

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Surrogate-Assisted

Evolutionary Algorithms for

Wind Farm Layout Optimisation

Problem

A thesis

submitted in partial fulfillment

of the requirements for the degree

of

Master of Science (Research)

at

The University of Waikato

by

Chen Zheng

2016

Abstract

Due to the increasing need for computationally expensive optimisation in

many real-world applications, surrogate-assisted evolutionary algorithms

have attracted growing attention. In the literature, surrogate-assisted

evolutionary approaches have been successful in highly computational

expensive optimisation problems. However, surrogates have not been

used with the Wind Farm Layout Optimisation Problem (WFLOP) before.

In this work, an evolutionary approach using surrogate modelling

techniques to reduce the computational cost of the WFLOP is studied.

The WFLOP mainly focuses on finding the optimal geographical place-

ment of wind turbines within a wind farm in order to maximise power

generation. But evaluating wind farm layout is very computationally

expensive. The purpose of using surrogates is to approximate the real

evaluation function of an evolutionary algorithm, but the surrogates can

be computed more efficiently. The aim of this study is try to discover

whether the surrogate-assisted evolutionary approach is effective on the

WFLOP or not.

An analytical wake model from the literture is used to calculate the

velocity deficits in the downstream generated by individual turbines. A

set of initial offline experiments was conducted based on a dataset of

wind farm layouts sampled from the space of all layouts, using biased

random walk. These experiments were designed to discover which fea-

tures lead to construction of an accurate surrogate model. According

to the results of these experiments, polar coordinates (sorted accord-

ing to distance) as features are selected for learning. A multilayer per-

iii

ceptron (MLP) neural network and a tree-based regression model (M5P)

are chosen as the surrogate models to approximate the real fitness func-

tion in conjunction with an (µ, λ) evolutionary strategy. Two previously

presented BlockCopy operators are used in the evolutionary strategy.

The surrogate models are managed using a modified version of the Pre-

selection strategy and the Best strategy.

Our evaluation used four benchmark wind farm scenarios with di-

mensionality ranging from 200 to 1420 dimensions. The evaluation re-

sults show that our preliminary MLP and M5P surrogate models did not

improve the optimisation results over traditional evolutionary strategies

due to scalability issues. The scalability is a known weakness of many

surrogate-assisted evolutionary approaches for the reason that most of

them are designed for low-dimensionality problems. However, the re-

search should continue on this topic because of its importance to renew-

able energy.

iv

Acknowledgements

First of all, I would like to express my deepest appreciation and gratitude

to my supervisor Dr. Michael Mayo for his expert guidance, understand-

ing and encouragement throughout my study and research. He read my

numerous revisions and he was always available for my questions. With-

out his incredible patience and full support, the completion of this study

would not have been possible. It is a great honour to work under his

supervision.

Next I would like to thank my parents for their love and support over

the years. They have always been there for me and I am thankful for

everything they have helped me achieve.

I am also grateful to all the fellow graduate students in the Machine

Learning Lab at the Department of Computer Science, the University of

Waikato. Especially a thank you to my friend and class fellow Bingyuan

Liu for always listening and giving me words of encouragement.

Last but not least, I am thankful to all my friends for helping me

survive all the stress from this year. I have no valuable words to express

my thanks, but my heart is still full of the favours received from every

person.

v

vi

Contents

1 Introduction 1

2 Wind Farm Layout Optimisation Problem 5

2.1 Wind Farm Layout Example 5

2.2 Wind Farm Wake Effect . 7

2.2.1 Wind Turbine Characteristics 7

2.2.2 Surface Roughness 10

2.2.3 Wind Modelling . 11

2.2.4 Wake Effect Modelling 13

2.3 Wind Turbine Energy Output 18

2.4 WFLOP Objective Functions 19

2.5 Wind Farm Design Tools . 22

2.6 Variants of the WFLOP . 24

2.7 Computational Complexity of WFLOP 26

3 Evolutionary Algorithms 29

3.1 Genetic Algorithms . 30

3.2 Evolutionary Strategies . 31

3.3 Evolutionary Strategies with Elitism 33

3.4 Selection, Mutate and Crossover 34

3.5 Crossover vs. Mutation . 35

3.6 Exploration vs. Exploitation 37

vii

Contents

3.7 Evolutionary Algorithm Applications for WFLOP 38

4 BlockCopy Operators for the WFLOP 43

4.1 BlockCopy Mutation Operator 44

4.2 BlockCopy Crossover Operator 46

5 Surrogate-Assisted Evolutionary Optimisation 49

5.1 Overview . 49

5.2 Surrogate Modelling Techniques 51

5.2.1 Quadratic Response Surface Model 52

5.2.2 Kriging Model . 55

5.2.3 Artificial Neural Networks 57

5.2.4 Discussion of Different Surrogate Models 61

5.3 Scalability Issues of Surrogate-assisted EAs 62

5.4 The Management of Fitness Approximation in EA 63

5.4.1 A Brief Review on Managing Surrogates 63

5.4.2 Pre-Selection Surrogate Management Strategy . . . 64

5.4.3 Best Surrogate Management Strategy 65

5.4.4 Modified Pre-Selection and Best Surrogate Manage-

ment Strategy . 66

6 Initial Experiments: Comparison of Different Approximation
Models 71

6.1 Approximation Accuracy Measurements 71

6.2 Initial Offline Experiment Data Description 73

6.3 Initial Offline Experiment Setup 75

6.4 Initial Offline Experiment Results 77

7 Evaluation and Results 79

7.1 Wind Farm Scenarios . 79

viii

Contents

7.2 Objective Function . 81

7.3 Evaluation Setup . 83

7.4 Evaluation Results . 84

7.4.1 Wind Farm Scenario Kusiak & Song 1 [54] 85

7.4.2 Wind Farm Scenario Kusiak & Song 2 [54] 93

7.4.3 Wind Farm Scenario 2014 Comp 1 [105] 101

7.4.4 Wind Farm Scenario 2014 Comp 3 [105] 109

7.5 Summary of Evaluation Results 117

8 Conclusions 119

Bibliography 121

ix

x

List of Figures

2.1 Aerial View of Lillgrund Windfarm [91]. The Lillgrund Wind-

farm is located off the coast of Copenhagen in Denmark. . . 6

2.2 Layout of the Middelgrunden offshore wind farm [28]. (a) ac-

tual layout, (b) symmetrically optimised layout, (c) randomly

optimised. 7

2.3 Simple drawing the rotor and blades of a wind turbine from

a front point of view (left) and a side point of view (right),

respectively [36]. 8

2.4 Power curve (black line) and thrust coefficient curve (grey

line) of the turbine Vestas V63 [89, 98]. 9

2.5 Example of the distance between turbines in both prevailing

wind direction and the direction perpendicular to the prevail-

ing wind. There are five turbines each column and the pre-

vailing wind blows from left to right. 10

2.6 An example of a wind rose diagram, showing statistics of wind

speed and direction throughout the year [4]. This is a wind

rose with 16 sectors whereas the center of each sector indi-

cates at a given location (i.e a wind farm site). The length

of each colour-coded "spoke" around the circle illustrates the

relative wind speed in the pointed direction. 12

2.7 Wind farm boundary and the definition of the wind speed di-

rection [54]. The two arrows indicate that the wind might

come from both both directions. The length of each colour-

coded "spoke" around the circle illustrates the relative wind

speed in the pointed direction. 14

2.8 Schemetic representation of the wake effect. 15

xi

List of Figures

2.9 Schemetic representation of multiple wake affecting a position. 15

3.1 Example of Crossover and Mutate Operations. 35

3.2 A cube in space formed by two three-dimention vectors (black

circles). The space inside the cube represents all possible re-

sults produced by crossovering the two vectors. The outer

space represents the possible results by mutating the two vec-

tors. 37

4.1 Illustration of the BlockCopy Mutation Operation. In this ex-

ample, block B2 is chosen for mutation and copied to the po-

sition occupied by B6. 45

4.2 Illustration of the BlockCopy Crossover Operation. In this ex-

ample, block B2 from parent B is chosen is chosen to be re-

placed by block A2 from parent A. 46

5.1 Tradeoffs between computational cost and accuracy among

different levels of fitness evaluations [9]. 50

5.2 Building Surrogate Models via Offline experiments. 52

5.3 One node of MLP: an artificial neuron. 58

5.4 Architecture of a multilayer perceptron network. 59

5.5 Pre-selection Surrogate Management Strategy [46]. 65

5.6 Best Surrogate Management Strategy [46]. 66

5.7 Collect and prepare wind farm layout data. The layout data

consists of raw Cartessian coordinates (xi, Yi) of the wind tur-

bines. Then they are converted into polar coordinates (di, θi).

At the end the polar coordinates are sorted according to the

distances d between the turbines and the zero point. 68

5.8 Surrogate Assisted (µ, λ) - ES Using Pre-selection Strategy

Strategy with Surrogate-Retraining. 69

5.9 Surrogate Assisted (µ, λ) - ES Using Best Strategy Strategy

with Surrogate-Retraining. 70

7.1 Obstacles in scenario Comp 1 and Comp 3. Layouts are not

shown to scale. 80

xii

List of Figures

7.2 Wind rose used in each scenario. These wind rose diagrams

are not shown to scale. 81

7.3 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (6, 12) population configuration on the

Kusiak & Song 1 [54] wind farm scenario. 87

7.4 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (10, 20) population configuration on the

Kusiak & Song 1 [54] wind farm scenario. 88

7.5 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (20, 40) population configuration on the

Kusiak & Song 1 [54] wind farm scenario. 89

7.6 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (6, 12) popula-

tion configuration on the Kusiak & Song 1 [54] wind farm sce-

nario. 90

7.7 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (10, 20) popu-

lation configuration on the Kusiak & Song 1 [54] wind farm

scenario. 91

7.8 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (20, 40) popu-

lation configuration on the Kusiak & Song 1 [54] wind farm

scenario. 92

7.9 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (6, 12) population configuration on the

Kusiak & Song 2 [54] wind farm scenario. 95

7.10 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (10, 20) population configuration on the

Kusiak & Song 2 [54] wind farm scenario. 96

7.11 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (20, 40) population configuration on the

Kusiak & Song 2 [54] wind farm scenario. 97

xiii

List of Figures

7.12 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (6, 12) popula-

tion configuration on the Kusiak & Song 2 [54] wind farm sce-

nario. 98

7.13 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (10, 20) popu-

lation configuration on the Kusiak & Song 2 [54] wind farm

scenario. 99

7.14 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (20, 40) popu-

lation configuration on the Kusiak & Song 2 [54] wind farm

scenario. 100

7.15 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (6, 12) population configuration on the

2014 Wind Farm Layout Optimisation Comp 1 [105] wind farm

scenario. Please note that µ = 10−6. 103

7.16 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (10, 20) population configuration on the

2014 Wind Farm Layout Optimisation Comp 1 [105] wind farm

scenario. Please note that µ = 10−6. 104

7.17 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (20, 40) population configuration on the

2014 Wind Farm Layout Optimisation Comp 1 [105] wind farm

scenario. Please note that µ = 10−6. 105

7.18 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (6, 12) popula-

tion configuration on the 2014 Wind Farm Layout Optimi-

sation Comp 1 [105] wind farm scenario. Please note that

µ = 10−6. 106

7.19 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (10, 20) popu-

lation configuration on the 2014 Wind Farm Layout Optimi-

sation Comp 1 [105] wind farm scenario. Please note that

µ = 10−6. 107

xiv

List of Figures

7.20 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (20, 40) popu-

lation configuration on the 2014 Wind Farm Layout Optimi-

sation Comp 1 [105] wind farm scenario. Please note that

µ = 10−6. 108

7.21 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (6, 12) population configuration on the

2014 Wind Farm Layout Optimisation Comp 3 [105] wind farm

scenario. 111

7.22 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (10, 20) population configuration on the

2014 Wind Farm Layout Optimisation Comp 3 [105] wind farm

scenario. 112

7.23 Cost of best layouts found by different evolutionary algorithms

(see Table 7.3) using (20, 40) population configuration on the

2014 Wind Farm Layout Optimisation Comp 3 [105] wind farm

scenario. 113

7.24 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (6, 12) popula-

tion configuration on the 2014 Wind Farm Layout Optimisa-

tion Comp 3 [105] wind farm scenario. 114

7.25 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (10, 20) popula-

tion configuration on the 2014 Wind Farm Layout Optimisa-

tion Comp 3 [105] wind farm scenario. 115

7.26 Convergence history of the best layouts found by different

evolutionary algorithms (see Table 7.3) using (20, 40) popula-

tion configuration on the 2014 Wind Farm Layout Optimisa-

tion Comp 3 [105] wind farm scenario. 116

xv

xvi

List of Tables

2.1 The characteristics of a Wind Turbine. 8

2.2 Typical Surface Roughness Lengthes [28]. 11

3.1 Common terms used in evolutionary computation. 30

5.1 The dimension of optimisation problems reviewed in Section 5.2. 63

6.1 The number of turbines and number of attributes for each sce-

nario after each filter is applied. 75

6.2 Options for the MLP classifier used in our initial offline experi-

ments. 76

6.3 Options for the M5P classifier used in our initial offline experi-

ments. 77

6.4 Comparison of correlation coefficient (first line in each cell)

and root relative squared error (second line in each cell) on

datasets for wind farm scenario Kusiak & Song 1 [54]. 78

6.5 Comparison of correlation coefficient (first line in each cell)

and root relative squared error (second line in each cell) on

datasets for wind farm scenario Kusiak & Song 2 [54]. 78

6.6 Comparison of (first line in each cell) and root relative squared

error (second line in each cell) on datasets for wind farm sce-

nario 2014 Comp 1 [105]. 78

6.7 Comparison of (first line in each cell) and root relative squared

error (second line in each cell) on datasets for wind farm sce-

nario 2014 Comp 3 [105]. 78

xvii

List of Tables

7.1 Wind Scenario dimensions, number of turbines, number of blocks

and k parameter. 81

7.2 The discreption of different evolutionary algorithms. 83

7.3 The discreption of different evolutionary algorithms. 84

7.4 The average elapsed time of thirty runs of each algorithm un-

der three different population configurations for wind farm sce-

nario Kusiak & Song 1 [54]. The unit is milliseconds. 86

7.5 The average elapsed time of thirty runs of each algorithm un-

der three different population configurations for wind farm sce-

nario Kusiak & Song 2 [54]. The unit is milliseconds. 94

7.6 The average elapsed time of thirty runs of each algorithm un-

der three different population configurations for wind farm sce-

nario 2014 Wind Farm Layout Optimisation Comp 1 [105]. The

unit is milliseconds. 102

7.7 The average elapsed time of thirty runs of each algorithm un-

der three different population configurations for wind farm sce-

nario 2014 Wind Farm Layout Optimisation Comp 3 [105]. The

unit is milliseconds. 110

xviii

Chapter 1

Introduction

Wind power is becoming increasingly more important around the world

along with the rapid development of the global economy. The Global

Wind Energy Council (GWEC) reports that globally wind power produc-

tion reached 433 gigawatts (GW) by the end of 2015, a cumulative 17%

increase. Furthermore, GWEC predicts that by the end of 2030, there

will be about 2,000 GW of wind power spinning around the world [27].

It is clear that wind power is now a mainstream source of renewable en-

ergy supply and will play a leading role in the future. The wind industry

is interested in using technical innovation to drive costs down, improve

project reliability and predictability, and make it easier to integrate wind

power into the main power grid.

It is obvious that wind farm developers desire a high profit wind farm.

In the real world, there is a trade off between two conflicting opposed

economical factors: cost of construction and maintenance, and the profit

of selling generated electricity. In order to reduce cost and increase

profit, wind farm designers are moving towards larger sized farms, more

turbines, and other advanced capabilities. However, installing significant

numbers of turbines close together causes them to interfere with each

other due to the wake effects. The wake effect cases the downstream

wind speed to reduce which leads to a considerable loss the power pro-

duction, and thus a decrease in profit.

1

Chapter 1 Introduction

Finding high quality wind farm layout solutions probably will signifi-

cantly increase the profit for the wind farm developers. The Wind Farm

Layout Optimisation Problem (WFLOP) focuses on finding the optimal

turbine positions on a wind farm (wind farm layout) to gain maximum

power output. Normally, the WFLOP are conveniently solved using sim-

plified rules that lead to rectilinear layouts, where turbines are often

organised in identical rows that are separated by an unnecessarily large

distance [89]. Recently, a few studies have shown that irregular and

nonuniform layouts (see Figure 2.2) can produce more energy than reg-

ular grid layouts [54, 88, 93].

In the literature, the related work on this topic are very limited and

most of them has been carried out by the wind engineering and renew-

able energy communities. There are only a few works has been done by

the operations researchers and meta-heuristic algorithms researchers.

One reason this problem has been disregarded by the research commu-

nity is the computational complexity. For example, even in the case of

a simplified single objective function (maximising the wind farm energy

output), one wind farm layout evaluation can take minutes, hours, or

even days. Due to the high computational complexity, research on the

WFLOP are also motivated to reduce the computational cost.

Furthermore, this particular problem requires the researcher to have

certain specialist knowledge about how wind model (see Section 2.2.3)

and wake model (see Section 2.2.4) are formulated. Additionally, it is

difficult to obtain industrial data about the problem instances, which is

generally kept private by the wind farm developers [89].

Population-based meta-heuristic approaches such as genetic algo-

rithms have found successful in optimisation problems such as portfo-

lio selection problems [84], and knapsack problems [82], among many

others. However, the WFLOP is generally high-dimensional and compu-

tational expensive. Thus it is not practical to apply meta-heuristic ap-

proaches to solve the WFLOP since a relatively large number of real fit-

ness evaluations are required to obtain a near optimal solution.

2

On the other hand, surrogate-assisted meta-heuristic optimisation

approaches have been shown promising performance in terms of reduc-

ing computational cost in many real world expensive optimisation prob-

lems [94, 81, 1, 2, 35, 6]. The main idea is to use computationally cheap

models, known as surrogates, for approximating the expensive fitness

function in evolutionary approaches. However, the surrogates have not

been used with the WFLOP before. There is a potential improvement

by using meta-heuristic optimisation techniques in conjunction with ma-

chine learning algorithms such as decision trees, linear models and artifi-

cial neural networks. Additionally, in the literature the maximum dimen-

sion of optimisation problem solved by surrogate-assisted evolutionary

approach is only 50 [64]. It is also interesting to discovery the perfor-

mance of surrogate-assisted meta-heuristic optimisation approaches on

four benchmark wind farm scenarios with dimensionality ranging from

200 to 1420 dimensions.

This work focuses on the WFLOP. The main research objective is to

develop an approach that can obtain near optimum solutions at a reduced

computational cost for practical purposes. This work evaluated several

sophisticated evolutionary algorithms using surrogates along with few

standard evolutionary algorithms. The choice of surrogate to use is based

on a set initial offline experiments on benchmark wind farm scenarios.

These experiments also discovered which features lead to the construc-

tion of an accurate surrogate model. The previously proposed highly ef-

ficient BlockCopy Mutation and Crossover operators [73] are employed

to generate offsprings (see Chapter 4). In the evaluation, I compared the

final results obtained by different evolutionary algorithms using differ-

ent BlockCopy operators with different surrogate models and surrogate

management techniques on four benchmark scenarios from the literature

[54, 105].

The rest of this thesis is organised as follows. The background of

the wind farm layout optimisation problem is given in Chapter 2. Chap-

ter 3 reviews several population-based meta-heuristic algorithms from

the literature and a few of their applications for the WFLOP. In Chap-

3

Chapter 1 Introduction

ter 5, the popular surrogate modelling techniques are briefly described,

furthermore, two surrogate model management strategies are explained

along with our modification to them. In Chapter 4, the efficient Block-

Copy Mutate and Crossover operators previously proposed by [73] are

explained. The setup and results of a set of initial offline experiment

are shown in Chapter 6. The performance of the surrogate-assisted evo-

lutionary strategy using our chosen surrogate models with the modified

surrogate management strategies are evaluated on four benchmark wind

farm scenarios and compared with that of the evolutionary strategy with-

out surrogates in Chapter 7. A brief description of the scenarios and the

real fitness function is also included. Finally, Chapter 8 concludes this

thesis with a summary and some ideas for future work.

4

Chapter 2

Wind Farm Layout Optimisation
Problem

The Wind Farm Layout Optimisation Problem (WFLOP) focuses on finding

the optimal placement for wind turbines (WT) in a wind farm (WF). This

process is referred to as micro-sitting in the literature. The micro-sitting

process generally occurs after (i) the wind farm location and boundaries

has been chosen, (ii) the characteristics of the site has been measured,

such as the distribution of wind speeds and directions, the obstacles in-

side the wind farm, etc. and (iii) the model and manufacturer of the

turbines (powerful turbines are usually preferred [89]) and other auxil-

iary infrastructure (i.e. roading networks, electrical infrastructures, etc.)

have been chosen.

2.1 Wind Farm Layout Example

The optimal wind farm is considered to be one that maximises the power

generation while minimising total cost. Due to the limited energy gen-

eration of individual wind turbines, a wind farm normally is constructed

by installing a large number of turbines on a given terrain. Figure 2.1

depicts the aerial view of the Middelgrunden wind farm, which is located

about 3.5 km off the coast of outside Copenhagen, Denmark. When it

was built in 2000, it was the largest offshore farm in the world with 20

5

Chapter 2 Wind Farm Layout Optimisation Problem

turbines and a total capacity of 40 megawatts [92]. The large and slow

turning turbines of this offshore wind farm take advantage of the not

strong but very consistent wind since the wind often flows briskly and

smoothly over water since there are no obstructions.

Figure 2.1: Aerial View of Lillgrund Windfarm [91]. The Lillgrund Windfarm is
located off the coast of Copenhagen in Denmark.

