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Abstract

The work presented here is an experimental study of performance in execution time and energy consumption of matrix multiplications on
a heterogeneous server. The server features three different devices: a multicore CPU, an NVIDIA Tesla GPU, and an Intel Xeon Phi coprocessor.
Matrix multiplication is one of the most used linear algebra kernels and, consequently, applications that make an intensive use of this operation
can greatly benefit from efficient implementations. This is the case of the evaluation of matrix polynomials, a core operation used to calculate
many matrix functions, which involve a very large number of products of square matrices. Although there exist many proposals for efficient
implementations of matrix multiplications in heterogeneous environments, it is still difficult to find packages providing a matrix multiplication
routine that is so easy to use, efficient, and versatile as its homogeneous counterparts. Our approach here is based on a simple implementation
using OpenMP sections. We have also devised a functional model for the execution time that has been successfully applied to the evaluation of
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matrix polynomials of large degree so that it allows to balance the workload and minimizes the runtime cost.

Keywords Matrix multiplication, heterogeneous system, energy consumption, matrix polynomials

I. INTRODUCTION

Matrix multiplication is one of the most essential computational
kernels used in the core of scientific applications. This operation
has been highly studied in the past in order to improve the effi-
ciency of its computation in both sequential and parallel computer
architectures. It has also received full attention in parallel heteroge-
neous environments. Many contributions in this context basically
propose irregular partitions of the factor matrices that can efficiently
be mapped on the computing resources; see for instance [10, 16, 12].

It is difficult to find actual implementations of the matrix multi-
plication on heterogeneous nodes that feature very different devices.
The MAGMA project, for instance, aims to develop a dense linear
algebra library similar to LAPACK but for heterogeneous/hybrid ar-
chitectures; it is one of the most active projects that implement BLAS
routines for nodes featuring accelerators [22]. Currently, MAGMA
implements a version for NVIDIA GPUs in which the matrix multi-
plication is carried out only by the GPUs, i.e. the CPU does not inter-
vene. The MAGMA project also provides with a version, MAGMA
MIC, which provides hybrid algorithms that involve the host CPU
and one or more Intel Xeon Phi processors. However, this project
does not use both NVIDIA GPUs and MICs processor all together
in the same host. Authors of [13] propose a programming model
for heterogeneous computers featuring CPU, a GPU and a Xeon Phi
with the aim to incorporate it to MAGMA library. However, they
have not shown its proposal with matrix multiplication. Hence and
as a starting point, we propose here a simple implementation to
carry out parallel heterogeneous matrix multiplications in a node
composed by CPU cores, one NVIDIA GPU, and one Intel Xeon Phi.

As it is explained in the next section, in this paper we are interested
in evaluating matrix polynomials of only square matrices. Section III
shows the application implemented to carry out a square matrix

multiplication on these three different devices. The following section
shows experimental results both in time and energy consumption of
our application. In Section V we propose a model to implement a
heterogeneous matrix multiplication routine that can exploit easily
the underlying hardware. We finish the paper with some conclusions
and proposals for future research.

II. MATRIX POLYNOMIALS

An application for matrix multiplications is, for instance, the calculus
of matrix polynomials. Matrix polynomials are used, e.g. for the
computation of functions of matrices [9] by the Taylor method. A
matrix function is the exponential of a matrix [21]. This function
appears in the solution of many engineering and physics phenom-
ena which are governed by systems of linear first-order ordinary
differential equations with constant coefficients [15]. Also, the matrix
exponential appears in other scientific contexts like, e.g. control the-
ory [14] or theory of multimode electric power lines [24]. Some other
engineering processes are described by second order differential
equations, whose exact solution is given in terms of the trigonomet-
ric matrix function sine and cosine [11, 17].

There are different techniques for computing or approximating
matrix functions. Some of them are very general but others are
specialized to particular functions. Two techniques are widely used
to approximate a matrix function, one is based on polynomial ap-
proximations and the other is based on rational approximations. The
one based on polynomial approximations makes intensive use of
matrix multiplications. For example, the matrix exponential can be
calculated efficiently by using Taylor series [21], which is in turn
formulated as a matrix polynomial. Other trigonometric matrix
function is the cosine of a matrix. This function has been tackled
in [20] to show that it is possible to perform its computation in a
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Algorithm 1 Algorithm for the evaluation of a matrix polynomial.

