
BlockCopy-based operators for evolving efficient
wind farm layouts

Michael Mayo and Chen Zheng
Department of Computer Science

University of Waikato
Hamilton, New Zealand

mmayo@waikato.ac.nz, cz90@students.waikato.ac.nz

Abstract—A novel search operator, BlockCopy, is proposed for
efficiently solving the wind farm layout optimisation problem.
BlockCopy, which can be used either as mutation or a crossover
operator, copies patterns of turbines from part of a layout to
another part. The target layout may be the same as the source, or
a different layout altogether. The rationale behind this is that it is
the relative configurations of turbines rather than their individual
absolute positions on the layouts that count, and BlockCopy, for
the most part, maintains relative configurations. Our evaluation
on four benchmark scenarios shows that BlockCopy outperforms
two other standard approaches (namely, the turbine displacement
algorithm and random perturbation) from the literature. We also
evaluate the BlockCopy operator in conjunction with both single-
solution and population-based strategies.

Index Terms—wind farm layout optimisation problem, evolu-
tionary strategy, search operator, cost of energy, turbine displace-
ment algorithm

I. INTRODUCTION

Wind is rapidly becoming an important global source
of renewable energy. Worldwide, the Global Wind Energy
Council predicts that wind energy production could reach as
much as 2,000 gigawatts (GW) by 2030 – this would amount
to approximately 18% of the world’s energy production [5].
Cost reduction in the production of wind energy is therefore
crucial. Currently, scientific research from many disciplines
plays an important role in achieving cost reductions. In the
computational intelligence community, related wind research
frequently focusses on the development of new experimental
optimisation and prediction techniques. For example, Preen
& Bull [17] propose a co-evolutionary method for evolving
new wind turbine designs, Razavi-Far & Saif [18] discuss
a method of imputing missing data in wind turbine sensors,
and Veeramachaneni et al. [20] describe an approach that
predicts the wind resource at sites using less data than industry
typically collects – therefore saving time during expensive site
assessments.

The particular problem we are focussed on in this paper is
the wind farm layout optimisation (WFLO) problem [7, 19].
The WFLO problem occurs once a suitable site for a wind
farm has been located, and a decision about the geographical
placement and other properties of the individual turbines
making up the farm has to be made. Overall, wind farm design
is a complex decision problem involving many conflicting

factors such as the design of the mechanical and electrical
infrastructures, the leasing of land from landowners, and the
impact of the farm on the environment. The management of the
uncertainty of the wind energy itself is also a major issue. The
WFLO problem is therefore a small component of the solution
to this problem, but it is a significant component because slight
efficiencies brought about by careful turbine siting can result
in significant cost savings during the twenty year lifetime of a
typical farm.

In this paper, we propose a novel class of operators for a
layout optimiser that can be used with an evolutionary strategy
or similar metahuristic. The key novel idea behind these new
operators is to reuse small regions within layouts by copying
them.

This approach follows from this intuitive idea: frequently
as a layout is optimised, it is not optimised uniformly. Instead,
parts of the layout are optimised first (because “good” mu-
tations occur at those points more frequently), and then the
less-fit parts of the layout may be improved in due course if
the algorithm runs for long enough.

To compensate for this mismatch, therefore, pattern copying
can be attempted. If a pattern is copied wholesale from a
“good” part of the layout to a “poor” part, then it can be
expected that the overall fitness of the layout will dramatically
increase. Since selection favours higher-fitness layouts, the
result is that higher fitness regions will tend to be copied more
often.

Such an approach basically changes the focus of the mu-
tation operator from individual turbines (as has been common
in the literature, e.g. the turbine displacement algorithm [21])
to larger patterns of turbines. The particular class of pattern
we focus on here is the simplest possible, specifically blocks
of size 1km ⇥ 1km, and therefore our operators are named
BlockCopy mutation and BlockCopy crossover.

In an extensive evaluation combining the BlockCopy opera-
tors with an evolutionary strategy (ES), we show that compared
to the current state-of-the-art, BlockCopy-powered ESes are
significantly more effective optimisers.