A wind farm layout represents the geographical placement of the

installed wind turbines inside the wind farm. As can be observed in Fig-

ure 2.2 (a), in the Middelgrunden Windfarm, the wind turbines are placed

in a regular configuration whilst maintaining a large distance between

each turbine. The turbines are mainly affected by the prevailing wind

direction, which is illustrated by the yearly energy rose in Figure 2.2.

Such a regular configuration is quite straightforward to design. How-

ever, some studies show that such configurations are not necessarily

optimal in terms of total energy output [78, 90, 72]. Contrary to such

regularly configured layouts, Figure 2.2 (b) represents a symmetrically

optimised layout and Figure 2.2 (c) represents a randomly-looking but

6

2.2 Wind Farm Wake Effect

highly optimised for the same wind farm proposed by Neubert et al. [78].

According to [78], the layouts shown in Figure 2.2 (b) and (c) can in-

crease the annual energy output by 5% and 6%, respectively. Obviously,

this improvement will significantly increase the profit of selling the elec-

tricity for the wind farm developers. From an optimisation perspective,

this improvement is mainly due to the minimisation of the wake effect

[28].

Figure 2.2: Layout of the Middelgrunden offshore wind farm [28]. (a) actual
layout, (b) symmetrically optimised layout, (c) randomly optimised.

2.2 Wind Farm Wake Effect

This section give a general idea of how a wind turbine works, and how to

mathematically describe the wake effect. Then it shows the findings in

the literature regarding to the computational complexity of the WFLOP.

2.2.1 Wind Turbine Characteristics

The characteristics of a Wind Turbine (WT) that are related to the wind

farm layout optimisation are described in Table 2.1 following:

7

Chapter 2 Wind Farm Layout Optimisation Problem

Characteristic Notation Unit

Cut-in speed ci m/s
Cut-out speed co m/s
Nominal speed crated m/s
Nominal power Prated kW
Thrust coefficient Ct 0 ≤ Ct ≤ 1
Rotor diamete d m
Hub height z m

Table 2.1: The characteristics of a Wind Turbine.

Figure 2.3: Simple drawing the rotor and blades of a wind turbine from a front
point of view (left) and a side point of view (right), respectively
[36].

Figure 2.3 depicts a simple drawing of the rotor and blades of a wind

turbine from a front point of view and a side point of view, respectively.

According to [13], in simple wind turbine designs, the turbine blades are

bolted to the hub. The hub height z indicates how high the attachment

point of the blades above the ground is. The hub is fixed to the rotor

shaft which drives the generator through a gearbox. The rotor diameter

d (also known as rotor radius) largely determines how much wind energy

can be collected and turned into electrical energy. In more recent so-

8

2.2 Wind Farm Wake Effect

phisticated designs, the blades are bolted to the pitch mechanism, which

adjusts their angle of attack according to the wind speed to control their

rotational speed [13].

Briefly, the turbine rotor starts to spin when the wind speed is greater

than ci m/s. The power output increases nonlinearly until the wind speed

reaches the nominal speed where the turbine control system alters the

pitch of the blades so that the power production becomes a constant. This

is the nominal power output of the wind turbine. The power curve and

thrust coefficient respectively describe the power produced and between

wind speed ci and co. The thrust coefficient indicates the proportion of

wind energy capture when the wind passes the turbine blades. For both

power curve and thrust coefficient curve, wind turbine manufacturers

usually provide a few data points, which need to be interpolated to ob-

tain the intermediate points [89]. For example, Figure 2.4 illustrates the

power curve (black line) and thrust coefficient curve (grey line) of the

turbine Vestas V63 (ci = 5 m/s, co = 25 m/s, nominal speed = 16 m/s,

nominal power = 15 Megawatts) [89, 98].

The distance between any two wind turbines is also very important

since decreasing the spacing increases the turbulence induced by the

wakes of neighbouring wind turbines [54, 89]. As a general rule, turbines

in wind farms are usually spaced between 5 and 9 rotor diameters apart

in the prevailing wind direction, and between 3 and 5 rotor diameters

in the direction perpendicular to the prevailing wind [89]. Figure 2.5

shows an example the distances between turbines inside a wind farm

with symmetrical constraints.

2.2.2 Surface Roughness

In a given terrain, wind speed decreases by interaction with obstacles

within the terrain. For example, water surfaces are smoother than forests,

and will have less influence on the wind, while long grass and shrubs and

bushes will slow the wind down considerably. In short, the smoother the

9

Chapter 2 Wind Farm Layout Optimisation Problem

Figure 2.4: Power curve (black line) and thrust coefficient curve (grey line) of
the turbine Vestas V63 [89, 98].

terrain, the less interference it has on wind. This can be modelled using

a constant called roughness length z0. Table 2.2 shows the roughness

lengths of typical surfaces.

Type of terrain Roughness length, z0 (m)

Water Surface 0.0002
Open farmland, few trees and buildings 0.003
Villages, country with trees and hedges 0.1
Cities, forests 0.7

Table 2.2: Typical Surface Roughness Lengthes [28].

10

2.2 Wind Farm Wake Effect

Figure 2.5: Example of the distance between turbines in both prevailing wind
direction and the direction perpendicular to the prevailing wind.
There are five turbines each column and the prevailing wind blows
from left to right.

2.2.3 Wind Modelling

In the literature, the statistical behaviour of the wind is typically mod-

elled by taking into account two different factors: wind direction and

wind speed. A commonly used wind model is proposed by Kusiak and

Song [54]. In their approach, the wind direction is represented by the

probability of occurrence for each of the sectors inside a wind rose. Fig-

ure 2.6 illustrates an example of wind rose with 16 sectors. In work

[75, 80, 23], the discretised distribution wind model was used with a

wind rose of 36 sectors. There are other studies in the literature that

have divided the wind rose into 24 sectors [93], 16 sectors [23] and 8

sectors [77, 54].

According to Kusiak and Song [54], the turbine output P is defined

as:

PWT = f(v) (2.1)

where P is the turbine output and v is the wind speed at the turbine hub

with a fixed height (see Figure 2.3).

As can be seen in Figure 2.4, a power curve P = f(v) usually resem-

11

Chapter 2 Wind Farm Layout Optimisation Problem

Figure 2.6: An example of a wind rose diagram, showing statistics of wind
speed and direction throughout the year [4]. This is a wind rose
with 16 sectors whereas the center of each sector indicates at a
given location (i.e a wind farm site). The length of each colour-
coded "spoke" around the circle illustrates the relative wind speed
in the pointed direction.

bles a sigmoid function. It could be described as a linear function with a

tolerable error. For example, in the study reported by Kusiak and Song

[54], the turbine output P Equation (2.1) is expressed as:

PWT = f(v)

=



0, v < ci

λv + η, ci ≤ v ≤ crated

Prated, co > v > crated

0, v ≥ co

(2.2)

where ci is the Cut-in speed, co is the Cut-out speed, crated is the Nominal

speed, Prated is the Nominal power, λ is the slope parameter, and η is the

intercept parameter. More specific, if the wind speedv is smaller than

Cut-in speed, there is not sufficient torque to turn the turbine and the

generator, thus there is no power output. Similarly, if the wind speed ex-

ceeds the Cut-out speed, the turbine shuts down (zero output) to prevent

12

2.2 Wind Farm Wake Effect

turbine damage. When the wind speed is between the Cut-in and the

rated speed (crated), the power output can be described as a linear equa-

tion. If the wind speed is greater than the rated speed (crated) but smaller

than the Cut-out, the wind turbine control system will keep the turbine

rotation speed stable (fixed power output at Prated) to protect the system

from overloading. Once the wind speed v is greater than the Cut-out

speed, the wind turbine is shut down for safety purpose and it generates

zero energy.

In their approach, according to industrial wind farm data [69], the

wind speed v at a given location, height and direction follows a Weibull

distribution [102, 95], which can be expressed as:

pv(v, k, c) =
k

c

(v
c

)k−1
e−(

v
c
)k (2.3)

where pv(.) is the probability density function, k is the shape parameter

and c is the scale parameter. At a given heigh, the expected wind speed

v is a continuous function of the wind direction θ, because k and c can

be parameterised by θ (i.e. k = k(θ), k = k(θ), 0◦ ≤ θ ≤ 360◦). In plain

english, wind speeds at different locations across the wind farm share

the same Weibull distribution [54]. Figure 2.7 illustrates an example of

wind roses diagram with their corresponding wind directions (i.e. 45◦

and 225◦), where East is defined as 0◦ and North is defined as 90◦ at a

given location (i.e. a wind farm site).

The notation in Equations (2.1) to (2.3) is equivalent to the ones in

[54].

2.2.4 Wake Effect Modelling

As shown in Figure 2.8, the wind wake effect is a phenomena occur-

ring when a wind turbine rotor extracts a certain amount of kinetic en-

ergy from the wind flow and the downstream wind speed is reduced thus

downstream turbines extract less energy [89]. Briefly, Figure 2.8 shows

the Jensen wake model [44, 25]. The wind blows from left to right at

13

Chapter 2 Wind Farm Layout Optimisation Problem

Figure 2.7: Wind farm boundary and the definition of the wind speed direction
[54]. The two arrows indicate that the wind might come from both
both directions. The length of each colour-coded "spoke" around
the circle illustrates the relative wind speed in the pointed direc-
tion.

wind speed U0. Then the wind hits a turbine which is represented as a

black rectangle on the left. At a distance x from the turbine, the radius

of the turbulence is r1 whereas the rotor radius is rr (equals to the ini-

tial size of the turbulence). The α is a scalar parameter that determines

how quickly the wake expands with distance. Under the wake effect, the

downstream wind speed reduced to U < U0 whereas in the non-wake

area, the downstream wind speed is still U0. Additionally, turbulence and

shear stress will increase wind load fluctuation and cause damage for

those downstream turbines.

According to Jensen [44], the wind speed deficit (see Figure 2.8)

caused by the airflow passes through the wind turbine rotor and it is

14

2.2 Wind Farm Wake Effect

Figure 2.8: Schemetic representation of the wake effect.

Figure 2.9: Schemetic representation of multiple wake affecting a position.

calculated as follows:

U = U0

[
1− 2a

1 + α(d
r1
)2

]
(2.4)

where d is the distance between the two turbines.

The scalar α determines how quickly the wake expands with distance

15

Chapter 2 Wind Farm Layout Optimisation Problem

and it is can be computed by the expression:

α =
0.5

ln z
z0

(2.5)

where z is the hub height of the wind turbine whereas z0 is a the surface

roughness.

The term r1 represents the radius of the wake downstream and it can

be calculated by the expression:

r1 = rr

√
1− a
1− 2a

(2.6)

where rr is the turbine rotor radius at upstream while the term a is the

axial induction factor and it is defined as:

a = 0.5
(
1−

√
1− Ct

)
(2.7)

where Ct is the thrust coefficient of the turbine.

For any two turbines that are located at i and j inside a wind farm,

the wind speed velocity deficit at turbine j in the wake of turbine i is

defined as:

vel_defij =
2a

1 + α(
xij
rj
)2

(2.8)

where term a is defined in Equation (2.5), xij is the distance between the

two turbines and rj is the radius of the wake downstream at turbine j

which is calculated by Equation (2.6). Since many turbines are installed

in a wind farm, wakes can intersect with each other and affect turbines

downstream at the same time. When a turbine j is affected by the wakes

of multiple turbines, the total velocity deficit is computed as:

vel_defj =

√ ∑
i∈W (j)

vel_def 2
ij (2.9)

where W (j) is the set of turbines affecting the turbine located at position

j.

16

2.2 Wind Farm Wake Effect

The interaction of multiple wakes is not fully understood and is sub-

ject of many studies in the aerodynamics field [89]. Herbert-Acero et al.

[37] reported that the wake effect between turbines must be calculated

sequentially. As can be seen in Figure 2.9, turbine C is in the wake gen-

erated by both turbine A and B, whereas turbine B is not affected by the

wake of any other turbine (UC < U0). Turbine A is placed at the upstream

of turbine D and E while turbine E is located at the downstream of tur-

bine D (UE < UD < U0). In order to calculate the wake effect on turbine

C, the wake generated by turbine A and B should both be taken into ac-

count. Similarly, the wake effect on turbine E only can be calculated until

the wake effect generated by turbine A at turbine D is known.

There is another wake model proposed by Katic et al. [51]. It takes

the theory of Betz [13] and the balance of momentums into consideration.

The speed deficit caused by the wake is calculated as:

U(d) = U0

(
1−

(
1−

√
1− Ct

)(D

D(d)

)2
)

(2.10)

where D is the rotor diameter and D(d) is the diameter of the down-

stream wake at distance d which calculated as:

DW (d) = D + 2kWd (2.11)

where kW is the wake effect constant. The recommended value for kW in

onshore wind farms is 0.075 whereas it is 0.05 for offshore wind farms.

The notation in Equations (2.4) to (2.11) is equivalent to the ones in [89,

28].

The computational effort required for Jensen [44] wake model is sim-

ilar to Katic [51] wake model. The Katic can obtain accurate results

only using relatively simple mathematical formulation, thus it is the most

widely used wake model in the wind energy industry [28].

17

Chapter 2 Wind Farm Layout Optimisation Problem

2.3 Wind Turbine Energy Output

For a single turbine at location (x, y) with wind blowing from direction θ,

the expected energy production is defined as:

EWT (θ) =

∞∫
0

f(v)pv(v, k(θ), c(θ))dv

=

∞∫
0

f(v)
k(θ)

c(θ)

(
v

c(θ)

)k(θ)−1
e−(

v
c(θ)

)k(θ)dv

(2.12)

where, as mentioned, f(v) is the power curve and pv is the distribution

over wind speeds.

The expected wind turbine energy production for θ in the range 0 −
360◦ is calculated as:

EWT =

360∫
0

pθ(θ)E(P, θ)dv

=

360∫
0

pθ(θ)dθ

∞∫
0

f(v)
k(θ)

c(θ)

(
v

c(θ)

)k(θ)−1
e−(

v
c(θ)

)k(θ)dv

(2.13)

In order to fit real data into this wind model, the power curve should

be provided by the turbine manufacture whereas the statistical wind

speed and direction data should be measured over a period of time on

site. In order to perform numerical integration, the wind speed and its

direction are discretised. It needs to be noted that continuous wind char-

acteristics are not available in the design of wind farms [54].

Assume that the wind direction is discretised into Nθ +1 sectors (see

Figure 2.6) of equal length. The dividing points of wind direction are

θ1, θ2, . . . , θNθ where 0◦ < θ1 ≤ θ2 ≤ · · · ≤ θNθ < 360◦, θ0 = 0◦, θNθ+1 = 360◦.

Each sector is associated with a relative expected wind speed 0 ≤ ω ≤
1, i = 1, . . . , Nθ. For example, ω0 is the expected wind speed of sector

[0◦, θ1] whereas ωNθ is the expected wind speed of sector [θNθ , 360
◦]. The

18

2.4 WFLOP Objective Functions

expected wind speed ωi is estimated using the wind farm data [54].

Similarly, the wind speed data is also discretised into Nv + 1 sectors.

The dividing points of wind direction are v1, v2, . . . , vNv where vcut−in <

θ1 ≤ θ2 ≤ · · · ≤ vNv < vrated, v0 = vcut−in, vNv+1 = vrated.

Therefore, the wind turbine energy output can be calculated as:

E(WT)i = λ
Nv+1∑
j=1

(
θj + vj

2

)Nθ+1∑
l=1

{
(θl − θl−1)ωl−1

{
e−
(
vj−1/ci

(
θl+θl−1

2

))k(θl+θl−1
2

)
− e−

(
vj/ci

(
θl+θl−1

2

))k(θl+θl−1
2

)}}
+ Prated

Nθ+1∑
l=1

{
(θl − θl−1)ωl−1e−

(
vrated/ci

(
θl+θl−1

2

))k(θl+θl−1
2

)}

+ η

Nθ+1∑
j=1

{
(θl − θl−1)ωl−1

(
e−
(
vcut−in/ci

(
θl+θl−1

2

))k(θl+θl−1
2

)

− e−
(
vrated/ci

(
θl+θl−1

2

))k(θl+θl−1
2

))}

(2.14)

where λ is the slope parameter, η is the intercept parameter, Prated is the

nominal power. The notation in Equations (2.12) to (2.14) is equivalent

to the ones in [54].

Discretisation of wind direction and wind speed is commonly used

in the literature. In work [75, 80, 23], the discretised distribution wind

model was used with a wind rose of 36 sectors. There are other studies

in the literature that have divided the wind rose into 24 sectors [93],

16 sectors [23] and 8 sectors [77, 54]. In this thesis, the directions are

discretised into 24 sectors (see Section 7.1).

2.4 WFLOP Objective Functions

In the existing literature, the commonly used objective function is pro-

posed by Kusiak and Song [54]. In their approach, all turbines are as-

19

Chapter 2 Wind Farm Layout Optimisation Problem

sumed identical. The total number of turbines inside the wind farm is

fixed and each turbine varies only in its (x, y) Cartesian coordinates on

the plane. The objective is to maximise the annual total power output

production of the wind farm (EWF), which is obtained by summing up the

contribution of all the turbines:

EWF =

NWT∑
i=1

E(WT)i (2.15)

where E(WT)i is defined in Equation (2.14) and NWT is the number of

turbines installed in the wind farm. There are two constraints for this

objective function. Given the rotor radius R, any two turbines at position

xi, yi and xj, yj should satisfy the inequality (xi−xj)2+(yi−yj)2 ≤ 64R2. In

other words, the minimum distance between any two turbines is 8R. This

is very important since the wake effect is considerably stronger when

two turbines are too closely placed [54].

Mosetti et al. [75] proposed another approach to the problem. The

maximum annual energy output (EWF) is achieved with the minimum to-

tal wind farm cost (costtot). The objective function to minimise is defined

as:

Obj =
1

EWF

× w1 +
costtot
EWF

× w2 (2.16)

where w1 and w2 are the random weights and costtot is defined as:

costtot = NWT ×
(2
3
+

1

3
× e−0.00174×N2

WT

)
(2.17)

where NWT is the number of wind turbines.

The maximisation of profit is studied by Ozturk and Norman [80].

The profit is calculates as:

Profit =
[
pkWh −

(costtot
EWF

)]
× EWF (2.18)

where pkWh is the selling price of harvest energy per kilowatt-hours and

costtot is total cost of the wind farm calculated using the cost model in

Equation (2.18).

20

2.4 WFLOP Objective Functions

The minimisation of the cost/energy is studied in work [31, 70]. The

ratio is calculated as:

Ratio =
costtot
EWF

(2.19)

where the costtot is calculated using Equation (2.18).

Mora et al. [74] proposed a new approach to the problem by maximis-

ing the net present value (NPV). This complex approach takes a complete

economic model into account for the wind farm. The objective function

to maximise is defined as:

NPV (χ) =
CF1(χ)

1 + r
+
CF2(χ)

(1 + r)2
+ · · ·+ CFi(χ)

(1 + r)LT
− IWF (χ) (2.20)

where CF1 is the cash flow of each year, χ is the wind farm configuration,

IWF is the initial investment of the wind farm, r is the discount rate of

money, and LT is the life time of wind farm.

Lackner and Elkinton [58] proposed an objective function for the de-

sign of offshore wind farms. It takes a number of aspects into account

such as turbine cost, roading cost and electric interconnection cost. By

minimising the levelized production cost (LPC), the objective function is

defined as:

LPC =
IWF

afEWF

+
CO&M

EWF

(2.21)

where af is the annuity factor and CO&M represents the cost of operation

and maintenance. The notation in Equations (2.15) to (2.21) is equivalent

to the ones in [28].

As can be seen, there are several objective functions for WFLOP in

the literature. Most of the studies have used the simplified option in

Equation (2.16) because it is accurate enough to show the ability of the

proposed optimisation methods. However, the complex objective func-

tions are more realistic as they take the economical behaviour of the

project into account. They can be used to analyse the influence of as-

pects such as roading cost, electric infrastructure cost and other auxil-

iary costs.

21

Chapter 2 Wind Farm Layout Optimisation Problem

Our work employ an extended version from 2015 Wind Farm Layout

Optimisation Competition[105], which was originally proposed by Kusiak

and Song [54]. By calculating the total cost of the farm (including con-

struction and yearly operating costs) and dividing that by the total power

output of the wind farm, the cost is defined as the expected cost of per

kilowatt energy output. The objective function to maximise is defined as:

cost =
(ct × n+ cs ×

⌊
n
m

⌋
)(23 + 1

3 × e
−0.00174n2

) + CO&M × n

(1− (1 + r)−y)

/
n

× 1

8760× P
+

0.1

n

(2.22)

where ct = 750, 000 is the cost of a turbine in USD; cs = 8, 000, 000 is

the cost of subsection in USD; m = 30 is the number of turbines per

subsection; r = 0.3 is the interest rate; y = 20 is the lifetime of the farm

in years; CO&M = 20, 000 is the cost of operations and maintenance in

USD; n is the number of turbines; and P is the total energy output of the

farm.

This objective function is based on the Jensen wake model [44]. It is

robust [26], thus it can provide adequate accuracy for wind farm simula-

tions. Mayo and Zheng [73] previously also used this objective function

to evaluate the performance of a novel evolutionary search operator for

the WFLOP. This objective function is simplified, for example, the runtime

(3.4 GHz Intel Core i5) for one evaluation using this objective function on

a wind farm scenario with 100 WTs and 720 WTs are approximately 410

milliseconds and 8200 milliseconds, respectively. Despite the simplifica-

tion, it is still adequately accurate [26].