1: function EVALUATE( 1, X, d, & ) return P
2; P <+ agl

3 P+~ P+uX
4 B+ X

5: fori <« 2,d do
6 A+ B

7 B+ X-A

8: P+ P+ua;B
9: end for

10: end function

very efficient way by using also a Taylor series approximation. As
it has been shown in [19] it is possible to obtain more accuracy
with polynomial approximations than with rational approximations
with similar or even lower computational cost. Another advantage
of using this technique is due to the fact that the most expensive
operations are all matrix products and there exist many libraries
that provide efficient implementations of this operation in different
environments. For instance, one can find very optimized imple-
mentations for multicore processors in Intel MKL, OpenBLAS, or
BLIS. Another example is CUBLAS, a library that includes a very
efficient routine to perform matrix multiplications in NVIDIA GPUs.
This library was recently used in [9] to implement the algorithm
proposed in [20] that computes the cosine of a matrix using one or
two GPUs.
A matrix polynomial P of degree d can be defined as

d .
Po= Y ag X M
i=0

thXd + le,lxd71 4+ X+ 0(()1 ’

where X,I € R"*", being I the identity matrix. The polynomial
matrix X can be arbitrary large, e.g. when appears in the solution
of PDE:s related to fluid dynamics. Also the polynomial degree d
can be very large, e.g. 30 is a common number in the calculus of a
trigonometric matrix function [19].

In theory, the evaluation of a matrix polynomial with the form (1)
is quite straightforward by using, for instance, Algorithm 1. There
exist algorithms that allow to reduce the total number of matrix
products by means of the so called Paterson-Stockmeyer method [9].
However, these methods also need an efficient implementation of
the matrix product. In any case, the efficiency of the evaluation of a
matrix polynomial depends on how efficient the underlying matrix
multiplication routine is. When the computational resources are the
cores of a multicore, we rely on threaded routines (e.g. Intel MKL) that
exploit all the CPU cores concurrently to perform this computation
transparently to the user. But things are more complicated in a
heterogeneous environment, where the computational resources are
different among them and, in turn, are “far away” from the main
memory where data initially reside.

III. A HyBRID MATRIX MULTIPLICATION APPLICATION

In order to solve efficiently problems like the evaluation of ma-
trix polynomials that intensively use matrix multiplications on a
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Figure 1: Execution time for a square matrix multiplication in one core
using different libraries.

heterogeneous server, we propose an implementation for a matrix
multiplication application and present an experimental study of its
performance in both execution time and energy consumption.

III.1 The Hardware and Software Used

The heterogeneous server we have been working with features the
following devices:

e CPU: Two sockets with an Intel Xeon CPU E5-2670 v3 at 2.30
GHz each. This processor has 12 cores so the server contains a
total of 24 threads. The main memory of the host is 64 GB.

e GPU: NVIDIA Tesla K40c with 2880 cores and 12 GB of device
memory.

e PHI: An Intel Xeon Phi 3120A coprocessor with 57 processors
(228 cores) and 6 GB of device memory.

Although the term “device” is usually assigned to accelerators only,
i.e. GPU and PHI, in the next and for the sake of simplicity, we will
use it to denote the three of them.

On the software side, we have within reach different implementa-
tions of BLAS [1] to perform the matrix multiplication:

MKL: Intel Math Kernel Library is an optimized implementation
of linear algebra routines contained in BLAS and LAPACK,
and other mathematical functions like the FFT. This library is
available for multicore x86 processors, and also for the Intel
Xeon Phi coprocessor [3]. There exist “threaded” routines, e.g.
the matrix multiplication routine GEMM, for both devices.

OpenBLAS: OpenBLAS is an optimized BLAS library based on
GotoBLAS2 1.13 BSD version [4]. Used in the CPU.

BLIS: This library is self-described as “a portable software frame-
work for instantiating high-performance BLAS-like dense linear
algebra libraries”. In addition the “framework was designed to
isolate essential kernels of computation that, when optimized,
immediately enable optimized implementations of most of its
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commonly used and computationally intensive operations” [23].
The library is accessible in [2]. It has been used in the CPU.

CUBLAS: BLAS implementation for NVIDIA GPUs [8].

