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Abstract

The sudden surge in the mobile market has given developers the ability to cre-

ate applications that reach millions of potential users. Many applications store

sensitive data, which makes them potential targets for malicious individuals.

A large majority of developers do not have a background in security making

it difficult for them to securely store this data. This research addresses the

problem by acting as a guide for developers, allowing them to create attack

resistant applications. This is achieved by analysing techniques used by at-

tackers to compromise applications, and illustrating countermeasures, which

will give a greater insight into the concept of secure storage. As opposed

to many other resources, the research presented is a consolidated resource of

security techniques and gives numerous implementation examples, making it

straightforward for developers to use.
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Chapter 1

Introduction

Mobile device usage has increased immensely over the last few years. Appli-

cations running on these devices have become part of everyday life for many

users, and often rely on them. There are applications for almost any purpose,

for instance, banking, email, access control, payments and social media. Many

of these applications store sensitive information, such as user names, pass-

words and tokens in order to authenticate with infrastructure. This means

that developers need to have the expertise to securely store this information

inside applications, which is often not the case.

The amount of resources and development that goes into an application can

vary. Some applications are created by a team of developers with access to

huge amounts of resources, other applications are created by a single individual

with little to no resources. Whether a whole team, or a single developer is used,

sensitive data should be stored in a secure way. This can prove difficult if no

security expertise are available, and leads to easy exposure of sensitive data.

Not many resources are available that facilitate developers in the creation of

secure applications. Resources that are available, are often incomplete and do

not provide enough implementation details. This is not ideal and needs to be

addressed.
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Applications need to be created with security in mind. There are many tech-

niques that can be used to aid in the protection of applications, however they

are often not incorporated by developers, most likely due to a lack of available

resources. This research will provide developers a resource to refer to, in order

to create more secure applications, whose sensitive data is less likely to be

compromised. Topics covered to achieve this are:

• The capabilities attackers have when attacking applications.

• The security techniques that can be put in place to combat attackers.

Covering these topics gives developers an insight into what is required to create

attack resistant applications, and gives implementation details to make it easier

for developers to incorporate the presented security techniques.

1.1 Scope

The concepts covered by this research will apply to most modern mobile Oper-

ating Systems (OS). However it is not feasible to target all of them, as specific

implementation are provided and platforms differ. Therefore the most pop-

ular mobile OS will be the target of this investigation, which is the Android

platform with the majority of the market share [1]. As a result, other plat-

forms such as Windows phone and IOS will not be specifically covered by this

research.

Mobile development companies often hire security experts in order to add secu-

rity features into their applications, this requires a large amount of resources.

Many Android developers do not have the resources for this, which means that

security is often overlooked. Developers that do not have a large amount of

resources available, with little to no security background will benefit most from

this research. Therefore these individuals are the target audience.
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1.2 Thesis layout

Chapter 2 will examine the Android platform in relation to data storage and

code execution, along with related work.

Chapter 3 explores how attackers go about compromising applications and ex-

tracting data.

Chapter 4 examines security techniques that developers can use to protect

their applications.

Chapter 5 gives recommendations on what security techniques developers should

use.

Chapter 6 provides a quick summary of the thesis, covers possible future work

in the area and highlights the contributions made by this research.



Chapter 2

Background

2.1 Data Storage

Sensitive data is used and stored by many applications for authentication pur-

poses. Storing this data on a device can be problematic as the information

can be stolen by malicious individuals. This could lead to user accounts or

infrastructure being compromised. A solution to this problem would be to not

store the data on the device at all. Each time authentication occurs, the user

themselves supplies the authentication data. This would ensure that no sensi-

tive data could be leaked. However, this is often not feasible. For example, it

will be very difficult for users to remember access tokens1. Therefore, sensitive

data often requires to be stored on the device itself.

There are many ways to store sensitive data on an Android device [2]. The

most common approach is to store it inside of the application data directory.

This directory is protected by the application sandbox, as mentioned in Section

2.2. On top of that, encryption can be used to further protect the data at rest.

The Android Keystore, outlined in Section 2.2.2 can be used for this purpose.

1Access tokens are objects that can be used for authentication and are often generated using

user credentials
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If the data is encrypted at rest, it becomes difficult for attackers to extract or

use the sensitive information without possession of the decryption key. There

is a fundamental problem, this approach only protects the data at rest. When

the application is running and requires the use of the data, it is decrypted and

used by the application, exposing it to attackers.

The concept of secure data storage is not only about the data itself, it is about

securing the whole application. If data is exposed in the application during

any part of execution, attackers have the ability to obtain the information.

Cryptography is sufficient at protecting data at rest [3], however protecting

the data during execution is not so simple. In this section three different

architectures are discussed that can be used to execute code on mobile de-

vices. Exploring these environments gives developers a better understanding

of available options when it comes to creating secure applications.

2.1.1 Hardware based architecture

In a hardware based architecture, data storage or processing can be performed

through hardware present on the mobile device. The hardware provides a

secure environment where applications and data cannot be inspected from the

outside world. Trusted applications2 are installed on the hardware, and provide

certain services [4] [5] [6]. For example, cryptographic operations, data storage

and hashing applications often come pre-installed. These applications can

perform security sensitive operations without exposing them to the underlying

OS. Figure 2.1 illustrates a hardware based architecture. The OS provides the

means for applications to communicate with the trusted applications. Allowing

developers to use the services provided by the trusted applications.

2Trusted applications are applications that have been designed and authorised to run on the

target hardware environment, ensuring that applications running on the hardware do not

compromise one another
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Figure 2.1: Hardware based architecture

When it comes to hardware based architectures there are two main options

available, the Secure Element (SE) and the Trusted Execution Environment

(TEE).

2.1.1.1 Secure Element

A Secure Element (SE) consists of a tamper-proof chip, similar to that of

chips inside banking cards [4]. The tamper proofing technology present in

these chips allows for secure computation in insecure environments. The chip

is capable of running trusted applications that are installed on the chip by

the manufacturers. These trusted applications provide services that can be

communicated with via a serial interface. Application Protocol Data Units

(APDUs) [7] are used to communicate with the trusted applications.

In relation to the mobile platform, a Subscriber Identity Module or SIM card

is a type of removable SE [6]. Applications installed on modern day SIMs

come in the form of Java Card [8] applets3. Common applets installed on

SIMs are responsible for storing identity and network information along with

performing the authenticating to mobile networks. SIM cards are not the only

3Java Card application, also known as applets, are Java applications designed for embedded

environments.
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SEs that can be present on mobile devices. Other hardware modules such as

Secure Digital (SD) cards or embedded SEs are also used. As shown in Figure

2.2.

source:

http://cdn.iphonehacks.com/wp-content/uploads/2014/08/nxp_nfc_chip.jpg,

https://nesmobile.com/images/Israel_sim_card.png,

https://www.sdcard.org/developers/overview/ASSD/smartsd/img/smartSD-mobile.png

Figure 2.2: Embedded SE, SIM Card and SD Card [9] used as SEs.

Developers wanting to create their own trusted applications to be used on SEs

face many problems, making it not feasible to use under normal circumstances

[6]. Problems and challenges are listed below:

• SE communication. In order to communicate with SIMs or other SE

there is often an extra library required on the mobile device, such as the

Open Mobile API [10] by SIMalliance [11]. The stock Android release

does not come with this library, which makes it difficult to use with

devices that come with this version of Android. There are two ways for

the library to be present on the device, device manufacturer can bundle

it with the OS, which is the case for many Samsung devices, or it can

be flashed to the device. SEEK for Android [12] provides the means to

flash the API to the device, but it is not practical to do this for every

device that an application needs to run on.

• Installing SE applications. SEs, including SIMs come pre-loaded with

trusted applications, such as applications that can perform cryptographic

operations. In order to achieve secure data processing, developers need

to be able to create a trusted application that can then be installed on

http://cdn.iphonehacks.com/wp-content/uploads/2014/08/nxp_nfc_chip.jpg
https://nesmobile.com/images/Israel_sim_card.png
https://www.sdcard.org/developers/overview/ASSD/smartsd/img/smartSD-mobile.png
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the SE. The main problem is installing these applications on the hard-

ware. Production SIMs require specific management keys to authenticate

with the SIM card manager, through which applications are installed [6].

Developers are not given access to these keys since they would be able

to install any application on the SIMs, including malicious ones. This

means developers have to cooperate with telecommunications companies

that govern the SIM cards, in order to install the applications. If want-

ing to support customers from different providers, developers would have

to cooperate with each of the telecommunications companies involved.

This is not realistic approach for many developers, as large amounts of

resources are required.

Embedded SEs are similar to standard SEs but are installed during device

manufacturing and cannot be removed from the device [13]. They are often

bundled with a Near Field Communication (NFC) chips and provide similar

functionality to that of SIM cards. As with SIM cards it is difficult to com-

municate with an embedded SE [14]. Only whitelisted applications are able

to communicate with the SE, this is problematic since only a few core OS

level applications are whitelisted. In order to communicate with the SE, it

would be necessary to modify the OS which is not applicable for commercial

applications. The application whitelist is located in /etc/nfcee access.xml.

Resource limited developers will have great difficulties when it comes to using

SEs. Cooperation with many different entities is required in order to achieve

this, which requires access to many resources. However, it is not an impossible

feat. An example of a product that has successfully achieved this, is Sem-

ble [15]. Semble is an application used for mobile payments. This has been

achieved through cooperation with telecommunication and banking entities.

However, users are required to insert specific SIM cards into their devices in

order for this to work.
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2.1.1.2 Trusted Execution Environment

The concept of a Trusted Execution Environment (TEE) [5] is very similar to

that of a SE. It provides an isolated execution platform for running trusted

applications. A TEE is authorised, isolated and loaded during the secure boot

process provided by certain processors. This process isolates it from the rest of

the OS, providing secure application execution. Figure 2.3 shows the concept

of a TEE.

source:http://www.arm.com/assets/images/TEE.gif

Figure 2.3: TEE in a mobile environment [16].

A TEE can be thought of as a secure environment running on the device that

is separate from the OS. As with SEs there are issues that developers face

when wanting to use this technology:

• TEE providers. As TEE technology emerged, different providers came

up with their own TEE platforms, such as Solacia [17], Trustonic [18]

and Qualcomm [19]. The TEE platform is installed on the device during

manufacturing, not all manufacturers choose the same TEE platform,

which means that different devices come with different TEE platforms.

Ideally this should not be an issue, but developer licenses are required in

http://www.arm.com/assets/images/TEE.gif
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order to develop and install trusted applications. This means it can cost

quite a lot of money to support a multitude of devices. Many developers

do not have access to this kind of money, which means it is not a viable

option as of yet.

• New Technology. The TEE platform is still relatively new. There

are still a large amount of Android devices that do not come with a

TEE platform (estimated 75 percent [20]), however the majority of

newer devices come shipped with one. Currently this technology will not

be feasible to implement for most developers as there are not enough

supported devices. As the technology matures so will the ability for

developers to use it.

TEEs appear more accessible to developers, and have greater functionality

than SEs [21]. However they are less secure than SEs. SEs have an Evaluation

Assurance Level4 (EAL) rating of 4+ [22] whereas TEEs have a EAL rating

of 2+ [23]. Figure 2.4 gives a quick comparison of the security provided by

software, TEEs and SEs. It shows that TEEs have a lower implementation

cost than SEs and also provide less protection, but offer higher protection and

requires a small extra cost compared to software only implementations.

source:http://www.globalplatform.org/images/tee-simple_clip_image004.png

Figure 2.4: Comparison of security offered by software, TEEs and SEs [5].

4A higher EAL indicates a higher level of confidence in the security of a product

http://www.globalplatform.org/images/tee-simple_clip_image004.png
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An example of TEE applications running on a device is the Android keystore

system [24]. On certain devices the keystore system can be hardware backed,

meaning that trusted applications running on the TEE are used by the system

to provide secure cryptographic operations. The way communication occurs

between the OS and TEE applications is through a driver running on the OS.

Figure 2.5 shows the Qualcomm Secure Execution Environment Communicator

(QSEECOM) driver running on a Nexus 5 device.

Figure 2.5: TEE driver running on a Nexus 5 device.

2.1.2 Cloud based architecture

In a cloud based architecture, the processing and storage of the sensitive infor-

mation is performed in the cloud [25]. The cloud infrastructure can be thought

of as an isolated execution platform similar to that of a SE or TEE. The appli-

cation running on the device can be thought of as relay device, relaying data

between the cloud infrastructure and authentication infrastructure. Figure 2.6

illustrates the concept.

