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ABSTRACT 

 

 

 

 

This 2 x 2 quasi-experimental study examined the effects of pedagogical method (i.e., 

direct instruction vs. 5E inquiry) and intentional community-building (i.e., absence or 

presence) on undergraduate student (N = 103) motivation, engagement, and achievement 

in mathematics. Conditions were randomly assigned to one of four different College 

Algebra classes with a one-time occurrence and taught by a trained expert teacher. 

Findings indicated that intentional community-building – regardless of pedagogical 

method – had the strongest effects on students’ motivation, engagement, and 

achievement. Although no differing pedagogical effects were discovered (most likely due 

to the one-time implementation of the lesson formats), the findings provide evidence for 

the necessity of community-building efforts -- an aspect of education that is often 

overlooked in the undergraduate STEM classroom.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 As humans, we are forced to decide which achievements possess enough 

importance to be pursued. Often, the goals we select and our subsequent persistence in 

striving to achieve them are a direct result of the interactions between our inner 

motivations and the environment around us (Deci & Ryan, 2000). According to self-

determination theory, the extent to which one finds that his environment allows him to 

act autonomously, build competence, and relate to others will determine the extent to 

which he internalizes the beliefs and practices of those around him, or becomes 

intrinsically motivated (Deci & Ryan, 2000). The extent and type of this motivation are 

then evidenced by an individual’s decisions about whether or not to engage with his 

environment (Skinner, Kindermann, Connell, & Wellborn, 2009).  

 Nowhere are a person’s inner motivations and engagement patterns more apparent 

than in the classroom. At the undergraduate level, where students are choosing a career 

path, these factors play an even more important role. However, it is in this realm of 

learning that a vast number of science, technology, engineering, and mathematics 

(STEM) students seem to find a lack of motivating and engaging environments. In fact, 

nearly 25% of undergraduates pursue a degree in a STEM field at the onset of higher 
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education, but only half of these individuals will complete the major (Business-Higher 

Education Forum; BHEF, 2011b). The decision to change majors does not only impact 

the person who makes it. Recent reports by the President’s Council of Advisors on 

Science and Technology (PCAST, 2012) indicate “a need for approximately 1 million 

more STEM professionals than the U.S will produce at the current rate over the next 

decade if the country is to retain its historical preeminence in science and technology” (p. 

i). If this problem is to be addressed at both the personal and national level, the factors 

underlying undergraduates’ decisions not to pursue or complete STEM degrees must be 

examined. Unfortunately, less than half of high school seniors are considered to be math 

proficient. Of this group, 14% express a potential interest in pursuing a STEM career 

(BHEF, 2011a). Among those proficient undergraduates who enroll in mathematics 

courses, deficits in motivation and engagement can contribute to a loss of interest in 

STEM (PCAST, 2012). Specific documented complaints include an unwelcoming 

faculty, beginning-level courses that are uninspiring (PCAST, 2012), lack of faculty 

concern, the promotion of rivalry in the classroom, and a lack of emphasis on true 

understanding (Kardash & Wallace, 2001). To address these concerns, instructors must 

examine an educational aspect that they can control: the classroom environment.  

According to the self-system model of motivational development (SSMMD), it is 

social interactions in an environment that initiate the processes that lead to motivation, 

engagement, and subsequent performance (Connell, 1990). In a classroom setting, the 

quality of these interactions are determined by the type of community that is present in 

the classroom. Accordingly, positive experiences of community in school settings have 
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been associated with higher levels of student motivation and engagement (Goodenow, 

1993; Osterman, 2000). Teachers determine the structure of the community as they make 

pedagogical and relational decisions. In the mathematics classroom, direct instruction 

(DI), a lecture-based model of pedagogy, is commonly utilized (Walczyk & Ramsey, 

2003). The stages in the DI method are based upon the premise that individual students 

learn best when they are first given explicit content knowledge by the teacher (Kozioff, 

LaNunziata, Cowardin, & Bessellieu ,2001). However, in the last few decades, research 

has shown other, more student-centered models of instruction – like inquiry -- to be more 

effective in promoting student learning (Clarke, Breed, & Fraser, 2004; Kwon, 

Rasmussen, & Allen, 2005; Rasmussen, Kwon, Allen, Marrongelle, & Burtch, 2006) and 

achievement (Applebee, Langer, Nystrand, & Gamoran, 2003; White, Shimoda, & 

Frederiksen, 1999).  Although changes in secondary institutions have occurred slowly, 

recent education reforms have shifted towards inquiry based-instruction in mathematics 

(National Council for Teachers of Mathematics; NCTM, 1991) and its constructivist, 

largely student-centered approach to teaching and learning (“Old Standards v. Common 

Core,” n.d.; Walczyk & Ramsey, 2003). A specific inquiry-based pedagogy that has been 

validated in the STEM fields is the 5E model. The 5E model consists of five stages that 

are sequenced so that students work together to formulate unique solutions to problems 

while the teacher provides necessary support (Bybee et al., 2006). Because the DI and 5E 

models are so different in nature, it is reasonable to conclude that the types of community 

they facilitate will be just as different. 

Regardless of pedagogical preference, a teacher has influence over the 
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relationships that are built in her classroom. In a community of learners, two relationships 

are critical to success: the teacher-student relationship and the student-peer relationship. 

Teacher rapport serves as “a contextual variable that sets the stage for effective teaching” 

(Buskist & Saville, 2001, p. 12). As a result, studies show that undergraduate students 

place a higher emphasis on teacher rapport than do their professors (Buskist, Sikorski, 

Buckley, & Saville, 2002), and relatively few students report feelings of rapport with 

more than 50% of their professors (Benson, Cohen, & Buskist, 2005). Because the 

college mathematics classroom is predominantly teacher-centered, it is safe to say that 

students’ opportunities to build relationships with their peers are limited as well. 

Therefore, the goal of this study was to determine the effects of the absence or presence 

of intentional community-building in conjunction with two different models of 

instruction (DI vs. 5E) in the undergraduate mathematics classroom using a quasi-

experimental design. Two questions were addressed in particular: 

1. Is there a difference in student motivation, engagement, and achievement depending 

on the pedagogy (DI vs 5E) experienced in the college mathematics classroom? 

2. Is there a difference in student motivation, engagement, and achievement in the two 

pedagogical types (DI vs 5E) when an educator intentionally facilitates a community 

environment? 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

Self-System Model of Motivational Development  

 A theoretical framework of particular interest to this study is the self-system 

model of motivational development (SSMMD). The SSMMD framework examines the 

interactions between a person’s internal motivational needs and significant others in the 

social environment. As a result of these exchanges, individuals form self-system 

processes, or judgments about oneself in relation to social interactions (Connell, 1990). In 

a classroom setting, it is the teacher’s responsibility to create an environment that meets 

students’ motivational needs and allows them to form positive self-system processes. 

According to self-determination theory, which is embedded within the SSMMD 

framework, each individual possesses three inherent needs that he seeks for his 

environment to meet: competence, autonomy, and relatedness (Deci & Ryan, 2000). 

Engagement then comes as a result of the satisfaction of these needs and disaffection as 

the result of the frustration of these needs (Connell, 1990). It is engaged students that 

reach the levels of learning and achievement that are quintessential to the success of our 

nation. In order to reach these levels of performance, it is important for educators to 

understand students’ dynamic needs and the subsequent impact that they have on 
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engagement. 

 Motivation and Self-Determination Theory. Motivation is conceptualized by 

self-determination theory (SDT) as the result of interactions between an individual’s 

three inherent needs (i.e., autonomy, competence, and relatedness) and his environment 

(Deci & Ryan, 2000). Autonomy is defined as the need to engage in behaviors that are 

“volitional and reflectively self-endorsed” (Niemiec & Ryan, 2009, p. 135), competence 

reflects the need to demonstrate adequacy in a social or physical context, (Niemiec, 

Lynch, Vansteenkiste, Bernstein, Deci, & Ryan, 2006), and relatedness is the need to 

belong (Deci & Ryan, 2000). As students experience the satisfaction of these needs, they 

are able to achieve a state of intrinsic motivation (Deci & Ryan, 2000), or the drive to 

participate in activities because of an inherent like for the activity (Ryan & Deci, 2000). 

In the classroom, motivation is valued not only for its own sake but for the fact that it can 

lead students to initiate their engagement in the classroom (Appleton, Christenson, & 

Furlong, 2008; Connell & Wellborn, 1991), which is the next step in the SSMMD 

framework (Connell, 1990). 

Engagement. Engagement has been broadly conceptualized in a number of ways, 

leading to a disagreement among scholars about its specific definition (Appleton, 

Christenson, & Furlong, 2008; Fredricks et al., 2004; Jimerson, Campos, & Grief, 2003). 

