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Abstract

Ultrascalecomputingisrequiredformanyimportantapplicationsinchemistry,computationalfluiddynamicsetc.,seean

overviewinthepaperApplicationsforUltrascaleComputingbyM.Mihajlovicetal.publishedintheInternationalJournal

SupercomputingFrontiersandInnovations,Vol2(2015).Inthisabstractweshortlydescribeanapplicationthatinvolvesmany

aspectsdescribedintheabovepaper-themultiscalematerialdesignproblem.Theproblemofinterestisanalysisofthefiber

reinforcedconcreteandwefocusonmodellingofstiffnessthroughnumericalhomogenizationandcomputinglocalmaterial

propertiesbyinverseanalysis.Bothproblemsrequirearepeatedsolutionoflarge-scalefiniteelementproblemsupto200million

degreesoffreedomandthereforetheimportanceofHPCandultrascalecomputingisevident.

KeywordsAnalysisoffiber-reinforcedconcrete,homogenization,identificationofparameters,parallelizablesolver,additive

Schwarzmethod,two-levelparallelization

I. Introduction

Thispaperisacontinuationofpaper[1]presentedatthe

NESUSworkshopinCracow,Poland2015. While[1]focused

onlinearmicromechanicsexploitingCTscansfordetermina-

tionofmicrostructureandnumericalhomogenization,this

paperisdrivenbyaspecificapplication-analysisoffiber-

reinforcedconcrete.Thisanalysisincludesanidentification

problemandstochasticuncertainty,whichbringsnewdimen-

sionandenhancestheneedforfastsolversandultrascale

computations.

Fiber-reinforcedconcretewithsteelfibershasalotofap-

plicationsincivilandgeotechnicalengineering.Itisless

expensivethanhand-tiedrebar,whilestillincreasingtheten-

silestrengthmanytimes.Theshape,dimension,andlength

(standard1mmdiameter,45mmlength)ofthefibertogether

withfibervolumeamountanddistributionareimportant

parametersinfluencingthetensilestrengthofconcrete.

Theanalysisincludesassessmentoftensilestiffnessfor

severalsamplesoffiber-reinforcedconcretewhichdifferin

amountanddistributionoffibers.Thesesamplesarescanned

byCTandanalysedwithprovidedelasticparametersfor

steelfibersandconcrete matrix. Thedetailedscanofa

sampleleadstosolvingofelasticproblemswithabout200

milliondegreesoffreedom.

Astheglobalresponseofthesamplescanbetestedona

loadingframe,thentheoutputallowstosolveaninverse

identificationproceduretodeterminetheelasticproperties

oftheconcretematrix.Inthiswaywecanbothdetermine

thepropertiesofconcretematrix,whichcanalsobevariable

tosomeextent,aswellasassesswhethersomediscrepancy

canbeexplainedbyimperfectbondingoffibers.

Itisalsopossiblenotonlytoinvestigateselectedphysical

samplesofthefiber-reinforcedconcretebuttodostochastic

analysiswitharepeatedgenerationofstochasticmicrostruc-

ture,seee.g.[5,6].

II. Homogenizationandidentificationof

parameters

Thenumericalhomogenizationstartswithsolvingtheelas-

ticityproblemonthedomainΩwithgivenmicrostructure.

Thesolutionispossiblyrepeatedfordifferentloadingsby

imposedboundaryconditions.Inanabstractway,wede-

notetheloadingconditionsbyLorinthecaseofmultiple

loadingbyL(k).Thestressandstraintensorsσ(k)andε(k)

areaveragedoverΩandthehomogenizedelasticitytensor

C̄∈R6×6×6×6sym ,C= cijkl,cijkl=cjikl=cklijisdetermined
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asa(generalized)solutionofthesystem

C̄̄ε(k)=σ̄(k), σ̄(k)=|Ω|−1

Ω

σ(k)dΩ, ε̄(k)=|Ω|−1

Ω

ε(k)dΩ.