2.5 Wind Farm Design Tools

According to a recent review paper done by González et al. [28], there

are several commercial available software packages that help wind farm

designer assess their designs. The most popular one is WAsP [18], which

is designed specifically for wind resource assessment and siting of wind

turbines and wind farms in various terrain. A module of WAsP uses the

22

2.5 Wind Farm Design Tools

Katic wake model [74] to calculate the energy output of the wind farm

by taking into account extreme wind conditions, wind sheers and turbu-

lence, etc. The recent update added the WAsP CFD module, which uses

a computational fluid dynamics (CFD) wind model that allows wind farm

designer to test their designs on complex terrain. WAsP CFD includes

an useful online calculation service where high quality WAsP CFD cal-

culations are performed on a high-performance computer cluster via the

internet.

Similarly, WindSim [106] offers the wind farm design assessment

functionality using a CFD model based on a 3D Reynolds-averaged Navier-

Stokes solver. This tool can identify the spots within the wind farm that

have better wind speed condition and low turbulences, thus the design-

ers can place the wind turbines on more potentially suitable locations.

Both the WAsP and WindSim software are powerful in terms of assist-

ing wind farm designers to make wind turbine micro-sitting decisions,

however, both the WAsP and WindSim only focus on the assessment of

the wind farm design based on annual energy output. The problem of op-

timising the layout of wind farms is not the main purpose of these tools.

There are few software packages that tackle the wind farm layout op-

timisation problem. Windfarmer [24] optimises the layout of a wind farm

in order to maximise the return of investment. But the developers pro-

vide no information regarding to the optimisation method or the objective

function used. Thus performance in terms of accuracy is a concern.

Another package called WindPro [20] focuses on finding better wind

farm layouts by maximising the annual energy output using the Katic

wake model [74]. In particular, the software incrementally adds turbine

to candidate layouts then evaluates. It can handle random turbine con-

figurations as well as symmetrical turbine configurations (i.e. see Fig-

ure 2.2).

OpenWind [5] is an open source software which minimises the cost

of energy production using the deep-array wake model [11], which is

23

Chapter 2 Wind Farm Layout Optimisation Problem

based on the Katic wake model [74]. But no further details are provided

regarding to the optimisation method.

As can be seen, although there are some commercial and open source

software packages are available, they are mainly designed for evaluating

potential wind farm layouts rather than optimising them. The details

regarding to the optimisation algorithms employed are very limited.

In this thesis, we used a simulator from 2015 Wind Farm Layout Opti-

misation Competition[105]. The simulator employs a grid-based genetic

algorithm for search near optimal solutions. The objective is to min-

imise the cost of energy. It uses an extended version of the objective

function proposed in work [54]. The objective function is shown in Equa-

tion (2.22). The simplicity of this simulator makes it very efficient to

run. The details regarding to the employed optimisation algorithm and

objective function are very helpful for our study.

2.6 Variants of the WFLOP

In the literature, several variants of the WFLOP have been investigated.

The number of turbines is one of the most significant issues in the design

of a new wind farm. In study [22], the proposed approach can be use-

ful for the estimation of the optimal number of wind turbines in a wind

farm. The wind farm initial cost can be significantly reduced by only us-

ing the minimum required number of wind turbines for specific power

productivity.

The power quality issue is also a concern for wind farm designers.

From the customer’s point of view, it is desirable to have electricity with-

out fluctuating voltage and frequency at the receiving end. This issue can

be addressed at the wind turbine or the wind farm level. In work [76],

the potential power quality improvement of a single wind turbine was

analysed in conjunction with a diesel generator. Later on, the modelling

and control techniques for such wind-hybrid power generation systems

24

2.6 Variants of the WFLOP

were studied in [53] to enhance the power quality on a given wind farm.

In another version of the WFLOP, the landowners are taken into the

consideration of wind farm design in work [14] and [100]. The authors

pointed out that currently research on WFLOP assumes a continuous

piece of land is readily available and focuses on advancing optimisation

methods, however, in the real world projects rely on landowners’ permis-

sion for success. The landowners should be consulted in order to find the

most cost-effective plots of land to construct the wind farm, therefore the

total cost of the wind farm can be reduced.

In yet another version of the WFLOP, the auxiliary infrastructures

such as electrical infrastructures and roading networks are studied in

work [3, 29]. They pointed out that the auxiliary costs should be kept

in mind to calculate the initial investment, so that designers can accu-

rately optimise the wind farm. These added variables lead to a problem

that there is no analytic function to model the wind farm costs. This fact

makes the problem non-derivable, preventing the use of classical analyt-

ical optimisation techniques [29].

There are few studies consider the environmental impacts of wind

farms. For example, study [57] have presented a continuous-location

model for layout optimisation that take noise propagation and energy

generation as objective functions. Similarly, work [78] proposed a method

generating visually appealing symmetric layouts that preserve cultivated

geometric regularities, without compromising the energy output.

Despite these variants, most of the studies in the literature (as well

as this work) focus on the two dimensional planner version of the WFLOP

[54], in which all turbines are assumed identical. The number of turbines

n inside the wind farm is fixed and each turbine varies only in its (x, y)

Cartesian coordinates on the plane. Thus a wind farm with N turbines is

represented as: {(xi, yi), i = 1, . . . , N}. The wind turbines are assumed to

be identical so that they all have the same hub height and energy output.

This simplified variant of the WFLOP is the most widely tackled version.

Although simplified, the WFLOP is still a high-dimensional and computa-

25

Chapter 2 Wind Farm Layout Optimisation Problem

tionally expensive optimisation problem. For example, in this thesis the

four benchmark wind farm scenarios (see Section 7.1) are formed from

100 to 720 wind turbines. Thus the dimensionality ranges from 200 to

1420.

2.7 Computational Complexity of WFLOP

Currently, the primary method for evaluating wind farm layout is via CFD

simulation. The problem is the tremendous computational complexity.

For example, work [33] reported that simulating wind farms with non-

flat topography can take up to 8-10 hours per simulation. Research on

the WFLOP is often motivated to reduce computational cost for such ex-

pensive simulation evaluation.

In a wind farm simulation, if the wind speed and direction data is

given, then the wake effect between pairs of turbines can be calculated

for each wind direction. Subsequently, the overall energy production of

the farm can be computed [73]. There are a few mathematical models

that accurately describe the wake effect, both in terms of wind speed

reduction and turbulence intensity [50, 103, 97]. But these highly com-

plex computational fluid dynamics approaches are very computationally

expensive. Some of these models are only valid for the wake that are

generated far from the turbine (far wake models) and others are only

valid for the turbine closely generated wake (near wake models). This

is why the simplified objective function illustrated in Equation (2.22) is

used.

An important point to note is that the time complexity of evaluating

a wind farm layout is a polynomial function of the number of turbines.

Thus the wind farm layout optimisation problem lies in the class Non-

deterministic Polynomial Optimisation (NPO)-complete [37]. A common

characteristic of such problems is that they do not have a known effi-

cient solution procedure [37]. Moreover, the wake effect between tur-

bines must be calculated in sequential order thus the evaluation function

26

2.7 Computational Complexity of WFLOP

can not be parallelised [37]. As mentioned before, in Figure 2.9, the

wake effect on turbine C is subject to both turbine A and B whereas the

wake effect on turbine E cannot be calculated until the wake effect on

turbine A and D is known. Therefore, the interactions must be modelled

individually and be computed sequentially.

In terms of the search space, WFLOP is continuous, constrained, and

non-differentiable. Turbines can be placed at any valid location inside

the farm. The validation of turbine placement includes the minimum dis-

tance (which is typically a distance of eight times of the radius of the tur-

bine rotor) constraint check between turbines, and the obstacle collision

constraint check. The search space can be additionally discretised, so

that the original continuous optimisation is converted into one of combi-

natorial optimisation where a position either contains a turbine or empty

[75]. In this case, the size of the search space is at least O(2n) where n

is the number of turbines [37].

In other words, due to the high computational complexity, even for

the simplest objective (i.e. the maximisation of the wind farm energy

output), the WFLOP consists of both continues and discrete variables,

therefore, it cannot be completely described in an analytical form and it

cannot be solved by classic optimisation methods. Consequently, most

research on this particular problem utilises meta-heuristic approaches.

27

28

Chapter 3

Evolutionary Algorithms

The most common way to classify heuristic methods is based on trajec-

tory methods vs. population-based methods [7]. More specifically, tra-

jectory meta-heuristics use a single solution during the search process

and the outcome is a single optimised solution. But due to the prob-

lem of escaping local optima, population based meta-heuristics are more

commonly used. In these algorithms, a population of candidate solutions

evolve during given iterations then return a population of solutions when

the algorithm terminates. Population-based methods can avoid local op-

tima issues [67].

These population-based methods are inspired by population biology,

as a consequence, they also borrow the technical terms from genet-

ics and evolution [67]. These terms are quite prevalent and generally

makes sense in computer science field. The common terminology used in

population-based methods are given as follows:

29

Chapter 3 Evolutionary Algorithms

Common Term Description

population set of candidate solutions.
individual a candidate solution.
fitness quality of a solution.
fitness evaluation computing the fitness of an individual

which may be very computationally expensive.
child and parent an child (offspring) is the modified copy of one or two

parent solutions.
selection picking individuals for reproduction based on their fitness.
mutation an evolutionary operator to modify an individual.
crossover an evolutionary operator which takes two individuals as parents,

swaps sections of them, and produce one or two offsprings.
breeding a procedure to generate one or more offsprings from a population

of parents through mutation or crossover operation.
intermediate generation a generation of individuals during the evolutionary process

Table 3.1: Common terms used in evolutionary computation.

3.1 Genetic Algorithms

Genetic Algorithms (GAs) were first introduced by Holland [39] at the

university of Michigan in the 1970s. GA usually iterates population fit-

ness evaluation, selection and breeding, and offspring population gener-

ation.

A GA usually begins with a population of randomly generated popsize

number of individuals. It then iterates as follows. First all the individuals

are evaluated for fitness. The comparison procedure maintains a global

fittest individual Best (initially set to empty). At each iteration, the cur-

rentBest solution will be compared against the population of new individ-

uals. Secondly, to breed, an new offspring population is prepared and two

parents are selected from the original population. We then copy them,

cross them over with one another, and mutate the results. This gener-

ates two children to be added to the offspring population. This breeding

is repeated until the offspring population is fully filled to popsize. The

iteration continuous with the offspring population. Algorithm 1 depicts

GA pseudocode.

30

3.2 Evolutionary Strategies

Algorithm 1 The Genetic Algorithm

1: popsize← desired size of population

2: P ← { } . Population Initialisation

3: for popsize times do

4: P ← P ∪ new random individuals

5: Best← �

6: repeat

7: for each individual Pi ∈ P do

8: EvaluateFitness(Pi)

9: if Best = � or Fitness(Pi) > Fitness(Best) then

10: Best← Pi)

11: Q← {}

12: for popsize / 2 times do

13: Parent Pa ← SelectWithReplacement(P)

14: Parent Pb ← SelectWithReplacement(P)

15: Children Ca,Cb ← Crossover(Copy(Pa),Copy(Pb))

16: Q← Q ∪ {Mutate(Copy(Ca)),Mutate(Copy(Cb))}

17: P ← Q

18: until Best is the ideal solution or we have run out of time

19: return Best

Please note these three functions SelectWithReplacement, Crossover

and Mutate will be discusses later.

3.2 Evolutionary Strategies

The Evolutionary Strategies (ESes) were originally developed by Ingo

Rechenberg and Hans-Paul at the Technical University of Berlin in the

mid 1960s [21]. Similar to GA, ES iterates fitness evaluation, parents

selection and breeding, and offspring population reassembly. However,

whereas a GA usually selects a few parents and little-by-little generates

offspring individuals until enough have been created, an ES usually em-

31

Chapter 3 Evolutionary Algorithms

ploys a simple selection procedure and then mutates the chosen parents

to produce enough offspring individuals to replace the discarded parents.

The (µ, λ)-ES is the simplest version among the evolutionary algo-

rithms. ES also starts with a randomly generated population of λ indi-

viduals, and then it is repeated as follows. The individuals are evaluated

for fitness values, then the µ fittest ones are selected to be parents and

the rest of the individuals are deleted. Each of the µ parents are used

to produce λ/µ children via mutation. Overall there are λ new offspring

to be put back into the population. In other words, the number of µ par-

ents are selected to produce λ offspring in each iteration. Notice that λ

should be a multiple of µ. Algorithm 2 illustrates (µ, λ) ES pseudocode.

Algorithm 2 The (µ, λ) Evolutionary Strategy

1: µ← number of parents selected
2: λ← number of children generated by the parents

3: P ← { } . Population Initialisation
4: for λ times do
5: P ← P ∪ new random individuals
6: Best← �
7: repeat
8: for each individual Pi ∈ P do
9: EvaluateFitness(Pi)

10: if Best = � or Fitness(Pi) > Fitness(Best) then
11: Best← Pi
12: . Parents Selection
13: Q← the µ individuals in P whose Fitness() are greatest
14: P ← { }
15: for each individual Qj ∈ Q do
16: for λ / µ times do
17: P ← P ∪ {Mutate(Copy(Qj))}
18: until Best is the ideal solution or we have run out of time
19: return Best

32

3.3 Evolutionary Strategies with Elitism

3.3 Evolutionary Strategies with Elitism

Elitism is a quite simple concept in population-based approaches: the

fittest individual or individuals from previous generation are injected into

the next generation of population. The (µ, λ)-ES with Elitism iterates sim-

ilarly to a normal (µ, λ)-ES, but the primary difference is in keeping the

desired number of n fittest individual(s) in the population P rather than

deleting all the individuals from the previous generation. The breeding

produces n less offsprings since those n elites will be put back into the

new generation of population after breeding. Elitism is believed to be

an important ingredient in population-based approaches, for example in

work [109, 60] related to multi-objective evolutionary algorithms, exper-

imental results showed that elitism is beneficial. Algorithm 3 depicts ES

with Elitism pseudocode:

Algorithm 3 The (µ, λ) Evolutionary Strategy with Elitism

1: µ← number of parents selected
2: λ← number of children generated by the parents
3: n← desired number of elite individuals

4: P ← { } . Population Initialisation
5: for λ times do
6: P ← P ∪ new random individuals
7: Best← �
8: repeat
9: for each individual Pi ∈ P do

10: EvaluateFitness(Pi)
11: if Best = � or Fitness(Pi) > Fitness(Best) then
12: Best← Pi
13: . Parents Selection
14: Q← the µ individuals in P whose Fitness() is greatest
15: . Elites Selection
16: P ← {the n fittest individuals in P , breaking ties at random}
17: for each individual Qj ∈ Q do
18: for λ/µ− n times do
19: P ← P ∪ {Mutate(Copy(Qj))}
20: until Best is the ideal solution or we have run out of time
21: return Best

33

Chapter 3 Evolutionary Algorithms

3.4 Selection, Mutate and Crossover

In both GA and ES that we discussed above, there is a procedure known

as selection. In the literature, SelectWithReplacement is referred many

selection techniques. A popular one is called Fitness-Proportionate Se-

lection where an individual is selected more frequently if it has a higher

fitness. It can also select some low fitness individuals occasionally [67].

In an ES, a popular selection procedure is known as Truncation Selec-

tion where the µ best parents are fixed and predefined because they are

selected based on their fitness values.

Figure 3.1 illustrates the general idea of three classic ways for do-

ing crossover in binary vectors: (a) One-Point crossover, (b) Two-Point

crossover and (c) Uniform crossover. Assuming we have l elements in

the vector, One-Point crossover swaps all the elements after a given in-

dex a (where 1 ≤ a ≤ l) whereas Two-Point crossover swaps all the items

in between two given indexes a and b (where 1 < a < b ≤ l). Uniform

crossover swaps the elements located at individual indexes. Figure 3.1

(d) gives the general idea of doing mutation in a vector. The Mutate

operator simply changes the elements at given indexes.

Luke [67] point out that the problem with One-Point crossover. If

certain patterns (i.e. few elements has to be sequentially organised) are

necessary in order to get high fitness, it is quite likely that the crossover

would break up good patterns that the algorithm discovered. The so-

lution is to use Two-Point crossover so the patterns can be preserved

between the two chosen indexes. Another solution is to treat all the

indexes fairly so that each point can be swapped independently which

is Uniform crossover. In Figure 3.1, the vectors only consist of binary

value. Crossover and mutate operation however can deal with floating-

point values, for example, by averaging the values from two indexes in-

stead of just swapping them (crossover) or adding random gaussian noise

to values (mutation).

34

3.5 Crossover vs. Mutation

Figure 3.1: Example of Crossover and Mutate Operations.

3.5 Crossover vs. Mutation

In conventional genetic algorithms, the purpose of mutate operation is to

increase diversity among the individuals within a population whereas the

crossover operator aims to increase convergence. However, crossing two

vectors cannot give every conceivable vector out of it [67]. As shown in

Figure 3.2, the two black circles represent two three-dimensional vectors

at the extreme corners of a hypercube in space. The crossovers of these

two corners only results in new vectors which are located at some other

35

Chapter 3 Evolutionary Algorithms

corners of this hypercube. In other words, the new vectors are still inside

this hypercube. This theory can be extended to the population-based

methods. Imagine the the individuals of a population P as points in the

three-dimensional space in Figure 3.2. The results of crossover done on

P can only be inside the bounding box surrounding P in space [67], in

other words, using crossover alone is not possible to search the space

outside the bounding box of P . Thus crossover is not capable of global

search alone.

To further illustrate, if crossover and selection are repeated on a

population many times, the population may end up in a situation where

certain values for certain indexes in the vector have been eliminated. As

a result, the bounding box collapses in that dimension. In other words,

the individuals are quite similar or even identical to each other within in

the population. The population will pre-maturely converge. At this stage,

individuals are crossed with themselves and nothing new is generated.

Mutation, on the other hand, introduces conceivable new values for the

vector. This is why a mutate operator is required.

Despite this, crossover is still needed. It is believed that good fitness

individuals share certain features in common. In many cases for which

crossover was helpful, the fitness value of a given individual is at least

partly in relation to these common features [67]. As mentioned before,

One-point and Two-point crossover may break up these shared features,

however if the vectors are carefully constructed (i.e. putting related fea-

tures next to each other), it is possible that crossover can spread the

features of a parent with high fitness throughout the population.

36

3.6 Exploration vs. Exploitation

Figure 3.2: A cube in space formed by two three-dimention vectors (black cir-
cles). The space inside the cube represents all possible results pro-
duced by crossovering the two vectors. The outer space represents
the possible results by mutating the two vectors.

3.6 Exploration vs. Exploitation

Generally speaking, exploration is related to global search whereas ex-

ploitation is related to local search. In a population-based optimisation

context, exploitation consists of probing a limited (but promising) region

of the search space with the hope of improving a high fitness individual

that we already have at hand. Exploration, on the other hand, consists

of searching a much larger portion of the search space with the hope of

finding other promising solutions that are yet to be refined.

The search procedure is concerned with the diversification, which is

the degree of difference among individuals within a population. It is clear

that we need a good level of diversification in the population in order to

explore the search space properly. In theory, a low level of diversification

means the algorithm is close to the final solution. However, a low level of

diversification in the beginning of a search leads to a premature conver-

gence, which is far from ideal. In other words, when the diversification is

high, the exploration is intensified, otherwise the local search intensifies.

37

Chapter 3 Evolutionary Algorithms

In GAs and ESes, we can adjust the degree of exploration versus ex-

ploitation by tuning the population size. If the population size approaches

∞, the algorithm intensifies exploration, which ultimately leads to a ran-

dom search. In the (µ, λ)-ESes, the population size is λ where as the

parameter µ enables us to controls how selective the algorithm is. That

is, low values of µ with respect to λ intensifies the exploitation as only the

best individuals can survive. In the case of ES, with elitism, by keeping

the larger number of n fittest individual(s) in the population with respect

to the population size, it is more likely to search the neighbourhood space

around the elites.

3.7 Evolutionary Algorithm Applications for
WFLOP

This section describes the published works regarding to WFLOP. The re-

search on find farm started over two decades ago and the number of

yearly published papers addressing this problem has been increasing

during the recent years [89]. Some of these works focus on wind weka

model whereas some of them investigate on the wind farm layout opti-

misation. Due to the high computational complexity involved in WFLOP,

currently, the population-based approaches are commonly used among

these articles.

In the 1990s, Mosetti et al. [75] first published a work on WFLOP. In

their approach, a wind farm is modelled as a 10 by 10 square grid, where

the centre of each square is a possible position for a turbine. They did

not predefine a fixed number of turbines to install, so their goal was to

maximising the power output while minimising the installation cost (see

Equation (2.16)). They used a GA based method to evolve a population

of solutions through combinations and selections. A solution was repre-

sented by a vector of 100 binary variables Ti (with i = 1, . . . , 100), with the

presence of a turbine in position i indicated by each variable ti ∈ Ti. New

solutions are generated using crossover and mutation evolutionary oper-

38

3.7 Evolutionary Algorithm Applications for WFLOP

ators as described in Section 3.4. They conducted a set of experimental

runs using a population of 200 candidate solutions and let it evolve for

400 iterations. The computational results showed that the solutions ob-

tained by the GA outperformed the random turbine placement method in

terms of the evaluation function [75] value.

Later on in 2005, Grady et al. [31] modified the GA’s parameters

in the experiments presented in [75] and obtained better solutions. In

essence, they divided the entire population into 20 subpopulations, then

let them evolve in isolation from each other for 3000 iterations.

In 2010, González et al. [30] proposed an evolutionary algorithm

to optimise wind farm layouts. The algorithm calculates the yearly in-

come (NPV) based on energy selling price, and taking into account the

investment, the wake effect, and terrain roughness. These variables add

computational load to the evolutionary algorithm, but it is able to pro-

duce favourable results. The authors setup a series of algorithm perfor-

mance comparisons between the proposed algorithm and the algorithm

proposed by Grady et al. [31]. On one test scenario, they reported that

the proposed algorithm obtained the optimum solution in 81 generations

instead of the 3000 generations required by Grady’s algorithm. Accord-

ing to them, the computational cost was drastically reduced 37.5 times.