Germane to this study and the SSMMD framework, engagement is conceptualized as a 

meta-construct composed of three sub-components: behavior, cognition, and emotion 

(Fredericks, Blumenfeld, & Paris, 2004; Fredricks & McColsky, 2012). Behavioral 

engagement represents active participation (Fredericks, Blumenfeld, & Paris, 2004), 
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taking into account both the quality and duration of a student’s efforts (Skinner et al., 

2009). Cognitive engagement denotes one’s investment in his own learning process -- 

i.e., the degree to which one actively processes information during the lesson (Kong, 

Wong, & Lam, 2003). Emotional engagement is defined as the extent to which an 

individual likes or enjoys an activity or environment (Fredericks, Blumenfeld, & Paris, 

2004). Together in the classroom setting, these three sub-components of engagement are 

measurable indicators of students’ underlying motivations (Skinner, Kindermann, 

Connell, & Wellborn, 2009).  

In the last few decades, researchers have begun to focus on the concept of 

engagement as a way of improving achievement and keeping students in school 

(Appleton et al., 2008). Engagement as an educational variable is valued for two primary 

reasons: its outcomes and malleability. In respect to academic outcomes, engagement has 

been positively correlated with achievement (Connell, Spencer, & Aber, 1994) and 

negatively correlated with high school dropout rates (Cairns & Cairns, 1994).  In his 

review of the National Survey of Student Engagement, an instrument designed to 

measure engagement at the postsecondary level, Kuh (2004) states that, “The voluminous 

research on college student development shows that the time and energy students devote 

to educationally purposeful activities is the single best predictor of their learning and 

personal development” (p. 1). In other words, engagement plays a significant role in a 

college student’s educational achievement. Fortunately, a currently disengaged 

mathematics student is not a lost cause. Research indicates that a person’s engagement is 

relative to the environment in which he is participating (Fredricks, Blumenfeld, & Paris, 
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2004; Russell, Ainsley, & Frydenberg, 2005). Therefore, it is a malleable construct which 

educators have the opportunity to impact by changing elements of the classroom 

environment – i.e., classroom community (Fredricks et al., 2004; Newmann, Wehlage, & 

Lamborn, 1992).   

 

Classroom Community 

 In the classroom, community is a construct which describes both the academic 

and social interactions among people. (Boaler, 1999; Rovai, Wighting, & Lucking, 2004). 

Although all mathematics classrooms can be classified as a community in some sense, 

some environments emphasize mathematics as a practice of inquiry, while others 

emphasize the field as a practice of repetition (Goos, 2004). Social interactions in the 

classroom will differ according to the emphasis of the environment (Boaler, 1999; Goos, 

2004). Therefore, some classrooms can be described as having a strong sense of 

community, and others as weak. McMillan (1996) identifies four social elements that 

compose a strong sense of community: an atmosphere of belonging, a trustworthy 

hierarchical structure, positive interdependence, and the bond that comes from group 

experiences. When such a community is formed in the classroom, many positive 

outcomes can be expected, including increased engagement and academic achievement 

(McKinney, McKinney, Franiuk, & Schweitzer, 2006; Patrick, Ryan, & Kaplan, 2007). 

Because the teacher serves as the trustworthy authority in the classroom community, she 

assumes the responsibility of facilitating a community-driven environment by supplying 

structure, autonomy support, and involvement for the learner (Kiefer, Alley, & 
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Ellerbrock, 2015). Structure is established as the teacher sets expectations and provides 

the feedback that determines socially appropriate behavior (Ryan & Patrick, 2001). The 

type of structure established will then determine if the environment is autonomy 

supportive, or places emphasis on students’ “communication of choice, room for 

initiative, recognition of feelings, and a sense that activity is connected to personal goals 

and values” (Connell, 1990, p. 66). The interactions occurring in the classroom will 

reflect the structure and autonomy support of the environment. Involvement, which 

occurs as others in the classroom show expressed interest in or pleasurably interact with 

an individual (Connell, 1990), is experienced by students during these interactions.  

A teacher’s beliefs about the facilitation of a community environment are often 

reflected in the model of pedagogy she chooses. Instructivist pedagogies such as the 

direct instruction (DI) model flow from the assumption that it is the teacher’s 

responsibility to supply the context by which knowledge will be understood (Kozioff et 

al., 2001). This assumption formulates mathematics as a practice of memorization, and as 

a result, focuses more on the individual’s ability to replicate what he has seen, rather than 

on his ability to contribute to the overall learning process. Therefore, the DI model would 

appear to facilitate a weak sense of community. In contrast, constructivist theory that 

drives pedagogies such as the 5E model of inquiry dictates that knowledge is constructed 

through both individual critical thinking and social interactions (Powell & Kalina, 2009). 

These underlying principles treat mathematics as a practice of inquiry, which requires 

students to share their ideas with one another and with the teacher. Subsequently, 

community-building is viewed as a necessary component of the problem-solving process. 
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Therefore, the 5E model would seem to be conducive to a strong sense of community. 

However, regardless of the model of pedagogy she uses, the teacher can choose to 

personally relate to students and to encourage them to relate with one another. This 

intentional approach to community-building has the potential to compensate for the 

negative impacts or to compound the positive impacts of a particular model of pedagogy. 

The question then becomes: Is classroom community best facilitated by particular models 

of pedagogy, teacher intentionality, or some combination of the two? 

Direct Instruction. In the college mathematics classroom, direct instruction (DI), 

a lecture-based model of pedagogy, is commonly utilized (Walczyk & Ramsey, 2003). 

The model teaches concepts “explicitly and systematically” (Kozioff, et al., 2001, p. 56) 

through five basic stages: launch, worked example, guided practice, independent practice, 

and evaluation. While some studies include additional stages or use different terminology 

to refer to them, these basic components are seen throughout the DI literature (Kozioff, et 

al., 2001; Moore, 2007; Watkins & Slocum, 2004). The teacher begins by explicitly 

stating objectives (Kozioff et al., 2001; Watkins & Slocum, 2004). She then models a 

mathematical concept, guides students through a subsequent example as they work the 

problem simultaneously, and gives students the opportunity to work similar problems on 

their own. Finally, student progress is evaluated (Kozioff et al., 2001). In other words, 

instruction centers mainly on the teacher’s ability to communicate specific mathematical 

steps, procedures, and rules that combine to form fundamental ideas and students’ 

subsequent ability to perform them accurately (Kozioff et al., 2001).  

Overall, the DI model seems to exhibit a controlling environment. Its explicit 
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structure means that students are aware of exactly what they need to do throughout the 

lesson. However, there is then no need for an emphasis on autonomy support. An 

autonomy-supportive environment is one in which the teacher provides the support 

necessary for success while encouraging students’ unique problem-solving approaches 

and mastery of content (Reeve, 2006). In contrast, the DI model emphasizes that 

“strategies be taught to allow students to solve the greatest number of problems with the 

fewest possible number of steps” (Przychodzin, Marchand-Martella, Martella, & Azim, 

2004, p. 58) using scripted content delivery (Przychodzin et al., 2004; Watkins & 

Slocum, 2004). While no studies appear to have specifically measured the levels of 

autonomy-support facilitated by the DI model, the characteristics of an autonomy-

supportive environment that have been researched do not seem to appear naturally in the 

DI classroom. By this explanation, the DI model would seem to thwart, rather than to 

support, students’ need for autonomy. 

In keeping with the lack of emphasis on autonomy, as learners rehearse 

mathematical processes during guided and independent practice, feedback regarding 

progress and the correction of mistakes flows almost entirely from teacher to student 

(Kozioff et al., 2001). Schunk and Zimmerman (1997) state that imitative competence is 

obtained when a student can generally model the same process he has just seen 

demonstrated before him. Therefore, if the type of evaluation used to assess students’ 

competence is comparable to the types of worked examples during the lesson, students 

receive accurate feedback of their capabilities in the DI classroom, and thus, have their 

need for competence met. However, since independent and peer problem-solving 
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strategies are not emphasized in the DI model, its ability to increase competence and 

achievement in mathematical understanding and thinking skills is questioned. 

Ultimately, the DI model’s perspective on competence-building as a one-way 

flow of information negates an emphasis on relatedness in the community. Because 

accuracy and efficiency are emphasized over student choice and creative problem 

solving, there is no need for the teacher to express an interest in a student’s individual 

ideas, or to encourage this same interest among peers. Therefore, in most college 

mathematics classrooms where the DI model is utilized, it is hypothesized that little 

importance is placed on cooperative learning, and subsequently, on the concept of 

positive interdependence. In a community, the currency an individual utilizes to get what 

he needs is self-disclosure (McMillan, 1996). Through discussion, learners discover both 

what they have in common (the beginning of the bonding process) and where they differ 

in academics and personal experiences (McMillan, 1996). The swapping of ideas and 

explanations with the educator and other peers allows students to see their own academic 

and social needs met in exchange for meeting someone else’s needs. However, as 

knowledge is disseminated by the teacher through scripted content, this trade does not 

occur in the DI environment. Therefore, it is difficult for students to develop “alliances 

with trusted others” (Furrer & Skinner, 2003, p. 148) in the DI environment. 