Figure 2.6: Cloud based architecture.

Even though security sensitive operations are not performed on the mobile
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device itself, sensitive information will pass through the phone at some point,

meaning that the application using the data still needs to be protected. Storing

sensitive data in the cloud and retrieving it when needed can problematic:

• Cloud infrastructure needs to be acquired and maintained by the de-

velopers. This reason alone will be enough for most developers to not

implement this type of architecture, as it requires constant upkeep and

resources.

• Whenever the data needs to be retrieved, a connection to the cloud

infrastructure needs to be made. This means users require an Internet

connection every time they want to use the application, which is not

ideal.

A cloud based infrastructure requires a large amount of resources on behalf of

the application developers and is not feasible in many circumstances. However

it can be used in production environments. An example of cloud based security

used in a commercial application is Google Wallet5. Where user credit card

details are stored on secure servers. These servers create tokens6 that allow

users to perform mobile payments. Even if the one-time token is exposed in

the application, attackers will not be able to reuse the token since it is not valid

anymore. A cloud based architecture works in this case due to the payment

infrastructure that has been set up. It is often the case that developers do not

have control over the infrastructure they need to authenticate with. Therefore

this type of architecture cannot always make use of tokens and will require

persistent storage of sensitive data, meaning that when the data is retrieved

it will be exposed in the application.

5http://www.google.co.nz/wallet/
6A type of one-time password

http://www.google.co.nz/wallet/
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2.1.3 Software based architecture

In a software based architecture the processing or storage of sensitive infor-

mation is performed inside the application itself. This is the most common

approach for developers as it does not require any extra resources. However

it is the least secure way to handle and process sensitive information as there

are many attack vectors that can be used to compromise the data, as shown

in Chapter 3. Code running inside Android applications can easily be exposed

to attackers who will be able to extract sensitive data. Therefore, if sensitive

information is processed in any part of the code, attackers will be able to get

a hold of it.

2.1.4 Summary

Hardware and software based architectures have the ability to provide isolated

execution and secure data storage, however when used in a mobile environment,

sensitive data is eventually used and exposed in the software implementation.

This means that even if hardware or cloud based architectures are used, the

software based side of the application will still need to be secured as much as

possible. Therefore the main focus of the research is to protect the software

side of applications.

2.2 Android

Android is an open-source mobile OS based on the Linux kernel and is the

most popular mobile OS [1] with over 80% of the mobile market share. A few

Android security features worth mentioning are:

• The application sandbox. The application sandbox ensures that applica-

tions are isolated from one another in terms of execution and application
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data. Each application is given a unique ID and is run as a separate user,

this is done at a kernel level which means that the sandbox applies to

all applications running above the kernel. Figure 2.7 illustrates this, the

application sandbox governs all layers above the Linux Kernel layer.

source:https://source.android.com/security/images/android_software_stack.png

Figure 2.7: Android software stack [26].

• Application permissions. In order for Android applications to access

other Android resources they have to explicitly ask for permission, this

is due to the application sandbox [27]. When an application is first

installed, the user will have to grant permissions to the application, in

order to use the specified resources.

The attacks covered in Chapter 3 are used by attackers to bypass and break

these security features which means that the protection provided by the An-

droid OS is not sufficient. Which means that other protection methods need

to be considered when developing applications, which are covered in Chapter

4.

https://source.android.com/security/images/android_software_stack.png
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2.2.1 Android applications

Android applications come in the form of Android Package (APK) files [28].

An APK file contains all the code and data for an application, which is used

to install the application on the device. A few noteworthy locations on the

Android file system that are used for applications:

• The /data/app/ directory contains user applications. This is the default

location that user applications get installed to.

• The /system/app/ directory contains system applications. These are the

applications that come preinstalled on the device and cannot be removed.

• The /data/data/ directory is the default location where applications

store their data. This directory is private storage that other applications

cannot access.

These locations on the file system are normally protected by the application

sandbox, however as mentioned before the sandbox can be bypassed. As a

result these file system locations can be accessed by attackers and cannot be

assumed to be secure.

2.2.2 Android keystore system

The Android keystore system provides functionality to generate, store, pro-

tect and use cryptographic keys [29]. The KeyStore API was introduced in

API level 1, but is just an interface to an underlying keystore implementation.

The underlying keystore implementations expose interfaces that adhere to the

KeyStoreSpi class. One of the keystore types is the AndroidKeystore imple-

mentation and can be software or hardware based. A hardware based keystore

implies that a SE or TEE is available that has trusted applications installed

on it, that provide cryptographic operations. The software based implemen-
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tation uses cryptographic operations executed on the OS. Developers can use

the keystore system to:

• Generate keys.

• Encrypt/decrypt data.

• Sign/verify data.

When a key is generated, it is placed on the file system in the /data/mis-

c/keystore directory. The stored keys are protected using encryption, through

a Key-Encryption Key (KEK). The KEK is generated from the device’s mas-

terkey along with other data relating to the device [30]. If the keystore is

hardware backed, the master key is stored inside secure hardware, in a soft-

ware based implementation, the master key is generated using the the device

unlock password/PIN [31]. The keystore is very important when it comes to

storing data and should be used by developers when performing cryptographic

operations on sensitive data. However, when sensitive data is decrypted dur-

ing runtime, it can be extracted from the application. Therefore protection

techniques are required to make it more difficult for attacker to do this.

2.3 Security Guidelines and Standards

The Open Web Application Security Project (OWASP) is an organization

that focuses on information security. The goal of this organization is to create

awareness when it comes to software security. In terms of mobile security

they have released a list of top 10 risks to mobile applications [32]. Table

2.1 illustrates this along with the vulnerability distributions for each of the

risks [33].

Results show that Insecure Data Storage and Lack of Binary Protections are

the top two most common risks to mobile applications, both of these categories
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Category Vulnerability Distribution

M1:Weak Server Side Controls 6%

M2:Insecure Data Storage 17%

M3:Insufficient Transport Layer Protection 16%

M4:Unintended Data Leakage 13%

M5:Authorization and Authentication 6%

M6:Broken Cryptography 3%

M7:Client Side Injection 4%

M8:Security Decisions Via Untrusted Inputs 1%

M9:Improper Session Handling 2%

M10:Lack of Binary Protections 19%

No Category 13%

Table 2.1: OWASP Mobile top 10 [32] with corresponding vulnerability

distribution [33].

directly apply to this research. This indicates that there are not enough re-

sources available for developers to be able to protect applications properly. The

information given by OWASP to remedy these issues is very limited. There

are two resources provided by OWASP [34] [35] that provide more information

about reverse engineering and code modification but only provide limited im-

plementation details. OWASP resources are excellent at providing a general

overview of the subject, but do not go into specific implementation details that

developers often require.

The National Institute of Standards and Technology7 (NIST) is an organi-

zation that is involved in the creation of standardization documents. NIST

have released mobile security standards such as [36] and [37]. These stan-

dards briefly mention security concepts but do not sufficiently cover security

techniques or provide implementation details that can be used by developers.

7http://www.nist.gov/

http://www.nist.gov/
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The International Organization for Standardization8 (ISO) is an organiza-

tion responsible for creating international standards. The International Elec-

trotechnical Commission9 (IEC) is a standardization organization for electronic

technology. These organization have created the ISO/IEC 27000 series stan-

dards, which are standards related to information security. They contain in-

formation in regards to application security, but not specifically for mobile se-

curity. Certain concepts can be transferred over to mobile security but many

of the standards do not apply.

In summary, there are resources available to developers such as standards and

guidelines. However, these only briefly cover security concepts and do not

provide implementation details. The research performed in this thesis is to be

seen as a guidance document for developers. It provides many implementation

details, explains how attackers are able to compromise applications and data

(Chapter 3), and goes over security techniques that can be used to hinder

attackers from doing so (Chapter 4).

8http://www.iso.org/iso/home.html
9http://www.iec.ch/

http://www.iso.org/iso/home.html
http://www.iec.ch/


Chapter 3

Attack Phases

The sections outlined in this chapter examine the phases an attacker will go

through when attacking applications. During each phase of the attack, dif-

ferent techniques are employed in order to obtain sensitive information from

applications. The attack life cycle is shown in Figure 3.1.

Figure 3.1: Attack life cycle
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3.1 Phase I: Extraction

The extraction phase is about gathering information from the device and appli-

cations in order to identify valuable data that might be stored [35]. Attackers

make use of techniques such as rooting and device emulation to perform this

stage of the attack.

3.1.1 Rooting Devices

Rooting gives users root privileges on a device, granting them the ability to

make changes to the underlying file system, which would otherwise not be

possible. There are legitimate reasons for users rooting their devices as it

allows for much greater device customization. However, doing so compromises

the device and poses a security risk, as it allows applications to break out of

their application sandbox. With root access, applications are able to explore

any part of the device file system, including the private file storage areas of

other application.

The way users go about rooting, changes from device to device. Some manu-

facturers actively block users from rooting their device, whilst others do not.

Certain devices are easier to root than others, many of the Google Nexus series

devices allow for the user to unlock the boot loader, which makes the rooting

process much easier. The boot loader [38] is responsible for loading the OS, if

unlocked it is possible to change system files, for example adding the su binary.

Which is often used to execute privileged commands on Linux based devices.

There are many tools available that provide users the ability to root a device.

A few are listed below:

• KingoRoot1

1https://www.kingoapp.com/

https://www.kingoapp.com/
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• OneClickRoot2

• Framaroot3

• KingRoot4

• RootMaster5

These tools make it very easy for attackers of any skill level to root their

devices. Once the device is rooted, attackers can access any part of the file

system, allowing them to extract APK files, private application data and mod-

ify the files system as they see fit.

3.1.2 Using Emulators

Attackers can use Android emulators for the extraction phase of the attack

lifecycle, they can be used to achieve the same results as device rooting. Em-

ulators are used to simulate real Android devices, allowing developers to test

applications on many different devices without physically owning them. Since

emulated devices are run entirely in software, they are much more customis-

able than hardware devices. Attackers can make use of this to change the

environment in which applications are run, for example enabling root access.

Emulators are available from the Android developer tools, these are the official

emulators supplied for developers and come with an unlocked boot loader.

Meaning that the su binary can be pushed to the device to give applications

root.

2https://www.oneclickroot.com/
3http://framaroot.net/?scn=1
4http://www.kingroot.net/
5http://rootmasterapk.org/

https://www.oneclickroot.com/
http://framaroot.net/?scn=1
http://www.kingroot.net/
http://rootmasterapk.org/
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3.1.3 Android Debug Bridge

The Android Debug Bridge (ADB) is a tool included in the Android SDK

that allows a user to communicate to Android devices. ADB gives users a

shell terminal that can be used to execute commands for example it can be

used to push files such as the su binary to the file system. Using ADB it

is still possible to pull data from the /data/app/ directory, which contains

APK files. Commands such as pm list packages -f can be used to see what

applications are installed on the device and using the pull command adb pull

/data/app/[.apk file] [location] it is possible to retrieve any APK file installed

on the device. Giving attackers the source code they need to start the next

stage in the attack lifecycle.

3.2 Phase II: Analysis

The analysis phase of an attack consists of the examination of extracted

data [35]. The goal is to understand how the application works to deter-

mine where and how the sensitive data is used. This is often referred to as

reverse engineering and is performed through static and dynamic analysis.

3.2.1 Static Analysis

Static analysis is the process of looking through static code in order to under-

stand more about an application. Attackers first extract application binaries

from the device, which are then analysed to gain information about how the

application works. Attackers are able to obtain sensitive information such as

proprietary algorithms or hardcoded values from this process. The more in-

formation gathered from this process, the easier it is to further exploit the

application.
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Listing A.1 is an example of a java class that can be used in an android

application. It is listed to illustrate standard java source code before it is

compiled into an application. Once the application has been installed, an

attacker can get a hold of the application binaries as discussed in Section 3.1.

After the APK has been obtained, it can be converted into a jar file using a

tool such as dex2jar [39]. A standard java decompiler can then be used on the

jar file to view the java code contained in the application. The result of this

is shown in Figure 3.2.

Figure 3.2: Decompiled java code using JD-GUI [40].

Although not identical, the generated code is an accurate representation of

the original source code, the attacker can then inspect the code to view to

understand more about the application and extract static values from the

application.

The reason APK files are so easily decompiled is due to the nature of Java code.