We performed a simple experimental analysis of the speed of the
matrix multiplication (GEMM) in the CPU (Figure 1). For this test
we used the maximum available CPU cores, i.e. 24. (We ignored
the fact that Hyper-Threading (HT) can be enabled to give a total
of 48 logical processors. We observed that using just one thread
per core is enough to fully exploit the execution resources of the
core and not increase in performance can be achieve by activating
HT.) It must be said that the performance of BLIS could be probably
better by selecting the best parallel configuration. Contrary to the
other two packages, BLIS is tuned by setting the value of up to four
environment variables. That value corresponds to the number of
threads that will be used to parallelize a given loop among the five
nested loops in which the matrix multiplication is implemented in
order to exploit the hierarchical set of intermediate memories of
the most current architectures. In this test, only the outer loop was
parallelized. A more suitable combination of values are likely to
produce a better performance of BLIS, however, we decided not
to test the large set of different combinations with the idea that
barely the performance would outperform MKL in this machine.
Consequently, we consider the performance of Intel MKL to be the
best and, therefore, it is the only library used on the CPU side.

III.2 Implementation option

To proceed towards a heterogeneous matrix product, we started
by implementing an application that partitions the problem into
three concurrent pieces so that the three devices can cooperate in
the solution. There exist different options to implement such an
application. However, all the options can be gathered into two main
classes standing for the use of light processes (threads), or heavy
processes. The last option can be implemented e.g. by using MPI [7].
Here, we decided to use a simple approach based on threads, which
are spawned by means of OpenMP sections.

The application has been implemented with OpenMP sections, so
that each device code is included in a given section (Listing 1). The
code for the Intel Xeon Phi, in lines 31-32, is implemented in a differ-
ent source file (Listing 2) and compiled separately. This is because it
is necessary to compile this code with the Intel C compiler (icc). For
the compilation of the rest of the C code of the application we used
the GNU compiler (gcc) since there exists incompatibility between
the available versions for the NVIDIA compiler (nvcc, version 7.5)
and for the Intel compiler (icc, version 16.0).

The basics of the heterogeneous multiplication are easy. To per-
form the multiplication C = AB, matrix A is completely broadcast
to the two accelerators from the Host computer. Matrix B, how-
ever, is partitioned into three blocks of consecutive columns. The
second block is uploaded to the GPU, the third one is uploaded
to the PHI, and the first one remains into the host memory. The
amount of columns of each block is denoted in Listing 1 by the
values of variables gpu_n, phi_n, and cpu_n for the GPU, the PHI,
and the CPU, respectively. Currently, the application receives these
values as arguments by command line, in particular, the user sets
the percentages for the GPU and for the PHI in the range [0, 1], the
rest is computed by the CPU. Upon termination of the execution,
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int gpu_n = (int) (gpu_weight * n);

int phi_n = (int) (phi_weight * n);

int cpu_n = n-gpu_n-phi_n;

#pragma omp parallel sections num_threads (3)

#pragma omp section
{ // GPU
if ( gpu_n ) {
cublasHandle_t handle;
CUBLAS_SAFE_CALL ( cublasCreate (¢handle) );
double *gpu_A, *gpu_B, *gpu_C;
CUDA_SAFE_CALL( cudaMalloc((void *%) &gpu_A, n*n*sizeof (double) ) );
CUDA_SAFE_CALL ( cudaMalloc((void **) &gpu_B, n*gpu_nxsizeof(double) ) );
CUDA_SAFE_CALL( cudaMalloc((void **) &gpu_C, n¥gpu_n*sizeof (double) ) );
CUBLAS_SAFE_CALL(cublasSetMatrix(n, n, sizeof(double), A, n, gpu_A, n ));
CUBLAS_SAFE_CALL( cublasSetMatrix( n, gpu_n, sizeof(double),
&B[n*cpu_n], n, gpu B, n ) );
CUBLAS_SAFE_CALL( cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, n, gpu.m,
n, %alpha, gpu_A, n, gpu_B, n, &beta, gpu C, n ) );
CUBLAS_SAFE_CALL( cublasGetMatrix( n, gpu_n, sizeof (double), gpu_C, n,
&C[n*cpu_nl], n ) );
CUDA_SAFE_CALL( cudaFree(gpu_A) );
CUDA_SAFE_CALL( cudaFree(gpu_B) );
CUDA_SAFE_CALL( cudaFree (gpu_C) );
CUBLAS_SAFE_CALL( cublasDestroy(handle) );
}
}
#pragma omp section
{ // PHI
if ( phi_n ) {
gemmPHI( n, alpha, A, n,
&C[n*(cpu_n+gpu_n)l, n );

phi_n, n, beta, &B[n*(cpu_n+gpu_n)l, n,
}

¥

#pragma omp section

{ // cru
if ( cpu_n ) {
dgemm( &transa, &n,

&n );

gtransb, &n, &cpu_n, &n, &alpha, A, &n, B,
&beta, C,
}
}

¥

Listing 1: Code for the heterogeneous matrix multiplication.

