of the
fluctuations is only known from experiments.

Previous implementations of the CPM have paid little attention to the division
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plane, they either selected it randomly [122] or by using the shortest axis [123, 124].
The Dependence of the network topology on the division plane in vertex models has
been addressed more systematically [125] and dynamic implementations also choose
the plane randomly [73, 87] or by the shortest axis [88].

Our approach puts emphasis of the mapping of the pattern to a circle because there
is a natural way to implement it in a CPM. But instead of a circle we take a mapping
to an ellipse. Letting the cell contract by increased myosin activity and lowered
adhesion turns it into a circle. During this process, the initially patterned shaped
cell is transformed continuously, first into an ellipse and then into a circle. Real cells
perform a similar transformation as shown in Figure 3.3. During the contraction the
spindle poles rotate into position and reach their final orientation when the cell is still
elliptical. Likewise, we set the division plane by fitting an ellipse to the contracting
cell and taking its its shorter axis as orientation for the division. The time point of
ellipse fitting is our only parameter and universal for all patterns. The actual division
takes place by splitting the cell into two cells by turning all pixels along the minor
axis of the ellipse into boundary pixels.

How does contraction takes place? Before round up stress fibers and focal adhe-
sion disassemble [41] which is mimicked by setting the elastic modulus EA and the
adhesive energy density to zero. Increased myosin contractility drives the cell into a
spherical shape which cannot be described in our two dimensional model. However,
the projection of a sphere can be described. If interpreted as three dimensional model
the line tension λs takes the role of a surface tension and the surface tension that of
a pressure resisting contraction. Thus, we invert the sign of the surface tension to
mimic a pressure resisting contraction and adjust the line tension accordingly. The
parameter changes for contraction are

σ → σ = −σ (3.1)

λs → λs = −2σ
√

Abefore/π (3.2)

T → T = T
λs

λs
(3.3)

EA → EA = 0 (3.4)

W → W = 0. (3.5)

The choice for the new line tension is explained by the behavior of a circular cell
with constant negative surface tension σ and line tension λs. It either contracts to zero
or expands to infinity which can be seen when the Hamiltonian is written as function

of the area: H = σA+2λs

√
Aπ. This Hamiltonian has a maximum at λs = −σ

√

A/π.
If the area is above the maximum, the cell grows, below the maximum it shrinks.
Setting λs to two times this value in equation (3.2) ensures that the cell contracts.
The results are insensitive if its two or e.g. four times this value. In equation (3.2)
Abefore is the cell area before contraction starts. The temperature T is rescaled to have
similar membrane fluctuations during round up as before.
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Figure 3.3. The top row shows phase contrast images of a cell on [L] which contracts
and spherical for division [40]. The spindle poles are marked by white asterisks and
rotate into position during round up. The scale bar represents 10 µm. The bottom row
shows the same process for a simulated cell. An ellipse (green) is fitted to the almost
round cell to determine the division plane . The spacing of MCS in the simulation
matches the real time intervals of the experiment.

The bottom row of Figure 3.3 shows a cell contracting on [L] with parameters
changed according to equations (3.1) - (3.5). The ellipse fitted to the cell in the
last frame has an aspect ratio close to one and the effect we are using to predict
the division plane is small. However, it is sufficient to predict spindle orientations
in good agreement with experiments for a wide range of patterns as shown in Figure
3.4. Several key aspects are predicted correctly by our model. Patterns with similar
envelopes such as [L dot] and [H] have similar cell shapes before division but differ in
the distributions of the spindle axis which is correctly captured by our model. The
rotation of the spindle axis by 90° when going from [H] to [H squeezed] is reproduced
and the modification of [L] to [L dot] results in a broadening of the distribution.
Our model also predicts asymmetric distributions of daughter cells correctly. E.g. on
[star] it is most likely that one daughter cell sits on the left areal with the connected
arms and the other sits on the right areal. The division does not obey the pattern
symmetry (remember that the spindle axis is orthogonal to the division plane). A
similar behavior is indicated for [crossbow] while [arrow] and [pacman] have divisions
in accordance with their symmetry direction.

Despite the good agreement of our model with most patterns there are a few odd-
ities. The [H] and [2 bar] pattern differ only in the absence of the central bar and
the CPM predicts the same distributions for both. The spindle torque model [38]
can adjust for the narrower peaks observed on [2 bar] by a smaller amplitude of the
random torque fluctuations which would correspond to fitting the ellipse earlier in our
approach. However, it is not clear if the central bar changes the spindle orientation
or if the observed difference is due to this difference of the patterns. The [H] pattern
has a a width of 36 µm while the [2 bar] has just 30 µm [38, Supplement]. For the
simulations this makes almost no difference, but the details depend on how good cells
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Figure 3.4. Comparison of the experimental (green) taken from [38] and simulated
(red) spindle orientations. The spindle orientation is orthogonal to the division plane.
All patterns except the bottom and top row have a two fold symmetry. The simulation
recorded orientations for 20000 cell divisions and where performed for a generic cell
with σ = 1 nN µm−1, λs = 10 nN, EA = 50 nN, A0 = 1300 µm2, W = 20 nN µm−1.
The ellipse was fit to the cell at an area ratio of 0.36.
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can cover large patterns. For the [arrow] (width 48 µm) and [crossbow] (width 38 µm)
size difference is even larger and the observed trend in the simulations to rotate the
division axis by 90° is only due to the size difference. The large [arrow] would require
cells with an area of more than 2000 µm2 to be fully covered which seems to large for
HeLa cells1 and retraction fibers do not extend across the full [arrow] (see Box 2 in
[126]). The simulations assumes a target area of A0 = 1300 µm2 and cells localize to
the tip of the large [arrow] which elongates them perpendicular to the symmetry axis
giving rise to the observed spindle orientation. [Arrows] with a size matching the cell
area have a distribution similar to [crossbow].

For all other patterns the pattern size matches the cell size and simulation and
experiment are quite consistent and our predicted distributions can be considered
accurate enough to address cell division on networks of micropatterns.

3.2.2. Parameter Dependence

Nothing has been said about when the ellipse is fitted to the contracting cell so far.
The cell area Abefore before contraction and the area A during contraction can be used
to define an ratio r = A/Abefore. The ellipse is fitted at a constant value of the ratio
r for all patterns. To determine the best value of r the same norm as in the previous
chapter is used

L2 =
∑

bin i

(pexp,i − psim,i)
2

p2
exp,i

(3.6)

to determine the goodness of fit. It is the squared and normalized distance between the
experimental pexp,i and simulated psim,i distributions. Figure 3.5 shows the L2 norm
as function of the ratio r and other parameters averaged over the 16 patterns shown
in Figure 3.4. The location of the minimum and its value are indicated by a white
square. At ratios r close to one the cells still look very similar to the patterns they are
on and the best fitting ellipses have one dominant rotation resulting in narrow peaks
for most patterns. Histograms of the distributions with the ellipse fitted at r = 0.6
are shown in the Appendix, Figure A.8. The optimal value for the ratio is at r = 0.36.
Below the optimum almost all information about the previous shape is lost and the
cells are almost circular with a uniform spindle orientation.

From Figure 3.5a it can be seen that the line tension has almost no effect on the
predicted spindle orientations. For line tension above λs = 6 nN µm−1 the best fitting
ratios r and the minimum L2 norm are independent of λs. For small line tensions
below λs < 6 nN µm−1 the cells nonadhesive edges are strongly invaginated and they
cannot stretch out to the isolated dots on [L dot] and [bar dot]. The predicted spindle
orientations become those of [L] and [bar] which do not agree with the experiments
resulting in a higher L2 norm. Varying the elastic modulus EA has the same effect.
EA also controls how invaginated the free spanning arcs are and the map varying EA
looks almost identical to Figure 3.5a. A constant L2 norm is reached for EA > 20 nN.

1Personal communication with Vytaute Starkuviene-Erfle
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Figure 3.5. Maps of the L2 norm defined in equation (3.6) estimating the quality
of the predicted spindle orientations. The L2 value is averaged for the 16 patterns of
Figure 3.4. If not varied, the used parameters are σ = 1 nN µm−1, λs = 10 nN, EA =
50 nN, A0 = 1300 µm2, W = 20 nN µm−1, T = λs0.1 nN−1. All maps are capped at
0.5 for better visibility. (a) Map as function of the simple tension λs. The simulation
temperature is set to T = λs0.1 nN−1 to have the same membrane fluctuations for all
values. (b) Map as function of surface tension σ. (c) Map as function of simulation
temperature T . (d) Map as function of the fraction of remaining adhesive energy
density.

Changing the surface tension also barely effects the distributions. The L2 norm stays
constant at a constant r value. For strongly contractile cells with σ > 1.4 nN µm−1

cells are again to invaginated to occupy the dots of [L dot] and [bar dot].

Simple line tension, surface tension and elastic modulus set the cell shape before
division. To be more precise, they set the radius of the free spanning arcs. One can
therefore conclude, that the shape has no impact on the spindle orientation since the
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L2 norm is independent of the shape controlling parameters over a wide range.

Temperature controls the size of membrane fluctuations and therefore sets the scale
how fast information about the pattern geometry is lost during contractions. In accor-
dance, Figure3.5c shows that a higher simulation temperature requires a larger ratio
for an optimal fit. The quality of the fit remains the same over a wide temperature
range. For very low temperatures the lattice anisotropy prevents a good fit, for high
temperatures the pattern is ignored. The temperature during contraction can be seen
similar to the strength of the random torque fluctuations in the previously described
model [38]. Changing the temperature during contraction can e.g. narrow peaks as
shown in Figure A.9 in the Appendix. The predictions for [square] and [X] get bet-
ter, but for many other patterns the distributions become to narrow giving an overall
worse minimal L2 value.

The importance of retraction fibers for the division plane orientation has been
demonstrated by laser cutting. They also exert a force of several nN on the contracting
cell [39]. To investigate if this force influences contraction they can by mimicked in our
model by leaving an residual amount Wcontract of the adhesion energy density W be-
hind. If Wcontract is small enough, contraction is not prevented but slowed down above
adhesive areas. Figure 3.5d shows that any remaining adhesion makes the agreement
with experiments worse, it also demonstrates that stronger contraction above adhesive
areas (negative energy ratio) does not work. This suggests that retraction fibers have
no influence on the shape during contraction but does not state anything about how
they influence forces on the spindle.

Other approaches to achieve cell contraction or to define a suitable measure when to
fit the ellipse are possible. Contraction can be achieved by introducing an elastic area
constraint λ(A−AD)2 with AD being the target area when the cell divides. However,
this approach performs rather poorly most likely because of the huge energy downhill
gradient at the beginning of contraction due to the mismatch of A and AD. This
breaks the Metropolis dynamics which requires the membrane speed to be less than
one lattice site per MCS. The area ratio which decides when the ellipse is fit can be
defined with the target area A0 or with the perimeter of the cell. Both approaches
perform poorly.

In summary, our approach can predict spindle orientations in good agreement with
experiments. The quality of the predictions does not depend on the used parameters.
With the division implemented, we now turn to the interaction between cells.

3.3. Cell Interaction

3.3.1. Line Tension Driven Adhesion

Development of the CPM was driven by the differential adhesion hypothesis [127]
which explains cell sorting in tissue. It states that cells of different type adhere to
each other with different strength. The tissue being less cohesive should surround
the more cohesive one and the analogy of an oil droplet in water is often used for
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the two tissues [128]. This might certainly hold on a scale where cells can be seen
similar to molecules in a liquid. But what happens in systems composed of only a few
cells? Coming back to the oil water analogy a description involving direct interaction
seems more appropriate than a surface tension for systems composed of only a few
molecules. Nevertheless, the same arguments applied to tissue and liquids are used
for interactions between two cells. Namely, that an increase of adhesion molecules in
a cell-cell junctions decreases the the surface tension of this junction [98]. But this
is not how cell-cell adhesion works. The actin cortex is still contractile at cell-cell
junctions, therefore, the surface tension remains essentially the same. Besides, at cell-
cell contacts two membranes with a contractile actin cortex beneath each of them
come into contact. Hence, one would expect twice the contractility there. Adhesion
of cells to each other is mediated through cadherins which form discrete connections
between cells [23]. Those transmembrane proteins are interacting with actin, but per
se, they do not increase or lower any actin generated tension. One can assume that an
energy is associated with breaking and forming them. For a two-dimensional model
this energy lead to the idea of implementing it by lowering the line tension between
adhering cells resulting in the Hamiltonian

H = HArea + λsl +
1

2
γlj. (3.7)

With HArea regulating the cell area, l being the total cell perimeter, lj the cell-cell
interface length, λs the line tension in the contour and γ < 0 the cell-cell interaction
energy (calculated e.g from the cadherin density, energy per cadherin bond and height
of the cell-cell interface). Only half of the interaction energy is taken because two
cells share it. Thus, the line tension in the cell-cell junction becomes λ = ∂H/∂lj =
λs + γ/2 because the junction is also part of the total cell perimeter l. This approach
is implemented by many CPM either directly by an adhesion energy γ [96, 129] or
by assuming different line tension λs for different surface types [82–84, 122, 130–132]
and is certainly correct on a coarse scale where cells can be treated analogous to
fluid molecules. But coming down to systems consisting of a few cells this approach
bears some problems. Getting a stronger adhesion between cells, e.g. by having more
cadherins would require to lower the line tension at cell junctions which makes them
unstable as shown in Figure 3.6a. The limit for the cell-cell adhesion energy is set
by the requirement of a positive line tension. For the above Hamiltonian (3.7) this
means −γ/λs < 2 and knocking down myosin activity responsible for λs should either
make the junctions as fuzzy as in Figure 3.6a or lower the adhesion strength. Myosin
inhibition by blebbistatin reduces the force required to separate cells [129, Figure
S2f]. But compared to the almost complete loss of cortex tension [129, Figure 2d]
this force reduction is negligible. With barely any cortex tension left after inhibition
adhesion between cells cannot be achieved by reducing it even further. This suggest
that lowering line tension to drive adhesion is not the correct approach and cadherins
mediating the adhesion need to be taken into account explicitly.

Vertex models can use a negative line tension because they have infinite bending
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(a) (b)

Figure 3.6. (a)Two cells adhering to each other implemented by an reduced line
tension at cell-cell junctions as defined by the Hamiltonian (3.7). At the top for
γ = −λs and at the bottom for γ = −1.5λs. (b) Cell-cell junctions with cadherin
connections (green) between cells. New cadherin connections are only formed when
two formerly unconnected membrane areas come in contact (top). The blue part of
the cell junction indicates the length lcc. Deformation of existing cell-cell junctions as
shown in the bottom picture does not change the number of cadherins and lcc = 0.

rigidity except for points where more than two cells meet [73]. But they are not suitable
for systems with small cell numbers. To circumvent the limit of positive line tension
in the CPM a perimeter constraint of the type κ(l − l0)2 can be introduced resulting
in a variable line tension at cell-cell junctions of λ = ∂H/∂lj = λs + γ/2 + 2κ(l − l0)
[84, 96, 129–131]. But this leads to unstable cells if the perimeter l is much smaller
than the target perimeter l0 and is only consistent with experiments if −γ/λs > 2 [96,
Supplement]. Since the constraint acts globally, changing the perimeter at one side of
the cell would instantaneously change the line tension generated by myosin activity
throughout the complete cell which makes it difficult to interpret.

3.3.2. Contact Driven Adhesion

An implementation of cell adhesion should leave the line tension at cell junctions sim-
ilar to the one of cell medium interfaces. Changes in the cell energy should only occur
when formerly disconnected parts of cells come in contact or break up as illustrated in
Figure 3.6b. So far, this is essentially the same as the previous approaches. The dif-
ference is in the deformation of cell-cell junctions which is assumed to happen without
the formation of new cadherin bonds and therefore does not change the energy. The
corresponding Hamiltonian is

H = HArea + λsl +
1

2
eccncc, (3.8)
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where ecc is the energy per cadherin bond and ncc the number of bonds. This is a
rather formal way to write down the Hamiltonian since it is not stated yet how to
count cadherin bonds. For the Metropolis dynamics only energy differences are of
interest. The cell-cell contact part of the energy difference reads

∆Hcc = celcc, (3.9)

where lcc is the length of newly formed or broken membrane contacts during a spin
flip as depicted in top of Figure 3.6b and ce the line energy density for cadherin bonds.
lcc is zero for spin flips which just deform the cell junction as in the bottom of Figure
3.6b. The energy ecc and the line energy density ce are connected through the cadherin
density by ce = ρcecc. The total energy of a cell becomes history depend with this
approach, but for the dynamics only energy changes are of interest. A related approach
would be to treat the cell-cell junction as in a vertex model and taking only the end to
end distance of the junction as lj to set the energy in equation (3.7). But this might
lead to large energy barriers e.g. when two previously separated junctions are joined
into one.

In general, the line tension at cell-cell junctions and free edges can be different
[133]. To have control of the line tension and the adhesion strength simultaneously a
combination of the Hamiltonians (3.7) and (3.8) is used. The full Hamiltonian reads

H = σA+ λsl +
∑

arc i

EA

2L0,i

(Li − L0,i)
2 − E0

Aref + Aad

Aad +
1

2
γlj +

1

2
eccncc, (3.10)

where γ controls the tension along the junction and ecc how strong the cells adhere to
each other. For the implementation it is easier to work with newly formed an broken
membrane junctions and equation (3.9) is used together with with the cadherin density
ce instead of the energy per cadherin bond ecc.

If a system consists of two cells, each cell is described by the Hamiltonian (3.10)
and the line tensions at the cell-cell junction add up. For −γ < λs the tension at the
junction is stronger than the cell-medium tension. The value of γ is not known, but
from separating adhering cells by force it is known that cells have a reduced cortex
tension in the previously adhering areas [133] suggesting γ < 0. We therefore assume
γ = −λs throughout the rest of this work. This choice results in the same line tension
at cell-cell and cell-medium interfaces.

The impact variations of γ and ecc have on the shape of cell pairs is shown in Figure
A.10 in the Appendix. It demonstrates that our approach indeed can vary line tension
in cell-cell junctions and strength of cell-cell adhesion independently.

3.3.3. Shape of Cell Pairs

Figure 3.7a shows two MCF10A cells on an [H] pattern with cadherins stained in green
marking the cell-cell junction. Cadherins mainly localize to the ends of the horizontal
junction but are also present in lower quantities along it [50]. The localization to the
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(a) (b) ce = 0 nN (c) ce = −5 nN (d) ce = −5 nN

Figure 3.7. Variation of the cell-cell contact mechanisms for cells on [H] pattern.
(a) Pair of MCF10A cells on [H], actin is stained in red, the nuclei in blue and e-
cadherins in green marking the cell-cell interface [50]. (b) Free spanning arcs on [H]
without cell-cell junctions (top) have a similar invagination as the experimental cells.
Cell-cell adhesion in the bottom picture is generated by setting γ = −λs which is not
sufficient to let cell-cell junction spread above nonadhesive areas. Used parameters:
σ = 0.2 nN µm−1, λs = 2.3 nN, EA = 40 nN. (c) Same as previous figure, but
with a cadherin energy line density of ce = −5 nN. Junctions can now extend above
nonadhesive areas and are similar to experiments. (d) The optimal fit parameters of
the previous chapter were used: σ = 0.83 nN µm−1, λs = 2.3 nN, EA = 40 nN. Which
results in strongly invaginated cells.

ends supports our approach to only consider them when junctions break or form but
not when they elongate internally.