Android applications are written in Java which is compiled into java bytecode

(.class files), which in turn is translated into the DEX file used by Android.

When Java is turned into bytecode, a lot of meta-data is preserved such as

class names, method names and variable names. When a decompiler is used

to turn bytecode back into source code, this meta-data is used to reconstruct



24

the code, producing readable source code.

3.2.2 Dynamic Analysis

Dynamic analysis is the act of analysing code while it is being executed. It is

used to extract information from applications during execution, which allows

attackers to obtain data that was not discovered during the static analysis

process. Two techniques used to perform dynamic analysis are described.

3.2.2.1 Debugging

Android applications can be debugged by developers in order to step through

application code whilst the application is running, this is done to detect errors

and inspect the program at runtime. This can only be done on applications

that have the debugging flag set to true in the android manifest. The debugging

flag is automatically set to true in a development environment, however when

an application is released the flag is set to false by default. Attackers can

modify an application and set the debugging flag to true in order to debug

the application, using the debugging tools provided by the Android developer

environment [41].

The program in Listing A.2 is used to illustrate how this attack can be used to

extract data at runtime. The password is programmatically generated which

means that an attacker will not be able to determine the password using static

analysis. This is a basic example but we can imagine that in a real application

the password is stored in an encrypted form and the decrypted version is passed

into the method used for authentication on line 11.

The process an attacker goes through to perform this attack is shown. After

an attacker has retrieved the APK, a tool such as apktool6 can be used to

6http://ibotpeaches.github.io/Apktool/

http://ibotpeaches.github.io/Apktool/
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modify and recompile the APK. Adding ’android:debuggable=”true”’ to the

AndroidManifest.xml file will make the application debuggable once recom-

piled. Figure 3.3 shows this using APK Studio7.

Figure 3.3: Modified APK using APK Studio.

Once an application has been modified, it needs to be resigned as the binary

signature has been broken. After resigning the application, the old version

needs to be deleted from the device and the modified version can be installed

using ADB. If the application is run, it will show up in the Android Device

Monitor8 as shown in Figure 3.4, which is an indication that it is debuggable.

Now that the application is debuggable it is possible to make use of the de-

veloper tools provided by Android to examine the application in detail. The

ultimate goal is to step through the code and look at specific variables in the

application during runtime. The developer tools are able to attach to a debug-

gable process, running on the target device as shown in Figure 3.5. If source

code is available for the target process, it is possible to add breakpoints and

7http://www.vaibhavpandey.com/apkstudio/ (GUI for apktool)
8Tool provided for Android developers to monitor a device

http://www.vaibhavpandey.com/apkstudio/
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Figure 3.4: Modified application is now debuggable.

step through the code.

Figure 3.5: Attaching to a debuggable application.

To add the source code and breakpoints, a new application has to be created

with the same application package name as the running process. This is how

the developer tools relate the source code to the running process. The appli-

cation source code can be extracted from the modified APK using techniques

discussed in Section 3.2.1, which is then imported into the application. Break-

points can then be added to the imported code, when the breakpoints are

triggered by events in the running process it is possible to inspect the process,
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as shown in Figure 3.6.

Figure 3.6: Inspecting application after breakpoint trigger.

Although the sample application used is a very simple one, it is effective in

showing how detrimental this technique is to applications processing sensitive

information. If sensitive data is exposed at any stage of the application life-

cycle, it can be inspected at runtime using this technique. This technique can

be applied to any application which makes it a big threat to any application

developer wanting to keep information secure.

3.2.2.2 Memory Dump

When applications are executed, they are loaded into device memory. During

application execution many objects are created, when these objects are no

longer needed, the memory they occupy needs to be reclaimed which is the job

of the garbage collector. The garbage collector performs Garbage Collection

(GC) every so often to free up memory, the more objects are created, the

more often GC occurs. The process of GC is performed by marking the target
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memory as free, meaning that other applications can use the memory. This

does not delete the memory from the location, it just allows other applications

to write over the existing memory stored there.

If applications are using sensitive data, it will eventually end up somewhere in

the application memory. If attackers are able to get a hold of the application

memory it could be possible to extract this sensitive data. The difficulty to

perform this attack is quite high as it is a time dependant attack. To get a hold

of the target sensitive information an attacker would need to know when the

data is used in memory, and then perform a memory dump before GC occurs.

There are several ways in which an attacker can perform memory dumps as

outlined below.

Memory dump through debugging

The memory of debuggable applications can be dumped using the Android

Device Monitor (ADM). The application needs to be made debuggable as

shown in Section 3.2.2.1, which allows attackers to dump device memory. This

produces a .hprof file containing the application memory. Skilled attackers

can analyse these files and retrieve sensitive information from them. As an

example, the code in Listing A.3 is run in debug mode on the device after a

button press. The code is blocking to make it easier to capture a successful

memory dump, by preventing GC from cleaning up the memory. Once the

thread has started, the ADM is used to capture a memory dump. The resulting

file can be analysed using memory analysis tools such as jhat9 or VisualVM10.

Figure 3.7 shows a section of the memory dump. It illustrates that hardcoded

and dynamically generated data can be seen in the application memory. It can

be imagined that these values are not just random pieces of data, they can be

cryptographic keys, passwords or other sensitive data.

9https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html
10https://visualvm.java.net/

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jhat.html
https://visualvm.java.net/
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Figure 3.7: Data found in memory dump

This demonstrates the fact that sensitive information is kept in application

memory and can be retrieved through dumping memory. The attack itself is

quite difficult to perform, it requires understanding of the application itself,

good timing between GC cycles and requires knowledge of memory analysis.

Memory dump on rooted device

The application sandbox is used to run apps in isolation of one another, this

includes the memory. When a device is rooted the security provided by the

sandbox is nullified and applications are able to access each others memory.

Therefore when a device is rooted, applications can be created or installed

on the device to read the memory of specific applications. There are many

different ways to do this, a few methods are briefly outlined below.

• As shown in [42], it is possible to create a native application in C to dump

device memory. The code provided in [42] has been slightly modified

(shown in Listing A.4) to print out the stack for the specified process id.

The binary can be installed and executed on the device using ADB.

• In [43] it is shown how to dump the memory on a rooted device by

installing gdbserver11. Gdbserver is a program that can be used to re-

11https://sourceware.org/gdb/onlinedocs/gdb/Server.html

https://sourceware.org/gdb/onlinedocs/gdb/Server.html
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motely debug applications using the GNU Project Debugger (GDB)12.

It is then possible to remotely debug a specified process and dump the

device memory.

Compared to the debugging technique, the methods shown produce memory

dumps that are a bit more difficult to analyse and require more effort to

produce. The device requires root and more advanced techniques need to

be used in order to dump the memory, however, they seem just as effective in

obtaining sensitive information from applications.

3.3 Phase III: Exploitation

If an attacker has not been able to obtain the information they wanted in

the previous to stages, they move onto the exploitation phase [35]. Which

mainly involves application tampering. Application tampering has been par-

tially explored in Section 3.2.2.1, where the manifest had been altered to pro-

vide debugging functionality. Tampering explored in this section will show how

attackers can make an application function differently than it was designed to.

The steps to tamper with an application are outlined:

1. Disassemble the bytecode of the application. The code produced is in a

format that is more difficult to understand than java source code.

2. Modify the disassembled code. Code can be modified to add in extra

functionality, remove functionality or change existing functionality.

3. Assemble the modified code and repackage it back into the application.

The disassembling/assembling part of tampering can be performed using a

tool called smali/baksmali 13, which produces a language called smali that can

12https://www.gnu.org/software/gdb/
13https://github.com/JesusFreke/smali

https://www.gnu.org/software/gdb/
https://github.com/JesusFreke/smali
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be modified. Smali/baksmali can be used as a standalone tool but since it is

integrated with APK Studio, it will be used in the examples shown. The code

in Listing A.5 will be modified to disable the security check put in place. The

security check in the code represents obstacles that an attacker has to bypass

in order to successfully tamper with an application. Listing A.6 shows the

smali representation of the Java code which will be modified. Line 50 in the

smali code shows:

const/4 v0, 0x0

If this is changed to:

const/4 v0, 0x1

The method securityCheck will return true instead of false. The code has

to be assembled, the resulting APK needs to be resigned and the application

needs to be installed on the device. The result of running the application once

more produces the expected output as shown in Figure 3.8.

Figure 3.8: Result of running tampered application on device

This is a very simplistic example but it shows the idea behind application

tampering. Attackers are able to add entirely new methods and remove secu-

rity features that developers have implemented. The attack is relatively easy

to perform when making small changes and not much knowledge is required.

However, as code complexity increases and the more modifications that need

to be made, the more difficult it becomes to successfully tamper with an ap-

plication.



Chapter 4

Security Techniques

In this chapter, security techniques are explored that can be used to hinder

attacker from performing attacks outlined in Chapter 3.

4.1 Obfuscation

4.1.1 Description

Higher level languages such as Java and C# contain a lot of meta-data when

they are compiled into their respective binaries. This meta-data contains in-

formation such as variable, class and method names. When these high level

languages get decompiled they still contains this metadata and therefore can

be translated back into code that resembled the original source code [44] [45].

Lower level languages such as C and C++ have this meta-data stripped away

when compiled, therefore making it much harder to understand when decom-

piled.

Obfuscation is the process of transforming code or binaries in such a way that

it makes it much more difficult to understand once decompiled, even though

the code is functionally still the same. It is more effective to use on higher level
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languages than lower level languages, since the meta-data is one of the main

targets of obfuscators. Security through obscurity1 is the main idea behind

obfuscation and is used to prevent attackers from easily reverse engineering

applications. However, obfuscation should be used in conjunction with other

security practices since determined enough attackers will always be able to

bypass this security technique.

There are many different techniques used to provide code obfuscation [45–49].

The primary techniques will be briefly outlined in the sections below.

4.1.1.1 Lexical Transformations

This technique is employed by virtually all obfuscators, it renames identifiers

such as variable, method and class names, to something incoherent. Meaning

that when code is decompiled, the names of identifiers will not give away any

information as to its function. For example, a function that is used to decrypt

data is called decrypt() but is renamed to abc. When an attacker decompiles

the code, they will see a function called abc which does not give away any

information as to its purpose. If the application is large and this is applied to

all identifiers it can be quite time consuming to reverse engineer. Figure 4.1

illustrates this.

The lexical transformations applied make it more difficult to analyse the code.

The class has been renamed from Secret to a giving away no information

as to its functionality. The same goes for the methods contained in the class.

Attacker will have to examine each method individually in order to understand

more about their functionality. This might not be difficult in a application with

one class, but as more classes are introduced it becomes challenging. However,

there are some issues associated with this transformation [50]:

1Security through obscurity is a well known security concept that relies on hiding imple-

mentation details to provide security to an application
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Figure 4.1: Example of a lexical transformation.

• Not all code can be obfuscated. Identifiers that belong to standard java

libraries cannot be renamed since other applications have to use those

same libraries. The result of this is that it might be relatively easy to

understand parts of an application that use many calls to these libraries.

• Code that is designed to be called using reflection cannot be obfuscated,

since the identifiers are needed for this.

• Crash logs coming from an obfuscated application will be much more dif-

ficult to understand. Since identifiers have been renamed, the crash log

will point to obfuscated code which developers will have a hard time un-

derstanding. However, a reverse mapping is often provided to developers

when code is obfuscated which is used counter this problem.

An added benefit from lexical transformations is its ability to shrink the size

of a program. Stripping out a lot of the meta-data results in smaller file sizes.
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4.1.1.2 Control Transformations

The idea behind control transformations is to change how a program is per-

ceived to flow. Extra code can be inserted into the application which appears

to add more flow paths even though the program stays functionally the same.

This can done using opaque predicates [48] [49] [51]. Opaque predicates are

expressions that always evaluate to a certain value, even though, when decom-

piled they appear to evaluate to other possible values. As an example, imagine

a predicate always evaluates to false and is inserted into an if statement as the

conditional expression. Any code contained within the statement will not be

executed but when analysed by the attacker, it might seem that the code gets

executed occasionally. If many of these predicates are included in a piece of

code, it can be quite challenging for an attacker to deduce what parts of the

code actually get executed.

Examples of opaque predicates are shown in Listing A.7. Line 10 contains a

predicate that always returns false and the predicate on line 14 always returns

true. The function doNothing does absolutely nothing, the value returned

from the method is exactly the same as the value inserted. The values of

both predicates are known before execution time by the developer, however it

is difficult to determine this while looking at the code when it is decompiled

(Figure 4.2). This confuses attackers looking at the code.