On another two test scenarios, their algorithm found a solution leading to

an increase of 3.2% and 1.4% in the output energy compared to Grady’s

algorithm, at 14.35 times and 8.77 times less computational cost, respec-

tively.

More recent improvement for the GA approach are reported in works

[41] and [93]. Although their findings are interesting, their method only

considers the case where wind blows from a constant direction at a con-

stant speed. This simple approach cannot compute the wake effect ac-

curately when the wind blows from more than one direction [89]. Very

recently, the grid-based GA approach is used as the benchmark in the

wind farm layout optimisation competition [105].

Use of ESes in WFLOP not limited to turbine placement issues, in

39

Chapter 3 Evolutionary Algorithms

work [55], an evolutionary algorithm is applied to solve the data-derived

optimisation model and determines optimal turbine control settings. In

particular, the evolutionary algorithm was used to determine the optimal

turbine blade pitch angle that can maximise the energy capture from the

wind. It is worth mentioning that a multi-layer perceptron (MLP) neu-

ral network was employed to predict wind turbine energy output. The

authors used the controllable variables (i.e. blade pitch angle) and non-

controllable variables (i.e. wind speed) as the attributes of input nodes

whereas the class value was the system response (corresponding) vari-

ables (i.e. active power). The number of hidden units was set between 5

and 20, and the weight decay for both the hidden and output layer var-

ied from 0.0001 to 0.001. The authors reported that the MLP algorithm

captured the wind turbine dynamics with highest fidelity (accuracy).

Lückehe et al. [66] presented a comprehensive investigation on a va-

riety of different ESes for finding optimal layouts on some challenging

scenarios. The objective was to maximise the wind farm energy output.

They proposed a new self-adaptive (1 + λ) evolutionary algorithm and

compared it to other existing evolutionary algorithms. The proposed al-

gorithm randomly picks n turbines in every generation then move them

to new positions. How many turbines n shall be moved at the same time

is controlled self-adaptively. There is also an option that the algorithm

may only removes one turbine and replace it to a new position. Similarly,

the probability p ∈ [0, 1] that determines how often the algorithm moves

or replaces a turbine is also operated self-adaptively. With randomly or

chessboard (grid-based) initialised layouts and a population size of 50

candidate solutions, the authors reported that after about 2,000 to 5,000

fitness function evaluations, the self-adaptive (1 + λ) started to outper-

form other algorithms in terms of wind farm energy output depending

on scenarios and the initialisation method. It is worth mentioning that

the authors presented an useful way of adjusting the exploration versus

exploitation via tuning the parameters n and p. In other words, a large

value of n is more like to discover a new promising design region whereas

a small value of p will lead to more thorough local search.

40

3.7 Evolutionary Algorithm Applications for WFLOP

This work utilises a standard (µ, λ) evolutionary algorithm that was

presented by Luke [67]. The (µ, λ)-ES uses a population of λ randomly

generated individuals. Then the iteration begins with fitness evaluation

for all λ individuals. Then µ fittest solutions are chosen to produce λ/µ

children through mutation and crossover operations. The low fitness par-

ents are replaced by children. After that there is a set of new λ individu-

als for the next iteration of the algorithm.

41

42

Chapter 4

BlockCopy Operators for WFLOP

In this Section, the BlockCopy operators are described in more detail.

The basic concept behind the BlockCopy operations is that a small part

of a layout is optimised first, and then another small part of the layout is

replaced by the optimised one. The wind farm is evenly divided into small

square blocks, then the turbines is copied from the source block(s) to the

target block. The copying means that the turbines in the target block are

deleted from the wind farm layout, then the block is filled with turbines

from the source block. In this way the turbine placement pattern from

source block is maintained during the BlockCopy operation.

In the literature, a powerful algorithm for optimising a wind farm

layout is the Turbine Displacement Algorithms (TDA) proposed by Wag-

ner et al. [99]. The basic idea of TDA is to shift a single turbine to new

random location at a time, then evaluate the modified layout. The TDA

follows a simple rule that only the K nearest turbines are important for

the turbine in question. The TDA tends to move the given turbine away

from the K nearest turbines. The random perturbation operator is an-

other popular evolutionary operator for the WFLOP. In short words, it

randomly selects a fixed number of turbines, then moves them to new

randomly selected valid locations. This approach is likely to disrupt local

configurations of turbines.

Mayo and Zheng [73] evaluated the BlockCopy operators in conjunc-

43

Chapter 4 BlockCopy Operators for the WFLOP

tion with a (1 + 1)-ES across four benchmark wind farm scenarios. The

TDA and the random perturbation operator are chosen for comparison.

Their evaluation results of BlockCopy operators suggested that the they

can be used in either a mutation or crossover context, and they are more

efficient than the TDA and the random perturbation approach. Another

problem about the regular crossover is that it will violate too many wind

farm layout constraints (i.e. outside the layout). Therefore, in this thesis

both BlockCopy Mutation operator and BlockCopy Crossover operator

are used in the surrogate-assisted (µ, λ) evolutionary algorithm.

In work [73] as well as in this thesis, the size of the blocks are fixed

to 1000 by 1000 metres. Thus the number of blocks can be determined

during the initialisation phase. In work [73], I contributed a set of exper-

iments to evaluate the BlockCopy operators in conjunction with a (5, 10)-

ES on the same wind farm scenarios. Two variants of the (5, 10)-ES were

evaluated. In the first variant, only the BlockCopy crossover operator

was used where the two parent are randomly paired up (i.e. 10 individu-

als are paired up for 5 pairs of parent) to generate offspring. The second

variant of the (5, 10)-ES only employed the BlockCopy crossover operator

to produce offspring using two randomly selected parents.

4.1 BlockCopy Mutation Operator

The BlockCopy Mutation process is illustrated in Figure 4.1. In this exam-

ple, block B2 is chosen for mutation and copied to the position occupied

by B6. Please note that this process is performed in the same candidate

layout. At first, the turbines in block B6 are removed. Then B6 is filled

with turbines that the placement of turbines are copied from block B2.

During this operation, the relative placement configuration of the newly

added turbines are maintained, and the only change is the absolute posi-

tions.

Copying turbines placement configurations across the layout may

cause problems. The first problem is that the new layout might be in-

44

4.1 BlockCopy Mutation Operator

valid. For example, there is chance that if two turbines are near the edge

of their respective blocks, the distance between them may be too small

which may violate the minimum distance constraint (see Figure 2.5 and

Equation (2.15)). To solve this problem in my implementation, the dis-

tance constraint among turbines are double checked when every single

turbine is copied. If the latest added turbine violates the minimum dis-

tance constraint, it will be randomly placed in the target block to satisfy

the minimum distance constraint.

Secondly, the number of turbines in the source and target block may

be different. The copying in them may change the overall number of tur-

bines of the wind farm. The fixed quantity of turbines constraint may

be violated. A global correction is applied after copying in order to re-

turn the total number of turbines back to the desired fixed quantity. In

particular, if the total number of turbines after copying are more than

the desired fixed quantity, then some turbines will be randomly removed

from the layout. Otherwise, the insufficient number of turbines will be

randomly added to the wind farm to comply with the rule of global quan-

tity.

Figure 4.1: Illustration of the BlockCopy Mutation Operation. In this example,
block B2 is chosen for mutation and copied to the position occupied
by B6.

45

Chapter 4 BlockCopy Operators for the WFLOP

4.2 BlockCopy Crossover Operator

The BlockCopy Crossover operator performs the copying process simi-

larly to the BlockCopy Mutation operator. The main difference is that not

one but two different candidate layouts are involved: two parent layouts

produce one offspring layout per crossover operation. As shown in Fig-

ure 4.2, block A2 from parent A is selected as the source block whereas

block B6 from parent B is chosen to be the target block. The turbines in-

side block B6 from parent B are deleted, then this blank block is replaced

by the turbines configured in the same way as block A2 from parent A.

Figure 4.2: Illustration of the BlockCopy Crossover Operation. In this example,
block B2 from parent B is chosen is chosen to be replaced by block
A2 from parent A.

The problems caused by copying turbines across the layout remain

in the BlockCopy Crossover operation. Figure fig. 4.2 shows an example

46

4.2 BlockCopy Crossover Operator

of solving the turbine neighbouring problem. Please note that in block

A2 from parent A as shown in , there are few turbines located in the right

bottom of the block. After copying to block B6 from the offspring, they

are removed due to being too close to a few turbines at the top of block

B9 from the offspring. The overall number of turbines is maintained in

the same way as the BlockCopy Mutation operation in my implementation

(i.e. by randomly adding new valid turbine(s) to the layout or randomly

purging invalid turbine(s) from the layout).

47

48

Chapter 5

Surrogate-Assisted Evolutionary
Optimisation

5.1 Overview

As previously mentioned, evolutionary algorithms (EAs) are powerful for

global optimisation. But searching for optimal solutions to complex high

dimensional, multimodal real world problems generally requires expen-

sive fitness function evaluations, such as the wind farm layout optimisa-

tion problem. Due to the computational complexity of the problem, the

runtime for a single function evaluation in such challenging problems

could be hours even days! The wake model and fitness function (see

Equation (2.22)) used in this thesis can be thought of as an approxima-

tion to a computational fluid dynamic (CFD) model, but even that is quite

expensive. For example, one optimisation using 2000 real evaluations

on a wind farm layout with 720 turbines (one of the used scenarios, see

Section 7.1) takes about 4.2 hours on a personal computer of Intel Core

i5 CPU 3.4 GHz. Thus it is very difficult for the EAs to find satisfactory

solutions in reasonable time.

An alternative is to use approximation instead of the real fitness func-

tion to reduce the computational cost [79]. Surrogate-assisted evolution-

ary optimisation is a class of optimisation approaches that utilises such

49

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

approximation with surrogate models to perform fitness evaluations in

order to quickly find the local or global optimal solution.

Generally speaking, fitness evaluation can be obtained by experimen-

tal evaluation, complete computational simulation, simplified computa-

tional simulation, and approximation with surrogates models. The trade-

offs between computational cost and accuracy among different levels of

fitness evaluations are shown in Figure 5.1. The experimental evaluation

is regarded as the real fitness evaluation which can yield the real fitness

value of a given candidate solution, but it incurs the highest computation

cost. The complete and simplified computational simulations are less ex-

pensive as well as less accurate. Fitness evaluation by approximation

with surrogate models are the cheapest to run, but also result in lowest

accuracy.

Figure 5.1: Tradeoffs between computational cost and accuracy among differ-
ent levels of fitness evaluations [9].

Another advantage of surrogates models is they can smooth out the

noise in the real fitness function. In a computer simulation of physical

phenomena, the noise usually refers to the variation in the output due

to fluctuations in the error from experiment to experiment caused by the

50

5.2 Surrogate Modelling Techniques

inputs are varied slightly [43]. For example, in a CFD simulation, the

error might caused by inappropriate discretisation or incomplete con-

vergence among other reasons. J. Forrester et al. [43] demonstrated on

a set of CFD simulations that using surrogate models (in their case, the

Kriging model) can approximate noisy objective function with reasonable

accuracy.

Research on evolutionary optimisation using approximate fitness eval-

uations started about three decades ago. The first related work was re-

ported in the mid-1980s [32], later on, a few more works were published

in the late 1990s [87, 83, 12]. In 2002, the first big event devoted to re-

search on using surrogates in evolutionary optimisation was a workshop

held within the Genetic and and Evolutionary Computation Conference

(GECCO) [59]. More recently, the concept of using surrogates has been

adopted in more challenging real world problems such as aerodynamic

design [49] and drug design [19].

5.2 Surrogate Modelling Techniques

Surrogate models are often regarded as an approximation of real fitness

function(s). Surrogate modelling techniques are the methods used to

build surrogate models. Normally, surrogate models are built from ran-

domly sampled data in the design space. The accuracy of the surrogate

models relies on the number of samples. It also depends on the proper se-

lection of the approximation model to represent the real fitness function.

The surrogate model will be built many times during the optimisation

process, thus computational efficiency becomes a major issue of their

construction process. The most widely used surrogate models, including

response surface models, kriging models and artificial neural networks

are discussed in this section along with their real world application(s) in

the literature.

According to the literature, the basic idea for building a surrogate

model is quite simple. As can be seen in Figure 5.2, the first step is to

51

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

sample data points from the design space. Then these samples are eval-

uated using the real fitness function. Some of them are added to the

training data, the rest of them will be used for testing. The surrogate

models are built based on the training data, then tested on the testing

data. The sampling and building procedure should be repeated when-

ever the surrogate model cannot provide satisfactory performance (i.e.

accuracy).

Figure 5.2: Building Surrogate Models via Offline experiments.

5.2.1 Quadratic Response Surface Model

The idea of response surface methodologies is to use polynomial approx-

imation models which the sampled data is fitted to by a least-square

regression technique. Compared to linear or higher order polynomial

models, the quadratic polynomial model usually provides the favourable

compromise between the modelling accuracy and the computational cost.

Another advantage of Response Surface Model is that it can smooth out

52

5.2 Surrogate Modelling Techniques

the various scales of numerical noise in the data, thus it is very robust.

This makes it well suited for optimisation problems in engineering de-

sign.

The construction of quadratic response surfaces requires firstly the

regression surface fitting in order to obtain approximate responses, then

the variances of the responses are minimised using a set of experiments

(observations). The quadratic response surface model is defined as:

y(x) = ŷ(x) + ε, x ∈ R (5.1)

where ε is the random error which is assumed to be normally distributed

with mean zero and variance of σ2 whereas the quadratic quadratic re-

sponse surface model predictor ŷ(x) is defined as:

ŷ(x) = β0 +
n∑
i=1

βixi +
n∑
i=1

βiixi
2 +

n∑
i=1

n∑
j=1

βijxixj (5.2)

where n is the number of variables, and β0, βi, βii and βij are the coeffi-

cients to be determined whereas x−i and yi are the values of the indepen-

dent variables. Since there are totally p = (n+1)(n+2)/2 unknown coef-

ficients in Equation (5.2), at least p sample points are required to build a

quadratic response surface model with n variables. The most commonly

used methods to determine the coefficients are the least squares method

and the gradient descent method. After the unknown coefficients are de-

termined, the approximated response ŷ at any untried x can be predicted

by Equation (5.2).

In the literature, an application of quadratic response surface model

in conjunction with an evolutionary algorithm was reported by Lian and

Liou [62]. The problem was to optimise the design of the NASA rotor 67

compressor blade in order to maximise the stage pressure raise, while

also minimising the entropy generation. There were 32 design variables.

There were 8 design variables. The authors noted that the evaluation

of 1,024 sample data points took approximately 128 hours using eight

processors and a CFD simulation. Then the quadratic response surface

53

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

model was constructed using these 1,024 sampled data. They iterated an

evolutionary algorithm for 200 generations with a population of 320 indi-

viduals in conjunction with the quadratic response surface model as the

surrogate model to evaluate the individuals. The final solutions obtained

using surrogate model were better than the reference design (baseline

solution obtained by using the EA without surrogate models). The au-

thors claimed that more computational power will reduce the time con-

sumption.

Later on, Lian and Liou [61] used the same approach to optimise the

weight of the turbine blade for the same rotor. The numerical results

showed good improvement over CFD at a much reduced computational

cost.

A similar approach proposed by Zhang et al. [107] was reviewed in

work [35] for an aircraft wing design problem. The optimisation objec-

tive was to maximise the wing lift to load ratio and minimise the weight

of the wing. They generated 100 data samples of candidate wings for

training a response surface model as the surrogate model, and another

45 data samples were created to evaluate the approximation model. Ac-

cording to the average relative errors and the root mean squared errors,

the response surface model had comparatively high accuracy. The entire

optimisation took about 2 days on a personal computer of Pentium(R)

2.8GHz. The authors suggested that more concurrent computational

power would reduce the time consumption.

Again in the aerodynamic field, Pagano et al. [81] applied the re-

sponse surface model for a three-dimensional aerodynamic shape op-

timisation problem. The optimisation objectives were to maximise the

aerodynamic efficiency of the propeller as well as to minimise the noise

emission level. In this particular problem, the objective function calcula-

tion involved coupled computation of aerodynamics, structural behaviour

and aeroacoustic, resulting in a fitness evaluation that was computation-

ally demanding. The authors used a response surface model to explore

the design space of the propeller blade, which was parameterised with 14

54

5.2 Surrogate Modelling Techniques

variables. The population size is set to 20 individuals for the evolutionary

algorithm. They have obtained 20 final solutions from 340 candidate so-

lutions based on the approximation model, all of them being better than

the reference solution in terms of the two objectives.

5.2.2 Kriging Model

Different from response surface model, an alternative surrogate model

is the Kriging model which can statistically predict an unknown function

by minimising its mean squared error. Kriging models can be equivalent

to any order of polynomials thus them work well for representing non-

linear function with multiple extremes [35]. Kriging [52] method is an

interpolating method which samples data from all the data points. More

precisely, this method constructs probability models through the sample

data and estimates the function value with a Gaussian distribution [104].

The prediction of Kriging is formed by adding up two different compo-

nents as follows:

y(~x) = a(~x) + b(~x) (5.3)

where a(~x) stands for the expected value of the real function. This func-

tion can be modelled in different ways. In the case of polynomials, it is

defined as:

a(~x) = a0 +
L∑
i=1

R∑
j=1

aij(xi)
j (5.4)

where R is the polynomial order with L dimensions (design variables).

The term b(~x) in Equation (5.3) is a Gaussian random function with zero

mean and non-zero covariance. This term stands for a localised deviation

from the global model, in other words, it represents the influence of every

data point over the global model. The general form of b(~x) is a weighted

sum of N functions and it can be expressed as:

b(~x) =
N∑
n=1

bnK(h(x, xn)) (5.5)

55

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

where bn are the weights to be determined and Kn(x) is a set of covari-

ance functions between the nth data point and a random point x. It is

defined as:

h(x, xn) =

√√√√ L∑
i=1

(xi − xin
xmaxi − xmini

)2
(5.6)

where xin is the ith data point, xmaxi and xmini respectively represent the

upper and lower bounds of the search space.

In the literature, the study of Kriging model can be found in vari-

ous problems industrial problems. D’Angelo and Minisci [16] used an

evolutionary algorithm in conjunction with a Kriging model to solve a

multi-objective optimisation problem. The objectives of the optimisation

problem were to minimise the drag force coefficient and lift force coef-

ficient simultaneously. The authors used a Kriging model to search the

design space of subsonic airfoils. The design space is parameterised with

5 variables and is subject to the extreme values of the objectives. They

iterated the a population with 100 individuals for 150 generations. Dur-

ing the iteration, the Kriging model was used along with an evolutionary

control technique which was adopted to avoid the evolution algorithm

to converge to a false optima. In their case, they evaluated a subset of

the individuals using the real fitness function to enrich the correct so-

lutions database, which was the basis of the learning procedure for the

surrogate model. The authors claimed that the use of the approximation

model as well as the evolution control technique together significantly

increased the speed of converging. The final results showed that only

2,300 real evaluations were needed using the surrogate whereas 2910

real evaluations were needed without the surrogate.

Song and Keane [94] presented a study of using a Kriging model to

reduce the computational cost of a multi-objective optimisation problem.

The main goal of their study is to identify the tradeoff between aerody-

namic performance and noise effects for the nacelle of a civic aircraft.

The geometry was parameterised using 40 parameters, and 33 of them

were considered as design variables. Since they applied the CFD us-

56

5.2 Surrogate Modelling Techniques

ing a commercial software to perform the real fitness evaluation, the

computational cost was tremendous. Thus they constructed a Kriging

model to approximate the fitness values in order to keep the usage of

real CFD evaluations at a minimum level. Similar to work [16], Song and

Keane [94] also adopted an evolution control technique in a way that the

Kriging model was continuously updated using new samples with good

fitness obtained by the Kriging model and the CFD evaluations. The au-

thors argued that even 33 design variables could cause the evolutionary

algorithm to have difficulties to converge. Then they presented a set

of promising results by reconstruct the Kriging model only using 7 vari-

ables. They reported that the reduced Kriging model contributed to the

finding of a similar solution in terms of fitness at a significantly less com-

putational cost. This simplification indicates that Kriging model cannot

handle a large number of design variables.

5.2.3 Artificial Neural Networks

The widespread application of Artificial Neural Networks (ANN) in many

research fields is primarily depend on their capability to approximate

complex nonlinear mappings directly from the input samples [40]. An

ANN consists of a set of processing elements, also known as neurons or

nodes, which are interconnected. Training an ANN is typically accom-

plished using examples to adjust the connection weights between nodes.

By the way ANN is trained, they can roughly be divided into supervised,

unsupervised, and reinforcement learning. Supervised learning mean

that the connecting weights are adjusted based on direct comparison

between the output of an ANN and the actual output of the training ex-

ample [34]. A gradient descent-based optimisation algorithm such as

backpropagation [38] is widely used to adjust connection weights in the

ANN iteratively in order to minimise the error.

Among many kinds of neural networks, the feedforward neural net-

works have been investigated most thoroughly. In many applications,

feedforward neural networks have been used as approximate models, al-

57

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

though it is well known that the approximation accuracy strongly depend

on their architecture (i.e. number of hidden layers and nodes of each hid-

den layer). The complexity of the structure also determines the learning

efficiency of neural networks [42].

Figure 5.3: One node of MLP: an artificial neuron.

A node in a MLP refers to an artificial neuron. As shown in Figure 5.3,

the node j computes the weighted sum of the inputs at the presence of a

bias, then passes this sum through an activation function. This computa-

tion can be expressed as:

vj =
P∑
i=1

wijxi + θ0

yj = fj(vj)

(5.7)

where vj is the linear combination of inputs x1, x2, . . . , xp, wij are the con-

nection weights between the input xi and the neuron j, θj is the bias, fj(·)
is activation function of the neuron j and yj is the output.