the resulting matrix C appears partitioned and distributed among
the three devices. We include in the application, and in the time
measurement, the operation of gathering the result in the memory
location allocated into the host to store the resulting matrix.

The code for the execution in the GPU is quite regular (Lines 7-27).
It includes creation of the CUBLAS context, allocating memory for
the three matrix factors, uploading matrices, executing the matrix
product, downloading the result, and freeing the resources involved
in the computation.

For the Xeon Phi, we used the “offload mode” of computation,
that is, data is explicitly uploaded to the device and the operation is
also explicitly executed there. Thus, the programmer have control
of what exactly is executing the coprocessor. Arguments in, out,
and inout specify clearly the direction of variables characterized by
those words. The operation is actually performed by calling to the
BLAS matrix multiplication routine using the MKL version.

Finally, the code executed by the CPU only includes a call to the
gemm routine (lines 38-39) for the matrix computation using MKL as
well. We used the fortran interface instead of the C one used for
the PHI for no specific reason but the application is oblivious of this.

Attention must be paid to the way in which the application is
executed in our heterogeneous server. As it has been implemented,
only three OpenMP threads are created so that each one will execute
a different section. There will be, thus, one thread bound to each
accelerator for data transference and control purposes. For the
CPU case, however, the execution of the MKL routine will use only
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void gemmPHI( int m, int n, int o, double alpha, double *A, int lda,
double beta, double *B, int ldb, double *C, int ldc ) {

#pragma offload target(mic) in(m,n,o,alpha,beta,lda,ldb,ldc) \

in(A:length(m#*o)) in(B:length(o*n)) inout(C:length(m*n))
{
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, m, n, o,
alpha, A, lda, B, 1db, beta, C, ldc );
}
}

Listing 2: Code for the heterogeneous matrix multiplication in the Xeon
Phi (offload mode).

one thread. To use more threads (cores) collaborating in the matrix
multiplication on the CPU side, the “nested parallelism” ability must
be explicitly set. In addition, there are more environment variables
that control the behaviour of the application (Table 1).

This is an example of execution:

shell_$ MKL_NUM_THREADS=22 OMP_NESTED=TRUE MKL_DYNAMIC=FALSE
MKL_MIC_ENABLE=0 MIC_ENV_PREFIX=MIC
MIC_KMP_AFFINITY=balanced,granularity=fine
MIC_OMP_NUM_THREADS=228 MIC_USE_2MB_BUFFERS=64K
numactl --physcpubind=+0-11,12-23 program 10000 0.48 .15
The example executes the program program which generates two
random matrices of order n = 10000. The GPU performs 48% of the
computation, 15% is carried out by the PHI, and the rest, 37%, is
computed by the CPU.

It should also be noted that the server has the hyperthreading
enabled, but we decided not to use all the 48 threads and always use
24 as a maximum number of threads instead. For instance, when
operating with the three devices, two threads are bound to one
accelerator each, leaving the other 22 for the execution of the matrix
multiplication in the CPU.

In addition, we have always used core affinity. This is to prevent
threads from leaping amongst the cores at runtime, so as to reduce
the variability of the execution times and also to improve the perfor-
mance of all the devices attached to the host. Concretely speaking,
we use the tool numact1 to bind threads to cores.

The following is an example of the output of the application:

n = 10000 (CPU = 38.00% GPU = 50.00% PHI = 12.00%) [4 reps]
(cpu = 1.17 sec. gpu = 1.14 sec. phi = 1.19 sec.)
(1.30 sec. 1541.47 gflops)

for a random matrix of size n = 10000. The weight used for each
device in this example results in a workload rather well balanced.

III.3 Energy consumption

We are also interested on evaluating the energy consumption of
the devices participating in the matrix multiplication with the aim
at, first, understanding the power trace of each device and, second,
exploring a workload distribution which can result in energy savings.