The free spanning arcs of the single cell shown in the top Figure 3.7b have a similar
invagination as observed experimentally for a the cell pair in Figure 3.7a. However,
the junction of a simulated cell pair is too contractile to let the cells spread above
nonadhesive areas when the cadherin line energy density ce is set to zero (bottom
of Figure 3.7b). Spreading is only possible by reducing the tension in the junction,
but to get to the level of the single cell or experiments the tension in the junction
would need to be close to zero which dissolved the cell-cell interface. Only with a
finite cadherin energy density ce a shape similar to the experiments can be obtained
as shown in Figure 3.7c with ce = −5 nN. The shape of the arcs with the junction
in between depends on the size of ce. For low ce the arcs have a kink at the junction
(compare Figure A.10). Increasing ce flattens the kink until the whole cell medium
interface becomes circular. At this point, the cadherin based adhesion mechanism
cannot extend the cell any further above the nonadhesive substrate.

The cells shown in Figure 3.7a are the same cell type as in the previous chapter used
for the traction force measurements. Using the optimal fit parameters obtained there
results in cells which are far more invaginated (see Figure 3.7d) than the experimental
cells. The cells are so contractile that even increasing ce to very high values will not
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help to spread the junction above the nonadhesive areas. For the single cell, spreading
is possible because of one connected arc spanning the whole gap. For two cells the
arc is split into two, each arc adhering to the pattern at one end and at the other
end to a cell. This results in spanning distances d which are roughly halved compared
to the single cell arc and the arcs have less pulling force to extend the membrane.
In principle, transcellular actin cables can be introduced and they allow to spread
further above non adhesive areas, but the tension from the junction remains leaving
the cell still far more invaginated as observed experimentally. Little is known about
transcellular cables and for simplicity we do not use them.

A different set of parameters is needed to obtain agreement between experimentally
observed shapes and simulations. E.g. increasing the simple line tension λs or the
elastic modulus EA would result in less invaginated arcs. The same holds for or a
reduction of the surface tension as shown in Figure 3.7c. The required changes can
have several reasons: First of all, the two experiments were performed on different
substrates. The cells in Figure 3.7a are on glass [50] and the cells used for the trac-
tion force experiments on elastic polyacrylamide [36]. Cells on stiffer substrates are
assumed to be more contractile [33] but how this increased contractility is distributed
among line and surface tension is not known. An increase of both results in the same
radius of the free spanning arcs. It is also possible that the combination of two cells
alters the contractility. Another aspect to consider is the source of the surface ten-
sion. It originates from the actin cortex beneath the membrane and nonperipheral
stress fibers spanning across the cell. The nonperipheral stress fibers can have focal
adhesions on both ends or they can connect to the cortex with one end [29] but they
are usually not attached to peripheral fibers. Instead they run parallel to peripheral
fibers [10] and therefore do not contribute in contraction perpendicular to them. This
suggests that the surface tension may be anisotropic or lower above nonadhesive areas
of the substrate, but so far there is no evidence to support this assumption.

3.3.4. Cell Sheets

Our implementation of the CPM is not restricted to cell pairs. Also large numbers of
cells can be simulated as shown in Figure 3.8. A single cell sitting on a comb shape
pattern starts to divide and forms a tissue like cell sheet with hexagonal geometry at
the bottom of the pattern. As the cells reach the vertical bars they extend further and
pull the cell sheet outwards above the nonadhesive areas as observed experimentally
[51]. A low surface tension is required to allow the formation and outward pulling of
the sheet. The cells at the lower edge of the sheet still have contact to the substrate
and want to keep it. Their adhesive energy density is not saturated due to the small
contact area and they adhere strongly and resist outward pulling into the nonadhesive
region. However, the cells at the top of the vertical bars have more adhesive area left
to explore and pull the rest of the cell sheet behind them. As a result, cells above
nonadhesive areas of the substrate are considerably larger than cells at the bottom.
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Figure 3.8. Cells growing on a comb shape pattern. The pattern has a width of
400 µm and is represented on a lattice with 200 × 250 sites. The used parameters are:
surface tension σ = 0.01 nN µm−1, line tension λs = 5 nN, elastic tension EA = 100 nN
and cell-cell adhesion energy line density ce = −5 nN. Cell division happens after cells
have reached a minimum age with a Poisson distributed probability. If the cell area
is below 800 µm2 no division takes place.

3.4. Conclusion

This chapter introduced multicellular systems. The first part established a model for
cell division plane orientation which has been investigated in great detail on micropat-
terns [38–40, 118]. During division cells become spherical which is achieved in our
model by detachment from the substrate and an increased line tension contracting
the cells. The orientation of the division plane is determined by the minor axis of
an ellipse fitted to the cell while it becomes spherical. The time point of the fit is
the only parameter and our predictions agree well with experiments. Independence of
parameters relevant for the cell shape demonstrate that our approach is universal.

Our model leaves the question about the biological mechanism setting the division
plane unanswered. Astral microtubules and their interaction with retraction fibers are
thought to be the driving factor [38]. On the other hand, it has been demonstrated
that an ellipsoidal shape alone is sufficient to align a spindle by its growing astral
microtubules without the help of retraction fibers[134]. Given this, the biological
mechanism behind our model could be that astral microtubules grow against the cell
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wall and align the spindle by the ellipsoidal shape during round up. The time point
during round up when the spindle is assembled sets the degree of memory of the
previous shape. If this interpretation is correct, cells with narrow distributions of
their division plane should have spindles which assemble early during the round up.
Indeed, nonadherent cells in microchambers which barely change shape before division
have very narrow distributions of the division plane [118]. Delaying or enhancing the
speed of spindle assembly should also alter division plane orientation.

Models have used retraction fibers to map the pattern to a circle [38]. A similar
mapping can be used to map the pattern to an ellipse, e.g. by demanding a constant
density of fiber attachment points on the contracting cell. Such mapping will predict a
single ellipse orientation for each pattern and requires to add noise manually to obtain
an actual distribution which is not necessary in our approach.

Another interesting project arises in the combination of traction force and division
plane prediction. It is known that cells preferentially divide perpendicular to the plane
of sustained tension [41] and it has been shown that the dynamics of traction forces
during division can be quite complex [135]. It was also suggested that forces act as
a memory for orientation information [135]. The combination of dynamic cell shapes,
on the fly traction force predictions and cell division in our model are ideal to study
their interplay on micropatterned substrates.

The second part of this chapter introduced cell-cell interactions. Based on the
differential adhesion hypothesis [127] classical CPMs use a reduced line tensions at cell-
cell junctions opposed to cell-medium interfaces to achieve cell-cell adhesion. Driving
cell-cell adhesion through a reduced line tension sets a limit on adhesion strength by
the requirement of a positive line tension. Although cadherins, which mediate cell-cell
adhesion, alter the tension at junctions [133] we conclude that this is not the driving
mechanism for adhesion. Instead, we propose that the energy associated with the
formation and breaking of cadherin bonds needs to be added to the Hamiltonian. Our
approach allows us to control adhesion strength and junction stability independently.

Early implementations of the CPM circumvented the problem of low line tension
and unstable junctions by their low resolution of a cell target area of 40 lattice sites [82]
(here: 16000 lattice sites). The lattice anisotropy, area constraint and small resolution
limit the size of membrane fluctuations for low interface tensions similar to a bending
rigidity. Later models with finer resolution constrained the cell perimeter to achieve a
positive line tension [84, 96, 129–131] at interfaces but global constraints are difficult
to interpret biologically.

We are confident that our approach still allows cell sorting in the fashion described
by the differential adhesion hypothesis. In addition we show that we can predict
shapes of cell pairs with junctions above nonadhesive areas which is of special interest
in the context of wound healing and has been addressed on comb shaped patterns [51],
although not with single cell based models.

At this point, our model contains all constituents of the classical CPM whereupon
each term was motivated biologically. The next chapter will add cell migration to
complete the model.
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4
Cell Migration

4.1. Introduction

So far, mainly cells on isolated islands matching the cell area have been considered.
With no adhesive area or neighbouring patterns left to explore, those cells remain sta-
tionary which is exactly the purpose of micropatterns [10]. However, in experiments
in which cells can divide the micropatterns have to fulfill different requirements. In
particular, patterns have to be arranged in such a way that the daughter cells can mi-
grate to neighbouring patterns after division. In turn, this must be described correctly
by the model used to optimize the pattern layout.

This chapter first addresses how forces generated by actin polymerization and myosin
contraction drive cell migration. Several models with various degrees of detail in the
actomyosin description have been proposed and will be discussed. The cellular Potts
model (CPM) is among them. Our approach to describe cell motility combines a
coarse grained description for actomyosin activity determining the cell shape with a
velocity alignment model setting the long term migration behavior. The last part of
this chapter focuses on cell migration on micropatterns. Making cells switch between
persistent motion and stationary state by means of pattern geometry [50] is of spe-
cial interest for pattern optimization and is addressed in great detail in the last part.
Here, we also show that with our previously developed model excellent agreement with
experiments is achieved.

The Migration Machinery

Cell migration is driven by actin polymerization in the lamellipodium, a flat actin rich
protrusion at the leading edge of a moving cell. In the lamellipodium actin polymer-
izes against the cell membrane and drives it forward [20, 27, 28]. In order to work,
the polymerizing actin network needs to be anchored to the substrate through focal
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(a) Fibroblast (b) Keratocyte (c) Neutrophil

Figure 4.1. Various shapes of motile cells with migration directed facing upwards.
(a) Fibroblast stained for actin, a broad lamellipodium is visible at the top. (b) Phase
contrast image (top) and actin staining (bottom) of Keratocyte. Actin enrichment is
visible at the leading edge. (c) Neutrophil surrounded by red blood cells. Scale bars
are 10 µm. Images adapted from [136].

adhesions forming in the lamella, a second type of network linked to the lamellipodium
[136]. At the rear of the cell myosin contracts the actin network and actin filaments
are depolymerized. Anchorage and elongation at the front together with depolymer-
ization at the back lead to a steady state similar to a treadmill when the rates of
polymerization, contraction and depolymerization are balanced [34]. In an idealized
cell the actin cytoskeleton remains stationary with respect to the substrate and the
cell moves by its elongation.

Cell migration can be split into two main aspects. Firstly, the connected action of
actin and myosin which lead to force generation resulting in protrusion and retraction
of the cell membrane. This aspect is closely coupled to the cell shape which can be
quite variable depending on the cell type (compare Figure 4.1). Secondly, cells have
to establish and maintain a polarity in order to direct their locomotion. This aspect
is relevant for the cell trajectory, e.g. the length and time scale on which a cell moves
persistently.

Two mechanism for membrane extension have been proposed [137]. In the graded
radial extension model (GRE) the membrane is extended perpendicular to the cell
edge with a graded magnitude highest at the midline (see Figure 4.2a). In the parallel
extension model (see Figure 4.2b) the membrane is translocated parallel to the move-
ment direction with constant magnitude. By tracking photobleached regions of actin
the GRE model was confirmed for keratocytes [137] and the graded magnitude of the
extension was supported by a graded actin density along the leading edge [138].

Assuming a gradually decreasing actin density with highest polymerization force
at the center of the leading edge and stalling polymerization at the sides, cell aspect
ratio, leading edge curvature and speed of keratocyte cells can be related to each other
[138]. However, this requires a simplified treatment assuming rectangular cells. Also
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(a) (b)

Figure 4.2. (a) In the graded extension model (GRE) the cell membrane is extended
and retracted perpendicular to the cell contour. (b) In the parallel extension model
(PE) the membrane is extended parallel to the migration direction. In an alternative
view, membrane extensions can be replaced by forces generated by polymerizing actin
or myosin contraction.

an active gel theory for actin polymerization and myosin activity which agrees well
with measured densities had to use experimental shapes as input [139].

Migration in Models with Dynamic Cell Shapes

At this point the CPM provides an approach to couple the migration machinery and
the cell shape. In the CPM framework forces acting on or inside a cell are understood
as a bias to the energy change used in the Metropolis algorithm [81, 132, p. 109]. It has
been demonstrated that coupling actin dynamics to a CPM Hamiltonian is sufficient
to describe a migrating keratocyte [72, 86]. The coupling works by introducing an
energy bias in regions with high actin polymerization in favor of membrane extension.
Actin dynamic is driven by a reaction diffusion system of the small G-proteins. Namely
Cdc42 activating Rac which then activates Rho. Cdc42 and Rho inhibit each other.
The mutual inhibition of Cdc42 and Rac can lead to a front back polarity in a cell with
actin polymerization being promoted by high Cdc42 concentrations at the front while
contraction at the back is promoted by Rac. Cell shape, polarity, speed and reactions
to external gradients are correctly predicted by this model. As the reaction diffusion
system is solved in the domain predicted by the CPM simulations, the interaction
between shape and small G-Protein dynamics can be studied, e.g. how shape changes
help cells to react to external stimuli [86]. The long term movement is implicitly
included in the reaction diffusion system in such a model. The choice of parameters
determines the stability of the Cdc42 and Rho gradient along the cell which sets the
cell’s polarity direction.

An alternative to having internal reactions setting the polarity direction is velocity
alignment. In this model a summation over the past movements sets the current
polarity direction. This method usually assumes a global force acting on the whole
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cell and, due to its coarser nature, is used for migrating cell sheets [140–142]. Closely
related to this approach are phase field models which implement forces acting on a
domain boundary in the same way as the CPM [76–78, 80]. In a phase field model
a variable φ(x, y) (the phase field) separates the interior of a cell (φ = 1) from the
exterior (φ = 0) with the cell boundary usually at φ = 1/2. The cell shape and
mechanics are governed by a free energy F [φ]. To drive the system into two separated
phases a double well potential with minimum at φ = 0 and φ = 1 is usually added
to the free energy. An equation for the temporal evolution of the phase field can be
derived by variation of the free energy. Forces generated by actin and myosin can be
added to the free energy, e.g. a force pushing normal to the cell boundary acts in the
direction of the gradient ∇φ of the phase field [76]. Together with a model for actin
and myosin dynamics the predicted cell shapes agree well with keratocytes [76, 78].
Elastic substrates to study mechanotaxis can be introduced [77, 79] and also persistent
rotational motion of cells on square patterns has been studied [80].

In most of the above models the polarity direction is either constant or determined
by the parameters of a reaction diffusion system. While the correct shape of cells can
be predicted in this way, little attention has been paid to the global movement. On
short time scales cells move ballistically and transition to a random walk motion on
longer scales [143]. To explain this behavior several random walk models have been
proposed [144, 145]. While the standard reference is the Ornstein-Uhlenbeck process
[146], random walk models with a more complex memory kernel fit data better [146,
147]. One example is velocity alignment model. It calculates the polarity direction
from past movements and thus realizes a simple memory kernel. It has been shown
to increase persistence on line patterns [148] as reported experimentally [149] and
produces persistent rotational movement for cell pairs confined to square patterns
[80].

Cell Migration on Micropatterns

Micropatterns can help to understand how environmental cues and cell shape influence
directionality in cell migration. It has been demonstrated that fibroblasts preferen-
tially form lamellipodia at corners of micropatterns [43]. Acuter angles at the corners
resulted in tighter constrained lamellipodia. This inspired experiments where cells
where initially confined to tear-drop shaped patterns and subsequent release of the
confinement to study their migration direction [44]. In contrast to the previous study
[43] cells displayed larger lamellipodia at the blunt end of the tear-drop patterns and
after release of the constrain, they preferentially migrate in this direction although the
same cell type was used in both studies. Other cell types move towards the sharp end
of tear-drops [47] and arrangement of several tear-drop patterns in a circular geom-
etry allows to study if cells preferentially make transitions from sharp to blunt end.
Furthermore, it has been studied how sideward extension of the lamellipodium affects
this transition [47]. Linear arrangement of triangles with [45] and without [46] gaps in
between them have been shown to trigger migration into the direction of the pointed
end. Here, cells are initially polarized towards the broad end of the triangle similar to
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(a) (b) (c)

Figure 4.3. Phase contrast images of migrating cells on micropatterns. (a) Clockwise
rotating pair of epithelial cells on [circle] pattern forming a Yin-Yang shape [48]. The
bright S-shaped line is the cell-cell junction. (b) The rotational motion persists for
larger cell colonies but breaks up (c) into several swirls if the [circle] pattern becomes
too large [49].

the case of the tear-drop pattern, but the larger area available when going from the
pointed to the broad end on neighbouring triangles dictates the migration direction
[45].

Of special interest for the design of micropattern networks is the stability of several
cells on a pattern which was first addressed for square and circular shapes [48, 150].
Pairs of endothelial cells undergo a persistent rotational motion with a Yin-Yang shape
(see Figure 4.3a) while fibroblast remained stationary on the same pattern. A model
predicted that both, coupling and persistence, of the cells must be high enough to
enter the Yin-Yang rotation [48]. The persistent rotating Yin-Yang mode requires a
continuously adhesive envelope of the pattern, e.g. cells on [C] shaped patterns remain
stationary [50]. Rotation is also possible for a larger group of cells on [circles] as shown
in Figure 4.3b. If the circle gets too big the motion breaks up into several swirls (Figure
4.3c) [49].

4.2. Graded Force versus Parallel Force Model

In the graded radial extension model (GRE) cells extend and retract their membrane
in a graded fashion [137]. As mentioned above, extension and retraction of the mem-
brane is an outcome of actin polymerization and myosin contraction which can be
modeled together with reaction diffusion systems [72] giving rise to models with many
parameters [86]. We take a simplified approach inspired by the graded radial and
parallel extension model. But instead of extensions we assume graded radial forces
(GRF) or parallel forces (PF) acting on the membrane as depicted in Figure 4.2. Af-
ter all, extension are just an outcome of forces applied to the membrane. The graded
force distribution is supported by measurements of retrograde actin flow and actin
polymerization which are both graded for keratocytes [139].
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Figure 4.4. (a) Cell with polarity direction along the x-axis and center of mass
(COM) in the origin of the coordinate system. The polar angle θ indicates the angle
between a point on the cell membrane and the polarity direction. The angle ϕ sets
the angle between the normal of the membrane and polarity direction. If the polarity
direction is not along the x-axis its orientation has to be subtracted from θ and ϕ,
respectively. (b) Distributions of the migratory strength (4.1) with different widths
controlled by η.

In the GRF model actin pushes normal to the membrane and the force decays with
distance from the midline because of a changing actin density. In the PE model actin
polymerizes uniformly in one direction with a fixed strength and the resulting force
depends on the angle between membrane normal and polymerization direction. At the
center of the leading edge the actin polymerization tension (=force per unit length) is
denoted by µ . In the simplest version myosin contraction and actin polymerization
exert the same force magnitude at the front and back of the cell. The directional
tension on the membrane is then µ cos(α) which was used before in combination with
a CPM [142]. The angle α can either be the polar angle θ in the GRF model or
the angle ϕ between membrane normal and polarization direction in the PF model
(compare Figure 4.4a).

The width of the gradation is known to influence cell shape [139] and can be changed
by taking powers η of the cosine as shown in Figure 4.4b. Thus, the tension generated
by the migration machinery acting on a point of the contour is

σmigration = µ |cosα|η sign(cosα), (4.1)

which has the dimension of a surface tension. If the cell area is changed by ∆A by a
spin flip the cell energy changes by

∆Hmigration = ∆Aµ |cosα|η sign(cosα) (4.2)
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and the contribution to the total cell energy is

Hmigration = µ
∫∫

|cosα|η sign(cosα) dA. (4.3)

In Figure 4.4a the polarity direction was assumed to be parallel to the x-axis. For a
arbitrary direction the angle α needs to be adjusted accordingly.