4.1.1.3 Data Transformations

Data transformations are used to hinder decompilation by representing data

types and structures in uncommon ways [46] [49]. Common transformations

are listed below:

• String obfuscation is used to make sure that strings are not represented in

plain text once the program has been decompiled. This can be performed
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Figure 4.2: Example of an opaque predicate for a control transformation.

by storing encrypted versions of strings in the code and decrypting them

when needed. The same thing can be done with classes, they can be

encrypted when stored and decrypted during runtime. Even though it

might be trivial for attackers to decrypt the data since the decryption

algorithm has to be included in the source code, it does add an extra

step for the attackers to go through.

• Variable splitting can be used to represent variables using different vari-

ables. For example a boolean value can be represented by two integers.

When this code is decompiled the attacker will need to go through extra

steps in order to deduce the actual value.

• Splitting classes, is where the functionality provided by one class can

be split into many smaller classes. The result of this produces a large

amount of obfuscated code that can be difficult to sift through.

A simple example of string obfuscation is shown in Listing A.8. Strings can

be encoded before being statically stored in a variable using the stringEncode

function. The variables string, stringFromEncodedString and stringFromBytes

all the same value of secretPassword123 when decoded. When the string is

needed, a call to stringDecode transforms the string back its original form.



37

The encoded value cannot easily be interpreted by an individual performing

static analysis.

4.1.1.4 Anti-Decompilation

The three obfuscation transformations mentioned above are targeting the at-

tacker itself, obscuring the code in order to make it more difficult for the

attacker to understand it. There are other defences that can be inserted by

an obfuscator to confuse the program used in the decompilation process. This

is often referred to as anti-decompilation where code is inserted into the ap-

plication to target a specific weakness in the decompiler, which can cause the

decompiler to crash or not perform the decompilation properly. Examples of

this can be found in [47]. This technique can be quite effective as it prevents

decompilation of entire applications, however the smarter decompilers get, the

more advanced these obfuscation techniques need to become.

4.1.2 Implementation

Implementing obfuscation manually is not feasible, the transformations have

been automated and there are quite a few tools available. Popular obfuscators

are listed in table 4.1

Proguard is a free obfuscator included in the Android build tools and can be

used by developers to obfuscate code [52]. It primarily makes use of lexical

transformations to provide obfuscation and can easily be deployed in an appli-

cation. By default ProGuard is disabled, but enabling it is as simple as setting

2https://www.guardsquare.com/proguard
3https://www.guardsquare.com/dexguard
4https://dexprotector.com/
5https://jfxstore.com/stringer/
6https://www.preemptive.com/solutions/android-obfuscation
7http://shield4j.com/main/sidecc63dd15b9656e1c877087e024689646fc27b38
8http://www.allatori.com/features/android-obfuscation.html

https://www.guardsquare.com/proguard
https://www.guardsquare.com/dexguard
https://dexprotector.com/
https://jfxstore.com/stringer/
https://www.preemptive.com/solutions/android-obfuscation
http://shield4j.com/main/sidecc63dd15b9656e1c877087e024689646fc27b38
http://www.allatori.com/features/android-obfuscation.html
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Obfuscation Tool Cost Protection Provided*

Proguard2 Free Low

Dexguard3 Paid High

DexProtector4 Free & Paid Medium to High

Stringer5 Free & Paid Medium to High

DashO6 Paid Medium

Shield4J7 Paid Medium

Allatori8 Paid Medium

Table 4.1: Android obfuscation tools.

*The amount of protection provided is based on the obfuscation

techniques used, as advertised by the tools.

the minifyEnabled flag to true in the build script, as shown in Figure 4.3.

Figure 4.3: Enabling ProGuard obfuscation in Android Studio.

4.1.3 Analysis

Obfuscation is a technique that all developers should use when deploying ap-

plications. It is extremely trivial to make use of ProGuard as it is integrated

into the build process but it is still not used often enough. This is most likely

due to the fact that it is disabled by default and the fact that stack traces

come in obfuscated form.

The protection offered provided by ProGuard is quite low as only lexical trans-

formations are applied. An example Proguard obfuscation on a larger applica-
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tion is shown in Figure 4.4, classes, methods and variables have been renamed,

but strings remain as plaintext and the code is relatively easy to follow due

to many standard library calls. The reverse engineering process will be slowed

down, but it will not stop an attacker from understanding the application given

enough time.

Figure 4.4: Code obfuscated with ProGuard.

An obfuscator that only provides lexical transformations is better than no

obfuscator at all, but developers that need to create secure applications have

to go an extra step further. A commercial obfuscator can be used to provide

more protection. Tools such as DexGuard make use of lexical, data and control

transformations to provide a more secure solution, however, licences need to

be purchased in order to use these tools.

An alternative option to obfuscation is the use of native code. As mentioned

before, high level languages are easier to decompile than low level ones. De-

velopers can implement security sensitive parts of the code in C or C++ and

call these functions from within the application. The result of this will be code

that is harder to reverse engineer but doing this will add extra complexity to

the code.
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Obfuscation is a great way to obstruct attackers from reverse engineering ap-

plications, it makes it more difficult for attackers to use Static and Dynamic

analysis (Sections 3.2.1 and 3.2.2 respectively). However, if an attacker is de-

termined enough, it is inevitable that they will be able to get past obfuscation

set in place by obfuscation tools or through native code.

4.2 Tamper Detection

Tamper detection is a technique used to detect whether or not an application

has been changed by an attacker. In relation to the attack lifecycle it applies

to the exploitation phase. If an application has been modified by an attacker

(to bypass security features or extract sensitive data) it could be possible to

detect the changes made to the code using tamper detection. If tampering

has been detected, the developer can choose the best course of action, such

as corrupting or deleting sensitive data. Tampering can be detected using the

techniques described in the sections below.

4.2.1 Certificate Checking

4.2.1.1 Description

Android applications that are released to the public have to be signed with a

certificate. Developers have to generate a self-signed certificate and sign their

application with it. The private key of the certificate is used to determine

the owner of the application, therefore anyone with the private key of an

application is able to publish updates and make changes to an application

that has been released.

When an application is signed, a digital signature is generated for the appli-

cation using the private key [53, 54]. This signature can be validated using
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the corresponding public key. If an application has been changed, then the

signature validation will fail and the application cannot be installed on the

device. This is used to detect application tampering or corruption. In order to

tamper with applications, attackers need to resign the application with their

own certificate to create a valid digital signature. This results in the applica-

tion having a different public key associated with it, which is the basis of this

tamper detection method.

The modified application has a different public key than the original applica-

tion. It is possible to get an application’s public key using inbuilt libraries, this

allows for a comparison between the original public key used and the current

key used. If the attacker has resigned the application, it will be possible to

detect this change. This allows for the detection of resigning, which indicates

application tampering. We refer to this process as Certificate Checking.

4.2.1.2 Implementation

In order to implement Certificate Checking it is required that the public key of

the signed application, is stored somewhere in the application. The simplest

way to get the public key is to perform a release build of the application and

print out the public key in logcat9. This can be done using the code in Listing

A.9. The resulting string should be stored in the application and compared

to the signature retrieved at runtime, as shown in Listing A.10. Implementing

this tamper detection technique is very easy and does not require much effort

on the developers side.

4.2.1.3 Analysis

The impact of this technique on performance is negligible and is very easy

to implement. However, this technique can be easy to bypass. Since the

9Logging service for Android applications
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public key is hardcoded in the application it can easily be found using static

analysis and changed to a different value. Therefore it should be used in

conjunction with other techniques such as obfuscation and tamper detection

via Checksums. This makes it more difficult for attackers to simply change the

value and requires more effort as they have to bypass more than one technique.

The technique is used to protect against the exploitation phase of the attack

life cycle as shown in Section 3.3.

4.2.2 Installer Verification

4.2.2.1 Description

The majority of Android applications are distributed using the Google Play

Store10. If a developer releases their application through the Play Store, they

expect the application to be distributed from there as well. It is possible

for developers to check the name of the installation source. If an attacker

tampers with an application they often install it on the device through ADB,

which results in a different installer name being registered with the application.

The expected installer name can be compared to the actual installer name to

determine if the application has been installed from the right source [55]. This

technique is referred to as Installer Verification.

4.2.2.2 Implementation

Listing A.11 shows how to retrieve the name of the installer. Listing A.12

shows the verification process for distributions via the Google Play Store. If an

application has been installed via ADB, the returned value is null, distributions

via the Play Store return com.android.vending. The implementation of this

technique is quite similar to that of Certificate Checking.

10https://play.google.com/store/apps?hl=en

https://play.google.com/store/apps?hl=en
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4.2.2.3 Analysis

The impact on performance is negligible and is relatively easy to implement.

However just like Certificate Checking it is very easy to bypass as an attacker.

This technique relies on the fact that installing the APK through ADB pro-

duces null as the installer package name. However it is possible to specify

the installer package name when using ADB to install an application. This

is shown in Figure 4.5. Setting the installer package name to the same as

the Google Play Store negates this technique. Even though the technique can

be easily bypassed it will still be useful in protecting the application against

tampering (Section 3.3).

Figure 4.5: Specify installer package name with ADB.

4.2.3 Checksumming

4.2.3.1 Description

A checksum is a type of unique signature calculated over data, if the data

changes by one bit the signature produced will change. This is often used to

check the integrity of data to make sure the data has not been corrupted or

changed. There are many algorithms available to calculate these signatures

such as MD5, SHA-1, Adler-32, CRC32, etc.

Tamper detection can be added by calculating checksums over application

code [56]. Checksums can be calculated when the application is in a known

good state, the signature produced can be stored in the application. When

the application is running on the user device, the checksum can be calculated

and verified against the stored signature. If the signatures match then the
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code remains unchanged and therefore has not been tampered with. If the

signatures do not match, then it is very likely that an attacker has changed

the code or that the application has been corrupted.

Incorporating this into an application relies on a few different things:

• Developers need to be able to access the application code at runtime, in

order to perform a checksum of the code.

• At least one checksum signature need to be stored somewhere in the

application that is not being protected by a checksum.

4.2.3.2 Implementation

There is a lot more involved when using checksums as tamper detection com-

pared to Certificate Checking and Installer Verification. To begin with, it

needs to be determined what parts of the code should be protected. This is

very hard to do since all of the code in an Android application gets bundled

into a single classes.dex 11 file. It is quite difficult to understand how classes

are structured within a file which means it is quite difficult to target specific

pieces of code. Therefore the tamper detection will be applied over the entire

DEX file.

Storage of the checksum signature is quite an important aspect of this tech-

nique. A checksum cannot be calculated over the data storing the signature.

Figure 4.6 shows the problem. Storing the signature generated by the check-

sum back into the file causes the signature of the file to change, which creates

a loop. Therefore, the signature will be stored in a different file.

To create the checksum for the classes.dex file, a release build of the ap-

plication will need to be installed on the device. The code running on the

application needs to extract the classes.dex file from the .apk located in

11A Dalvik Executable (DEX) file contains all the code for an application
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Figure 4.6: Storing checksum signature problem.

/data/app/”package name”/, as shown in Listing A.13. The checksum sig-

nature can then be calculated using the code shown in Listing A.14. The

resulting signature is included in a file stored in the assets or resources folder

of the application. To check the integrity of the application, developers need

to compare the stored signature, with one calculated at runtime. If the signa-

tures match it indicates that application code has not been modified, else it is

highly likely that the application has been modified.

4.2.3.3 Analysis

Performance will be slightly affected through using this technique. As shown

in Figure 4.7, the bigger the size of the .dex file the longer it will take to

extract the file. The time it takes to perform the checksum function using

different algorithms is also shown, however the performance between the two

algorithms are very similar. In the scheme of things, performance is not such

a big issue as the check only has to run once when the application starts.

It is relatively easy to implement for a developer, but also easy to circumvent

for an attacker. The attacker has to modify the application, calculate the new

signature and replace the stored signature. Developers can encrypt the file
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Figure 4.7: Performance impact of tamper detection functions

in relation to the size of .dex file (device: Nexus 7 2012 WiFi tablet).

to make it more difficult to replace the old signature, however this will only

slow down attackers, as the decryption code will be located somewhere in the

application.