For the energy measurement, we have used a tool called
powerrun [5]. This tool is a wrapper to other tools for measur-
ing the power draw of the CPU (uses PAPI and Intel PCM), of the
GPU (uses NVML [18]), and of the PHI (uses Intel’s MPSS [6]). The
tool gathers the power samples of all the devices under operation
and dumps a power trace to a file to compute the energy consumed
during the execution time. This tool provides a library to instrument
the code under test with simple calls that frame the part of the code
to be measured.
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Figure 2: Energy consumption when executing a matrix multiplication in
the CPU and the other two devices remain idle.
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Figure 3: Energy consumption when executing a matrix multiplication in
the GPU and the other two devices remain idle.
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Figure 4: Energy consumption when executing a matrix multiplication in
the PHI and the other two devices remain idle.

We provide here three tests that show the energy consumption
(in joules) of the three devices, respectively. In each test, the three
devices are operating concurrently. Only one of them is working on
a matrix multiplication while the other two remain idle. The test
samples the energy of the three devices.

Figure 2 shows the energy consumed by the system when only
the CPU is “working” and is rather easy to interpret. The CPU is the
most consuming device since it is the only one that performs useful
work, while the other two consume the energy in idle state. It is also
quite clear the difference in energy consumption when idle between
the two accelerators, being very low in the case of the NVIDIA GPU
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Variable name Meaning
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OMP_NESTED:

MKL_NUM_THREADS:

MKL_DYNAMIC:

MKL_MIC_ENABLE:

MIC_ENV_PREFIX:

MIC_OMP_NUM_THREADS:

MIC_KMP_AFFINITY, MIC_USE_2MB_BUFFERS:

Set to TRUE to ensure that MKL uses more than one thread when called inside an OpenMP section.
Number of threads used by MKL (CPU).

Set to FALSE to avoid MKL automatically selects the number of threads (CPU).

Set to 0 to avoid the Xeon Phi is used to accelerate the CPU computation.

Specifies the environment variables with prefix MIC will address only the PHI.

Number of threads used by the PHI to execute MKL routines.

These variables control the efficiency of the Xeon Phi in the execution of the matrix multiplication routine.

They have been set to such values according to the advice of Intel documentation.

Table 1: Meaning of shell variables used to execute the heterogeneous matrix multiplication application.

100 1,17
1,05 1,13
1,05 1,02 1,06
090 1,01 099 1,09
099 0,96 098 1,02 1,01
75 089 087 099 093 103 1,13
092 089 095 095 092 1,05 130
084 09 097 09 097 1,15 135 1,30
075 088 092 083 105 116 1,32 1,41 150
072 081 089 093 1,02 1,13 1733 1,53 1,60 i
073 082 080 08 104 1,16 129 1,35 165 1;
087 092 08 098 093 1,20 1,30 1,43 158 1
09 095 089 091 1,02 1,20 123 1,41 163 1;
105 1,00 099 093 094 1,19 1537 1,31 161 1;
108 1,07 1,02 095 104 1,08 131 1,47 164 1;
25 1,13 1,23 114 1,09 1,07 117 1,24 146 155 1;
121 1,30 115 1,12 1,08 1,06 129 146 164 1;
127/ 1,65 121 124 1,18 1,24 128 1,42 163 1
132 1,35 136 122 118 114 122 138 160 1;
144 1,41 134 125 123 1,22 130 1,42 157 1
0/ 1,46 143 144 136 122 118 122 130 1,49 1.
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Figure 5: Execution time in seconds for a matrix product varying the weight of workload on each device.

compared with the Intel Xeon Phi.

Figure 3 shows the energy consumption when the GPU is the only
device operating on a matrix multiplication. Note that one of the
cores of the CPU is also working since it is in charge of sending the
two matrices to be multiplied and receiving the resulting one. The
consumption of the Intel Xeon Phi is very large in idle state when
compared with the CPU.

As expected, the consumption of the Intel Xeon Phi is quite large
when executing the matrix multiplication (Figure 4). Also in this
case one of the cores of the CPU is working to feed the coprocessor
with the two factor matrices and to receive the solution matrix.