The paper is organised as follows. In the next section, we
cover background about the WFLO problem, and describe
in detail the current state-of-the-art. We also briefly mention
ESes. In the section after that, we describe our proposed978-1-4799-8697-2/15/$31.00 c�2015 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/79181299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BlockCopy operators, and then in the subsequently, we perform
an extensive evaluation of our approach on four benchmark
scenarios from the literature.

II. BACKGROUND

A. Wind farm layout optimisation (WFLO) problem
The WFLO problem is an abstracted representation of the

problem faced by wind farm designers when they must select
positions on a site to place individual wind turbines. This
process is referred to as micrositing.

The main problem faced by wind farm layout designers
when micrositing is that of turbulence: if one turbine lies in
the wake of another turbine, or in the wake of a large structure
such as a building, then it may experience a reduced wind
velocity as a result of the increased turbulence and vorticity
caused by the obstructions. Consequently the energy that the
turbine can extract from the wind is reduced compared to the
energy that could be extracted if the turbine was unobstructed.

In a wind farm site with few large fixed obstacles, the main
cause of this energy loss is the presence of other turbines
– hence the problem becomes one of optimising the turbine
positions in order to minimise wake effects.

The primary method of evaluating a wind farm layout is
via simulation, i.e. given data about expected wind speeds and
directions, the expected wake effects between pairs of turbines
for each wind direction can be calculated, and then the overall
expected energy harvest or energy cost of the farm can be
computed.

Simulation methods for evaluating wind farm configurations
range from highly accurate but also highly complex compu-
tational fluid dynamics approaches [7] to methods such as
that proposed by Kusiak & Song [9] which while simpler
and computationally more feasible, are none-the-less accurate
enough for industry if certain assumptions hold.

A key point to note is that any algorithm for evaluating one
wind farm layouts lies in the class NPO-complete [7]. In other
words, the time complexity of evaluating a configuration is a
polynomial function of the layout’s size.

Furthermore, an added complication is that the evaluation
function is also non-parallelizable because wake interactions
must be calculated sequentially [7]. For example, suppose that
turbine A is upstream of both turbines B and C, but B is also
upstream of C. The wake effects on the last turbine C cannot
be computed until the wake effect of A on B is known, since
B also has an effect on C. Therefore the interactions must be
modelled individually and in sequential order.

In terms of the search space, the WFLO problem is contin-
uous, constrained, and non-differentiable, with turbines being
able to be placed at any valid location as long as they do
not violate the minimum distance constraint between turbines
(which is typically a distance of eight times the turbine rotor’s
radius) or collide with obstacles. Some approaches to the
problem (e.g. the seminal work of Mosetti [15]) additionally
discretise the search space, thus converting the problem from
that of continuous optimization into one of combinatorial

optimisation where a position either contains a turbine or does
not contain a turbine. In this case, the size of the search space
is O(2n) where n is the number of grid cell positions [7].

In this paper we focus on the most common 2D planar
layout version of the WFLO problem in which all turbines
are assumed identical. Each turbine varies only in its (x, y)
position on the plane. Furthermore, we also assume that the
number of turbines is fixed. Despite these simplifications, the
problem is still a high-dimensional, highly multimodal, and
complex optimisation. This variant is also the most commonly-
tackled version of the problem in the literature.

Less simplified versions of the problem have also been
investigated. For example, both Chen et al. [4] and Wang et al.
[22] consider variants of the problem where land-owners must
be consulted and may charge a fee for participation in the wind
farm project. Finding the most crucial and cost-effective plots
of land on which to site the turbines is therefore an important
part of the problem.

In another version of the problem, Ate et al. [2] and Gonza-
lez et al. [6] include in their evaluation function considerable
detail pertaining to the construction of the wind farm, such as
the required electrical infrastructure and roading networks.