Assumingisotropyofthehomogenizedelasticitytensor,

oneloadingissufficientforgettingelasticityconstants.If

ξ=ξvol+ξdev,isthedecompositionofξ∈R
6×6
symintothe

volumetricanddeviatoricpartsand ·istheFrobenius
norm,thenthebulkandshearmodulicanbedeterminedas

K=
1

3
σ̄vol / ε̄vol, G=

1

2
σ̄dev / ε̄dev .

Forparameteridentification,weassumethatsomelocal

materialpropertiesareunknown,e.g.thattheconcrete

matrixisdescribedbyunknownparametersp=(Kc,Gc),
whereKcandGcareunknownbulkandshearparametersof

theconcrete. Moregenerally,Ωcanbesplitintosubdomains

withdifferentunknownelasticmoduliofconcrete.Thenthe

parametersarefoundbyminimizationofaproperobjective

functionJoverasetofadmissibleparameters,seee.g.[7].

Theconstructionoftheobjectivefunctioncanbeasfollows

J(p)=∑
k

w1k ε̄
(k)(p)−ε̄

(k)
test

2
+w2k σ̄

(k)(p)−σ̄
(k)
test

2
,

whereσ̄(k)(p)andε̄(k)(p)areaveragedstressesandstrains
computedbysolvingtheboundaryvalueprobleminΩwith

givenmicrostructure,localmaterialpropertiesinvolvingthe

parametersfrompandtheloadingL(k). Thisboundary

valueproblemrepresentsaphysicaltestonthespecimen

Ω.Thetestconfigurationissuchthatinthecaseofhomo-

geneityofΩ,theproblemhasasolutionwithuniqueand

constantstress̄σ
(k)
testandstrainε̄

(k)
test,whichcanbedetermined

frommeasurements.Theweightswikcanbedeterminedby

numericalexperimentsorsimplysettobeequalwik=1.
Theoptimizationisperformedbyasuitablemethod,we

alreadysuccessfullytestedthe Nelder-MeadandGauss-

Newtonmethods.

Moredetailsontheexploitedhomogenizationandidenti-

ficationmethodscanbefoundin[3,4].

III. AdditiveSchwarzsolverwithtwo-level

parallelization

Acrucialcomponentofthehomogenizationandidentifica-

tionproceduresisthesolverforboundaryvalueproblems

ofelasticity. Weassumefiniteelementdiscretizationleading

toalgebraicsystemsofthetypeofAu=borA(p)u(p)=b,
wherelaterindicatesdependenceonsomelocalmaterial

parameters.Thesystemcanbesolvedbythepreconditioned

conjugategradient(PCG)methodwithoneleveladditive

Schwarz(AS)preconditionerBAS1andmostlyitsextended

two-levelversionBAS2,

BAS1=
N

∑
k=1

RTkÃ
−1
k Rk, BAS2=BAS1+R

T
0Ã
−1
0 R0.

HereRkisarestrictiondefinedbysubdomainΩkoralge-

braicallybyoverlappingdecompositionofthesolutionvector

u∈Rn,ÃkisanapproximationtoAk=RkAR
T
k.Inourcase

Ãkisadisplacementdecomposition-incompletefactoriza-

tionofAk.TheonelevelASpreconditionerisnotscalable,

thenumberofiterationsincreaseswithN,althoughthis

growisabitcompensatedbythefactthatÃkbecomesa

betterapproximationtoAk.Itfitsthealgebraicformofthe

SchwarzmethodsifR0∈R
n0×nisaBooleanmatrix,which

definesaggregationofdegreesoffreedom,i.e.eachrow

ofR0definesoneaggregatebyunitiesinthisrow.Onthe

otherhand,eachdegreeoffreedomcorrespondstojustone

aggregate,i.e.thereispreciselyoneunityineachcolumnof

R0. Moredetailsaboutthissettingcanbefounde.g.in[2].