Developers can use multiple checksums over the same file to create more se-

cure protection [57]. However, this requires much more effort on the part of

the developer. The more effort a developer puts into this technique the more

difficult it will be for attackers to disable the checksums, however attacker that

are sufficient at tampering with applications will always be able to get past

this method. Using this technique in conjunction with other security mecha-

nisms will prove much more useful than spending a long time implementing

tamper detection using multiple checksums. This technique will guard against

application tampering, which is part of the exploitation phase of the attack

life cycle (Section 3.3).
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4.3 Root Detection

The first step an attacker often takes is to install a target application on a

rooted device, this makes it much easier for them to inspect any data saved

by the application. In order to protect user data it is beneficial that the

application does not work properly or does not run at all on a rooted device,

therefore Rooting Detection is needed.

4.3.1 Kernel modification

4.3.1.1 Description

If a device is rooted it is an indication that the device has been compromised.

The method mentioned here does not directly check if a device has been rooted,

but if it the kernel has been compromised. The kernel is signed with a key

belonging to android to verify the integrity of the kernel. The build tag asso-

ciated with the officially signed kernel is release-keys. If the kernel is modified

by a user it needs to be signed with their own key and the associated build tag

is test-keys. It is possible to to check for the kernel build tag which is outlined

below.

4.3.1.2 Implementation

Listing A.15 shows how to get the kernel build tag and compare them to the

expected values. If the kernel is compromised it is just as bad as having the

device rooted, therefore we indicate that rooting has occurred.
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4.3.1.3 Analysis

This method does not detect rooting, but does detect if the device has been

compromised. Both rooting and kernel modifications are an indication that

a device has been compromised, which is the reason for checking the kernel.

However, a rooted device can still have a normal kernel build, so this method

will not detect rooted devices. Even though rooting is not directly detected

this technique can be used to protect against the extraction phase of the attack

life cycle 3.1.

4.3.2 Su binary

4.3.2.1 Description

Rooted devices often have the su binary installed in the file system to give

applications the ability to get root permissions. If the binary is present on a

device, it is a good indication that a device is rooted. The binary itself can be

stored in many different locations on the file system, so many places have to

be checked.

Checking for the su binary. If the su binary is present on a device it is quite

likely that it is rooted. Listing A.16 shows how to check for the binary.

4.3.2.2 Implementation

Listing A.16 can be used to check for the su binary. The binary can be stored

anywhere on the device which makes it difficult to locate, but common areas

are checked along with a few other files that might be present on a rooted

device.
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4.3.2.3 Analysis

If the su binary is not in the locations checked it is highly likely that the

device is not rooted, but this might not always be the case. An attacker has

the ability to place the binary anywhere on the file system which means that

this method can easily be avoided by storing the binary in an unexpected

location. This technique is used to protect against the extraction phase of the

attack life cycle 3.1.

4.3.3 Command execution

4.3.3.1 Description

Root can be detected by trying to run a root level command on the device and

seeing if it is successful.

4.3.3.2 Implementation

Listing A.17 tries to execute a command using root privileges. The command

being executed is trying to list files in a protected section of the file system,

that normal applications should not have access to. On a non-rooted device,

an exception will be thrown with regards to denied permissions. If this occurs

it is assumed that the device is not rooted. If an exception is not thrown, we

assume that the device does have root privileges.

4.3.3.3 Analysis

This method of detecting root is quite good. It does not check for specific files

so it does not suffer from the same flaw as the previous method mentioned

and protects against the extraction phase of the attack life cycle 3.1. However,
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attackers can use tampering to remove the check from the application. It is also

possible to move the su binary to a place not specified in the path environment

variables, which means that the su command cannot be found and therefore

root detection can be bypassed.

4.3.4 Rooting Applications

4.3.4.1 Description

Root detection is implemented in this method by looking for applications that

are commonly installed on rooted devices. These applications are installed on

the device by the program used to gain root.

4.3.4.2 Implementation

Listing A.18 checks for the package names of applications associated with

rooting. If an application is detected, it is assumed that the device is rooted.

4.3.4.3 Analysis

Even if applications associated with rooting are installed on a device, it does

not necessarily mean that the device is rooted. This technique may suffer from

false positives, which could prevent legitimate users from using the application.

However, this technique can help protect against the extraction phase of the

attack life cycle 3.1.
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4.4 Debugging Detection

In the analysis phase of the attack life cycle (Section 3.2.2), dynamic analysis

is performed to gather information during application execution, attackers

often use debugging techniques to perform this. Debugging is a very powerful

method as it allows attackers to inspect specific values in the code that cannot

always be retrieved through static analysis. Therefore debugging detection can

be used as a countermeasure to detect dynamic analysis.

4.4.1 Execution Timing

4.4.1.1 Description

When an application is being debugged, it is often the case that certain parts of

the code are being executed at a much slower rate than normal. Attacker often

add breakpoints to the code in order to step through execution, which results

in slower execution. Functions can be put in place to measure the execution

time of sensitive parts of the code, allowing for the detection of debugging.

4.4.1.2 Implementation

Listing A.19 shows an example. The time before and after a sensitive function

is recorded. If the execution of this function takes a lot longer than it normally

would then it is possible that the code is being looked at by an attacker.

To implement this properly, timing tests would have to be performed by the

developer to get a good indication of the time it takes to execute the function

under normal circumstances.
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4.4.1.3 Analysis

The method itself is not very difficult to implement and gives no significant

performance overhead. The more checks that are implemented the more time

consuming for developers and the more it starts to affect performance. Also,

the more checks in the code, the more time consuming it will be for attackers

to remove them all.

Devices have different performance capabilities, which means it can become

difficult for developers to distinguish between applications that are just running

on a slow device and applications that are being debugged. This can lead to

false positives which is not ideal.

4.4.2 Debugger Connection

4.4.2.1 Description

When an application is being debugged, a connection with a debugging service

is created. Developers have the ability to query this connection to see if it

is available or has been established. This can be used to determine if an

application is currently being debugged.

4.4.2.2 Implementation

Listing A.20 is used to query the Debug class in order to determine if the

debugger has already been connected. If it is, then the application is being

debugged. Listing A.21 waits one second for a debugger to attach, if a debugger

attaches during that time then the application is being debugged. If a debugger

does not attach within a second then it is assumed the application is not being

debugged.
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4.4.2.3 Analysis

Both methods are quite reliable and easy to implement. The method that uses

the blocking operation takes little over a second to complete which is quite a

long time. It is not necessary to have both of these methods implemented,

therefore the non blocking method seems like the better option to use.

4.4.3 Debugging Flag

4.4.3.1 Description

To make an application debuggable, attackers often tamper with the manifest

and set the debuggable flag to true as shown in Section 3.2.2.1. Developers

have the ability to check manifest settings, which means it is possible to check

if the application debuggable flag has been changed.

4.4.3.2 Implementation

Listing A.22 shows how the value of the debugging flag can be determined. If

the flag is set to 0 (false) the application is not debuggable, if the flag is set to

something other than 0, such as 1 (true) it means that debugging is enabled.

4.4.3.3 Analysis

This method is quite reliable and is easy to implement, however it would be

quite easy for attacker to use tampering to circumvent this technique. If used

in conjunction with other security techniques it can prove very useful.
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4.5 Emulator Detection

4.5.1 Description

As mentioned in Section 3.1, emulators are used to extract data from applica-

tions. Detecting if an application is running inside an emulator is a valuable

tool to prevent sensitive data from being leaked.

There are many ways to detect if an emulator is running, the virtual envi-

ronment will have different hardware properties compared to real devices as

described in [58]. The performance capabilities of the emulator also differ

along with network configurations. The method listed below only looks at

the environment variables to detect emulation as it suffices to detect most

emulators.

4.5.2 Implementation

In [58] many environmental variables are listed along with values commonly

associated with emulators. This has been adapted into the code in Listing

A.23. There are many emulators, each with slight differences in environmental

variables. The detection method will therefore not not always work on all

emulators, but most standard emulators will be detected.

4.5.3 Analysis

There are many legitimate use cases for running an application on an emulator,

this means that it is not always ideal to use this method. However, it might be

a good idea to check for emulation just before handling sensitive information.

The detection itself is quite consistent but it might suffer from false positives

as it is not feasible to take into account all devices.
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4.6 Sanitization

4.6.1 Description

As applications execute, objects are constantly being created and destroyed.

These objects are loaded into memory when used and freed from memory when

they are not needed anymore. As shown in Section 3.2.2.2 memory dumps can

be taken, which results in application memory being saved. Objects that were

in memory at that time can now be analysed by attackers.

This cannot be fully avoided, if attackers take a memory dump at the right

time, sensitive information can be extracted. However, we can make it more

difficult for attackers to collect sensitive data from memory through the use of

sanitization. Sanitization is a process used to clean up objects, this can be done

by writing garbage data to the memory locations of the objects that we want to

sanitize. This makes sure that the data is erased properly and that developers

do not have to rely on garbage collection. Even if garbage collection occurs

the data can still hang around in memory until it is overwritten by another

process. Making sure that any sensitive information is sanitized properly will

make it much more difficult for attacker to get a hold of the data, as the time

window they have to capture the data decreases immensely.

4.6.2 Implementation

In practice sanitization is quite simple, an example is shown in Listing A.24.

Since Java uses pass-by-value for method arguments, some primitive values are

passed in as arrays with one element. Sanitization should be used on objects

containing sensitive data immediately after they are not needed anymore, this

ensures that the data contained in those objects is disposed of as quickly as

possible.
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4.6.3 Analysis

Sanitization should be used by all developers handling sensitive data. Perfor-

mance is not affected, it is easy to implement and protects against memory

inspection. Attackers that rely on memory dumps will have a much more

difficult time extracting sensitive data if sanitization is employed.



Chapter 5

Recommendations

In this chapter of the thesis recommendations are given as to which security

techniques should be used depending on the required security level of the

application.

Obfuscation.

All applications should use obfuscation. For low security applications it is

sufficient to use a free tool such as ProGuard to add lexical transformations

(Section 4.1.1.1) to the code. Applications that require moderate security

should add data transformations as well as lexical transformations. High se-

curity applications should use lexical, data (Section 4.1.1.3) and control (Sec-

tion 4.1.1.2) transformations as well as anti-decompilation (Section 4.1.1.4)

methods. For the high security applications it is recommended to use a paid

obfuscator such as DexGuard, which will apply all of the mentioned obfusca-

tion techniques. If it is not possible to use an obfuscator, use native code to

implement the security sensitive parts of the applications.

Tamper Detection.

Some form of tamper detection should be applied to applications. For low

security applications, it is sufficient to use certificate checking (Section 4.2.1)
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and installer verification (Section 4.2.2), both of these techniques are easy to

implement and quite effective at detecting tampering. Medium and high se-

curity applications should use the low security requirements with the addition

of the checksumming (Section 4.2.3) technique. As more checksums are added

into the application it becomes more difficult for attackers to bypass, therefore

the more effort developers put into this technique the better.

Root Detection.

Rooting detection should be used by all applications. Low, medium and

high security applications should use all of the mentioned rooting detection

techniques (Sections 4.3.1, 4.3.2, 4.3.3 and 4.3.4). The techniques are very

easy to implement and can just be copied from the provided implementation

examples. However, developers need to be aware that including root detection

can reduce the amount of users for their application, as there are legitimate

uses for device rooting. Therefore, this technique should only be included if

the target application needs to be protected.

Debugging Detection

Debugging detection should be used by all applications. For low security

applications it will be sufficient to check for the state of the debugging flag

(Section 4.4.3) in the manifest. Medium and high security applications should

additionally check for an active connection to a debugger (Section 4.4.2). The

execution timing debugging (Section 4.4.1) technique can additionally be used

in medium and high security applications but developers need to take care

when implementing it since false positives could occur, which could prevent

legitimate users from using the application.

Emulator Detection.

Emulator detection (Section 4.5) should be used at the discretion of the

developer, there are many legitimate scenarios in which an application is run
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on an emulator. Therefore it might not always be a good idea to use emulator

detection, it depends on the nature of the application. If the developer has

decided that the application should never be run on an emulator, then low,

medium and high security applications should use emulator detection. It is

very easy to implement, the supplied implementation examples can be used

for this.

Sanitization.

Sanitization (Section 4.6) should be used in applications that require medium

to high security. Low security applications do not need to include it, since the

attack it is used to counter, is relatively high level.

Conclusion.