IV. EXPERIMENTAL RESULTS OF THE MATRIX
MULTIPLICATION APPLICATION

Figure 5 shows the execution time in seconds spent by the application
to perform a matrix multiplication of two square matrices of sizes
n = 8000 and n = 14000. The two graphics show times for different
weight combinations. The percentage of computation carried out by
the GPU is shown on the y-axis, while the work done by the PHI is
shown on the x-axis. These two values are selected by the user. The
rest of the computation is performed by the CPU. The figure shows
less execution times (clearer cells) within the region between =~ 25%
and ~ 50% for the GPU, and 5 20% for the PHI in the case of the
problem sizes selected. There exists more opportunity for the PHI to
participate as long as the problem size increases.

Figure 6 shows the percentages of the minimum values obtained
for the problem sizes n = 8000, 10000, 12000, 14000, which are 0.72
sec., 1.30 sec., 2.08 sec., and 3.20 sec., respectively. For large problems

n € [2000,10000] € [10000, 14000]
n

Weni = 0 A5 —50
Wgpy = 500 +47.5 200 T 85
Wepu = 100 — wepy 100 — (wphi + Wepu)

Table 2: Functions of the weight for each device for the execution time of
the matrix multiplication.

both the CPU and the GPU reduce their weight to make room for the
PHI, which does not contribute to the task with any size smaller than
n = 12000. We can approximate the weight of each device, i.e. wcpy,
Wgpu, and wphil, by the two linear functions shown in Table 2 for two
intervals. By means of a larger experimental setup we could easily
devise a functional model that allows to predict the best percentage
of workload to be mapped on each device. However, we must take
into account that there exist a problem size not very much smaller
than n = 2000 for which it is not worthwhile to use the GPU. Also,
for problem sizes n > 14000, the weight to be assigned to each device
stabilizes around a fix value (wpp; ~ 15% and wgp,; &~ 55%). However,
as the problem size increases a little more, out-of-core algorithms
are required and these functional models can significantly change.
Things are slightly different when we observe the total energy
consumed by the matrix multiplication application. The minimum
values of energy (in joules) are 379, 700, 1177, and 1783, for the
problem sizes 8000, 10000, 12000, and 14000, respectively. Figure 7

INote that the number of matrix columns assigned to a device d is nq = 1 - wg, where
d = cpu, gpu, phi.
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Figure 6: Functional model in graphics for the execution time of the matrix
multiplication.

shows, as an example, the energy consumption with problem sizes
n = 8000 and n = 14000. The corresponding weights of wgpy, in
which we can find these minimum values are 55%, 60%, 60%, and
60%, for each problem size, respectively, and 0% for wpp;. These
numbers show that while Intel Xeon Phi can contribute a little
to reduce the execution time, it can contribute nothing towards
reducing the energy consumption in any case, as it was expected
according to Figures 2—4. The NVIDIA GPU is, currently, a more
efficient device for HPC. In this particular server and for large
problem sizes (n > 10000), the Intel Xeon Phi is used as a trade-off
between execution time and total energy consumption.

We also figured out the dynamic energy of the application, i.e. the
energy due to the execution of the application and that we obtain
after taking away the energy consumed by each device in idle state.
The results showed that we can find the minimum value for the
dynamic energy for all problem sizes when none of the accelerators
are used. This is due, on one hand, to the high energy consumption
of the PHI and, on the other hand, to that the NVIDIA GPUs has two
different performance states (when idle) that are difficult to control
and disturb the actual energy measurement when the device is idle.

V. A HETEROGENEOUS MATRIX MULTIPLICATION
SYSTEM FOR EVALUATING MATRIX POLYNOMIALS

For this part of the work we have got a representative application of
matrix polynomials, i.e. that intensively uses matrix multiplications.
This application has been recently developed and it allows to com-
pute the cosine of a matrix [9]. Implementing this application on the
top of a heterogeneous matrix multiplication routine allows to get
the most out of a heterogeneous computer.

The task of developing a program that solves this problem poses
a big challenge from the performance point of view, as we showed
before, but also from the programmability point of view. Thus,
in order to make as easy as possible the programming task we
propose a system based on three different kind of objects which

Heterogeneous computation of matrix products

Algorithm 2 Heterogeneous algorithm for the evaluation of a matrix
polynomial.