Inthecaseofcomputingatamassivelyparallelcomputer

likeSalomon[8],itispossibletoexploithundredsofpro-

cessors,whichmakesthelocalproblemsAksmallevenfor

largescalematricesA.Itmakesdifficulttokeepbalanceof

timesforsolvingthelocalproblemsAkandthecoarseglobal

oneA0.Forthisreason,parallelinnerCGiterationsforthe

solutionofproblemA0weresuggestedandthealgorithm

becomewithtwolevelsofparallelization.

IV. Numericalexperiments

Ournumericalexperimentspresentfiverealsamplesoffiber-

reinforcedconcrete,eachofcubicshapeandsize35mm.

Variant Steelfibers Volume Volume

[kg/m3] Steel[%] Voids[%]

0 0 0.00 1.55

2 50 0.92 1.22

3 100 1.82 0.75

4 150 2.57 0.71

5 200 2.11 1.83

Table1:CharacteristicsofREVforeachsampleofreinforcedcon-

crete.Variantsdifferinthevolumesofsteelfibersaswellasvoids.

Thesizeoffibers:length6mm,diameter0.12mm.

TheirmicrostructureistakenfromindustrialCTscanning

performedattheCTlaboftheInstituteofGeonics.Digital
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models arose from meshes of approx. 1400×1400×1400 vox-
els, which were further trimmed to 1000×1000×1000 voxels
due to surface damage or irregular sides of the samples.

Consequent computational models use smaller represen-
tative volumes (REV) and standard linear tetrahedral finite
elements. The size of each REV is 400×400×400 for ho-
mogenization experiments or 100×100×100 voxels for tests
related to material identification, respectively. Accordingly
the model leads to a (repeated) solution of the resulting linear
system in size of about 193 millions or 3 millions degrees of
freedom. Main characteristics of each REV are summarized
in Tab. 1.

Material E [GPa] ν

concrete 19 0.2
steel 200 0.3
voids 0.01 0.1

Table 2: List of involved materials and their properties (Young’s
modulus E and Poisson’s ratio ν).

The properties of the materials involve in mathematical
modelling are listed in Tab. 2. Voids (air bubbles in the
microstructure) bring a kind of singularity caused by the
finite elements weekly hanged in the void space. They are
replaced with a very week elastic material. The convergence
of the applied PCG method is then smoother and faster.

The arising large-scale systems of linear equations are
processed by parallel solvers based on the PCG method,
with stabilization in the singular case [10]. The computa-
tions are performed on SGI cluster Salomon [8] run by the
IT4Innovations National Supercomputing Center in Ostrava.
The cluster, currently on 55. place in Top500, consists of
24192 cores and 129 TB of memory in total and with the
theoretical peak performance over 2 Pflop/s. The most of its
compute nodes is equipped by two 12-core processors Intel
Xeon E5-2680 v3 and 128 GB of memory.

Tab. 3 gives the results of numerical homogenization apply-
ing pure Dirichlet and pure Neumann boundary conditions
(BC). The choice of BC sets a configuration of homogeniza-
tion procedure, which simulates an appropriate laboratory
test under uniaxial loading. Dirichlet BC prescribe some
non-zero displacement on the top side in the direction of
uniaxial loading, the other sides have zero normal displace-
ments. Neumann BC enter opposite non-zero forces on the
top and bottom sides in the direction of uniaxial loading,
the other sides have zero normal forces. The use of pure
Dirichlet and pure Neumann BC allows us to get upper and
lower bounds for the upscaled elasticity tensor, see e.g. [3].

Due to irregular placement of steel fibers as well as voids

Dirichlet BC
Variant E [GPa] ν

18.365 18.370 18.407 0.199 0.199 0.199

0 18.381 0.199
19.050 18.960 19.063 0.200 0.201 0.200

2 19.024 0.200
20.015 19.621 19.768 0.200 0.202 0.201

3 19.801 0.201
20.865 19.977 19.960 0.198 0.203 0.203

4 20.267 0.201
19.345 19.508 19.715 0.202 0.202 0.201

5 19.523 0.202

Neumann BC
Variant E [GPa] ν

18.307 18.305 18.216 0.199 0.199 0.197

0 18.276 0.198
18.692 18.822 18.798 0.197 0.199 0.199

2 18.771 0.198
19.912 19.599 19.716 0.203 0.199 0.201

3 19.742 0.201
20.613 19.948 19.435 0.204 0.199 0.195

4 19.999 0.199
18.297 17.193 19.213 0.190 0.178 0.199

5 18.234 0.189

Table 3: Results obtained by numerical homogenization applying
Dirichlet and Neumann BC. Values of material parameters for
different directions (X Y Z) of uniaxial loading and averaged
(below).