Finally, a small current number of works consider the
environmental impacts of wind farms. For example, Kwong
et al. [10, 11] consider the effects of noise, and attempt to
find layouts that minimise noise propagation while maximising
energy harvest. Similarly, Neubert et al. [16] and Al-Yahyai et
al. [1] both propose methods of generating visually appealing
layouts that preserve geometric regularities, whilst also main-
taining near-optimal energy efficiency.

B. Turbine displacement algorithm

The current state-of-the-art algorithm in the literature for
optimising a wind farm layout is the Turbine Displacement
Algorithm (TDA) proposed by Wagner [21]. In two recent
extensive evaluations, both Wagner [21] and Dennis et al. [24]
found that TDA outperformed all other approaches including
genetic algorithms, particle swarm optimisation, and develop-
mental models in terms of finding layouts with the minimum
expected wake losses across multiple different benchmark
scenarios.

In essence, TDA is a very simple local search algorithm
that shifts one random turbine at a time, and then evaluates
the modified layout. If the modified layout is at least as good
as the original layout, then the algorithm keeps the modified
layout and discards the original.

The interestingness of TDA lies in its heuristic for shifting
each turbine. Because wake effects are reduced with distance,
the algorithm makes the simplifying assumption that only
the K nearest neighbouring turbines to the given turbine are
important. A displacement vector is then calculated, which is a
vector pointing in a direction away from the K nearest neigh-
bours. The rationale for this is that moving the turbine away
from its neighbours is usually more likely to decrease wake
interference – although occasionally moving turbines closer
together is actually beneficial and therefore the displacement

Fig. 1: Illustration of the BlockCopy mutation operator. In this
example block B2 is chosen for mutation and copied to the
position occupied by B6.

vector may be reversed in direction with a small probability p.
The displacement vector is also perturbed with angular noise,
the magnitude of the noise being determined by a parameter
�dir.

When the displacement vector has been computed, it is
added to the current turbine’s position to get its new position. If
the turbine’s new position is invalid (e.g. outside of the layout,
or colliding with an obstacle), then the displacement vector is
gradually reduced in magnitude until the turbine’s new position
becomes valid.

C. Evolutionary strategies
In this paper we focus on the well-known evolutionary

strategies (ES) [3] family of algorithms. The standard (µ,�)
or (µ + �) ESes presented by Luke [13] are utilised in our
experiments. The use of ESes to solve the WFLO problem is
quite common in the recent literature. For example, the work
of Lückehe et al. [12] extensively investigates a variety of
different ESes for solving this problem on some challenging
scenarios. ESes with standard operators, along with TDA,
therefore, are useful baselines for evaluating new approaches.

III. BLOCKCOPY OPERATORS

In this section, our proposed BlockCopy operators are
described in more detail.

A. BlockCopy Mutation
The basic idea behind the BlockCopy mutation operator

is to first of all divide the layout into approximately square
blocks, and then to copy the turbines from one randomly
chosen block (the “source”) to another (the “target”). The
turbines within the target block are deleted from the layout
before the copy happens so that source pattern is maintained.

This process is illustrated in Figure 1. When a block
is copied, the relative configuration of the turbines inside
the block are maintained. Only the absolute position of the
copied turbines change. Therefore this process is essentially a
copy/translate of the source block to a new position.

Two problems may arise when blocks are copied in this
way across layouts. Firstly, copied turbines may collide either
with an obstacle, or with another turbine in a neighbouring
block (for example, if two turbines are near the edges of
their respective blocks, they may end up too close together
thus making the resulting layout invalid). In this case, the
copied turbine is simply not placed in order to ensure that
all constraints are always satisfied.

Fig. 2: Illustration of the BlockCopy crossover operator. In this
example block an offspring layout is created by the copying
of a block from one parent to a copy of another.

Secondly, because blocks may differ in the number of tur-
bines they comprise, the copying may result in the total number
of turbines across the layout globally changing. In this case, a
global correction is applied after the block copying: turbines
are either randomly placed onto the layout, or randomly purged
from it, until the total number of turbines is returned to the
desired fixed quantity. This step may be omitted if the total
number of turbines being optimised is not fixed.