Accordingly, it would appear that feelings of relatedness are not facilitated. While 

relatedness is not measured as an outcome of this study, it is an important component of 

the classroom community manipulation. 

Together, this research suggests that the DI model as an approach to  
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mathematical instruction, while very focused, seems to create an environment which 

places little emphasis on meeting students’ motivational needs or inspiring critical 

mathematical thinking. When the classroom environment does not meet students’ needs 

of competence, relatedness, and autonomy, they become disengaged (Skinner, et al., 

2009). Since engagement is a predictor of achievement according to the SSMMD 

(Connell & Wellborn, 1991), it would seem plausible that students in a DI classroom 

would report low levels of engagement and would do poorly on assessments that measure 

mathematical thinking. In a longitudinal ethnographic study that followed students (N = 

310) from year 9 (age 13) to year 11 (age 16), Boaler (1999) found that students (n = 

200) subjected to classroom conditions typical of the DI model scored lower on two 

different mathematical project-based assessments than did students (n = 110) subjected to 

an inquiry environment. In addition, when given the General Certificate of Secondary 

Education- the national test taken by all graduating high school students in the UK- , 

these same students seemed to struggle with problems involving conceptual 

understanding, answering two times more procedural questions than conceptual ones. 

Therefore, the DI model appears to come up short in its facilitation of student motivation, 

engagement, and achievement. Accordingly, recent reforms in STEM education have 

shifted towards inquiry pedagogies.  

5E Model of Inquiry. In the realm of STEM education, emphasis has recently 

been placed on the constructivist ideologies demonstrated in inquiry-based instruction 

(NCTM, 1991) – a stark contrast to the DI model’s instructivist foundations. 

“Constructivists shift the focus from knowledge as a product to knowing as a process” 
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(Jones & Brader-Araje, 2002, p. 3). A specific model of inquiry-based pedagogy which 

has been validated in the STEM fields is the 5E model (Bybee et al., 2006). The 5E 

model consists of five stages: Engagement, Exploration, Explanation, Elaboration, and 

Evaluation. Instruction begins by sparking student interest and attention while connecting 

the lesson topic to students’ previous experiences and knowledge. It then provides 

students with activities and contexts to actively explore and discover overriding themes 

of the lesson content through a variety of means. Together, the learners and educators 

discuss students’ discoveries and make connections to the body of mathematical concepts 

they have previously examined. Finally, students engage with additional challenges that 

help them to transfer and apply the newly learned content to different or novel contexts, 

thereby deepening their conceptual understanding and application of skills. Evaluation 

occurs throughout the lesson and allows for the educator to determine whether or not 

students have met objectives and for learners to evaluate their own understanding (Bybee 

et al., 2006). Just as the stages of the DI model inherently impact the classroom 

environment, the 5E model brings its own unique contributions to the learning 

atmosphere when viewed from the SSMMD perspective.  

 Overall, the 5E model appears to inherently facilitate a strong sense of community 

in the classroom. Its structure dictates that students are expected to critically and 

collaboratively solve mathematical problems. In such an environment, autonomy support 

is necessary to help students experience success as they connect their personal 

explorations to the desired mathematical content. During this process, the teacher allows 

students to work in their own way, provides hands-on opportunities, facilitates student 
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conversations, and actively listens to learners. All of these actions have been identified as 

autonomy-supportive (Deci, Spiegal, Ryan, Koestner, & Kauffman, 1982; Flink, 

Boggiano, & Barrett, 1990; Reeve & Jang, 2006; Reeve, Bolt, & Cai, 1999). While no 

studies have quantitatively measured the levels of perceived student autonomy support 

associated with a specific model of inquiry instruction, the autonomy-supportive 

characteristics of the 5E model would appear to support learners’ need for autonomy. 

 As learners participate in an autonomy-supportive environment, they are able to 

develop competence for mathematical thinking skills. Halpern and Hakel (2003) state that 

“What learners do determines what and how much is learned, how well it will be 

remembered, and the conditions under which it will be recalled” (p. 41). In the 5E model, 

in-depth understanding is emphasized as students explore, explain, and apply their 

knowledge to new contexts (Bybee et al., 2006). Therefore, the competence students 

develop involves more than the ability to imitate what they have seen. Critical 

mathematical thinking abilities are improved; however, inquiry models of instruction do 

not produce results overnight. Many students have become accustomed to lecture-based 

classrooms in the realm of college mathematics (Walczyk & Ramsey, 2003). Throughout 

the literature on inquiry-based instruction, numerous authors note that students are likely 

to experience some form of the grieving process when faced with a major change in their 

typical learning environment (Felder & Brent, 1996; Spector, Burkett, & Leard, 2007; 

Woods, 1994). In his discussion on problem-based learning (PBL) environments, Woods 

(1994) suggests eight progressive stages of the grieving process that students may 

experience: shock, denial, strong emotion, resistance and withdrawal, surrender and 
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acceptance, struggle and exploration, sense of direction, and integration and success. 

Therefore, it is expected that the full positive effects of the 5E model would take some 

time to surface. Over time, when achievement measures assess true understanding, it is 

believed that students would demonstrate increased performance in the 5E classroom 

(DeHaan, 2005; Rasmussen & Kwon, 2007; Songer, Lee, & McDonald, 2003). 

 As students participate in the 5E environment, cooperative learning is a key tool 

in the process of developing critical thinking skills. In a study of middle school students 

(n = 91), Johnson, Johnson, Buckman, and Richards (1985) found that as students’ 

perceptions of interdependence with their peers increased, so did their perceptions that 

they were supported academically and socially. As students participate in the social 

construction of knowledge, their most important tool is language (Powell & Kalina, 

2009). In addition to the dialogue that occurs during group work, the 5E model allows 

students to share their ideas. At the elementary level, the facilitation of cooperation 

among students and the extraction of student ideas have been associated with classroom 

community (Solomon, Battistich, Kim, & Watson, 1997). Community research 

(McMillan, 1996) dictates that group cohesion is greater when authorities and “citizens” 

influence one another simultaneously. In the 5E model of inquiry, the teacher guides 

students toward a common endpoint, but it is student responses that determine the flow of 

conversation. In other words, students and teachers influence one another throughout the 

course of the lesson. Based upon the elements of cooperative learning and group cohesion 

that are inherent in the 5E model, it would appear that such an environment is conducive 

to feelings of relatedness and community. 
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 Taken together, research on inquiry models of pedagogy seems to indicate that the 

5E model inherently facilitates a strong sense of community and therefore nurtures 

student motivation and mathematical thinking. As student motivation is the driving factor 

behind the choice to engage in the SSMMD framework (Connell, 1990), it is predicted 

that students in the 5E environment would report higher levels of engagement than 

individuals participating in a lecture-based classroom. In the long run, engagement and 

the development of critical thinking skills are projected to be manifested in terms of 

improved student achievement.  It remains to be seen whether these results would be 

even more pronounced if the 5E model’s inherent community-building were to be 

combined with a teacher’s intentional choices to build community. 

 

 Current State of Research   

While a significant amount of research has been done on mathematics education 

as a whole, the majority of reports and initiatives focus on impacting the quality of 

mathematics at the K-12 level (Mathematics Learning Study Committee, 2001; National 

Mathematics Advisory Panel, 2008; NCTM, 2000). Indeed, the ideal educational 

experience for any student would consist of a firm, engaging mathematics background 

extending throughout his elementary, secondary, and post-secondary career. However, 

the reality of early educational experiences for many current and future college students 

is reflected in the depressing statistics of high school math proficiency (less than 50% of 

seniors; BHEF, 2011a) and STEM interest among those seniors who are proficient (39%; 

BHEF, 2012). Based on these statistics, a fair amount of research is needed to target 
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mathematics students at the college level if America is to see an increase in STEM 

graduates.  

 While the concepts of community and relationships in the mathematics classroom 

have been examined (Boaler, 1999; Goos, 2004; Ryan & Patrick, 2001), the focus of 

these studies is not on the impacts of a specific model of pedagogy on student outcomes. 