in the microstructure, the results documents the anisotrophy
of tested material, when the values of material properties
strongly vary for different directions of loading, e.g. the
Young’s modulus E (the sample 4, Neumann BC) in Tab. 3
varies about more than 1 GPa. However as expected and con-
sistent with theory, their averaged values follow the increase
of volume of steel fibers in concrete.

The corresponding values for pure Dirichlet and pure Neu-
mann BC give quite close bounds for real material properties.
However we observe that these bounds grow away with the
increasing volume of voids in the microstructure, moreover
when the voids are closer to the border of the studied do-
main and pure Neumann BC are applied, see the values
for the sample 5. Comparing with the others, the sample
5 contains also another abnormality. Although this sample
should contain the most of steel fibers according to Tab. 1,
the real volume of steels in REV is not the biggest. Moreover,
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REV of this sample overcomes the others in the volume of
the void space in its microstructure.

The previous tests were related to the direct problem denot-
ing a computation of stiffness of the fiber reinforced concrete
based on known material distribution and local material
properties. The next numerical experiments describe one of
the possible inverse problems, an identification of the mate-
rial properties (Young’s modulus E and Poisson ratio ν) of
the concrete matrix from known material distribution, elastic
properties of fibers and response of the sample (REV) to uni-
axial or triaxial loading tests. This inverse problem exploits
the objective function (the cost functional) J(p), p = (E, ν),
w1k = w2k = 1, introduced in the section II. For more details
see [3].

Dirichlet BC
Variant Steps E [GPa] ν

0 135 19.020 0.199
2 141 19.000 0.200
3 141 19.005 0.200
4 141 19.029 0.200
5 141 19.007 0.200

Neumann–Dirichlet BC
Variant Steps E [GPa] ν

0 138 18.996 0.200
2 135 19.004 0.200
3 135 19.006 0.200
4 162 19.034 0.200
5 129 19.007 0.200

Table 4: Results of material identification applying Dirichlet and
Neumann-Dirichlet BC. The number of transformation steps of the
applied Nelder-Mead method and the identified averaged material
properties of the concrete matrix for each REV.

The optimization is performed by the non-gradient Nelder-
Mead (NM) method with starting values (E, ν) provided by
three pairs (17.000, 0.26), (21.000, 0.17), (18.000, 0.23). In
each step of the NM method, three direct problems (three
computation of local stresses and strains), corresponding to
simulation of uniaxial loading tests for each direction X, Y
and Z, are solved. Dirichlet BC describe the same loading
as in case of homogenization tests. Neumann-Dirichlet BC
enter a combination of pure Dirichlet and pure Neumann
BC introduced earlier. It means the prescribed non-zero
displacement on the top side in the direction of loading,
zero displacement on the bottom side in the direction of
loading and zero normal forces on the other sides. The NM

iterations are stopped if the decrease of the cost functional
and differences in the identified parameters are sufficiently
small.

The numbers of transformation steps performed by the
NM optimizaton procedure and the averaged values of
the identified material properties are summarized in Tab. 4.
Dirichlet BC on the whole sample boundary are used for
comparison purposes. They are applicable if the loading
response is computed artificially. The obtained results show
a good accordance with the values for the concrete matrix
presented in Tab. 2. Considering the number of NM steps
and a need to repeat the FEM calculation several times in
each step, the results document also a substantially increased
requirements on the computational power of the used com-
puter.