The schematic representation of a simple feedforward neural net-

work with one input layer, one hidden layer and one output layer is shown

in Figure 5.4. The hidden layer consists of many neurons. A MLP can be

defined as:

Y (x) =
K∑
j=1

wjfj

(P∑
i=1

wij + θj

)
+ θ0 (5.8)

where P is the number of inputs x1, x2, . . . , xp (design variables), K is the

58

5.2 Surrogate Modelling Techniques

Figure 5.4: Architecture of a multilayer perceptron network.

number of hidden nodes, wj and wij are the connection weights to be

learned and θj and θ0 are the bias to be determined. Please note that

the architecture of MLP shown in Figure 5.4 is for numeric prediction.

The commonly used activation function is the sigmoid function and it is

defined as:

f(a) =
1

1 + e−a
(5.9)

where c is a constant. If the bias term θj is positive then the sigmoid

function shifts to the left and vice versa.

The idea of the network is simple. When data (i.e. a the Cartesian

coordinates of wind turbines inside a wind farm) are presented at the

input layer, the network nodes perform computation in the successive

layers until an output value (i.e. energy output) is obtained at the output

59

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

node.

Arabnia and Ghaly [2] described an effective and practical optimisa-

tion strategy make use of genetic algorithm in conjunction with an ar-

tificial neural network to improve the turbine efficiency. The authors

used the E/TU-3 turbine to setup the blade geometry and used it as the

reference design to compare the optimisation results to. The optimisa-

tion objectives are the maximisation of the isentropic efficiency for the

stage and the minimisation of the stream-wise vorticity. There were 5 de-

sign variables for the blades. The ANN model had a single hidden layer

structure with 50 hidden nodes, and it was trained based on 23 CFD sim-

ulations. The paper indicates that a single CFD evaluation took approxi-

mately 10 hours. The optimisation process used the trained ANN model

to estimate the fitness values of a population with 50 individuals for 150

generation. At the end, the best obtained results were re-evaluated using

the CFD evaluation. The paper claims that the obtained designs attained

1.2% improvement of stage efficiency in comparison to the reference tur-

bine design. Considering the limited amount of training data, that is a

considerable refinement without high computational cost.

Alonso et al. [1] presented a set of procedures to optimise the design

of a supersonic aircraft. The optimisation focused the minimisation of the

sonic boom loudness and the maximisation of the aircraft range. The au-

thors trained an artificial neural network as the surrogate model which

was a single hidden layer perceptron with sigmoid activation functions.

The ANN was fitted with 300 data samples, then 150 more data samples

were used to test the ANN. Different from work [2], the training and test-

ing samples were obtained using low accuracy simulations rather than

the CFD evaluation to reduce computational cost. The optimisation is

accomplished by varying the values of 10 design variables. The search-

ing process used the trained ANN model to estimate the fitness values

of a population with 64 individuals for 1,000 generations. In order to

save computational cost, the real fitness evaluation was used to do local

search after the surrogate model found a promising region in the design

space. The results show that these procedures are computationally less

60

5.2 Surrogate Modelling Techniques

expensive, thus are suitable to constitute a set of valid initial designs

during the preliminary design phase, then the initial designs can be used

for continued refinement.

Rai [86] reported an approach to optimise robust design of a turbine

blade airfoil shape taking into account the performance degradation due

to the uncertainties during manufacturing. The aim of the optimisation

was to minimise the variance of the pressure distribution over the sur-

face of the airfoil as well as to maximise the wedge angle at the trailing

edge. In the fitness evaluation, the manufacture tolerance is obtained

by introduce random noise to the blade geometry whereas the surface

pressure distribution is calculated using a CFD simulation. The blade

geometry is defined by 8 parameters, but only 2 of them are varied dur-

ing the optimisation. In order to reduce the computation cost caused by

using CFD simulations, the authors constructed a hybrid neural network

as the approximation model which comprise of 10 individual single hid-

den layer feedforward networks. The evolutionary optimisation process

searches for 25 generations with a relatively small population size of 10

candidate solutions. The authors claim that their hybrid neural network

construction approach is able to obtain accurate surrogate model thus

the overall optimisation process can done at a lower computational cost.

5.2.4 Discussion of Different Surrogate Models

Among the surrogate models, the regression models such as the quadratic

response surface model works well for the optimisation problems with

relatively less design variables. The Kriging models are able to repre-

sent nonlinear, multimodal functions, thus they are well suited for rela-

tively complicated design space. However, the use of an artificial neural

network can yield more accurate approximation models for highly non-

linear design space under the same set of constraints when compared to

the ordinary kriging method [15].

As previously mentioned, CFD simulation is commonly used in many

61

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

real world applications, as the CFD is one of the most accurate ways to

evaluate aerodynamic related problems such as aircraft wing design, tur-

bine blade airfoil design and wind farm layout design. This is the reason

that the literature reviews are primarily focused on building surrogate

models to approximate the CFD simulations. But the WFLOP takes into

account significantly more design variables compared to the reviewed

studies. For example, in a two-dimensional planner version of the WFLOP

(in which all turbines are assumed identical), one hundred turbines re-

quire at least 200 design variables under the minimum amount of con-

straints. As we reviewed, both regression methods and feedforward ar-

tificial neural networks showed promising performance in many highly

computational complex results. Due to the complexity of the WFLOP,

the feedforward artificial neural networks and the regression models are

more likely to accurately approximate the real fitness function at a lower

computational cost.

In the literature, Jin et al. [48] suggested a simple structure of sin-

gle hidden layer MLP with small number of hidden units. In work [17],

tree-based regression models (i.e. M5P) performed at least as well as

or better than traditional black-box models (i.e. MLP). In this work, we

conducted a series of initial offline experiments in Chapter 6 to deter-

mine which surrogate model can accurately approximate the real fitness

function of the WFLOP.

5.3 Scalability Issues of Surrogate-assisted EAs

In the literature, there are many surrogate-assisted evolutionary algo-

rithms have been developed. These approaches have been showing promis-

ing in reducing the computational cost in many computational expensive

optimisation problems. However, most of them work only for relatively

low-dimensional (i.e. small number of design variables) optimisation

problems [96]. As can be seen in Table 5.1, the dimension of optimisa-

tion problems reviewed in Section 5.2 is very limited. According to Sun

et al. [96], in the literature the maximum dimension solved by surrogate-

62

5.4 The Management of Fitness Approximation in EA

assisted EA is 50, which was reported in work [64]. The author pro-

posed a Gaussian process based surrogate model assisted evolutionary

algorithm in conjunction with dimension reduction techniques to solve

medium-scale computational expensive problems.

Publication Design Variables

Lian and Liou [62] 32
Zhang et al. [107] 8
Pagano et al. [81] 14
D’Angelo and Minisci [16] 5
Song and Keane [94] 7
Arabnia and Ghaly [2] 5
Alonso et al. [1] 10
Rai [86] 2

Table 5.1: The dimension of optimisation problems reviewed in Section 5.2.

Due to high input dimension of the objective function (i.e. large num-

ber of design variables), the constructed surrogate models may not be

able to accurately approximate the real fitness function. During the

optimisation process, poor surrogate models can not provide accurate

fitness prediction. An inaccurate surrogate model may introduce false

optimums, which mislead the evolutionary search [45]. Thus the idea

of constructing global surrogate models for relatively high-dimensional

problems (i.e. WFLOP) is very challenging.

5.4 The Management of Fitness Approximation in
EA

5.4.1 A Brief Review on Managing Surrogates

An issue pointed out by Jin [45] is that if the optimisation is solely based

on a surrogate, then there is a risk that an inaccurate surrogate cannot

provide sufficiently accurate fitness values. This issue will introduce false

optima that do not exist in the original problem, thus results in mislead-

63

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

ing the evolutionary algorithm. The surrogate management in surrogate-

assisted evolutionary optimisation addresses this issue, in a way that the

surrogates must be used together with the real fitness function [47].

The use of surrogate-assisted local search approach is common in

both single-objective and multi-objective evolutionary optimisation prob-

lems. The results reported in works [79, 108, 71] have shown that using

multi-surrogate models can accelerate the convergence to good solutions

on a limited computational budget.

Surrogates can be widely applied to different parts of an EA. For

example, poor solutions generated during population initialisation, mu-

tation and crossover can be filtered out by using surrogates [46]. More

recently, an aggregated surrogate was built and used to pre-screen can-

didate solutions based on estimated fitness values, before the real fitness

evaluation [65].

Techniques for managing surrogates for fitness evaluation in evo-

lutionary algorithms can be divided into individual-based, generation-

based and population-based [45]. By individual-based, the real-fitness

function is used for fitness evaluation for some individuals in a gener-

ation [48, 10]. Contrary to that, generation-based approaches use the

surrogate for fitness evaluation in some the the generations whereas the

real fitness function is used in the rest of the generations [87, 63]. Jin

[45] claims that in population-based surrogate model management tech-

niques, more than one sub-population co-evolves, each using its own sur-

rogate for fitness evaluation.

5.4.2 Pre-Selection Surrogate Management Strategy

Two closely related techniques for managing surrogates for fitness eval-

uations are reported by Jin [46]. The idea behind these strategies is to re-

evaluate the individuals that have a promising fitness, and the higher ac-

curacy of the surrogate estimation, the better the chance that a good so-

lution will be found. The first strategy in question is called Pre-selection

64

5.4 The Management of Fitness Approximation in EA

Strategy, which is similar to individual-based methods. As shown in Fig-

ure 5.5, in a (µ, λ) evolutionary algorithm using pre-selection strategy,

λ? ≥ λ offspring are generated and then evaluated using the surrogate.

After that, the λ best individuals are chosen to be re-evaluated using

the real fitness function. As a result, all the µ parents for breeding are

chosen based on real fitness values.

Figure 5.5: Pre-selection Surrogate Management Strategy [46].

5.4.3 Best Surrogate Management Strategy

Another strategy is the Best Strategy which is shown in Figure 5.6. Con-

trary to the Pre-selection Strategy, at the beginning all λ offsprings are

evaluated using the surrogate. Then λ? ≤ λ best individuals are chosen

based on estimated fitness values for re-evaluation using the real fitness

65

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

function. Inevitably, there is a chance that some of the µ parents are

chosen based on surrogate produced fitness values.

Figure 5.6: Best Surrogate Management Strategy [46].

5.4.4 Modified Pre-Selection and Best Surrogate
Management Strategy

Based on successful real world applications [94, 68] from the literature,

the evolution control technique continuously updates the surrogate mod-

els shows promising results. The basic idea is to add new samples with

good fitness obtained by the surrogate model and the real fitness eval-

uations to the training data. Thus the surrogate model can be re-built

based on more training data during the optimisation process. In general,

a larger amount of training data means better approximation accuracy

[8]. With this concept in mind, we adopted a surrogate model re-training

66

5.4 The Management of Fitness Approximation in EA

evolution control technique in the Pre-Selection and Best surrogate man-

agement strategies.

Figure 5.8 and Figure 5.9 show how surrogates are managed after

the adopting of a surrogate model re-training technique. Specifically, at

the beginning of the algorithm is the complete random initialisation of

µ parents to generate λ offspring. The evolutionary process is managed

based on the total number of real fitness function calls. In this project

the maximum real fitness evaluations is 2,000. During the first 1,000

real calls, only the real fitness function is used to evaluate the individu-

als. Meantime, training data is collected in the format of raw Cartesian

coordinates based on the real fitness value during this process. As shown

in Figure 5.7, the attribute values of the training data are converted from

Cartesian coordinates (xi, Yi) to polar coordinates (di, θi), which are then

sorted according to the distances d between the turbines and the zero

point. These layouts (polar coordinates) are added into the training data

along with there real fitness value. Then a surrogate model is trained

using the collected training data.

Then, the evolution procedure continues in conjunction with the sur-

rogate model. As shown in Figure 5.8, in the Pre-selection strategy, a

number of λ? ≥ λ offspring are generated in each generation. These λ?

offspring are first evaluated using the surrogate model, then, based on

surrogate fitness values, the number of λ best individuals are chosen to

be re-evaluated using the real fitness function. At the same time, new

training data is collected from the re-evaluated individuals. The newly

added raw layouts are transferred into sorted polar coordinates as well

(see Figure 5.7). If runout of the rest 1,000 real fitness function calls, be-

cause of the nature of Pre-selection strategy, the best individual is always

selected based on the real fitness values.

Contrary to that, in the Best strategy, only λ? ≤ λ best individuals are

chosen to be re-evaluated using the real fitness function based on surro-

gate fitness values. At the same time, new training data is collected from

the re-evaluated individuals. If the 1,000 real fitness function evaluations

67

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

Figure 5.7: Collect and prepare wind farm layout data. The layout data consists
of raw Cartessian coordinates (xi, Yi) of the wind turbines. Then
they are converted into polar coordinates (di, θi). At the end the
polar coordinates are sorted according to the distances d between
the turbines and the zero point.

limit is exceeded, the best individual is selected based on fitness value

regardless of real or estimated, then it’s re-evaluated using real fitness

function. It is important to note the difference at the final selection be-

tween the Pre-selection and Best strategy. Because there is a chance that

a good individual might be chosen based on its estimated value (denoted

as green box in Figure 5.9), which may result in disappointment findings

(i.e. false optimum). Thus it has to be re-evaluated using the real fitness

function at the very end.

68

5.4 The Management of Fitness Approximation in EA

Figure 5.8: Surrogate Assisted (µ, λ) - ES Using Pre-selection Strategy Strat-
egy with Surrogate-Retraining.

69

Chapter 5 Surrogate-Assisted Evolutionary Optimisation

Figure 5.9: Surrogate Assisted (µ, λ) - ES Using Best Strategy Strategy with
Surrogate-Retraining.

70

Chapter 6

Initial Experiments: Comparison
of Different Approximation Models

6.1 Approximation Accuracy Measurements

This chapter illustrates a set of experiments using different data mining

algorithms to approximate the real fitness function. The design of our

experiments is based on Figure 5.2. As previously mentioned, the accu-

racy of the approximation is one of the main issues in the design and use

of surrogate assisted approaches. In this case, the surrogate should be

able to ensure the selection of the best individuals in terms of the original

fitness function.

It is difficult to compare the different types of approximation as per-

formance is problem dependent. Jin [45] suggested that approximation

models should start from simple ones, for example, lower order polyno-

mial models, to see if the given training and testing data can be fitted

with reasonable accuracy. If the simple model fails to fit high dimen-

sional problems, then higher order polynomial or neural networks should

be considered.

There are many ways for measuring the error between real fitness

values and surrogate estimated fitness values [34]. In this work, since

the surrogate is used to predict numeric values, we are particularly inter-

71

Chapter 6 Initial Experiments: Comparison of Different Approximation Models

ested in the correlation coefficient and root relative squared error met-

rics.

We denote the true value of interest as θ and the value estimated

using some algorithm as θ̂. The correlation coefficient of N pairs of true

and estimated values is written as:

rθθ̂ =

N∑
i=1

(θi − θ)(θ̂ − θ̂)√
N∑
i=1

(θi − θ)
N∑
i=1

(θ̂i − θ̂)

(6.1)

where θ denotes the average of real fitness values and θ̂ denotes the

average of estimated fitness values.

The root relative squared error is written as:

Errse =

√√√√√√√
N∑
i=1

(θ̂i − θi)2

N∑
i=1

(θ − θi)2
(6.2)

where θ denotes the average of real fitness values.

Here is the interpretation of these measurements. The correlation

coefficient shows how much θ and θ̂ are related. As shown in Equa-

tion (6.1), the coefficient value is given between −1 and 1, where 1 in-

dicates a very strong linear relation (i.e. the value of θ gets large, θ̂

gets large). The 0 correlation coefficient value means there is no relation

between original fitness value and predicted fitness value. The −1 value

tells that θ and θ̂ are linear related inversely (i.e. the value of θ gets large,

θ̂ gets small). In other words, correlation is positive when the values in-

crease together, and correlation is negative when one value decreases as

the other increases.

Equation (6.2) statistically compares true values to their estimates.

In Equation (6.2), the values of
∑N

n=1(θ−θi)2 represent how much θ differs

72

6.2 Initial Offline Experiment Data Description

from its mean value θ. The values of
∑N

n=1(θ̂i − θi) represent the squared

differences, which are then divided by the variation of θ so that they

have a scale from 0 to 1, and this value is multiplied by 100 we can get

similarity in 0-100 percentage. An advantage of using square roots in the

metric is that the extreme values have more influence on the result [34].

6.2 Initial Offline Experiment Data Description

The Weka Experiment Environment [34] enables the user to create, run,

modify, and analyse experiments in a more convenient manner that is

possible when processing the data mining algorithms individually. For

example, the user can create an experiment that runs several schemes

against a series of datasets and then analyse the results to determine if

one of the schemes is (statistically) better than the other schemes.

In this thesis, we are interesting in finding which approximation model

against a series of datasets can achieve the minimum root relative squared

error, meanwhile, the model that has the highest correlation coefficient.

The experiment data is collected from the runs of my implementation

for WFLOP on wind farm scenarios from literature (more detail of the

scenarios are given in Chapter 7).

The wind farm layout datasets used in these initial experiments are

generated based on four benchmark wind farm scenarios that are se-

lected from the recent literature (see Section 7.1). The datasets are gen-

erated using a biased random walk (i.e. evolutionary strategy). During

the optimisation process, layouts are collected along with there real fit-

ness values. In total, there are 2,000 layouts (raw Cartesian coordinates)

evaluated by the real fitness function. As shown in Figure 5.7, the at-

tribute values of the training data are converted from Cartesian coordi-

nates (xi, Yi) to polar coordinates (di, θi), which are then sorted according

to the distances d between the turbines and the zero point. These layouts

(polar coordinates) are added into the training data along with there real

fitness value. We generated 10 sets of layouts data for each wind farm

73

Chapter 6 Initial Experiments: Comparison of Different Approximation Models

scenario, each set consists of 2,000 layouts along with their fitness val-

ues.

In our project, the data file is in the Attribute-Relation File Format

(ARFF) [34]. The ARFF attributes are either the two-dimensional Carte-

sian coordinates or the polar coordinates of turbines inside the wind farm

and the cost of energy of the wind farm, both of them can are defined as:

@attribute < coordinate di >< numeric >

@attribute < coordinate θi >< numeric >

...

@attribute < cost of energy >< numeric >

where i ∈ N is the number of turbine.

In the ARFF data section, each instance is represented on a single

line, and the attribute values for each instance are delimited by commas.

They must appear in the order that they were declared in the header

section. Here is an example of an instance entry using polar coordinates:

@data

2871.722283354609, 0.92578665166, . . . , 0.0014044201

where the numeric values "2871.7222..." and "0.9257..." respectively rep-

resent the distance and angle of the turbine inside the wind farm from

the zero reference point, and the numeric value "0.0014..." is the value

of cost of energy (fitness value). Please note that the 12 digits after the

decimal point is an extension of the default 6 digits. This modification is

better for optimum accuracy.

The random projector filter from Weka was also used to generate

features for this experiment [34]. It is used to reduces the dimensionality

of the data by projecting it onto a lower dimensional subspace using a

random matrix with columns of unit length (i.e. It will reduce the number

of attributes in the data while preserving much of its variation, but at a

74

6.3 Initial Offline Experiment Setup

much less computational cost). The configurations of number of turbines

and number of attributes for each scenario after each filter is applied are

shown in Table 6.1.

Scenario
vs.

Filter
Kusiak & Song 1 Kusiak & Song 2 2014 Comp 1 2014 Comp 3

Random
Projection

100 turbines
50 attributes

100 turbines
50 attributes

220 turbines
100 attributes

710 turbines
200 attributes

Polar
100 turbines

200 attributes
100 turbines

200 attributes
220 turbines

440 attributes
710 turbines

1420 attributes

Raw
100 turbines

200 attributes
100 turbines

200 attributes
220 turbines

440 attributes
710 turbines

1420 attributes

Table 6.1: The number of turbines and number of attributes for each scenario
after each filter is applied.

6.3 Initial Offline Experiment Setup

The task of the surrogate in this work is to predict numeric values. A pop-

ular choice for that is the M5 algorithm which was originally invented by

Quinlan [85] and Wang and Witten [101] made improvements. The M5 al-

gorithm learns efficiently and can tackle tasks with very high dimension-

ality (i.e. up to hundreds of attributes). Weka implemented a tree-based

version of the M5 algorithm as the classifier M5P [34], which combines a

conventional decision tree with linear regression functions at the nodes.

A very recent study [17] reports that comprehensible models (i.e. M5P

tree-based regression model) perform at least as well as or better than

traditional black-box models (i.e. MLP neural network). So we employed

a MLP as well as M5P as the surrogate models for the WFLOP fitness

function approximation.

In [45] Jin suggested that approximation models should start from

simple ones, for example, lower order polynomial models, to see if the

given training and testing data can be fitted with reasonable accuracy.

If the simple model fails to fit high dimensional problems, then higher

order polynomial or neural networks should be considered.

75

Chapter 6 Initial Experiments: Comparison of Different Approximation Models

Our initial experiment was to compare the performance in terms of

correlation coefficient and root relative squared error between M5P and

MLP against a series of wind farm layout datasets with different feature

types in the Weka Experiment Environment [34]. The detail of the major

options for each classifier used in the experiment (some options are set to

default value) are shown in Table 6.2 and Table 6.3. Please note that the

4 different values of option -H or -M are the settings that are utilised. The

results can provide an idea of what features to use and which classifier

configuration to use later on for the surrogate models in the surrogate-

assisted evolutionary algorithm.