If the DI model is to be present in a positive classroom environment, it appears that some 

other environmental factor must also be present to facilitate students’ motivation, 

engagement, and critical thinking. On the other hand, although the 5E model appears to 

establish its own classroom community and subsequently produces positive results, the 

concept of intentional community-building is not moot. Looking at the resources teachers 

have at their disposal, it would appear that intentional community-building could be the 

most effective way to both address the concerns associated with the DI model and to 

compound the positive effects of the 5E model. To confirm these hypotheses, research is 

needed to examine the impacts of both common models of pedagogy and teacher 

intentionality in the college mathematics classroom. The purpose of the current study, 

then, was to utilize a 2 x 2 quasi-experimental design to examine the effects of intentional 

community-building efforts and pedagogical style within college mathematics on 

students’ perceived autonomy-support, competence, engagement (i.e., behavioral, 

cognitive, and emotional), and achievement.
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CHAPTER 3 

 

 

METHODS 

 

Participants and Experimental Design 

For this study, participants were 103 students enrolled in a college algebra course 

at a large comprehensive university in the Mid-South of the United States. Participants 

were 59.2% female, with a mean age of 19.94 years. 70.9% self-identified as White, 

7.8% as African American, 3.9% as Hispanic, 1.9% as Asian, 8.7% as mixed, and 2.9% 

as other. Students’ intended majors were: 33.2% STEM, 55.3% Non-STEM, and 11.1% 

either undecided or exploratory; 69.9% of the students’ majors required the college 

algebra course.   

The study utilized a 2 x 2 quasi-experimental design where pedagogical style (DI 

or 5E model) and intentionality of the teacher to build a classroom community (absent or 

present) were manipulated. Four sections of college algebra taught by the same instructor 

were used in this study. Each class was randomly assigned to one of the four 

experimental conditions (i.e., DI+, DI-, 5E+, 5E-) identified in Table 3.1 below.  
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Table 3.1 

Experimental Conditions 

 - + 

5E 
Scripted inquiry lesson 

on repeatable 

permutations 

Scripted inquiry lesson 

on repeatable 

permutations 

 

Intentional actions 

designed to enhance 

sense of community 

DI 
Scripted direct instruction 

lesson on repeatable 

permutations 

Scripted direct instruction 

lesson on repeatable 

permutations 

 

Intentional actions 

designed to enhance 

sense of community 

 

 

Experimental Conditions 

 Before the study took place, two lessons exploring the concept of repeatable 

permutations were carefully developed. One lesson followed the DI model and the other 

followed the 5E model. Both lessons covered the same content and were designed to 

meet content standard CCSS.MATH.CONTENT.HSS.CP.B.9 (+), “Use permutations and 

combinations to compute probabilities of compound events and solve problems.” In each 

lesson, students were expected to meet the same two objectives: 

1. Compute the number of permutations in a situation, given a limited set of options 

using both logic and a mathematical relationship. (applying) 

http://www.corestandards.org/Math/Content/HSS/CP/B/9/
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2. Explain in detail the steps taken in calculating a repeatable permutation and the 

logic behind them (understanding) 

To ensure consistency of lesson delivery across conditions, a carefully trained and 

qualified master teacher with 20 plus years of teaching experience taught each of the 

lessons with fidelity to each condition. A basic outline of the five stages of each lesson 

plan is given in Table 3.2 below. 

 

Table 3.2 

Comparison of 5E and Direct Instruction Lesson Plans 

 5E Model of Inquiry Direct Instruction 

Stage 1 Engagement 

- Video clip of improvisation 

to engage students 

- Discussion of improvisation 

- Short music lesson to 

familiarize students with 

context of future problems 

- Introduce musical 

permutations problem 

Launch 

- Objectives stated 

- Definition (including 

formula) and examples of 

permutations given 

 

 

Stage 2 Exploration 

- Introduce same basic 

musical problem on a 

smaller scale 

- In pairs, students list musical 

permutations 

- Class list of permutations 

created 

 

 

Worked Example 

- Introduce musical 

permutations problem 

- Short music lesson to 

familiarize students with 

context of future problems 

- Introduce same basic musical 

problem on a smaller scale 

- Students list permutations 

individually 

- Teacher explains logic and 

solves both simple and 

original complex problem 

Stage 3 Explanation Guided Practice 

- Students solve password 

problem individually 
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- Students and teacher observe 

list to answer simpler 

problem 

- Teacher and students discuss 

patterns in the permutations 

- Teacher introduces and 

generalizes formula 

- In pairs, students use general 

formula to solve original 

problem 

- Teacher explanation 

 

Stage 4 Elaboration 

- In pairs, students solve ice 

cream problem using 

m&m’s and check using 

formula to build 

understanding 

- Students explain how they 

reached answer 

- Non-repeatable permutation 

example with ice cream 

- Small group and whole class 

discussion: Could you use 

the formula nr in this 

situation?  

Independent Practice 

- Students solve ice cream 

problems individually using 

logic and formula to build 

understanding 

- Teacher explanation  

Stage 5 Evaluation 

- Summative assessment: 

students identify, solve, and 

justify repeatable 

permutations 

- Student self-evaluation 

Evaluation 

- Summative assessment: 

students identify, solve, and 

justify repeatable 

permutations 

- Student self-evaluation 

 

In the two community-building conditions, the master teacher exercised both scripted 

verbal interactions and natural, non-verbal interactions with students. A 5-minute ice-

breaker activity was created and utilized at the beginning of the lesson to intentionally 

build rapport between teacher and student, and among students. In the activity, pairs of 

students drew at random from a deck of “getting-to-know-you” cards a question that both 

individuals had to answer (e.g., What is your favorite ice cream flavor and why?). Each 
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person in the pair took turns drawing a card and asking/answering the question on the 

card. At the end of the activity, the instructor called on pairs of students to share some of 

their newly found commonalities. In this community-building condition, the instructor 

was able to use participants’ names throughout the lesson because each student also had a 

pre-made name tent in front of them during the lesson. In addition, the instructor 

intentionally displayed vocal enthusiasm about the topic, smiled at students frequently, 

and conversed with them as they worked independently. All manipulations chosen for 

this study are validated ways of building a relationship with students found in the teacher 

immediacy literature (Gorham, 1988; Richmond, Gorham, & McCroskey, 1987) or 

components of community building (McMillan, 1996). In the two non-community-

building conditions, no ice-breaker activity or name tents were used. The teacher 

followed the instructional model that was carefully scripted in the lesson plans, only 

engaging in non-scripted interactions that were necessary to uphold the integrity of the 

classroom experience. 

 

Instrumentation 

 To confirm that experimental conditions contained students with similar beliefs in 

their abilities prior to the experimental manipulations, students’ self-efficacy for real-

world mathematics was measured using the Tasks subscale of the Mathematics Self-

Efficacy Scale- Revised (MSES-R; Betz & Hackett, 1983). The scale consisted of 18 

items (α=0.91) which were each assessed on a 6-point Likert scale, ranging from 1 (Not 

confident at all) to 6 (Completely confident). Questions targeted learners’ beliefs about 
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their mathematical abilities in the real world, such as “How much confidence do you have 

that you are able to determine the amount of sales tax on a clothing purchase?”. For 

additional reliability and validity information on the MSES-R Tasks subscale, please 

refer to Kranzler and Pajares (1997). 

In addition, students’ basic computational and algebraic abilities before the lesson 

were measured and statistically compared by three questions taken from the MSES-R 

(Betz & Hackett, 1983) Math Problems subscale. Specifically, each participant completed 

the following items: (1) In a certain triangle, the shortest side is 6 inches. The longest 

side is twice as long as the shortest side, and the third side is 3.4 inches shorter than the 

longest side. What is the sum of the three sides in inches?, (2) If y = 9 + x/5, find x when 

y = 10, and (3) 3 4/5 – 1/2 = ______     Please write your answer as a mixed number. A 

content rubric evaluating work shown and correctness was created to evaluate each 

participant’s responses (see Appendix A). Performance scores were computed as a 

percentage of correctness out of a total score of 14.  

Student achievement for the lesson content (i.e., repeatable permutations) was 

measured using a researcher-designed assessment (see Appendix B) that aligned with the 

learning objectives and specific content covered in the lessons. Learners were asked to 

solve problems involving repeatable permutations using both logic and the nr formula, 

which was taught in the lessons. In addition, students were required to assess three real-

world scenarios and determine whether or not the scenarios constituted a repeatable 

permutation, explain how they made this decision (the understanding component), and 

find a solution to the problem if they determined it to be a repeatable permutation. Again, 
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a researcher-created rubric (see Appendix C) assessed each item for work shown, 

explanation, and correctness. Achievement scores were computed as a percentage out of a 

total score of 17. 