V. Tuning of parallel solvers

Nowadays powerful parallel computers for HPC have hun-
dreads or thousands of cores. Therefore we decided to reim-
plement our original parallel solver for large-scale systems
of linear equations arising from 3D boundary problems of
elasticity. The solver dates back to the times of Beowulf type
clusters and small multiprocessors with up to 20 processors.

The original solver is based on the PCG method, uses the
one-directional domain decomposition for parallelization of
iterative process as well as the construction of efficient one-
level and two-level AS preconditioners (AS1, AS2), see their
definition through BAS1 and BAS2 in III. Parallel processes
communicate through message passing (MPI standard).

Figure 1: Traces of one PCG iteration processing 4 subdomains.
From above, records for the original solver with AS1 and AS2, and
new solver with AS1 only. States of parallel processes: work (blue),
wait or idle (red).

Fig. 1 shows traces of the runs of parallel solvers produced
by the Intel Trace Analyzer. The implementation of the
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original solver follows the master-slave design, when the
first process (from above) is the master, almost idle, just
controlling the iterative process and computing two global
scalar products. Each of the four slave processes (below
the master) works on its portion of data, especially during
the dominating operations matrix by vector multiplication
(MXV) and preconditioning (PREC).

The second trace adds a coarse grid computation to AS2.
This computation is performed by a separate process, idle for
more than a half of the iteration execution time. Nevertheless
this process is very important because a coarse grid compu-
tation strongly improves the efficiency of the preconditioner
and speeds up the convergence of the PCG iterations.

The third trace documents a run of the new version of
the parallel solver, surpassing the original one in the execu-
tion time and a better utilization of processes. New solver
works internally with data in double precision and dynamic
allocation of memory, uses a modified domain decomposi-
tion (with an overlapping of subdomains) leading to a better
load balancing of processes, has optimized (mainly global)
communication of processes and also calculations in loops
(during MXV and PREC operations). The new solver aban-
dons master-slave design, the negligible amount of work
performed by the master process was taken over by the other
processes.

Figure 2: A coarse grid computation bottleneck in the original
solver. Traces of one PCG iteration processing 4 and 32 subdo-
mains.

The next step in the parallel solver optimization is indi-
cated by Fig. 2. With the increase of processes, the execution
time of the most demanding MXV and PREC operations per-
formed by worker processes scales down correspondingly,
whilst the execution time of a coarse grid computation stays
constant. In the example shown in Fig. 2, the described effect
limits the possible speed-up of the solver only to 3, instead of

expected 8, which corresponds to the increase of the number
of processes.

Such a negative effect can be eliminated by a coarse grid
parallelization in a hybrid way, when all processes do not
perform the same calculations. On hundreads of computing
elements (processors or cores), such hybrid parallelization
includes the most of processes solving the subproblems cor-
responding to subdomains and only a few (units or tens) of
processes performing coarse grid computations in parallel.
It should not substantially decrease convergence properties
of the applied AS2 preconditioner, but dramatically increase
the efficiency of the resulting PCG iterations. However, the
described hybrid paralellization can bring difficulties how to
treat optimal load balancing of processes.

VI. Conclusions

The paper demonstrates the need for high performance com-
puting by focusing on one engineering application - investi-
gation of the fiber reinforced concrete. The primary analysis
solves a microscale problem for homogenization within the
range of linear material behaviour. This basic problem can
be modified (extended) in several directions and any of them
substantially increases the computational demands. One
extension, roughly described in this abstract, is the solution
of the inverse problem of identification of the local material
parameters or some level of debonding of the matrix and
fibers. This problem is solved by the optimization methods
which require repeated solution of the basic problem. The
increase in computational demands can be about hundred
times. Another extension is based not only on the solution of
selected and scanned samples of the concrete, but also on the
stochastic generation of a set of such samples and evaluation
of the mean properties by Monte Carlo or multi-level Monte
Carlo methods, see e.g. [9]. The last extension is to consider
the strengths and non-linear post peak behaviour, which
involves the usage of damage mechanics techniques, see e.g.
[5] and the references therein.
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