B. BlockCopy Crossover
Our proposed BlockCopy Crossover operator works in a

similar way to the mutation operator in that a block of a
fixed size is copy/translated. However, the major difference
with crossover is that not one but two layouts are involved:
layouts exchange blocks, and one offspring layout is pro-
duced per crossover. This is illustrated in Figure 2. Rather
than propagating a pattern within a single layout, therefore,
such a crossover strategy allows good patterns to propagate
throughout a population of layouts instead.

In this paper, we have limited crossover to the exchange
of a single block rather than half of the blocks. Initial tests
suggested that exchanging half of the blocks results in an
overly disruptive crossover that reduced performance.

We also note that the current version of BlockCopy pro-
posed here treats the optimisation problem as a “black box”.
That is, only the final objective cost of each layout is used. In
contrast, other approaches (e.g. [14]) treat the optimiser as a
“white box” and use intermediate values in the cost computa-
tion to provide a search bias. However, such approaches are
unfair if compared directly to black box approaches, and so
we leave a white box variant of BlockCopy for future work.

IV. EVALUATION SCENARIOS

To evaluate our BlockCopy operators, we selected four
benchmark scenarios from the recent literature. The first two
scenarios are proposed in Kusiak & Song [9]. Kusiak & Song’s
first scenario is a very simple test scenario, in which wind
blows predominantly in a single direction. This is an artificial

(a) Kusiak & Song 1 [9] (b) Kusiak & Song 2 [9]

(c) 2014 Comp 1 [23] (d) 2014 Comp 3 [23]

Fig. 3: Wind rose used in each scenario. Each wind rose
gives the proportionate expected wind speed in each direction.
Directions are discretised into 15� bins. m/s in all directions.

example. The second scenario, however, is more realistic and
describes the wind speed/direction distribution at an actual
industrial site [9]. In both cases, we have set the size of layouts
to 4km ⇥ 4km and fixed the number of turbines to 100.

For the second two scenarios, we selected two benchmarks
from the 2014 Wind Farm Layout Optimisation competition
[23]. These are more challenging scenarios with a larger
rectangular area than the first two scenarios, and they also
contain obstacles where turbines cannot be placed.

Table I describes the four scenarios. Included in this ta-
ble are the fixed number of blocks (across and down) that
each scenario was divided into for use with the BlockCopy
operators. In each case, the quantity of blocks was chosen so
that each block was approximately 1km ⇥ 1km in area. The
Weibull k parameter for estimating the wind speed at turbine
height is also included in the table to show how it varies across
scenarios.

Figures 3 and 4 graphically depict the data for each
scenario. Figure 3 illustrates the wind speed/direction distri-
butions, and Figure 4 shows the layout configuration with
obstacles for the latter two scenarios.

The cost function we use was originally proposed and
described by Kusiak & Song [9]. The variant of the function
that we use here is an extended form used during the 2015
Wind Farm Layout Optimisation Competition [23]. Essentially,
cost is defined as the expected cost per kilowatt of energy
produced by the farm. It is calculated by taking the total cost
of the farm (including construction and yearly operating costs)
and dividing that by the total power output of the farm.

(a) 2014
Comp 1

(b) 2014 Comp 3

Fig. 4: Layouts with obstacles used in each scenario. Layouts
are not shown to scale.

cost =
(ct ⇥ n+ cs ⇥ b n

m
c)(23 + 1

3 ⇥ e

�0.00174n2
) + COM ⇥ n

(1�(1+r)�y)
/r

⇥
1

8760⇥ P

+
0.1

n

More formally, the cost function is defined as shown in the
equation where ct = 750, 000 is the cost in USD of a turbine;
cs = 8, 000, 000 is the cost in USD of a substation; m = 30 is
the number of turbines per substation; r = 0.03 is the interest
rate; y = 20 is the lifetime in years of the farm; COM =
20, 000 is the cost of operations and maintenance, again in
USD; n is the number of turbines (i.e. the farm size); and P

is the total energy output of the farm. The interested reader
should see [9] and [23] for complete details and explanations
of this cost function.