Care has to be taking setting the strength µ of the migratory machinery in com-
bination with the single spin flip Metropolis dynamics. If chosen too high, all spin
flips extending the cell contour in one direction are accepted. The underlying lattice
sets the cell shape then resulting in a straight boundary propagating along the lattice
directions. Metropolis dynamics is only valid for equilibrium systems and cell migra-
tion is not an equilibrium process. Nevertheless, as stated in Chapter 2 Metropolis
dynamics can still be used if the membrane equilibrates on a much shorter time scale
than the scale relevant for cell migration. This means that the parameters must be
chosen to a allow sufficient fluctuations of the cell contour. As described above, a
flat contour is a sing of µ being to large. As a rule of thump µ < 1.5T guarantees
sufficient fluctuations. This also means that the COM of a cell propagates by less than
one lattice site during a MCS.

4.2.1. The Shape of Motile Cells

Figure 4.5 shows migrating cells simulated with the migration energy (4.3) added to
the cell Hamiltonian (2.8). Migration in the Figure takes place on a homogenous
substrate and the migratory strength µ and width of the gradation controlled by η
are varied. The top panel shows shapes generated with the GRF model which closely
resemble shapes of keratocytes for η < 1 (compare Figure 4.1b) and neutrophils for
η > 1 (compare Figure 4.1c). The PF model shown in the bottom panel predicts
shapes which resemble fibroblasts for η < 1 (compare Figure 4.1a) suggesting that the
motility in keratocytes and fibroblasts is driven by radially or uniformly polymerizing
actin, respectively. The triangular shapes in the PF model with narrow gradation
(η > 1) lack a biological counterpart.

At first glance it seems unlikely that for η = 1 the cells are circular. But as stated
in the GRE model movement of a circular cell requires membrane extension velocities
v(θ) ∝ cos(θ) with θ being the polar angle [136, 138, SI, Figure S6]. A circle has
constant curvature and the force generated by the line tension is therefore constant
along the contour. A constant force is just an offset to the cosine shaped force from
the migratory machinery. Since the membrane extension can be assumed proportional
to the force and both, surface and line tension, just give a constant offset along the
contour the cell can be translocated as a circle.

This changes when the force generated by the migration machinery deviates from
a cosine. For a steady state migratory forces and forces generated by line tension
must result in a total force which allows translation without shape changes. Thus, the
cells must be shaped in a way which allows this force to be generated by the contour
curvature giving rise to the various shapes shown in Figure 4.5.
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Changes in shape follow changes in the graded force distribution. Making the distri-
bution narrower by increasing η elongates the cell in migration direction while making
it wider elongates it perpendicular to it. This effect is enhanced by increasing µ. The
simple line tension, which wants to keep the cell circular, becomes less important for
larger µ and cells become less circular. As stated before the sides of the lamellipodium
are defined by the point where the actin protrusion is stalled [138]. Making the force
distribution wider or increasing µ thus shifts this point further outwards making the
lamellipodium wider. Changing the surface tension σ has no effect on the shapes since
it is balanced by the adhesion energy. Only the line tension λs, migratory strength µ
and with of the gradation set by η control the cell shape.

In the remaining of this chapter only cells described by the GRF model are consid-
ered.

4.3. Velocity Alignment

So far, the polarity direction has been kept fixed, but cells move persistently only
over a range of several cell diameters [147, 151], although the movement can become
very persistent reaching several hundreds of cell diameters for keratocytes [27, p. 33].
Care has to be taken when talking about persistence length or time. In some cases
it is the scale on which directional correlations decay [144, 145, 147, 151], but it can
also be the distance it takes to turn by 180° [149] or it is defined by taking the scalar
product of initial direction and vector connecting start and endpoint of a cell path
[152]. For the latter the persistence length depends on the euclidean distance between
start and endpoint but nevertheless allows to quantify the influence of drugs on cell
migration. Throughout this work the persistence length is defined as the scale on
which directional correlations decay

〈d(s)d(0)〉 = exp

(

− s

lp

)

, (4.4)

where d(0) and d(s) are the normalized initial and current direction of a cell trajectory,
respectively, with s being the contour length and lp the persistence length [153, p. 317].

In the velocity alignment model cells tend to align their polarity with their current
velocity [154]. It has been used to describe collective cell migration where neighbour-
ing cells can exert forces on each other which leads to a misalignment of polarity
and velocity in individual cells but synchronizes the polarity across a cell population
[140, 141, 154, 155]. Implementations were performed for circular [154] or point like
cells [155] with explicit noise and forces added to the polarity direction or CPM where
noise enters implicitly through membrane fluctuations [140, 141]. Velocity alignment
can also enhance persistence under stripe shaped confinement [148] as observed ex-
perimentally [149] and it can produce persistent Yin-Yang rotational movement on
square shaped micropatterns [80].

In the velocity alignment model differences between the velocity and polarity direc-
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Figure 4.5. Shapes of migrating cells for different exponents η and protrusion
tensions µ simulated with the CPM extended by the migratory energy (4.3). The
persistence direction is kept fixed along the x-axis and the shapes are averaged over
many MCSs. The top panel shows shapes for the GRF model and the bottom panel
shapes for the PF model. The simulations are performed with σ = 1 nN µm−1, λs =
10 nN, W = 20 nN µm and T = 1. The red dashed shapes are analytical predictions
with derivation explained in the appendix, section A.2.4. They are calculated by
solving the system of equations (A.32) with constrain (A.33) and Nmax = 5. For
η = 0 the directional tension in equation (A.32) is replaced by equation (A.28). The
regularization parameter is α = r0µ0.08 /µm.
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Figure 4.6. (a) Cell moving on a square shaped micropattern island. The polarity
direction (green) and current velocity direction (red) are both indicated by arrows.
(b) Trajectory of a cell with A0 = 1000µm2, σ = 1nN µm−1, λs = 10nN, µ =
1nN µm−1, T = 1, τ = 50MCS, η = 3 resulting in a persistence length lp = 130µm.

tion change the polarity direction. In our implementation the change of the polarity
direction is defined as

ṗ = v − p

τ
(4.5)

where v is the current COM velocity and τ sets an alignment strength. The angle
between p and a point on the cell boundary sets the strength of the migratory ma-
chinery (4.1) at that point (compare Figure 4.4a). The largest force thus is applied in
the direction of p and the COM displacement during a MCS is assumed to be

v = v0
p

|p| + ξ, (4.6)

where v0 depends, amongst others, on µ, η and the simple line tension λs. It can
be estimated from the energy changes during displacement in the Aristotelian limit
[132]. The noise term ξ is due to the finite simulation temperature which can lead
to a COM displacement different from the polarity direction. On planar substrates ξ
can be assumed to be white noise since it arises from randomly added and removed
membrane sites. For the COM this sums up to white noise because of the central
limit theorem. Equation (4.6) is an assumption on how the cell moves during the
simulations on a planar substrate and not part of the velocity alignment model.

The whole mechanism is demonstrated in Figure 4.6a where a cell initially moves
along its polarity direction with small fluctuations until it reaches the pattern bound-
ary where movement is stalled. The polarity still points outwards and the cell mem-
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brane expands across the pattern boundary but the COM barely moves. Eventu-
ally fluctuations to one side take over and the cell continues its movement along the
boundary. Polarity and velocity align again with the lag controlled by τ . The cell will
continue moving along the edge of the island which is also observed experimentally
[48] reverting its rotation direction from time to time in one corners of the pattern.

For pattern with discrete boundaries equation 4.6 needs to be modified. A random
motion within an energy landscape defined by the pattern can be considered. But the
noise ξ is likely to depend on the pattern geometry because cell shape changes at the
boundary.

If v in equation (4.5) is treated as an independent function a formal solution for the
differential equation can be written down:

p(t) =

t∫

0

v(t′) e− t−t
′

τ dt′, (4.7)

which allows to interpret the mechanism behind velocity alignment. The cell integrates
all its past displacements with an exponential memory kernel to get the current polarity
direction. It has been demonstrated before that cells have a memory of their past
velocity and the same kernel was used, although for the acceleration of cells [146]. For
the implementation a discrete version of (4.7) is used with p =

∑
v(i) exp(−i/τ) where

v(i) denotes the velocity i MCS ago and the sum is truncated when the exponential
is small enough. A trajectory of a cell on a planar substrate is shown in Figure 4.6b
which can be used to calculate the persistence length defined in equation (4.4). On
short times the cell displays directional persistent movement while on long time scales
the trajectory looks like a random walk.

4.3.1. Persistent Cell Movement

The directional correlation defined by (4.4) decays exponentially as shown in Figure
4.7a. The persistence length lp, setting the scale of the decay, depends on both the
migratory strength µ and the relaxation time τ . In addition, it also depends on the
fluctuations ξ of the COM displacements setting v in equation (4.6).

The amplitude of the fluctuations ξ depend on the simulation temperature. Mem-
brane fluctuation amplitudes can be calculated in the limit of low temperatures [156–
158]. But this limit is well below typical temperatures used here. In addition, cut-off
frequencies must be introduced in the calculations which are present in the lattice
based simulations naturally, i.e. the smallest fluctuation wavelength is set by the lat-
tice spacing. However, this makes the fluctuation amplitude lattice dependent.

The Langevin equation (4.6) can be solved, but the fluctuation amplitude will appear
in the solution which is only known for low temperatures. In addition, the dependence
of the parameter v0 on τ is not known and the solution of the Langevin equation cannot
be used to predict persistence lengths.

Nevertheless persistence lengths can be obtained from simulations and their scaling
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Figure 4.7. (a) Decay of the directional correlation as function of the path length s
for different values of the relaxation time τ . (b) Scaling of the persistence length lp
defined by equation (4.4) with the migratory strength µ and power law fit. (c) Scaling
with the relaxation time τ . Parameters used here are the same as in section 4.5.

dependence on µ and τ are shown in Figure 4.7b and 4.7c, respectively together with
a power law fit.

4.4. Migration on Micropatterns

On micropatterns cell migration is influenced by non adhesive areas. If the patterned
island are large enough the cell will migrate freely until it reaches the edge, extend
an lamellipodia beyond it and will eventually get deflected by the pattern boundary
(compare Figure 4.6a). Lamellipodia above nonadhesive areas also appear in cells
confined to small islands as shown in Figure 4.8a. They mainly form in regions with
low curvature which is in agreement with the idea of a larger resistance by the line
tension there. Lamellipodia do not form at free spanning arcs. The actin organization
in the arcs is different from the organization at the adhesive edge and arcs are usually
above non-adhesive regions where the anchoring support by the substrate for the
polymerizing actin is missing. Therefore, we assume that no protrusive activities take
place at arcs by setting the energy bias (4.2) to zero for lattice sites belonging to arcs.

4.4.1. Bridging Gaps

Above the adhesive substrate the surface tension is balanced by the adhesive energy
which changes when the cell extends over nonadhesive areas. Naively, the cell migra-
tory machinery would push the boundary outwards over the edge while the surface
tension driven by myosin contractility resists the expansion. Since the cell wants to
generate a protrusion it would make no sense to polymerize against its own contrac-
tion. We therefore assume that the surface tension does not resist extension in polarity
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(a) (b) (c)

Figure 4.8. (a) Cell on [crossbow] pattern with large lamellipodium at the top, small
at bottom and non at free spanning arcs [152, Supplement]. (b) Simulation snapshots
of a cell on a [crossbow]. Due to the confinement no stable polarity direction is
established, instead wave like protrusions are observed. A protrusion starts at the top
right and travels to the left. Arcs have no protrusions and protrusions at the bottom
are small due to the high curvature. (c) Distance map with distance from closest
pattern edge encoded by color.

direction above non adhesive areas and modify the migratory energy bias (4.2) to

∆Hmigration = ∆A [µ |cosα|η sign(cosα) + σδi,NAΘ(sign(cosα))] , (4.8)

where δi,NA is one for nonadhesive lattice sites, zero otherwise and Θ denotes the Heav-
iside function needed to allow normal contraction at the rear of the cell. Support for
this idea comes from the organization of the leading edge. Myosin driven contraction
starts in the lamella which is located a few microns behind the leading edge [136].
Therefore, contraction responsible for σ and polymerization are separated spatially.
The lamella is also the area where adhesions anchoring the actin network start to
form. Above non adhesive areas this support is missing and the polymerizing actin
mesh can only reach a certain extension before polymerization just pushes the mesh
backwards without extending the boundary. This is put into effect by reducing the
protrusion strength µ with distance from adhesive islands

µeff = µ e−d/d0 , (4.9)

where d is the distance measured normal to the edge of the nearest adhesive island and
d0 sets the scale of how far the lamellipodium can extend beyond the edge. An image
with the distance d encoded by color is shown in Figure 4.8c. An interesting effect
arises because d is taken to be the distance to the closest pattern. The protrusion
strength decays up to the midpoint between two adhesive island and than rises again.
For polymerizing actin there is no mechanism increasing the pushing strength when
coming close to another pattern, but the increase can be interpreted as a filopodia like
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Figure 4.9. Snapshots of identical cells trying to bridge gaps of variable width.

mechanism. Filopodia are spike shaped protrusions with parallel actin bundles inside
known to be involved in bridging gaps between patterns [45]. They sense the surround-
ing and cells are more likely to move to neighbouring island when more adhesive area
can be explored by them [45]. With the protrusion strength regulated by equation
(4.9) it is more likely to form larger protrusions in the direction with neighbouring
patterns mimicking the activity of filopodia. The same mechanism also supports ini-
tial attachment to patterns. Since cells are seeded randomly in experiments on the
substrate some cells are not in range of a pattern. These cells move in search of a pat-
tern, but without any adhesive surface movement is very limited. Without a pattern
in the immediate vicinity they die. Likewise, simulated cells initialized in nonadhesive
regions are biased towards patterns by the mechanism described above.

Both, cells migrating on relatively large islands as shown in Figure 4.6a and cells
completely occupying an island can now be described. In the latter case no clear po-
larity directions is established and the cell has protrusions traveling along the contour.
At sides with small curvature protrusions are larger (compare Figure 4.8b).

The scaling of the protrusion strength with distance from patterns through the
parameter d0 allows to tune the bridging capabilities of cells as shown in Figure 4.9.
Here, all cells are identical but the gap widths between the stripes varies. As the cells
move along the stripes only the topmost cell is able to bridge the gap every time, the
middle sometimes and the bottom never. Increasing d0 would also allow the middle
cell to bridge more frequently.

4.4.2. Contact Inhibition

Cells have been demonstrated to migrate collectively with and without cell junctions
connecting them implying that they communicate to coordinate their movement [159].
Indeed, on contact cells retract their protrusions and change directions [159] which is
called contact inhibition. This most likely happens through cadherins which are trans-
membrane proteins responsible for cell-cell junctions. They influence, through inter-
mediate proteins, the small G-proteins which drive actin protrusion and retraction.
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The loss of contact inhibition plays an important role in diseases. Without it, cells can
start to invade other tissue [159]. Contact inhibition has also be demonstrated to play
a role in persistent rotational Yin-Yang movement on micropattern islands [80]. We
implement contact inhibition by setting the migratory energy bias (4.8) to zero if a cell
invades another cell. This only happens if the protrusive activity is directed outwards
(sign[cos(α)] > 0), retraction is still possible with bias (4.8) at cell-cell contacts.

4.5. Stability of Cell Pairs

Examples of collective cell migration on micropatterns range from large swirls of a
few tens of cells on circular islands [49] down to the Yin-Yang shaped motion of cell
pairs on squares and circles [48]. The exact shape of the pattern can either lead to
Yin-Yang movement or stabilize the cell pair [50]. This switch is of particular interest
in the design of patterns since cell migration should only be allowed after division but
otherwise prevented to normalize cells. A two cell system is also the simplest system
for coordinate movement and we analyze it in detail by comparing our predictions
for the nucleus-nucleus axis orientation to experimental observations [50] for eight
different patterns. The experiments were performed on MCF10A cells, which is the
same cell type used to measure traction forces in Chapter 2 and the parameters used
here should agree with our previous estimates.

The Role of Cell Junctions

Typical snapshots of a cell pair on a [square] are shown in Figure 4.10a. The top frames
show the simulation starting with a single cell migrating and dividing on the pattern.
The two daughter cells spread out, cover the whole pattern and start to rotate in a
Yin-Yang fashion very similar to real cells also shown in the Figure. A lamellipodium
extending beyond the pattern forms both in the simulation and experiments (dark
parts) at the leading edge and the cells rotate persistently switching directions from
time to time (not shown).

Cell pairs do not always rotate on patterns. On on [C],[H] and [hourglass] they are
stationary while a slight movement is observed on [X], [X bar] and [C1]. Persistent
rotation is only present on [square] and [C2] [50] (pictograms of the patterns are shown
in Figure 4.11, [C1] and [C2] are the intermediate patterns between [C] and [square]).
This suggests that rotation works best if the convex hull of a pattern is adhesive. In the
framework of our model this can be explained by the requirement of an adhesive area
to support actin polymerization (equation (4.9) and by the energy associated with the
cell-cell junctions. Cell-cell junctions are contractile due to the simple line tension.
In a minimal energy state cell pairs are oriented to minimize their junction length
as shown in Figure 4.10c. Free spanning arcs have different invagination depending
on whether they have junction junctions in between or not. On patterns such as
[square] junctions usually extend to the rim of the pattern due to the adhesive tension
opposing the contraction. For rotation junctions must be stretched and reach at
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(a)

(b) (c)

Figure 4.10. (a) Cell pair rotating on [square]. At the top simulations snapshots
starting with a single cell which divides are shown and at the bottom phase contrast
images from [50]. Bright regions indicate the boundaries of the two cells. The dark
protrusions at the leading edge are the lamellipodia. The parameters are from the
optimal fit: λs = 2.3 nN, σ = 0.083 nN µm−1, EA = 40 nN, A0 = 670 µm2, ce =
−5.5 nN, µ = 0.3 nN µm−1, τ = 69 MCS, η = 3 , W = 20 nN µm−1, d0 = 20 µm, T =
0.23 resulting in a persistence length of lp ≈ 350 µm. (b) Snapshots of cell pair which
does not retract the rear when in contracts. (c) Shape of cell pairs on various patterns

least the diagonal extension of the patterns which is energetically unfavorable. The
required energy comes from the migration machinery and large energy differences make
it unlikely that the cell maintains it polarity long enough to cross the unfavorable state
with a cell-cell junction oriented diagonally. Persistent rotation can be promoted by
increasing the migratory strength µ or the persistence time τ which makes it easier to
overcome the barrier. Alternatively the simple line tension λs can be decreased.

Figure 4.11 shows distributions of the nucleus-nucleus axis for various patterns
(green). On all patterns orientations with the shortest cell-cell junctions are most
likely (the cell-cell junction is usually perpendicular to the nucleus-nucleus axis) but
the degree of bias towards the shortest junctions varies. Among the shown patterns
[H] and [X] offer the possibilities for the shortest junctions by putting them in the
middle of the free spanning arcs. Indeed, the distribution on [H] is sharply peaked
which also lacks adhesive area near the junction to anchor polymerizing actin. The
peak becomes broader on [hourglass] and [C] where minimal junction length is longer
opposed to [H]. This trend continuous for the transition from [C] to [Square]. The
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Figure 4.11. Comparison of experimental distributions (green) of the nuclei-nuclei
axis and the best fitting simulated distributions of the COM-COM axis for various
patterns. The bins at 0° and 180° are identical. The best fitting parameters are the
same as in Figure 4.10a

contour becomes less invaginated and the length difference of the horizontal and diag-
onal oriented cell-cell junctions smaller. Providing support of the free spanning arcs
as in the case of [X bar] shifts the preferred orientation in the same way.

