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Abstract

Ultrascale computing is required for many important applications in chemistry, computational fluid dynamics etc., see an
overview in the paper Applications for Ultrascale Computing by M. Mihajlovic et al. published in the International Journal
Supercomputing Frontiers and Innovations, Vol 2 (2015). In this abstract we shortly describe an application that involves many
aspects described in the above paper - the multiscale material design problem. The problem of interest is analysis of the fiber
reinforced concrete and we focus on modelling of stiffness through numerical homogenization and computing local material
properties by inverse analysis. Both problems require a repeated solution of large-scale finite element problems up to 200 million
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degrees of freedom and therefore the importance of HPC and ultrascale computing is evident.

Keywords Analysis of fiber-reinforced concrete, homogenization, identification of parameters, parallelizable solver, additive

Schwarz method, two-level parallelization

I. INTRODUCTION

This paper is a continuation of paper [1] presented at the
NESUS workshop in Cracow, Poland 2015. While [1] focused
on linear micromechanics exploiting CT scans for determina-
tion of microstructure and numerical homogenization, this
paper is driven by a specific application - analysis of fiber-
reinforced concrete. This analysis includes an identification
problem and stochastic uncertainty, which brings new dimen-
sion and enhances the need for fast solvers and ultrascale
computations.

Fiber-reinforced concrete with steel fibers has a lot of ap-
plications in civil and geotechnical engineering. It is less
expensive than hand-tied rebar, while still increasing the ten-
sile strength many times. The shape, dimension, and length
(standard 1 mm diameter, 45 mm length) of the fiber together
with fiber volume amount and distribution are important
parameters influencing the tensile strength of concrete.

The analysis includes assessment of tensile stiffness for
several samples of fiber-reinforced concrete which differ in
amount and distribution of fibers. These samples are scanned
by CT and analysed with provided elastic parameters for
steel fibers and concrete matrix. The detailed scan of a
sample leads to solving of elastic problems with about 200
million degrees of freedom.

As the global response of the samples can be tested on a
loading frame, then the output allows to solve an inverse
identification procedure to determine the elastic properties
of the concrete matrix. In this way we can both determine
the properties of concrete matrix, which can also be variable
to some extent, as well as assess whether some discrepancy
can be explained by imperfect bonding of fibers.

It is also possible not only to investigate selected physical
samples of the fiber-reinforced concrete but to do stochastic
analysis with a repeated generation of stochastic microstruc-
ture, see e.g. [5, 6].

II. HOMOGENIZATION AND IDENTIFICATION OF
PARAMETERS

The numerical homogenization starts with solving the elas-
ticity problem on the domain () with given microstructure.
The solution is possibly repeated for different loadings by
imposed boundary conditions. In an abstract way, we de-
note the loading conditions by L or in the case of multiple
loading by LK), The stress and strain tensors ¢(k) and &(¥)
are averaged over () and the homogenized elasticity tensor

c S Rg;;,?xaxs, C= [Cijﬁ]f Cl'jki = Cjiki = del'j' is determined
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as a (generalized) solution of the system

ce®) = gk) k) :|n|—y o®dq, g(k}:|ﬂ|_y NOPTeY
(9] 0

Assuming isotropy of the homogenized elasticity tensor,
one loading is sufficient for getting elasticity constants. If
¢ = Cyo1 + Ciev, is the decomposition of ¢ € RS‘S;,‘,,? into the
volumetric and deviatoric parts and ||-|| is the Frobenius
norm, then the bulk and shear moduli can be determined as

1, _ 1, _
K= 3 1%all / [[Ewill, G = 3 l|0aeoll / [|Eaeoll -

For parameter identification, we assume that some local
material properties are unknown, e.g. that the concrete
matrix is described by unknown parameters p = (K., G;),
where K and G, are unknown bulk and shear parameters of
the concrete. More generally, () can be split into subdomains
with different unknown elastic moduli of concrete. Then the
parameters are found by minimization of a proper objective
function | over a set of admissible parameters, see e.g. [7].