Perceived competence was measured using a modified version of the Perceived 

Competence subscale of the Intrinsic Motivation Inventory (IMI; Ryan, 1982), which 

included 6 items (α=0.90) —e.g., “I think I am pretty good at the math activity we did 

today.” Participants were asked to respond using a 7-point Likert scale, ranging from 1 

(Strongly Disagree) to 7 (Strongly Agree). Perceived autonomy support was evaluated 

using a modified version of the Learning Climate Questionnaire (LCQ; Williams & Deci, 

1996). The LCQ contained six items (α=0.90) – e.g., “I feel that today’s math instructor 

provided me choices and options,” and participants rated each item using a 7-point Likert 

scale, ranging from 1 (Strongly Disagree) to 7 (Strongly Agree). All statements in both 

measures were slightly altered to refer to the “math activity” of the one-day experimental 

lesson, rather than to a general activity over a longer period of time.  

The final set of scales measured engagement along three dimensions: emotional, 

cognitive, and behavioral. Emotional engagement was measured using a modified version 

of the Interest/Enjoyment Subscale of the IMI (Ryan, 1982) because the operational 

definition -- the extent to which an individual likes or enjoys an activity or environment 

(Fredericks, Blumenfeld, & Paris, 2004) -- is analogous to intrinsic motivation. The 

subscale consisted of seven items (α=0.91) – e.g., “I enjoyed doing today’s math activity 

very much.” Both behavioral and cognitive engagement were measured using modified 

versions of the respective subscales of the Student Engagement in the Mathematics 
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Classroom Scale (Kong, Wong, & Lam, 2003). The Behavioral Engagement subscale 

was comprised of 9 items (α=0.89) selected to measure learners’ attentiveness (4 items; 

e.g., “I listened attentively to the teacher’s instruction in today’s math lesson.”), 

diligence (3 items; e.g., “When I faced a difficult problem in today’s math lesson, I kept 

working until I finished it.”), and allocation of time during the lesson (2 items; e.g., 

“During today’s class period, I spent most of my time focusing and working on the math 

tasks in the lesson.”). Modifications to scale items focused on making the items pertinent 

to the one-day lesson instead of time spent doing mathematics homework outside of 

class, for example. The nine items of the Behavioral Engagement subscale were subjected 

to an exploratory factor analysis (EFA) using IBM SPSS version 23 and revealed one 

component explaining 51.84% of the variance (loadings: .430-.885). Results from a 

Parallel Analysis confirmed this one-factor solution for randomly generated data.  

The Cognitive Engagement subscale was composed of 6 items (α=0.77) that 

focused on deep strategy use (3 items; e.g., “I would try to connect what I learned in 

today’s math lesson with what I encounter in real life or in other subjects.”) and surface 

strategy use (3 items; e.g., “I found memorizing formulas is the best way to learn the 

math in today’s lesson.”). EFA was also used to examine the six items on the Cognitive 

Engagement subscale and revealed a two-component solution explaining 54.94% of the 

variance. Component 1 (deep strategy use) contributed 40.76% to the total variance 

explained while Component 2 (surface strategy use) contributing 14.18% (loadings: .520-

.832).  A Parallel Analysis confirmed this two-factor solution for randomly generated  

data. The two components, while separate yet significantly correlated, can be used 
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combinatorially to measure cognitive engagement as suggested by the scale authors  

(Kong et al., 2003). 

 

Procedures 

 A week prior to the experimental lessons, students’ self-efficacy for and basic 

abilities in mathematics were assessed using the MSES-R to ensure the comparison of 

similar conditions. The following week, the four experimental lessons were conducted 

and recorded. At the conclusion of each lesson, students were invited to self-assess their 

performance on the summative evaluation. This instructional strategy was designed for 

two purposes: 1) to help students reflect upon their own learning, and 2) to prime their 

competence-related thinking for the post-experimental measures. Post-experimental 

measures, which evaluated perceived competence, autonomy support, and engagement, 

were administered in the last few minutes of the class.  

 

Analyses 

 In order to determine if statistically significant differences occurred between the 

four conditions on the six dependent variables (p < .05), a one-way between-groups 

analysis of variance (ANOVA) was conducted using the IBM SPSS 23 statistical 

program. To determine where mean-level differences occurred between groups on each 

statistically significant dependent variable, a Tukey post hoc test was used. Eta squared 

(2) statistics were calculated on significant dependent variables to determine the relative 

magnitude of the differences between the means (Sun, Pan, & Wang, 2010; Tabachinick 
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& Fidell, 2013).  To interpret the strength of the effect sizes detected in this study, we 

used the guidelines proposed by Ferguson (2009): small = .04, medium = .25, and large = 

.64 while evaluating the effects in the context of the study and supporting literature 

(Trusty, Thompson, & Petrocelli, 2004).
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CHAPTER 4 

 

 

RESULTS 

 

Randomization Check 

 To determine whether the groups differed prior to the experimental manipulation, 

we examined two variables: real-world mathematics self-efficacy and basic 

computational abilities. Table 4.1 summarizes the descriptive and inferential statistics for 

the pre-study measures. There were no statistically significant differences between group 

means as determined by a one-way ANOVA in both self-efficacy for real-world 

mathematics (F(3,86) = 0.268, p = .85) and basic computational abilities (F(3,86) = 

0.262, p = .85). Therefore, there were no mean-level differences between the participants 

in the four conditions for self-efficacy (MDI+ = 4.12, SD = 0.85; MDI- = 3.96, SD = 0.91; 

M5E+ = 4.07, SD = 1.11; M5E- = 3.89, SD = 0.63) or for basic computational skills (MDI+ = 

51.95, SD = 21.05; MDI-  = 53.30, SD = 22.24; M5E+ = 56.80, SD = 20.64; M5E- = 19.15, 

SD = 19.15). 
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Table 4.1  

Descriptive and Inferential Statistics for Pre-Experimental Variables 

 DI+ DI- 5E+ 5E-   

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) F p 

SE 4.12 (0.86) 3.97 (0.91) 4.07 (1.11) 3.89 (0.63) 0.26 0.85 

Math 51.95 (21.05) 53.30 (22.24) 56.80 (20.64) 51.70 (19.15) 0.27 0.85 

Note. SE = self-efficacy for real-world mathematics and Math = mathematics achievement. 

 

Differences amongst Dependent Variables 

 Table 4.2 summarizes the descriptive and inferential statistics for all six 

dependent variables: perceived autonomy support, perceived competence, emotional 

engagement, behavioral engagement, cognitive engagement, and achievement. A one-

way between groups analysis of variance (ANOVA) revealed statistically significant 

differences among groups for autonomy (F(3,94) = 5.159, p =.002), competence (F(3,96) 

= 4.479, p =.005), emotional engagement (F(3,92) = 4.231, p =.008), behavioral 

engagement (F(3,93) = 3.226, p =.026), and achievement (F(3,99) = 4.489, p =.005). 

Marginally significant differences were noted among groups for cognitive engagement 

(F(3,91) = 2.390, p =.074). Although statistically significant differences in the six 

dependent variables were detected, the actual differences in the mean scores between 

groups were relatively small based on the calculated effect sizes: autonomy (2 = 0.14), 

competence (2 = .12), emotional engagement (2 =.12 ), behavioral engagement (2 = 

.09), cognitive engagement (2 = .07), and achievement (2 =.12).  

Using a Tukey’s post-hoc test, statistically significant differences between groups 

were found for every variable, although differences in cognitive engagement were only 
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marginally significant. For perceived autonomy support, statistically significant 

differences were noted between both community-building conditions (MD+ = 5.45 and 

M5+ = 5.45) and the non-community building direct instruction condition (MD- = 4.43). 

The same differences were noticed in students’ perceived competence, with the highest 

levels being noted in the community-building conditions (MD+ = 4.82 and M5+ = 5.08) 

and the lowest levels reported in the non-community building direct instruction condition 

(MD- = 3.83). Reported emotional engagement was statistically higher in the 5E 

community-building classroom (M5+ = 4.84) than in the non-community building direct 

instruction classroom (MD- = 3.48). Behavioral engagement demonstrated statistically 

significant differences between only the 5E community-building (M5+ = 5.43) and non-

community building (M5- = 4.37) conditions. For cognitive engagement, marginally 

significant differences were noted between the two community-building conditions (MD+ 

= 4.62 and M5+ = 4.72) and the two non-community building (MD- = 4.00 and M5- = 4.04) 

conditions. Finally, for student achievement, differences were noted between both 

community-building conditions (MD+ = 56.30 and M5+ = 58.31) and the non-community 

building 5E condition (M5- = 38.11). 
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Table 4.2 

Descriptive and Inferential Statistics for Dependent Variables 

 
DI+ DI- 5E+ 5E- 

  

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) F 2 

AU 

 

5.45a (0.96) 4.43b (1.18) 5.45a (1.10) 4.72ab (1.31) 5.16* 0.14 

CO 4.82a (1.31) 

 

3.83b (1.41) 5.08a (1.46) 4.19ab (1.26) 4.48* 0.12 

EE 4.08ab (1.44) 

 