Parameter Choice

We fit our model parameters to the experimental distributions of the nucleus-nucleus
axis. Our cells lack a nucleus and we take the COM instead. The traction force
experiments in chapter 2 were also performed with epithelial MCF10A cells, therefore
we set the simple line tension to λs = 2.3 nN and the elastic modulus to EA = 40 nN.
As discussed in the previous chapter the surface tension σ is expected to be lower as in
the traction force measurements. We also expect the target area to be lower because
the phase field movies reveal that single cells do not fully cover the patterns used
here [50][Supplement]. This might be due to a different density of the extracellular
matrix proteins. Changes in cell area can be achieved by lowering the adhesive energy
W or by directly changing the target area A0. We choose to leave W = 20 nN µm−1

to be constant and fit the target area because it is experimentally easier to access.
The gradation width of the migration force is set to η = 3 (see equation (4.8)). This
leads to a relatively narrow lamellipodium as seen experimentally in Figure 4.10a.
In summary our fit parameters are the cell-cell contact strength ce, surface tension
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σ, target area A0 and the newly introduce parameters in this chapter, the migration
strength µ, persistence time τ (equation (4.8) and (4.7)) and the decay length of
protrusions d0 (equation (4.9)). For each set of parameter values 400 cells are seeded
at random positions and migrate freely for some time and then divide. After division
the COM-COM axis is recorded and the simulated and experimental distributions are
compared.

The results for the best fitting parameters are shown in Figure 4.11 and agree well
with the experimental distributions. The goodness of the fit is mainly limited by the
variance in the experimental data. Our model covers the main observations of the
experiments. Namely, the broadening of the peak when going from [H] to [C], the
transition from one peak into two from [C] to [square] and disappearance of one peak
from [X] to [X bar]. Good agreement of the nucleus-nucleus axis distributions does
not necessarily mean that the simulated cells rotate persistently on [square] and [C1]
but visual inspection (see Figure 4.10a) and the analysis of the mean rotation angle
covered before switching the rotational direction conducted below confirm that our
cells show the right behavior.

Various model components can be tested for their influence. Contact inhibition
has been demonstrated to play an important role [80]. Our implementation of contact
inhibition assumes that cells do not invade each other but still contract their rear driven
by µ when in contact. If cells are also not allowed to contract when in contact a perfect
fit to the experimental data for all patterns can still be obtained, but cell movement
becomes a left-right or up-down oscillation. Figure 4.10b shows such cells. Both cells
extend quite far across the edge of the pattern with the optimal fit parameters. At
some point one of the cells starts to move in the opposite direction while the other
lags behind. The lagging cell soon catches up and the movement starts over. It can
also be shown that a finite cell-cell contact energy ce is necessary to obtain a good
fit and that broadening the lamellipodium by decreasing η also gives good agreement,
although with different parameters.

Parameter Landscape

The fast implementation of our model allows to explore the parameter space more
systematically. To quantify the quality of a fit the same L2 norm (3.6) as in the
previous chapters is used.

Maps of the L2 norm averaged across the eight patterns are shown in Figure 4.12
and 4.13 for different combinations of parameters. Figure 4.12a addresses the effect
of the migration machinery through µ and τ . With either µ or τ small the agreement
is very poor. Cells lack the energy or directionality to stretch the cell-cell junction
above the diagonal as required for rotation and sit still. The fluctuations from the
finite simulation temperature barely changes the position and the nucleus-nucleus
axis orientations is sharply peaked at orientations with minimal cell-cell interface (see
Figure A.11). The curve with µτ = const defines the optimal values. Increasing µ
provides more force to overcome the energy barrier while increasing τ makes movement
uphill in the energy landscape more persistent. The question remains if the movement
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Figure 4.12. Maps of the L2 norm defined in equation (3.6) (left column) and of the
mean angle before rotation inversion (right column). Each map shows the variation
of two parameters while the other parameters are held fixed at the best fit value. The
maps of the L2 norm are capped at two for better visibility.

is just oscillations or rotations. Here, the mean angle covered by the cells before the
rotation direction is inverted helps. Figure 4.12b shows a map of this angle with the
location of the best fit and its value indicated by a white square. An angle of 44.7°
covered before turning at first seems very small, but the angle is averaged over all
patterns used and cells on [H], [C1] and [hourglass] are not expected to rotate. For
the [square] alone this angle is above 120° and this value still contains contributions
from very short succeeding turns when the cell pairs direction is undecided. Hence,
persistent rotational motion is confirmed by this map. Increasing µ and τ further
makes the cells rotate wildly ignoring the pattern geometry first. Increasing the values
even further leads to a drop in the mean angle before turning map. Cells become to
persistent for rotational motion. They want to keep moving straight slowing down the
rotational speed. For very large µ and τ cells are expected to oscillate similar to the
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Figure 4.13. Same as Figure 4.12 but with the target area A0 and elastic modulus
EA varied.

cells in Figure 4.10b.
The role of simple line tension λs and surface tension σ is conjugated (Figure 4.12c).

Decreasing σ makes the cells less invaginated across nonadhesive areas. The cell
junctions are still contractile but get longer because the contribution from the surface
tension is lowered. It therefore takes less energy to extend the junction up to the
diagonal extension of the patterns and rotation becomes easier as confirmed by the
mean angle map in Figure 4.12d. A lower σ can be compensated by a higher λs

since this makes the cell-cell junctions more contractile again also reflected by the
reduced rotation. Decreasing λs increases the rotation as seen experimentally by the
inhibition of Rho kinase (ROCK) which lowers cell contractility and makes cell pairs on
[hourglass] unstable [50]. For very low λs rotation also decreases because the migratory
machinery is then strong enough for cells to completely ignore the patterns and move
exploiting the periodic boundaries used in the simulations. The reduced mean angle
before turning at the optimal fit location compared to the map of µ and τ is due to
the finite resolution of the maps.

The target area A0 and elastic modulus EA have little effect on the motion (Figure
4.13a) since the patterns are fully covered and the cell contours are relatively straight
without transcellular actin cables. Lowering the target area first requires the cells to
extend their junctions further to rotate. Lowering the area even further makes rotation
easier again because cells are sitting in the center or corners of the patterns and rotate
there.

Fit Results

The set of final fit parameters is in a reasonable range. The simple line tension was
held fixed at λs = 2.3 nN which is the value obtained from traction force experiments
in Chapter 2. Also fitting it resulted in λs = 2.6 nN which can be considered to be the
same because the L2 norm landscape is very shallow in this region (compare Figure
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4.12c). The elastic modulus EA has no effect and was left at the value from Chapter
2. The surface tension σ = 0.083 nN µm−1 is significantly lower as for the traction
force measurements σTM = 0.83 nN µm−1. Constraining both λs and σ to the values
from the traction force measurements results in a very poor fit. As already discussed
in the previous chapter this supports the idea of a reduced tension above nonadhesive
areas. The best fitting µ = 0.3 nN µm−1 and τ = 69 MCS result in a persistence
length of 350 µm which is large but not unreasonable. A value of 290 µm has been
used before [80] (estimated from the parameters in the supporting material, note the
different definition of the persistence time there). The length scale d0 = 20 µm on
which the migratory strength decays results on lamellipodia which extend about 5 µm
beyond the pattern edge which is consistent with the gap size that can be bridged by
MCF10A cells [47]. The cell-cell contact energy of ce = −5.5nN is in a similar range
as the adhesive energy density W = 20 nN µm−1 when the height of the contacting
membrane is assumed to be around 0.5 µm. The target area A0 = 670µm2 is lower
as for the traction force measurements (A0 = 1700µm2) but MCF10A cells have been
reported to have smaller areas before [160] and the area plays no role for both migration
and traction force if it is not too small.

4.6. Conclusion

In this chapter cell migration was included into the CPM by splitting into two main
aspects. The first one being the machinery which generates protrusion and contraction
and the second one the mechanism which sets the direction of this machinery. Previous
models have treated these aspects as one and used complicated reaction diffusion
systems with many parameters [72, 86]. The strength of those models lies in the
detailed pathways used which allow to study the role of each component involved.
But in our context only shape, gap bridging capabilities and large scale movement
matter which can be accurately reproduced with a much simpler model. To address
shape we take the graded and radial force models which make a simple assumption
on how forces are distributed based on actin densities and flow. This simplified model
does not only predict cell shapes of keratocytes, fibroblasts and neutrophils correctly
but also suggests a simple explanation for shape differences. Namely, actin in fibroblast
polymerizes uniformly in one direction while actin in keratocyte polymerizes radially.

Line tension and its increased resistance to membrane extension in regions with
high curvature determines the cell shape in our approach. Models with fixed cell
shapes [138] lack this component and are shown to by unstable [161] when the shape
constraint is released and only a surface tension resisting the migration machinery
is assumed. This raises the question if shapes remain stable in our approach or if
the alternating right left turns observed for some cells [143] arises from mechanical
instabilities. I.e. that there exists no shape that combines forces from line tension and
migratory machinery in a way that allows translation without shape change.

For the determination of the polarity direction we use the established velocity align-
ment model which typically assumes that the polarity direction is subjected to noise
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[148, 154]. We do not explicitly add a noise term to the polarity direction, instead noise
enters implicitly through the finite simulation temperature which makes it difficult to
predict length scales on which cells move persistently. But this opens possibilities for
further projects.

Cells can have multiple lamellipodia exploring the surrounding in several directions.
One way to include this is by introducing several polarity directions with different
alignment strengths into a cell. The polarity directions will most likely synchronize.
But in situations where the main direction is not set, e.g. when cells encounter a dead
end, they can form in different directions.

Micropatterns and cell-cell contacts require additional rules for the implementation.
Our model assumes a strongly contractile cell, but contraction and extension cannot
happen in the same region simultaneously. We therefore reduced contraction at the
leading edge above nonadhesive areas. One can investigate if surface tension, migra-
tory tension and adhesive energy can be combined into one anisotropic tension in the
future giving a more natural way of implementing it. A first step would be to assume
a lower surface tension above non adhesive areas.

With the model set we investigated how shape changes of micropatterns influence
cell stability. We find very good agreement with experimental data [50] and the
parameters used agree well with the traction force predictions (except for the surface
tension) where the same cell type was used. Our interpretation for the stability of cell
pairs on certain patterns is mainly based on the contractility of the cell-cell junction.
Analytical treatment may be possible with an persistent random walker moving in
angular space on an energy landscape set by the length of the cell-cell junction.
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Network Optimization

5.1. Introduction

The cell model can now be considered complete to address the optimization of mi-
cropattern layouts. Cell shape, mechanics, division, interaction and stability on mi-
cropatterns are predicted correctly as explained in the previous chapters.

We use a genetic algorithm (GA) to optimize the layout. This chapter first motivates
the use of GA and introduces the working principle of the algorithm in detail. The
representation of pattern by a genome is an important part of it. This happens
by arc like structures as used in almost every micropattern experiment and Fourier
descriptors, a two-dimensional shape representation by a Fourier transform. To explore
the algorithm we first apply it to a test case: Finding the optimal pattern for a given
cell shape. We then move on to design layouts which bias cell migration into one
direction and finally turn to the optimization of micropattern networks.

Advantages of a Genetic Algorithm

GA are inspired by natural evolution. A set of individuals, the pattern layouts, need
to compete in an selective environment. Only the fittest individuals are allowed to
reproduce and live on in the next generation. In the implementation of an GA the
selection pressure is generated by a fitness measure, e.g. how well a given pattern lay-
out normalizes cells. Those patterns which perform best are more likely to be selected
for reproduction which can happen e.g. by averaging the shapes of the patterns. Re-
production results in a new generation which is again evaluated for its fitness and so
forth until a desired fitness value is reached.

Genetic algorithm are are a standard tool [162–165] in the class of natural prob-
lem solvers which have two prominent examples: “The human brain, that created
the wheel, New York, wars and so on and the evolutionary process that created the
human brain” [163]. Reading this, one could think that the potential of a GA is
almost unlimited. So, what are the advantages GAs have above traditional optimiza-
tion methods such as simulated annealing or descent methods? Most optimization
techniques explore a fitness landscape. For traditional problems this can be the mean

71



CHAPTER 5. NETWORK OPTIMIZATION

square deviation of a function an experimental values or an energy landscape. The
sign of a fitness landscape is usually opposite, but this is irrelevant for the search
strategy and throughout this chapter an optimal solution corresponds to maximum
fitness, although this might actually mean minimal energy. Descent methods explore
the landscape often be means of gradients, which first of all, require the computation
of a gradient and secondly, knowledge about the landscape to ensure absolute con-
vergence. Gradients are costly to evaluate if no analytical expression for the fitness
function is known and sensitive to noise. Descent methods can also get stuck easily
at local maxima. Simulated annealing strategies can escape from local extrema, but
they are also limited by very large barriers or rough landscapes [162].

Genetic algorithm explore the fitness landscape in parallel. One can picture it as
the members of the algorithm being distributed across the landscape communicating
which each other through reproduction. With the algorithm progressing, individuals
should cluster in regions with high fitness giving multiple good solution at once [162].
No prior knowledge about the fitness landscape is required. That is why they can
also be applied to combinatorial problems as the Traveling salesman, Eight Queens
or Knapsack problem where the landscape is discrete. In the Eight Queens problems
eight queens are tried to be placed on a chessboard in a way that not two of them can
check each other [163]. Fitness can be defined by the number of queens checking each
other, but a meaningful gradient is difficult to define. In the Knapsack [163] problem
one tries to put a number of items, each associated with a value ci and volume vi

into a back of finite volume. The aim is to maximize the value of the bag under
the constraint of finite volume. Again, the discrete nature of the problem makes the
definition of a gradient difficult.

To summarize, we use a GA to optimize the pattern layout. Our main reason is
the lack of knowledge about the fitness landscape. It may be very rough with high
barriers and depend on how the patterns are represented but a GA is considered
ideal in this case [163]. It is also robust to noise which is inevitable in biological
experiments, e.g. the seeding location of cells cannot be controlled easily. In addition,
a GA generates a set of solutions instead of just one which allows to test multiple
candidates experimentally. It is not guaranteed to find the best solution in finite time,
but a good working solution is sufficient in our context. It has also been used before
in a similar context to optimize patterns of motors in motility assays to transport
microtubules efficiently [166].

5.2. Genetic Algorithm

5.2.1. Principle

This section mainly follow the book by Eiben and Smith [163]. The principle of a
GA is shown in Figure 5.1. The optimization by a GA starts out with a population
consisting of several randomized individuals. In our case each individual is a pattern
consisting of elementary building blocks called genes. E.g. the [Y] shaped patterns
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Figure 5.1. Pictorial representation of an iteration step in a genetic algorithm (GA).
Members of a parent population are evaluated for their fitness, e.g. how well a cell on
a member matches the shape of a target cell (cell shapes on the pattern are indicated
by a red outline). According to their fitness they are selected (not shown in this
pictorial representation) for recombination in a crossover process. This generates a
new generation which is subjected to mutation resulting in the offspring generation.
The offspring become the new parents and the iterations starts again.

is made by three genes each encoding a straight line but with different orientations.
How patterns are encoded is discussed in detail below. The algorithm usually starts
out with a random configuration but for better illustration the pattern in Figure 5.1
are very regular.

To mimic evolution the fitness of each individual (=pattern) is evaluated. In the
shown example the fitness is determined by how well a cell shape (red outline) matches
the shape of a target cell. In the recombination step individuals are selected to cross
their genomes and form offspring. The likelihood of being selected depends on the
fitness of each individual. This mimics the selective pressure of the environment. For
illustration the fitness based selection is dropped in Figure 5.1. Two patterns generate
two offspring, respectively. The crossover of the genomes in the recombination step
generates new patterns which have attributes of both parents. In the last step mutation
randomly changes the properties of some genes and one arrives at the final offspring
generation. The offspring become the new parent and the iterations starts again.

The crossover and mutation operations are the main search operators of the al-
gorithm which explore the fitness landscape while the fitness based parent selection
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ensures that good changes persist. The mutation step is important to maintain a
diversity in the population.

To explain the algorithm in detail a simple example is most instructive. In many
problems a binary representation of individuals is used. A sample genome looks like
this:

Genome G = 1 0 0 1 1 0 1 0 1 , (5.1)

where each box represents a gene and this individual has a genome consisting of nine
genes. The first one being g1 = 1, the second g2 = 0 and so on. A very simple Fitness
function would be

F (G) =
∑

Genei

gi (5.2)

which has a maximum for all genes gi being one. The algorithm now works as follows:

1. Start with a random population. E.g. with four individuals

Member 1 : G1 = 1 0 0 1 1 0 1 0 1

Member 2 : G2 = 1 1 0 0 1 0 1 1 1

Member 3 : G3 = 0 0 1 1 1 1 1 0 0

Member 4 : G4 = 1 1 1 0 1 1 1 0 1 .

(5.3)

2. Fitness evaluation of each individual. With the Fitness function (5.2) this is

F (G1) = F
(

1 0 0 1 1 0 1 0 1
)

=5

F (G2) = F
(

1 1 0 0 1 0 1 1 1
)

=6

F (G3) = F
(

0 0 0 1 1 1 1 0 0
)

=4

F (G4) = F
(

1 1 1 0 1 1 1 0 1
)

=7

(5.4)

3. Parent selection according to their Fitness. The simplest method is fitness pro-
portional selection with probability pi = F (Gi)/

∑

j F (Gj) for the i-th individual.
For the population above we assume that G4 is select twice and G1 and G3 once.

4. Recombination: The genomes of parents selected for recombination are crossed
e.g. by one point crossover where genomes of couples are split at random location
and then mixed.

P1 : G1 = 1 0 0 1 1 0 1 0 1 O1 : G1 = 1 0 0 0 1 1 1 0 1

P2 : G4 = 1 1 1 0 1 1 1 0 1 O2 : G2 = 1 1 1 1 1 0 1 0 1

P3 : G3 = 0 0 1 1 1 1 1 0 0 O3 : G3 = 0 0 1 1 1 1 1 0 1

P4 : G4 = 1 1 1 0 1 1 1 0 1 O4 : G4 = 1 1 1 0 1 1 1 0 0

(5.5)

The colors illustrate the crossover of the genomes. Pairing of parents is random
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from the ones selected in step three but usually self crossover (G4 with G4)
is avoided. Parents are labeled with Pi and offspring with Oi. Selection and
crossover have increased the average fitness from 5.5 to 6 in this example.

5. Mutation of offspring e.g. by randomly flipping a bit of the offspring population
with a certain probability.

6. The offspring become the new parent generation and the iteration starts again
at step 2.

The algorithm is terminated when a certain fitness is reached or no significant changes
occur over several iteration steps.

There exist a large variety of parent selection, crossover and mutation operators
[163] discussed below. GA algorithm are also not restricted to using a binary genome
although binary genomes are addressed in the majority of the literature.

5.2.2. Pattern Representation

Figure 5.2. Arc representation of a [crossbow] pattern. The [crossbow] is made from
two arcs, each encoded in a gene by six numbers: the position (x, y), length L, width
d, radius R and orientation α. Straight arcs have an infinite radius.