When used individually, the techniques presented do not provide much pro-

tection and can be circumvented relatively easily by attackers. Using many

of these techniques in combination will boost the security of an application

and discourage attackers. Ideally developers should include all the techniques

mentioned into their applications, however this is not always possible. Table

5.1 shows which of the covered techniques should be used in relation to the

desired security level of applications.
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Security Techniques Security Level

Low Medium High

Obfuscation

Lexical Transformations Yes Yes Yes

Data Transformations Yes Yes

Control Transformations Yes

Anti-Decompilation Yes

Tamper Detection

Certificate Checking Yes Yes Yes

Installer Verification Yes Yes Yes

Checksumming Yes Yes

Root Detection

Kernel Modification Yes* Yes* Yes*

Su Binary Detection Yes* Yes* Yes*

Command Execution Yes* Yes* Yes*

Rooting Applications Yes* Yes* Yes*

Debugging Detection

Debugging Flag Yes Yes Yes

Debugger Connection Yes Yes

Execution Timing Yes* Yes*

Emulator Detection Yes* Yes* Yes*

Sanitization Yes Yes

Table 5.1: The recommended security techniques that should be

implemented based on the level of security required.

* Should only be included if the developer has determined that the techniques do not

negatively impact the application.



Chapter 6

Conclusion

6.1 Summary

Protecting sensitive application data involves a lot more than just cryptogra-

phy. All parts of the application that interact with the sensitive data need

to be protected. It is possible to protect application code and sensitive data

through special hardware on devices, however it is not feasible to use the hard-

ware in many circumstances. Therefore applications need to employ software

protection techniques such as obfuscation, tamper detection, root detection,

debug detection, emulator detection and sanitization. The challenge develop-

ers face is the apparent lack of resources to facilitate the implementation of

these techniques. The research provided explores the capabilities of attackers

and gives implementation details on how to guard against these attacks.

6.2 Contributions

The research presented in this thesis provides developers with a guide that

can be referred to when implementing application security. There are other

resources out there that aim to provide similar services, however information
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about security techniques and implementation details are scarce. This guide-

line gives developers without a security background a resource they can refer

to, in order to create more security aware applications on the Android plat-

form.

This research was done in part for the Gallagher Group1. The organization

has had an avid interest in mobile security, which was the inspiration behind

this research topic. The result of this research will help aid in the development

of secure mobile applications within the organization.

6.3 Future Work

The initial scope of the research intended to cover many different mobile plat-

forms, not just Android. As more research was done in the area, the more it

became apparent it was not feasible to cover more than one mobile platform.

Possible future work could include performing similar research but for other

mobile platforms such as iOS or Windows Mobile.

More research needs to be performed in the area of hardware based solu-

tions. Hardware based solutions seem to be the most secure way of storing

and processing application data, however few applications can make use of

this. Research in this area can include how developers can leverage the use of

these hardware modules to create more secure applications.

Another interesting area of research includes a more in depth look at tamper

detection. Providing reliable tamper detection capabilities to applications can

be of great use to developers wanting to create secure applications. However

this is difficult in software only implementations, therefore more research can

be performed in software based tamper detection.

1https://www.gallagher.com/

https://www.gallagher.com/


References

[1] IDC, “Smartphone OS market share.” http://www.idc.com/prodserv/

smartphone-os-market-share.jsp, 2016. [Accessed 2016-2-9].

[2] Android. http://developer.android.com/guide/topics/data/

data-storage.html, 2016. [Accessed 2016-2-9].

[3] S. N. I. Association, “Solutions guide for data-at-rest,” 2001.

[4] GlobalPlatform, “Globalplatform made simple guide: Secure ele-

ment.” https://www.globalplatform.org/mediaguideSE.asp. [Ac-

cessed 2016-2-10].

[5] Globalplatform, “Globalplatform made simple guide: Trusted exe-

cution environment (TEE) guide.” http://www.globalplatform.org/

mediaguidetee.asp. [Accessed 2016-2-10].

[6] N. Elenkov, “Using the SIM card as a secure element

in Android.” http://nelenkov.blogspot.co.nz/2013/09/

using-sim-card-as-secure-element.html, 2013. [Accessed 2016-

2-9].

[7] ISO/IEC, “ISO/IEC 7816-4 identification cards - integrated circuit cards

- part 4: Organization, security and commands for interchange,” 2013.

[8] Oracle, “Java card overview.” http://www.oracle.com/technetwork/

java/embedded/javacard/overview/index.html, 2016. [Accessed

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html
https://www.globalplatform.org/mediaguideSE.asp
http://www.globalplatform.org/mediaguidetee.asp
http://www.globalplatform.org/mediaguidetee.asp
http://nelenkov.blogspot.co.nz/2013/09/using-sim-card-as-secure-element.html
http://nelenkov.blogspot.co.nz/2013/09/using-sim-card-as-secure-element.html
http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html


64

2016-2-9].

[9] SDcard, “smartSD.” https://www.sdcard.org/developers/overview/

ASSD/smartsd/. [Accessed 2016-2-10].

[10] SIMalliance, “Open mobile API specification v3.0.” http:

//simalliance.org/wp-content/uploads/2015/03/SIMalliance_

OpenMobileAPI3_0_release1_FINAL3.pdf, 2014. [Accessed 2016-2-9].

[11] SIMalliance, “Simalliance — security / identity / mobility.” http://

simalliance.org/, 2016. [Accessed 2016-2-9].

[12] SEEK, “SEEK for Android.” http://seek-for-android.github.io/,

2016. [Accessed 2016-2-9].

[13] Infineon, “Infineons embedded secure element brings security to

NFC enabled smart phones.” http://www.infineon.com/cms/en/

about-infineon/press/press-releases/2011/INFCCS201105-048.

html, 2011. [Accessed 2016-3-15].

[14] N. Elenkov, “Accessing the embedded secure element in

Android 4.x.” http://nelenkov.blogspot.co.nz/2012/08/

accessing-embedded-secure-element-in.html, 2012. [Accessed

2016-2-9].

[15] Semble, “Semble.” http://www.semble.co.nz/, 2016. [Accessed 2016-2-

9].

[16] ARM, “Development of TEE and secure monitor code.” http:

//www.arm.com/products/processors/technologies/trustzone/

tee-smc.php. [Accessed 2016-2-10].

[17] Solacia, “SecuriTEE.” http://www.sola-cia.com/en/securiTee/

product.asp, 2016. [Accessed 2016-2-9].

https://www.sdcard.org/developers/overview/ASSD/smartsd/
https://www.sdcard.org/developers/overview/ASSD/smartsd/
http://simalliance.org/wp-content/uploads/2015/03/SIMalliance_OpenMobileAPI3_0_release1_FINAL3.pdf
http://simalliance.org/wp-content/uploads/2015/03/SIMalliance_OpenMobileAPI3_0_release1_FINAL3.pdf
http://simalliance.org/wp-content/uploads/2015/03/SIMalliance_OpenMobileAPI3_0_release1_FINAL3.pdf
http://simalliance.org/
http://simalliance.org/
http://seek-for-android.github.io/
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2011/INFCCS201105-048.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2011/INFCCS201105-048.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2011/INFCCS201105-048.html
http://nelenkov.blogspot.co.nz/2012/08/accessing-embedded-secure-element-in.html
http://nelenkov.blogspot.co.nz/2012/08/accessing-embedded-secure-element-in.html
http://www.semble.co.nz/
http://www.arm.com/products/processors/technologies/trustzone/tee-smc.php
http://www.arm.com/products/processors/technologies/trustzone/tee-smc.php
http://www.arm.com/products/processors/technologies/trustzone/tee-smc.php
http://www.sola-cia.com/en/securiTee/product.asp
http://www.sola-cia.com/en/securiTee/product.asp


65

[18] Trustonic, “Trusted Executed Environment (TEE) —

Trustonic.” https://www.trustonic.com/technology/

trusted-execution-environment, 2016. [Accessed 2016-2-9].

[19] Qualcomm, “Snapdragon mobile security for embedded devices, biometric

authentication and safeswitch technology.” https://www.qualcomm.com/

products/snapdragon/security, 2014. [Accessed 2016-2-9].

[20] A. C. Community, “Trustzone.” https://community.arm.com/thread/

7845, 2016. [Accessed 2016-2-9].

[21] GlobalPlatform, “The trusted execution environment:delivering

enhanced security at a lower cost to the mobile market.”

http://www.globalplatform.org/documents/whitepapers/

GlobalPlatform_TEE_Whitepaper_2015.pdf, 2015. [Accessed 2016-2-

10].

[22] G. Association, “Embedded UICC protection profile.” https://www.

commoncriteriaportal.org/files/ppfiles/pp0089b_pdf.pdf, 2015.

[Accessed 2016-2-9].

[23] GlobalPlatform, “TEE protection profile.” https://www.

commoncriteriaportal.org/files/ppfiles/anssi-profil_PP-2014_

01.pdf, 2014. [Accessed 2016-2-9].

[24] Android, “Android keystore system.” http://developer.android.com/

training/articles/keystore.html#ExtractionPrevention, 2016.

[Accessed 2016-2-9].

[25] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud

computing: Distributed internet computing for IT and scientific research,”

Internet Computing, IEEE, vol. 13, no. 5, pp. 10–13, 2009.

https://www.trustonic.com/technology/trusted-execution-environment
https://www.trustonic.com/technology/trusted-execution-environment
https://www.qualcomm.com/products/snapdragon/security
https://www.qualcomm.com/products/snapdragon/security
https://community.arm.com/thread/7845
https://community.arm.com/thread/7845
http://www.globalplatform.org/documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf
http://www.globalplatform.org/documents/whitepapers/GlobalPlatform_TEE_Whitepaper_2015.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0089b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0089b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/anssi-profil_PP-2014_01.pdf
https://www.commoncriteriaportal.org/files/ppfiles/anssi-profil_PP-2014_01.pdf
https://www.commoncriteriaportal.org/files/ppfiles/anssi-profil_PP-2014_01.pdf
http://developer.android.com/training/articles/keystore.html#ExtractionPrevention
http://developer.android.com/training/articles/keystore.html#ExtractionPrevention


66

[26] Android, “Security — Android open source project.” https://source.

android.com/devices/tech/security/, 2016. [Accessed 2016-2-9].

[27] Android, “Working with system permissions — Android develop-

ers.” http://developer.android.com/training/permissions/index.

html, 2016. [Accessed 2016-2-9].

[28] Android, “Application fundamentals — Android developers.” http:

//developer.android.com/guide/components/fundamentals.html,

2016. [Accessed 2016-2-9].

[29] Android, “Android keystore system — Android developers.” http:

//developer.android.com/training/articles/keystore.html, 2016.

[Accessed 2016-2-9].

[30] N. Elenkov, “Keystore redesign in Android m.” http://nelenkov.

blogspot.co.nz/2015/06/keystore-redesign-in-android-m.html,

2015. [Accessed 2016-2-9].

[31] N. Elenkov, “Credential storage enhancements in An-

droid 4.3.” http://nelenkov.blogspot.co.nz/2013/08/

credential-storage-enhancements-android-43.html, 2013. [Ac-

cessed 2016-2-9].

[32] OWASP, “Top ten mobile risks.” https://www.owasp.org/index.

php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_

Risks. [Accessed 2016-2-9].

[33] OWASP, “OWASP mobile top ten 2015 data synthesis and key trends.”

https://www.owasp.org/images/9/9e/2015_Data_Synthesis_

Results.pptx, 2015. [Accessed 2016-2-9].

[34] OWASP, “Technical risks of reverse engineering and unauthorized code

modification.” https://www.owasp.org/index.php/Technical_Risks_

https://source.android.com/devices/tech/security/
https://source.android.com/devices/tech/security/
http://developer.android.com/training/permissions/index.html
http://developer.android.com/training/permissions/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/training/articles/keystore.html
http://developer.android.com/training/articles/keystore.html
http://nelenkov.blogspot.co.nz/2015/06/keystore-redesign-in-android-m.html
http://nelenkov.blogspot.co.nz/2015/06/keystore-redesign-in-android-m.html
http://nelenkov.blogspot.co.nz/2013/08/credential-storage-enhancements-android-43.html
http://nelenkov.blogspot.co.nz/2013/08/credential-storage-enhancements-android-43.html
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/images/9/9e/2015_Data_Synthesis_Results.pptx
https://www.owasp.org/images/9/9e/2015_Data_Synthesis_Results.pptx
https://www.owasp.org/index.php/Technical_Risks_of_Reverse_Engineering_and_Unauthorized_Code_Modification


67

of_Reverse_Engineering_and_Unauthorized_Code_Modification,

2014. [Accessed 2016-2-9].