V. EVALUATION: BLOCKCOPY MUTATION FOR (1+1)-ES

The BlockCopy mutation operator was evaluated in con-
junction with a (1+1)-ES in the first set of experiments. Two
main baseline algorithms were chosen for comparison. These
were TDA [21], as well as another (1+1)-ES that differed
from the experimental one in that it made use of a random
perturbation operator instead of BlockCopy. The random per-
turbation operator simply moves a fixed number of randomly
selected turbines to new randomly selected valid positions.
Effectively, this approach ignores and likely even disrupts local
configurations of turbines. In contrast, TDA moves only one
turbine at a time, but the new position for each turbine is more
carefully chosen.

We also added a fourth algorithm to the evaluation, specif-
ically an algorithm combining BlockCopy and random pertur-
bation. For this algorithm, whenever a layout is mutated, one of
the two above operators (BlockCopy or random perturbation) is
chosen randomly with equal probability. The rationale for this
was to determine if both operators could enhance each other’s

Scenario Width (km) Height (km) # Turbines Width (blocks) Height (blocks) Obstacles? k

Kusiak & Song 1 [9] 4.0 4.0 100 4 4 No 2.0
Kusiak & Song 2 [9] 4.0 4.0 100 4 4 No 2.0
2014 Comp 1 [23] 3.5 16.1 220 3 16 Yes 2.187–3.624
2014 Comp 3 [23] 15.8 11.3 710 16 11 Yes 2.016–4.473

TABLE I: Wind Scenario dimensions, number of turbines, number of blocks, and k parameter.

Algorithm Parameter Value
TDA/all ESes Max. num. evaluations 2,000

TDA �dir
⇡
6

TDA p 0.2
TDA init. displacement vector size 1.05⇥ 8R

ES+Perturb/ES+Both Perturbation size 10 turbines

TABLE II: Parameter settings used in our experiments. (Note:
R refers to the turbine rotor radius.)

●●

●

●

TDA (1+1)−ES Pert. (1+1)−ES BCMut. (1+1)−ES Both

0.
00

13
85

0.
00

13
90

0.
00

13
95

0.
00

14
00

0.
00

14
05

Algorithm

Be
st

 C
os

t

Fig. 5: Cost of best layouts found for the Kusiak & Song 1
[9] wind scenario.

performance (for example, the random perturbation operator
may create new useful patterns that could then be copied by
BlockCopy).

The parameter settings used for each run of the algorithm
are shown in Table II. For TDA, the parameter settings are the
same as used in the original publication on TDA [21], except
for the initial displacement vector size which is not specified
in the paper. Instead we have chosen a sensible value of 105%
of the minimum distance between turbines. The termination
criteria for each algorithm is the number of evaluations.

Each algorithm was repeated 30 times on each scenario,
yielding a total of 4 algorithms ⇥ 4 scenarios ⇥ 30 repetitions
= 480 experimental runs.

The final results are shown in Figure 5-8. Each figure
depicts a set of box-and-whisker plots showing the distribution
of best costs achieved by each algorithm on each scenario.

As can be observed, the distributions are quite different

●

●

TDA (1+1)−ES Pert. (1+1)−ES BCMut. (1+1)−ES Both

0.
00

18
00

0.
00

18
10

0.
00

18
20

Algorithm

Be
st

 C
os

t

Fig. 6: Cost of best layouts found for the Kusiak & Song 2
[9] wind scenario.

●

●

TDA (1+1)−ES Pert. (1+1)−ES BCMut. (1+1)−ES Both0.
00

09
32

0.
00

09
33

0.
00

09
34

0.
00

09
35

0.
00

09
36

0.
00

09
37

0.
00

09
38

Algorithm

Be
st

 C
os

t

Fig. 7: Cost of best layouts found for the 2014 Comp 1 [23]
wind scenario.