3.48b (1.15) 4.84a (1.15) 4.20ab (1.48) 4.23* 0.12 

BE 5.12ab (1.11) 

 

4.97ab (1.17) 5.43a (1.12) 4.37b (1.28) 3.23* 0.09 

CE 4.62a (1.15) 

 

4.00b (1.27) 4.72a (1.19) 4.04b (1.12) 2.39** 0.07 

AC 56.30a (20.34) 

 

47.67ab (22.86) 58.31a (22.91) 38.11b (18.51) 4.49* 0.12 

Note. AU = perceived autonomy support, CO = perceived competence, EE = emotional 

engagement, BE = behavioral engagement, CE = cognitive engagement, AC = achievement. *=p 

< .05. **p = .07. Means in the same row that do not share subscripts differ at the p < .05 level. 
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CHAPTER 5 

 

 

DISCUSSION 

 

 Findings from this study indicate that undergraduate college algebra students who 

experienced intentionally created community-building mathematics classrooms 

demonstrated many educational benefits. Positive impacts were seen in students’ 

perceived autonomy-support, competence, engagement (emotional, behavioral, and 

cognitive) and achievement in a college mathematics classroom. These results are 

consistent with prior research that indicates associations between positive community 

experiences, achievement, motivation, and engagement (Black & Deci, 2000; McKinney 

et al., 2006; Patrick, Ryan, & Kaplan, 2007). Contrary to predictions, neither model of 

instruction appeared to significantly impact dependent variables in and of itself. Prior 

research has demonstrated that students require time to adjust to new methods of 

instruction, and it is believed that the short time period in which the experiment occurred 

influenced this portion of the results (Felder & Brent, 1996; Spector et al., 2007; Woods, 

1994). To truly understand the implications of our study regarding classroom practice, a 

more in-depth comparison of student outcomes is needed. 

 Findings from this study support prior research, which suggests that students 

perceive an environment to be autonomy-supportive if teachers demonstrate
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 supportiveness and intentionally acknowledge their needs and interests (Reeve, 2006; 

Reeve & Jang, 2006). The statistically significant difference noted between the two 

community-building conditions and the DI- condition indicate that direct instruction with 

no intentional community-building efforts was perceived to be the least autonomy-

supportive environment. However, statistical analyses revealed identical scores between 

the 5E+ and DI+ conditions, indicating that intentional community-building efforts 

superseded any differences in autonomy support inherent within the two pedagogical 

models. Research has shown that an autonomy-supportive environment results in higher 

levels of perceived competence (Deci, Nezlek, & Sheinman, 1981). Therefore, the fact 

that the community-building conditions also demonstrated the highest levels of perceived 

student competence is not surprising. In the instances of both perceived autonomy 

support and competence, the DI- condition produced the lowest scores. The addition of 

intentional community-building efforts could have led to an increased perception of 

autonomy support which then impacted student competence, or the presence of a positive 

community could have directly impacted student competence. While the pathway of this 

influence is unknown, the fact remains that the intentional community-building efforts of 

the teacher displaced any differences between the pedagogical models in their impacts on 

student autonomy and competence. 

 In the categories of emotional and behavioral engagement, the effects of 

community-building efforts are present but not as conclusive as other dependent 

variables. Findings suggest that both a more student-centered model of pedagogy and 

intentional community-building efforts contributed to the differences noted in student 
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responses to the environment. In general, autonomy-supportive behaviors have been 

associated with increased student engagement (Reeve, Jang, Carrell, Jeon, and Barch, 

2004). More specifically, studies have shown that the presence of an autonomy-

supportive teacher is correlated with higher levels of positive emotionality and intrinsic 

motivation, constructs similar to emotional engagement (Deci et al., 1981; Patrick, 

Skinner, & Connell, 1993). Logically, then, the differences between the 5E+ and 5E- 

conditions make sense. As was noted previously, students generally react adversely when 

they are first faced with taking responsibility for their own learning (Felder & Brent, 

1996; Spector, Burkett, & Leard, 2007; Woods, 1994). In the two 5E environments, 

students were faced with a new teacher, a new learning environment and new peer 

interactions. In the 5E- and DI- conditions, students faced these new experiences without 

any teacher support above what was necessary for the validity of the study. Why would 

students choose to engage behaviorally and emotionally in a new, potentially frightening 

environment when the teacher does not seem to enjoy their presence or intentionally 

make them feel safe and welcome among their peers?  The 5E+ condition provided 

learners with new, more hands-on experiences that were made welcoming and less 

frightening by the presence of a trusted, warm authority. It is believed that this is one 

reason why students demonstrated higher levels of emotional and behavioral engagement 

in the 5E+ condition than in the 5E- and DI- conditions. 

 While this explanation accounts for the differences in behavioral and emotional 

engagement in the two 5E conditions, it does not address the difference between the 5E+ 

and the DI- condition. Predictions before the study were that, based on prior research, the 
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cooperative learning and learner involvement of the 5E model would facilitate a greater 

sense of community. This would lead to higher student motivation, and subsequently to 

higher student engagement. Therefore, it is believed that the inherent sense of community 

and student-driven activities built into the 5E model were the inherent differences that led 

to the higher levels of emotional and behavioral engagement. Differences were also noted 

among classroom conditions for cognitive engagement, but these differences were only 

marginally significant. However, as the two community-building conditions produced 

higher levels of cognitive engagement than did the two non-community building 

conditions, the importance of intentional community-building efforts was still 

highlighted.    

In the case of student achievement, significant differences were noted between the 

5E- condition and the two community-building conditions. Similar to the results of 

autonomy and competence, differences in student achievement seem to hinge upon 

intentional community-building efforts. This finding is corroborated by prior research 

(Black & Deci, 2000; McKinney, McKinney, Franiuk, & Schweitzer, 2006). As was 

noted earlier, it is believed that over time, an inquiry-based environment would lead to 

higher levels of achievement defined as in-depth understanding. 

 

Implications 

 In the college classroom, these findings reveal the importance of a component of 

the classroom environment that is often overlooked by instructors: the building of a 

community structure. Studies have shown that many educators at the post-secondary level 
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are resistant to changing their methods of instruction for many reasons, including the 

following: the change does not seem to be a valuable use of professional time, funds are 

inadequate, innovation is not always supported by faculty leadership, and students may 

reject the change to traditional instruction (Harwood, 2003; Marsh & Hattie, 2002; 

Wright & Sunal, 2004). While instructional innovations are important to student success, 

they do, in fact, require a long-term investment of time (and sometimes money). 

However, choosing to build a community environment in the classroom costs little time 

or money. It simply requires intentionality. By determining to build relationships with 

students and to allow students to build relationships among themselves, educators have 

the potential to impact student achievement, motivation, and engagement in a relatively 

short period of time. 

 

Limitations 

 The current study does possess limitations, particularly in the form of time. 

Because the experiment involved conducting each lesson only once, only the short-term 

results of differing instructional methods and community-building efforts could be 

examined. Therefore, future research should examine the long-term effects of inquiry-

based and direct instruction pedagogies in combination with community-building efforts 

to determine their effects on achievement, motivation, and engagement in the 

undergraduate mathematics classroom. Studies which oppose inquiry-based approaches 

often question students’ ability to discover overarching concepts on their own (Kozioff et 

al., 2001). However, many studies consider inquiry methods that provide learners with 



 

 

38 

little support and feedback (Kirschner, Sweller, & Clark, 2006; Klahr & Nigam, 2004). 

These practices are not consistent with the characteristics of the 5E environment (Bybee 

et al., 2006) or with the expectations associated with most current explanations of inquiry 

instruction (Bell, Smetana, & Binns, 2005; Marshall & Horton, 2011). Therefore, future 

studies examining instructional methods should focus on comparing traditional 

instructional methods like direct instruction to an inquiry-based approach with integrity. 

Only then can valid inferences be made to inform instructional decisions in the 

classroom.
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APPENDIX A 

DIRECT INSTRUCTION LESSON PLAN 

 

Launch  

a. [Teacher will welcome students to classroom. Objectives will be explicitly 

stated.] 

 

Today we are going to learn about repeatable permutations. [Display PowerPoint 

slide with objectives.] By the end of this class period, you should be able to both 

solve problems involving repeatable permutations and explain the logic behind 

the process. To start off, let’s look at what a permutation is. 

 

b. [Display PowerPoint slide with mathematical definition of a repeatable 

permutation.] 