[35] OWASP, “Architectural principles that prevent code modifica-

tion or reverse engineering.” https://www.owasp.org/index.php/

Architectural_Principles_That_Prevent_Code_Modification_or_

Reverse_Engineering, 2014. [Accessed 2016-2-9].

[36] M. Souppaya and K. Scarfone, “Guidelines for managing the security

of mobile devices in the enterprise,” NIST special publication, vol. 800,

p. 124, 2013.

[37] S. Quirolgico, J. Voas, T. Karygiannis, C. Michael, and K. Scarfone,

“Vetting the security of mobile applications,” NIST special publication,

vol. 800, p. 163, 2015.

[38] XDA, “Bootloader.” http://forum.xda-developers.com/wiki/

Bootloader. [Accessed 2016-2-9].

[39] pxb1988, “dex2jar.” https://github.com/pxb1988/dex2jar. [Accessed

2016-2-14].

[40] J. Decompiler, “JD-GUI.” http://jd.benow.ca/. [Accessed 2016-2-14].

[41] E. Gruber, “Attacking Android applications

with debuggers.” https://blog.netspi.com/

attacking-android-applications-with-debuggers/, 2015. [Ac-

cessed 2016-2-16].

[42] P. Teoh, “How to dump memory of any running processes in An-

droid (rooted).” https://tthtlc.wordpress.com/2011/12/10/

how-to-dump-memory-of-any-running-processes-in-android-2/,

2011. [Accessed 2016-2-16].

https://www.owasp.org/index.php/Technical_Risks_of_Reverse_Engineering_and_Unauthorized_Code_Modification
https://www.owasp.org/index.php/Technical_Risks_of_Reverse_Engineering_and_Unauthorized_Code_Modification
https://www.owasp.org/index.php/Architectural_Principles_That_Prevent_Code_Modification_or_Reverse_Engineering
https://www.owasp.org/index.php/Architectural_Principles_That_Prevent_Code_Modification_or_Reverse_Engineering
https://www.owasp.org/index.php/Architectural_Principles_That_Prevent_Code_Modification_or_Reverse_Engineering
http://forum.xda-developers.com/wiki/Bootloader
http://forum.xda-developers.com/wiki/Bootloader
https://github.com/pxb1988/dex2jar
http://jd.benow.ca/
https://blog.netspi.com/attacking-android-applications-with-debuggers/
https://blog.netspi.com/attacking-android-applications-with-debuggers/
https://tthtlc.wordpress.com/2011/12/10/how-to-dump-memory-of-any-running-processes-in-android-2/
https://tthtlc.wordpress.com/2011/12/10/how-to-dump-memory-of-any-running-processes-in-android-2/


68

[43] D. Lodge, “How to extract sensitive plaintext data from An-

droid memory.” https://www.pentestpartners.com/blog/

how-to-extract-sensitive-plaintext-data-from-android-memory/,

2015. [Accessed 2016-2-16].

[44] N. A. Naeem, M. Batchelder, and L. Hendren, “Metrics for measuring the

effectiveness of decompilers and obfuscators,” in Program Comprehension,

2007. ICPC’07. 15th IEEE International Conference on, pp. 253–258,

IEEE, 2007.

[45] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating

transformations,” tech. rep., Department of Computer Science, The Uni-

versity of Auckland, New Zealand, 1997.

[46] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and

obfuscation-tools for software protection,” Software Engineering, IEEE

Transactions on, vol. 28, no. 8, pp. 735–746, 2002.

[47] M. Batchelder and L. Hendren, “Obfuscating java: the most pain for the

least gain,” in Compiler Construction, pp. 96–110, Springer, 2007.

[48] C. Linn and S. Debray, “Obfuscation of executable code to improve resis-

tance to static disassembly,” in Proceedings of the 10th ACM conference

on Computer and communications security, pp. 290–299, ACM, 2003.

[49] H. Lai, “A comparative survey of java obfuscators available on the inter-

net,” Project Report, University of Auckland, 2001.

[50] D. Leskov, “Protect your java code through obfuscators and beyond.”

http://www.excelsior-usa.com/articles/java-obfuscators.html.

[Accessed 2016-2-17].

[51] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-

silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM

https://www.pentestpartners.com/blog/how-to-extract-sensitive-plaintext-data-from-android-memory/
https://www.pentestpartners.com/blog/how-to-extract-sensitive-plaintext-data-from-android-memory/
http://www.excelsior-usa.com/articles/java-obfuscators.html


69

SIGPLAN-SIGACT symposium on Principles of programming languages,

pp. 184–196, ACM, 1998.

[52] Android, “ProGuard.” http://developer.android.com/tools/help/

proguard.html. [Accessed 2016-2-18].

[53] Oracle, “jarsigner - JAR signing and verification tool.” https:

//docs.oracle.com/javase/6/docs/technotes/tools/windows/

jarsigner.html. [Accessed 2016-2-19].

[54] N. Elenkov, “Android code signing.” http://nelenkov.blogspot.co.

nz/2013/04/android-code-signing.html, 2013. [Accessed 2016-2-19].

[55] S. Alexander-Bown, “Android security: Adding tampering de-

tection to your app.” https://www.airpair.com/android/posts/

adding-tampering-detection-to-your-android-app. [Accessed 2016-

2-19].

[56] T. Johns, “Securing Android LVL applications.”

http://android-developers.blogspot.co.nz/2010/09/

securing-android-lvl-applications.html, 2010. [Accessed 2016-2-

19].

[57] H. Chang and M. J. Atallah, “Protecting software code by guards,” in

Security and privacy in digital rights management, pp. 160–175, Springer,

2001.

[58] T. Vidas and N. Christin, “Evading Android runtime analysis via sandbox

detection,” in Proceedings of the 9th ACM symposium on Information,

computer and communications security, pp. 447–458, ACM, 2014.

http://developer.android.com/tools/help/proguard.html
http://developer.android.com/tools/help/proguard.html
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigner.html
http://nelenkov.blogspot.co.nz/2013/04/android-code-signing.html
http://nelenkov.blogspot.co.nz/2013/04/android-code-signing.html
https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app
https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app
http://android-developers.blogspot.co.nz/2010/09/securing-android-lvl-applications.html
http://android-developers.blogspot.co.nz/2010/09/securing-android-lvl-applications.html


Appendix A

Code Listings

Listing A.1: Class with hardcoded values

1 public class Secret {

2 String password = "onetwothree";

3 String username = "Bob";

4 public Secret(){

5 authenticateUser(username, password);

6 }

7 private Boolean authenticateUser(String username, String password){

8 Boolean authenticated = false;

9 //Perform authentication using the username and password

10 return authenticated;

11 }

12 }
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Listing A.2: Class without a hardcoded value

1 public class Secret {

2 String password;

3 String username = "Bob";

4 public Secret(){

5 password = retrieveSecretString();

6 authenticateUser(username, password);

7 }

8 private String retrieveSecretString(){

9 return new BigInteger(130, new SecureRandom()).toString(32);

10 }

11 private Boolean authenticateUser(String username, String password){

12 Boolean authenticated = false;

13 //Perform authentication using the username and password

14 return authenticated;

15 }

16 }
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Listing A.3: Java code used for memory dump

1 public class Secret

2 {

3 public Secret()

4 {

5 authenticateUser();

6 }

7 private void authenticateUser()

8 {

9 Thread thread = new Thread(new Runnable() {

10 @Override

11 public void run() {

12 try {

13 //Generate a unique byte signature that we can find

14 byte[] dataToRetrieve = doubleData(new byte[]{0x22, 0x22,

0x22, 0x22, 0x33, 0x33, 0x33, 0x33});

15 //Block thread execution for easy memory dump capture

16 Thread.sleep(10000);

17 }catch (InterruptedException ex){

18 ex.printStackTrace();

19 }

20 }

21 });

22 thread.start();

23 }

24 private byte[] doubleData(byte[] data)

25 {

26 byte[] dataDouble = new byte[data.length];

27 for(int i = 0; i < data.length; i++)

28 dataDouble[i] = (byte)(data[i] + data[i]);

29 return dataDouble;

30 }

31 }
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Listing A.4: C code used for memory dump

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/ptrace.h>

4 #include <limits.h>

5 #define MAX_FILENAME_CHARS 255

6

7 int main(int argc, char **argv) {

8 if (argc == 2) {

9 int pid = atoi(argv[1]);

10 int c;

11 int counter;

12 char filename[MAX_FILENAME_CHARS];

13 char line[MAX_FILENAME_CHARS];

14 char mem_start[9];

15 char mem_start_string[10] = {"0x"};

16 char mem_end[9];

17 FILE *file_pointer;

18 unsigned long mem_start_long;

19 unsigned long mem_end_long;

20 unsigned long mem_length_long;

21 unsigned long starting_address;

22 int mem_length_int;

23 char *ptr;

24

25 memset(&filename[0], 0, sizeof(filename));

26 memset(&line[0], 0, sizeof(line));

27 strcat(filename, "/proc/");

28 strcat(filename, argv[1]);

29 strcat(filename, "/maps\0");

30 file_pointer = fopen(filename, "r");

31 if(file_pointer == NULL){

32 printf("Could not open the file:’%s’\n", filename);

33 return 0;

34 }

35 //Use ptrace to attach to the process
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36 ptrace(PTRACE_ATTACH, pid, NULL, NULL);

37 wait(NULL);

38 counter = 0;

39 do{

40 c = fgetc(file_pointer);

41 if(feof(file_pointer)){

42 break;

43 }

44 line[counter] = c;

45 if(counter <= 17){

46 if(counter < 8){

47 mem_start[counter] = c;

48 }

49 if(counter == 8){

50 mem_start[counter] = ’\0’;

51 }

52 if(counter > 8 && counter < 17){

53 mem_end[counter - 9] = c;

54 }

55 if(counter == 17){

56 mem_end[counter - 9] = ’\0’;

57 }

58 }

59 counter++;

60 if(c == ’\n’){

61 counter = 0;

62 if(!(strstr(line, "[stack]") != NULL)){

63 strcat(mem_start_string, mem_start);

64 mem_start_long = strtoul(mem_start, &ptr, 16);

65 mem_end_long = strtoul(mem_end, &ptr, 16);

66 mem_length_long = mem_end_long - mem_start_long;

67 sscanf(mem_start_string, "0x%x", (unsigned int *)&

starting_address);

68 mem_length_long = mem_length_long/4;

69 //Print out the memory

70 dump_memory(pid, starting_address, mem_length_long);
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71 mem_start_string[2] = ’\0’;

72 }

73 memset(&line[0], 0, sizeof(line));

74 }

75 }while(1);

76 fclose(file_pointer);

77 //Detach from the process

78 ptrace(PTRACE_CONT, pid, NULL, NULL);

79 ptrace(PTRACE_DETACH, pid, NULL, NULL);

80 }

81 else {

82 printf("%s <pid> \n", argv[0]);

83 exit(0);

84 }

85 }

86 dump_memory(int pid, unsigned int start_address, unsigned long total_words)

{

87 unsigned int address;

88 unsigned int number = 0;

89 for (address=start_address;address<start_address+total_words*4;

address+=4) {

90 if (address%16==0) printf("\n");

91 number=ptrace(PTRACE_PEEKDATA, pid, (void *)address, (void *)

number);

92 printf("%x ", number);

93 }

94 if (total_words==0) {

95 number=ptrace(PTRACE_PEEKDATA, pid, (void *)start_address, (

void *)number);

96 printf("Peek at 0x%x: %x\n", (unsigned int)start_address,

number);

97 }

98 }
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Listing A.5: Java code tamper demonstration

1 import android.util.Log;

2 public class Secret {

3 private static String TAG="SecretClass";

4 public Secret(){

5 if(!securityCheck()){

6 //Security check failed

7 Log.i(TAG, "securityCheck failed!");

8 return;

9 }

10 //Security check passed, continue normal execution

11 Log.i(TAG, "securityCheck passed!");

12 }

13 private Boolean securityCheck(){

14 Log.i(TAG, "In securityCheck");

15 //Perform a security check

16 //True is returned if the application is secure

17 //False is returned if the application is not secure

18 return false;

19 }

20 }
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Listing A.6: Smali code tamper demonstration

1 .class public Lcom/example/shoe/attacktampering/Secret;

2 .super Ljava/lang/Object;

3 .source "Secret.java"

4 # static fields

5 .field private static TAG:Ljava/lang/String;

6 # direct methods

7 .method static constructor <clinit>()V

8 .locals 1

9 .prologue

10 .line 7

11 const-string v0, "SecretClass"

12 sput-object v0, Lcom/example/shoe/attacktampering/Secret;->TAG:Ljava/

lang/String;

13 return-void

14 .end method

15

16 .method public constructor <init>()V

17 .locals 2

18 .prologue

19 .line 9

20 invoke-direct {p0}, Ljava/lang/Object;-><init>()V

21 .line 10

22 invoke-direct {p0}, Lcom/example/shoe/attacktampering/Secret;->

securityCheck()Ljava/lang/Boolean;

23 move-result-object v0

24 invoke-virtual {v0}, Ljava/lang/Boolean;->booleanValue()Z

25 move-result v0

26 if-nez v0, :cond_0

27 .line 12

28 sget-object v0, Lcom/example/shoe/attacktampering/Secret;->TAG:Ljava/

lang/String;

29 const-string v1, "securityCheck failed!"