To optimize patterns one needs a way to encode them by a genome. The simplest
approach would be to use the underlying lattice and a binary representation. The
lattice written down in a linear representation with ones denoting adhesive sites and
zeros nonadhesive results in a genome as (5.1). But even for a very coarse lattice of
50 × 50 sites this would give a genome with 2500 genes and a huge search space to
explore. Besides, commercially available patterns are limited by a minimum size of
3 µm [167] and the fine resolution individual lattice sites provide would increase the
search space unnecessarily.

Almost all patterns used in experiments are constructed from arc like building
blocks. The [crossbow] shown in Figure 5.2 is made from two arcs, one curved part
at the top and a straight at the bottom. Both arcs can be described by their position
(x, y), length L, width d, radius R and orientation α as shown in the figure. The

75



CHAPTER 5. NETWORK OPTIMIZATION

(a) (b)

(c) (d)

Figure 5.3. (a) Randomly generated patterns from arcs with genomes similar to
(5.6). The genome size is restricted to three. (b) Randomly generated patterns from
Fourier descriptors (FD) with Nmax = 9 (see equation 5.7) and genome as defined in
(5.8). Subsequent randomly generated coefficients are restricted in size by zν/zν+1 =
1.5. An interactive demonstration of FD can be found at http://demonstrations.

wolfram.com/FourierDescriptors/ [168] (c) Same as previous figure but the shapes
fulfill the symmetry condition of equation 5.9. (d) Same as previous figures, but the
shapes have a three fold symmetry achieved by only using coefficients with z1±3ν =
z1, z4, z−2, z7, z−5 . . . . All other coefficients are zero.

straight arc has an radius of infinity. Thus, six numbers are enough to describe one
arc and if each number is represented by 16 bits the crossbow is described by a binary
genome of 192 genes which is much less than in a lattice based description. Limits
for minimum feature size or maximum curvature are also formulated easily in such
description.

GA are not limited to binary genomes and the six numbers describing one arc can
be taken as one gene. Following the schema in (5.1) a genome would look like

GArc = x1, y1, L1, d1, R1, α1 x2, y2, L2, d2, R2, α2 x3, y3, L3, d3, R3, α3 , (5.6)

with examples shown in Figure 5.3a. Each pattern consists of three genes.

Another approach to describe shapes is by Fourier descriptors (FD) introduced in
detail in the Appendix, section A.2. They are a standard tool in image processing [169]
and are widely used in biology [170, 171]. For Cartesian FD a shape is represented in
the complex plane by

z(s) =
Nmax∑

ν=−Nmax

zν e2πiνs. (5.7)

The curve z(s) with parameter s is an expansion of the actual shape in a Fourier
series with complex valued coefficients zν = xν + iyν truncated at Nmax. To describe
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a pattern one can take the coefficients zν as genome, e.g.

GFD = z0 z1 z−1 z2 z−2 z3 z−3 . . . zNmax
z−Nmax

, (5.8)

with examples shown in Figure 5.3b. In contrast to radial FD (also discussed in the
Appendix) Cartesian FD are not limited to simple valued boundaries and shapes can
have overhangs. Only connected regions can be represented, although the regions can
have holes as shown in Figure 5.3b. They have several useful properties discussed in
detail in the appendix. To name a few, translation of shape is achieved by changing
the coefficient z0, shapes can be made scale invariant by dividing all coefficients by
z1 [172]. Higher order coefficients represent finer features or, when a cell shape is
described, truncating the series early cuts off noise in the shape. As shown in Figure
A.5 a crossbow can already by described by Nmax = 5 coefficients. Mirror symmetry
can be achieved if the coefficients fulfill

yν = xν tan(2πν∆s + ψ), (5.9)

where ψ denotes the symmetry axis and ∆s is the offset of the start point from this
axis (see Figure A.6a). Shapes that fulfill equation (5.9) are shown in Figure 5.3c.
This condition can also be used to define a measure for how symmetric a shape is.
Rotational symmetry is achieved by setting certain coefficients to zero. For a m-fold
rotational symmetry only the coefficients with z1±νm are different from zero. E.g.
the three fold symmetrical shapes in Figure 5.3d have only the non-zero coefficients
z1, z4, z−2, z7, z−5.

With these to methods a wide variety of patterns can be represented. The letter
shaped patterns as [C],[H],[Y] with the arcs and spread shapes like triangles or similar
with Fourier descriptors.

5.2.3. Parent Selection

We mentioned already the fitness proportional selection method where a parent is
selected according to its fitness Fi with probability

pi =
Fi

∑

j Fj

, (5.10)

where the sum extends over all members of a population. Variants exists [163], e.g.
by adding a offset to the sum to make the selection of less fit members more likely.
Fitness based parent selection is closely coupled to the definition of the fitness func-
tion. A strongly nonlinear fitness measure could make selection of the fittest member
much more likely. To avoid this dependence a ranking based selection can be used.
Here, members are sorted according to their fitness and selected with a probability
proportional to their rank. This avoids problems with large differences in fitness. We
will use fitness proportional selection as defined in equation (5.10)
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5.2.4. Recombination

As with Parent Selection a wide range of recombination methods exists. We focus on
recombination of two parents. Crossover operations between multiple parents exist
[163] but are not considered here. Parents can be selected multiple times to generate
offspring with different partners, but each pair of parents generates just two offspring
keeping the total population size fixed.

One point crossover

One point crossover (5.5) was already mentioned when the algorithm was introduced.
It is not restricted to binary genomes. Genes between the parents are exchanged which
mimics the chromosome exchange in sexual reproduction

(5.11)

Each square represents a gene. A crossover point is selected indicated by the vertical
line and the genes behind the points are exchanged between the two parents. E.g. if
patterns are represented by several arcs (=genes), offspring are a combination of the
arcs present in the parents as illustrated in Figure 5.1.

This crossover method conserves the order of the genes which is important if patterns
are represented by FD where the coefficient scale with their order.

Two point crossover

This method is essentially the same as one point crossover but two crossover points
are selected.

(5.12)

The segments which are exchanged don’t need to have the same length which results
in variable length genomes. This method does not conserve the order in the genome.
There are many more possibilities to exchange genes. We will focus here on one point
crossover since it is the simplest method which conserves order.

Single arithmetic

Genomes with a floating point representation allow to average genes. As with the
pure crossover operations above different variants exists. They all have the arithmetic
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average of a single genes in common. Two offspring genes o1,i and o2,i at genome
position i become

o1,i =αp1,i + (1 − α)p2,i

o2,i =αp2,i + (1 − α)p1,i,
(5.13)

where p1,i and p2,i denote the parent genes, respectively. The parameter α ∈ [0, 1]
controls the strength of the crossover. In a single arithmetic crossover operation one
gene i is selected in both parents and crossed

(5.14)

One point arithmetic

Arithmetic crossover can be applied to all genes after a crossover point

(5.15)

Arithmetic recombination with crossover

A combination of the pure crossover and arithmetic operations is found by this opera-
tion. Complementary parts of the parent genes are averaged to generate the offspring

(5.16)

There are further variants. E.g. complete arithmetic crossover where the whole genome
is averaged or averaging of genes at different positions.

We focus on one point crossover (5.5) and arithmetic recombination with crossover
(5.16) since those because they operate on the whole genome and conserve the order
of the genes.

5.2.5. Mutation

For a binary representation of a genome only bit flips are possible which can happen
to single genes or to the whole genome. The corresponding operation for a floating
point representation of genes is a randomization of the values it encodes

g = x −→ g = ξ. (5.17)
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x stands here for all values a gene encodes. For arc representations this is position,
radius, length and so on which all get randomized. The random number ξ is drawn
from a uniform distribution. Random mutation of a gene can only by allowed to
happen with a small probability pr, otherwise the whole genome is randomized fast
and any progress made by the algorithm is undone.

Opposed to the complete randomization is a gradual change widely used in GA [163]

g = x −→ g = x + N(0, σm), (5.18)

where N(0, σm) is a random number drawn from a Gaussian distribution with zero
mean and variance σm . This mutation is usually applied with probability one and a
small variance ensures that most changes are small. Large changes are still possible
due to the Gaussian distribution but occur with lower probability.

5.2.6. Elitism

Elitism is a mechanism which avoids loss of the fittest members by mutation or
crossover. It keeps track of the fittest members as the algorithm progresses and places
them directly into the offspring generation. The members with the smallest fitness are
replaced by the best. We apply elitism and carry over for 10% of the fittest members.

5.2.7. Parameter Control

GA are not parameter free. The most important one is the strength of the mutation
controlled either by the probability pr of a random mutation or the variance σm of a
Gaussian mutation. Other parameters are the population size, crossover ratio α or
the crossover method.

In our approach one gene encodes different properties. In an arc representation,a
gene encodes position, radius, length and so on as defined in (5.6). Each of these
values are constrained by boundaries to avoid situations where arcs are initialized far
apart from each other, very thin/thick or too short/long. Written down in a general
way a gene with its components labeled by j becomes

g = x = (x1, x2, . . . , xj , . . . ) xj ∈ [xj,min, xj,max] (5.19)

The scale of the boundaries xj,min and xj,max is set by the cell scale the patterns are
made for. For pattern represented by FD descriptors the size is controlled mainly by
the first order coefficient and all subsequent coefficients are expected to be smaller.

The strength of the Gaussian mutation σm is scaled with these constraints to adapt
mutation to the different types of values encoded. E.g. the length L of an arc as
encoded in (5.6) is constrained by Lmin < L < Lmax and if Gaussian mutation is
applied the random number in equation (5.18) is drawn from a Gaussian distribution
with variance σm(Lmax − Lmin). For a general component xj of a gene this means

gj = xj −→ gj = xj + (xj,max − xj,min)N(0, σm). (5.20)
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Mutations beyond the limits xj,min and xj,max are allowed.

A population can loose its diversity if the mutation is too weak in a process called
premature convergence [163]. Through crossover all members become very similar and
no more progress is made. This situation can be avoided by adapting the mutation to
the diversity of the population by dividing the Gaussian variance χ by the variance of
the population fitness σp. Thus mutating with a random number N(0, σm/σp). With
the constraints set on the scale of genes the Gaussian mutation (5.18) for a single
component xj of a gene becomes

gj = xj −→ gj = xj +
xj,max − xj,min

σp

N(0, σm). (5.21)

In case of a almost homogeneous population with low σp the mutation strength is
increased while for very diverse populations it is lowered.

The mutation strength is mainly chosen empirical throughout this chapter. The
mutation variance σm itself can be made part of the genome [163]. Each member and
its genes have their own strength with is also subjected to crossover and mutation.
But this approach was found to have little impact on the optimization.

5.3. Shape Matching

To test and investigate the different crossover and mutation operators the GA is ap-
plied to a simple test case with known solution. We use the GA to find the optimal
pattern for a given cell shape. In Figure 5.4a the [crossbow] pattern and the averaged
cell shape on it are shown which we use as target shape. Patterns are generated with
the GA and the shape of a cell on a pattern is predicted by the CPM and compared
to the target shape. The agreement with the target shape sets the fitness of a given
pattern. Hence, a fitness function describing the agreement between the target shape
and a simulated shape is needed. The simplest measurement for shape agreement is
the number of mismatched pixels

DL =
∑

x,y

|δ(x, y) − δT (x, y)| , (5.22)

where the sum extends over all lattice sites and δ(x, y) is one if a site belongs to a
cell and zero otherwise. The same holds for δT (x, y) but with the target cell shape.
The fitness is then defined as F = 1/DL. A measure as 5.22 does not take the spatial
arrangement of the lattice sites into account. A cell on a [T] pattern could have a
similar DL-value as a cell on a [circle], although the cell on [T] is more similar to the
target one on [crossbow]. Image moments [169] are a measurement also taking the
shape into account. They are defined as

Mm,n =
∑

x,y

xmynδ(x, y). (5.23)
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(a) (b)

(c) (d)

Figure 5.4. (a) [crossbow] pattern with cell (left) used to simulate the target cell
shape (right). (b) Pattern encoded by two arcs predicted by the genetic algorithm
with cells matching the target shape of the previous figure. The adhesive geometry
away from the cell contour has no influence on the cell shape. For the last predicted
pattern two point crossover (5.12) was used which does not constrain the genome size.
Two patterns are shown with cells for better illustration. (c) Same as previous Figure
but with cells encoded by Fourier descriptors with Nmax = 5. (d) Same as previous
Figure but with the symmetry forced by using equation (5.9) to set the imaginary
part of the coefficients (first shape) or with the symmetry measure (5.27) added to
the shape measure (5.25) (second and third shape).

They can be calculated for simulated cells and the target cell and a distance measure
can be defined as

DM =
∑

m,n

∣
∣
∣Mm,n −M (target)

m,n

∣
∣
∣ . (5.24)

The fitness is again taken as the inverse of this measure. Moments can be combined
into invariant measures under certain transformations, e.g. translation and rotation
invariant Hu moments [173]. But all of these measures were found to perform poorly
in combination with the GA.

Fourier descriptors allow to define another measurement by taking the distance
between the absolute values of the coefficients

D2
FD =

Nmax∑

ν=−Nmax

ν 6=0

(

|zν | −
∣
∣
∣z(target)

ν

∣
∣
∣

)2
. (5.25)

The zeroth order term is excluded to make the measure translation invariant. Taking
the absolute value of the coefficients makes it rotation invariant since all rotation
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information is contained in the phase [174]. The Fitness is then defined as

F =
1

DFD

. (5.26)

Again, this is a highly nonlinear fitness measure which strongly increases the selection
pressure on unfit individuals. This can be prevented by changing the parent selection
method to a rank based operator but this is not necessary here and we use fitness
proportional selection (5.10).

5.3.1. Results

Figure 5.4b shows optimal patterns encoded by arcs predicted by the GA. The pre-
dicted patterns are very similar to the original one in Figure 5.4a used to generate
the target shape. However, since the pattern geometry away from the cell contour has
little influence on the shape the orientation of the central straight bar is not vertical.
When the number of genes is not constrained as in the case for two point crossover
(5.12) the algorithm tends to accumulate many arcs to cover almost the whole area
under the cell as shown by the right pattern in Figure 5.4b.

Patterns encoded by FD work equally well as shown in Figure 5.4c. Again, only the
contour of the patterns matches the pattern defining the cell shape and patterns can
be very asymmetric.

The asymmetry can be prevented by using the symmetry constraint (5.9) for the
coefficients. Either directly by setting the imaginary part yν of the coefficients from
the real part xν or by introducing a symmetry penalty explained below. The tilt axis
ψ and start point offset ∆s in equation (5.9) can be calculated from the first coefficient
pair. However, changes from mutation or crossover lead to large fluctuations of these
values which impacts the imaginary values set by it. In addition, it couples all genes
and the GA is found to perform poorly if the mutation strengths are not set carefully.
Alternatively a measure for the symmetry of a shape can be defined from equation
(5.9) by

D2
sym =

∑

ν 6=0

[yν − xν tan(2πν∆s+ ψ)]2 , (5.27)

where ψ and ∆s need to be determined numerically to minimize Dsym. The value of
Dsym can be added to DFD in the fitness measure (5.26) or subtracted from the fitness
F . Predicted patterns are shown in Figure 5.4c which are symmetric and closely
resemble a [crossbow].

5.3.2. Influence of Crossover, Mutation and Elitism

Figure 5.5 shows how the fitness evolves as the algorithm progresses. The fitness of
each member is indicated by a red dot. The mean fitness and its variance by green
and blue lines, respectively. The interesting parts of a population are its best members
and the mean fitness of the best 10% is shown by a magenta line. The optimization
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Figure 5.5. Evolution trajectories generated by the genetic algorithm. A population
size of 128 was used. The fitness of each individual is indicated by a red dot. Mean
fitness (green), its variance (blue) and mean of the fittest 10% are shown as solid
curves. One point crossover (5.5) and patterns represented by Fourier descriptors
with the constraint zν ∈ [−10 µm/2ν, 10 µm/2ν] were used. The target pattern has a
width of 30 µm (a) Random mutation (5.19) with probability pr = 0.01. (b) Random
mutation (5.19) with probability pr = 0.01 and elitism for 10% of the members. (c)
Gaussian mutation (5.20) with σm = 0.01 and elitism for 10%. (d) Adaptive Gaussian
mutation (5.21) with σm = 0.01 and elitism for 10%.

starts with random patterns similar to the ones in Figure 5.3 which result in a very
low fitness that increases with each generation.

Figure 5.5a shows the optimization with one point crossover (5.5) and random mu-
tation (5.19). The fitness is calculated by (5.26). To put it into perspective, the
optimal shapes in Figure 5.4 have a fitness value between two and three. A sharp

84



5.3. SHAPE MATCHING

initial increase is observed where most of the unfit members are eliminated by the
selection mechanism. Occasionally members with a much higher fitness occur. They
do not persist because their genome is mutated rapidly and cannot propagate to the
rest of the population. The fitness slowly increases but the predicted cells do not
reach a good agreement with the target shape. A fitness value of one roughly means
that the size is estimated correctly. The fitness of the whole population is clustered
mainly around the mean but many members with a low fitness are found which is due
to the random mutation operator. It can completely reshape a pattern with a single
mutation step.

Elitism helps to preserve good changes as shown in Figure 5.5b where 10% of the
fittest members are carried over to the next generation without mutation or crossover.
The mean fitness strongly increases right from the start. The elite members drag
the rest of the population behind leading to an overall increased fitness. Due to the
random mutation members with a very low fitness still exist and the diversity seems
to increase. But the increased diversity is mainly due to the strongly nonlinear fitness
measure.

Gaussian mutation (5.20) performs equally well as random mutation as shown in
Figure 5.5c Since it is more likely to have small changes by mutation instead of com-
plete randomization no more individuals with a very low fitness exist. But the low
mutation rate comes at the price of not being able to explore the whole parameter
space efficiently and the fitness only increases slowly. With adaptive mutation (5.21)
the mutation strength is initially strong due to the small diversity in the population
and, supported by elitism, a rapid increase is achieved as shown in Figure 5.5d. The
increased diversity at a higher fitness decreases the mutation rate and the population is
stabilized. The changes introduced by crossover and mutation are still strong enough
to further explore the fitness landscape.

It seems that adaptive Gaussian mutation with elitism is the method allowing for
the most rapid fitness increase. But only single runs were shown in Figure 5.5 and GA
are not deterministic if initialized with a different random seeds. Figure 5.6a shows
the fitness of the best 10% of the members averaged over 64 runs and confirms that
adaptive Gaussian mutation in combination with one point crossover (OPC) yields
the best results. It has the fastest initial increase and is not saturated at the end of
the optimization. Only using Gaussian mutation without adaptive strength performs
a little bit worse because the initially required large mutation rate hinders progress at
a later stage.

Random mutation has a weaker initial increase but also reaches considerable fitness
values. This only works when it is combined with elitism.

Patterns can also be optimized to some degree without any crossover. Without
crossover the optimization is similar to simulated annealing. The configuration space
is explored by random mutations with the mutation strength similar to a tempera-
ture. The acceptance probability of a configuration change corresponds to the parent
selection method in this case. However, without crossover optimization only works in
combination with elitism (data not shown).

Arithmetic recombination with crossover (5.16) performs very poorly. Averaging of
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Figure 5.6. (a) Fitness of the best 10% of the population for various mutation
and crossover methods averaged over 64 runs. If not stated otherwise all runs were
performed with adaptive Gaussian mutation (5.21) and elitism. One point crossover
(OPC) performs best. (b) Mean fitness for various population sizes N with optimal
mutation strength σm. One point crossover with adaptive Gaussian mutation was
used. Each population size was averaged over 4096/N runs.

genes generates a very homogenous population. The main search operator in this case
is mutation but improvements made a are rapidly destroyed by averaging. In contrast,
one point crossover (5.5) conserves the values of the genes and just mixes genomes.