●

●

TDA (1+1)−ES Pert. (1+1)−ES BCMut. (1+1)−ES Both

0.
00

10
27

0.
00

10
28

0.
00

10
29

0.
00

10
30

0.
00

10
31

Algorithm

Be
st

 C
os

t

Fig. 8: Cost of best layouts found for the 2014 Comp 3 [23]
wind scenario.

(1+1)-ES BCMut. vs. . . .
Scenario TDA (1+1)-ES Pert. (1+1)-ES Both

ks1 8.5⇥ 10�18 8.5⇥ 10�18 9.5⇥ 10�4

ks2 8.5⇥ 10�18 8.5⇥ 10�18 4.6⇥ 10�4

comp1 5.9⇥ 10�17 1.5⇥ 10�11 8.0⇥ 10�8

comp3 1.7⇥ 10�17 8.5⇥ 10�18 6.4⇥ 10�10

TABLE III: Results of standard Wilcoxon one-sided statistical
tests comparing the distribution of results obtained using the
(1+1)-ES with BlockCopy against the other algorithms. Shown
are the p-values computed by the test.

for each algorithm. The ES with BlockCopy is clearly the
superior algorithm in each case, achieving both the single
layout with lowest overall cost, and the lowest median cost.
Furthermore, the plots suggest that the differences in the costs
are statistically significant because the notched regions of the
box portions of the plots do not overlap.

To more precisely explore this, we also performed Wilcoxon
one-sided tests comparing the performance of the (1+1)-ES
using BlockCopy mutation vs. each of the other algorithms in
turn. The results are shown in Table III. As can be observed,
the p-values computed by all of the tests are well below the
0.01 level required for 99% confidence that the true median
performance of the (1+1)-ES with BlockCopy is less than that
of the other algorithms.

Next, we examined the performances of the three different
ESes in terms of the number of accepted mutations. This is an
important statistic to examine because a (1+1)-ES is prone to
becoming trapped in local optima, and this may be indicated
by a low number of accepted mutations. The result of this
analysis is shown in Figure 9 which depicts the average number
of accepted mutations by algorithm and scenario. It can be

Pe
rt.

BC
M
ut
.

Bo
th

Pe
rt.

BC
M
ut
.

Bo
th

Pe
rt.

BC
M
ut
.

Bo
th

Pe
rt.

BC
M
ut
.

Bo
th

0

50

100

150

200

250

300
ks1
ks2
comp1
comp3

Fig. 9: Number of accepted mutations by scenario and 1+1 ES
variant.

observed from this figure that the ES with the BlockCopy
operator is clearly superior, finding significantly more cost-
improving mutations than the other ESes. In fact for one of
the scenarios (ks1), the number of acceptable mutations found
is four times that of the ES with random perturbation.

VI. EVALUATION: BLOCKCOPY MUTATION AND
CROSSOVER FOR (5,10)-ES

Conventional wisdom suggests that a (1+1)-ES is prone
to becoming trapped in local optima. Beyond changing the
mutation operator, one way to overcome local optima issues
is to employ a population-based strategy.

To that end, in addition to a (1+1)-ES we also implemented
a (5,10)-ES for solving the wind farm layout optimisation
problem. Two variants of the (5,10)-ES were evaluated: in
the first variant, the BlockCopy crossover operator was the
sole operator. Parents in the intermediate generation (i.e. the
10 selected layouts) were randomly paired up to produce
offspring layouts. In the second variant of the (5,10)-ES, only
BlockCopy mutation was employed and offspring layouts were
generated from a single parent.

The results are depicted in Figure 10-13. Each plot shows
the (1+1)-ES results from the first evaluation on the left-hand
side, and two sets of results (for BlockCopy crossover and
mutation respectively) on the right-hand side respectively.

Unfortunately, the population-based approach fails gener-
ally to improve on the (1+1)-ES algorithm. In all cases,
the median best costs achieved are either considerably worse
than the (1+1)-ES or they overlap and there is no significant
difference.