The construction of the objective function can be as follows

i

where %) (p) and &%) (p) are averaged stresses and strains
computed by solving the boundary value problem in (2 with
given microstructure, local material properties involving the
parameters from p and the loading L&) This boundary
value problem represents a physical test on the specimen
(). The test configuration is such that in the case of homo-
geneity of (), the problem has a solution with unique and

constant stress af(fs)t and strain EEQE, which can be determined
from measurements. The weights w;; can be determined by
numerical experiments or simply set to be equal w;; = 1.
The optimization is performed by a suitable method, we
already successfully tested the Nelder-Mead and Gauss-
Newton methods.
More details on the exploited homogenization and identi-

fication methods can be found in [3, 4].
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III. ApDDITIVE SCHWARZ SOLVER WITH TWO-LEVEL
PARALLELIZATION

A crucial component of the homogenization and identifica-
tion procedures is the solver for boundary value problems
of elasticity. We assume finite element discretization leading
to algebraic systems of the type of Au =b or A(p)u(p) =b,
where later indicates dependence on some local material
parameters. The system can be solved by the preconditioned

conjugate gradient (PCG) method with one level additive
Schwarz (AS) preconditioner B4s1 and mostly its extended
two-level version B4s»,

N
Bas1 = E R;{AEIRJ, Basp = Bas1 + R(];AEIR;].
k=1

Here Ry is a restriction defined by subdomain () or alge-
braically by overlapping decomposition of the solution vector
u € R", Ay is an approximation to Ay = RkART In our case
A} is a displacement decomposition - incomplete factoriza-
tion of A;. The one level AS preconditioner is not scalable,
the number of iterations increases with N, although this
grow is a bit compensated by the fact that A; becomes a
better approximation to A;. It fits the algebraic form of the
Schwarz methods if Ry € R"0*" is a Boolean matrix, which
defines aggregation of degrees of freedom, ie. each row
of Ry defines one aggregate by unities in this row. On the
other hand, each degree of freedom corresponds to just one
aggregate, i.e. there is precisely one unity in each column of
Ry. More details about this setting can be found e.g. in [2].

In the case of computing at a massively parallel computer
like Salomon [8], it is possible to exploit hundreds of pro-
cessors, which makes the local problems A; small even for
large scale matrices A. It makes difficult to keep balance of
times for solving the local problems Ay and the coarse global
one Ay. For this reason, parallel inner CG iterations for the
solution of problem A, were suggested and the algorithm
become with two levels of parallelization.

IV. NUMERICAL EXPERIMENTS

Our numerical experiments present five real samples of fiber-
reinforced concrete, each of cubic shape and size 35 mm.

Variant | Steel fibers Volume Volume
[kg/m3] Steel [%] Voids [%]
0 0 0.00 1.55
2 50 0.92 1.22
3 100 1.82 0.75
4 150 257 0.71
5 200 211 1.83

Table 1: Characteristics of REV for each sample of reinforced con-
crete. Variants differ in the volumes of steel fibers as well as voids.
The size of fibers: length 6 mm, diameter 0.12 mm.

Their microstructure is taken from industrial CT scanning
performed at the CT lab of the Institute of Geonics. Digital
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models arose from meshes of approx. 1400x 1400 x 1400 vox-
els, which were further trimmed to 1000x1000x 1000 voxels
due to surface damage or irregular sides of the samples.

Consequent computational models use smaller represen-
tative volumes (REV) and standard linear tetrahedral finite
elements. The size of each REV is 400x400x400 for ho-
mogenization experiments or 100 x100x 100 voxels for tests
related to material identification, respectively. Accordingly
the model leads to a (repeated) solution of the resulting linear
system in size of about 193 millions or 3 millions degrees of
freedom. Main characteristics of each REV are summarized
in Tab. 1.

‘ Material ‘ E [GPa] v ‘

concrete 19 0.2
steel 200 0.3
voids 0.01 0.1

Table 2: List of involved materials and their properties (Young’s
modulus E and Poisson’s ratio v).

The properties of the materials involve in mathematical
modelling are listed in Tab.2. Voids (air bubbles in the
microstructure) bring a kind of singularity caused by the
finite elements weekly hanged in the void space. They are
replaced with a very week elastic material. The convergence
of the applied PCG method is then smoother and faster.

The arising large-scale systems of linear equations are
processed by parallel solvers based on the PCG method,
with stabilization in the singular case [10]. The computa-
tions are performed on SGI cluster Salomon [8] run by the
IT4Innovations National Supercomputing Center in Ostrava.
The cluster, currently on 55. place in Top500, consists of
24192 cores and 129 TB of memory in total and with the
theoretical peak performance over 2 Pflop/s. The most of its
compute nodes is equipped by two 12-core processors Intel
Xeon E5-2680 v3 and 128 GB of memory.

Tab. 3 gives the results of numerical homogenization apply-
ing pure Dirichlet and pure Neumann boundary conditions
(BC). The choice of BC sets a configuration of homogeniza-
tion procedure, which simulates an appropriate laboratory
test under uniaxial loading. Dirichlet BC prescribe some
non-zero displacement on the top side in the direction of
uniaxial loading, the other sides have zero normal displace-
ments. Neumann BC enter opposite non-zero forces on the
top and bottom sides in the direction of uniaxial loading,
the other sides have zero normal forces. The use of pure
Dirichlet and pure Neumann BC allows us to get upper and
lower bounds for the upscaled elasticity tensor, see e.g. [3].