The parameters left to explore are the population size and mutation strength. Fig-
ure 5.6b shows the mean fitness for runs with different sizes and optimal adaptive
Gaussian mutation strength σm. The optimal strength was found by taking the area
under the fitness curve as measure for performance. It was maximized by using Pow-
ell’s optimization method [175] with σm as optimization parameter . Increasing the
population size makes it more likely to find fit members in the initial generation. It
takes longer for those fit members to take over in large population, but for the aver-
aged runs shown a higher mean fitness is reached in the end. The optimal mutation
strength decreases with population size. This is expected because for adaptive Gaus-
sian mutation (5.21) the strength scales with the diversity σp of the population which
changes with population size.

Increasing the population size is limited by the computational time needed and
benefits quickly saturate above 256 members. Optimizing other parameters is also
restricted by the computational time. On a current state desktop processor evaluating
the fitness of a population with 128 members takes about 10 seconds. This involves
pattern generation, cell spreading which takes about 2000 MCS and averaging the
cell shape for another 2000 MCS. Statistics needs to be collected for multiple runs
and Powell’s method takes about 50 function evaluations to converge. This makes
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(a) (b) (c)

Figure 5.7. (a) Triangular micropatterns arranged into an ratchet with cell reservoirs
on both sides. Cells are stained for actin (green) and the nucleus (blue) and migrate
preferentially to the right. Adapted from [46]. (b) Randomly generated ratchet pat-
terns with arc representation. Unit cells containing four arcs are arranged in a 4 × 2
square lattice with periodic boundary conditions. The unit cell width is 50 µm as
in experiments [46]. (c) Same as previous Figure but with patterns represented by
Fourier descriptors.

parameter optimization unfeasible for more complex optimization. We therefore set
the parameters empirically in the remaining part of this chapter.

In summary, one point crossover (5.5) with adaptive Gaussian mutation 5.21 yields
the best results. A population size of 128 members is chosen for computational ef-
ficiency and close to sizes used previously in similar context [166]. The Gaussian
mutation strength is set to σm = 0.001.

5.4. Cell Migration Biased by Micropatterns

It has been demonstrated that ratchet shaped structures as shown in Figure 5.7a
can bias cell migration into one direction [45, 46]. Likewise, we use the GA to find
geometries which maximize the bias of the migration direction. To generate ratchet
geometries we arrange patterns into a square lattice with four repetitions. Examples
are shown in Figure 5.7b for arcs and Figure 5.7c for Fourier descriptors.

In experiments it is difficult to control where cells attach to the pattern. Initially,
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Figure 5.8. Evolution trajectories for optimal migration bias. The fitness (5.28) is
shown as function of the GA generation. For each pattern 32 cells were placed and
the migration followed for 10000MCS (sufficient to cross the ratchet two times). The
green and blue curves are the mean fitness and variance, respectively. The magenta
curve is the fitness of the best 10%. Individuals are indicated by red dots with the best
individual marked by a triangle. Cells were simulated with the optimal parameters for
MCF10A cells from chapter 4. Patterns represented by Fourier descriptors, a popula-
tion size of 128, one point crossover (5.5) with Gaussian mutation (5.20) (constraint
zν ∈ [−20 µm/1.5ν , 20 µm/1.5ν ], strength σm = 0.01) were used. (a) Ratchet without
reservoir and cells initialized as circles at random positions. (b) Ratchet with reservoir
(50 µm width) and cells initialized at random positions within the reservoir.

cells are suspended in a medium and make contact at random positions. Large reser-
voirs as shown in Figure 5.7a make sure that most cells attach there and have no biased
migration direction from the start. However, this does not prevent initial contact of
cells on one of the ratchets. Simulating cells with the CPM allows to control the
starting position. Cells can either be placed random on completely periodic lattices
as shown in Figure 5.7b and 5.7c or reservoirs can be added at the left and right of
the lattices. Cells are than only placed at random within one of the reservoirs.

We investigate both seeding mechanism, random placement without reservoir and
random placement only within a reservoir. As fitness measure we take

F =
dr

d0
, (5.28)

where dr is the distance migrated by a cell to the right during a fixed number of MCS.
It is normalized by the distance d0 migrated on a homogeneously adhesive substrate
when the polarity direction is kept fixed. Many cells are placed at random on the
patterns and their fitness is averaged. The fitness measure (5.28) can become larger
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(a) (b) Reservoir (c) (d) Reservoir

Figure 5.9. Optimal patterns formed by arcs ((a),(b)) and Fourier descriptors
((c),(d)) predicted by the genetic algorithm to bias cell migration to the right. In
(a) and (c) no reservoir was used and cells are placed at random position. In (b) and
(d) cells were initially placed in reservoirs (not shown).

than one. Cells confined to a narrow line move faster than free cells because their
shape allows maximum force from the graded force model introduced in the previous
chapter on front and rear. The measure can become negative when cells preferentially
move to the left and is set to zero in this case to allow parent selection.

5.4.1. Results

Figure 5.8 shows the fitness as the optimization progresses for both ratchets with and
without reservoirs. Here, the full potential of the algorithm is illustrated. Within a few
optimization steps a significant bias for cells migrating to the right is generated. For
patterns without reservoirs (Figure 5.8a) layouts form which allow a faster migration
than on homogeneously adhesive substrates as indicated by the fitness which is larger
than one. For ratchets with reservoirs (Figure 5.8b) cells spend time migrating on the
reservoirs in vertical direction not finding the transition to a ratchet. The optimal
Fitness is lower but the bias is still very strong.

Figure 5.9 shows optimal pattern layouts to bias the migration. Most have a trian-
gular shape, but not the equilateral one used in experiments (compare Figure 5.7a).
The triangles are rotated and two corners lie on a horizontal line forming an almost
straight horizontal edge.

Without reservoirs and arc patterns occasionally triangles facing the opposite way
are formed (Figure 5.9a top two patterns). These triangles have been reported to
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bias migration before when the tip angle is acute enough [16]. Two mechanism are
used here. Firstly, the narrow triangle provides a continuous track without gaps. It
is covered by the cell completely along its narrow width leaving no room to migrate
vertically. Cells then tend to move in the direction of more available adhesive area.
Secondly, the arms protruding from the continuous track catch randomly seeded cells
as indicated figure by the red arrows and bias them into the right direction.

Arms protruding from the patterns are not present when cells are only allowed
to start from an reservoir (Figure 5.9b and 5.9d). Patterns described by Fourier
descriptors perform better here, most likely because it is easier to form triangles from
them. Cells migrating to the left on asymmetric triangles encounter a vertical edge
when they deviate from the horizontal path. Depending on the exact shape, this
either acts as a dead end (e.g. third pattern in Figure 5.9d) which makes cells turn
completely or it acts as a vertical barrier. Cell migrate along the vertical barrier until
they reach the continuous track again. Here, they encounter a horizontal barrier and
movement to the right provides more adhesive area to them. The whole movement
is shown in Figure 5.10 where a cell initially moves to the left and is turned by the
pattern geometry. This effect can be enhanced by misalignment of the continuous
track as for the bottom pattern in Figure 5.9c. The small triangular patch at the
bottom of the pattern is right in the migration direction for cells moving to the right
and used to bridge the gap between patterns. For cells moving to the left it has an
offset of several microns from the cell front and the cells seldom adhere to it. Instead,
they turn around.

Equilateral triangles as in Figure 5.7a are not predicted by the optimization. Likely
because they offer less vertical edge to turn and when cells migrate in vertical direction
they move past the continuous horizontal track on them.

5.5. Network Optimization

The normalization micropatterns provide for single cells ceases when cells start to
divide. For single cells, the size of the patterns is chosen to match the cell area and
becomes too small for two cells sitting on the same patterns. Cells with insufficient
space available start to migrate or crawl above each other which makes normalization
and imaging complicated. Many experiments require cells to stay on patterns for
several days and they start to divide. Networks of micropatterns are thought to
provide normalization in this case when daughter cells after division are able to move
on to unoccupied neighbouring patterns.

As demonstrated throughout this work, shape, migration, stability and division are
strongly influenced by pattern geometry and are predicted correctly by the developed
CPM. We now aim to optimize the network layout to provide maximum cell normal-
ization even after several cell divisions.

For epithelial cells as MCF10A, it is unlikely that cells can be separated once they
have adhered to each other. In animals the main purpose of the epithelium is to provide
a protective closed layer around organs without holes. Micropatterns do not change
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Figure 5.10. Cell migrating on ratchet micropattern. Initially the cell moves to the
left but deviates from the horizontal track and turns at a dead end corner of one of the
triangular shapes. It moves back to the horizontal track where it continuous moving to
the right across the reservoirs at the sides. The triangular shapes bias the movement
to the right. The optimal fit parameters for MCF10A cells in chapter 4 are used.The
reservoir has a width of 50 µm and the ratchet is 200 µm long.
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the cohesiveness as demonstrated for cells forming a closed sheet above nonadhesive
regions [51]. We therefore do not require the cells to be without any cell-cell contacts
on the networks. It is also not known if cells can be normalized into a specific shape
on networks and we choose a fitness function which only demands that all cells have
the same shape. To compare shapes the same measure as in equation (5.25) is used

D̄2
FD =

2

Nc(Nc − 1)

Nc−1∑

i=1

Nc−1∑

j=i+1

∑

ν 6=0

(|zi,ν | − |zj,ν |)2 (5.29)

which compares the shape of every cell with the shape of every other cell. The number
of cells on a network is labeled with Nc, zi,ν and zj,ν are the Fourier coefficients of order
ν for cell i and j, respectively. The sum over the coefficient is typically truncated at
a value Nmax = 10. The fitness function is then given by

F =
1

D̄FD

, (5.30)

and is again strongly nonlinear as in equation (5.26).

To minimize the computation time required only one cell is initially placed on a
network. Cell-cell interaction is established through division. After cells have reached
a certain age and have a size above a threshold they divide with a certain probability
during each MCS leading to a Poisson distribution for the cell division time. During
the typical simulations a total of three cell divisions is possible corresponding to 60
hours for MCF10A cells. The fitness of a network layout is obtained at the end of the
simulation from equation (5.30). For each pattern the fitness of multiple runs starting
with different initial positions is averaged. Care has to be taken about the cell size.
One way to obtain optimal fitness for cells represented on a lattice is by making the
patterns very small. Cells also become very small then and all shape features are lost
in the finite lattice resolution. To avoid this during the optimization the fitness is
strongly penalized when the cell area drops beneath half of the target area.

Figure 5.11 shows some of the network layouts investigated. For all networks units
cells are generated containing the patterns and are arranged into square and hexagonal
lattices. Patterns described by Fourier descriptors can be made with a rotational
symmetry matching the symmetry of the lattice with examples shown in Figure 5.11b
and 5.11d.

5.5.1. Results

Snapshots of a simulation of several cells on a hexagonal lattice made of [Y] patterns
are shown in the Appendix in Figure A.12. The simulation displays several charac-
teristics of cells observed experimentally on micropatterned networks. Namely, cells
forming adhesive contacts above nonadhesive areas between patterns by the adhesion
mechanism described in Chapter 3. Clusters of several adherent cells are bridging
larger nonadhesive region. Huge cells spreading the entire network are allowed by
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(a) Square lattice without symmetry (b) Square lattice with 4-fold symmetry

(c) Hexagonal lattice without symmetry (d) Hexagonal lattice with 3-fold symmetry

Figure 5.11. Examples of randomly generated networks by the genetic algorithm.
Unit cells containing a pattern generated with Fourier descriptors are arranged in
square and hexagonal lattices. Rotational symmetry is generated by setting certain
coefficients to zero (see section 5.2.2)

the unconstrained cell area introduced in Chapter 2. Cells migration from pattern to
pattern is driven by the migration machinery introduced in Chapter 4.

With all those mechanism set the GA is used to optimize the layout and results for
square lattice networks without symmetry are shown in Figure 5.12a. The optimization
by the GA turns the two dimensional networks into one dimensional lines to achieve
cell normalization. The cell-cell junctions are stabilized by the absence of adhesive area
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(a)

(b)

(c) (d)

Figure 5.12. (a) Optimal networks for cell normalization predicted by the GA for
square lattices. One point crossover (5.5) with adaptive Gaussian mutation (5.21) was
used (σm = 0.01). The GA transforms the two dimensional networks into lines with
nonadhesive areas stabilizing the cell-cell junctions. (b) Proposed layouts derived
from the previous figure with expected cell shapes on them. (c) Predicted layout
for isolated island with four cells. (d) Proposed layout derived from the previous
figure with expected cell shape. The non continuously adhesive contour is expected
to stabilize the cell junctions

between the cells similar to the stabilization of cells on [H] and [hourglass] patterns
described previously [50]. This suggests that layouts as shown in Figure 5.12b are
ideal to normalize cells. The arrangement of several [diamond] and [L] shapes into
lines provide sufficient adhesive area for the cells to spread. The tension acting in
the junctions contracts them with minimal junction extension possible only above
nonadhesive areas. Extending the junction requires energy if interpreted in the CPM
picture and cell continue to stay in their minimal energy configuration. In addition,
polymerizing actin partially lacks the support of the substrate to push against the
junction on [L] or is inhibited by contact inhibition.

To force a two-dimensional topology square lattice networks made from units cells
with four fold symmetry as shown in Figure 5.11b can be used. But the GA is not able
to find any layouts with notable normalization. Also, for networks with an hexagonal
lattice no normalization is achieved. Cells spread and migrate very irregular on these
networks similar to the ones shown in Figure A.12a. It seems that the two dimensional
networks give the cells too many possibilities to interact. They also allow cell sheets
to be formed which are suppressed in a one dimensional geometry.

Patterns described by arcs and arranged into a lattice also show no appreciable
level of cell normalization. However, when the requirement of a network is dropped
and isolated island for several cells are optimized star shaped structures as shown in
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Figure 5.12c are predicted. These cells can rotate but by disrupting the continuously
adhesive contour as shown in Figure 5.12d it may be possible to stop the rotation and
stabilize the cells.

In summary, only one dimensional arrangements provide normalization to cells. It
is not known if normalization on networks is not possible in principle or if the GA fails
to predict good layouts. The same parameter for the GA were used to optimize cell
migration and network layout because the parameters performed well for the migration
optimization. For the networks the optimal parameter set might be different but the
parameters are difficult to explore because of the increased computational complexity
here.

5.6. Conclusion

This chapter introduced Genetic algorithms (GA) as a general tool to optimize mi-
cropattern layouts. GA where chosen because they do not require knowledge about
the optimization landscape and they are considered robust under noise. The princi-
ple of the algorithm with different selection, crossover and mutation operators was
introduced in the first part. Special emphasis was put on how to generate and encode
patterns. Two complementary approaches were chosen. Arc shaped structures are best
to represent letter shaped patterns and Fourier descriptors can represent more spread
out shapes. Fourier descriptors also easily allow to generate patterns with mirror or
rotational symmetry and concave shapes can be forced by adjusting the ratio of the
axis of the first and second ellipse.

To study the algorithm, is was used to find the optimal pattern which generates
a given cell shape. This task can be easily solved manually with some background
about cell shapes. Nevertheless, insights about the different crossover and mutation
operator are gained from it and parameters can be varied systematically because the
fitness function for this task allows fast evaluation. It also gives insights on how to
compare shapes. Direct pixel mismatch measures (5.22) and moment based measures
(5.24) were found to perform poorly compared to Fourier descriptor based measures
(5.25). Good understanding of the shape matching methods is important because it
forms the basis for the shape comparison of cells in network simulations.

Bias of cell migration by micropatterns was chosen as a second system to be op-
timized by the algorithm. It has been investigated to a large extend experimentally
[45–47] and symmetric triangular ratchets where found to bias migration [45, 46]. Op-
timal patterns predicted by the GA are also triangular for patterns represent by arcs
and Fourier descriptors. However, the triangles are asymmetric which is thought to
generate less possibilities for deviations from the bias direction as the symmetric case.
An improvement of the bias by a change from a symmetric to asymmetric layout would
be difficult to predict without the help of an optimization algorithm. For this problem,
the GA also converged withing 30 iteration steps (compare Figure 5.8) revealing its
true potential. However, the benefit of asymmetric triangles still need experimental
verification.
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The asymmetric shape of the patterns reminds of transport by a Brownian ratchet
[176]. But the cells here are not subjected to a periodically switching or moving poten-
tial driving the transport. Instead, the cells move similar to active Brownian particles
described by the velocity alignment mechanism (4.5) in a potential set by the pattern
geometry. Depending on the movement direction the potential has different slopes.
Active Brownian particles have been demonstrated before to move in asymmetric po-
tential [177–179] and the simplicity of the velocity alignment mechanism should allow
further analytical or numerical analysis of how the bias benefits from asymmetric
triangles.

In the last part of this chapter optimal network designed was addressed. Here, all
of the components introduced in the previous chapter come together to describe cell
movement on networks. Namely, cell shape prediction, cell division, cell-cell adhesion
and cell migration. The GA only partly succeeded by predicting line patterns as
optimal solution for cell normalization. It failed when a two-dimensional network was
enforced to find layouts which normalize all cells. At this point it is not clear if cell
normalization is not possible in two-dimensional geometries or if the algorithm fails
to predict it. However, the line patterns predicted might be a good alternative to
networks.

The GA turns out to be a powerful tool to design pattern but it needs to be adjusted
to the problems. The three optimization tasks described in this chapter were not the
only ones investigated. Fitting of a function, shape matching of patterns without cells
and complete coverage of a pattern by a path with minimal path self-intersection was
also investigated. The optimal crossover, mutation method and strength depend on
the specific problem and need to be adjusted which can take a considerable amount of
time. The failure of the algorithm with respect to network optimization might by due
to badly tuned parameters. A starting point for improvement could be the strongly
nonlinear fitness measure (5.30) which induces a strong selective pressure. For the
migration bias optimization a linear fitness (5.28) was used which performed well and
the same might work for the network design.
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6
Summary and Outlook

The objective of this thesis was to develop versatile model for cell dynamics on mi-
cropatterned substrates. Apart from improving our physical understanding of cell
dynamics on micropatterns, this model also provides a method to design micropattern
layouts.

Micropatterns and their normalization effect where introduced in the first chapter
along basic principles of cell mechanics. The idea of networks of micropatterns to
allow cell normalization during several cell cycles was put forward.

The second chapter introduced the well established cellular Potts model (CPM)
to describe cells on micropatterns. It has the advantage of combining cell dynamics
with shape predictions and is simple to implement. The classical CPM [82, 83] has
a phenomenological Hamiltonian motivated by the differential adhesion hypothesis
[127]. As a multicellular model it has received little attention [72, 85, 86] on how well
it describes isolated cells. Cells are highly contractile which should be reflected by the
model describing them. We revised the formulating of the CPM starting from a single
contracting cell on a micropattern [3]. This bottom up approach revealed that the
multicellular Hamiltonian of the classical CPM requires several changes to describe
single cells correctly. I.e., the unconstrained cell area and edge bundles both motivated
by the simple-tension model [15]. Our careful biological motivation allowed us to
interpret terms appearing in the CPM Hamiltonian as traction forces and to predict
them. The good agreement of predicted forces with experiments on micropatterns [36]
not only showed the mechanical correctness of our model, but also allowed to fit its
parameters to specific cells. Cell shapes and traction forces on arbitrary patterns can
be predicted by it. It offers many possibilities for future studies, e.g. how patterns
influence the prominent force direction of cells [56].