One interesting case is the ks2 scenario (Figure 11) in which
the lowest cost obtained by the (5,10)-ES with BlockCopy

●

●

●

●

●

(1+1)−ES BCMut. (5,10)−ES BCCross. (5,10)−ES BCMut.

0.
00

13
85

0.
00

13
90

0.
00

13
95

0.
00

14
00

Algorithm

Be
st

 C
os

t

Fig. 10: Comparision of best result in Figure 5 with perfor-
mance of a (5,10)-ES using either BlockCopy mutation or
crossover on the Kusiak & Song 1 [9] wind scenario.

(1+1)−ES BCMut. (5,10)−ES BCCross. (5,10)−ES BCMut.

0.
00

17
96

0.
00

18
00

0.
00

18
04

0.
00

18
08

Algorithm

Be
st

 C
os

t

Fig. 11: Comparision of best result in Figure 6 with perfor-
mance of a (5,10)-ES using either BlockCopy mutation or
crossover on the Kusiak & Song 2 [9] wind scenario.

●

●

(1+1)−ES BCMut. (5,10)−ES BCCross. (5,10)−ES BCMut.0.
00

09
32

0.
00

09
33

0.
00

09
34

0.
00

09
35

0.
00

09
36

0.
00

09
37

Algorithm

Be
st

 C
os

t
Fig. 12: Comparision of best result in Figure 7 with perfor-
mance of a (5,10)-ES using either BlockCopy mutation or
crossover on the 2014 Comp 1 [23].

●

●

(1+1)−ES BCMut. (5,10)−ES BCCross. (5,10)−ES BCMut.

0.
00

10
27

0.
00

10
28

0.
00

10
29

0.
00

10
30

0.
00

10
31

0.
00

10
32

Algorithm

Be
st

 C
os

t

Fig. 13: Comparision of best result in Figure 8 with perfor-
mance of a (5,10)-ES using either BlockCopy mutation or
crossover on the 2014 Comp 3 [23].

Crossover is smaller than any cost achieved by the (1+1)-ES
algorithm. However, this is not a general phenomenon and may
be due to chance.

The likely reason for the poor performance of the (5,10)-ES
is that using a population-based strategy increases exploration
at the expense of exploitation. Due to the limited number of
evaluations (2,000), the population-based strategies are unable
to achieve the same degree of solution quality as the (1+1)-
ES does. It may be argued that increasing the number of
evaluations would address this problem. However, given the
expense of the evaluation function (which could be much
greater for a higher-fidelity simulation) and the fact that
many other works in the literature use a similar number of
evaluations, we did not increase the number of evaluations
given to the (5,10)-ES 1.

VII. CONCLUSION

To conclude, this paper has described a novel search opera-
tor for the WFLO problem. It can be used in either a mutation
or a crossover context, and have shown in our experiments
that the operator is highly effective when compared to other
common approaches to solving the same problem.

Our current and ongoing work in this area concerns de-
veloping further techniques to improve the performance of
BlockCopy-based search. In particular, we would like to
increase the number of evaluations without increasing run-
times significantly by employing surrogate models [8]. Such an
approach should enable both single solution-based approaches
and population-based approaches to improve, if an accurate
enough surrogate model for this problem can be identified.

REFERENCES
[1] S. Al-Yahyai, Y. Charabi, and A. Gastli. Geometrical approach for wind

farm symmetrical layout design optimization. In GCC Conference and
Exhibition (GCCCE), 2015 IEEE 8th, pages 1–6, 2015.

[2] D. Atef, H. Osman, M. Ibrahim, and K. Nassar. A simulation-based
planning system for wind turbine construction. In Proceedings of the
Winter Simulation Conference, WSC ’10, pages 3283–3294, 2010.

[3] H. Beyer and H. Schwefel. Evolution strategies: A comprehensive
introduction. Journal Natural Computing, 1(1):3–52, 2002.

[4] L. Chen and E. MacDonald. Considering landowner participation
in wind farm layout optimization. Journal of Mechanical Design,
134(8):084506–084506, 07 2012.