1: function EVALUATE( 1, X, d, & ) return P
2 P+ gl

3 P+ P+u1X

4: Pp < P

5: XR — X

6 Bp + Xp

7 fori < 2,d do

8 Ap + Bp

9 Bp «+ Xg - AD
10: Pp < Pp +«;Bp
11: end for

12: end function

represent matrices. Let M be a square matrix stored into the host
main memory, then we report the following definitions:

® Regular matrices: these matrices are uniquely stored into the
CPU main memory, e.g. the matrix M itself.

o Replicated matrices: these matrices, denoted by subscript R (e.g.
MR), are replicated into all the three devices.

o Distributed matrices: these matrices, denoted by subscript D (e.g.
Mp), are partitioned in column blocks and scattered into all the
three devices.

We use these objects to rewrite Algorithm 1 into its heterogeneous
counterpart, Algorithm 2 . In the heterogeneous algorithm, each
matrix object is characterized by its condition according to where the
entries of this matrix are stored, i.e. regular, replicated or distributed.

We also describe the communication operation that takes place
between each pair of matrix-types as follows:

e M — Mp: This is a Broadcast communication.
e M — Mp: This is Scatter communication.

e Mr — M: This is a dummy operation since the destination
matrix is already into CPU memory and can be implemented
through a local copy.

e Mg — Mp: This is a local copy of the right data partition.
e Mp — M: This is a Gather communication.

e Mp — Mg: This is an Allgather communication.

We make the assumption that there exists just one distribution
for all the distributed matrices involved, and this distribution, repre-
sented by the tuple (wepu, Wgpu, Wphi ), has been previously calculated
and it is known before executing the algorithm. There are conversion
operations between matrix types in steps 4 and 5. Steps 6 and 8 are
local copies of the proper data objects, and Step 10 can be readily
implemented calling to the BLAS saxpy routine. Step 9 is the matrix
multiplication of the replicated matrix Xg by the distributed matrix
Ap, and this is just the multiplication tackled in Section III.

Figure 8 represents the evolution of runtime with regard to the
polynomial degree for the evaluation of two polynomials of size
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Figure 7: Energy consumption in joules for a matrix product varying the weight of workload on each device.

n = 10000 and n = 14000, respectively, of random coefficients. The
figure shows the execution times using only the CPU versus using
the three devices. For the second case, we selected the distribution

tuple suggested by Figure 6 and Table 2 for each problem size.

The figure demonstrates that the evaluation of matrix polynomials
can be speeded up significantly by using all the devices in the
heterogeneous platform.
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Figure 8: Execution time for the evaluation of matrix polynomials.

VI. CONCLUSIONS AND FUTURE WORK

This work has presented an application for matrix multiplications
in a heterogeneous node composed by a multicore CPU and two
very different accelerators. We have shown that it is not difficult to
implement the application using OpenMP sections. However, the
incompatibility among compiler versions can make this task a bit
cumbersome, and in addition, selecting the exact suitable value for
the large number of environment variables is an arduous task that
highly affects the performance of the application.

We have reduced the study of our application to a particular case
in which all matrices involved are square. This case is motivated
by our aim to evaluate efficiently matrix polynomials, which is the

core operation to obtain matrix functions using the Taylor method.

However, the study can be extended to rectangular matrices with
little effort. We have developed a functional model for the runtime

so that we can select the proper amount of work to do by each
device. In our node, the K40 is the most speedy device, far more
than the Xeon Phi, which only has opportunity to contribute to the
computation on matrices larger than n = 10000. Furthermore, the
Xeon Phi is currently the most expensive device in terms of energy
consumption, and the K40 is the most energy efficient. Our study
on the energy consumption resulted in a quite simple behaviour, i.e.
the lowest total energy consumption is achieved when the GPU is
used in a similar proportion as that selected to achieve the lowest
execution time, provided the Xeon Phi is not used at all. It was
impossible to obtain an accurate measure of dynamic energy due to
specific behaviour of the GPU, which changes between two different
performance states (when idle) in an unpredictable way.

Finally, we proposed a heterogeneous matrix multiplication sys-
tem to make easy the programmability of algorithms based on a
heterogeneous matrix multiplication. The system was successfully
applied to obtain rapidly an application for the evaluation of matrix
polynomials. We plan for the future to generalize this system so that
we can perform products of the form

Cx < BCx +aAyBy,

being X, Y, Z € {none, R, D}, i.e. products that involve any type of
matrix distribution.

Finally, our aim is to extend everything carried out in this work
as fast and easy as possible to host the new upcoming FPGA device.
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