Our contour based approach would also allow to predict traction forces from cell
shapes alone. Several images of cells need to by averaged to obtain a mean shape for
this.
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The third chapter extended our model to multicellular systems. The first part intro-
duced a mapping of the cell contour defined by micropatterns to an ellipse to predict
the cell division plane. Our approach of implementing the mapping directly with
the CPM dynamics is very similar to the actual biological process of cells becoming
spherical before division. It allows to predict the division plane of cells on arbitrary
geometries. In contrast to a previous approach [38] we only require one parameter for
all geometries to obtain good agreements with experiments. In future studies traction
force and division plane predictions can be combined which is of special interest as cells
have been found to divide preferentially perpendicular to the direction of sustained
tension and forces act as memory of cell shape [135].

The second part of the third chapter addressed the mechanism behind cell-cell ad-
hesion. The classical CPM [82, 83] motivated by the differential adhesion hypothesis
described cell-cell adhesion in analogy to surface tension in liquids. For systems con-
sisting of only a few cells the analogy of cells and molecules of a liquid breaks down.
Cell-cell adhesion had to be revised to work for the reduced cell density encountered
on micropatterns. Discrete cadherin bonds were introduced mediating the adhesion.
This allows to control adhesion strength and cell-cell junction contractility indepen-
dently. Our model in combination with the shape of cells pairs on concave patterns can
give further insights into how tensions are generated and balanced at cell-cell contacts
above nonadhesive areas. E.g. by measuring the angle at which the free boundaries of
two cells join to form a common junction.

Cell migration on micropatterns was addressed in the fourth chapter. Cell loco-
motion is driven by actin and myosin generated forces applied to the cell membrane
and is a complicated and highly dynamic process [27]. We simplified it by prescribing
a force applied to the cell contour based on actin and myosin densities. Varying the
distribution of the force allowed us to predict the shape of various migrating cell types.
To set the long time movement direction we used a velocity alignment model which
has the simple interpretation of the cell integrating over its past movement to set its
current direction. The good agreement of our model for cell pairs performing rota-
tional migration on micropatterns [50] was shown for a wide range of patterns. The
same cell type type as for the traction force measurements in the second chapter was
used here and parameters agreed well except for the surface tension which had to be
reduced for migrating cell pairs. It was also demonstrated that the cell-cell adhesion
mechanism introduced in the second chapter is necessary to achieve agreement with
experiments.

The simplicity of our migration implementation might allow to predict cell move-
ment to some extend analytically when cells are considered to perform a persistent
random walk in an energy landscape defined by the pattern geometry. However, the
cell shape influences the locomotion in our approach which might lead to feedback
effects. E.g. cells become faster on narrower tracks.

Traction force measurements, cell division and migration of cell pairs has only be
investigated on symmetric micropatterns. Our model is not limited by the geometry
and can predict all of these quantities on asymmetric patterns. One application would
be to study how how asymmetry can bias rotational motion of cell pairs into one
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direction.
The last chapter addressed pattern layout optimization. We used a genetic algorithm

because it is considered robust under noise and does not require knowledge about the
optimization landscape. The model developed in the previous chapters was used in
the genetic algorithm to evaluate how well pattern layouts perform for example with
respect to cell normalization or how they bias cell migration. Two complementary
methods to encode patterns were introduced. Arc shapes are best to encode letter
shaped patterns while shapes encoded by Fourier descriptors are more spread out and
can be made symmetric or concave easily.

We were able to predict geometries with the genetic algorithm which are thought to
bias cell migration stronger into one direction as existing ratchet patterns [46]. To nor-
malize cell shape after multiple divisions the algorithm predicted one dimensional line
layouts with undulations. The absence of adhesive surface beneath cell-cell junctions
is thought to stabilize cells there.

A total of nine parameters had to be used to model cell behavior on micropatterned
substrates. One of them, the cell area is well known. The adhesive energy density is
found to have little influence leaving seven relevant parameters. The tension related
parameters where set by the traction force measurements [3]. The parameters related
to cell-cell adhesion and migration where set by the persistent rotational motion of
cells on various pattern [36]. All parameters were motivated rigorously from biological
principles and for the complex behavior the model is able to describe the parameter
set can be considered small.

In summary, the balancing act of creating a versatile model describing many aspects
of cells on micropatterns and keeping the number of parameters low and motivated
worked out well.
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Appendix

A.1. The Cellular Potts Model

A.1.1. Radius Spanning Distance Relation with Area Constraint

Many cellular Potts models (CPM) [82, 83, 85] or vertex models [73, 84, 87] for cells in
tissue use an elastic (harmonic) constraint for the cell area or volume in combination
with a simple line tension mediating cell-cell interaction. In addition, some models also
include an elastic line tension [73, 84]. For a single cell the simplest energy functional
combines a simple line tension with the elastic area constraint.

E = λsl + k(A− A0)2, (A.1)

where the first term accounts for the simple line tension λs which scales with the cell
perimeter l and the second term describes the area elasticity with elastic coefficient k
and target area A0.

As in the tension-elasticity model (TEM), the dependence of the arc radius R on
the spanning distance d can be found by a force balance. First we define surface
tension σ = ∂E/∂A and line tension λs = ∂E/∂l. The surface tension pulls inwards
perpendicular to the contour and the line tension exerts a force depending on the
curvature of the contour. The force balance then reads

σn = λs
dt

dl
= λs

1

R
n, (A.2)

where the contour is parameterized by its length l, and n and t are the normal and
the tangent to the contour, respectively. Calculating the derivative of equation (A.1),
equation (A.2) becomes

2R(A− A0) − λs

k
= 0. (A.3)
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Figure A.1. (a) Cell with area A confined to a U-shaped micropattern with
a single circular arc. (b) R(d) dependence calculated from equation (A.4) with
Vel = λs/k increasing from 500 µm−3 (bottom curve) to 2500 µm−3 (top curve) and
a target area of A0 = 0.65d2. (c) R(d) dependence for a target area increasing from
A0 = 0 (bottom curve) to A0 = 0.8d2 (top curve) and Vel = 2370 µm−3. The blue
dashed curves are the same in both figures with Vel = 2370 µm−3 and A0 = 0.65d2

both taken from [85].

This shows that the cell area A and the arc radius R are not independent of each
other. In contrast to the TEM or simple-tension model (STM), the arc radius now
is not controlled locally, but depends on the overall cell shape. Area changes at one
end of the cell can influence the arc radius at the other end. For a cell on a U-shaped
micropattern as depicted in Figure A.1a, the implicit equation for the arc radius is
found from equation (A.3) as

2R

(

d

4

√
4R2 − d2 −R2 arcsin

(

1

2

d

R

)

+ dy −A0

)

− λs

k
= 0. (A.4)

As in the TEM the arc radius depends on the spanning distance d, but in addition
also the height y of the U-shaped pattern influences the radius. In the following only
the case of quadratic shapes with y = d is considered.

There are two modes of controlling the cell shape, either by changing the target
area A0 or by changing the ratio of simple tension and the strength of the area con-
straint Vel = λs/k. Figure A.1b shows R(d) for different values of Vel = λs/k. The
monotonously increasing relation between arc radius and spanning distance observed
in experiments [15] can be achieved by shifting Vel to very small values. However,
this brings the radius very close to the minimal possible radius of R = d/2 and such
strongly invaginated cells are usually not observed experimentally. In Figure A.1c
the target area A0 is changed. For small target areas equation (A.4) does not have
a solution for all spanning distances and the R(d) curve ends at the minimal radius
condition. Cells would collapse in such geometries. Figure A.1b and A.1c also show
R(d) (blue curves) for parameters used previously [85]. Neither changing the strength
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Figure A.2. Cell radius during spreading as function of Monte Carlo sweeps for
an elastic area constraint (see equation (A.1)) and an saturation of the number of
adhesion molecules (see equation (2) in the main text). The simulations are carried
out with a simple line tension of λs = 10 nN, elastic rigidity as stated in the legend,
target area A0 = 1700 µm2. For the model with saturation of adhesive energy the same
parameters as for Figure 3 of the main text where used (σ = 0.6 nN, W = 60 nN µm−1,
one Monte Carlo sweep consists of 2 × 104 inversion attempts).

Vel = λs/k nor changing the target area A0 can achieve a monotonously increasing re-
lation between arc radius and spanning distance without yielding strongly invaginated
cells. The addition of an elastic line tension as in the TEM to the energy functional
(A.1) does not change this outcome.

A.1.2. Spreading Dynamics

The spreading dynamics of a cell with an elastic area constraint as in equation (A.1)
and a cell with a saturation of the number of adhesion molecules as in equation 2 of
the main text is expected to be different. For the former the quadratic area constraint
yields a large contribution throughout the spreading process as long as cell area A and
target area A0 do not match. For the latter the energy gain from forming new adhesion
contacts stays within the same order throughout the whole spreading process. This is
reflected by the simulated cell area as function of Monte Carlo sweeps shown in Figure
A.2. For an elastic area constraint the linear area growth stops only shortly before the
target area is reached. Within the Metropolis dynamics all steps increasing the cell
size are accepted due to the large contribution of the area term. The growth cannot
be faster than linear since only single lattice sites are inverted during each step. In
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a model where the cell spreads against a viscous force the area would initially grow
stronger than linear. With a saturation of the adhesive energy the growth gradually
slows down similar to what is seen in experiments [105, 112]. Reducing the strength
k of the elastic area constraint makes the transition to the steady state less abrupt,
but it also results in larger fluctuations around the target area.

We also note that the limitation in adhesive area used here is similar to a limitation
in membrane tension. For a cell on a homogeneously adhesive substrate the cell area
and adhesive area are equal A = Aad and no actin edge bundles exist. With the
adhesive energy density W = E0/Aref the energy functional equation (2) of the main
text becomes

E = λsl + σA− E0

Aref + A
A

= λsl + σA− E0

Aref + A
A−WA+WA

= λsl +

[

σ +
WA

Aref + A

]

︸ ︷︷ ︸

σ′

A −WA (A.5)

where σ′ now takes the role of the surface tension. It increases with the cell area which
can be interpreted as an increase due to a finite amount of membrane area. Since the
energy functional stays essentially the same, the spreading dynamics and the force
measurements are not directly affected by the different interpretations of the energy
functional.

A.1.3. Implementation

In the lattice-based CPMs a cell is represented by a set of occupied lattice sites as
illustrated in Figure A.3a. Under normal conditions it is very unlikely that cells form
spontaneous holes or that new part of the cell nucleate without contact to the bulk.
We therefore use a modified Metropolis algorithm [83] which only allows to invert sites
at the cell boundary.

The red sites in Figure A.3a are occupied by the cell and form the outermost border
layer of the cell. They are surrounded by the outside layer of sites (green) not occupied
by the cell but being adjacent to one of the border sites. Updates by the Metropolis
algorithm only happen in these two layers. The gray lattice sites belonging to the cell
bulk are passive (no holes are formed), as are the white medium sites (no nucleation
away from the bulk). Occupied lattice sites can get isolated from the bulk of the cell
when the cell retracts.

To define the cell boundary we use the marching square algorithm, a two-dimensional
variant of the marching cube algorithm [180]. Given four lattice sites the marching
square algorithm defines the orientation and length of the boundary between those
four sites. To calculate the contribution of a single lattice site to the cell perimeter
the occupation of its eight surrounding sites needs to be known. The marching square
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(a) (b)

b

(c)

Figure A.3. Cell represented on a lattice. Sites inside the cell are gray, sites in
the border layer of the cell are red and sites not being occupied by the cell but in the
neighborhood of border sites are green. The cell periphery is indicated by the black
line. (a) Representation of a whole cell. (b) Update of a single lattice site. (c) Circular
mask applied to the cell boundary to define the normal.

algorithm allows only boundary orientations of 0◦, 45◦, 90◦, . . . , which results in a high
lattice anisotropy. The anisotropy can be reduced by allowing more possibilities for
the boundary orientation and length by taking a larger neighborhood. Each occupied
lattice sites gets a value assigned increasing with the number of occupied neighbors.
A higher value pushes the boundary further away from this site. Similar methods to
refine the marching square algorithm have been used in image processing [181]. We use
a square of 4x4 lattice sites to define length and orientation of the boundary between
the four central sites. The boundary contribution of a single site is then defined by
its 24 neighbors. The resulting cell outline is shown in Figure A.3a as black line. The
length of this line is used as the cell perimeter in the energy functional equation (2)
of the main text. The cell area is defined by the number of occupied lattice sites.

Figure A.3b illustrates the inversion of a lattice site. A new site is added to the green
outside layer in this case. The changes required by the inversion in the red border
and green outside layer are stored in a lookup table which requires knowledge about
the identity of the four surrounding sites. The change in circumference calculated
by the refined marching square method is also stored in a lookup table requiring the
occupation values of the 24 surrounding sites.

The orientation of the normal to the cell border is found by applying a circular mask
to the lattice as illustrated in Figure A.3c. The vector connecting the geometrical
center (cross) of the occupied lattice sites within the circle (black sites) and the circle
center defines the normal direction n at the circle center. With this normal the
boundary segments left and right of the original segment and their normal orientations
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Figure A.4. Different stages of the reconstruction of traction forces from the CPM.

φl and φr can be identified. The curvature is then approximated by

κ =
1

2

φl − φr

l
, (A.6)

where l is the length of the boundary segment. The factor 1/2 arises from two bound-
ary segments sharing one kink in the boundary.

A.1.4. Reconstruction of Traction Force from Simulated Force

Fields

As described in the main text, the simulated traction force is used to calculate a
displacement field from which the traction can be reconstructed with the Fourier-
transform traction cytometry method [54] to make it comparable to experimental
results. First, the cell shape is obtained as shown in Figure A.4a. Due to the finite
simulation temperature the membrane fluctuates and the traction force in the cell
contour is obtained by averaging over 2 × 105 Monte Carlo sweeps. The traction force
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is distributed over a 2 µm wide stripe beneath the membrane. To be more precise,
we apply a disk shaped kernel with a radius of 2 µm to each lattice site distributing
the forces to the surrounding sites. In combinations with a pattern-shaped kernel it
is ensured that traction forces are only applied to adhesive parts of the patterns and
that forces from membrane fluctuation above non-adhesive parts are propagated to
the pattern. Both magnitude and vector field of the traction force are shown in Figure
A.4b. Figure A.4c shows the displacement field found by our finite element method for
the traction field in Figure A.4b on a substrate with Young modulus of 5 kPa. From
the displacement field the traction force is reconstructed with the Fourier-transform
traction cytometry method with a regularization parameter of 3 × 10−8 µm2 /Pa2

arriving at the final result shown in Figure A.4d. Our choice of the regularization
parameter yields the same total traction before and after reconstruction.

A.2. Fourier Descriptors

Fourier descriptors (FD) are one of many feature extraction techniques [182] and a
standard tool in image processing [169]. They describe shapes by a superposition
of circles or ellipses which makes them ideal for shapes without sharp kinks as it is
the case of cells. In addition, the possibility to suppress noise by neglecting higher
order coefficients makes them ideal for biological images and they find a wide range
of applications in biology [170, 171].

FD allow to construct a translation, rotation and scale invariant measure to compare
shapes, therefore they a mainly applied in shape matching and recognition [172].
In combination with genetic algorithm they have been used to detect symmetry of
shapes [183] which also works for shapes subjected to a parallel projection [184]. FD
descriptors are usually restricted to connected shapes (which can have holes) but
extension to broken shapes exist [185].

This section introduces Fourier descriptors and derives some of their properties.
The Hamiltonian used to describe cells can be expressed with Fourier descriptors
which allows to predict cell shapes analytically with approximations.

A.2.1. Cartesian Fourier Descriptors

Cartesian FD use a region in the complex plane to represented a shape. Given a
connected shape with contour z(s) = x(s) + iy(s) in parameter representation with
parameter s ∈ [0, 1), the periodicity z(s + n) = z(s), n ∈ Z can be used to expand
the contour in a Fourier series

z(s) =
∞∑

ν=−∞

zν e2πiνs, (A.7)

with coefficients

zν =
∫ 1

0
z(s) e−2πiνs ds. (A.8)
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Usually a set of N sample points of a contour are known as illustrated in Figure A.5a
which can be boundary pixels of an image. If the sample points are equidistant the
coefficient integrals (A.8) become

zν =
1

N

N−1∑

n=0

z
(
n

N

)

e−2πiν n

N , (A.9)

which is a discrete Fourier transformation and can be calculated with the Fast Fourier
transform. The corresponding reverse transform reads

z(s) =

N

2
−1
∑

ν=− N

2

zν e2πiνs. (A.10)

The relation z−ν = zN−ν for 0 < ν < N/2 can be obtained from equation (A.9).
Together with the Riemann Lebesgue lemma which states that zν → 0 for ν → ∞
it becomes apparent that coefficients with small |ν| contribute most to the expansion
and the series (A.11) can be truncated at a value Nmax [185] yielding

z(s) =
Nmax∑

ν=−Nmax

zν e2πiνs. (A.11)

An interpretation of the coefficients is best seen when the series is rewritten as a
two dimensional function z(s) = (x(s), y(s) with coefficients zν = xν + iyν

(

x(s)
y(s)

)

=

(

x0

y0

)

+
Nmax∑

ν=1

(

(xν + x−ν) cos(2πνs) − (yν − y−ν) sin(2πνs)
(yν + y−ν) cos(2πνs) + (xν − x−ν) sin(2πνs)

)

. (A.12)

Each term in the sum is an ellipse and the shape is constructed from a superposition
of them. Each ellipse is centered around the first zeroth-order term (x0, y0) and has
four degrees of freedom (xν , x−ν , yν, y−ν), which correspond to the two semi-axis, the
tilt and the phase of the start point as illustrated in Figure A.5b. Depending on the
coefficients and order the ellipses can be cycled in negative or positive direction several
times when the parameter s is increased from zero to one. The different phases for the
start point of each ellipse allow to describe shapes with a non single valued contour
as the crossbow pattern in Figure A.5c. Figure A.5d shows the ellipses of first (green)
and second (red) order with green arrows indicating the starting phase and direction.
During one circulation of the green (first order) ellipse the red (second order) is cycled
two times. Hence, when s = 1/4 the value of the green ellipse at 90° is added to the
value of the red ellipse at −90°. The superposition of all points results in the blue
shape. Figure A.5e and A.5f show the same for higher orders. The red ellipses are
always the new ones added to the green shapes obtained from previous superposition
resulting in the blue shapes. Higher order reconstructions are shown in Figure A.5g.
The changes from Nmax = 15 to Nmax = 20 are barely noticeable, and higher orders
will only change the kinks at the intersection of the curved arc and straight line of the
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Figure A.5. (a) Two dimensional shape in the complex plane with equidistant sample
points. (b) Ellipse with four degrees of freedom, the semi-axis a, b, tilt ǫ and phase of
the start point. (c) Crossbow pattern as example for a non single valued contour. (d),
(e), (f) Superposition of the first orders of the crossbow pattern. The green dashed
line is always the current lowest order shape and the red dotted the next ellipse to
be added resulting in the blue solid shape. Arrows indicate the phase and direction
of each ellipse. The blue shapes correspond to (d) Nmax = 2, (e) Nmax = 3 and (f)
Nmax = 4 in equation (A.11). (g) Higher order reconstructions from equation (A.11).
The values of Nmax are indicated below the shapes.
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crossbow.
From equation (A.12) it also becomes clear that higher order terms are strongly

fluctuating which makes FD ideal to study cell shapes since membrane fluctuations or
noisy image data can be suppressed be neglecting higher order terms. The inability of
Fourier Descriptors to represent shapes with sharp kinks is also not important because
kinks do not appear in cells due to the line tension and also pattern shapes have no
sharp kinks due to the manufacturing process.