[5] Global Wind Energy Council. Global Wind Energy Outlook 2014. 2014.
[6] J. S. González, Á. G. Rodrı́guez, J. C. Mora, M. B. Payán, and J. R.

Santos. Overall design optimization of wind farms. Renewable Energy,
36(7):1973 – 1982, 2011.

[7] J. F. Herbert-Acero, O. Probst, P.-E. Réthoré, G. C. Larsen, and K. K.
Castillo-Villar. A review of methodological approaches for the design
and optimization of wind farms. Energies, 7(11):6930, 2014.

[8] Y. Jin. Surrogate-assisted evolutionary computation: recent advances and
future challenges. Swarm and Evolutionary Computation, 1:61–70, 2011.

[9] A. Kusiak and Z. Song. Design of wind farm layout for maximum wind
energy capture. Renewable Energy, 35:685–694, 2010.

[10] W. Kwong, P. Yun Zhang, D. Romero, J. Moran, M. Morgenroth, and
C. Amon. Multi-objective wind farm layout optimization considering
energy generation and noise propagation with NSGA-II. Journal of
Mechanical Design, 136(9):091010–091010, 07 2014.

[11] W. Kwong, P. Y. Zhang, and D. Romero. Wind farm layout optimization
considering energy generation and noise propagation. In Proceedings of
the ASME 2012 International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference IDETC/CIE
2012, 2012.

1We note that we also tried a (5+10)-ES with little difference in performance

[12] D. Lückehe, M. Wagner, and O. Kramer. On evolutionary approaches
to wind turbine placement with geo-constraints. In Proceedings of the
2015 on Genetic and Evolutionary Computation Conference, GECCO
’15, 2015.

[13] S. Luke. Essentials of Metaheuristics. Online version 2.1 edition, 2014.
[14] M. Mayo and M. Daoud. An adaptive model-based mutation operator for

the wind farm layout optimisation problem. In Proc. IEEE Conference
on Systems, Man and Cybernetics, 2015.

[15] G. Mosetti, C. Poloni, and B. Diviacco. Optimization of wind turbine
positioning in large wind farms by means of a genetic algorithm. Journal
of Wind Engineering and Industrial Aerodynamics, 51(1):105–116, 1994.

[16] A. Neubert, A. Shah, and W. Schlez. Maximum yield from symmetrical
wind farm layouts. In 10th German Wind Energy Conference (DEWEK),
2010.

[17] R. Preen and L. Bull. Torward the coevolution of novel vertical-axis wind
turbines. IEEE Transactions on Evolutionary Computation, 19(2):284 –
294, 2015.

[18] R. Razavi-Far and M. Saif. Imputation of missing data for diagnosing
sensor faults in a wind turbine. In Proc. IEEE Conference on Systems,
Man and Cybernetics, 2015.

[19] M. Samorani. The wind farm layout optimization problem. In P. Par-
dolas, editor, Handbook of Wind Power Systems, pages 21–38. Springer-
Verlag, 2013.

[20] K. Veeramachaneni, A. Cuesta-Infante, and U.-M. O’Reilly. Copula
graphical models for wind resource estimation. In Proc. International
Joint Conference on Artificial Intelligence, pages 2646–2654, 2015.

[21] M. Wagner, J. Day, and F. Neumann. A fast and effective local search
algorithm for optimizing the placement of wind turbines. Renewable
Energy, 51:64–70, 2013.

[22] L. Wang, A. C. Tan, Y. Gu, and J. Yuan. A new constraint handling
method for wind farm layout optimization with lands owned by different
owners. Renewable Energy, 83:151–161, 2015.

[23] D. Wilson. http://www.irit.fr/wind-competition/. URL, 2015.
[24] D. Wilson, S. Cussat-Blanc, K. Veeramachaneni, U. O’Reilly, and

H. Luga. A continuous development model for wind farm layout
optimization. In Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation, GECCO ’14, pages 745–752, New York, NY,
USA, 2014. ACM.

