Dietary Enrichment of Fish-Oils Attenuates Diet-Induced Obesity and Hepatic Steatosis

DAKOTA R. KAMM¹, MEGAN L. SCHALLER¹, MATTHEW P. HARRIS¹, KENNETH A. WITT², KARIN E. SANDOVAL², JOSHUA S. WOOTEN¹

1. Department of Applied Health, 2. Department of Pharmaceutical Sciences; Southern Illinois University Edwardsville; Edwardsville, IL

Category: Undergraduate

Advisor / Mentor: Wooten, Joshua (jwooten@siue.edu)

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of excess hepatic fat, exceeding 5% of total liver mass. NAFLD is present in one-third of Americans and up to 90% in those who are obese. NAFLD develops largely in part to consumption of a Western diet, defined as 40-60% kcal from saturated fats; however, a diet rich in fish-oils may prevent and reverse the development of steatosis. **PURPOSE**: To determine the effects of fish oils on the development of NAFLD. METHODS: C57BL/6 (n=91) mice were randomly assigned to four dietary groups for 32-weeks: 10% lard (LFL), 10% fish-oil (LFFO), 41% lard (HFL), or 41% fish-oil (HFFO) diet. Significant differences (*p*<0.05) between groups were identified by a one-way ANOVA. RESULTS: When compared to HFFO, mice in the HFL group saw an greater (Table 1) body mass and net glucose AUC by 13% (p<0.001) and 24% (p=0.08), respectively. No significant difference was observed between LFL and LFFO for body mass, net glucose AUC or HOMA-IR. This is interesting given no significant difference was observed between groups for the mean weekly caloric intake. HFFO mice showed an 86% lower (p < 0.001) total hepatic lipid and 4.8-fold lower (p < 0.001) hepatic triglyceride concentration when compared to HFL. HFFO mice also saw a 32% lower (p<0.001) total hepatic cholesterol when compared to HFL. There was no significant difference in total hepatic lipids between LFL and LFFO. CONCLUSION: Despite for no significant difference in caloric intake between high-fat diet groups, consumption of a high-fat diet rich in fish-oils prevented dietary induced obesity, insulin resistance and hepatic steatosis. These results suggest that a diet rich in fish-oils have preventative effects on the development of NAFLD.

Table 1. Physiological Characteristics Following 52-week Diet Intervention				
Variables	LFL (n=24)	LFFO (n=22)	HFL (n=21)	HFFO (n=24)
Body mass (g)	35.6 ± 0.7	35.3 ± 0.7	$42.9 \pm 1.4^{a,b}$	$37.5 \pm 0.6^{\circ}$
Kcal/mouse/wk	70.0 ± 5.3	70.8 ± 5.9	76.1 ± 6.3	78.2 ± 9.6
HOMA-IR	5.2 ± 0.5	5.0 ± 0.7	$23.8 \pm 3.9 \text{a,b}$	5.5 ± 0.9 °
Net Glucose AUC	4827.4 ± 445.0	4923.1 ± 353.7	7807.3 ± 732.5 ^{a,b}	5975.0 ± 552.6
Liver Total Lipid (%)	7.9 ± 0.6	6.9 ± 0.3	13.4 ± 0.9 a,b	$7.2 \pm 0.3^{\circ}$
Liver Tg (µg/mg)	16.3 ± 1.9	10.0 ± 1.0	$34.3 \pm 4.0^{a,b}$	$5.9 \pm 0.9^{a,c}$
Liver Chol (µg/mg)	3.4 ± 0.2	3.4 ± 0.2	$5.4 \pm 0.3^{a,b}$	3.7 ± 0.2 °

Table 1. Physiological Characteristics Following 32-Week Diet Intervention

Data are mean ± SD. ^aSignificantly (p<0.05) different than LFL, ^b significantly (p<0.05) different than LFFO, ^c significantly (p<0.05) different than HFL.

www.tacsm.org