For images, sample points of the contour are usually boundary pixels and not
equidistant depending on the neighborhood used. For an 8-neighborhood steps be-
tween neighbouring sample points are 1 and

√
2. Equation (A.9) can still be used

as illustrated in Figure A.5g where hardly any difference between the reconstructed
and original shape can be observed, although the sample points where not generated
equidistant in this case.

A generalization of the coefficients (A.9) where s is an arbitrary parameter and not
proportional to the contour length can be achieved by writing the integral (A.8) as
the corresponding Riemann sum for a discrete transformation. One has to keep in
mind that s is not proportional to the arc length in general, e.g. when coefficients are
obtained from minimizing an Hamiltonian the resulting function z(s) calculated with
equation (A.7) is not parametrized by contour length in general.

Ellipse Properties

The semi-axis of the ellipse shown in Figure A.5b belonging to the coefficient pair
(zν , z−ν) are aν = |zν | + |z−ν | for the major axis and bν = ||zν | − |z−ν || for the minor.
The tilt of the ellipse is ǫν = (ϕν +ϕ−ν)/2 where ϕν = Arg(zν) [172]. The initial phase
is Arg(zν + z−ν).

Translation, Scaling, Rotation and Phase Shift

From equation (A.12) it can be seen that the ellipses are centered around z0. Hence,
changing this coefficients translates the whole shape. It is important to note that z0

is not the geometric center of a shape in general. Scaling of a shape is achieved by
multiplying each coefficient by the same number. In a similar way a shape is rotated
by an angle α when all coefficients are multiplied by exp(iα). The initial phase of the
shape can be changed by multiplying all coefficients with exp(iαν), where ν is the order
of the corresponding coefficient and α the phase shift [169, 185]. Translation, Scaling
and Rotation can be used to define a invariant measure under these transformations
when shapes are compared [172]. E.g. since rotation is only a phase shift a measure
which compares absolute values of coefficients is already invariant under rotation.

Symmetry

For mirror symmetry with respect to the x-axis and starting point on the x-axis it
holds that z(s) = z(−s), where the bar denotes the complex conjugate. From equation
(A.11) one can see that this requires real valued coefficients zν . In the same way
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Figure A.6. (a) Mirror symmetry with respect to the dashed axis. The start point
indicated by the red dot is shifted by ∆s from the symmetry axis. (b) First and
second order ellipse with their corresponding start points (red dots). Rotation by
180° and normalization of the start point of the first ellipse leaves the first start point
unchanged. The phase of the second start point in both configurations can be used to
remove the ambiguity in the orientation of the first ellipse.

shapes with mirror symmetry to the y-axis and starting point on the y-axis must fulfill
z(s) = −z(−s) which holds for imaginary zν . In the general case with the symmetry
axis rotated by ψ and a shift of the starting point by ∆s from the symmetry axis (see
Figure A.6a) the contour fulfills z(s − ∆s) exp(−iψ) = z(−s − ∆s) exp(−iψ) and the
symmetry condition for the coefficients zν = xν + iyν reads

yν = xν tan(2πν∆s + ψ). (A.13)

For shapes with rotational symmetry certain coefficients need to be zero. If the shape
has a m-fold rotational symmetry only the coefficients with z1±νm do not vanish. E.g.
for a square with four-fold symmetry all but z1, z5, z−4, z9, . . . are zero [169].

Normalization

Shapes taken from experiments or simulation have a fluctuating boundary because of
the finite image resolution and noise or the finite simulation temperature, respectively.
In order to suppress noise and fluctuations or to get the averaged shape of several cells
sitting on the same type of pattern the FD need to be averaged. To do so, first the
cycle direction needs to be normalized. The shape is cycled in positive direction if
|zν | > |z−ν |. If this is not the case positive and negative coefficients are swapped. In a
second step the start point needs to be normalized by shifting the overall phase to the
phase ϕ1 of z1 which means multiplying all coefficients by exp(−iνϕ1). This renders
all but the first coefficient rotation invariant [169].

Coefficients normalized in this way are sufficient to average shapes of cells which sit
on patterns with the same orientation or of migrating cells as long as the persistence
direction does not change. In both cases the first coefficient stays the same as the cells
do not rotate.
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To average shapes with different orientations, e.g. cells migrating in different direc-
tions also the first coefficient needs to be normalized. This can be done by rotating the
overall shape by the orientation of the first ellipse ǫ1 = (ϕ1 + ϕ−1)/2 [172]. Because
it is an ellipse, the rotation angle ǫ1 has an ambiguity of π which can be removed
by comparing the start point of the first and second order ellipse as demonstrated in
Figure A.6b. If the shape is rotated by π and the start point of the first coefficient
is normalized the angle between the start points changes and the π ambiguity can
be removed by taking the configuration with the smaller angle. This works because
normalization of the start point of the first coefficient means shifting it by π which
leaves the start point of the second ellipse unchanged since it is shifted by 2π. One
has to be very careful applying this method because it is not stable for shapes where
the first ellipse is almost circular. Normalizing circle orientation and start point as
described in the first part are sufficient for most applications.

A.2.2. Polar Fourier Descriptors

A contour r(θ) given in polar coordinates can be expanded in polar Fourier Descriptors.
Here, the contour is parametrized by the polar angle θ and the series for a contour
with N sample points reads

r(θ) =

N

2
−1
∑

ν=− N

2

rν eiθ. (A.14)

The polar Fourier coefficients rν are given by

rν =
1

N

N−1∑

n=0

r
(
n

N

)

e−2πiν n

N , (A.15)

where the sample points r(n/N) are real valued. As with the Cartesian descriptors
the coefficients fulfill r−ν = rN−ν and the series (A.14) can be truncated at a value
Nmax.

Polar descriptors allow only to represent single valued shapes which is sufficient to
describe cell in most cases but e.g. a crossbow shaped pattern cannot be described.
Since r(θ) needs to be a real valued function another constriction for the coefficients
arises,

rν = r−ν . (A.16)

This condition allows to rewrite the series (A.14) to allow interpretation. With rν =
xν + iyν it becomes

r(θ) = r0 +
Nmax∑

ν=1

xν cos(νθ) − yν sin(νθ). (A.17)

r0 is the mean radius of the shape and each subsequent order adds a polar rose to
the previous shape. In contrast to equation (A.12) each rose has only two degrees of
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freedom which reflects the restriction to single valued contours again. In addition, the
center of a shape is not related to the zero order coefficient any more and translation
of the shape is not as simple as in the Cartesian case.

Rotation of a shape by an angle α corresponds to a shift of the polar angle θ
which means multiplying each coefficient by exp(iνα). For symmetry to an axis with
orientation ψ it must hold that r(θ − ψ) = r(−θ − ψ) resulting in the condition
rν = r−ν exp(iν2ψ). Together with equation (A.16) the condition on the coefficients
rν = xν + iyν reads

yν = xν tan(νψ). (A.18)

For symmetry with respect to the x-axis it must hold that rν ∈ R.

A.2.3. Cell Hamiltonian with Fourier Descriptors

Cells on homogeneously adhesive substrates have no edge bundles and the Hamiltonian
consists only of area and perimeter term and in case of migrating cells a persistence
movement contribution. All of these terms can be expressed with Fourier Descriptors
using

∫ 2π

0
eikθ = 2πδk,0. (A.19)

Area

For polar Fourier descriptors (A.14) the area is given by

A =
∫ 2π

0

∫ r(θ)

0
r̃ dr̃ dθ

=
1

2

∫ 2π

0

∑

k

∑

l

rkrl ei(k+l)θ dθ

= π
∑

k

rkr−k = π
Nmax∑

k=−Nmax

|rk|2 (A.20)

where equation (A.16) and (A.19) were used. For the the calculation with Cartesian
descriptors the area integral needs to be transformed into an contour integral. This
can be done either by Greens Theorem or by using polar coordinates where the polar
angle is the argument of z(s) = x(s) + iy(s). For polar coordinates the substitution of
the parameter s by θ is

θ(s) = 2 arctan
y√

x2 + y2 + x

dθ

ds
=
ẏx− yẋ

2 |z|2
. (A.21)
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With ℑ denoting the imaginary part and a dot the derivative with respect to s the
area becomes

A =
∫∫

dA = ℑ1

2

∫ 1

0
zż ds

= ℑ1

2

∫ 1

0

∑

k

∑

l

zkzl2πli e2πi(l−k)s ds

= π
Nmax∑

k=−Nmax

|zk|2 k, (A.22)

which is an oriented area. The sign depends on the direction in which the shape is
circled.

Perimeter

The perimeter cannot be calculated exactly in general. The approximations used
here make use of the small ratio of first (or zeroth) and subsequent coefficients. For
shapes where the contour intersects itself (see e.g. Figure A.7b) this ratio is not small
anymore, but such shapes are of no interest in our case. With the abbreviation S =
∑

l r−lrl(1 + l2) the perimeter in polar coordinates becomes

L =
∫ 2π

0

√
r2 + ṙ2 dθ

=
∫ 2π

0




∑

m,l

rmrl(1 −ml) ei(m+l)θ





1
2

dθ

=
∫ 2π

0

√
S



1 +
1

S

∑

m6=l

rmrl(1 −ml) ei(m+l)θ





1
2

dθ

≈
√
S



2π +
1

2S

∫ 2π

0

∑

m6=l

rmrl(1 −ml) ei(m+l)θ dθ

︸ ︷︷ ︸

=0, see(A.19)

+ . . .





= 2π





Nmax∑

l=−Nmax

|rl|2 (1 + l2)





1

2

(A.23)

≈ π



r0 +
1

r0

Nmax∑

l=−Nmax

|rl|2 (1 + l2)



 (A.24)

The calculation for polar Fourier descriptors use the same approximation. The perime-
ter is

L =
∫ 1

0
|ż(s)| ds ≈ 2π





Nmax∑

l=−Nmax

|zl|2 l2




1

2

. (A.25)
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This is also the result if |ż(s)| = L which is exact when s is proportional to the con-
tour length since L2 ds2 = dzdz [186, p. 6] then. For the crossbow (width=30 µm)
shown in figure A.5c the Fourier coefficients where calculated with chain code and an
eight-neighborhood which means that s is not proportional to the contour length. Nev-
ertheless equation (A.25) yields L ≈ 132.02 µm which is very close to L = 131.17 µm
calculated by evaluating the contour integral numerically.

Persistence Force

The contribution to the cell energy by the migration machinery is given by the integral

P =
∫ 2π

0

∫ r(θ)

0
|cosη(χ)| sign(cos(χ))r̃ dr̃ dθ, (A.26)

where χ can either be the angle between persistence direction and connection between
COM and point on membrane (graded radial force model) or the angle between normal
and persistence direction (parallel force model) (compare Figure 4.4a). For the former
χ can be approximated by the polar angle when origin and COM are close. For shapes
described by radial FD this should hold as long as the shapes do not deviate too much
from circles and have no kinks (e.g. a cardioid) but requires regularization in the shape
calculations below.

To further simplify the calculation η is restricted to odd numbers, even values of η
can be treated by splitting the integral (A.26). With odd η and χ equal to the polar
angle as in the graded radial force model (A.26) becomes

PGRF,η =
1

2

∫ 2π

0
cosη(θ)r2(θ) dθ

=
1

2

∫ 2π

0

1

2η

η
∑

ν=0

(

η

ν

)

eiθ(η−2ν)
∑

k,l

rkrl eiθ(k+l)

=
π

2η

η
∑

ν=0

(

η

ν

)
Nmax∑

l=−Nmax

r2ν−l−ηrl, (A.27)

where (A.19) was used and rν = 0 for |ν| > Nmax. For η < 1 the integral cannot be
solved and the approximation cosη(θ) → sign(π/2 − |θ|) for η → 0 is used

PGRF,0 ≈ 1

2

∫ 2π

0
sign(π/2 − |θ|)r2(θ) dθ

=
1

2

Nmax∑

k,l=−Nmax

rkrl

4 sin
(

1
2
π(k + l)

)

k + l
. (A.28)

In the parallel force model χ is equal to the angle ϕ between normal and persistence
direction and it is best to use Cartesian descriptors. If the contour z(s) = x(s) + iy(s)
is parameterized with a positive circularity the outwards pointing normal is n =
[ẏ(s),−ẋ(s)] with orientation ϕ = Arg(−iż) (compare Figure 4.4a). Using the tangent
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half-angle formula for the argument the angle component can be rewritten as

cos(ϕ) =
ẏ√

ẋ2 + ẏ2
≈ ẏ

L
, (A.29)

where the approximation is exact if s is proportional to the contour length (compare
equation (A.25)). With restriction to odd η the integral (A.26) for the parallel force
model becomes

PPF,η =
1

2Lη
ℑ
∫ 1

0
ℑ(ż)ηzż ds. (A.30)

The integral can be eliminated in the same way as for the area calculation by using
equation (A.19) but each power of η introduces another summation in the result which
makes this approach cumbersome.

A.2.4. Cell Shape Prediction

The cell Hamiltonian can now be written as function of Fourier coefficients which
allow to minimize it when the coefficients are treated as independent variables. On
a continuously adhesive substrate the adhesive energy balances the surface and line
tension and the cell area is close to the target area A0. The addition of a directional
persistent tension barely changes the area. The nonlinear adhesive energy term and
surface tension can be omitted from the Hamiltonian when the cell area is kept constant
by a constraint during minimization. The Hamiltonian for a cell described by the
graded radial force model, persistence direction along the x-axis (rl ∈ R) and odd η
reads

H = λsL− µPGRF,η + αR

≈ λsπ

(

r0 +
1

r0

∑

l

r2
l (1 + l2)

)

− µ
π

2η

η
∑

ν=0

(

η

ν

)
∑

l

r2ν−l−ηrl + απ
∑

l 6=0

r2
l

|l| , (A.31)

where equation (A.24) and (A.27) where used. The last term in the above equation
is required for regularization. Without it, minimization yields shapes as depicted in
Figure A.7. In case of cells described by the graded radial force model the persistence
integral (A.27) can be maximized (and the Hamiltonian minimized) if r2(θ) ≈ 0 for
cos(θ) < 0 which is the case if r0 ≈ r1 > 0. Such shapes violate the approximation
that the COM is close to the coordinate origin and can be avoided by keeping rl small
for l 6= 0 as ensured by the regularization term.

The strength of the regularization penalty is governed by the regularization param-
eter α and reduces for higher order coefficients since the coefficients are expected to
decrease with order. α is expected to scale with the system size given by r0 and the
strength of the directional tension µ.

To find the shape with minimal energy all partial derivatives with respect to rk of
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θ

(a) (b)

Figure A.7. (a) Cell with COM persistence described by polar Fourier Descriptors.
If r0 ≈ r1 > 0 and other coefficients are negligible cell shapes mainly have positive x-
values with r(θ)2 cos(θ) & 0 and COM displaced from the origin.(b) Cell with normal
persistence described by Cartesian descriptors. For certain coefficients shapes can have
intersections which changes the circularity and direction of the normals.

the Hamiltonian (A.31) must vanish

∂H

∂rk

= πrk

(

λs

r0

(1 + k2) +
α

|k|

)

− µ
π

2η−1

η
∑

ν=0

(

η

ν

)

r2ν−k−η = 0 (A.32)

with k = −Nmax, . . . ,−1, 1, . . . , Nmax. The coefficient r0 is determined by the con-
straint of the area to A0. With equation (A.21) it becomes

r0 =




A0

π
−
∑

l 6=0

r2
l





1
2

≈
√

A0

π
. (A.33)

The last approximation means that the cell shape is dominated by the zeroth order
coefficient. Using it leaves the system of equations (A.32) linear and the regularization
term ensures that a minimum is found by solving it. The red dashed shapes in Figure
4.5 in the main text are the solution for Nmax = 5 and α = 0.08 /µmr0µ. Deviations
are mainly due to the approximation of the COM by the origin of the coordinate
system.

The minimization of the cell Hamiltonian of the parallel force model faces similar
issues. For certain coefficients shapes can intersect themselves as depicted in Figure
A.7b which changes the circularity and normal orientation. The change in normal
orientation decreases the overall energy compared to a shape without intersection.
Intersections also allow the cell to grow in absolute area since the area (A.22) depends
on the circularity and the part of the cell located left of the y-axis has negative
area in Figure A.7b. To some extend this can be compensated by regularization but
in addition the system of equations which needs to be solved is not linear anymore
(compare equation (A.30)) and this approach is not continued here.
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A.3. Multicellular Systems
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Figure A.8. Comparison of the experimental (green) taken from [38] and simulated
(red) spindle orientations. The spindle orientation is orthogonal to the division plane.
The simulation recorded orientations for 20000 cell divisions and where performed for
a generic cell with σ = 1 nN µm−1, λs = 10 nN, EA = 50 nN, A0 = 1300 µm2, W =
20 nN µm−1. Similar to Figure 3.4 of the main text, but the ellipse is fit to the cells
at an area ratio of 0.6 which results in narrower peaks for most patterns.
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Figure A.9. Comparison of the experimental (green) taken from [38] and simulated
(red) spindle orientations. The spindle orientation is orthogonal to the division plane.
The simulation recorded orientations for 5000 cell divisions and where performed for
a generic cell with σ = 1 nN µm−1, λs = 10 nN, EA = 50 nN, A0 = 1300 µm2, W =
20 nN µm−1. Similar to Figure 3.4 of the main text, but the ellipse is fit to the cells at
an area ratio of 0.28 (optimum) and the temperature during contraction is halved.
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ce (nN) γ = −1.5λs γ = −1.0λs γ = 0λs γ = 1.0λs

0

−1.5

−3.0

−4.5

−6.0

Figure A.10. Cell pairs on [H] pattern with different line tension at the cell-cell
interface controlled by γ and cell-cell adhesion energies controlled by ce. Decreasing
γ makes the cells less invaginated and the cell-cell junction more fuzzy. Decreasing
ce also makes the cells less invaginated, but keeps the fluctuations at the junctions
the same. Therefore, cell-cell junction tension and cell-cell adhesion can be controlled
independently and arbitrary value can be chosen for both of them. For γ > −λs the
line tension at the junction is larger than the tension at the cell medium interface and
the fluctuations smaller. For γ < −λs the fluctuations at the interface are larger. For γ
approaching −2λs the cell-cell junction dissolves (not shown). The cells are simulated
with the Hamiltonian (3.10) and the remaining parameters are σ = 0.1 nN µm−1, λs =
2.3 nN, EA = 350 nN.
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A.4. Cell Migration
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Figure A.11. Comparison of experimental (green) nuclei-nuclei axis distribution
with simulated COM-COM distributions without any migratory activity µ = 0
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(a)

(b) (c) (d) (e)

Figure A.12. (a) Cells spreading, migrating and dividing on a hexagonal lattice
of [Y] shaped patterns. The cells display several characteristics observed experimen-
tally. Namely, (b) cells forming contacts between patterns, (c) single cells spanning
multiple patterns, (d) huge cells spreading almost the entire network and (e) several
cells bridging nonadhesive areas. Experimental images of HeLa cells obtained by the
collaboration with Sebastien Degot and Yoran Margaron. The network has a width
of 300 µm and is represented on a lattice with 600 × 482 sites.
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