30 invoke-static {v0, v1}, Landroid/util/Log;->i(Ljava/lang/String;Ljava/

lang/String;)I

31 .line 18
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32 :goto_0

33 return-void

34 .line 17

35 :cond_0

36 sget-object v0, Lcom/example/shoe/attacktampering/Secret;->TAG:Ljava/

lang/String;

37 const-string v1, "securityCheck passed!"

38 invoke-static {v0, v1}, Landroid/util/Log;->i(Ljava/lang/String;Ljava/

lang/String;)I

39 goto :goto_0

40 .end method

41

42 .method private securityCheck()Ljava/lang/Boolean;

43 .locals 2

44 .prologue

45 .line 21

46 sget-object v0, Lcom/example/shoe/attacktampering/Secret;->TAG:Ljava/

lang/String;

47 const-string v1, "In securityCheck"

48 invoke-static {v0, v1}, Landroid/util/Log;->i(Ljava/lang/String;Ljava/

lang/String;)I

49 .line 25

50 const/4 v0, 0x0

51 invoke-static {v0}, Ljava/lang/Boolean;->valueOf(Z)Ljava/lang/Boolean;

52 move-result-object v0

53 return-object v0

54 .end method
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Listing A.7: Opaque predicates

1 public class Secret {

2 Random random = new Random();

3 public Secret(){

4 doNothing(1);

5 }

6 private int doNothing(int number){

7 int x = random.nextInt(185/34);

8 int y = random.nextInt(x + 1);

9 //Opaque predicate that always return false

10 if(!(Math.pow(x - y, 2) >= 0)){

11 number = 20;

12 }

13 //Opaque predicate that always return true

14 if(!(((54*y) - 3) == Math.pow(x, 2))){

15 return number;

16 }else{

17 number = 31;

18 }

19 return number;

20 }

21 }



80

Listing A.8: String encoding

1 public class Secret {

2 String string = "secretPassword123";

3 String stringFromEncodedString = "sfeuiyVh{|" + Character.toString((char

)0x81) + "z~q?AC";

4 byte[] stringFromBytes = new byte[]{

5 (byte)0x73, (byte)0x65, (byte)0x63, (byte)0x72,

6 (byte)0x65, (byte)0x74, (byte)0x50, (byte)0x61,

7 (byte)0x73, (byte)0x73, (byte)0x77, (byte)0x6f,

8 (byte)0x72, (byte)0x64, (byte)0x31, (byte)0x32,

9 (byte)0x33};

10 public Secret(){

11 Log.i("Secret:", string);

12 Log.i("Secret:", stringDecode(stringFromEncodedString));

13 Log.i("Secret:", byteToString(stringFromBytes));

14 }

15 private String stringEncode(String word){

16 char[] characters = word.toCharArray();

17 for(int i = 0; i < characters.length; i++)

18 characters[i] = (char) ((int) characters[i] + i);

19 return new String(characters);

20 }

21 private String stringDecode(String word){

22 char[] characters = word.toCharArray();

23 for(int i = 0; i < characters.length; i++)

24 characters[i] = (char)((int)characters[i] - i);

25 return new String(characters);

26 }

27 private String byteToString(byte[] word){

28 return new String(word);

29 }

30 }
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Listing A.9: Retrieving public key

1 Signature[] signatures = context.getPackageManager().getPackageInfo(context

.getPackageName(), PackageManager.GET_SIGNATURES).signatures;

2 for(int i = 0; i < signatures.length; i++){

3 Log.i("Secret", "Certificate:" + signatures[i].toCharsString());

4 }

Listing A.10: Verifying public key

1 private Boolean verifyCertificate(String current, String stored){

2 if(current.compareTo(stored) == 0)

3 return true;

4 else

5 return false;

6 }

Listing A.11: Retrieving installer name

1 private String retrieveInstallerName(){

2 return context.getPackageManager().getInstallerPackageName(context.

getPackageName());

3 }

Listing A.12: Verifying installer name

1 private Boolean verifyInstaller(String installer){

2 String playStoreName="com.android.vending";

3 if(installer == null)

4 return false;

5 if(installer.compareTo(playStoreName) == 0)

6 return true;

7 return false;

8 }
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Listing A.13: Extracting .dex file from APK

1 private void extractDexFileIntoDirectory(File zipFile, File targetDirectory

){

2 ZipInputStream zipInputStream;

3 FileOutputStream fileOutputStream;

4 try {

5 zipInputStream = new ZipInputStream(new BufferedInputStream(new

FileInputStream(zipFile)));

6 ZipEntry zipEntry;

7 int count;

8 byte[] buffer = new byte[8192];

9 while ((zipEntry = zipInputStream.getNextEntry()) != null) {

10 if (zipEntry.getName().compareTo("classes.dex") == 0) {

11 File file = new File(targetDirectory, zipEntry.getName());

12 fileOutputStream = new FileOutputStream(file);

13 while ((count = zipInputStream.read(buffer)) != -1)

14 fileOutputStream.write(buffer, 0, count);

15 fileOutputStream.close();

16 }

17 }

18 zipInputStream.close();

19 }catch (FileNotFoundException ex){

20 ex.printStackTrace();

21 }catch (IOException ex){

22 ex.printStackTrace();

23 }

24 }
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Listing A.14: Calculating checksum

1 private byte[] calculateChecksum(String filePath, String algorithm){

2 int byteCounter;

3 byte[] buffer = new byte[8192];

4 try{

5 InputStream inputStream = new FileInputStream(filePath);

6 //Algorithms: "MD5", "SHA-1", "SHA-256", etc.

7 MessageDigest messageDigest = MessageDigest.getInstance(algorithm);

8 while((byteCounter = inputStream.read(buffer)) != -1){

9 messageDigest.update(buffer, 0 , byteCounter);

10 }

11 inputStream.close();

12 return messageDigest.digest();

13 }catch (Exception ex) {

14 //Implement proper exception handling

15 ex.printStackTrace();

16 }

17 return null;

18 }
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Listing A.15: Root detection via Kernel modification

1 private boolean rootDetectionKernel() {

2 String buildTag = android.os.Build.TAGS;

3 if("release-keys".equals(buildTag))

4 return false;

5 if("test-keys".equals(buildTag))

6 return true;

7 return false;

8 }

Listing A.16: Root detection via su binary

1 private boolean rootDetectionSuBinary() {

2 String[] paths = {

3 "/sbin/su",

4 "/system/su",

5 "/system/bin/su",

6 "/system/xbin/su",

7 "/system/sd/xbin/su",

8 "/system/bin/failsafe/su",

9 "/data/local/su",

10 "/data/local/bin/su",

11 "/data/local/xbin/su",

12 "/system/app/SuperSU",

13 "/system/app/Superuser.apk"};

14 for (String path : paths) {

15 if (new File(path).exists()) return true;

16 }

17 return false;

18 }
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Listing A.17: Root detection via su execution

1 private boolean rootDetectionSuExecution() {

2 Process process = null;

3 try {

4 process = Runtime.getRuntime().exec(new String[] { "su", "-c", "ls /

data/app/" });

5 return true;

6 } catch (Exception ex) {

7 //Expect to get here if device is not rooted

8 return false;

9 } finally {

10 if (process != null)

11 process.destroy();

12 }

13 }
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Listing A.18: Root detection via applications

1 private boolean rootDetectionSUApplications(PackageManager packageManager){

2 String[] applications = {

3 "com.noshufou.android.su",

4 "com.thirdparty.superuser",

5 "eu.chainfire.superuser",

6 "eu.chainfire.supersu",

7 "com.koushikdutta.superuser",

8 "com.zachspong.temprootremovejb",

9 "com.ramdroid.appquarantine",

10 };

11 for(String app : applications){

12 try{

13 packageManager.getPackageInfo(app, PackageManager.GET_ACTIVITIES)

;

14 return true;

15 }catch (Exception ex){

16 //Do nothing if we cannot find the package

17 }

18 }

19 return false;

20 }
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Listing A.19: Debug detection via execution time

1 private Boolean debugDetectionExecution(){

2 long start = Debug.threadCpuTimeNanos();

3 //Function that handles sensitive information

4 decrypt();

5 long stop = Debug.threadCpuTimeNanos();

6 if(stop - start < 10000000)

7 return false;

8 else

9 return true;

10 }
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Listing A.20: Debug detection via debugger connection

1 private Boolean debugDetectionDebuggerConnected(){

2 if(Debug.isDebuggerConnected())

3 return true;

4 else

5 return false;

6 }

Listing A.21: Debug detection via debugger attach

1 private Boolean debugDetectionDebuggerAttach(){

2 DebugDetectionThread thread = new DebugDetectionThread();

3 thread.start();

4 long start = Calendar.getInstance().getTimeInMillis() / 1000;

5 long end;

6 do {

7 end = Calendar.getInstance().getTimeInMillis() / 1000;

8 long duration = end - start;

9 if(duration > 1)

10 return false;

11 }while (!thread.done);

12 return true;

13 }

14 private class DebugDetectionThread extends Thread{

15 public Boolean done = false;

16 @Override

17 public void run() {

18 Debug.waitForDebugger();

19 done = true;

20 }

21 }
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Listing A.22: Debug detection via debugging flag

1 private Boolean debugDetectionDebugFlag(Context context){

2 if(0 == (context.getApplicationInfo().flags & ApplicationInfo.

FLAG_DEBUGGABLE))

3 return false;

4 else

5 return true;

6 }
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Listing A.23: Emulator detection

1 private Boolean detectEmulation(Activity context){

2 TelephonyManager telephonyManager = (TelephonyManager) context.

getSystemService(Context.TELEPHONY_SERVICE);

3 if("x86".equals(Build.CPU_ABI))

4 return true;

5 if("unknown".equals(Build.CPU_ABI) || "".equals(Build.CPU_ABI))

6 return true;

7 if("unknown".equals(Build.BOARD) || "Android".equals(Build.BOARD))

8 return true;

9 if("Android".equals(Build.BRAND) || "generic".equals(Build.BRAND))

10 return true;

11 if("vbox86p".equals(Build.DEVICE) || Build.DEVICE.contains("generic"))

12 return true;

13 if("vbox86".equals(Build.HARDWARE) || "goldfish".equals(Build.HARDWARE))

14 return true;

15 if("Genymotion".equals(Build.MANUFACTURER) || "unknown".equals(Build.

MANUFACTURER))

16 return true;

17 if("test-keys".equals(Build.TAGS))

18 return true;

19 if("000000000000000".equals(telephonyManager.getDeviceId()))

20 return true;

21 if("15555215554".equals(telephonyManager.getLine1Number()))

22 return true;

23 if("us".equals(telephonyManager.getNetworkCountryIso()))

24 return true;

25 if("3".equals(Integer.toString(telephonyManager.getNetworkType())))

26 return true;

27 if("310260000000000".equals(telephonyManager.getSubscriberId()))

28 return true;

29 if("+15552175049".equals(telephonyManager.getVoiceMailNumber()))

30 return true;

31 return false;

32 }
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Listing A.24: Sanatization

1 private void sanatizeBytes(byte[] data){

2 for(int i = 0; i < data.length; i++)

3 data[i] = 0x00;

4 }

5 private void sanatizeString(String[] data){

6 char[] characters = data[0].toCharArray();

7 for(int i = 0; i < characters.length; i++)

8 characters[i] = 0x00;

9 data[0] = String.valueOf(characters);

10 }

11 private void sanatizeInteger(int[] data){

12 data[0] = 0;

13 }
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