Given a set of n elements, the permutations with repetition are different groups 

formed by the r elements of a subset such that the order of the elements matters 

and the elements are repeated. Is anyone confused by this definition? [Pause for 

hands] Let’s look at an example of a permutation. [Display PowerPoint slide with 

example of three friends.] Here I have my three friends Riley, Jack, and Priscilla 

standing in a group. However, they aren’t just a group. They are a permutation 

because they have an order. Personally, Riley is my favorite, so I consider her my 

best friend. I’ve known Jack for a while and he’s fun to hang out with, so I 

consider him my second best friend. Priscilla just hangs around with us because 

she likes Jack. So, in a permutation, the order matters. If I get mad at Riley and 

Jack becomes my first best friend, I have a whole new permutation. But, we said 

that we would be learning about repeatable permutations today. Repeatable 

simply means that an object can occupy more than one spot in the group. So, the 

example of my three friends is not a repeatable permutation because if Riley is my 

best friend, she can’t also be my second best friend. 
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Transition: Now, let’s work through some examples of repeatable permutations and 

figure out how to solve them. 

 

Worked Example  

a. [Display PowerPoint slide with music problem and read problem from slide.] 

 

Here is our first problem: “A jazz musician must improvise during his solo. For 

this particular song he can only work with four different components: quarter 

notes, eighth notes, sixteenth notes, and quarter rests. How many different ways 

could he write a four-count measure?”. Before we try to solve this problem, let’s 

take a quick timeout for a music lesson. 

 

 

b. [Display PowerPoint slide with the definition of a measure.] 

 

A measure is a segment of time corresponding to a specific number of beats in 

which each beat is represented by a particular note value and the boundaries of the 

measure are indicated by vertical bar lines. So, the measure we are looking at will 

include different notes and rests that are combined to form a total of four beats. 

Now let’s take a look at the notes and rests that our musician has to work with. 

[Display PowerPoint slide with the combinations of notes and rests used to create 

one beat.] The quarter note and the quarter rest are similar because they both are 

worth one beat. An eighth note is played a little bit faster. Each one is worth half a 

beat, so to make a full beat, you would need two eighth  

notes. Finally we have sixteenth notes, which are a worth a quarter of a beat each. 

So, if the jazz musician wanted to create one beat using sixteenth notes, he would 

have to hit the note four times.  

 

 

c. [Give students instructions for first task of listing ways to write a two-count 

measure.] 

 

When we think about all the different ways that the jazz musician could possibly 

improvise this four-count measure, it seems overwhelming. So first, let’s see how 

many different ways a two-count measure could be created. In just a minute, I am 

going to give you each a sheet of paper with some blanks on it that looks like this. 

[Hold up paper they are about to receive.] Each blank represents one beat. Your 
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task is to come up with as many different ways to write these two beats as you can 

using the four types of notes and rests that we just talked about. [Display 

PowerPoint slide with note and rest options listed and examples of what students 

are being asked to do.] So for example, one way I could fill in these two beats 

would be to put a quarter rest in the first blank and four sixteenth notes in the 

second blank. Another way I could write two beats would be to swap and write 

the four sixteenth notes as the first beat and a quarter rest as the second beat. Also, 

don’t forget that you can use the same note or rest for both beats. I’ll go ahead and 

pass out your papers, and once everyone has one, I’ll start the timer and you will 

have 90 seconds to write down as many permutations as you can think of. 

 

d. [Give a paper to each student. Once every student has one, display the 90 second 

timer on the board, say “On your mark, get set, go!”, and start the timer. Stand at 

the front of the classroom until students finish. Once time expires, begin 

explanation of logic behind formula.] 

 Ok, time’s up! How many combinations did you get? [Wait for response.] Here is 

the list of all the different combinations you could have come up with. [Display 

PowerPoint slide with list of all repeatable permutations.] There should be a total 

of 16. Now that we know how many repeatable permutations there are, let’s see if 

we can find the answer mathematically. [Display PowerPoint slide with 

breakdown explanation of where “4 times 4” comes from.] Let’s say we select a 

quarter note for our first beat. Then, we could select any of the four notes or rests 

for our second beat. So, whenever a quarter note makes up the first beat, there are 

four possible pairs. The same thing holds true if I select any of the other notes or 

rests to fill in my first beat. I can create four pairs with each one. So, I have four 

different options to fill in the first beat, and I am multiplying each of these four 

options by the four different notes or rests they could be paired with in the second 

beat. Four times four gives me 16, which is the total number of repeatable 

permutations that we were able to list for a 2-count measure. [Flip back to 

PowerPoint slide with list of all repeatable permutations.] 

 

e. [Display PowerPoint slide explaining the formula nr.] 

 Now, another way I could write “4 times 4” is “42.” If we take a closer look, we 

were given 4 different types of notes and rests to work with, and we needed to fill 

2 beats. If we were to write this as a general formula, we could write it as nr, 



 

 

56 

where n represents the number of objects we are given to work with and r 

represents the number of places these objects will fill. This formula will tell you 

how many different ways objects can be  

 combined for any repeatable permutation. A good question to ask yourself is 

“Why?”. 

 Think about what a repeatable permutation is. First of all, if something is a 

permutation, then the order of the objects matters. For the example we just did, 

that means that if I fill two beats by playing a quarter note first and then two 

eighth notes, it will sound different than if I play two eighth notes and then a 

quarter note. Secondly, these permutations are repeatable. That means that if I 

play a quarter note for my first beat, I can play it again for my second beat. So, for 

every beat I play, I have four different note and rest options to choose from. So if 

you want to know if you can use the formula nr to solve a problem, you need to 

first think about 1) “Does the order of the objects matter?” and 2) “Are the objects 

repeatable?”. [Display these questions on a PowerPoint slide as you say them.] 

 

f. [Display PowerPoint slide with original question. Click to bring up both questions 

students are asking themselves.] 

So let’s look back at our original question: “A jazz musician must improvise 

during his solo. For this particular song he can only work with four different 

things: quarter notes, eighth notes, sixteenth notes, and quarter rests. How many 

different ways could he write a four-count measure?”. For our first step, we say 

“Is the order of the objects (which are notes in this case) important?,” and the 

answer is yes. If the musician plays a quarter note first and then has a quarter rest, 

that is different than resting first and then playing a quarter note. The second thing 

we need to think about is “Are the objects repeatable?”. Again, the answer is yes. 

The jazz musician could play the quarter note four times in a row if he wanted to. 

So, since the order matters and notes and rests can be repeated, the jazz musician 

has four different options to choose from for each beat. [Display breakdown of 44 

on current PowerPoint slide.] We can write this as 4 x 4 x 4 x 4 to represent the 4 

different note options for 4 beats. Since we determined that the order of the notes 

mattered and they were repeatable, we can use the formula nr. [Click to display 

formula breakdown on current PowerPoint slide.] n represents the number of 

notes and rests the musician has to choose from, which is 4. r represents the 

numbers of beats the musician needs to fill, which is also 4. So, we have 44. Do 
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you agree with me that the formula 44 is the same as multiplying the number 4 

four times? [Wait for response.] Can I get someone to type in 44 in your calculator 

and tell me what you get? [Wait for response.] That is correct. So, the jazz 

musician could play the 4-count measure in 256 different ways. [Click to display 

total on current PowerPoint slide.] 

 

Transition: Now that you’ve seen an example of a repeatable permutation, let’s work 

through an example together. 

 

Guided Practice 

a. [Display PowerPoint slide with password problem]. 

 

For your computer log-in, you are required to create a 6-character password using 

only ten symbols: ! @ # $ % ^ & * - +. Symbols can be repeated. How many 

possible passwords can be created? I am going to give each of you a paper that 

looks like this. [Display handout.] On the front of this sheet, this question is 

written, and there is space for you to work out the problem. When you get the 

sheet, go ahead and try to solve only this problem. Then, I will go over it step-by-

step with you. [Pass out sheet to each student.]  

 

b. [Give the class approximately 2 minutes to work. Then, discuss the problem step-

by-step with them.] 

 Ok, let me have everyone’s attention right up here. This problem tells you to find 

the number of computer log-in passwords you could create. The first thing you 

should have thought about was “Does the order of the objects in this problem 

matter?”. [Display question on current PowerPoint slide.] In this case, the objects 

are symbols. The answer is “yes” because “!@#$%^” is a completely different 

password than “^%$#@!.” Next, you should have thought, “Are the letters 

repeatable?”. [Display question on current PowerPoint slide.] We know the 

answer is “yes” because the problem tells us that symbols can be repeated. This 

means the problem is a repeatable permutation, and you can use the formula nr. n 

represents the number of objects. In this case, we have 10 because there are 10 

symbols. r represents the number of spaces these symbols are being used to fill. 

So, r would be 6 because the password is 6 characters long. When you put 106 
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into your calculator, what did you get? [Wait for student response.] That is 

correct! [Display answer on current PowerPoint slide.] 

 

Transition: Ok, now that you’ve worked through some examples, I’m going to give you 

the chance to do a couple of problems on your own.  

 

Independent Practice (10 minutes): (18:10)  

a. [Instruct students to flip over the sheet they used for the password problem and 

give them time to work alone.] 