Due to irregular placement of steel fibers as well as voids

Dirichlet BC
Variant E [GPa] ‘ v

18.365 18.370 18.407 | 0.199 0.199 0.199
0 18.381 0.199

19.050 18.960 19.063 0.200 0.201 0.200
2 19.024 0.200

20.015 19.621 19.768 | 0200 0202  0.201
3 19.801 0.201

20.865 19.977 19.960 0.198 0.203 0.203
4 20.267 0.201

19.345 19.508 19.715 0.202 0.202 0.201
5 19.523 0.202

Neumann BC
Variant E [GPa] ‘ v

18.307 18.305 18.216 0.199 0.199 0.197
0 18.276 0.198

18.692 18.822 18.798 0.197  0.199 0.199
2 18.771 0.198

19.912 19.599 19.716 0.203 0.199 0.201
3 19.742 0.201

20.613 19.948 19.435 0.204 0.199 0.195
4 19.999 0.199

18.297 17.193 19.213 0.190 0.178 0.199
5 18.234 0.189

Table 3: Results obtained by numerical homogenization applying
Dirichlet and Neumann BC. Values of material parameters for
different directions (X Y Z) of uniaxial loading and averaged
(below).

in the microstructure, the results documents the anisotrophy
of tested material, when the values of material properties
strongly vary for different directions of loading, e.g. the
Young’s modulus E (the sample 4, Neumann BC) in Tab.3
varies about more than 1 GPa. However as expected and con-
sistent with theory, their averaged values follow the increase
of volume of steel fibers in concrete.

The corresponding values for pure Dirichlet and pure Neu-
mann BC give quite close bounds for real material properties.
However we observe that these bounds grow away with the
increasing volume of voids in the microstructure, moreover
when the voids are closer to the border of the studied do-
main and pure Neumann BC are applied, see the values
for the sample 5. Comparing with the others, the sample
5 contains also another abnormality. Although this sample
should contain the most of steel fibers according to Tab.1,
the real volume of steels in REV is not the biggest. Moreover,
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REV of this sample overcomes the others in the volume of
the void space in its microstructure.

The previous tests were related to the direct problem denot-
ing a computation of stiffness of the fiber reinforced concrete
based on known material distribution and local material
properties. The next numerical experiments describe one of
the possible inverse problems, an identification of the mate-
rial properties (Young’s modulus E and Poisson ratio v) of
the concrete matrix from known material distribution, elastic
properties of fibers and response of the sample (REV) to uni-
axial or triaxial loading tests. This inverse problem exploits
the objective function (the cost functional) J(p), p = (E,v),
w1 = Wy = 1, introduced in the section II. For more details
see [3].

Dirichlet BC

Variant ‘ Steps E [GPa] v
0 135 19.020  0.199
2 141 19.000  0.200
3 141 19.005  0.200
4 141 19.029 0.200
5 141 19.007 0.200

Neumann-Dirichlet BC

Variant \ Steps  E [GPa] v
0 138 18.996 0.200
2 135 19.004 0.200
3 135 19.006 0.200
4 162 19.034 0.200
5 129 19.007  0.200

Table 4: Results of material identification applying Dirichlet and
Neumann-Dirichlet BC. The number of transformation steps of the
applied Nelder-Mead method and the identified averaged material
properties of the concrete matrix for each REV.

The optimization is performed by the non-gradient Nelder-
Mead (NM) method with starting values (E, v) provided by
three pairs (17.000, 0.26), (21.000, 0.17), (18.000, 0.23). In
each step of the NM method, three direct problems (three
computation of local stresses and strains), corresponding to
simulation of uniaxial loading tests for each direction X, Y
and Z, are solved. Dirichlet BC describe the same loading
as in case of homogenization tests. Neumann-Dirichlet BC
enter a combination of pure Dirichlet and pure Neumann
BC introduced earlier. It means the prescribed non-zero
displacement on the top side in the direction of loading,
zero displacement on the bottom side in the direction of
loading and zero normal forces on the other sides. The NM

iterations are stopped if the decrease of the cost functional
and differences in the identified parameters are sufficiently
small.

The numbers of transformation steps performed by the
NM optimizaton procedure and the averaged values of
the identified material properties are summarized in Tab. 4.
Dirichlet BC on the whole sample boundary are used for
comparison purposes. They are applicable if the loading
response is computed artificially. The obtained results show
a good accordance with the values for the concrete matrix
presented in Tab.2. Considering the number of NM steps
and a need to repeat the FEM calculation several times in
each step, the results document also a substantially increased
requirements on the computational power of the used com-
puter.