The wind farm layout datasets are prepared through three filters in-

cluding raw cartesian coordinates, sorted polar coordinates (transformed

from raw cartesian coordinates, see Figure 5.7), random projections. The

experiment type is Regression and the Train/Test Percentage Split option

is set to 50% train. Both classifiers are given one run by using the four

sets of different options (-H or -M values) on four scenarios with ten dif-

ferent datasets through three data filters. In total, there are 2 classifiers

× 4 sets of different classifier options (see Tables 6.2 and 6.3) × 4 sce-

narios (see Table 7.1) × 10 different datasets (2,000 layouts each) × 3

data filters (see Table 6.1) = 960 experimental runs.

Classifier Option Value Description
MLP -H 5,10,20,50 The hidden layers to be created for the network.

-L 0.3 Learning Rate for the backpropagation algorithm.
-M 0.2 Momentum Rate for the backpropagation algorithm.
-N 500 Number of epochs to train for.
-V 0 Percentage size of validation set to use to terminate,training.

-E 20
The consecutive number of errors allowed for validation,
testing before the network terminates.

Table 6.2: Options for the MLP classifier used in our initial offline experiments.

76

6.4 Initial Offline Experiment Results

Classifier Option Value Description
M5P -M 5,10,20,50 Minimum number of instances per leaf.

-U False Use unsmoothed predictions.
-N False Use unpruned tree/rules.
-L -1 Maximum tree depth (default -1, no maximum).

Table 6.3: Options for the M5P classifier used in our initial offline experiments.

6.4 Initial Offline Experiment Results

Tables 6.4 to 6.7 illustrate the statistical analysis results obtained from

the Weka Experiment Environment. The table row header indicates the

features used during learning whereas the column header shows the clas-

sifier with the key option. In the cells, the annotation v or ∗ indicates that

a specific result is statistically better (v) or worse (*) than the baseline

scheme. In this case, the baseline is set by the first classifier configura-

tion (MLP -H 5) of each table.

As can be observed, the performance are quite different for each

classifier using various options with different filters. Overall, both MLP

and M5P failed on the dataset applied random projection filter. This is

mainly because reducing the dimensionality of the wind farm layout data

results in low accuracy. On the other hand, both M5P and MLP delivered

good results using raw Cartessian and polar coordinates.

It is clear that M5P (-M 5) classifier using polar coordinates outper-

formed the rest of classifiers across four scenarios in terms of higher

correlation coefficient and lower root relative squared error. On the sim-

pler scenarios Kusiak & Song 1 and 2, the M5P classifiers have showed

higher learning capability than the MLP classifiers. But the MLP clas-

sifiers showed similar learning efficiency on difficult scenarios such as

2014 Comp 1 and 3. Particularly in scenario Comp 3, this is the biggest

scenario among the four given scenarios where M5P (-M 5) and MLP

(-H 20) showed similar performance using sorted polar coordinates. Ac-

cording to the results, the M5P (-M 5) is a better surrogate choice for

the surrogate-assisted evolutionary algorithm. But we also employed the

MLP (-H 20) because of its promising performance in the literature.

77

Chapter 6 Initial Experiments: Comparison of Different Approximation Models

Classifier
vs.

Feature
MLP -H 5 MLP -H 10 MLP -H 20 MLP -H 50 M5P -M 5.0 M5P -M 10.0 M5P -M 20.0 M5P -M 50.0

Random
Projection

0.18
143.97

0.21
170.66

0.23
180.27

0.22
176.08

0.19
99.78

0.16
102.18

0.16
102.18

0.14
101.65

Polar
(sorted)

0.40
129.74

0.53 v
101.80 *

0.58 v
88.24 *

0.60 v
87.72 *

0.84 v
54.58 *

0.83 v
56.05 *

0.81 v
59.11 *

0.74 v
67.38 *

Raw
0.36

134.46
0.44

112.27
0.53 v
95.51 *

0.53 v
93.60 *

0.85 v
53.56 *

0.83 v
56.05 *

0.82 v
58.26 *

0.76 v
65.43 *

Table 6.4: Comparison of correlation coefficient (first line in each cell) and root
relative squared error (second line in each cell) on datasets for wind
farm scenario Kusiak & Song 1 [54].

Classifier
vs.

Feature
MLP -H 5 MLP -H 10 MLP -H 20 MLP -H 50 M5P -M 5.0 M5P -M 10.0 M5P -M 20.0 M5P -M 50.0

Random
Projection

0.19
146.73

0.20
178.31

0.22
183.75 v

0.20
173.46

0.18
99.57 *

0.17
100.95 *

0.15
101.92 *

0.13
101.43 *

Polar
(sorted)

0.36
137.56

0.46 v
109.88 *

0.52 v
95.59 *

0.54 v
94.26 *

0.80 v
59.99 *

0.79 v
61.69 *

0.77 v
63.21 *

0.72 v
69.49 *

Raw
0.36

135.55
0.44

110.89 *
0.51 v
97.63 *

0.53 v
95.38 *

0.79 v
61.09 *

0.78 v
62.92 *

0.76 v
64.71 *

0.71 v
70.50 *

Table 6.5: Comparison of correlation coefficient (first line in each cell) and root
relative squared error (second line in each cell) on datasets for wind
farm scenario Kusiak & Song 2 [54].

Classifier
vs.

Feature
MLP -H 5 MLP -H 10 MLP -H 20 MLP -H 50 M5P -M 5.0 M5P -M 10.0 M5P -M 20.0 M5P -M 50.0

Random
Projection

0.37
122.03

0.36
146.32

0.37
154.58

0.33
152.82

0.37
93.90

0.34
95.81

0.30
97.38

0.28
97.60

Polar
(sorted)

0.81
62.52

0.87 v
50.46 *

0.89 v
46.84 *

0.86
52.39

0.90 v
42.50 *

0.89 v
44.82 *

0.89 v
46.16 *

0.86
50.58

Raw
0.82

61.32
0.86
52.46

0.87
50.89 *

0.85
55.78

0.90
43.12

0.89
45.26

0.89
46.38

0.87
48.22

Table 6.6: Comparison of (first line in each cell) and root relative squared error
(second line in each cell) on datasets for wind farm scenario 2014
Comp 1 [105].

Classifier
vs.

Feature
MLP -H 5 MLP -H 10 MLP -H 20 MLP -H 50 M5P -M 5.0 M5P -M 10.0 M5P -M 20.0 M5P -M 50.0

Random
Projection

0.45
127.41

0.60 v
92.23 *

0.66 v
81.99 *

0.60
94.75

0.36
96.29 *

0.35
97.06 *

0.31
98.21 *

0.27 *
99.40 *

Polar
(sorted)

0.92
39.30

0.93
35.31

0.94
34.49

0.89
47.52

0.95
30.63

0.94
32.47

0.94
34.39

0.93
37.24

Raw
0.87

49.62
0.88
47.37

0.86
51.48

0.89
45.19

0.92
38.85

0.91
40.98

0.90
43.34

0.87
48.09

Table 6.7: Comparison of (first line in each cell) and root relative squared error
(second line in each cell) on datasets for wind farm scenario 2014
Comp 3 [105].

78

Chapter 7

Evaluation and Results

This chapter describes the wind farm scenarios and the real fitness func-

tion that are used in our evaluation in more detail. Then we present

the experimental design used to compare different surrogate models for

the WFLOP. We implemented the surrogate-assisted (µ, λ) evolutionary

algorithms using BlockCopy operators with the Best and Pre-selection

surrogate management strategies. We also used the M5P and MLP al-

gorithm implementations available from the Weka [34] platform. The

experimental aim is to discover whether surrogate-assisted evolutionary

strategies are more effective on the WFLOP than traditional evolutionary

algorithms.

7.1 Wind Farm Scenarios

We selected four benchmark wind farm scenarios from the recent litera-

ture. The first two simpler scenarios are proposed by Kusiak & Song in

[54]. Kusiak & Song’s first scenario is an artificial example in which wind

blows predominantly in a single direction while the second scenario is a

more realistic one that describes the wind speed direction distribution at

an actual industrial wind farm [54]. In both scenarios, the size is limited

to 4km by 4km and the number of turbines is fixed at 100.

Scenario Comp1 and Comp3 are selected from the 2014 Wind Farm

79

Chapter 7 Evaluation and Results

Layout Optimisation Competition [105]. As shown in Figure 7.1, these

two scenarios have a larger rectangular area for more turbines and ob-

stacles where turbines can’t be installed. Thus these two scenarios are

far more challenging than the first two scenarios. The number of tur-

bines for Comp 1 and Comp 3 are fixed at 220 and 710, respectively. The

shaded rectangles in Figure 7.1 indicate the position and size of obsta-

cles in scenario Comp 1 and Comp 3, respectively. In these scenarios,

the turbines cannot be placed inside the obstacles.

Figure 7.1: Obstacles in scenario Comp 1 and Comp 3. Layouts are not shown
to scale.

Figure 7.2 shows the wind speed and wind directions in each sce-

nario [56, 105]. Each wind rose gives the proportionate expected wind

speed in each direction. Directions are discretised into 24 sectors. Each

concentric circle depicted in the diagram represents a different expected

wind speed, starting from zero at the centre to higher expected speed at

the outer circles. The length of each colour-coded "spoke" around the

circle illustrates the relative wind speed in the pointed direction.

Table Table 7.1 shows the basic descriptions of four scenarios, in-

cluding dimensions, and the fixed number of blocks (across and down)

for use with the BlockCopy operator. In each scenario, the entire site is

80

7.2 Objective Function

Figure 7.2: Wind rose used in each scenario. These wind rose diagrams are not
shown to scale.

divided into approximate 1km by 1km blocks. The Weibull k parameter

is also different from each scenario to provide variation in the estimates

of wind speed at turbine hub height.

Scenario Width (km) Height (km) # Turbines Width (blocks) Height (blocks) Obstacles? k

Kusiak & Song 1 [56] 4.0 4.0 100 4 4 No 2.0
Kusiak & Song 1 [56] 4.0 4.0 100 4 4 No 2.0
2014 Comp 1 [105] 3.5 16.1 220 3 16 Yes 2.187-3.624
2014 Comp 3 [105] 15.8 11.3 710 16 11 Yes 2.016-4.473

Table 7.1: Wind Scenario dimensions, number of turbines, number of blocks
and k parameter.

7.2 Objective Function

As mentioned before, the simple objective function is accurate enough

to test the ability of the optimisation methods. Similar to most of the

studies in the literature, this work utilises a simplified wind farm eval-

81

Chapter 7 Evaluation and Results

uation method that makes it more practical to be integrated into opti-

misation procedures and programs. Because of its simplicity, it is more

computationally feasible, and it can provide adequate accuracy for the

simulation [73]. However, it still has high time complexity. The wake

model used here is only accurate for the far wake effect, and therefore

no turbine should be place to near to another turbine. The minimum dis-

tance between any two turbines is 8 times of the turbine diameter (see

Figure 2.3).

In our work, the objective function used here is an extended version

from 2015 Wind Farm Layout Optimisation Competition [105], which was

originally proposed by Kusiak and Song [54]. By calculating the total cost

of the farm (including construction and yearly operating costs) and divid-

ing that by the total power output of the wind farm, the cost is defined as

the expected cost of per kilowatt energy output. The objective function

is defined as:

cost =
(ct × n+ cs ×

⌊
n
m

⌋
)(23 + 1

3 × e
−0.00174n2

) + CO&M × n

(1− (1 + r)−y)

/
n

× 1

8760× P
+

0.1

n

(7.1)

where ct = 750, 000 is the cost of a turbine in USD; cs = 8, 000, 000 is

the cost of subsection in USD; m = 30 is the number of turbines per

subsection; r = 0.3 is the interest rate; y = 20 is the lifetime of the farm

in years; CO&M = 20, 000 is the cost of operations and maintenance in

USD; n is the number of turbines; and P is the total energy output of

the farm. This objective function is simplified, for example, the runtime

(3.4 GHz Intel Core i5) for one evaluation using this objective function

on a wind farm scenario with 100 WTs and 720 WTs are approximately

410 milliseconds and 8200 milliseconds, respectively. Even this objective

function is simplified, it is still adequately accurate for the evaluation

[26].

82

7.3 Evaluation Setup

7.3 Evaluation Setup

In this thesis, the basic evolutionary algorithm is (µ, λ)-ES (elitism = 1).

By elitism = 1, it is meant that the global best layout found so far will

always randomly replace one offspring in the next generation. We em-

ployed the MLP (-H 20) neural network and the M5P (-M 5) tree-based re-

gression model as the surrogate models in the surrogate-assisted (µ, λ)-

ES (elitism = 1). We used Pre-selection and Best surrogate manage

strategies. Each algorithm only employs one of these two management

strategies.

As shown in Table 7.3, there are 10 different algorithms using vari-

ous combinations of different surrogate models, different surrogate man-

agement strategies and different BlockCopy operators. We evaluated

these 10 algorithms with three sets of population configurations includ-

ing (6, 12), (10, 20) and (20, 40). During the initialisation of optimisation,

the candidate wind farm layouts are randomly generated. Please note

that due to limited space, we used abbreviations to represent the names

of different algorithms.

Algorithm Parameter Setting & Value

Number of evaluation using the real fitness function 2,000
Number of approximation using the surrogate model Unlimited

Size of the training data 1,000
How many times of surrogate model training and re-training 5

Surrogate model initial construction after real evaluation 1,000
Surrogate re-training after real evaluations 1200, 1400, 1600, 1800

Table 7.2: The discreption of different evolutionary algorithms.

As shown in Table 7.2, all 10 algorithms are limited to use 2,000

real fitness evaluations in total. The standard two evolutionary algo-

rithms terminate when they have called the real fitness function 2,000

times. The surrogate-assisted algorithms use the real fitness function for

the first 1,000 real fitness evaluations. Meanwhile, the training data is

collected and the surrogate model is constructed. Then the surrogate

models are employed in the evolutionary algorithms for fitness approxi-

mation along with the last 1,000 real fitness evaluations (see Figures 5.5

83

Chapter 7 Evaluation and Results

and 5.6).

There are four wind farm scenarios for evaluation (see Section 7.1).

The optimisation process can use unlimited surrogate evaluations but

terminates after 2,000 real fitness evaluations. Each algorithm only em-

ploys one of the BlockCopy Mutate operator or the BlockCopy Crossover

operator to generate offspring. Thus there is no run using both of them.

Each algorithm was repeated 30 times on each scenario. There are

total of 10 algorithms × 3 population configurations × 4 scenarios × 30

repetitions = 3,600 experimental runs.

Abbreviation of
Algorithm

Description

ES.C (µ, λ)-evolutionary strategy using BlockCopy Crossover operator without surrogate models
ES.M (µ, λ)-evolutionary strategy using BlockCopy Mutate operator without surrogate models
MLP.Best.C (µ, λ)-evolutionary strategy with MLP surrogate model managed by Best surrogate

management strategy using BlockCopy Crossover operator
MLP.Best.M (µ, λ)-evolutionary strategy with MLP surrogate model managed by Best surrogate

management strategy using BlockCopy Mutate operator
MLP.Pre.C (µ, λ)-evolutionary strategy with MLP surrogate model managed by Pre-selection

surrogate management strategy using BlockCopy Crossover operator
MLP.Pre.M (µ, λ)-evolutionary strategy with MLP surrogate model managed by Pre-selection

surrogate management Strategy using BlockCopy Mutate operator
M5P.Best.C (µ, λ)-evolutionary strategy with M5P surrogate model managed by Best surrogate

management strategy using BlockCopy Crossover operator
M5P.Best.M (µ, λ)-evolutionary strategy with M5P surrogate model managed by Best surrogate

management strategy using BlockCopy Mutate operator
M5P.Pre.C (µ, λ)-evolutionary strategy with M5P surrogate model managed by Pre-selection

surrogate management strategy using BlockCopy Crossover operator
M5P.Pre.M (µ, λ)-evolutionary strategy with M5P surrogate model managed by Pre-selection

surrogate management strategy using BlockCopy Mutate operator

Table 7.3: The discreption of different evolutionary algorithms.

7.4 Evaluation Results

In this section we show the distribution of best fitness (lowest cost of

energy) achieved by each evolutionary algorithm (see Table 7.3) with dif-

ferent population configurations on four benchmark wind farm scenar-

ios (see Table 7.1). The convergence history for the best layouts found

by each algorithm with different population configurations are also de-

picted.

84

7.4 Evaluation Results

7.4.1 Wind Farm Scenario Kusiak & Song 1 [54]

The box-and-whisker plots illustrating the distribution of best fitness (low-

est cost of energy) achieved by each algorithm (see Table 7.3) with dif-

ferent population configurations on the Kusiak & Song 1 [54] wind farm

scenario are shown in Figures 7.3 to 7.5. On the y-axis we show the

fitness (cost of energy) whereas the names of different evolutionary al-

gorithms are shown on the x-axis.

The MLP-assisted EAs and M5P-assisted EAs are not ideal in com-

parison to the EAs without any surrogate model. We can observe that

the (µ, λ)-EA using BlockCopy Mutate operator without surrogate mod-

els obtained the best wind farm layout with fitness value (lowest cost of

energy).

On the other hand, regardless of the surrogate models and surrogate

management strategies, the BlockCopy Mutate operator has a better

chance for finding better solutions compared to the BlockCopy Crossover

operator. Among the eight surrogate-assisted evolutionary algorithms,

surrogate-assisted algorithms using Best surrogate management strat-

egy are more likely to obtain better final solutions. The MLP surrogate-

assisted (10, 20)-EA using BlockCopy Mutate operator and Best surro-

gate management strategy obtained better wind farm layouts than other

surrogate-assisted EAs.

Different population configurations showed significant differences.

The (10, 20)-EA (Elitism = 1) achieved better fitness values compared to

(6, 12)-EA (Elitism = 1) and (20, 40)-EA (Elitism = 1). Under (10, 20) and

(20, 40) population configurations, the EAs using BlockCopy Mutate op-

erator, MLP surrogate model and Best strategy outperformed the rest of

the surrogate-assisted algorithms.

It is clear that under (6, 12) population configuration, the M5P surrogate-

assisted EAs achieved better results compared to the MLP surrogate-

assisted EAs. However, when the population size is increased to (10, 20)

and (20, 40), the M5P surrogate-assisted EAs are not as good as the EAs

85

Chapter 7 Evaluation and Results

using MLP surrogate models.

Bigger population size also results in worse performance using surro-

gate models. Solutions obtained under surrogate-assisted (6, 12)-EAs are

statistically better than the results obtained the same algorithms using

(10, 20) and (20, 40) population configuration.

As shown in Figure 7.8, an interesting case is the best finding ob-

tained by (6, 12)-EA using BlockCopy Mutate operator. The fitness value

of the global best layout at the beginning of optimisation is clearly the

best (lowest cost of energy). As a consequence, at then end of 2,000 real

evaluations, the obtained final solution is obviously the winner compared

to other algorithms.

The convergence history of best layouts found by each algorithm (see

Table 7.3) using different population configurations on the Kusiak & Song

1 [54] wind farm scenario are depicted in Figures 7.6 to 7.8. On the y-

axis we show the fitness (cost of energy) of the wind farm layout after x

real fitness evaluations.

It can be seen that the convergence speed of surrogate-assisted al-

gorithms using smaller population size is similar to the EAs without sur-

rogate models. The larger population size considerably slows down the

convergence speed.

Table 7.4 illustrates the average elapsed time of thirty runs of each

algorithm under three different population configurations for wind farm

scenario Kusiak & Song 1 [54].

Algorithm ES.C ES.M MLP.Best.C MLP.Best.M MLP.Pre.C MLP.Pre.M M5P.Best.C M5P.Best.M M5P.Pre.C M5P.Pre.M

(6, 12)-EA 821285.4 819707.1 1713122 1675798 1433692 1520438.8 836327.3 834299.6 817653.6 824259.8
(10, 20)-EA 755233.7 753360 2190837.8 2199496.2 591829.8 597184.9 907275.8 912280.6 1026685.7 1028500.2
(20,40)-EA 630947.1 629554.9 3123168.1 3104373.9 1192593.8 1341508.8 963695.9 969615.8 1074110.3 1084529.3

Table 7.4: The average elapsed time of thirty runs of each algorithm under
three different population configurations for wind farm scenario Ku-
siak & Song 1 [54]. The unit is milliseconds.

86

7.4 Evaluation Results

Figure 7.3: Cost of best layouts found by different evolutionary algorithms (see
Table 7.3) using (6, 12) population configuration on the Kusiak &
Song 1 [54] wind farm scenario.

87

Chapter 7 Evaluation and Results

Figure 7.4: Cost of best layouts found by different evolutionary algorithms (see
Table 7.3) using (10, 20) population configuration on the Kusiak &
Song 1 [54] wind farm scenario.

88

7.4 Evaluation Results

Figure 7.5: Cost of best layouts found by different evolutionary algorithms (see
Table 7.3) using (20, 40) population configuration on the Kusiak &
Song 1 [54] wind farm scenario.

89

Chapter 7 Evaluation and Results

Figure 7.6: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (6, 12) population configu-
ration on the Kusiak & Song 1 [54] wind farm scenario.

90

7.4 Evaluation Results

Figure 7.7: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (10, 20) population config-
uration on the Kusiak & Song 1 [54] wind farm scenario.

91

Chapter 7 Evaluation and Results

Figure 7.8: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (20, 40) population config-
uration on the Kusiak & Song 1 [54] wind farm scenario.

92

7.4 Evaluation Results

7.4.2 Wind Farm Scenario Kusiak & Song 2 [54]

The box-and-whisker plots illustrating the distribution of best fitness (low-

est cost of energy) obtained by each algorithm (see Table 7.3) with dif-

ferent population configurations on the Kusiak & Song 2 [54] wind farm

scenario are illustrated in Figures 7.9 to 7.11. The names of different

evolutionary algorithms are depicted on the x-axis whereas we show the

fitness (cost of energy) on the y-axis.