Go ahead and flip over your worksheet to the back side. There are two problems 

involving different flavors of ice cream. Do your best to figure them out on your 

own and then we’ll go over the answers. [Wait approximately 3-5 minutes.]  

 

b. [Go over problems with students.] 

Ok, it looks like most people are done. Let’s go over the answers and see how you 

did. [Display PowerPoint slide with main question.] The problem tells us, “You 

and some friends decide to go get ice cream after a concert one night. Assume that 

getting a stack of chocolate, chocolate, and vanilla dips is different than getting a 

stack of chocolate, vanilla, and chocolate dips. [Display PowerPoint slide with 

questions.] 1a) Without using a formula, use your own logic to answer the 

following question: How many possible combinations of ice cream could you 

order if you have 2 different flavors to choose from and you will be ordering 3 

scoops?”. [Display example on current PowerPoint slide.] This is one example of 

how you could have logically solved this problem. You could draw out the 

different permutations of flavors, just like you did with the music notes. You also 

could have listed the flavors instead of drawing them, or created a completely 

different diagram. You should have gotten 8 different permutations. Part b asks us 

to solve the problem using the formula we have gone over in class. We know this 

problem is a repeatable permutation because the original problem tells us that the 

order in which we get the dips matters, and because we can repeat a flavor as 

much as we want to. So, using the formula nr, n is our 2 different flavors, and r 

represents the number of places these flavors will fill, which is our 3 dips. So, 23 

gives us 8 different ways to stack the ice cream. [Display answer on current 



 

 

59 

PowerPoint slide.] This answer should match the one you got when you used your 

own logic. Number 2 is done in exactly the same way, except this time you have 4 

flavors to choose from. So, when we look at the formula nr, r is still 3 because we 

are still looking to fill three scoops. However, n is now 4 because we had 4 

different options to choose from. When you worked out 43, you should have 

gotten 64. [Display answer on current PowerPoint slide.] Are there any questions? 

 

Transition: Go ahead and make sure you write your name on your Jazz It Up sheet and on 

your real world problems and pass them to the end of your row. [Allow a few seconds for 

students pass their papers. As they are doing this, display “Do your best!” PowerPoint 

slide.]  

 

Evaluation (10 minutes): (24:50) 

a. [Give instructions for evaluation.] 

The paper I am about to give you has a few questions about repeatable 

permutations. Make sure you work on your own, and do your best to answer every 

question. If you have a question, just raise your hand. Once you are finished, hold 

onto your paper, and we will go over the answers. You may begin as soon as you 

get your paper. [Pass out the evaluation sheet and collect Jazz It Up! sheet and 

real world problems. Allow approximately 3-5 minutes, or until most students 

seem to be done.] 

 

 b. [Go over answers and grading with students.] 

 

Ok, it looks like everyone is done. Before we look at the answers, I’m going to 

pass out a rubric so that you can grade yourself as we go. As soon as you get it, go 

ahead and put your name at the top. [Pass out rubric.] [Display PowerPoint slide 

with evaluation rubric.] In just a moment, I am going to display the answers in 

red. Every answer is worth one point. So for example, if you got the answer 8 for 

question number 1 without using the formula nr, you would give yourself one 

point. But questions 3a-c asked you to do a number of different tasks. You will 

give yourself one point for each different task that you got right. Write down the 
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total number of points you got for each question in the “Score” box for that 

question. Then at the end, add up the total number of points you got and write it in 

the “Total” box at the bottom. You can get up to 16 points. If you have any 

questions, just raise your hand. [Display PowerPoint slide with evaluation and 

answers.] [Give students 2 or 3 minutes to calculate their scores.] Is everyone 

done? I went ahead and calculated the percentages for the number of correct 

questions, so here is a list of those. Once you have taken a look at your grade, go 

ahead and flip your papers over and sit them in front of you.  

 

 c. [Give post-tests to students.] 

  Before you go, there are some questions that I would like to ask you about this 

lesson. Once you have answered them, go ahead and flip them over and sit them 

in a stack in front of you. [Allow time for students to fill out post-tests.][Ask 

students to fill in consent form.] 

 

Transition into Questionnaires: 

 a.  [Introduce Post-Tests] 

  Thinking about how you did on the evaluation and about the lesson you just had, 

go ahead and flip over to the next few sheets, and answer the questions. Please 

answer honestly. 

 

 b.  [Introduce Informed Consent] 

  Thank you for allowing me to come to your classroom today. I am a math 

education student, and I would like to use the data from the questions we asked 

you and from your evaluations for a study I am doing, but I can’t do that without 

your permission. This paper explains all about the study and tells you how we will 

make sure that your answers to these questions are not released to anyone else. If 

you agree to let us use your data, please sign your name at the bottom of this 

sheet. If you choose not to sign, there are no consequences. It is your personal 

choice. I’ll pass out the consent forms to you, and once you are done you are free 

to leave. Please stack your informed consent document on top of your question 

packet, and stack them on the table on your way out the door. 
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APPENDIX B 

5E LESSON PLAN 
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APPENDIX C 

PRE-TEST RUBRIC 

Scale for grading student work shown 

0 1 2 3 

 

No work shown. 

 

Teacher could not 

replicate student 

answer based on 

work shown. One or 

more steps were 

missing. 

Teacher could 

replicate student 

answer based on 

work shown, but the 

answer was 

incorrect. 

Teacher could 

replicate student 

answer based on 

work shown, and 

the answer was 

correct. 

Question Description Score 

Q1 

Circle the appropriate score for student work shown: 

0 1 2 3 

Give one point for each of the following: 

- Student determines the sum of the side lengths to be 

26.6 

- Student gives the unit “inches” as part of the answer 

/5 

Q2 

Circle the appropriate score for student work shown: 

0 1 2 3 

 

Give one point for: 

- Student determines the answer to be x = 5 

/4 

Q3 

Circle the appropriate score for student work shown: 

0 1 2 3 

 

Give one point for each of the following: 

- Student determines the answer to be 3 3/10, 33/10, or 

3.3 

- Student correctly writes the answer as the mixed 

number 3 3/10 

/5 

Total  /14 
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APPENDIX D 

LESSON EVALUATION 

 

1.  Without using a formula, use your own logic to answer the following question: 

You and your friend are arguing about where you should go have dinner. In order to 

make this decision, you decide to flip a coin three times. The coin has two sides: 

heads and tails. How many different permutations of heads and tails are possible? 

Please show your work and/or drawings. 

 

 

 

 

2. Every time you unlock your cell phone, you are asked to enter a passcode. This 

passcode is four numbers long, and you may use the numbers 0-9. How many 

different four-digit passcodes could you create? 

 

 

 

 

 

 

CONTINUE TO THE BACK
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3.   Look at the examples below. 1) Determine which ones are repeatable permutations 

and which ones are not and explain how you know this. 2) If it is a repeatable 

permutation, identify n and r and solve the problem. 

 

Scenario Repeatable 

Permutation? 

Why? n r Solution 

a) You and some 

friends are 

arranging 5 

different types of 

chairs in a row. 

How many 

different ways 

could you arrange 

the chairs? 

     

b) You are 

playing a game in 

which you roll a 

die three times in 

a row. The sides 

of the die are 

labeled with the 

numbers 1-6. 

Assume that 

rolling the 

numbers 6, 4, and 

then 6 is different 

from rolling 6, 6, 

and then 4. How 

many possible 

results could you 

get? 

     

c)  Social security 

numbers are 

made up of the 

numbers 0-9 and 

are 9 items long. 

How many 

different social 

security numbers 

are possible? 
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APPENDIX E 

STUDENT EVALUATION RUBRIC 

 

Question Description Score 

Q1 Give one point for each of the following: 

- Students uses logic (no formula) to try to find 

solution 

- Student finds correct number of permutations  

/2 

Q2 Give one point for: 

-Student finds correct number of permutations  

/1 

Q3a Give one point for each of the following: 

-Student states problem is not a repeatable 

permutation 

-Student states that chairs are not repeatable 

/2 

Q3b Give one point for each of the following: 

-Student states problem is a repeatable 

permutation 

-Student states that order of the numbers matters 

-Student states that numbers are repeatable 

-Student identifies n as 6 (or the number of 

different options on the die) 

-Student identifies r as 3 (or the number of times 

the die was rolled) 

-Student states that solution is 216, or 63 

/6 

Q3c Give one point for each of the following: 

-Student states problem is a repeatable 

permutation 

-Student states that order of the numbers matters 

-Student states that numbers are repeatable 

-Student identifies n as 10 (or the numbers to 

choose from) 

-Student identifies r as 9 (or the number of 

spaces in the password) 

-Student states that solution is 1,000,000,000 or 

109 

/6 

Total  /17 
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