V. TUNING OF PARALLEL SOLVERS

Nowadays powerful parallel computers for HPC have hun-
dreads or thousands of cores. Therefore we decided to reim-
plement our original parallel solver for large-scale systems
of linear equations arising from 3D boundary problems of
elasticity. The solver dates back to the times of Beowulf type
clusters and small multiprocessors with up to 20 processors.
The original solver is based on the PCG method, uses the
one-directional domain decomposition for parallelization of
iterative process as well as the construction of efficient one-
level and two-level AS preconditioners (AS1, AS2), see their
definition through B4gs; and Bygp in IIL. Parallel processes
communicate through message passing (MPI standard).

Original solver, master-slave design:

- > >
matrix by vector multiplication preconditioning

Original solver, with a coarse grid computation:

time (1 iteration, completed in 0.12 5) —

coarse grid computation

New solver:

matrix by vector multiplication

preconditioning

Figure 1: Traces of one PCG iteration processing 4 subdomains.
From above, records for the original solver with AS1 and AS2, and
new solver with AS1 only. States of parallel processes: work (blue),
wait or idle (red).

Fig.1 shows traces of the runs of parallel solvers produced
by the Intel Trace Analyzer. The implementation of the
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original solver follows the master-slave design, when the
first process (from above) is the master, almost idle, just
controlling the iterative process and computing two global
scalar products. Each of the four slave processes (below
the master) works on its portion of data, especially during
the dominating operations matrix by vector multiplication
(MXV) and preconditioning (PREC).

The second trace adds a coarse grid computation to AS2.
This computation is performed by a separate process, idle for
more than a half of the iteration execution time. Nevertheless
this process is very important because a coarse grid compu-
tation strongly improves the efficiency of the preconditioner
and speeds up the convergence of the PCG iterations.

The third trace documents a run of the new version of
the parallel solver, surpassing the original one in the execu-
tion time and a better utilization of processes. New solver
works internally with data in double precision and dynamic
allocation of memory, uses a modified domain decomposi-
tion (with an overlapping of subdomains) leading to a better
load balancing of processes, has optimized (mainly global)
communication of processes and also calculations in loops
(during MXV and PREC operations). The new solver aban-
dons master-slave design, the negligible amount of work
performed by the master process was taken over by the other
processes.

—r 0125

0.045

4 subdomains
32 subdomains

Figure 2: A coarse grid computation bottleneck in the original
solver. Traces of one PCG iteration processing 4 and 32 subdo-
mains.

The next step in the parallel solver optimization is indi-
cated by Fig.2. With the increase of processes, the execution
time of the most demanding MXV and PREC operations per-
formed by worker processes scales down correspondingly,
whilst the execution time of a coarse grid computation stays
constant. In the example shown in Fig. 2, the described effect
limits the possible speed-up of the solver only to 3, instead of
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expected 8, which corresponds to the increase of the number
of processes.

Such a negative effect can be eliminated by a coarse grid
parallelization in a hybrid way, when all processes do not
perform the same calculations. On hundreads of computing
elements (processors or cores), such hybrid parallelization
includes the most of processes solving the subproblems cor-
responding to subdomains and only a few (units or tens) of
processes performing coarse grid computations in parallel.
It should not substantially decrease convergence properties
of the applied AS2 preconditioner, but dramatically increase
the efficiency of the resulting PCG iterations. However, the
described hybrid paralellization can bring difficulties how to
treat optimal load balancing of processes.

VI. CONCLUSIONS

The paper demonstrates the need for high performance com-
puting by focusing on one engineering application - investi-
gation of the fiber reinforced concrete. The primary analysis
solves a microscale problem for homogenization within the
range of linear material behaviour. This basic problem can
be modified (extended) in several directions and any of them
substantially increases the computational demands. One
extension, roughly described in this abstract, is the solution
of the inverse problem of identification of the local material
parameters or some level of debonding of the matrix and
fibers. This problem is solved by the optimization methods
which require repeated solution of the basic problem. The
increase in computational demands can be about hundred
times. Another extension is based not only on the solution of
selected and scanned samples of the concrete, but also on the
stochastic generation of a set of such samples and evaluation
of the mean properties by Monte Carlo or multi-level Monte
Carlo methods, see e.g. [9]. The last extension is to consider
the strengths and non-linear post peak behaviour, which
involves the usage of damage mechanics techniques, see e.g.
[5] and the references therein.
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