Overall, the (10, 20)-ES using BlockCopy Crossover operator obtained

the best solution (lowest cost of energy). The (20, 40)-ES using Block-

Copy Crossover operator outperformed the (20, 40)-ES using BlockCopy

Mutate operator whereas the (6, 12)-ES using BlockCopy Crossover oper-

ator obtained worse solution compared to the (6, 12)-ES using BlockCopy

Mutate operator.

One interesting case is that the MLP-assisted EA using Pre-selection

strategy and BlockCopy Crossover operator achieved the lowest cost of

energy under (6, 12) population configuration. Another interesting case

is that the best findings obtained by MLP-assisted (6, 12)-EA using Pre-

selection strategy with BlockCopy Mutate operator and M5P-assisted

(6, 12)-EA using Best strategy with BlockCopy Mutate operator are both

slightly better than the best layout found by the (6, 12)-ES using Block-

Copy Crossover operator. However, these two cases are not general phe-

nomenons and may be due to luck.

Similar to wind farm scenario Kusiak & Song 1 [54], when the popu-

lation size is increased to (10, 20) and (20, 40), the surrogate-assisted EAs

obtained worse solutions compared to the EAs without surrogate models.

Interestingly, under (10, 20) population configuration, the M5P-assisted

EA using Best strategy and BlockCopy Crossover operator achieved the

lowest cost of energy compared to MLP-assisted EAs. Similarly, the M5P-

assisted (20, 40) EA using Best strategy and BlockCopy Mutate operator

achieved the lowest cost of energy compared to MLP-assisted EAs.

93

Chapter 7 Evaluation and Results

The convergence history of best layouts found by each algorithm (see

Table 7.3) using different population configurations on the Kusiak & Song

2 [54] wind farm scenario are depicted in Figures 7.12 to 7.14. On the

y-axis we show the fitness (cost of energy) of the wind farm layout after

x real fitness evaluations.

Similar to the the Kusiak & Song 1 [54] wind farm, smaller popula-

tion size showed faster convergence trend. Interestingly, as can been

in Figure 7.14, at the end of optimisation process (i.e. after 1800 real

evaluations), several surrogate-assisted EAs showed obvious fitness im-

provement.

Table 7.5 shows the average elapsed time of thirty runs of each al-

gorithm under three different population configurations for wind farm

scenario Kusiak & Song 2 [54].

Algorithm ES.C ES.M MLP.Best.C MLP.Best.M MLP.Pre.C MLP.Pre.M M5P.Best.C M5P.Best.M M5P.Pre.C M5P.Pre.M

(6, 12)-EA 824369.8 839767 2011191 2110340 2183347 2180243 1663695 1780589 778416 792370
(10, 20)-EA 744369.8 739767 2484757.3 2806473 2694619.6 2710504 1900238 1817011 1055657.8 1062524.6
(20,40)-EA 644361.2 630497.2 3101704 3398646 3012538 3256776 1098265 1125650 1078723 1086093

Table 7.5: The average elapsed time of thirty runs of each algorithm under
three different population configurations for wind farm scenario Ku-
siak & Song 2 [54]. The unit is milliseconds.

94

7.4 Evaluation Results

Figure 7.9: Cost of best layouts found by different evolutionary algorithms (see
Table 7.3) using (6, 12) population configuration on the Kusiak &
Song 2 [54] wind farm scenario.

95

Chapter 7 Evaluation and Results

Figure 7.10: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (10, 20) population configuration on the Ku-
siak & Song 2 [54] wind farm scenario.

96

7.4 Evaluation Results

Figure 7.11: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (20, 40) population configuration on the Ku-
siak & Song 2 [54] wind farm scenario.

97

Chapter 7 Evaluation and Results

Figure 7.12: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (6, 12) population config-
uration on the Kusiak & Song 2 [54] wind farm scenario.

98

7.4 Evaluation Results

Figure 7.13: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (10, 20) population con-
figuration on the Kusiak & Song 2 [54] wind farm scenario.

99

Chapter 7 Evaluation and Results

Figure 7.14: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (20, 40) population con-
figuration on the Kusiak & Song 2 [54] wind farm scenario.

100

7.4 Evaluation Results

7.4.3 Wind Farm Scenario 2014 Comp 1 [105]

The box-and-whisker plots showing the distribution of best fitness (lowest

cost of energy) achieved by each algorithm (see Table 7.3) with different

population configurations on the 2014 Wind Farm Layout Optimisation

Comp 1 [105] wind farm scenario are depicted in Figures 7.15 to 7.17.

On the y-axis we illustrate the fitness (cost of energy) whereas the names

of different evolutionary algorithms are shown on the x-axis.

Similar to the evaluation results on the wind farm scenario Kusiak

& Song 1 and 2 [54], the overall performance of MLP-assisted EAs and

M5P-assisted EAs are not ideal in comparison to the EAs without any

surrogate model. Among all the experimental results the (6, 12)-EA using

BlockCopy Crossover operator without surrogate models obtained the

best wind farm layout (lowest cost of energy).

Comparing to wind farm scenario Kusiak & Song 1 and 2 [54], the

2014 Wind Farm Layout Optimisation Comp 1 [105] wind farm scenario is

more difficult since it consists of 220 wind turbines. The results obtained

by surrogate-assisted EAs are significantly worse than the EAs without

any surrogate models.

In Figure 7.15, the M5P-assisted EA using BlockCopy Mutate opera-

tor with Best strategy achieved better final solution compared to other

surrogate-assisted EAs. But it is still not as good as the EAs without

surrogate models. In contrast to that, as shown in Figure 7.16, the

MLP-assisted EA using BlockCopy Mutate operator with Best strategy

achieved better final solution compared to other surrogate-assisted EAs

under (10, 20) population configuration. Despite the different population

configurations, the M5P-assisted EAs performed slightly better that the

MLP-assisted EAs.

The convergence history of best layouts found by each algorithm (see

Table 7.3) using different population configurations on the 2014 Wind

Farm Layout Optimisation Comp 1 [105] wind farm scenario are depicted

in Figures 7.18 to 7.20. On the y-axis we show the fitness (cost of energy)

101

Chapter 7 Evaluation and Results

of the wind farm layout after x real fitness evaluations.

It is clear that the convergence speed of each EA without surrogate

models is relatively faster compared to the surrogate-assisted EAs. As

the scenario becames more complicated, the larger population size re-

sults in much slower convergence process.

Table 7.6 shows the average elapsed time of thirty runs of each al-

gorithm under three different population configurations for wind farm

scenario 2014 Wind Farm Layout Optimisation Comp 1 [105].

Algorithm ES.C ES.M MLP.Best.C MLP.Best.M MLP.Pre.C MLP.Pre.M M5P.Best.C M5P.Best.M M5P.Pre.C M5P.Pre.M

(6, 12)-EA 4925564 4977093 6569461 7428532.3 4164281 4227197 4095743 4286463 3264965 3201294
(10, 20)-EA 3363361.9 3397792 7073659 7737979 4667536.3 4779960.7 2844669 2917213 2844669 2917213
(20,40)-EA 986271.3 985273.7 7132351 8078473 6569430 6717710 2252649.3 2224593 2802772 2864939

Table 7.6: The average elapsed time of thirty runs of each algorithm under
three different population configurations for wind farm scenario
2014 Wind Farm Layout Optimisation Comp 1 [105]. The unit is
milliseconds.

102

7.4 Evaluation Results

Figure 7.15: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (6, 12) population configuration on the 2014
Wind Farm Layout Optimisation Comp 1 [105] wind farm scenario.
Please note that µ = 10−6.

103

Chapter 7 Evaluation and Results

Figure 7.16: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (10, 20) population configuration on the 2014
Wind Farm Layout Optimisation Comp 1 [105] wind farm scenario.
Please note that µ = 10−6.

104

7.4 Evaluation Results

Figure 7.17: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (20, 40) population configuration on the 2014
Wind Farm Layout Optimisation Comp 1 [105] wind farm scenario.
Please note that µ = 10−6.

105

Chapter 7 Evaluation and Results

Figure 7.18: Convergence history of the best layouts found by different evo-
lutionary algorithms (see Table 7.3) using (6, 12) population con-
figuration on the 2014 Wind Farm Layout Optimisation Comp 1
[105] wind farm scenario. Please note that µ = 10−6.

106

7.4 Evaluation Results

Figure 7.19: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (10, 20) population con-
figuration on the 2014 Wind Farm Layout Optimisation Comp 1
[105] wind farm scenario. Please note that µ = 10−6.

107

Chapter 7 Evaluation and Results

Figure 7.20: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (20, 40) population con-
figuration on the 2014 Wind Farm Layout Optimisation Comp 1
[105] wind farm scenario. Please note that µ = 10−6.

108

7.4 Evaluation Results

7.4.4 Wind Farm Scenario 2014 Comp 3 [105]

The box-and-whisker plots showing the distribution of best fitness (lowest

cost of energy) achieved by each algorithm (see Table 7.3) with different

population configurations on the 2014 Wind Farm Layout Optimisation

Comp 3 [105] wind farm scenario are shown in Figures 7.21 to 7.23.

The names of different evolutionary algorithms are shown on the x-axis

whereas we depict the fitness (cost of energy) on the y-axis.

As can be seen, the overall performance of MLP-assisted EAs and

M5P-assisted EAs are far from ideal in comparison to the EAs without

any surrogate model. Among all the experimental results the (6, 12)-EA

using BlockCopy Crossover operator without surrogate models obtained

the best wind farm layout (lowest cost of energy).

In Figure 7.21, the M5P-assisted (6, 12)-EA using BlockCopy Mutate

operator and Pre-selection strategy showed better performance com-

pared to the other eight surrogate-assisted evolutionary algorithms. In

Figure 7.23, the M5P-assisted (20, 40)-EA using BlockCopy Crossover op-

erator and Best strategy obtained the best solution among other eight

surrogate-assisted evolutionary algorithms.

The 2014 Wind Farm Layout Optimisation Comp 3 [105] wind farm

scenario has 1420 dimensions. The surrogate-assisted EAs are obviously

worse than the EAs without any surrogate model. Similarly, EAs using

larger population size also resulted in worse convergence.

As shown in Figure 7.24, another interesting case is the best find-

ing obtained by (6, 12)-EA using BlockCopy Mutate operator. The fitness

value of the global best layout at the beginning of optimisation is clearly

the best (lowest cost of energy). As a result, the final solution obtained

at then end of 2,000 real evaluations is obviously the winner compared

to other algorithms. The best finding obtained by (20, 40)-EA using Block-

Copy Crossover operator showed similar trend in Figure 7.26.

The convergence history of best layouts found by each algorithm (see

109

Chapter 7 Evaluation and Results

Table 7.3) using different population configurations on the 2014 Wind

Farm Layout Optimisation Comp 3 [105] wind farm scenario are illus-

trated in Figures 7.24 to 7.26. On the y-axis we show the fitness (cost of

energy) of the wind farm layout after x real fitness evaluations.

We can observe that the convergence speed of EAs and surrogate-

assisted EAs are significantly different on the most difficult scenario

Comp 3. Despite the different population configurations, the overall con-

vergence trend of the surrogate-assisted EAs are quite slow. Similarly,

the smaller population size resulted in higher convergence speed for the

surrogate-assisted EAs whereas the bigger population size caused more

negative influences.

Table 7.7 presents the average elapsed time of thirty runs of each

algorithm under three different population configurations for wind farm

scenario 2014 Wind Farm Layout Optimisation Comp 3 [105].

Algorithm ES.C ES.M MLP.Best.C MLP.Best.M MLP.Pre.C MLP.Pre.M M5P.Best.C M5P.Best.M M5P.Pre.C M5P.Pre.M
(6, 12)-EA 14797557 14981138 34290582.3 35189190 28093994 28391726 21561210 20858347 22917809.7 21494890
(10, 20)-EA 14653686.6 14894681 28750866 29417212 28200480.3 28593471.1 15534739 15574711 15518550 15544955
(20,40)-EA 14582412 14586964 26551143 27480130 30188675.5 29806565 22512093 22551998 12984553.7 13088248

Table 7.7: The average elapsed time of thirty runs of each algorithm under
three different population configurations for wind farm scenario
2014 Wind Farm Layout Optimisation Comp 3 [105]. The unit is
milliseconds.

110

7.4 Evaluation Results

Figure 7.21: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (6, 12) population configuration on the 2014
Wind Farm Layout Optimisation Comp 3 [105] wind farm scenario.

111

Chapter 7 Evaluation and Results

Figure 7.22: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (10, 20) population configuration on the 2014
Wind Farm Layout Optimisation Comp 3 [105] wind farm scenario.

112

7.4 Evaluation Results

Figure 7.23: Cost of best layouts found by different evolutionary algorithms
(see Table 7.3) using (20, 40) population configuration on the 2014
Wind Farm Layout Optimisation Comp 3 [105] wind farm scenario.

113

Chapter 7 Evaluation and Results

Figure 7.24: Convergence history of the best layouts found by different evo-
lutionary algorithms (see Table 7.3) using (6, 12) population con-
figuration on the 2014 Wind Farm Layout Optimisation Comp 3
[105] wind farm scenario.

114

7.4 Evaluation Results

Figure 7.25: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (10, 20) population con-
figuration on the 2014 Wind Farm Layout Optimisation Comp 3
[105] wind farm scenario.

115

Chapter 7 Evaluation and Results

Figure 7.26: Convergence history of the best layouts found by different evolu-
tionary algorithms (see Table 7.3) using (20, 40) population con-
figuration on the 2014 Wind Farm Layout Optimisation Comp 3
[105] wind farm scenario.

116

7.5 Summary of Evaluation Results

7.5 Summary of Evaluation Results

As can be observed, distributions are quite different for each algorithm.

Unfortunately, the EA algorithm with no surrogate is clearly the winner

on each scenario in terms of lowest overall cost. The EAs with no sur-

rogate model significantly outperformed surrogate-assisted EAs on com-

plex wind farm scenario Comp 1 [105] and Comp 3 [105] (440 and 1420

dimensions, respectively). On the simpler scenarios Kusiak & Song 1

[54] & 2 [54] (both are 200 dimensions), the difference of performance

between EAs and surrogate-assisted EAs are smaller.

Out of 3,600 experimental runs on four scenarios, only the MLP-

assisted (6, 12)-EA using Pre-selection strategy and BlockCopy Crossover

operator obtained one layout with the lowest cost of energy compared

to the rest of the algorithms on wind farm scenario Kusiak & Song 2

[54]. This phenomenon is not general, however, it demonstrates that

the surrogate-assisted evolutionary algorithms may be promising for the

WFLOP.

Overall the M5P surrogate model showed slightly better performance.

The MLP-assisted EAs occasionally obtained better global solution com-

pared to M5P assisted EAs. The possible reason for the poor performance

of surrogate models is the limited number of real evaluations (2,000) and

amount of training data (1,000 layouts with real fitness values). Poorly

trained surrogate models cannot accurately approximate the real fitness

function. Thus inaccurate surrogate models mislead the evolution algo-

rithm to converge to a false optima. It might be helpful to increase the

number of evaluation, but given the computational expense of the eval-

uation function and the fact that many other research works use similar

criteria, we kept it to 2,000.

Speaking of the population configurations, the EAs with smaller pop-

ulation size yield better overall results. Using population-based approach

can avoid local optima traps. However, the evaluations using larger pop-

ulation size are worse than smaller population size. The likely reason

117

Chapter 7 Evaluation and Results

for the poor performance of the larger population size is that increasing

population size results in more exploration at the expense of exploitation.

The poor results of the surrogate-assisted algorithms are somewhat

surprising, given the fact that the correlation coefficient can be as high

as 0.9 according the initial experiments. The possible reason for that

is the surrogates are doing interpolation during the initial experiments

whereas the actual optimisation process employed the surrogates for ex-

trapolation. The latter one is much harder since the surrogates are pre-

dicting the unknowns.

Tables 7.4 to 7.7 indicates that the surrogate-assisted algorithms con-

sumed longer time given a fixed total number of real evaluations yet they

produced poor final results. On the simpler wind farm scenarios, the

population configuration has an significant impact on the non-surrogate

evolutionary algorithms. When there are more wind turbines and obsta-

cles are involved, the population configuration is less influential.

The initialisation of candidate wind farm layouts is important. The

final results of the optimisation process may be influenced by the quality

of the randomly generated initial wind farm layouts. For example, in

Figures 7.8, 7.24 and 7.26, good fitness (low cost of energy) initial wind

farm layouts are more likely to achieve better final results.

118

Chapter 8

Conclusions

To conclude, this thesis has investigated an evolutionary approach using

surrogate models for the two-dimensional wind farm layout optimisation

problem on four benchmark wind farm scenarios. Even the wake model

and objective function we used are simplified, but they are still very com-

putationally expensive. A wind farm layout dataset was created by us-

ing a biased random walk. The polar coordinates learning feature was

selected based on a set of initial offline experiments. The MLP neural

network and the M5P tree-based regression model were chosen as the

surrogate model according to the initial experiment results. We used the

BlockCopy operator in both mutation and crossover context. We added

surrogate model re-training feature to the employed Pre-selection and

Best surrogate management techniques.

Unfortunately, the overall performance of surrogate-assisted evolu-

tionary strategies are not ideal compared to traditional evolutionary ap-

proaches in our experiments. Surrogate-assisted evolutionary approaches

are still promising based on the possibility of more exploration of the

search space. While the final wind farm layout solutions obtained using

surrogate models are not better than the solutions obtained by using the

EA without surrogate models, more research needs to be done.

In the literature, most of the surrogate-assisted evolutionary optimi-

sation approaches are designed for relatively low-dimensional optimisa-

119

Chapter 8 Conclusions

tion problems. However, the dimensionality of the four benchmark wind

farm scenarios ranges from 200 to 1420 dimensions. The high input di-

mension of the objective function is the main reason why the constructed

surrogate models may not be able to accurately approximate the real fit-

ness function. Using inaccurate surrogate models may introduce false

optimums, which mislead the evolutionary search. As a result, the high

dimensionality of wind farm layouts caused the surrogate-assisted evolu-

tionary algorithms having difficulties to converge.

Our current and ongoing work in this area is to develop higher ac-

curacy surrogate models to improve the approximation of the real fit-

ness function. We would like to improve the preliminary surrogate mod-

elling process such as using a larger amount of training data, developing

a more sophisticated structure of multilayer perceptron and other so-

phisticated surrogate models. These surrogates in the future may be

used to help solve this important problem in renewable energy optimi-

sation. Conversely, the WFLOP has been shown to an excellent high-

dimensionality benchmark problem for testing surrogate-assisted evolu-

tionary optimisation approaches.

120

Bibliography

[1] Alonso, J. J., LeGresley, P., Pereyra, V. (2009). Aircraft design opti-

mization. Mathematics and Computers in Simulation, 79 (6), 1948–

1958.

[2] Arabnia, M., Ghaly, W. (2009). A strategy for multi-point shape op-

timization of turbine stages in three-dimensional flow. In ASME

Turbo Expo 2009: Power for Land, Sea, and Air, pp. 489–502.

American Society of Mechanical Engineers.

[3] Atef, D., Osman, H., Ibrahim, M., Nassar, K. (2010). A simulation-

based planning system for wind turbine construction. In Proceed-

ings of the Winter Simulation Conference, WSC ’10, pp. 3283–

3294.

[4] Autodesk Education Community (2000). Orientation strategies for

passive cooling. [Online; accessed 10-02-16].

http://sustainabilityworkshop.autodesk.com/buildings/

massing-orientation-cooling

[5] AWS Truepower LLC. (2016). Openwind. [Online; accessed 17-02-

16].

http://software.awstruepower.com/openwind/

[6] Azzouz, N., Bechikh, S., Ben Said, L. (2014). Steady state IBEA as-

sisted by MLP neural networks for expensive multi-objective opti-

mization problems. In Proceedings of the 2014 Annual Conference

on Genetic and Evolutionary Computation, pp. 581–588. ACM.

121

http://sustainabilityworkshop.autodesk.com/buildings/massing-orientation-cooling
http://sustainabilityworkshop.autodesk.com/buildings/massing-orientation-cooling
http://software.awstruepower.com/openwind/

Bibliography

[7] Baños, R., Manzano-Agugliaro, F., Montoya, F., Gil, C., Alcayde, A.,

Gómez, J. (2011). Optimization methods applied to renewable and

sustainable energy: A review. Renewable and Sustainable Energy

Reviews, 15, 1753–1766.

[8] Banko, M., Brill, E. (2001). Scaling to very very large corpora

for natural language disambiguation. In Proceedings of the 39th

annual meeting on association for computational linguistics, pp.

26–33. Association for Computational Linguistics.

[9] Bhattacharya, M. (2013). Evolutionary approaches to expensive

optimisation. International Journal of Advanced Research in Artifi-

cial Intelligence, 2 (3), 53–59.

[10] Branke, J., Schmidt, C. (2005). Faster convergence by means of

fitness estimation. Soft Computing, 9 (1), 13–20.

[11] Brower, M., Robinson, N. (2012). The openwind deep-array wake

model: Development and validation. AWS Truepower.

[12] Bull, L. (1999). On model-based evolutionary computation. Soft

Computing, 3 (2), 76–82.

[13] Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E. (2001). Wind en-

ergy handbook. John Wiley & Sons.

[14] Chen, L., MacDonald, E. (2012). Considering landowner partic-

ipation in wind farm layout optimization. Journal of Mechanical

Design, 134 (8), 084506–084506.

http://dx.doi.org/10.1115/1.4006999

[15] Chowdhury, M., Alouani, A., Hossain, F. (2010). Comparison of or-

dinary kriging and artificial neural network for spatial mapping of

arsenic contamination of groundwater. Stochastic Environmental

Research and Risk Assessment, 24 (1), 1–7.

[16] D’Angelo, S., Minisci, E. A. (2005). Multi-objective evolutionary op-

timization of subsonic airfoils by kriging approximation and evolu-

122

http://dx.doi.org/10.1115/1.4006999

Bibliography

tion control. In 2005 IEEE congress on evolutionary computation,

vol. 2, pp. 1262–1267. IEEE.

[17] Dasari, S. K., Lavesson, N., Andersson, P., Persson, M. (2015).

Tree-based response surface analysis. In International Workshop

on Machine Learning, Optimization and Big Data, pp. 118–129.

Springer.

[18] DNV GL Group (2016). Wind Atlas Analysis and Application Pro-

gram (WAsP). [Online; accessed 16-02-16].

http://www.wasp.dk

[19] Douguet, D. (2010). e-LEA3D: a computational-aided drug design

web server. Nucleic acids research, p. gkq322.

[20] DTU Wind Energy (2016). WindPRO. [Online; accessed 16-02-16].

http://www.emd.dk/windpro/

[21] Eigen, M. (1973). Ingo Rechenberg Evolutionsstrategie Opti-

mierung technischer Systeme nach Prinzipien der biologishen Evo-

lution. mit einem Nachwort von Manfred Eigen, Friedrich From-

mann Verlag, Struttgart-Bad Cannstatt.

[22] Ekonomou, L., Lazarou, S., Chatzarakis, G., Vita, V. (2012). Esti-

mation of wind turbines optimal number and produced power in

a wind farm using an artificial neural network model. Simulation

Modelling Practice and Theory, 21 (1), 21 – 25.

[23] Emami, A., Noghreh, P. (2010). New approach on optimization

in placement of wind turbines within wind farm by genetic algo-

rithms. Renewable Energy, 35 (7), 1559–1564.

[24] EMD International A/S (2016). EMD International A/Swindfarmer.

[Online; accessed 16-02-16].

https://www.dnvgl.com/services/windfarmer-3766

[25] Frandsen, S. (1992). On the wind speed reduction in the center of

large clusters of wind turbines. Journal of Wind Engineering and

Industrial Aerodynamics, 39 (1-3), 251–265.

123

http://www.wasp.dk
http://www.emd.dk/windpro/
https://www.dnvgl.com/services/windfarmer-3766

Bibliography

[26] Garza, J., Blatt, A., Gandoin, R., Hui, S. (2011). Evaluation of two

novel wake models in offshore wind farms. In Proceedings of the

European Wind Energy Associate Offshore Conference.

[27] Global Wind Energy Council (2015). Global Wind Energy Outlook

2015.

[28] González, J. S., Payán, M. B., Santos, J. M. R., González-Longatt,

F. (2014). A review and recent developments in the optimal wind-

turbine micro-siting problem. Renewable and Sustainable Energy

Reviews, 30, 133–144.

[29] González, J. S., Rodríguez, A. G., Mora, J. C., Payán, M. B., Santos,

J. R. (2011). Overall design optimization of wind farms. Renewable

Energy, 36 (7), 1973–1982.

[30] González, J. S., Rodriguez, A. G. G., Mora, J. C., Santos, J. R., Payan,

M. B. (2010). Optimization of wind farm turbines layout using an

evolutive algorithm. Renewable Energy, 35 (8), 1671–1681.

[31] Grady, S., Hussaini, M., Abdullah, M. M. (2005). Placement of wind

turbines using genetic algorithms. Renewable energy, 30 (2), 259–

270.

[32] Grefenstette, J. J., Fitzpatrick, J. M. (1985). Genetic search with ap-

proximate function evaluation. In Proceedings of the 1st Interna-

tional Conference on Genetic Algorithms, pp. 112–120. Hillsdale,

NJ, USA: L. Erlbaum Associates Inc. ISBN 0-8058-0426-9.

http://dl.acm.org/citation.cfm?id=645511.657078

[33] Gu, H., Wang, J., Lin, Q., Gong, Q. (2015). Automatic contour-based

road network design for optimized wind farm micrositing. IEEE

Transactions on Sustainable Energy, 6 (1), 281–289.

[34] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-

ten, I. H. (2009). The WEKA data mining software: An update.

SIGKDD Explorations, 11 (1).

124

http://dl.acm.org/citation.cfm?id=645511.657078

Bibliography

[35] Han, Z.-H., Zhang, K.-S. (2012). Surrogate-based optimization. IN-

TECH Open Access Publisher.

[36] Heller, A. (2010). Wind turbine. [Online; accessed 22-11-15].

https://str.llnl.gov/AprMay10/mirocha.html

[37] Herbert-Acero, J. F., Probst, O., Réthoré, P.-E., Larsen, G. C.,

Castillo-Villar, K. K. (2014). A review of methodological approaches

for the design and optimization of wind farms. Energies, 7 (11),

6930. doi:10.3390/en7116930.

http://www.mdpi.com/1996-1073/7/11/6930

[38] Hinton, G. E. (1989). Connectionist learning procedures. Artificial

intelligence, 40 (1), 185–234.

[39] Holland, J. H. (1975). Adaptation in natural and artificial systems:

an introductory analysis with applications to biology, control, and

artificial intelligence. U Michigan Press.

[40] Huang, G.-B. (2003). Learning capability and storage capacity

of two-hidden-layer feedforward networks. IEEE Transactions on

Neural Networks, 14 (2), 274–281.

[41] Huang, H.-S. (2007). Distributed genetic algorithm for optimiza-

tion of wind farm annual profits. In Intelligent Systems Applica-

tions to Power Systems, 2007. ISAP 2007. International Confer-

ence on, pp. 1–6. IEEE.

[42] Hüsken, M., Jin, Y., Sendhoff, B. (2005). Structure optimization of

neural networks for evolutionary design optimization. Soft Com-

puting, 9 (1), 21–28.

[43] J. Forrester, A. I., Keane, A. J., Bressloff, N. W. (2006). Design and

analysis of "Noisy" computer experiments. AIAA journal, 44 (10),

2331–2339.

[44] Jensen, N. O. (1983). A note on wind generator interaction.

125

https://str.llnl.gov/AprMay10/mirocha.html
http://www.mdpi.com/1996-1073/7/11/6930

Bibliography

[45] Jin, Y. (2005). A comprehensive survey of fitness approximation in

evolutionary computation. Soft computing, 9 (1), 3–12.

[46] Jin, Y. (2011). Surrogate-assisted evolutionary computation: recent

advances and future challenges. Swarm and Evolutionary Compu-

tation, 1, 61–70.

[47] Jin, Y., Olhofer, M., Sendhoff, B. (2000). On evolutionary optimiza-

tion with approximate fitness functions. In Proceedings of the 2nd

Annual Conference on Genetic and Evolutionary Computation, pp.

786–793. Morgan Kaufmann Publishers Inc.

[48] Jin, Y., Olhofer, M., Sendhoff, B. (2002). A framework for evolution-

ary optimization with approximate fitness functions. Evolutionary

Computation, IEEE Transactions on, 6 (5), 481–494.

[49] Jin, Y., Sendhoff, B. (2009). A systems approach to evolutionary

multiobjective structural optimization and beyond. IEEE Compu-

tational Intelligence Magazine, 4 (3), 62–76.

[50] Katic, I. (1993). Program park, calculation of wind turbine park

performance, release 1.3++. Risø National Laboratory, Rosklide.

[51] Katic, I., Højstrup, J., Jensen, N. O. (1986). A simple model for

cluster efficiency. In European Wind Energy Association Confer-

ence and Exhibition, pp. 407–410.

[52] Kbiob, D. (1951). A statistical approach to some basic mine valua-

tion problems on the Witwatersrand. Journal of Chemical, Metal-

lurgical, and Mining Society of South Africa.

[53] Ko, H.-S., Jatskevich, J. (2007). Power quality control of wind-

hybrid power generation system using fuzzy-LQR controller. IEEE

Transactions on energy conversion, 22 (2), 516–527.

[54] Kusiak, A., Song, Z. (2010). Design of wind farm layout for maxi-

mum wind energy capture. Renewable Energy, 35, 685–694.

126

Bibliography

[55] Kusiak, A., Zheng, H. (2010). Optimization of wind turbine energy

and power factor with an evolutionary computation algorithm. En-

ergy, 35 (3), 1324–1332.

[56] Kusiak, A., Zheng, H., Song, Z. (2010). Power optimization of wind

turbines with data mining and evolutionary computation. Renew-

able Energy, 35 (3), 695–702.

[57] Kwong, W., Zhang, P. Y., Romero, D. (2012). Wind farm layout opti-

mization considering energy generation and noise propagation. In

Proceedings of the ASME 2012 International Design Engineering

Technical Conferences & Computers and Information in Engineer-

ing Conference IDETC/CIE 2012.

[58] Lackner, M. A., Elkinton, C. N. (2007). An analytical framework for

offshore wind farm layout optimization. Wind Engineering, 31 (1),

17–31.

[59] Langdon, W. B., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrish-

nan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., et al. (2002).

GECCO 2002: Proceedings of the Genetic and Evolutionary Com-

putation Conference. Morgan Kaufmann Publishers.

[60] Laumanns, M., Zitzler, E., Thiele, L. (2000). A unified model for

multi-objective evolutionary algorithms with elitism. In Evolution-

ary Computation, 2000. Proceedings of the 2000 Congress on,

vol. 1, pp. 46–53. IEEE.

[61] Lian, Y., Liou, M.-S. (2005). Multi-objective optimization of tran-

sonic compressor blade using evolutionary algorithm. Journal of

Propulsion and Power, 21 (6), 979–987.

[62] Lian, Y., Liou, M.-S. (2005). Multiobjective optimization using cou-

pled response surface model and evolutionary algorithm. AIAA

journal, 43 (6), 1316–1325.

[63] Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B. (2006). Trusted evolution-

ary algorithm. In 2006 IEEE International Conference on Evolu-

tionary Computation, pp. 149–156. IEEE.

127

Bibliography

[64] Liu, B., Zhang, Q., Gielen, G. G. (2014). A gaussian process sur-

rogate model assisted evolutionary algorithm for medium scale ex-

pensive optimization problems. IEEE Transactions on Evolutionary

Computation, 18 (2), 180–192.

[65] Loshchilov, I., Schoenauer, M., Sebag, M. (2010). A mono surro-

gate for multiobjective optimization. In Proceedings of the 12th

annual conference on Genetic and Evolutionary Computation, pp.

471–478. ACM.

[66] Lückehe, D., Wagner, M., Kramer, O. (2015). On evolutionary ap-

proaches to wind turbine placement with geo-constraints. In Pro-

ceedings of the 2015 on Genetic and Evolutionary Computation

Conference, GECCO ’15.

[67] Luke, S. (2014). Essentials of Metaheuristics. Online version 2.1

edn.

[68] Mallipeddi, R., Lee, M. (2015). An evolving surrogate model-based

differential evolution algorithm. Applied Soft Computing, 34, 770

– 787. doi:http://dx.doi.org/10.1016/j.asoc.2015.06.010.

http://www.sciencedirect.com/science/article/pii/

S1568494615003592

[69] Manwell, J. F., McGowan, J. G., Rogers, A. L. (2010). Wind energy

explained: theory, design and application. John Wiley & Sons.

[70] Marmidis, G., Lazarou, S., Pyrgioti, E. (2008). Optimal placement

of wind turbines in a wind park using monte carlo simulation. Re-

newable energy, 33 (7), 1455–1460.

[71] Martínez, S. Z., Coello, C. A. C. (2010). A memetic algorithm with

non gradient-based local search assisted by a meta-model. In In-

ternational Conference on Parallel Problem Solving from Nature,

pp. 576–585. Springer.

[72] Martinez-Cesena, E. A., Mutale, J. (2012). Wind power projects

planning considering real options for the wind resource assess-

ment. IEEE Transactions on Sustainable Energy, 3 (1), 158–166.

128

http://www.sciencedirect.com/science/article/pii/S1568494615003592
http://www.sciencedirect.com/science/article/pii/S1568494615003592

Bibliography

[73] Mayo, M., Zheng, C. (2016). Blockcopy-based operators for evolv-

ing efficient wind farm layouts. In IEEE Congress on Evolutionary

Computation, CEC ’16.

[74] Mora, J. C., Barón, J. M. C., Santos, J. M. R., Payán, M. B. (2007).

An evolutive algorithm for wind farm optimal design. Neurocom-

puting, 70 (16), 2651–2658.

[75] Mosetti, G., Poloni, C., Diviacco, B. (1994). Optimization of wind

turbine positioning in large wind farms by means of a genetic algo-

rithm. Journal of Wind Engineering and Industrial Aerodynamics,

51 (1), 105–116.

[76] Muljadi, E., McKenna, H. E. (2001). Power quality issues in a hy-

brid power system. In Industry Applications Conference, 2001.

Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001

IEEE, vol. 2, pp. 773–781. IEEE.

[77] Mustakerov, I., Borissova, D. (2010). Wind turbines type and num-

ber choice using combinatorial optimization. Renewable Energy,

35 (9), 1887–1894.

[78] Neubert, A., Shah, A., Schlez, W. (2010). Maximum yield from

symmetrical wind farm layouts. In 10th German Wind Energy Con-

ference (DEWEK).

[79] Ong, Y. S., Nair, P. B., Keane, A. J. (2003). Evolutionary optimiza-

tion of computationally expensive problems via surrogate model-

ing. AIAA journal, 41 (4), 687–696.

[80] Ozturk, U. A., Norman, B. A. (2004). Heuristic methods for wind

energy conversion system positioning. Electric Power Systems Re-

search, 70 (3), 179–185.

[81] Pagano, A., Federico, L., Barbarino, M., Guida, F., Aversano, M.

(2008). Multi-objective aeroacoustic optimization of an aircraft

propeller. In 12th AIAA/ISSMO Multidisciplinary Analysis and Op-

timization Conference, Victoria, British Columbia Canada.

129

Bibliography

[82] Patvardhan, C., Bansal, S., Srivastav, A. (2015). Quantum-inspired

evolutionary algorithm for difficult knapsack problems. Memetic

Computing, 7 (2), 135–155.

[83] Pierret, S., Van den Braembussche, R. (1998). Turbomachinery

blade design using a navier-stokes solver and artificial neural net-

work. In ASME 1998 International Gas Turbine and Aeroengine

Congress and Exhibition, pp. V001T01A002–V001T01A002. Amer-

ican Society of Mechanical Engineers.

[84] Ponsich, A., Jaimes, A. L., Coello, C. A. C. (2013). A survey on

multiobjective evolutionary algorithms for the solution of the port-

folio optimization problem and other finance and economics appli-

cations. IEEE Transactions on Evolutionary Computation, 17 (3),

321–344.

[85] Quinlan, R. J. (1992). Learning with continuous classes. In 5th

Australian Joint Conference on Artificial Intelligence, pp. 343–348.

Singapore: World Scientific.

[86] Rai, M. M. (2005). Hybrid neural network and support vector ma-

chine method for optimization. US Patent 6,961,719.

[87] Ratle, A. (1998). Accelerating the convergence of evolutionary

algorithms by fitness landscape approximation. In International

Conference on Parallel Problem Solving from Nature, pp. 87–96.

Springer.

[88] Rivas, R. A., Clausen, J., Hansen, K. S., Jensen, L. E. (2009). Solving

the turbine positioning problem for large offshore wind farms by

simulated annealing. Wind Engineering, 33 (3), 287–297.

[89] Samorani, M. (2013). The wind farm layout optimization problem.

In Pardolas, P. (Ed.), Handbook of Wind Power Systems, pp. 21–38.

Springer-Verlag.

[90] Serrano-González, J., Burgos-Payán, M., Riquelme-Santos, J.

(2013). Design of neighboring large offshore wind farms: A game

130

Bibliography

theory approach. In Proceedings of the European Wind Energy

Conference and Exhibition.

[91] Siemens Co. (2000). The middelgrunden offshore wind farm.

[Online; accessed 10-01-16].

http://www.renewable-technology.com/

projects/middelgrunden-wind-farm-denmark/

middelgrunden-wind-farm-denmark1.html

[92] Siemens Co. (2007). Wind energy industry-standard software.

[Online; accessed 10-01-16].

https://web.archive.org/web/20070706184255/http:

//www.cece.dk/EE0911AA-D9A1-49E8-9CA2-332E37BBA568

[93] Şişbot, S., Turgut, Ö., Tunç, M., Çamdalı, Ü. (2010). Optimal posi-

tioning of wind turbines on Gökçeada using multi-objective genetic

algorithm. Wind Energy, 13 (4), 297–306.

[94] Song, W., Keane, A. J. (2007). Surrogate-based aerodynamic shape

optimization of a civil aircraft engine nacelle. AIAA journal, 45 (10),

2565–2574.

[95] Stevens, M., Smulders, P. (1979). The estimation of the parameters

of the weibull wind speed distribution for wind energy utilization

purposes. Wind engineering, 3, 132–145.

[96] Sun, C., Ding, J., Zeng, J., Jin, Y. (2016). A fitness approximation

assisted competitive swarm optimizer for large scale expensive op-

timization problems. Memetic Computing, pp. 1–12.

[97] Vermeer, L., Sørensen, J. N., Crespo, A. (2003). Wind turbine wake

aerodynamics. Progress in aerospace sciences, 39 (6), 467–510.

[98] Vestas Wind Systems A/S (2016). Wind turbine v63/1500 (vestas).

[99] Wagner, M., Day, J., Neumann, F. (2013). A fast and effective local

search algorithm for optimizing the placement of wind turbines.

Renewable Energy, 51, 64–70.

131

http://www.renewable-technology.com/projects/middelgrunden-wind-farm-denmark/middelgrunden-wind-farm-denmark1.html
http://www.renewable-technology.com/projects/middelgrunden-wind-farm-denmark/middelgrunden-wind-farm-denmark1.html
http://www.renewable-technology.com/projects/middelgrunden-wind-farm-denmark/middelgrunden-wind-farm-denmark1.html
https://web.archive.org/web/20070706184255/http://www.cece.dk/EE0911AA-D9A1-49E8-9CA2-332E37BBA568
https://web.archive.org/web/20070706184255/http://www.cece.dk/EE0911AA-D9A1-49E8-9CA2-332E37BBA568

Bibliography

[100] Wang, L., Tan, A. C., Gu, Y., Yuan, J. (2015). A new constraint han-

dling method for wind farm layout optimization with lands owned

by different owners. Renewable Energy, 83, 151–161.

[101] Wang, Y., Witten, I. H. (1997). Induction of model trees for pre-

dicting continuous classes. In Poster papers of the 9th European

Conference on Machine Learning. Springer.

[102] Weibull, W. (1951). A statistical distribution function of wide ap-

plicability, presented to the american society of mechanical engi-

neers. Atlantic City, NJ, 23, 981–997.

[103] Wilcox, D. C., et al. (1998). Turbulence modeling for CFD, vol. 2.

DCW industries La Canada, CA.

[104] Williams, C. K., Rasmussen, C. E. (1996). Gaussian processes for

regression.

[105] Wilson, D. (2015). Wind Farm Layout Optimization Competition.

[Online; accessed 31-10-15].

https://www.irit.fr/wind-competition/

[106] WindSim (2016). Windsim. [Online; accessed 16-02-16].

https://www.windsim.com

[107] Zhang, K.-s., Han, Z.-h., Li, W.-j., Song, W.-p. (2008). Coupled aero-

dynamic/structural optimization of a subsonic transport wing using

a surrogate model. Journal of Aircraft, 45 (6), 2167–2171.

[108] Zhou, Z., Ong, Y. S., Nair, P. B., Keane, A. J., Lum, K. Y. (2007).

Combining global and local surrogate models to accelerate evo-

lutionary optimization. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 37 (1), 66–76.

[109] Zitzler, E., Deb, K., Thiele, L. (2000). Comparison of multiobjective

evolutionary algorithms: Empirical results. Evolutionary computa-

tion, 8 (2), 173–195.

132

https://www.irit.fr/wind-competition/
https://www.windsim.com

	Front Matter
	Contents
	List of Figures
	List of Tables

	Introduction
	Wind Farm Layout Optimisation Problem
	Wind Farm Layout Example
	Wind Farm Wake Effect
	Wind Turbine Characteristics
	Surface Roughness
	Wind Modelling
	Wake Effect Modelling

	Wind Turbine Energy Output
	WFLOP Objective Functions
	Wind Farm Design Tools
	Variants of the WFLOP
	Computational Complexity of WFLOP

	Evolutionary Algorithms
	Genetic Algorithms
	Evolutionary Strategies
	Evolutionary Strategies with Elitism
	Selection, Mutate and Crossover
	Crossover vs. Mutation
	Exploration vs. Exploitation
	Evolutionary Algorithm Applications for WFLOP

	BlockCopy Operators for the WFLOP
	BlockCopy Mutation Operator
	BlockCopy Crossover Operator

	Surrogate-Assisted Evolutionary Optimisation
	Overview
	Surrogate Modelling Techniques
	Quadratic Response Surface Model
	Kriging Model
	Artificial Neural Networks
	Discussion of Different Surrogate Models

	Scalability Issues of Surrogate-assisted EAs
	The Management of Fitness Approximation in EA
	A Brief Review on Managing Surrogates
	Pre-Selection Surrogate Management Strategy
	Best Surrogate Management Strategy
	Modified Pre-Selection and Best Surrogate Management Strategy

	Initial Experiments: Comparison of Different Approximation Models
	Approximation Accuracy Measurements
	Initial Offline Experiment Data Description
	Initial Offline Experiment Setup
	Initial Offline Experiment Results

	Evaluation and Results
	Wind Farm Scenarios
	Objective Function
	Evaluation Setup
	Evaluation Results
	Wind Farm Scenario Kusiak & Song 1 kusiak10a
	Wind Farm Scenario Kusiak & Song 2 kusiak10a
	Wind Farm Scenario 2014 Comp 1 windflo-comp-URL
	Wind Farm Scenario 2014 Comp 3 windflo-comp-URL

	Summary of Evaluation Results

	Conclusions
	Bibliography

